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Abstract

Functional magnetic resonance imaging (FMRI) is a non-invasive technique used

to produce maps of brain activation based on the blood oxygen level dependent

(BOLD) contrast. It is widely used in neuroscience research and, to a more limited

extent, clinically for neurosurgical planning. A stimulus or task is conventionally

used to evoke brain activity; however, functional connections in the brain can also

be determined from correlations in the fluctuations of the BOLD signal observed in

the absence of any external stimuli (resting-state FMRI).

Gradient-echo echo-planar imaging (GE-EPI) is the most common technique

for acquiring FMRI data because of its sensitivity to the BOLD signal changes

and relatively high temporal resolution. GE-EPI images are however affected by

signal dropout caused by magnetic field gradients arising from the differences in the

magnetic susceptibilities of materials in the head. This hampers the detection of

BOLD signal changes in areas of the brain close to air-bone interfaces such as the

orbitofrontal and inferior temporal regions.

Theoretical calculations and numerical simulations were performed to determine

the degree of signal recovery needed to detect task-evoked and resting-state BOLD

signal changes in such areas of signal dropout. Three different approaches to reduc-

ing signal dropout in GE-EPI images were then explored. The first two, z-shimming

optimised to recover signal in grey matter and hyperbolic secant (HS) radiofrequency

pulses aimed to reduce the dropout caused by through-plane susceptibility gradients.

The third, using a combination of the HS pulse with compensatory gradients in the

frequency encoding direction, aimed to further reduce the dropout correcting for

in-plane susceptibility gradients. The impact of all three techniques on the ability

to detect task-evoked and resting-state BOLD signal changes was investigated in a

group of six healthy volunteers.

The copyright of this thesis rests with the author and no quotation from it or infor-

mation derived from it may be published without proper acknowledgement.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) [1, 2] is a widely used technique in medicine and

scientific research because of its versatility and ability to non-invasively image both

the structure and function of different tissues within the body. Of particular interest

in this thesis are the maps of brain activation, based on the blood oxygen level

dependent (BOLD) contrast [3–5], produced using functional magnetic resonance

imaging (FMRI) [6–8]. Since its inception in the early 1990s, FMRI has been used

extensively in neuroscience research to further expand our knowledge of the brain

[9, 10]. It is also used clinically in the planning of surgery to remove tumours [11].

In the more traditional task-based FMRI experiments a stimulus or task is used to

evoke a brain response [6–8]. Alternatively, in resting-state FMRI, correlations in

the fluctuations of the BOLD signal, observed in the absence of any external stimuli,

can be used to map functional connections in the brain [12, 13].

The technique most frequently used to acquire FMRI data is gradient-echo echo-

planar imaging (GE-EPI) [14–16] because it is sensitive to the BOLD signal changes

associated with brain activity and it has a relatively high temporal resolution [17].

Unfortunately, some areas of GE-EPI images are affected by signal dropout which

severely reduces the detectability of BOLD signal changes [18]. The dropout is

caused by signal dephasing, which results from localised magnetic field gradients

that are induced by the differences in the magnetic susceptibilities of materials in

the head. It is most severe in areas of the brain close to air-bone interfaces such

as the orbitofrontal cortex (OFC), located superiorly to the sphenoid and ethmoid

sinuses, and the inferior temporal lobes (ITL), located superiorly to the mastoid

cells and ear canals [19]. The reduction in the detectability of BOLD signal changes

in the orbitofrontal cortex and inferior temporal regions means that FMRI data ac-

quired with GE-EPI cannot be used to effectively map the specific functions of these

areas nor their functional connections with other regions of the brain. Alternative

approaches including positron emission tomography (PET), lesion studies in hu-

mans and invasive experiments in monkey have shown the involvement of the OFC
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in olfaction [20, 21], the representation of the reward of different stimuli [22, 23] and

the processing of emotional facial expressions [24, 25]. The ITL has been shown to

be involved in language processing [26]. Each of these have disadvantages however,

and it would be ideal to be able to apply the same FMRI based approaches as in

other brain regions.

As summarised in Chapter 2, an array of different techniques has been developed

to reduce the signal dropout in GE-EPI images all of which have advantages and

disadvantages. The aim of this thesis was to build on this work; investigating both

the theoretical and practical implications of their implementation with the overall

aim of devising a technique able to increase sensitivity to BOLD signal changes in

the orbitofrontal and inferior temporal regions whilst retaining sensitivity in other

parts of the brain.

1.1 Thesis Overview

An overview of MRI, with a focus on the techniques and concepts relevant to func-

tional MRI is presented in Chapter 2. In Chapter 3 functional MRI is described in

greater detail; included here is a discussion of both task and resting-state FMRI, as

well a description of the methods commonly used to analyse both of these types of

FMRI data.

In Chapter 4 the impact of signal dropout on the potential detectability of task

induced brain activations, from FMRI data, is investigated using both a theoretical

model and numerical simulations. Further numerical simulations are performed to

determine how signal dropouts are likely to impact on the detectability of networks

of resting-state brain activity.

Chapter 5 describes the development of a z-shimming technique [27] to recover

signal in the inferior temporal lobes and orbitofrontal cortex. Based on the ac-

quisition of two images with different compensatory gradients in the slice-selection

direction, the method aims to recover signal in grey matter in the regions of signal

dropout, whilst maintaining signal in grey matter elsewhere. The optimal differ-

ence between the two z-shim gradients is found using numerical simulations of the

Bloch equations. The optimal pair of slice specific z-shim gradients is determined

on the scanner using the data acquired in a calibration scan and a grey matter mask

produced using a double-inversion recovery echo-planar imaging acquisition. The

impact of 2-step grey matter optimised z-shimming on the ability to detect task-

induced and resting-state BOLD signal changes is then assessed in a group of six

healthy male volunteers. A pair of FMRI experiments, acquired using conventional

GE-EPI and the z-shimming technique, while the subjects are at rest is used to

measure the changes in the temporal signal to noise ratio, as well assess the changes
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in the detectability of well-known resting state networks when z-shimming is used.

FMRI experiments acquired when the subjects are performing a motor task are used

to measure the changes in detectability of task induced BOLD signal changes. Fi-

nally the changes in BOLD sensitivity across all grey matter voxels is assessed using

FMRI data acquired as the subjects perform a breath-hold task [28, 29].

Chapter 6 presents the development of a hyperbolic secant radiofrequency pulse,

designed to reduce signal dropout caused by through-plane susceptibility gradients

[30]. A systematic approach to determine the pulse parameters required to recover

signal for a given slice thickness and echo time is presented. The impact of the new

RF pulse is assessed in the same group of healthy volunteers with the same battery

of tests as in the previous chapter.

In Chapter 7, a series of experiments are presented to show the effect of combining

the optimised hyperbolic secant pulse with compensation of susceptibility gradients

in the phase and frequency encoding directions [28, 29]. The best combination of

the two is found along the optimal slice angle to maximise signal recovery in the

regions affected by dropout. The impact of the chosen combination is assessed in

the same group of healthy volunteers and with the same battery of tests as in the

previous two chapters.

The main results and conclusions of the previous four chapters are drawn together

in Chapter 8, to highlight both the contributions to the field and those areas which

would merit further study.

1.2 Ethical Approval

The assessment of the efficacy of the novel acquisition methods, developed in this

thesis, by scanning healthy volunteers, is covered by the ethical approval “Develop-

ment of Magnetic Resonance Imaging and Spectroscopy Methods” (Study reference:

04/Q0706/72 approved by the London – Camberwell St Giles NRES Committee,

formerly known as the Joint South London and Maudsley and the Institute of Psy-

chiatry Research Ethics Committee).

All the work presented in this thesis was completed by me; I am grateful to David

Lythgoe and Simon Meara for providing the source code for z-shimming and double

inversion-recovery echo-planar imaging pulse sequences which I updated and used

in several experiments in this thesis.

24



Chapter 2

Magnetic Resonance Imaging

2.1 Introduction

The discovery of Nuclear Magnetic Resonance (NMR), as first described by Bloch

[31] and Purcell et al. [32], followed from the experimental observations of electron

spin by Gerlach and Stern [33] along with measurements of the proton’s magnetic

moment by Rabi et al. [34] and the theoretical description of spin arising from Dirac’s

equation of relativistic quantum mechanics [35, 36]. It was on these foundations

that initially Damadian [37] and then more fully Lauterbur [1] and Mansfield and

Grannell [2] developed the technique of Magnetic Resonance Imaging (MRI) which

is now so widely exploited in medicine.

2.2 Nuclear Magnetic Resonance

Nuclear magnetic resonance is observed in nuclei with a non-zero spin angular mo-

mentum. Due to its abundance in the human body the most commonly encountered

nucleus in MRI is 1H although applications utilising 13C,19F and 31P are also seen

in research and clinical practice. Associated with their spin angular momentum

these nuclei also have a magnetic dipole moment. In a static magnetic field these

dipole moments have a discrete set of spin eigenstates that are populated according

to the Boltzmann distribution. The result is a net magnetisation parallel to the

applied field which can be manipulated by means of radiofrequency (RF) pulses

applied perpendicular to the static field at the Larmour frequency. A measurable

RF signal results when the net magnetisation is rotated into the transverse plane by

the application of an RF pulse. Following this irradiation the spins return to their

equilibrium state via both transverse and longitudinal relaxation mechanisms.
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Figure 2.1: The spin-up and spin-down states of a proton

2.2.1 Spin

In addition to mass and charge, protons have a further fundamental property; spin

angular momentum, S, and associated with this a spin magnetic moment, µ. These

two quantities are related by:

µ = γS (2.1)

Where γ is the gyromagnetic ratio. For protons γ = gpe

2mp
= 2.675× 108 rad s−1T−1

where gp is the proton g-factor, e is the electronic charge and mp is the proton mass.

Protons are spin-1/2 particles; as such the magnitude of their spin angular mo-

mentum S = ~
√

3/2 and the z-component of the spin angular momentum has two

eigenstates ms = ±1/2. These two states are commonly referred to as spin-up (↑)
and spin-down (↓); they are shown schematically in Figure 2.1.

2.2.2 Nuclear Zeeman Splitting

In the absence of an external magnetic field the spin-up and spin-down states of the

proton have the same energy. However, in an external magnetic field with magnitude

B0 directed along the z-axis, the energy levels of the spin-up and spin-down states

split. The spin-up state, in which the z-component of the spin angular momentum

is aligned with the external field has a lower energy E↑ = −1
2
γ~B0, and the spin-

down state has a higher energy E↓ = 1
2
γ~B0, this effect is shown in Figure 2.2. The

energy difference between the two eigenstates is ∆E = γ~B0 = ~ω0. Therefore the

frequency of radiation required to stimulate transitions between the spin-up and

spin-down states is the Larmor frequency ω0 = γB0.

26



B = 0 B = B0

∆E = γh̄B0

ms = −1/2

ms = +1/2

Figure 2.2: Nuclear Zeeman splitting of the spin energy levels in an external mag-
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Figure 2.3: The net magnetisation resulting from the vector sum of the individual
spin magnetic moments

2.2.3 The Boltzmann Distribution and the Net Magnetisa-

tion

In an NMR experiment, it is the effect of the net magnetisation, rather than that of

single spins, that is measured. The z-component of the net magnetisation Mz of a

group of proton spins is proportional to the population difference (n↑ − n↓) between

the spin-up and spin-down states:

Mz =
γ~
2

(n↑ − n↓) (2.2)

The formation of the net magnetisation from the vector sum of the spin magnetic

moments is shown schematically in Figure 2.3. The populations of each state are

given by the Boltzmann distribution, therefore at equilibrium the z-component of

the bulk magnetisation, Mz,0 is:

Mz,0 = N
~2γ2B0

4kBT
(2.3)

Where N is the total number of spins (n↓ + n↑), kB is the Boltzmann constant and

T is the temperature of the system. The greater the magnetic field strength and the

lower the temperature the greater the net magnetisation of the sample.
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2.2.4 Larmor Precession

As shown in Figure 2.4 the spin angular momentum S and magnetic moment µ

precess about the applied magnetic field at the Larmor frequency. This precession

occurs because the the magnetic field B exerts a torque G on the spin magnetic mo-

ment µ, causing a change in the spin angular momentum dS/dt that is perpendicular

to B and S. For a bulk sample of non-interacting protons the net magnetisation

M precesses about the applied field in the same manner:

dM

dt
= γM ×B (2.4)

2.2.5 Excitation and the Rotating Frame of Reference

The direction of the net magnetisation can manipulated using radio-frequency (RF)

pulses at the Larmor frequency. The combined effects of the static B0 and RF mag-

netic fields B1 on the net magnetisation can be greatly simplified by transforming

from the laboratory frame of reference (x̂, ŷ, ẑ) to a frame of reference (x̂′, ŷ′, ẑ)

rotating about the z-axis, Ω = −ωẑ [38]. In a frame rotating at the Larmor fre-

quency, the net magnetisation M is stationary and the effect of an RF pulse with a

frequency ω0 applied along x̂′ on the net magnetisation is simply a rotation about

the x̂′-axis. The angle of rotation, or flip angle, is given by the area under the RF

pulse envelope:

θ = γ

∫ t

0

B1(t′)dt′ (2.5)

This linear relationship between B1(t) and θ only holds if either the excitation is

on resonance or for small flip angles (θ < 90◦) [39]. The behaviour of the net

magnetisation during a 90◦ RF pulse as viewed from the laboratory and rotating

frames is shown in Figure 2.5.
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Figure 2.5: Behaviour of the net magnetisation during a 90◦ RF pulse as viewed
from the laboratory and rotating frames

2.2.6 Signal Detection

In the laboratory frame, following an RF pulse that tips the net magnetisation vector

away from the direction of B0, the net magnetisation has a transverse component

that precesses around the static magnetic field. This can then be detected using a

wire coil whose axis is perpendicular to B0. The electromotive force E induced in

the coil by the rotating magnetic flux is given by Faraday’s law:

E = −dΦ

dt
(2.6)

Where Φ =
∫

dS ·B is the magnetic flux. In the case of NMR, E is given by:

E = − d

dt

∫
sample

d3rM (r, t) ·Bc(r) (2.7)

where M (r, t) is the magnetisation of the sample and Bc(r) is the magnetic field

per unit current that would be produced by the coil at r [40]. As shown in Figure

2.6 the precession of the magnetisation at the Larmor frequency leads to an induced

voltage, or signal, in the coil that varies sinusoidally at ω0 but which also decays

away exponentially because of the effects of relaxation described below.

2.2.7 Relaxation

Following rotation of the magnetisation into the transverse plane, x̂′-ŷ′, by a 90◦

RF pulse, Bloch [31] described two mechanisms by which the magnetisation returns

to its equilibrium state, spin-lattice and spin-spin relaxation.

29



x

y

z

M
ε

ε

t
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Figure 2.7: Behaviour of the longitudinal magnetisation following a 90◦ RF pulse

Spin-Lattice Relaxation

Spin-lattice relaxation is the process by which the longitudinal magnetisation Mz

returns to equilibrium, by a loss of energy from the spins to the lattice, as spins

in the higher energy state return to the lower energy state. T1 is the characteristic

decay time of the longitudinal relaxation given in the Bloch equation:

dMz

dt
= − 1

T1

(Mz(t)−M0) (2.8)

Here M0 is the equilibrium longitudinal magnetisation. The dependence of the

longitudinal magnetisation on T1, the time, t, and its initial value Mz(0) is therefore

given by:

Mz(t) = Mz(0)e−t/T1 +M0

(
1− e−t/T1

)
(2.9)

The behaviour of the longitudinal magnetisation following a 90◦ RF pulse is shown

schematically in Figure 2.7.

Spin-Spin Relaxation

Spin-spin relaxation is the process by which the transverse magnetisation Mxy =

Mxx̂
′ +Myŷ

′ decays, T2 is the characteristic decay time of the spin-spin relaxation
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Figure 2.8: Return of the net magnetisation to equilibrium following a 90◦ RF pulse
as viewed from the laboratory frame

process given in the Bloch equation:

dMxy

dt
= −Mxy

T2

(2.10)

The dependence of the transverse magnetisation on T2, the time, t, and its initial

value Mxy(0) is therefore given by:

Mxy(t) = Mxy(0)e−t/T2 (2.11)

T2 decay occurs because each spin experiences local magnetic field inhomogeneities

resulting from the interactions with neighbouring spins. This leads to local variations

in the spins’ precession frequencies, therefore, over time, the spins dephase relative

to one another, causing a decay of the net magnetisation. In addition to the intrinsic

inhomogeneities arising from spin-spin interactions, extrinsic inhomogeneities in the

static magnetic field lead to dephasing with a time constant T ′2, the combined effect

of the two decay processes is free induction decay with a time constant T ∗2 . The

relationship between T2, T ′2 and T ∗2 is:

1

T ∗2
=

1

T2

+
1

T ′2
(2.12)

Bloch incorporated the relaxation behaviour in Equations (2.8) and (2.10) into Equa-

tion (2.4) resulting in the phenomenological Bloch equation[31]:

dM

dt
= γM ×B − (Mz −M0) ẑ

T1

−Mxy

T2

(2.13)

The combined effects of T1 and T2 decay on the magnetisation initially in the trans-

verse plane, following a 90◦ RF pulse, is shown in Figure 2.8.
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Figure 2.9: Schematic of the coils used to generate magnetic field gradients

2.3 Magnetic Resonance Imaging

2.3.1 Frequency Encoding and the Fourier Transform

The introduction of frequency encoding by Lauterbur [1] and Mansfield and Grannell

[2] formed the basis of the Magnetic Resonance Imaging (MRI) technique, as it

enabled the NMR signal to be spatially localised. It is possible to encode spatial

information into the frequency of the NMR signal by applying a magnetic field

gradient G across the object of interest. Here G is:

G = ∇Bz =

(
∂Bz

∂x
,
∂Bz

∂y
,
∂Bz

∂z

)
(2.14)

The application of magnetic field gradients produces a linear variation in the static

field B0 as a function of position r:

Bz(t) = B0 +G(t) · r (2.15)

In a typical superconducting magnet MRI system the z-axis gradients are generated

using a Maxwell pair and the x-axis and y-axis gradients are generated using Golay

coils, Figure 2.9.

Given that ω = γB, it can be seen from Equation 2.16 that the addition of a

magnetic field gradient causes the proton precession frequency ω(r, t) to vary as a

function of position r.

ω(r, t) = γ (B0 +G(t) · r) (2.16)

This linear dependence of NMR signal frequency on spatial position allows the spa-

tial distribution of spins ρ(r) to be extracted using a Fourier transform on the

measured signal, s:

ρ(r) =

∫
s(k)e2πik·rd3k (2.17)
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Figure 2.10: The real-space (a-c) and corresponding k-space (d-f) representations of
an axial slice through the head of a healthy male volunteer showing the information
contained within the inner and outer portions of k-space, that is, at low and high
spatial frequencies

Here k = γ
2π

∫ t
0
G(t′)dt′ is the position in k-space at which the signal is measured.

2.3.2 k-space

To accurately reconstruct the spin density ρ(r) using Equation 2.17 the NMR signal

must be sampled from a sufficient number of points in k-space [41, 42]. This can

be achieved by the combination of slice selection, frequency and phase encoding

as described in the following section. As illustrated in Figure 2.10 k-space con-

tains information about the spatial frequencies of an object. The central portion

of k-space corresponding to low spatial frequencies encodes contrast information

whereas the outer portions of k-space, corresponding to high spatial frequencies en-

code information about the edges of objects. The order of sampling is determined

by the magnitude, direction and duration of the applied magnetic field gradients.

The k-space trajectory resulting from the application of a bipolar gradient in the

x-direction is shown as illustrative example in Figure 2.11.
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Figure 2.11: The k-space trajectory resulting from magnetic field gradients in the x
and y-directions

2.3.3 Multi-Slice Imaging

In multi-slice imaging the NMR signal is first restricted to a two-dimensional plane

by slice-selection, localisation in the plane is then achieved by a combination of

frequency and phase-encoding as described below.

Slice Selection

The NMR signal can be restricted to a two-dimensional plane or ‘slice’; by applying

a magnetic field gradient along, for example, the z-axis, such that the precession

frequency of the protons varies linearly along the z-axis, as shown by Equation 2.16.

An RF pulse is then applied with a frequency bandwidth ∆ω such that only protons

within the slice are excited. The slice thickness ∆z and position z are given by

Equations 2.18 and 2.19 respectively.

∆z =
∆ω

γGz

(2.18)

z =
ω1 − ω0

γGz

(2.19)

where ω1 is the RF carrier frequency. The linear relationship between position and

frequency produced by the z-gradient means that to uniformly excite the spins in a

rectangular slice the RF excitation pulse is top-hat shaped in the frequency domain.

For small flip-angles (θ < 90◦) the slice profile is approximately equal to the inverse

Fourier transform of the RF envelope [39, 43]. Therefore a sinc shaped RF envelope

can be used to produce a rectangular slice profile, Figure 2.12. An infinitely long

pulse would be required to produce a perfectly rectangular slice, therefore in practice
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(a) Slice Selection Gradient (b) RF Pulse (c) Slice Profile

Figure 2.12: The slice profile for a 1 cm thick slice resulting from a 3.2 ms sym-
metric Hamming windowed sinc RF pulse, with a time-bandwidth product of 8 and
a flip angle of 90◦, applied in conjunction with a 5.87 mT/m slice-selection gradi-
ent (with maximum slew rate 150 Tm−1s−1 and maximum gradient amplitude 22
mTm−1). The slice profile was calculated by numerically solving the Bloch equa-
tions in MATLAB (The MathWorks Inc., Natick, MA.) using code provided by Dr.
Brian Hargreaves (www-mrsrl.stanford.edu/∼brian/blochsim)

either windowed sinc RF envelopes or RF pulses designed using the Shinnar-Le Roux

(SLR) algorithm are used [44–49].

Frequency and Phase Encoding

Following slice selection, in-plane localisation is achieved using a combination of

frequency and phase encoding of the NMR signal. Frequency encoding involves

applying a gradient, along for example the x-axis, as the NMR signal is being ac-

quired. The signal frequency then depends on the position of the object along the

frequency encode axis. The signal is localized along the third spatial dimension by

phase encoding where a gradient is applied in, for example, the y-direction, after

slice selection but before the signal is read out [50].

Phase encoding is explained pictorially in Figure 2.13. Initially all the spins are

in phase in the y-direction. A gradient Gy is then applied for a given duration,

during which the spins experiencing a higher static field due to the gradient will

precess at a higher frequency and accrue a positive phase shift relative to spins

experiencing a reduced static field. When the phase encoding gradient is turned

off the resonance frequencies of the spins return to the Larmor frequency, but the

phase shift remains, hence the spatial position of the spins are encoded in their

phase. The sequence is then repeated after the repetition time, TR, with a different

phase encoding gradient, such that the signal from a different line of k-space is

acquired.
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(a) Alignment of spins before
the application of the phase en-
coding gradient
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(b) The effect of phase encoding
in the y-direction on spin’s phase

Figure 2.13: A schematic diagram illustrating the effect of a phase encoding upon
the distribution of spin phases

2.3.4 Gradient and Spin Echo Imaging

Direct measurement of the free induction decay (FID) signal is impractical as the

signal readout cannot begin immediately following the signal excitation due to hard-

ware limitations, therefore an echo of the FID is sampled. The production of gradient

and spin echoes are described below:

The Gradient Echo

The mechanism by which a gradient echo is formed is outlined schematically in

Figure 2.14. Initially the net magnetisation M0 is in equilibrium along the z-axis,

following a 90◦ pulse the net magnetisation M0 is rotated into the transverse plane

x̂′-ŷ′. If a gradient with a negative polarity is applied the spins at different positions

dephase relative to one another. If this gradient polarity is then reversed the spins

rephase and a gradient echo is formed when
∫
G(t)dt = 0.

Two-Dimensional Gradient Echo Imaging

The pulse sequence timing diagram for a two-dimensional gradient echo imaging

acquisition is shown in Figure 2.16(a). The 90◦ RF pulse is made slice selective

by applying it in combination with a magnetic field gradient Gs. During the 90◦

RF pulse the slice selection gradient causes spin-dephasing across the slice, this is

refocused by the negative lobe of the slice-select gradient [50]. The area AR of the

refocusing lobe is related to the slice select gradient amplitude, the pulse isodelay

∆tI and the gradient ramp duration tr, Figure 2.15 [39]:

AR = Gs∆tI +
Gstr

2
(2.20)

For conventional sinc excitation pulses AR ∼ 0.5Gstrf , where trf is the duration

of the RF pulse. The NMR signal is localised in-plane using frequency and phase
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Figure 2.14: The formation of a gradient echo as viewed from the rotating frame.
Adapted from Haacke et al. [51]
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Figure 2.15: A schematic showing slice-select refocusing. Adapted from Bernstein
et al. [39]

37



90◦

GS

RF

GR

GP

S

A B
C

D E

TE

TR

F

90◦

(a) Pulse sequence timing diagram showing two phase encoding steps

kR

kP

A

B C

D

E F

(b) k-space trajectory showing
two phase encoding steps

Figure 2.16: Gradient echo pulse sequence timing diagram and k-space trajectory

encoding gradients as described in Section 2.3.3. The sequence is then repeated

after the repetition time, TR, with a different phase encoding gradient, such that

the signal from a different line of k-space is acquired. The time required to acquire

the data for a 2D-slice is therefore:

T = TR×Npe (2.21)

where Npe is the number of phase encoding steps. The k-space trajectory for this

sequence is shown in Figure 2.16(b). It should be noted that the effects of extrinsic

magnetic field inhomogeneities are not refocused by the gradient echo and as such

the image contrast will depend on T ∗2 rather than T2.

The Spin Echo

The spin, or RF echo [52], is formed by the application a 90◦ excitation pulse followed

by a 180◦ refocusing pulse. The mechanism by which the echo is formed is outlined

schematically in Figure 2.17. Prior to the 90◦ pulse the net magnetisation M0

is in equilibrium along the z-axis. M0 is rotated into the transverse plane x̂′-ŷ′

whereupon the spins at different positions dephase relative to one another because

they experience locally differing magnetic fields. After a time, τ , a 180◦ pulse is
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Figure 2.17: The formation of a spin echo as viewed from the rotating frame.
Adapted from Haacke et al. [51]

applied about the ŷ′-axis. This refocuses the dephasing due to extrinsic magnetic

field inhomogeneities, and a spin echo is formed at TE = 2τ . The refocusing of

the dephasing due to extrinsic magnetic field inhomogeneities means that spin-echo

pulse sequence can produce images T2 contrast. The accumulated phase φ(r, t) = 0

when t = 2τ is independent of r and hence a spin-echo occurs.

Two-Dimensional Spin Echo Imaging

The pulse sequence timing diagram for a two-dimensional spin echo imaging ac-

quisition is shown in Figure 2.18(a). The 90◦ and 180◦ RF pulses are made slice

selective by applying them in combination with the Gs magnetic field gradient. The

NMR signal is localised in plane using frequency and phase encoding gradients as

described in Section 2.3.3. The sequence is then repeated after the repetition time,

TR, with a different phase encoding gradient, such that the signal from a different

line of k-space is acquired. The k-space trajectory for this sequence is shown in

Figure 2.18(b). Typically the RF echo, produced by the combination of the 90◦

and 180◦ RF pulses and the gradient echo, produced by the bipolar readout gradi-

39



90◦

GS

RF

GR

GP

S

A B C D E

TE

TR

F

180◦

τ

90◦ 180◦

G H

(a) Pulse sequence timing diagram showing two phase encoding steps

kP

kR
A

B

C D

E

F

G H

180◦

(b) k-space trajectory showing
two phase encoding steps

Figure 2.18: Spin echo pulse sequence timing diagram and k-space trajectory

ent are chosen to occur simultaneously to minimise off-resonance effects. Though

they are sometimes intentionally offset to sensitise the images to T ∗2 and magnetic

susceptibility effects [39].

2.3.5 Multi-slice Imaging

When imaging a 3D volume, such as the human head, data from multiple slices

must be acquired. This can be achieved either using a sequential or interleaved

acquisition. In a sequential acquisition all the k-space lines for each slice are acquired

before beginning the data acquisition of the next slice. The time required to collect

a 3D volumes consisting of Nslice slices is:

T = TR×Npe ×Nslice (2.22)

In an interleaved acquisition data for a given k-space line are collected for each

slice location before acquiring the data from the next k-space line. Interleaved
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acquisitions are more time efficient because they allow multiple k-space lines to be

acquired within a single TR [53] by taking advantage of the idle time during a TR in

which neither gradients nor RF are active. To reduce slice cross-talk, which results

from the interference of the signal of adjacent slices due imperfect slice profiles, the

slice acquisition order in interleaved acquisitions is modified such that the data from

adjacent slices is acquired further apart in time.

2.3.6 Image Contrast

The contrast CAB between two tissues, A and B, in different voxels of an MR image

is defined as the difference between their respective voxel signals SA and SB [51]:

CAB ≡ SA − SB (2.23)

In MRI it is possible to change this contrast because the voxel signal is dependent

on both the imaging sequence parameters, such as the echo and repetition times

and the flip angle, and the tissue parameters such as the proton density, and the

T1 and T2 relaxation times. There are four commonly encountered contrasts: T1-

weighted which, as the name suggests, has a high contrast between tissues with

different T1 relaxation times, T2-weighted which has large differences between tissues

with different T2 relaxation times, T ∗2 -weighted that have large differences between

regions with different T ∗2 relaxation times and proton-density weighted that has large

differences between tissues with different densities of protons.

2.4 Functional MRI Data Acquistion

In a comprehensive review article, Turner and Ordidge [17] outlined the technical

requirements of an MRI sequence used to acquire functional MRI data. Firstly it

must be sensitive to the variations in T ∗2 caused by changes in deoxyhaemaglobin

concentration in response to neuronal activity. Secondly it must be able to produce

images with sufficient spatial resolution to allow these T ∗2 changes to be localised to

specific areas of the brain. Thirdly the sequence must be able to acquire images of

the whole brain at a speed sufficient to capture the temporal variations in T ∗2 . For

these reasons gradient-echo echo-planar imaging (GE-EPI) [14–16] has become the

most commonly used acquisition method in modern functional MRI studies, as it

can acquire T ∗2 -weighted images of the whole brain at a sufficient spatial resolution

for FMRI in two seconds.
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Figure 2.19: Gradient echo EPI pulse sequence timing diagram and k-space trajec-
tory [39, 51]

2.5 Gradient Echo EPI

The GE-EPI sequence is shown schematically in Figure 2.19(a) alongside its corre-

sponding k-space trajectory in Figure 2.19(b). Following signal excitation, discussed

below, an oscillating trapezoidal readout gradient is used to generate a series of

echoes, under a gradient echo envelope, which have been individually phase encoded

using a set of evenly spaced triangular shaped phase-encoding gradients of duration

τpe. The T ∗2 decay during signal readout means that each echo is acquired at a

different TE; since the image contrast depends mostly on the central k-space line it

is common to define the effective echo time TE = TE(k = 0).
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(a) RF Pulse (b) Slice-selection Gradient

Figure 2.20: SPSP RF pulse and gradient waveform captured from the 3T GE HDx
scanner for an acquisition with a flip angle of 90◦ and a slice thickness of 2.4 mm

2.5.1 Signal Excitation

On the both the 3 T GE Discovery MR750 and GE Signa HDx systems (General

Electric, Milwaukee, WI, USA) two different signal excitation approaches are avail-

able. Both of which attempt to minimise the chemical shift artefact, discussed in

detail below, caused by lipid signals.

Spatial-Spectral (SPSP) RF Pulses

Spatial-Spectral (SPSP) RF pulses [54, 55] are, as their name suggests, selective

both spatially and spectrally. As such they can be used to excite water protons in a

specific spatial location whilst leaving fat protons unaffected. They are made up of

a set of RF ‘subpulses’ in a broad RF envelope Figure 2.20. Their spatial selectivity

is governed by the combination of the subpulses with an oscillating gradient and

the RF envelope controls the spectral selectivity. The dependence of the signal as a

function of spatial position and resonant frequency offset, determined by numerical

simulation of the Bloch equations in MATLAB, is shown in Figure 2.22(a).

Fat Suppression and Water Excitation RF Pulses

Alternatively, a combination of a CHESS (Chemical Shift Selective) [56] pulse and

an excitation pulse, designed using the SLR algorithm, can be used to excite water

protons whilst suppressing the signal from lipids, Figure 2.21. For comparison with

SPSP pulses the dependence of the signal as a function of spatial position and

resonant frequency offset is shown in Figure 2.22(b). SPSP pulses are used by

default on the GE scanners because they are shorter and less susceptible to B1

inhomogeneities[39]
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(a) CHESS and SLR RF Pulse (b) Slice-selection Gradient (c) Fat Crusher Gradient

Figure 2.21: CHESS and SLR pulses along with their accompanying gradient wave-
forms captured from the 3T GE HDx scanner for an acquisition with a flip angle of
90◦ and a slice thickness of 2.4 mm

(a) SPSP Excitation Pulse (b) Fat-sat: SLR Excitation Pulse Pre-
ceded by a Spectrally Selective Presatu-
ration Pulse

Figure 2.22: Contour plots showing Bloch simulations of the spatial and spectral
selectivity of SPSP and fat-sat pulses. Both techniques avoid exciting fat protons
which have a resonant frequency offset of -440Hz (relative to water) at 3T
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2.5.2 EPI Readout Gradients

The readout gradient begins with a prephasing lobe that is used to set the initial

position of the k-space sampling in the readout direction. This is followed by a

series of oscillating trapezoidal gradients, e.g. for a 64× 64 matrix there would be 32

positive and 32 negative read gradient lobes. In a straightforward implementation of

the trapezoidal gradients the echo is sampled only in the periods of constant readout

gradient for a time Ts. Sampling can be performed during the periods of gradient

ramp-up and down [57] though the data must be re-gridded before reconstruction

because the k-space samples no longer have a simple linear relationship with the

signal in the time domain. During FMRI data acquisition on GE HDx and Discovery

MR750 systems three additional read-gradient lobes, with no accompanying phase

encoding precede the readout train. This internal referencing enables correction of

phase differences caused by B0 drifts over time.

2.5.3 EPI Phase Encoding Gradients

As for the readout gradients, the phase-encoding gradient begins with a prephasing

lobe which sets the starting point of the k-space sampling in the phase-encoding

direction. The blipped gradients, formed from a series of equally spaced triangular

waveforms of the same polarity, then phase encode each echo.

2.5.4 Parallel Imaging

The combined use of EPI and parallel imaging has a threefold advantage in FMRI

data acquisition [58]. Firstly it results in a reduction in signal drop-out and dis-

tortion artefacts in single-shot acquisitions, secondly it allows for an increase in the

temporal or spatial resolution, and thirdly it reduces the acoustic noise caused by

the gradient switching.

Parallel imaging uses phased array coils to increase the speed of acquisition.

Given that, in Cartesian acquisition schemes, the scan time is linearly proportional

to the number of phase encoding steps, scan time can be reduced by an acceleration

factor R by increasing the distance between the phase-encoding lines in k-space,

whilst maintaining the maximum k-values. Given the inverse relationship between

the step size in k-space ∆k and the field of view (FOV) in image space, Equation

2.24, such an increase reduces the FOV by R.

∆k =
1

FOV
(2.24)

The FOV reduction would normally result in aliasing, Figure 2.23, but using the

extra spatial information provided from the coil sensitivity profiles of the separate

45



(a) Image reconstructed from full k-space (b) Aliased image reconstructed from k-space
that has been sub-sampled in the left-right di-
rection

Figure 2.23: A demonstration of the image aliasing induced by sub-sampling k-
space (only acquiring every other line) in the left-right direction. This aliasing can
be unwrapped using the extra spatial information provided by the coil sensitivity
profiles via the SENSE algorithm

elements of phased array coils un-aliased images can be reconstructed. On GE HDx

and Discovery MR750 systems parallel imaging is implemented using ASSET, the

manufacturer’s implementation of sensitivity encoding, described below:

Sensitivity Encoding

Sensitivity encoding (SENSE) [59] is an image-space based technique, used to un-

wrap the aliased images that are produced when k-space is under-sampled. Firstly,

aliased images from each coil element are reconstructed using the Discrete Fourier

Transform (DFT), then, from these intermediate images a full FOV image is pro-

duced that is free from the aliasing that resulted from k-space sub-sampling. For

a given pixel in the reduced FOV the signal is a superposition of the signal from

that location and the signal from pixels at integer multiples of FOV/R in the phase-

encoding direction. A vector a, of length np, the number of pixels that are su-

perimposed, is constructed from the values of the chosen pixel in the intermediate

images. np can be calculated from the object size in the phase encoding direction

determined from the coil sensitivity calibration images. If nc coil elements are being

used, an nc×np sensitivity matrix S is used to store the information about the coil

sensitivities at the np superimposed positions.

Sγ,p = sγ(rp) (2.25)

Where sγ is the sensitivity of coil γ and rp is the position of pixel p. In the ASSET

implementation of SENSE the sensitivity calibration is performed in a separate, low

resolution, 2D fast gradient echo scan. Because the calibration scan is acquired at
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a lower resolution the sensitivities at rp are found by linear interpolation[60]. From

the sensitivity matrix, and an nc × nc receiver noise matrix Ψ, an unfolding matrix

U is then constructed:

U = (S†Ψ−1S)−1S†Ψ−1 (2.26)

Here † represents the Hermitian conjugate. The diagonal elements of Ψ contain

information about the noise variance from each coil and off diagonal elements the

noise cross-correlation between two coils. This is then multiplied by a to produce a

vector v that is a list, of length np, of the separated pixel values for the originally

superimposed positions.

v = Ua (2.27)

A full FOV images is produced by carrying out each of these steps for all of the

pixels in the reduced field of view. The reduction in acquisition time is not achieved

without cost, as the SNR is reduced by the following factors:

SNRSENSE
p =

SNRfull
p

gp
√
R

(2.28)

Here gp is the local geometry factor:

gp =
√

[(S†Ψ−1S)−1]pp(S†Ψ−1S)pp ≥ 1 (2.29)

(S†Ψ−1S)pp are the diagonal elements of the matrix S†Ψ−1S. gp is dependent

upon both np and the differences in coil sensitivity between the aliased pixels, which

itself depends upon the orientations of the coil and scan plane as well as the phase

encoding direction and pixel position, i.e. the greater the coil separation in the

phase-encoding direction the lower the resulting noise magnification [39]. In the

ASSET implementation of SENSE the matrix inversion (S†Ψ−1S)−1 is performed

using LU decomposition with mild regularisation[61], which reduces the noise at the

expense of some uncorrected aliasing.

2.6 GE-EPI Artifacts and Methods to Reduce their

Impact

The advantages of GE-EPI over other sequences are not without cost, as the images

may suffer from a range of artifacts. Much work has been done to ameliorate these

problems, as outlined below, but as yet comprehensive solutions, fully compatible

with the requirements of FMRI, are still to be found.
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2.6.1 T ∗2 Blurring

T ∗2 blurring is observed in GE-EPI images because each line of k-space is acquired at a

different time and hence has a different T ∗2 weighting. This exponential decay causes

image blurring in the phase-encoded direction as the data is effectively spatially

filtered. This blurring effect is most obvious in objects with high-spatial frequencies

since it is these that are affected to the largest extent by T ∗2 decay during data

acquisition. One way to reduce the blurring effect is to reduce the echo train length

or inter-echo spacing such that, in the time over which data is acquired, T ∗2 decay

is not significant. This can be achieved, whilst maintaining k-space coverage, by

switching to multi-shot EPI[39] or by employing parallel imaging[62], though this

may result in reduced SNR and increased Nyquist ghosting.

2.6.2 Nyquist Ghosts

In single-shot EPI the reconstructed images contain ‘Nyquist ghosts’ that are shifted

by half of the field of view in the phase encoding direction; these arise from phase

inconsistencies between the odd and even lines of k-space, which were traversed in

opposite directions. Phase differences result from B0-field inhomogeneities, eddy

currents, asymmetric anti-alias filter response, concomitant magnetic fields and re-

ceive chain and gradient amplifier group delays[39]. There are several different types

of Nyquist ghost, as shown schematically in Figure 2.24, however the observed ghost

is typically a mixture of those shown and other phase errors resulting from higher-

order eddy currents and concomitant fields. On GE HDx and Discovery MR750

systems, Nyquist ghost artifacts are reduced by correcting the phase errors between

the odd and even lines of k-space using the information acquired in a reference

scan[63]. The reference scan consists of a single-shot EPI acquisition without any

phase-encoding, such that any phase differences between the odd and even k-space

lines are known to be artifactual in origin.

2.6.3 Off-Resonance Artifacts

There are a number of artifacts that arise from inhomogeneities in the static mag-

netic field; these include distortion and signal dropout associated with the slice

selection, phase and frequency encoding processes, see Figure 2.25, in addition to

the chemical shift artifact. B0 inhomogeneities have a range of causes including

imperfect scanner hardware and magnetic susceptibility variations in the object

being scanned. For example in the human head artifacts are caused by differ-

ences in the magnetic susceptibilities of bone (χbone = −8.9 × 10−6), soft tissue

(χwater = −9.05 × 10−6) and air (χair = 0.36 × 10−6) [65]. These differences pro-
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(a) Constant phase ghost (b) Linear phase ghost (c) Oblique ghost

Figure 2.24: Schematic EPI images of a spherical phantom (the readout direction
is left to right in the images). A constant phase ghost results from a spatially-
independent phase error that alternates between odd and even lines of k-space,
typically caused by eddy currents. The linear phase ghost results from an alternate
positive and negative shifting of the k-space lines in the readout direction ±δkx
for odd and even echoes, which can be caused by gradient group delays, gradient
amplifier hysteresis and spatially linear eddy currents. An oblique ghost is due to
an alternate positive and negative shifting of the k-space lines in the phase encode
direction±δky for odd and even echoes which can result from group delays among the
physical gradient axes and cross-term eddy currents (figure adapted from Bernstein
et al. [39]).

(a) (b) (c) (d)

Figure 2.25: Schematic EPI images of a spherical phantom and their correspond-
ing k-space trajectories in the case of (a) a homogeneous B0 field (b) B0 inhomo-
geneities in the readout direction causing image shearing, (c) B0 inhomogeneities in
the phase encoding direction causing image stretching and (d) B0 inhomogeneities
in the slice selection direction resulting in reduced image intensity as the excitation
is off-resonance (figure adapted from Huettel et al. [64]).
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duce locally varying magnetic field gradients, and hence inhomogeneities in the static

magnetic field [18, 66, 67] especially in the orbitofrontal cortex and inferior temporal

lobes.

Using the notation of Farzaneh et al. [68] it can be shown, see Appendix A, that

the signal for the mth readout point on the nth phase encoding line measured during

a GE-EPI acquisition of an object ρ(x, y) is:

snm =

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxm∆te−iγGynT
′ydxdy (2.30)

Here x corresponds to the frequency encoding (or readout) direction and y to the

phase encoding direction. n is an integer in the range −Ny/2 ≤ n < Ny/2 , m is

an integer in the range −Nx/2 ≤ m < Nx/2, Nx × Ny is the matrix size, Lx × Ly
is the field of view, Gx is the amplitude of the readout gradient lobes, Gy is the

change in phase-encoding gradient between each of the phase encode lines1 i.e. Gy =

Ape/T
′ = 2π/γLyT

′ where Ape is the area of the phase encode blip, ∆t is the time

between each sampled point in the readout direction and T ′ is the inter-echo spacing

(T ′ = Ts + τpe).

In the presence of a B0 inhomogeneity of the form ∆B(x, y, z) = α + Gx,sx +

Gy,sy +Gz,sz the signal equation becomes:

snm =
∆z

λy
e−iγαTE/λye−iγGz,s(TE±m∆t+nT ′)z0sinc

(
γGz,s∆z(TE ±m∆t+ nT ′)

2

)
∫ Ly

2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z0

)
e−2πi(kx,m+δkx,s)x′e−2πi(ky,n+δky,s)y′dx′dy′

(2.31)

here ∆z is the slice-thickness, TE is the echo time, and

λy ≡ 1 +
Gy,s

Gy

(2.32)

kx,m =
γGxm∆t

2π
(2.33)

ky,n =
γGynT

′

2π
(2.34)

The shifts of the echo in k-space in the frequency encoding (x) and phase encoding

1The factor of 2π is included in the numerator to be consistent with the definition k =
γ
2π

∫
dt′G(t′) used when the k-space signal has terms in e−2πik.r as is the case throughout this

thesis
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(y) directions caused by the susceptibility gradients are:

δkx,s =
γGx,sTE

2πλy
(2.35)

δky,s =
γGy,sTE

2πλy
(2.36)

To gain a clearer picture of the impact of these changes upon a GE-EPI image the

effect of susceptibility gradients in each direction are considered in turn below:

Constant Magnetic Field Offsets

As seen from Equation 2.31 a constant field offset α, caused for example by the

chemical shift of lipids relative to water, results in translations of α/Gy in the y-

direction[68].

Susceptibility Gradients in the Frequency Encoding Direction

A susceptibility gradient in the frequency encoding (x) direction Gx,s results in:

• a shift of the data in k-space by δkx,s [17, 29, 69] :

δkx,s =
γGx,sTE

2πλy
(2.37)

• signal dropout if the echo falls outside of the k-space acquisition window [29]

i.e. if the susceptibility gradient in the x-direction does not fall within the

following range:

− πNx

γTELx

(
1 +

Gy,s

Gy

)
≤ Gx,s ≤

πNx

γTELx

(
1 +

Gy,s

Gy

)
(2.38)

• image shearing [17]. From Equation (2.31) it can be shown that the observed

spin density ρ is sheared by the presence of a susceptibility gradient in the

x-direction:

ρ

(
x′, y′ − Gx,sx

′

Gy

)
(2.39)

Susceptibility Gradients in the Phase Encoding Direction

A susceptibility gradient in the phase encoding (y) direction Gy,s leads to:

• a shift of the data in k-space by δky,s[28, 70]:

δky,s =
γGy,sTE

2πλy
(2.40)
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• signal dropout if the echo falls outside of the k-space acquisition window [70,

71], i.e. if the susceptibility gradient in the y-direction does not fall within the

following range:( −1

2TE/(NyT ′) + 1

)
Gy ≤ Gy,s ≤

(
1

2TE/(NyT ′)− 1

)
Gy (2.41)

here Gy is the change in phase-encoding gradient between each phase encode

line2.

• modification of the echo time from TE to TE ′ resulting from the k-space shift

[70, 71]:

TE ′ =
TE

λy
(2.42)

• From Equation (2.31) it can be shown that the observed spin density is mod-

ified from ρ to ρ′ [70, 71]:

ρ′ =
ρ

λy
(2.43)

• image stretching or compressing. Again from Equation (2.31) it can be shown

the observed spin density ρ, is stretched or compressed by the presence of a

susceptibility gradient in the y-direction [70, 71]:

ρ (x′, y′/λy) (2.44)

Susceptibility Gradients in the Slice Selection Direction

A susceptibility gradient in the slice selection (z) direction results in:

• a shift of the data in k-space by [51, 72, 73]:

δkz,s =
γGz,sTE

2π
(2.45)

• the image intensity being modulated by the modulus of a sinc function [74]

(assuming rectangular slice profiles)∣∣∣∣sinc

(
γGz,s∆zTE

2

)∣∣∣∣ (2.46)

Hence, when Gz,s is equal to an integer multiple of
(

2π
γ∆zTE

)
there is complete

signal dropout.

2Note that this may be expressed in terms of the field of view Ly using Gy = 2π/(γLyT
′) taking

care to account for the polarity of Gy i.e. it is negative if k-space is traversed from ky to −ky and
positive if from −ky to ky [70]
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Figure 2.26: Slice selection distortion effects due to susceptibility gradients, figures
adapted from Haacke et al. [51]

• a deviation from the prescribed slice thickness ∆z and position z0, Figure

2.26(a),[51]:

∆z′ =
∆ω

γ (Gz +Gz,s)
=

∆z

λz
(2.47)

and:

z′0 =
ωc − ω0

γ (Gz +Gz,s)
=
z0

λz
(2.48)

Here ωc is the RF carrier frequency and λz ≡ 1 + Gz,s
Gz

.

The slice selection process is also affected by in-plane susceptibility gradients which

cause local rotations of the excited slice, Figure 2.26(b). The angle between the slice

selection direction and the z-axis is:

θ = tan−1

√
G2
x,s +G2

y,s

Gz +Gz,s

(2.49)

and the angle between its projection into the x-y plane and the x-axis is:

φ = tan−1 Gy,s

Gx,s

(2.50)

2.6.4 Techniques to Reduce Off-Resonance Artifacts

Correcting Image Distortions

A range of approaches are used to correct for EPI image distortions. Firstly magnetic

field inhomogeneities, measured by static magnetic field mapping or as part of a
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modified EPI sequence [75, 76], can be used to correct distortion, in image [77,

78] or k-space [79]. Magnetic field maps acquired for every brain volume using a

modified EPI sequence may be better suited to FMRI applications as they account

for the effects of subject motion on the magnetic field inhomogeneities throughout

data acquisition. Secondly a number of variations [80–82] on the reversed gradient

method [83] have also been published. Two images are acquired with opposite phase-

encoding gradient polarity, such that the distortions in the second image are the

opposite of those in the first. Undistorted images can then be computed in a number

of ways, including performing line-integrals along the phase-encoding direction[81] or

fitting a displacement field in 3D using cosine basis functions[80]. A third approach

uses a map of the point spread function (PSF) [84–90], acquired using modified

EPI sequences, to unwarp the EPI data. Finally, images can be reconstructed using

algebraic methods [91–96], that incorporate knowledge of the B0 inhomogeneities

from a static magnetic field map, rather than the Fourier transform.

Reducing Signal Dropout

A large number of techniques have been used to reduce the problem of signal dropout,

however these normally include trade-offs including reductions in the temporal res-

olution, increased image distortion or reduction in sensitivity to the BOLD signal

in regions unaffected by the susceptibility gradients. An overview of these methods

is given below:

Firstly, to reduce signal dropout, the echo time can simply be reduced since

this minimises the time over which the spins dephase relative to one another. One

disadvantage of this approach however, is that it leads to a reduction in the BOLD

contrast, defined as the change in MR signal in an area of the brain between its

baseline and stimulated states. This is maximised when the echo time is chosen to

match the T ∗2 of grey matter [97], see Figure 2.27.

Another straightforward approach is to reduce the voxel volume [17, 18, 98–106].

This has the added advantage of reducing the intra-voxel tissue heterogeneity. The

disadvantage however, is a decrease in SNR (although this can be mitigated by

combining a set of thin slices by summation into a thicker slice [102] or by using

parallel imaging with a surface coil array[105]) and BOLD contrast-to-noise ratio

(CNR) [102].

A family of related strategies based around magnetic field shimming [107] can

be used to increase the homogeneity of magnetic field using a set of resistive shim

coils. These are designed to generate fields with spherical harmonic geometries. On

GE HDx and Discovery MR750 systems first and second order shims are set us-

ing fast, automatic shimming technique by mapping along projections (FASTMAP)

[108–111]. Shimming is effective over small volumes, although low-order spherical

54



Figure 2.27: A plot demonstrating the echo time dependence of the BOLD contrast
for T ∗2 = 40 ms and ∆R∗2 = −1 s−1 showing that the maximum change in signal,
∆S, occurs when TE = T ∗2 .

harmonic shimming cannot sufficiently homogenise the B0-field across the whole

brain because of strong and highly localised magnetic field distortions, for example

around the sinuses [112, 113]. In an effort to improve this situation, localised shim-

ming approaches that optimise field inhomogeneity in predefined regions have been

developed [114, 115]. These have the disadvantage, however, of reduced signal in

areas of the brain outside the shimmed region and as such they are not ideal for

whole brain applications.

Dynamic Shim Updating (DSU) [116–119], in which the shim fields are updated

on a slice-by-slice basis during multi-slice data acquisition, can be used to further in-

crease the magnetic field homogeneity, over and above first and second order volume

shimming. This is a promising technique but technically challenging to implement

because of eddy current effects and the need for dedicated hardware not available

on many commercial scanners [112, 118].

Passive shims made from diamagnetic material, such as highly oriented pyrolytic

graphite, held within a subject-customised mouth or ear mould, have been used with

some success [114, 120, 121] to increase B0 homogeneity in localised areas, such as

the inferior frontal or temporal lobes. The discomfort of such device reduces possible

examination times to approximately half an hour however and results in increased

subject motion[122], meaning they are of limited practical use.

A range of localised active shimming techniques have also been utilised in FMRI

studies. Resistive coils have been placed either inside the subject’s mouth [123] or

on an acrylic face mask [113] allowing the shimming field to be adjusted for each

subject. Like passive shims, the resulting discomfort means it would be very difficult

to apply these methods in clinical or psychiatric populations.

It is also possible to reduce the signal drop out by modifying the GE-EPI pulse
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sequence itself. In one well developed method, z-shimming [27] described in detail

in Chapter 5, the amplitude of the slice select gradient refocusing lobe is modified to

cancel out the effects of linear through-plane susceptibility gradients reducing signal

dropout.

As described in detail in Chapter 7 the amplitude of the preparation pulses in

the phase encode and read-out directions may also be modified to reduce the signal

dropout caused by in-plane susceptibility gradients [28, 70, 71, 124, 125].

A family of techniques using tailored radiofrequency pulses (TRF) [126–132],

have been developed to reduce signal dropout by cancelling out the phase changes

induced by the susceptibility gradients. These are described in more detail in Chap-

ter 6.

Finally, a method combining both gradient and spin echoes into a single shot

acquisition has been implemented [133–136], in the hope of utilising both the higher

BOLD sensitivity of GE-EPI in regions unaffected by susceptibility gradients [137–

141], the immunity of SE-EPI to signal dropout as well as its increased sensitivity

to BOLD signal changes in affected regions [139, 142] and the reduction in the

extravascular signal from large vessels [143].
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Chapter 3

Functional Magnetic Resonance

Imaging

3.1 Introduction

Functional magnetic resonance imaging (FMRI) is non-invasive technique used to

produce spatial maps of brain activation that are based on the blood oxygen level

dependant (BOLD) contrast [3–5]. It has been employed widely in basic neuroscience

and psychiatry research [10] as well as clinically in the pre-surgical planning of

tumour resections [11].

There are two major functional MRI methodologies; task-based and resting-

state. The goal of task-based FMRI experiments is to determine which areas of the

brain show changes in activity when subjects are exposed to external stimuli or are

required to perform specific tasks. More recently, interest has grown in resting-state

FMRI (RS-FMRI), where the brain is observed in the absence of external stimuli.

In this case functional connectivity is inferred from correlations in the time varying

MR signal from different regions of the brain.

3.2 Blood Oxygen Level Dependant Contrast

The BOLD contrast used in FMRI results from the differing magnetic properties of

oxygenated and deoxygenated haemoglobin. Oxygenated haemoglobin is diamag-

netic, and as such acts to weakly oppose the static magnetic field, B0, whereas

deoxyhaemoglobin, being paramagnetic, causes local increases in B0 [144]. The

susceptibility differences between deoxyhaemoglobin and surrounding tissues cause

localised reductions in T ∗2 which lead to reductions in the signal intensity in T ∗2 -

weighted images. BOLD contrast has both intra- and extra-vascular components;

there are four mechanisms by which the signal is attenuated in the presence of
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deoxyhaemoglobin [145]:

• Extravascular static dephasing: This is the dominant extravascular mechanism

of BOLD contrast for vessels with diameters greater that 20 µm [146]. The

voxel signal is attenuated as spins dephase relative to one another because

of inhomogeneities in the magnetic field. These are caused by susceptibility

differences between the deoxygenated blood and surrounding tissues.

• Extravascular dynamic dephasing: The signal is attenuated because spins dif-

fuse a distance on the order of the size of the magnetic field distortion around

the blood vessel during the echo time. The random nature of the diffusion

trajectory means that the different spins accrue different phase changes. This

mechanism is dominant in the areas surrounding capillaries and small post

capillary vessels.

• Intravascular T2-like effect: Signal attenuation occurs by dynamic averaging.

This results from the motion of water molecules relative to the paramagnetic

deoxyhaemoglobin in the erythrocytes (red blood cells).

• Intravascular frequency offsets: The signal is attenuated if there are a large

number of vessels of different orientation within a voxel. This is because the

precession frequency of spins within a vessel is dependent upon the concentra-

tion of deoxyhaemoglobin and relative orientation of the vessel to the static

magnetic field.

Gradient-echo imaging detects contributions from all four of the signal attenuation

mechanisms, whereas only extravascular dynamic dephasing and the intravascular

T2-like effect are seen when spin-echo based acquisition techniques are used [145].

It has been shown experimentally that the MR signal increases in areas of the

brain undergoing functional stimulation[6–8]. This is a result of the changes in

the cerebral blood flow (CBF) and the rate of metabolic consumption of oxygen

(CMRO2). As first observed in the Positron Emission Tomography (PET) exper-

iments carried out by Fox et al. [147], prolonged visual stimulation results in an

increase of 50% in the CBF, an increase of 51% in the rate of metabolic consump-

tion of glucose (CMRglu) but only a 5% increase in CMRO2 in the visual cortex.

Put simply ‘more oxygen is supplied to the brain than is consumed’ [64]. The dif-

ference in the relative increases in the CBF and CMRO2 means that the fraction

of oxygen extracted from the blood decreases with neuronal activity. Therefore,

in activated regions, the blood has a higher concentration of oxyhaemoglobin and

a lower concentration of deoxyhaemoglobin. It is this decrease in the amount of

deoxyhaemoglobin that results in local increases in the T ∗2 and hence increases in

the MR signal in the regions of functional activation. A more detailed study of
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the time course of the MR signal following a short stimulus, the haemodynamic

response function, reveals an initial dip [148]; within the balloon model framework

put forward by Buxton et al. [149] this is thought to be caused by an increase in

CMRO2 with no associated change in CBF and cerebral blood volume (CBV). This

is then followed by an increase in the MR signal, the main BOLD response, and a

post-stimulus undershoot [150] which is thought to result from a delay in the CBV

returning to its baseline level [151].

3.3 Task-Based Functional MRI

Task-based FMRI experiments can be used to map the areas of the brain that are

activated when subjects are exposed to external stimuli or are required to perform

specific tasks. As discussed below, the experiment may have a block or event-related

design.

3.3.1 Block Design Paradigms

Early task-based FMRI experiments used block designs [152]. These consist of

periods (with a typical duration of between 10s to one minute [64]) during which

the subject performs a task, or are exposed to a stimulus, interleaved with control

periods. For example to determine the activations in the motor cortex due to finger

tapping a subject could be instructed to carry out 30 s blocks of continuous finger

tapping (task) interleaved with 30 s blocks of rest (control) for a total of five minutes.

As explained later in this chapter, the regions of the brain showing statistically

significant changes in MR signal in response to the task can then be determined

using the general linear model. In general, block design experiments are good at

detecting activations but they are relatively poor for characterising the timing and

shape of the haemodynamic response function (HRF) [64].

3.3.2 Event-Related Paradigms

Alternatively task-based FMRI experiments can use event-related designs. In this

case stimuli are presented for short durations, separated by an inter-stimulus interval

(ranging from 2 to 20 s [64]). These designs are more flexible and can be used to

determine the response to single events. They have a reduced power to detect

activations compared to block designs, but if the acquisition has sufficient temporal

resolution, they provide a greater ability to determine the timing and shape of the

HRF. Therefore they can be used to separate out the distinct processes within a

given task [64].
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3.4 Resting-State Functional MRI

Resting-State Functional MRI provides a relatively straightforward method to map

the functional relationships between different brain regions [153]. The technique is

based on the assumption that, at ‘rest’, regions of the brain which are functionally

connected have synchronised changes in neuronal activity which result in synchro-

nised fluctuations in the MR signal from these brain regions. Collecting data in this

passive manner could be advantageous in patients who find it difficult to perform a

given task.

The first observations of resting-state functional connectivity using MRI were

made by Biswal et al. [12], who demonstrated that, in the absence of explicit mo-

tor behaviour, low frequency fluctuations (0.01-0.08Hz) in the MR signal in the left

motor cortex were temporally correlated with those in the right motor cortex and

medial motor regions. These initial observations were confirmed by Lowe [154, 155],

who also observed similar correlations in the visual cortex. Coherent fluctuations

have also been observed, in subjects at rest, in a range of systems, including the audi-

tory [156], language [156, 157], default mode1 [159–162], dorsal attention [162, 163],

ventral attention [163] and hippocampus or episodic memory [164, 165] networks. A

consistent set of these spatially specific temporal correlations have been observed, in

the absence of overt tasks, across subjects [13, 166–169]. Since these spatially spe-

cific temporal correlations are observed in the absence of overt tasks the correlated

areas are commonly referred to as resting-state networks (RSNs).

More recently, as described in a review article by Greicius [170], RS-FMRI has

been applied to the study of various neuropsychiatric disorders including Alzheimers

disease and other dementias [171–175], autism [176–179], attention-deficit/hyperactivity

disorder [180–183], depression [184–186] and schizophrenia [187, 188]. In addition

it has been used to investigate aging [189, 190], multiple sclerosis [191] and pain

[170]. Feasibility studies for its use in pre-surgical mapping [192, 193] have also

been performed.

As outlined in a recent review by Birn [153], there was initially a significant

degree of scepticism about RS-FMRI. This was because there are a number of po-

tential sources of correlations in the MR signal apart from synchronised changes

in neuronal activity. These include head motion, cardiac pulsations and inflow ef-

fects [194] and effects related to respiration such as time varying image distortion

[195, 196]. It has also been suggested that correlations may be due to similarities in

the vascular structure in different brain regions. The current evidence in support of

the hypothesis that correlated fluctuations in the MR signal result from underlying

1The default mode network (DMN) is a collective name for the regions of the brain that demon-
strate a decrease in activity when the brain is performing an overt task [158]
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functional connectivity has been collated by Birn [153] and is summarised below.

Several studies have shown that signal changes in functionally related brain re-

gions occur at lower frequencies than respiration and cardiac pulsations[12, 156, 197].

It has also been shown that the echo time dependence of resting-state signal changes

is similar to that observed for the BOLD response in task-based FMRI experiments

[198]. In addition it has been shown that when structural connections are reduced

or removed completely, as is the case in patients with callosal agenesis or post-

callosotomy, functional connections between the left and right hemispheres, derived

from RS-FMRI, are reduced or completely absent, whilst intra-hemispheric connec-

tions are preserved [199, 200]. Countering the suggestion that correlations are due

to similarities in the vascular supply of brain regions, Krienen and Buckner [201]

found that, in agreement with the known structural connections, the right cerebel-

lum was more strongly correlated with the left rather than the right motor cortex

and that the left cerebellum was more strongly correlated with the right motor cor-

tex. Since the cerebellum and motor cortex are supplied by different major arteries2

the functional connections between them cannot be explained by similarities in the

vascular structure. Finally temporal correlations have been observed in functionally

related brain regions in humans using other modalities such as electroencephalogra-

phy (EEG) [162] and electrocorticography (ECoG) [203].

3.5 Analysis of Functional MRI Data

The main aim of the data analysis carried out on task-based functional MRI data

is to determine those regions of the brain which show significant changes in BOLD

signal in response to a known external stimulus or task[152, 204]. In contrast,

the aim when analysing resting-state functional MRI is to find spatial patterns of

coherent BOLD activity [13].

3.5.1 Data Preprocessing

FMRI data is four-dimensional; a three-dimensional image of the brain is acquired

within each repetition time resulting in a data set that contains a record of the

signal intensity S at each spatial location and time point i.e. S(x, y, z, t). Prior to the

statistical analysis of either task-based or resting-state data, a series of preprocessing

steps are typically performed.

2The motor cortex is supplied by the central branch of the middle cerebral artery whereas the
cerebellum is supplied by the posterior inferior cerebellar, anterior inferior cerebellar and superior
cerebellar arteries [202].
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Slice Timing Correction

Slice timing correction is carried out by shifting the phase of the time series in each

voxel in the Fourier domain, given knowledge of the slice acquisition order[152]. This

correction accounts for the time differences in the acquisition of each slice within

the TR period, as the following statistical analysis assumes that the signal at every

brain voxel within each 3D brain volume was acquired at the same point in time.

Motion Correction

During the acquisition of the FMRI dataset the subject is liable to move their head.

This means that the time series in each voxel no longer reflects the changes in the

BOLD signal at a particular location within the brain, and as such this motion needs

to be be corrected by realigning each 3D volume using a rigid body registration

to determine the transformations that map all the volumes into the same space

[204, 205]. The transformation is typically determined iteratively by minimising a

cost-function, such as the normalised correlation between the volume of interest and

the reference volume [205]. This could be the volume acquired at the central time

point of the dataset or a mean of all the volumes. Even after motion correction,

via rigid body registration, there will be a range of motion related artifacts present

in FMRI data. These include the effects of motion within the acquisition of each

volume, interpolation errors, and spatial distortions [204].

Spatial Smoothing

Spatial smoothing of the data is then typically performed, by convolution with

a Gaussian kernel. This is carried out for two main reasons; firstly to increase

the signal-to-noise ratio (SNR) and secondly to enable a correction for multiple

comparisons of the final test-statistic using Gaussian random field (GRF) theory

[152, 206]. The optimal full-width half-maximum (FWHM) of the Gaussian kernel is

dependent upon the reason for smoothing; if GRF theory is used to correct multiple

comparisons the FWHM should be approximately twice the voxel dimension; if it is

solely to increase the SNR then it should not be larger the smallest activation to be

detected [207].

Temporal Filtering

Temporal filtering is performed on each voxel in turn to remove unwanted compo-

nents in the timeseries[152]. Depending upon the type of statistical analysis that is

to be performed, different temporal filtering approaches are taken.

The statistical analysis of both task-based and resting-state FMRI datasets ben-

efits from high-pass filtering to remove slowly varying scanner related signal drifts.
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In task-based FMRI the cut-off period is typically chosen to be approximately one

and a half times the period of the block design [152]. For resting-state data it has

been suggested that the frequency cut-off is reduced, such that more power is pre-

served at lower frequencies, as these are thought to be important in resting-state

networks[208].

In task-based FMRI analysis, low-pass filtering is one possible strategy to deal

with temporal autocorrelations, discussed below, in the FMRI timeseries. Low-pass

filtering ‘colours’ the data i.e. it imposes a known autocorrelation. This then enables

the degrees of freedom of the null distribution used during inference to be estimated

correctly [209, 210].

In seed-based resting-state FMRI data analysis low-pass filtering, with a cut-

off of approximately 0.1 Hz, is sometimes performed to reduce the effects of cardiac

and respiratory variations on the FMRI timeseries [13, 156]. The non-neuronal noise

resulting from cardiac and respiratory activity accounts for a significant proportion

of resting-state signals[211–213] but, unlike in task-based FMRI, this cannot be

removed by averaging over multiple epochs of task and rest. Several strategies have

been employed to remove it, including: linear regression of the measured cardiac

and respiratory fluctuations, [211–213]; global signal regression [159, 214, 215] (this

is controversial as it’s been shown to introduce spurious negative correlations [216]);

regression of white matter and CSF signal, [164]; increased sampling rates such

that the cardiac and respiratory fluctuations can be filtered out [12, 155, 156]; and

independent components analysis (ICA) [166, 217].

3.5.2 Statistical Analysis

In task-based FMRI the ubiquitous method to determine the regions of the brain

which show significant changes in BOLD signal in response to a stimulus is to to fit

a set of explanatory variables to the time series signal at each voxel location using

the General Linear Model (GLM) [152, 204]. This is a mass-univariate approach

in which the same analysis is performed independently on the time-series signal in

each voxel.

In resting-state studies the GLM may also be used, but in this case the goal is

to determine spatial patterns of coherent BOLD activity. Therefore, instead of a

user generated model, the mean timeseries from a region of interest is used as an

explanatory variable [12, 13]. The resulting statistical maps therefore show areas

of the brain with BOLD signal changes that are significantly correlated with those

changes in the selected region of interest. An alternative data-driven multivariate

approach, which is described in detail below, is to use Independent Component

Analysis (ICA) [218] to determine a set of spatially independent components [166,
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217, 219, 220]. It is thought that these reflect both underlying functional networks

within the brain as well as artefacts such as subject motion and susceptibility induced

signal dropout[220].

Mass-Univariate Analysis using the General Linear Model

Within the framework of the GLM the MR signal in each voxel is fitted, using a linear

least squares algorithm, to a set of explanatory variables. The variation in a voxel’s

signal over time is ‘explained’ using a linear combination of m-explanatory variables

and a residual error term. Given that there are usually multiple explanatory vari-

ables, including the stimulus design convolved with a model of the haemodynamic

response function, motion regressors and terms to account for intensity drifts, the

problem is most easily cast in matrix form:
y(t1)

y(t2)
...

y(tn)

 =


x11 . . . x1m

x21 . . . x2m

...
. . .

...

xn1 . . . xnm




β1

β2

...

βm

+


ε1

ε2

...

εn

 (3.1)

Equation 3.1 can also be written more compactly as:

Y = Xβ + ε (3.2)

Here Y is an n × 1 vector of measured signal intensities from a single voxel at n

time points, X is an n × m design matrix whose columns are the m explanatory

variables. β1 . . . βm are the m unknown parameter estimates corresponding to the

m explanatory variables and ε1 . . . εn are the residuals at each timepoint.

A conventional linear least squares analysis assumes that the residuals, ε, are

uncorrelated in time, ε ∼ Nn (0, Iσ2) i.e. that they are distributed according to an

n-dimensional Gaussian with mean µ = 0 and covariance matrix σ2I, where I is an

n× n identity matrix [221]. In the case of FMRI this assumption does not hold, as

the data are temporally autocorrelated; i.e. the residual at time point i is related

to the residual at i− 1 [222]. In this case the residuals are distributed according to

an n-dimensional Gaussian with mean µ = 0 and covariance matrix V σ2:

ε ∼ Nn
(
0,V σ2

)
(3.3)

Failure to properly account for temporal autocorrelation leads to false positive acti-

vations, as the number of degrees of freedom of the null distribution is overestimated,

which in turn spuriously reduces the probability of finding a statistic as, or more

extreme, than that calculated (i.e. the p-value is underestimated), hence null hy-
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pothesis is rejected too readily [204]. The methods used to deal with autocorrelation

in FMRI data are discussed below.

Given the autocorrelation of the residuals, the parameters β are estimated using

generalised least squares [221]. The data are multiplied by a matrix S; this can be

constructed to act as a low pass filter to color the data [210] or more commonly

set to S = K−1 (where V = KK ′ - the Cholesky decomposition of the covariance

matrix V , which is unknown and is therefore iteratively estimated from the data

[223, 224]) [223]. In the second case the data is whitened, i.e. the residuals are

uncorrelated, and the parameter estimate β̂ is given by:

β̂ = (X ′V −1X)−1X ′V −1Y (3.4)

The estimate of the variance of the parameter estimates is:

V̂ar{β̂} =
(
X ′V −1X

)−1
σ̂2 (3.5)

and the estimate of the error variance is:

σ̂2 =
η′η

tr(R)
(3.6)

Here η = K−1ε and R = I − (K−1X) (K−1X)
+

.

In FMRI it is commonplace for multiple stimuli to be presented to the subject

and then to compare their effects during data analysis. In the lexicon of FMRI this

comparison is refered to as a ‘contrast’, represented by the column-vector c. For

example, if the functional paradigm included both visual and auditory stimuli, the

first column of the design matrix X might contain the explanatory variable for the

visual stimulus and the second column the explanatory variable for the auditory

stimulus so that β1 was the parameter estimate for visual activations and β2 was

the parameter estimate for auditory activations. To determine which voxels where

active during visual stimulation c′ = (1, 0) because c′β̂ = (1, 0)

(
β1

β2

)
= β1.

Alternatively, to determine where in the brain the visual stimulus has a greater

effect than the auditory the contrast vector would be c′ = (−1, 1). The contrast of

parameter estimates is given by c′β̂ [152] and the estimator of the variance of the

contrast of parameter estimates is given by:

V̂ar{c′β̂} = c′(X ′V −1X)−1cσ̂2 (3.7)

A t-statistic is calculated at each voxel from the parameters β̂ and their estimated
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variances Var{β̂} [152, 204]:

t =
β̂√

V̂ar{β̂}
(3.8)

In the case of the contrast of parameter estimates, the t-statistic is:

t =
c′β̂√

V̂ar{c′β̂}
(3.9)

Statistical inference is then carried out on the resulting maps. This can be done

for each voxel individually by determining the test-statistic threshold, tα, above

which the null hypothesis should be rejected at a given level of significance, α, as

illustrated in Figure 3.1. Alternatively, taking account of spatial information in the

maps, inference can be carried out at the cluster-level [207]. In this case groups of

contiguous voxels whose t-statistic is greater than a given threshold are defined as

clusters; a cluster is deemed significant if its spatial extent or mass (sum of t-statistics

within a cluster) [207, 225] exceeds a given threshold. Since statistical significance is

being tested in a large number of voxels (or clusters) there is a multiple comparisons

problem and care must be taken to avoid type I errors (false positives). There are

two main ways to quantify the risk of a type I error [207]; the familywise error rate

(FWE) and the false discovery rate (FDR). FWE is defined as the probability of

finding one or more false positive in the map. The significance level is adjusted to

control the FWE using for example a Bonferroni correction (which assumes that

each voxel is independent) or Gaussian Random Field Theory [226–228] (which

estimates the number of spatially independent voxels given the spatial smoothness

of the data). If the FWE corrected significance level is 0.01 then there is a maximum

1% probability of finding any false positive activations in the thresholded t-statistic

map. The FDR is defined as the proportion of false positives out of those tests for

which the null hypothesis was rejected [229, 230]. With FDR the correction of the

significance level is more lenient [207]; if the FDR corrected significance level is 0.01

then on average 1% of the voxels (or clusters) that were deemed significant are false

positives.

For the majority of FMRI studies investigating brain function there is a desire

to generalise the results of the investigation across the population as a whole rather

than being restricted to commenting on specific cases. This aim requires the scan-

ning of multiple subjects and the combination of the statistics resulting from the

GLM fit of each subject. Given that there is significant heterogeneity in brain size

and shape between subjects the data must be transformed into the same space to

allow meaningful interpretation of the final combined statistics [152, 207]. Acquir-

ing data from multiple subjects has the added advantages that it can increase the
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Figure 3.1: The test-statistic has a Student’s t-distribution P (t|H0) with n − m
degrees of freedom if the null hypothesis, H0, is true. The value of t above which
the null hypothesis is rejected, tα, is shown along with the significance level α.

sensitivity of the experiment to an effect of interest and allows comparisons between

different groups of subjects [152].

It is possible to combine all the subjects’ time-series data into a single linear

model, however typically in FMRI data analysis a ‘summary-statistics’ approach is

taken [231]. In such an approach, group-level inferences are made by combining the

results from a set of single subject GLM fits. Several methods can be used to combine

the statistical results across a group of subjects to produce a group based statistic;

these include both fixed and mixed effects models. In a fixed effects analysis it is

assumed that the only contribution to the variance is from within-subject variations

and that there is no between subject variance, i.e. it is assumed that every subject,

within a group, activates equally[152]. In contrast, a mixed effects model accounts

for both within and between-subject variance [207, 231, 232]. In effect, it considers

that the subjects themselves are random variables sampled from a population, and

as such allows the results of the analysis to be generalised across the population as

a whole.

Independent Component Analysis

The univariate methods, described above, for analysing both task-based and resting-

state studies may not be adequately sensitive in detecting functional networks, since

they do not fully account for the spatial relationships between voxels [219, 220].

It is therefore becoming increasingly popular to use a multivariate technique such

as Independent Component Analysis (ICA) especially when analysing resting-state

FMRI data [218, 233]. ICA can reduce an FMRI data set with n-time points to a

set of m-component maps that are statistically independent of one another in space.

The m-components are thought to represent functional networks within the brain

[169], as well as artifactual signals from physiological pulsations, head movement

and scanner noise [219].

Statistical independence implies that knowledge of the value of the intensity

values in one independent component map gives no information about the intensity

values in any of the other of the maps. That is, the joint probability density function
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of the m independent components (s1, s2, . . . , sm) must factorise into the product of

the marginal probability density functions [219, 234] i.e.:

p (s1, s2, . . . , sm) = p1 (s1) p2 (s2) . . . pm (sm) (3.10)

The ICA model can only be estimated if the sources S are statistically independent

or equivalently if they have non-Gaussian distributions[234].

ICA is a generative linear latent variables model [234] in that it describes how the

observed dataX are generated from a linear mixture of the statistically independent

sources S which themselves cannot be directly observed.

X = AS (3.11)

For FMRI data with p-voxels and n-time points, stored in a matrix X, the m

spatially independent components3 each with p-voxels are stored in a matrix S,

each spatially independent component has an associated time course with n-time

points, which are stored in the columns of A:
x11 . . . x1p

x21 . . . x2p

...
. . .

...

xn1 . . . xnp

 =


a11 . . . a1m

a21 . . . a2m

...
. . .

...

an1 . . . anm




s11 . . . s1p

s21 . . . s2p

...
. . .

...

sm1 . . . smp

 (3.12)

The first step in estimating the mixing matrix, A, and the independent compo-

nents, S, is to centre the data by subtraction of the mean. Specifically, for each brain

volume in the time series, the mean voxel value for over the volume is subtracted

from each voxel in that volume.

Secondly, Principal Component Analysis (PCA) is carried out; this reduces the

data to a set of m components that are uncorrelated and ranked in order of explained

variance. The number of components is normally unknown and therefore it must be

estimated from the data; simple approaches seek to maintain a certain percentage

variance or use a scree plot to infer the number of ‘important’ components. More

sophisticated approaches such as Probabilistic PCA [236–238] have been developed

that determine the number of components using Bayesian model order selection.

Following PCA, the only remaining task is to find the orthogonal transforma-

tion to ensure that the components are statistically independent. As outlined in

Hyvärinen et al. [234] there are a number of different algorithms for ICA that can

3It is also possible, using ICA, to determine a set of components from the FMRI data that are
statistically independent in time. However in the majority of cases spatial independence is used.
This is because both artifactual components and those representing brain networks are relatively
sparse and well localised in space [219, 235].
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be used to find this transformation; maximising non-Gaussianity of the components

[239–243], maximum likelihood estimation [233, 244–249], minimising the mutual

information of the components [218, 243] or higher-order decorrelation using the

cumulant tensor [250–253]. Maximising non-Gaussianity is probably the most intu-

itive method; the central limit theorem states that the sum of independent random

variables tends towards a Gaussian distribution, therefore independent components

are found by determining the linear combinations of the data (after PCA has been

performed) which maximise the non-Gaussianity.

Finally, there is normally a need to infer which voxels in a given component are

significantly modulated by the associated time course [166]. In early work this was

achieved by simply thresholding the components following a z-transformation i.e.

to unit variance and zero mean [219]. However a more sophisticated approach uses

mixture modelling [254, 255] to produce z-score maps that are thresholded using

alternative hypothesis testing [220].
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Chapter 4

Simulating the Effect of the

Signal-to-Noise Ratio on the

Detection of BOLD Activations

4.1 Introduction

As described in Chapter 2, FMRI data acquired using a GE-EPI pulse sequence

suffers from a range of artefacts that can seriously degrade image quality. In this

chapter I focus on the susceptibility induced signal dropouts that hinder the detec-

tion of both resting-state and task-induced brain activations in the orbitofrontal and

inferior temporal lobes. Using both direct calculation and numerical simulations,

I determine the impact of the signal-to-noise ratio (SNR) in the regions of signal

dropout on the statistical power of commonly used FMRI data analysis methodolo-

gies to detect both task-induced and resting-state BOLD signal changes.

In the subsequent chapters, several modified data acquisition strategies such as

z-shimming and tailored RF pulses will be used to reduce signal dropout. The

results of this chapter will be used to inform the likely improvements in SNR that

these strategies must provide in order to detect task-induced brain activations and

resting-state networks in affected areas.

4.2 Signal-to-Noise Ratio and the Detection of

Task-Induced BOLD Signal Changes

As outlined in Chapter 3, the most commonly used method to determine the regions

of the brain which show significant changes in MRI signal in response to a set of

stimuli is to to fit a set of explanatory variables to the time varying signal in each

voxel using the General Linear Model (GLM) [152, 204]. A map of the t-statistic
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is calculated at each voxel using Equation 3.9 and then a voxel, or cluster-level,

threshold is applied to determine those voxels with statistically significant changes

in BOLD signal.

As described below it is possible, by combining two previously published models,

to determine the theoretical dependence of the t-statistic (and therefore by extension

the detectability of BOLD signal changes) on SNR, percentage change in BOLD

signal and experimental design.

4.2.1 Dependence of the T-Statistic on the SNR, Percentage

Change in BOLD Signal and Experimental Design

Using the expression for the t given in Equation 3.9 Smith et al. [256] showed that

the t-statistic resulting from a GLM analysis is given by:

t =
S

σ

∆S%

100

√
X ′effXeff

h
(4.1)

Here S is the mean MRI signal in each voxel in the absence of any external stimuli.

σ is the temporal noise; this is defined as standard deviation of the noise along the

timeseries, again in the absence of external stimuli. The ratio S/σ is the temporal

signal-to-noise ratio (TSNR) [105, 257, 258]. ∆S% is percentage change in the BOLD

signal. Specifically, for a contrast such as c′ = (1, 0, 0, . . . , 0), used to test if β1 (as

defined in Chapter 3) is significantly different from zero, ∆S% is the change in the

BOLD signal associated with the first explanatory variable expressed as a percentage

of the baseline signal S. Alternatively, for a contrast like c′ = (1,−1, 0, . . . , 0),

used to determine the regions where β1 is significantly greater than β2, ∆S% is the

difference between the BOLD signal associated with the first and second explanatory

variables expressed as a percentage of the baseline signal S. h is the peak-to-peak

amplitude of the n× 1 effective explanatory variable vector Xeff which is given by:

Xeff = X (X ′X)
−1
c
[
c′ (X ′X)

−1
c
]−1

(4.2)

(where again, X is as defined in Chapter 3). Inspection of Equation 4.1 shows that

the t-statistic increases linearly with the TSNR, percentage change in the BOLD

signal, ∆S%, and

√
X′effXeff

h
. For a simple block design FMRI experiment, with a

single explanatory variable, Xeff = X, and therefore:√
X ′effXeff

h
=

√
n

2
(4.3)
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where n is the number of time points, i.e. the t-statistic increases as the square root

of the number of time points.

In later chapters I describe several methods to increase the SNR in the areas of

GE-EPI images affected by signal dropout, therefore it helpful to express the TSNR

(S/σ) in Equation 4.1 in terms of the SNR by incorporating a model of the temporal

noise described by Kruger et al. [259]. They showed that the temporal noise, σ, has

two main components:

σ2 = σ2
0 + σ2

p (4.4)

The intrinsic noise, σ0, encapsulates both the effects of thermal noise from the

subject and scanner electronics, as well as noise from other scanner imperfections

for example from the gradient, shim and RF systems [259]. The level of intrinsic

noise is independent of the MRI signal amplitude [260]. The physiological noise σp

results from a number of different sources including cardiac and respiratory fluctu-

ations, as well as motion from brain pulsatility, in addition to fluctuations linked

to resting-state activity1 [259]. The physiological noise, unlike the intrinsic noise, is

proportional to the baseline MR signal:

σp = λS (4.6)

In gray matter, λ ≈ 0.012 [259]. When this noise model is incorporated into Equa-

tion 4.1 the t-statistic, with some straightforward rearrangement, can be written in

terms of the signal-to-noise ratio SNR = S/σ0:

t =
SNR√

1 + λ2SNR2

∆S%

100

√
X ′effXeff

h
(4.7)

Equation 4.7 is plotted as a function of both the SNR and the percentage change in

the BOLD signal, ∆S%, in Figure 4.1(a), for a simple block design FMRI experiment

with thirty second task and rest periods sampled every 2s for a total of five minutes.

In this case the first column of the design matrix X was all ones to model the

baseline MR signal and the second column contained a square-wave with a peak-

to-peak amplitude of one and a period of one minute to model a stimulus with

30s task and rest blocks. The contrast c′ = (0, 1). To aid interpretation of the

2D-plot in Figure 4.1(a), the t-statistic is also plotted separately as a function of

1As shown by Kruger et al. [259] the physiological noise σp can be broken down into two
components:

σ2
p = σ2

B + σ2
NB (4.5)

The first σB is ‘BOLD-like’ in the sense that it shows the same echo-time dependence as the BOLD
effect and is thought to arise from resting-state activity. The second σNB is not dependent upon
the echo-time and as such is ‘non-BOLD-like’ and is thought to arise from cardiac and respiratory
fluctuations
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(a) t-statistic as a function of SNR and ∆S%

(b) t-statistic as a function of SNR
when ∆S% = 5%

(c) t-statistic as a function of ∆S%

for an SNR of 100

Figure 4.1: Plots showing the dependence of the t-statistic on the SNR and the
percentage BOLD signal change, ∆S% for a simple block design FMRI experiment
with thirty second task and rest periods sampled every 2s for a total of five minutes.

SNR at ∆S% = 5% (Figure 4.1(b)) and as a function of ∆S% for an SNR of 100

(Figure 4.1(c)). Importantly, as a result including a model of the physiological noise,

Equation 4.7 and Figure 4.1 show for the first time that the t-statistic does not

increases linearly with SNR. Rather, smaller and smaller increases in the t-statistic

are achieved with increasing SNR.

4.2.2 The Minimum SNR Required to Detect an Activation

Whilst the dependence of the t-statistic on the SNR, ∆S% and experimental de-

sign described above is useful, it is arguably more important, when designing new

methods to reduce signal dropout, to determine the minimum SNR needed to find
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statistically significant activations. This can be found by rearranging Equation 4.7:

SNRmin =
tα√(

∆S%

100

)2 X′effXeff

h2 − λ2t2α

(4.8)

Here tα is the t-statistic threshold determined using the Student’s t inverse cumu-

lative distribution function with n −m degrees of freedom for a given significance

level, α. Inspection of Equation 4.8 shows that minimum SNR becomes imaginary,

implying that it is possible to detect an activation, when:

∆S% <
100λtαh√
X ′effXeff

(4.9)

Therefore, again as a consequence of including a model of the physiological noise,

it has been shown for the first time that there is a minimum percentage BOLD

signal change that depends on the experimental design, below which, regardless of

the SNR, activations will never be deemed statistically significant. For example for

the design matrix and contrast described above ∆S%,min = 0.32% at a statistical

significance α = 0.05.

The minimum signal-to-noise ratio, calculated using Equation 4.8, is plotted as

a function of ∆S% in Figure 4.2 for the design matrix and contrast described above

at two different levels of statisitical significance, α = 0.05 and α = 3.21 × 10−7

(α = 3.21 × 10−7 corresponds to α = 0.05 with the most conservative correction

for multiple comparisons - a Bonferroni correction - applied for a typical FMRI

acquisition with 64× 64× 38 voxels).

Incorporating Control of the Type II Error Rate

As stressed by Smith et al. [256] controlling the type I error rate via the statistical

significance, α, is only one half of the picture when determining if an activation

will be detected. The type II error (false negative) rate, as measured using the

statistical power, π, must also be controlled. For example, at the minimum SNR

given by Equation 4.8, t = tα and, as shown in Figure 4.3, the statistical power is

only 50%, which is less than the standard required power of 80% [256]. To, control

the type II error rate and ensure that true activations are detected with a given

statistical power, π , tα in Equations 4.8 and 4.9 should be replaced by tα,π:

SNRmin =
tα,π√(

∆S%

100

)2 X′effXeff

h2 − λ2t2α,π

(4.10)
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Figure 4.2: The minimum SNR as a function of the percentage change in the BOLD
signal ∆S%. The dashed and solid red lines correspond to a statistical significance,
α, of 0.05 and 3.21 × 10−7 respectively. The minimum SNR needed to reject the
null hypothesis at the Bonferroni corrected significance level α = 3.21 × 10−7 for a
percentage BOLD signal change of 5%, typically observed in the motor and visual
cortex, is 17.4.

(a) When t = tα there is only a 50% chance
of a true positive result, i.e. the statistical
power π = Pr(t > tα|H1) = 50%, as shown
by the shaded region

(b) When t = τ > tα the statistical power
π = Pr(t > tα|H1) > 50%, as shown by the
shaded region

Figure 4.3: Plots showing how the statistical power, Pr(t > tα|H1), varies as a
function of the size of the t-statistic. Under the alternative hypothesis H1 the test-
statistic has a non central t-distribution P (t|H1) with n−m degrees of freedom.
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and a BOLD signal change is undetectable when:

∆S% <
100λtα,πh√
X ′effXeff

(4.11)

Where tα,π can be determined iteratively using the following algorithm [256]:

1. Use the Student’s t inverse cumulative distribution function to determine tα

given the required statistical significance, α, and the number of degrees of

freedom (n−m)

2. Given tα from Step 1. calculate the statistical power using non-central t

cumulative distribution function with n − m degrees of freedom and non-

centrality parameter τ = 0 (i.e. the area to the right of tα in the non-central

t-distribution).

3. Repeat Step 2. with increasing values of τ until the statistical power reaches

the required level π, at this point set tα,π = τ

With this modification, the novel findings described previously remain valid:

there is a minimum percentage BOLD signal change below which activations can

never be detected regardless of the SNR. The minimum signal-to-noise ratio, for

a statistical power π = 80%, as calculated using Equation 4.10, is plotted as a

function of ∆S% in Figure 4.4 for the same design matrix, contrast and two levels

of statistical significance described previously. At this power, the minimum SNR

needed to reject the null hypothesis at the Bonferroni corrected significance level

α = 3.21×10−7 for a percentage BOLD signal change of 5% is 20.4, which compares

to a minimum of 17.4 when the type II error rate was not controlled. The minimum

detectable percentage BOLD signal change ∆S%, calculated using Equation 4.9 with

tα replaced by tα,π, rises from to 1.02% to 1.19%.

Whilst the results shown Figure 4.4 and the minimum SNR and percentage

BOLD signal change quoted above are instructive, they refer to a specific FMRI

paradigm. However, Equation 4.10 is general and can be used on a case-by-case basis

(given the specific expermental paradigmX, contrast c, the t-statistic threshold tα,π,

the expected percentage change in BOLD signal ∆S% and the physiological noise

constant λ) to determine the minimum SNR required to detect an activation. For

example, if rather than attempting to reduce signal dropout using a novel acquisition

strategy, the FMRI paradigm described above were simply doubled in length (i.e. if

twice the number of data points were acquired), then the minimum SNR required

to detect a BOLD signal change with ∆S% = 5%, falls to 13.9. This reduction in

minimum SNR is mainly due to

√
X′effXeff

h
in Equation 4.10, which is proportional
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Figure 4.4: The minimum SNR as a function of the percentage change in the BOLD
signal, ∆S%. The dashed and solid green lines correspond to a statisitical significance
α = 0.05 and α = 3.21 × 10−7 respectively when π = 0.8. The dashed and solid
red lines, taken from Figure 4.4, are are included to demonstrate that the minimum
SNR increases when the type II error rate is controlled.

to the square root of the number of timepoints. However, there is also a small effect

due to tα,π which increases as the number of degrees of freedom, n−m, increases.

Put another way, activations may become detectable by either increasing the

SNR in the region of signal dropout to above the minimum level, or by reducing the

minimum SNR required to detect an activation by changing the FMRI paradigm.

4.2.3 Simulations Demonstrating the Impact of Signal Dropout

Introduction

To demonstrate the impact of a region of signal dropout on the ability of a popular

FMRI analysis package to detect activations, when additional processing steps such

as cluster level thresholding are applied (the effect of which was not modelled in

the previous section), a series of digital phantoms with varying degrees of signal

dropout, were constructed in MATLAB. These were then analysed using FEAT

(FMRI Expert Analysis Tool) Version 5.98, part of FSL (FMRIB’s Software Library,

www.fmrib.ox.ac.uk/fsl).

Methods

Each of the three-dimensional digital phantoms(64 × 64 voxels ×150 timepoints,

representing a single slice from a task-based FMRI with a duration of 5 minutes

77

http://www.fmrib.ox.ac.uk/fsl


(a) A spatial map of the digital phantom
showing the size and positions of the five
regions described in the text

(b) Examples of the MRI signal timecourses
from each of five regions, the colors match
those used in Figure 4.5(a)

Figure 4.5: An example digital phantom used to determine the effect of signal
dropout on the ability of FEAT to detect task-based FMRI activations (for visu-
alisation purposes in this figure ∆S% = 25%). Region A is an area of zero signal
representing the air surrounding the head. Region B is a region with a constant sig-
nal, S = 2500, representing the areas of the brain without any BOLD signal changes.
Region C is composed of two clusters of activation (C1 and C2) in which square-wave
modulation was added to the baseline signal with a period of one minute, represent-
ing the response to a stimulus with 30 s blocks of task and rest. The percentage
change in BOLD signal was 5%. Finally region D is an area in which the baseline
signal was reduced incrementally in steps of 250 from 2500 to 0 for each phantom to
model the effects of increasing signal dropout. The same square-wave modulation
as used in regions C1 and C2 was added with ∆S% = 5%.

and a repetition time, TR, of 2 s) contained five distinct regions, as shown in Figure

4.5: Gaussian noise with variance σ2 = σ2
0 + λ2S2 (σ0 = 25 and λ = 0.012) was

added to each voxel so that the noise followed the model described previously [261].

It is recognised that the noise in MR magnitude images actually follows a Rician

distribution [262], however since this is only significantly different from a Gaussian

distribution at low SNR (< 3) the simpler Gaussian noise model was used here. Ten

replicas of each phantom were generated; the added noise was realised afresh for

each of the replicas.

Each phantom image was then processed separately using FEAT to determine

the areas of significant activation. A single column design matrix2, containing a

square-wave with a peak-to-peak amplitude of one and a period of one minute,

was used to model the BOLD signal change. The resulting t-statistic maps were

converted to z-statistic maps and these were thresholded using clusters determined

2In FEAT the data, Y , and design matrix, X, are demeaned prior to the estimation of β so a
column of ones to model the baseline signal is not required in the design matrix.
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(a) SNRD = 0 (b) SNRD = 25 (c) SNRD = 50 (d) SNRD = 75 (e) SNRD = 100

Figure 4.6: The raw t-statistic images from a simulation of task-based FMRI demon-
strating the impact of signal dropout. In Region C, which is unaffected by signal
dropout, the t-statistic remains constant, whereas in Region D the t-statistic is re-
duced as SNRD goes down i.e. as signal dropout worsens the t-statistic resulting
from a GLM analysis drops.

by z > 2.3 and a corrected cluster significance threshold of 0.05 [263].

The dependence of the number of false negatives in the thresholded z-statistic

map on the SNR in the region of dropout, quantified using the observed statistic

power3, was also calculated.

Results

A selection of the resulting t-statistic maps with different amounts of signal dropout

in region D are shown in Figure 4.6. A simple visual inspection suggests that, as

expected because the analysis in FEAT is performed voxel-wise, the effect of signal

dropout on the t-statistic is localised to the area of signal dropout. This is confirmed

by the plots of the mean t-statistic in Figure 4.7, which are in exact agreement with

the prediction of Equation 4.7 as plotted in Figure 4.1(b). In regions C1 and C2,

which are unaffected by signal dropout, the t-statistic remains constant, whereas in

region D the t-statistic is reduced as the signal dropout worsens.

The thresholded z-statistic maps are shown in Figure 4.8. In regions C1 and C2,

which are unaffected by signal dropout, the z-statistic remains constant and above

the threshold at which the null hypothesis is rejected. In contrast, in region D the

z-statistic is reduced as SNRD falls, resulting a reduction in the observed power, as

shown in 4.9. In this specific case, the observed power falls below 100% when the

SNR is less than 20. As expected, the impact of signal dropout is localised, the

observed power in regions C1 and C2 remains at 100% regardless of the SNR in the

region of signal dropout.

3Here the observed statistical power is defined as the ratio of the number of voxels in each
region that survive in the thresholded z-statistic map divided the number of voxels in that region
i.e. the probability that the alternative hypothesis was accepted. This is equal to one minus the
false negative rate.
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Figure 4.7: Plots of the mean t-statistic in regions C1, C2 and D showing quantita-
tively the dependence of t on the SNR in region D. The error bars representing the
standard deviation across the results from the analyses of the 10 replica phantoms
at each SNRD are too small to display at this scale.

(a) SNRD = 0 (b) SNRD = 25 (c) SNRD = 50 (d) SNRD = 75 (e) SNRD = 100

Figure 4.8: Thresholded z-statistic images from a simulation of task-based FMRI
demonstrating the impact of signal dropout. In Region C, which is unaffected by
signal dropout, the z-statistic remains constant and above the threshold, whereas in
Region D the z-statistic is reduced as SNRD goes down resulting in an increase in
false negatives.

Figure 4.9: A plot of the observed statistical power in regions C1, C2 and D as
a function of the SNR in the area of signal dropout. The error bars represent the
standard deviation across the results from the analysis of the 10 replica phantoms
at each signal-to-noise ratio.
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Discussion and Conclusions

Reassuringly the dependence of the t-statistics resulting from a FEAT analysis

match the earlier theoretical predictions. In addition it is apparent that the observed

power of the cluster-level thresholded z-statistics in the region of signal dropout has

a sigmoidal dependence on the SNR. The sigmoid shape results from the depen-

dence of the probability of accepting the alternative hypothesis on the observed

z-statistic. The decreases in the observed statistical power, for this type of analysis,

are localised to the region of signal dropout. Promisingly the dependence of the

observed statistical power on the SNR suggests that a modified FMRI acquisition

technique that results in only moderate improvements in SNR may still lead to large

improvements in the detection of true activations.

4.3 Signal-to-Noise Ratio and the Detection of

Resting-State Networks

4.3.1 Introduction

As described in Chapter 3, seed-based and independent component analysis are two

common methods to detect resting-state activations from FMRI data. In contrast

to the analysis of task-based FMRI data, where the design matrix, X, is based on

the experimental design and therefore known prior to data acquisition, the varia-

tion with time of the resting-state BOLD signal changes are subject and session

specific. This difference means that it is not possible to derive analytic expressions

for the detectability of resting-state activations when either seed based or indepen-

dent component analysis are used. In the case of a seed-based analysis, performed

using the GLM, the design matrix X is a single column containing the mean time

course from a seed region. As the seed time course is corrupted by Gaussian noise

the parameters estimates, β̂, are underestimated, a phenomenon often referred to

as regression dilution[264] or attenuation bias. This bias is not allowed for within

the common FMRI analysis packages as they were designed to analyse task FMRI

data. Therefore it is not possible to derive an expression for the dependence of the

t-statistic on the SNR. In the case of probabilistic ICA, no analytic expression for

the z-statistic is available because of both the multivariate and iterative natures of

the technique. For these reasons, the effect of signal dropout on the detection of

resting state networks can only be explored by simulation.
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4.3.2 Preliminary In-vivo Experiment

Background

To ensure that the simulations provide a realistic model for the detectability of

resting-state networks, estimates of the percentage BOLD signal change ∆S% and

SNR for typical resting-state FMRI data are required.

Unlike task-based FMRI, only two previous studies discuss the relative magni-

tudes of the signal and noise observed in resting-state FMRI data sets. Using the

correlation coefficients observed in seed-based analyses of RS-FMRI data, Fox and

Greicius [265] suggest that resting-state activity could account for between 50-80%

of the variance of the voxel signal across time. Johnson et al. [266] observed that

the typical contrast-to-noise ratio (CNR) of RS-FMRI data is 0.8. To confirm these

values, FMRI data were collected from a single healthy male subject.

Methods

FMRI data were acquired using a gradient-echo EPI sequence on a 3T GE Signa

HDx system (General Electric, Waukesha, WI, USA). A quadrature head coil was

used for RF transmission and reception. The quadrature coil was used to allow

the measurement of noise in a region outside of the head, as this would be not be

possible in images from mulitple channel receive-only coils since a masking step is

performed when the images from each of the coils are combined. A total of 256

volumes (preceded by four dummy scans to allow the signal to reach a steady state),

each with 33 slices, were acquired with a repetition time of 2 s and an echo time

of 30 ms. The flip angle was 75◦ and the field of view was 21.9 cm with a 64 × 64

acquisition matrix. During the first four minutes and fifty seconds the subject was

at rest with their eyes open, then for the remaining time they performed self-paced

finger tapping with their right hand in 30 s blocks of rest and activity. For simplicity,

the cues to start and stop finger tapping were delivered verbally. The slices were

prescribed to include a region of air above the head to enable a straightforward

estimation of the noise from a region free from signal.

The intrinsic noise, σ0, was estimated from a region of interest in the slices above

the head in the first volume. As the noise in this signal free region has a Rayleigh

distribution the intrinsic noise, σ0, was calculated using [262]:

σ0 =
σROI√
2− π

2

(4.12)

Assuming that, in an area known to be part of a resting-state network, the

temporal variance of the signal σ2 is simply the sum of the intrinsic variance σ2
0 and
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the variance due to resting-state activity σ2
BOLD, then:

σ2
BOLD = σ2 − σ2

0 (4.13)

With this simplifying assumption, σ2
BOLD represents an upper limit on the variance

of the BOLD signal due to resting-state activity. The assumption is only valid if

there is no variance due to cardiac and respiratory effects, or scanner instabilities,

which cause signal variations between each volume of acquired data. To determine

the spatial location of the left motor cortex, which has been previously shown to

be in a resting-state network with the supplementary motor area and right motor

cortex[12], the portion of the data set (the final 111 volumes) during which the

subject performed the finger tapping task were analysed using FEAT. The data

were preprocessed by applying motion[205] and slice timing corrections, the brain

was extracted using BET [267], and spatially smoothed with a Gaussian kernel

with a FWHM of 5mm. High pass temporal filtering was then performed using

a Gaussian-weighted least squares fit with a standard deviation of 50s. The data

were then grand-mean intensity normalised such that the mean signal across time

and space was 10000. After local autocorrelation correction a linear least squares

fit was performed using a single column design matrix (containing a square wave

convolved with a gamma function with a phase of 0s, standard deviation of 3s

and a 6s mean lag to model the HRF) using FILM [224]. The resulting z-statistic

maps were thresholded using clusters determined by z > 2.3 and a corrected cluster

significance threshold of 0.05 [263]. Using the statistically significant cluster in the

left motor area as a mask the total temporal variance, σ2, was measured from the

initial resting state portion of the data. The variance of the BOLD signal due to

resting-state activity was then estimated using Equation 4.13. In addition the mean

signal and SNR in the same ROI were calculated.

Results

The noise in the region of interest above the head σROI = 15.9, therefore σ0 = 24.3.

The total temporal variance in the ROI defined by the cluster of significant activation

in the left motor cortex was σ2 = 1380. Therefore, the variance due to resting state

activity, calculated using Equation 4.13 was σ2
BOLD = 790, which is 57% of the total

variance. In the same region the mean signal was S = 2570 and the SNR was 114.

Discussion and Conclusions

The percentage of the variance explained by the resting-state BOLD signal (57%)

fell within the range (50-80%) given previously by Fox and Greicius [265], and as

such it will be used in the following simulations of the detectability of resting-
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state networks. As noted above, this is an upper limit on the resting-state signal

variance, as the effect of variance due to scanner instabilities, cardiac pulsatility and

respiratory effects were not accounted for.

4.3.3 Simulating the Effects of SNR

Methods

A set of digital phantoms with varying degrees of signal dropout were constructed in

MATLAB. Each of the three-dimensional digital phantoms (64×64 voxels ×240 time

points, representing a single slice from a resting-state FMRI data set with a duration

of 8 minutes acquired with a TR of 2s) contained five distinct regions as shown in

Figure 4.10. Region A is an area of zero signal representing the air surrounding

the head. Region B is a region with a constant signal, S = 2500 (rounded down

from the measured in-vivo value), representing the areas of the brain without any

BOLD signal changes. Regions C1, C2 and C3 had a sine-wave modulation with a

frequency of 0.0375 Hz added to the baseline signal, representing the time course

of a resting-state network. (This model of a resting-state time course has been

used previously [166]). Three different percentage changes in BOLD signal were

used for the simulations ∆S% = 0.5, 1 and 1.5%. (For a sine wave the peak-to-

peak amplitude is equal to
√

2 times its standard deviation. Therefore, given that

the BOLD variance measured in-vivo was 790, then the change in BOLD signal

∆S =
√

2
√

790 = 40, therefore ∆S% ≈ 1.5%. Since the estimate of the variance was

an upper bound, ∆S% of 0.5% and 1% were also simulated). In areas D1, D2 and D3

a sine-wave modulation (f=0.03 Hz) was added to the baseline signal, representing

the time course of a second resting-state network. The percentage change in BOLD

signal was the same as regions C1, C2 and C3. In region D2 the baseline signal

was reduced incrementally from 2500 to 0 for each phantom generated. In this way

successive phantoms modelled the effect of increasing signal dropout in one node of

a resting-state network. Gaussian noise with a standard deviation of 25 was added

to each voxel. In contrast to the task-based FMRI simulation presented earlier,

physiological noise was not modelled. Ten replicas of each phantom were generated

(with the added noise realised afresh for each of the replicas)

Seed based analysis of the phantoms was performed separately for each seed

regions shown in Figure 4.10 using FEAT. A single column design matrix containing

the mean signal from the seed ROI was used. The resulting t-statistic maps were

converted to z-statistic maps that were then thresholded using clusters determined

by z > 2.3 and a corrected cluster significance threshold of 0.05 [263]. The mean t-

statistic in each of the regions defined above was plotted as a function of SNR in the

region of signal dropout at ∆S% = 0.5, 1 and 1.5%. In addition, the observed power
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(a) A spatial map of the digital phantom
showing the size and positions of the five
regions described in the text

(b) Examples of the MRI signal time courses
from each of five regions, the colors match
those used in Figure 4.10(a)

Figure 4.10: An example of the digital phantoms used to determine the effect of
signal dropout on the ability of seed-based and independent component analyses
to detect resting-state networks (To allow the reader to visually differentiate the
different regions of the phantom ∆S% = 25% in this figure). The three regions C1,
C2 and C3 are three nodes in a resting state network and the red square denotes
the location of the region-of-interest used to generate the seed time course for this
network. Regions D1, D2 and D3 are three nodes in a second resting state network.
The blue square denotes the location of the region-of-interest used to generate the
seed time course for this network.
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(as defined in Section 4.2.3) in the thresholded z-statistic maps was also plotted as

a function of SNR in the region of signal dropout at ∆S% = 0.5, 1 and 1.5%.

Probabilistic Independent Component Analysis, discussed in Chapter 3, as im-

plemented in MELODIC v.3.10 [220] was performed separately on each of the phan-

toms. Firstly the variance was normalised on a voxel-by-voxel basis; the data were

then whitened and the first two principal components kept. These were decomposed

into sets of time courses and spatial maps by optimising for non-Gaussian spatial

source distributions using FastICA [243]. The estimated components were divided

by the standard deviation of the residual noise to produce z-statistic maps. These

were thresholded at p=0.05 (Bonferroni corrected for multiple comparisons for the

64 × 64 voxels). The mean, unthresholded, z-statistic was plotted as a function of

SNR in the region of signal dropout at ∆S% = 0.5, 1 and 1.5%. The observed power

in the thresholded z-statistic maps was also plotted as a function of SNR in the

region of signal dropout at ∆S% = 0.5, 1 and 1.5%.

Results of the Seed Based Analysis Simulations

A representative selection of the t-statistic maps showing the networks correlated

with each seed region at ∆S% = 0.5, 1 and 1.5% for different amounts of signal

dropout in region D2 are shown in Figure 4.11. Qualitatively, these show that for

a seed-based analysis the effect of signal dropout on the t-statistic is localised to

Region D2 (the area of signal dropout) for all of the percentage BOLD signal changes

tested. This is confirmed by the plots of the mean t-statistic for each of the regions,

Figure 4.12, which show quantitatively the dependence of t on the signal-to-noise

ratio in Region D2. In regions C1, C2, and C3 the t-statistic remains constant. This

is also the case for regions D1 and D3, which are also unaffected by signal dropout.

In contrast, in region D2, the t-statistic decreases linearly with the signal-to-noise

ratio at each of the percentage BOLD signal changes tested. The t-statistic is lower

for smaller percentage changes in BOLD signal.

The thresholded z-statistic maps are shown in Figure 4.13. These show qualita-

tively that, for a seed-based data analysis, the effect of signal dropout is localised to

the area of signal dropout, region D2. The increase in the number of false negatives

with increasing signal dropout is shown quantitatively, using the observed statistical

power, in Figure 4.14. For ∆S% = 0.5% the observed power remains at an approx-

imately constant value of 90% in regions C1 and D1 (the seed regions). In regions

C2, C3 and D3 (the resting-state network nodes unaffected by signal dropout), the

observed power also remains constant, at a lower value of approximately 50%. For

both ∆S% = 1% and 1.5% the observed power remains at 100% in all the nodes

unaffected by dropout. In contrast, in region D2 the observed power has a sig-

moid shape; at low SNR the power is close to zero, then as the SNR increases the
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power increases to 100%. At the highest percentage BOLD signal change (1.5%) the

power begins to increase at a lower SNR and the rate of increase is greater than for

∆S% = 0.5% and 1.0%.

Results of the Probabilistic ICA Simulations

The thresholded z-statistic maps resulting from the probabilisitic independent com-

ponent analysis are shown in Figure 4.15. As in the case of a seed-based analysis,

these show that the effect of signal dropout is localised to the area of signal dropout,

region D2, for each ∆S% simulated. When ∆S% = 0.5% none of the nodes are de-

tected regardless of the degree of signal dropout. The mean unthresholded z-statistic

in each of the regions, shown in Figure 4.16, shows that for ∆S% = 1% and 1.5% z

increases linearly in the region of signal dropout with the SNR. When ∆S% = 0.5%

the mean unthresholded z-statistic remains low for all SNRs simulated.

The increase in the number of false negatives with increasing signal dropout is

shown quantitatively, using the observed statistical power as a metric, in Figure

4.17. When ∆S% = 0.5% the observed statistical power in all regions is close to 0%

so, regardless of the degree of signal dropout, the networks are not detected. When

∆S% = 1.0% the observed power is approximately 80% in the regions unaffected

by signal dropout, for ∆S% = 1.5% this increases to 100%. Again, as for a seed-

based analysis, in region D2 the observed power has a sigmoid shape: at low SNR

the power is close to zero, but as the SNR increases the power increases rapidly

to 100%. As before the at the highest percentage BOLD signal change (1.5%) the

power begins to increase at a lower SNR and the rate of increase is greater than for

∆S% = 1.0%.

Discussion and Conclusions

As outlined in the introduction to Section 4.3 it is not possible to determine an-

alytic expressions for dependence of the t-statistic and z-statistics resulting from

seed-based and independent component analyses, nor to determine the minimum

SNR required to show an activation at a specified statistical significance and power.

Therefore simulated data were used in conjunction with freely available and com-

monly used FMRI analysis software to determine the impact of a region of signal

dropout on the ability to detect resting-state activations.

I have found that at a biologically plausible percentage BOLD signal change

of 1.5%, the minimum SNR required to detect resting-state activations, from an

eight minute acquisition, with a power of 80% was approximately 40 for a seed-

based analysis and 60 for independent component analysis. However, it should be

noted that these simulations used digital phantoms that only included two ‘resting-
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Figure 4.11: The raw t-statistic images from a simulation of seed-based resting-
state FMRI analysis demonstrating the impact of signal dropout at three different
percentage BOLD signal changes, 0.5%, 1% and 1.5%. The first pair of rows shows
the t-statistic when ∆S% = 0.5%. The second and third pairs are for ∆S% = 1.0%
and ∆S% = 1.5% respectively. The first row in each pair correspond to the case
when C1 was used as the seed region and the second when D1 was used as the seed
region. The SNR in region D2 increases from zero in the first column, in steps of 25
to 100 in the final column.
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(a) ∆S% = 0.5% (b) ∆S% = 1%

(c) ∆S% = 1.5%

Figure 4.12: Plots of the mean t-statistic in regions C1 to D3 showing quantitatively
the dependence of t on the SNR in Region D2, for a seed-based analysis. The
standard deviation across the results from the analyses of the 10 replica phantoms
at each SNRD2 are too small to display at this scale.
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Figure 4.13: The thresholded z-statistic images from a simulation of seed-based
resting-state FMRI analysis demonstrating the impact of signal dropout at three
different percentage BOLD signal changes, 0.5%, 1% and 1.5%. The first pair of
rows show the z-statistic when ∆S% = 0.5%. The second and third pairs are for
∆S% = 1.0% and ∆S% = 1.5% respectively. The first row in each pair correspond
to the case when C1 was used as the seed region and the second when D1 was used
as the seed region. The SNR in region D2 increases from zero in the first column,
in steps of 25 to 100 in the final column.
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(a) ∆S% = 0.5% (b) ∆S% = 1.0%

(c) ∆S% = 1.5%

Figure 4.14: Plots showing quantitatively the dependence of the observed power in
regions C1 to D3 on the SNR in region D2, for a seed-based analysis. The standard
deviation across the results from the analyses of the 10 replica phantoms at each
SNRD2 are too small to display at this scale.
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Figure 4.15: The thresholded z-statistic images from a simulation of ICA analy-
sis resting-state FMRI data demonstrating the impact of signal dropout at three
different percentage BOLD signal changes, 0.5%, 1% and 1.5%. The first pair of
rows shows the z-statistic when ∆S% = 0.5%. The second and third pairs are for
∆S% = 1.0% and ∆S% = 1.5% respectively. The first row in each pair when C1 was
used as the seed region and the second when D1 was used as the seed region. The
SNR in region D2 increases from zero in the first column, in steps of 25 to 100 in
the final column.
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(a) ∆S% = 0.5% (b) ∆S% = 1.0%

(c) ∆S% = 1.5%

Figure 4.16: Plots of the mean z-statistic in regions C1 to D3 showing quantitatively
the dependence of z on the SNR in region D2, the region of signal dropout for a
simulation of probabilistic independent component analysis of resting-state FMRI
data. The standard deviation across the results from the analyses of the 10 replica
phantoms at each SNRD2 are too small to display at this scale.
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(a) ∆S% = 0.5% (b) ∆S% = 1.0%

(c) ∆S% = 1.5%

Figure 4.17: Plots showing quantitatively the dependence of the observed power in
regions C1 to D3 on the SNR in region D2, for a probabilistic independent component
analysis. The standard deviation across the results from the analyses of the 10 replica
phantoms at each SNRD2 are too small to display at this scale.
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state’ networks with simple sinusoidal time courses corrupted by Gaussian noise

therefore it is unclear how readily these minimum signal-to-noise levels will translate

to human subjects. I have also demonstrated, using these simulations, that the

impact of a region of signal dropout on the ability to detect resting-state activations

is localised to the area of reduced signal-to-noise. This was seen clearly in the

thresholded z-statistic resulting from both seed-based and independent component

analyses, Figures 4.13 and 4.15, as well as in the graphs of the observed power in

each region of the digital phantom as a function of the SNR in the region of signal

dropout, Figures 4.14 and 4.17. These results could imply that there are extra

nodes in commonly observed resting state networks that are currently not detected

because of signal dropout in regions such as the orbitofrontal and inferior temporal

regions.

4.4 Conclusion

Firstly, for task-based FMRI data, by combining the model of Smith et al. [256]

with the physiological noise model of Kruger and Glover [261] I have shown that

the t-statistic does not increases linearly with SNR. Rather, the rate of increase

reduces until the t-statistic reaches a maximum level. A further consequence of

incorporating the model of physiological noise is that there is a minimum percentage

BOLD signal change that is dependent on the experimental design, below which,

regardless of the SNR, activations will never be deemed to be statistically significant.

This information is vital when determining whether or not a novel method to reduce

signal dropout will result in an increased ability to detect brain activations.

Secondly, I have shown by simulation for task-based FMRI data that signal

dropout causes a localised reduction in the observed statistical power in cluster-level

thresholded z-statistic maps, i.e. there is a localised failure to detect true-activations

as a result of the signal dropout.

Thirdly, by simulation, I have demonstrated that for both seed-based and in-

dependent component analyses of RS-FMRI data, the impact of a region of signal

dropout on the ability to detect resting-state activations is localised to the area of

reduced signal-to-noise. Since this could imply that there are nodes in commonly ob-

served resting state networks that are currently not detected acquisition techniques

will be developed in the later chapters to reduce signal dropouts in RS-FMRI data.

It was also demonstrated that the observed statistical power is a sigmoid function

of the SNR. Therefore, as for task-based FMRI, small improvements in the signal

in regions of dropout may lead to large increases in the detectability of resting-state

activations.
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Chapter 5

Reducing Signal Dropout with

Z-Shimming

5.1 Introduction

Z-shimming [27, 72, 74, 268–274] is a well known technique that can be used to reduce

signal dropout in gradient echo images. By modifying the amplitude of the slice

selection gradient refocusing lobe, the effects of linear through-plane susceptibility

gradients can be cancelled out. A number of different implementations of z-shimming

have been shown to increase the detectability of task induced BOLD signal changes

in the regions of signal dropout such as the orbitofrontal cortex, inferior temporal

and parahippocampal-amygdala regions [72, 271, 273–275].

In this chapter I describe an extension to previous studies; optimising the z-shim

gradients used to correct signal dropout in grey matter on a per subject and per

slice basis. I demonstrate the methods effect on the detectability of both task-based

and resting-state BOLD signal changes in six healthy volunteers at 3 T.

5.2 Theoretical Background

As described briefly in Section 2.6, a linear susceptibility gradient in the direction

of slice selection, Gz,s, induces a linear variation in the phase, φ, of the transverse

magnetisation, Mxy, across the slice:

φ = γ TE Gz,sz (5.1)

Frahm et al. [27] showed that this could be cancelled out by modifying the area of

the refocusing lobe of the slice selection gradient. Equivalently, a gradient with area

Az,sh can be added immediately after the refocusing lobe; Figure 5.1. The dephasing
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z-shim

Az,sh

RF

Gz

Figure 5.1: A z-shim gradient with area Az,sh immediately follows the refocusing
lobe of the slice selection gradient.

caused by the susceptibility gradient is cancelled out when:

Az,sh = −Gz,s TE (5.2)

In regions of homogeneous field the additional z-shim gradient causes dephasing

and therefore results in signal loss. For perfectly rectangular slice profiles it is

straightforward to show that the signal in a magnitude image is a function of the

echo time, TE, susceptibility gradient, Gz,s, slice thickness ∆z and z-shim gradient

area, Az,sh [74]:

S = M0∆z

∣∣∣∣sinc

(
γ∆z

2
[Gz,s TE + Az,sh]

)∣∣∣∣ (5.3)

As shown in Figure 5.2 without a z-shim gradient there is complete signal dropout

when Gz,s is equal to an integer multiple of
(

2π
γ∆zTE

)
. For comparison with previous

studies it is useful to express Equation 5.3 in terms of displacements of the signal

in the slice selection (z) direction in k-space [73, 276]. The susceptibility gradient

causes the maximum signal to shift in k-space by:

δkz,s =
γ

2π
Gz,sTE (5.4)

from kz = 0 and the z-shim gradient causes a shift of:

δkz,sh =
γ

2π
Az,sh (5.5)

With these two relationships Equation 5.3 is:

S = M0∆z |sinc (π∆z [δkz,s + δkz,sh])| (5.6)
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Figure 5.2: Signal intensity attenuation as a function of through-plane susceptibility
gradient for an ideal rectangular slice.

When the shift in k-space caused by the susceptibility gradient is cancelled by the

z-shim gradient (δkz,sh = −δkz,s) the maximum signal occurs at kz = 0 and therefore

the signal is completely recovered.

5.3 Existing Implementations of Z-shimming

Following the initial demonstration of signal recovery with z-shimming [27] the tech-

nique has undergone a number of developments to enable its use in FMRI exper-

iments. Since the idea was first postulated it has been recognised that to recover

signal in regions of dropout whilst maintaining signal in the regions of homogeneous

field, multiple images acquired with different degrees of z-shimming must be com-

bined [27]. Initially the sets of images were simply averaged [27], however, in more

recent implementations a composite image is formed from the square root of the

sum of squares (SSQ) of the z-shimmed images [74, 268, 274]. Composite images

can be produced from as a few as two images acquired with different z-shim gradi-

ents [271, 274]. With conventional GE-EPI this results in a doubling of the effective

repetition time. Z-shimming has also been implemented in multi-echo acquisition

schemes[272, 275, 277–279] allowing images with different degrees of z-shimming to

be acquired in a single shot. However, depending on the details of the implemen-

tation, the resulting images can have differing BOLD sensitivities because of the

different echo times, or increased distortion because of reduced bandwidth in the

phase-encoding direction. A volume-selective method, in which z-shimming is only

applied to a subset of slices to reduce the loss of temporal resolution, has been shown
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to increase the detectability of BOLD signal changes in the orbitofrontal cortex[273].

A range of different methods to select the optimal z-shim gradients have been

proposed, requiring varying amounts of time for data acquisition, computational

effort and user input. In the first method, described by Cordes et al. [271], FMRI

data were acquired with interleaved volumes, the first without any z-shimming,

and the second with slice specific z-shim gradients. These were determined using

a semi-automated method; a calibration scan, in which 40 volumes were acquired

with varying amounts of z-shimming, was parcellated into regions with similar sus-

ceptibility gradients. The experimenter then selected, for each slice, the region in

which they wanted to recover signal. Whilst this user input makes the technique

flexible it is also time consuming. Gu et al. [272] described the first fully-automated

method. Again they collected FMRI data with interleaved volumes, however, in

this case both volumes in each pair included slice specific z-shimming. These were

determined from a calibration scan in which 16 volumes were acquired with varying

amounts of z-shimming. All pairwise combinations of the calibration scan volumes

were combined by SSQ. For each slice, the z-shim combination which most closely

matched the SSQ combination of all 16 volumes was deemed optimal. Marshall

et al. [274] further reduced the number of volumes in the calibration scan to just

four. This saved time acquiring calibration data, however, resulted in a more com-

putationally intensive and time consuming optimisation. This meant that a single

pair of optimal shims were determined for the whole brain, rather than on a slice

specific basis. Alternative, fully automated, methods described by Heberlein and

Hu [280] and Truong and Song [279] used field maps, rather than calibration scans,

to determine the optimal pair of z-shim gradients for each slice.

5.4 Optimising Z-shimming for Task-Based and

Resting-State FMRI Experiments

5.4.1 Introduction

A method was developed to determine the slice specific z-shims which reduced signal

dropout. This was based on data acquired during a calibration scan. In addition,

the process was restricted to grey matter since this is the origin of the BOLD signal

changes observed in task-based and resting-state FMRI. Following previous stud-

ies the composite SSQ images will be formed from pairs of images acquired using

different z-shim gradients [271, 274].
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5.4.2 Z-shim Pulse Sequence Programming

A GE-EPI pulse sequence with the ability to play out a slice specific z-shim gradient

had previously been implemented for a 3 T GE Signa HDx system (at software

release 12.0) within the Department of Neuroimaging by Dr David Lythgoe. This

was upgraded for use on both a 3 T GE Signa HDx system (at software release

14.0M5) and a 3 T GE Discovery MR750 System (at software release 22.0). The

pulse sequence was flexible and could be used to acquire either calibration scan or

FMRI data.

The k-space shift, δkz,sh, produced by the z-shim gradient was selected using

three parameters. The number of shim-steps Nz,shim, a parameter βz which allowed

kz,sh to be set in units of 1/∆z and a shim number ζz that was slice and volume

specific. The choice of Nz,shim, βz and the slice thickness ∆z determine the range

of k-space shifts (and therefore the range of susceptibility gradients) which can be

corrected for:

− Nz,shim − 1

2βz∆z
≤ δkz,sh ≤

Nz,shim − 1

2βz∆z
(5.7)

The k-space shift for a specific shim number, ζz, is:

δkz,sh =
1

∆zβz

(
ζz −

Nz,shim + 1

2

)
(5.8)

The values of Nz,shim, βz and ζz are supplied to the pulse sequence via a text file.

Z-shim Calibration Scan

When used to acquire calibration data Nz,shim and βz are chosen such that the

range of k-space offsets produced by the z-shim gradient covers the range of offsets

induced by the susceptibility gradients in the head. For example, by using Equation

5.4, it can be seen that at an echo time of 30 ms the range of k-space offsets needed

to correct susceptibility gradients, measured at 3 T in the human head, (−250 <

Gz,s < 250 µTm−1) [28, 29] is −0.95/∆z < δkz,sh < 0.95/∆z. Using Equation 5.7

it can be seen that this range can be encompassed when Nz,shim = 51 and βz = 25.

(Other combinations of Nz,shim and βz could cover −0.95/∆z < δkz,sh < 0.95/∆z.

These specific values were chosen because preliminary experiments showed that they

enabled the MR signal as a function of Gz,s to be accurately sampled in a reasonable

time of one minute and forty two seconds.). The calibration scan consists of the

acquisition of Nz,shim volumes of data; ζz is one (for every slice) for the first volume

and is then incremented by one between each volume, such that data are acquired

over the range of δkz,sh given by Equation 5.7.
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Z-shim FMRI Data Acquisition

Using the method described later, the calibration scan is used to determine, on a

slice by slice basis, the optimal pair of k-space offsets to be produced by the z-shim

gradients to correct signal dropout. The shim numbers ζz,1 and ζz,2 are calculated

from the optimal k-space offsets for each slice using Equation 5.8. When acquiring

the FMRI data Nz,shim and β are set to the same values as the calibration scan.

The volumes are acquired in pairs; the slice specific values of ζz,1 are used for the

first volume of each pair and the slice specific values of ζz,2 are used for the second

volume of each pair.

5.4.3 Producing Grey Matter Masks with Double Inversion-

Recovery Echo Planar Imaging

Introduction

The optimisation process used to select the pair of z-shims to recover signal dropout

was restricted to grey matter using a mask. This was produced by thresholding

images acquired with a double inversion recovery (DIR) sequence with a SE-EPI

readout. This can produce images of the grey matter by nulling the signal from

cerebrospinal fluid (CSF) and white matter[281–283].

Implementation on the 3 T

DIR-EPI combined with the OIL (optimised interleaved inversion) scheme (which

is used to increase the time efficiency by minimising the dead time in multi-slice

acquisitions) [284] had previously been implemented on a 1.5 T GE Signa HDx

system (at software release 12.0) within the Department of Neuroimaging by Dr

Simon Meara [285]. This was upgraded for use on both a 3 T GE Signa HDx system

(at software release 14.0M5) and a 3 T GE Discovery MR750 System (at software

release 22.0).

Determining the Inversion Times Required to Null CSF and White Mat-

ter Signals at 3 T

Assuming that the inversion and refocusing pulses both have 180◦ flip angles, that

the excitation pulse has a 90◦ flip angle and that the transverse magnetisation has

either decayed away or is spoiled after the signal is readout the steady-state longi-

tudinal magnetisation available immediately prior to the 90◦ excitation pulse for a

DIR sequence with a spin-echo readout is [282]:

MA = M0

[
1 + 2e−(TI1+TI2)/T1 − 2e−TI2/T1 − e−TR/T1

(
2eTE/2T1 − 1

)]
(5.9)

101



462

1748

(a) Determing the Optimal inversion
times to null white matter and CSF at 3
T

TI1 TI2

CSF

WM

GM

(b) Time evolution of white matter, CSF
and grey matter signals

Figure 5.3: (a) A plot of TI2 against TI1 for white matter and CSF assuming TR = 4
s, T1,WM = 791 ms and T1,CSF = 4163 ms [286] used to determine the optimal
inversion times, TI1 = 1748 ms and TI2 = 462 ms.(b) A graph showing the time
evolution of the available steady-state longitudinal magnetisation of white matter,
CSF and grey matter at the optimal inversion times (assuming T1,GM = 1607 ms
[287]). This demonstrates the ability of the DIR sequence to null the signals from
CSF and white matter.

Here TI1 is the time between the first and second inversion pulses, TI2 is the time

between the second inversion pulse and the 90◦ excitation pulse and TE/2 is the time

between the 90◦ excitation pulse and 180◦ refocusing pulse. For a given relaxation

time, T1 and first inversion time, TI1, the signal from a specific tissue is nulled

(MA = 0) when [282]:

TI2 = T1 ln

[
2
(
e−TI1/T1 − 1

)
(2eTE/2T1 − 1) e−TR/T1 − 1

]
(5.10)

The values of TI1 and TI2 that simultaneously null both CSF and white matter can

be found graphically. TI2 is plotted as a function of TI1 for both CSF and white

matter; the point of intersection of the two curves gives the required inversion times.

Following previous work, in which the optimal inversion times were determined at

1.5 T [285], TI1 and TI2 were found graphically for an acquisition at 3 T with a

repetition time of 4 s and an echo time of 40 ms assuming that T1,WM = 791 ms

and T1,CSF = 4163 ms at 3 T [286]. As shown in Figure 5.3(a) the optimal inversion

times are TI1 = 1748 ms and TI2 = 462 ms. The time evolution of grey matter,

white matter and CSF are shown in Figure 5.3(b) to demonstrate graphically how

a DIR sequence nulls the signal from two different tissues.

A set of in-vivo experiments were performed to determine if a single pair of

inversion times, TI1 and TI2, could be found to sufficiently null white matter and

CSF in a range of subjects. The optimal inversion times derived from the theory
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above were used to guide the range of inversion times investigated. Twenty-five

different DIR-EPI images were acquired in three healthy male subjects on a 3 T

GE Signa HDx system; i.e. all combinations of TI1 = 1740, 1750, 1760, 1770, 1780

ms and TI2 = 400, 410, 420, 430, 440 ms. A quadrature head coil was used for signal

transmission and reception. For each image twenty 5 mm slices with a 0.5 mm

spacing were acquired in two acquisitions1 with two averages. The TR = 4 s and

TE = 40 ms, and the flip angle was 90◦. The field-of-view was 24 cm with a 128×128

acquisition matrix. To allow the signal to reach a steady state the data acquisition

was preceded by two dummy scans, so that the total time to form an image was 48s.

The mean signals from manually traced regions of interest in areas of white

matter and CSF were extracted using tools from FSL. The values of TI1 and TI2 at

which these signals were minimised are shown in Table 5.1. There is a relatively small

difference in the optimal inversion times across subjects. Representative slices from

the DIR images acquired with the average value of TI1 = 1740 ms and TI2 = 410

ms (the mean of the optimal values given in Table 5.1 rounded to the nearest 10

ms) from the three subjects are shown in Figure 5.4. The mean signal intensities

from regions of interest in grey matter, white matter, CSF and air outside of the

head are shown in Table 5.2. From Figure 5.4 and Table 5.2 it can be seen that

when the average values of TI1 = 1740 ms and TI2 = 410 ms are used, the CSF

and white matter signals are suppressed to levels close to the background noise in

all subjects. The mean signal in the grey matter is approximately five times the

mean background signal. These results suggest that a single pair of inversion times,

TI1 = 1740 ms and TI2 = 410 ms, can be used across subjects to produce grey

matter images. Grey matter masks can be produced by thresholding and binarising

the DIR-EPI image. A threshold of 50 % of the maximum image intensity (which

in this case was defined as the 98th percentile of the intensity distribution in the

image to reduce the impact of intensity spikes in the images that would affect the

thresholding procedure) was found empirically to produce acceptable grey matter

masks.

5.4.4 Determining the Optimal Z-shim Spacing

As described in Section 5.2, a z-shim gradient displaces the signal in k-space in the

direction of slice selection. The z-shim spacing, ∆kz, defined as the difference in

1In this context the term acquisition means that sets of slices are collected separately as they
would not all fit within a single TR. Specifically odd numbered slices were collected first, and then
the process was repeated for collection of the even numbered slices. On Siemens MR systems this
is known as ‘concatenations’ and on Philips MR systems as ‘packages’.
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Subject TI1 (ms) TI2 (ms)
A 1740 410
B 1750 430
C 1740 400

Mean 1743 413

Table 5.1: Optimal inversion times to null white matter and CSF at 3 T in three
healthy male subjects

(a) Subject A (b) Subject B (c) Subject C

Figure 5.4: Representative slices from the DIR-EPI images acquired with TI1 = 1740
ms and TI2 = 410 ms demonstrating the suppression of CSF and white matter
signals. As for all subsequent images, the data above is shown using the radiological
convention, with the right hand side of the subjects head displayed on the left of
the images.

Subject Grey Matter White Matter CSF Air
A 165.5 36.7 32.8 32.3
B 162.3 39.3 34.5 33.2
C 136.4 36.8 34.1 31.9

Table 5.2: Mean signal intensities from regions of interest in grey matter, white
matter, CSF and air outside of the head when TI1 = 1740 ms and TI2 = 410 ms
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∆kz,sh =
1

∆z

(a) Ordidge et al. [74]

∆kz,sh =
0.94

∆z

(b) Wild et al. [288]

∆kz,sh =
0.9

∆z

(c) Marshall et al. [274]

Figure 5.5: The square root of the sum of squares combination of (a) and infinite
number of images with z-shim spacing of ∆kz,sh = 1/∆z [74] (b) three images with
z-shim spacing of ∆kz,sh = 0.94/∆z and (c) two images with z-shim spacing of
∆kz,sh = 0.9/∆z is plotted (thick red line) as function of through slice susceptibility
gradient Gz,s. The thin lines show the signal as a function of Gz,s for each underlying
image used to form the final composite image. The range of gradients shown in both

plots −4
(

2π
γTE∆z

)
< Gz,s < 4

(
2π

γTE∆z

)
corresponds to −1044 < Gz,s < 1044 µTm−1

when ∆z = 3 mm and TE = 30 ms.

offsets produced by two z-shim gradients, is:

∆kz,sh = δkz,sh,2 − δkz,sh,1 (5.11)

where δkz,sh,1 and δkz,sh,2 are the k-space offsets produced by the first and second

z-shim gradients respectively. The optimal z-shim spacing ensures that signals from

regions with different susceptibility gradients have equal weighting in the final com-

posite image [74]; i.e. the signal from identical tissues would be the same regardless

of the strength of the susceptibility gradient.

Previous Work

Several previous studies have determined the optimal z-shim spacing, ∆kz,sh for a

number of different cases. Ordidge et al. [74] showed theoretically that when an in-

finite set of images, acquired with z-shim gradients spaced by ∆kz,sh = 1/∆z, were

combined by SSQ the signals from regions with an infinite range of susceptibility

gradients were equal in the resulting composite image; Figure 5.5(a). Their deriva-

tion assumed that the excited slices were perfectly rectangular such that the signal

as a function of the susceptibility gradient was given by Equation 5.3. More practi-

cally, Wild et al. [288] went on to show, by numerical simulation assuming perfectly

rectangular slices, that the optimal spacing of three z-shims was ∆kz,sh = 0.94/∆z;

Figure 5.5(b). This ensured that the signals were as uniform as possible from re-

gions with a range of different susceptibility gradients. Finally Marshall et al. [274]

showed that the optimal spacing of two z-shims was ∆kz,sh = 0.9/∆z; Figure 5.5(c).
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Numerical Simulation of the Bloch Equations to Determine the Optimal

Z-shim Spacing

In practice, the slice selection process does not produce perfectly rectangular slices.

Therefore, the z-shim spacing needed to ensure that the signals from areas with

a range of susceptibility gradients are as uniform as possible was determined by

numerical simulation of the Bloch Equations in MATLAB, using the SLR RF pulse

(described Section 2.5) and gradient waveform used by the scanner. The steady

state voxel signal for grey matter (at TE = 30 ms and TR = 2 s assuming T1 = 1.6

s [287] and T ∗2 = 66 ms [289]) was determined as a function of the z-shim spacing

(−1/∆z < ∆kz,sh < 1/∆z) and the through-plane linear susceptibility gradient

Gz,s. The slice-selection gradient and RF excitation pulse (with a 73◦ flip angle -

the Ernst angle[290] for grey-matter at 3 T for TR=2 s assuming T1 = 1.6 s [287])

used in the simulation were recorded directly from the GE Discovery MR750 system.

For each combination of δkz,sh and Gz,s the transverse magnetisation in the x- and

y-directions, Mx(z) and My(z), were found by Bloch simulation for −∆z < z < ∆z

(i.e. including the regions either side of the prescribed slice to incorporate the effect

of the non-rectangular slice profile). The total signal magnitude was calculated

numerically using:

S =

√[∫ ∆z

−∆z

Mx(z)dz

]2

+

[∫ ∆z

−∆z

My(z)dz

]2

(5.12)

This was normalised to the steady state signal when δkz,sh = 0 and Gz,s = 0, i.e.

when there was was no susceptibility gradient and no z-shimming. The square root

of the sum of squares of the signal was then calculated from two acquisitions as

a function of the z-shim spacing, ∆kz,sh, and through plane susceptibility gradient

and is plotted in Figure 5.6(a). The z-shim spacing that gave the SSQ signal closest

to one across a range of susceptibility gradients was ∆kz,sh = 0.68/∆z. The SSQ

signal as a function of through plane susceptibility gradient is shown for the optimal

z-shim spacing in Figure 5.6(b). The spacing is considerably smaller than 0.9/∆z

used by Marshall et al. [274]. The difference arises as a result of the asymmetric

side lobes of the signal response as a function of Gz,s, Figure 5.6(b).

Experimental Validation of the Bloch Simulation

To confirm that the asymmetries observed in the side lobes of the signal response

as a function of Gz,s were a real effect and not an artefact of the simulation, a series

of images were obtained of uniform spherical phantom2. All data were acquired

2Containing silicone oil (dimethylpolysiloxanes) doped with a gadolinium compound
(tris(2,2,6,6-tetramethyl-3,5-heptanedionate) gadolinium (III)). The longitudinal relaxation time
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0.68

Figure 5.6: Numerical solutions of the Bloch equations showing (a) The SSQ signal in
the composite image as a function of z-shim spacing and through-plane susceptibility
gradient, Gz,s when ∆z = 3 mm and TE = 30 ms for the excitation pulse from
the GE Discovery MR750 system. The dashed red line shows the optimal z-shim
spacing ∆kz,sh = 0.68/∆z. (b) Profile through (a) showing the SSQ signal from two
acquisitions with the optimal z-shim spacing of ∆kz,sh = 0.68/∆z (thick red line) as
function of through slice susceptibility gradient Gz,s. The thin blue and green lines
show the signal as a function of Gz,s for the two separate acquisitions. The range

of gradients shown in both plots −4
(

2π
γTE∆z

)
< Gz,s < 4

(
2π

γTE∆z

)
corresponds to

−1044 < Gz,s < 1044 µTm−1 when ∆z = 3 mm and TE = 30 ms.

using the standard GE-EPI sequence on a 3 T GE Discovery MR750 system. A

quadrature head coil was used for signal transmission and reception. Initially the

scanner was shimmed using the in-built automatic procedure. To model the effects

of different through-plane linear susceptibility gradients, the shim gradient in the

slice-selection direction was then deliberately miss-set. At each different setting of

the shim gradient, a single 3 mm axial slice with a field-of-view of 32 cm and a

64× 64 acquisition matrix was acquired with a TR = 5 s and TE = 30 ms and a 90◦

flip angle. Signal excitation and fat suppression were carried using a CHESS and

SLR pulse combination described in Section 2.5. The repetition time of 5 s and the

90◦ flip angle were chosen to avoid differences in steady-state signal resulting from

the difference between the T1 of grey matter and the phantom. The quadrature coil

and large field-of-view were selected to enable straightforward measurements of the

signal and background noise. The signal from a region-of-interest in the centre of the

phantom as a function of the ‘susceptibility’ gradient (induced by miss-setting the

shim) was calculated using FSL tools. The experimental results, shown in Figure

5.7, confirm that the asymmetries observed in the side lobes of the signal response

as a function of Gz,s seen in the Bloch simulations were a real effect.

T1 = 170 ms and the transverse relaxation time T2 = 25 ms. (Part Number: 2359877, General
Electric, Waukesha, WI, USA)
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Figure 5.7: Variation in the mean signal from a region-of-interest in the centre of
the phantom as a function of ‘susceptibility’ gradient (induced by mis-setting the
scanner’s shim gradient in the slice-selection direction) for the SLR excitation pulse.
The error bars represent the standard deviation of the signal in the ROI. The voxel
signal calculated by Bloch simulation (green line) is shown for comparison. The
Bloch simulation was scaled such that the signal at Gz,s = 0 was equal to the signal
in the acquired data at the same susceptibility gradient.

5.4.5 Determining the Optimal Pair of Z-shims to Recover

Signal in Grey Matter

MATLAB Prototype

An algorithm was developed in MATLAB to determine the optimal pair of slice

specific z-shim gradients to recover signal in grey matter using z-shim calibration

scan and DIR-EPI image data. To ensure the DIR-EPI and z-shim calibration scans

were co-registered and distortion matched, they were acquired with the same slice

positioning, thickness and gap, as well as the same matrix size, ASSET acceleration

factor and field-of-view.

Firstly the DIR-EPI data was thresholded and binarised as described above to

produce a grey matter mask. The z-shim calibration data were then multiplied

by this mask to ensure that the later optimisation stages were restricted to grey

matter only. An exhaustive search was then performed to determine the pair of

z-shim gradients for each slice (with the restriction that the z-shim spacing was

∆kz,sh = 0.68/∆z) which resulted in an SSQ signal greater than 50 % of the robust

maximum of the GE-EPI image with no z-shimming in the greatest number of voxels.

The algorithm was tested using DIR-EPI and z-shim calibration data from a

single healthy male volunteer using the acquisition parameters given in Section 5.5.1.

As shown in Figure 5.8, combining the images acquired with the optimal pair of slice

specific z-shims by SSQ results in increased signal in the majority of grey matter

108



0

4500

0

4500

0

03000

-100

Figure 5.8: A comparison of conventional GE-EPI images (top-row) with SSQ im-
ages formed from the pair of z-shim images which recovered signal in the greatest
number of grey matter voxels in a slice (second-row). The difference between the
images is shown in the third-row. Representative slices are shown for a region free
from signal dropout (left-column) through the orbitofrontal cortex (middle-column)
and through the inferior temporal lobes (right-column). The difference maps are
masked to show only grey matter voxels.

voxels. Signal was recovered in a significant proportion of the areas of dropout in

the orbitofrontal and inferior temporal regions.

As a comparison with previous methods, which determine the z-shim gradients

based on the signal in all brain voxels in a particular slice [272, 274], the algorithm

was re-run using the same calibration scan but without the grey matter mask. In

this case the images were simply thresholded to exclude voxels outside of the head.

For each slice, the pair of z-shim images which recovered the signal in the most

voxels, where combined by SSQ. In Figure 5.9 the resulting images were compared

to the SSQ images formed from the pair of z-shim images which recovered the signal

in the most grey matter voxels. In the slice free from susceptibility gradients, the

same optimal pair of z-shim gradients are found using both algorithms. However, in

the slices through the orbitofrontal and inferior temporal regions, different pairs of

z-shim gradients were deemed optimal. The grey matter mask resulted in improved

signal recovery in the orbitofrontal and inferior temporal regions.

Implementation on the 3 T GE Discovery MR750 System

Following prototyping in MATLAB, the algorithm was implemented in C++ such

that the optimal pair of z-shim gradients could be calculated on the 3 T GE Discov-

ery MR750 System itself. An open source DICOM library (DCMTK version 3.5.4
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Figure 5.9: A comparison of SSQ images formed from the pair of z-shim images
which recovered signal in the greatest number of voxels in a slice (top-row) with SSQ
images formed from the pair of z-shim images which recovered signal in the greatest
number of grey matter voxels in a slice (second-row). The difference between the
images is shown in the third-row. Representative slices are shown for a region free
from signal dropout (left-column) through the orbitofrontal cortex (middle-column)
and through the inferior temporal lobes (right-column). The difference maps are
masked to show only grey matter voxels.

available from dicom.offis.de/dcmtk.php.en) was used to read the image data. The

resulting program took approximately 5 s to determine, and then generate a text

file containing, the optimal pairs of slice specific z-shim values (ζz,1 and ζz,2).

5.5 Evaluating the Impact of the Grey Matter

Optimised Two-Step Z-Shimming In-vivo

A series of scans were performed on six healthy male volunteers (five right handed,

one left handed) on the 3 T GE Discovery MR750 system to assess the impact of

using grey matter specific z-shimming in FMRI experiments. The data were used to

measure the changes in the temporal signal-to-noise ratio and the ability to detect

both task-induced and resting-state BOLD signal changes.

5.5.1 Data Acquisition

The subjects’ breathing pattern was tracked using a respiratory bellows and a pulse

oximeter was used to monitor cardiac activity throughout. Their hearing was pro-

tected using a combination of earplugs and headphones. Foam pads were used to
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minimise subject motion throughout data acquisition. FMRI paradigms were pre-

sented using a projector and screen at the rear of the scanner bore. This was viewed

by the subject using a mirror attached to the head coil. The paradigms were trig-

gered by the scanner to start with the first RF pulse of data acquisition.

All data were acquired with an eight-channel phased array head coil for signal

reception and the body coil for RF transmission. With the exception of the lo-

caliser and ASSET calibration scans, all imaging data were acquired with a 21.2 cm

field-of-view and a 64×64 acquisition matrix. Thirty-six 3 mm slices with 0.3 mm

slice gaps were prescribed parallel to the line intersecting the anterior and posterior

commissure. The slices were placed in identical locations for all scans. As described

in Section 2.5, signal excitation and fat suppression were carried using a CHESS

and SLR pulse combination.

Spin-echo EPI

A single volume, preceded by six dummy acquisitions, was acquired using a SE-

EPI pulse sequence with a repetition time of two seconds and an echo time of 30

ms. The flip angle of the SLR excitation pulse was 90◦. The ASSET acceleration

factor was two. Slices were collected sequentially from the top to the bottom of

the head. These data were collected to provide a “gold-standard” image, free from

susceptibility induced signal dropouts for comparison with the GE-EPI images.

DIR-EPI

A single volume DIR image, with a spin-echo EPI readout, was acquired in two

acquisitions with two averages at a repetition time of four seconds and an echo time

of 40 ms. To supress the white-matter and CSF signals the first inversion time,

TI1 = 1740 ms and the second inversion time, TI1 = 410 ms (the optimal inversion

times were determined in Section 5.4.3). To allow the signal to reach a steady state

the data acquisition was preceded by two dummy scans; the total time acquisition

time was therefore 48 s.

Z-Shim Calibration

A z-shim calibration scan was performed. One hundred and one volumes, preceded

by four dummy acquisitions (without a z-shim gradient), of data were acquired

with the GE-EPI pulse sequence that had been modified to enable z-shimming.

The repetition time was 2 s, the echo time was 30 ms, the flip angle was 73◦ and

the ASSET acceleration factor was 2. Slices were collected top-down sequentially.

Nshim = 101, β = 25 and ζ was incremented from 1 to 101 such that δkz,sh = −2/∆z

for the first volume, δkz,sh = −1.96/∆z for second volume, etc..., up to δkz,sh = 2/∆z
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for the final volume. This range of δkz,sh corresponds to k-space offsets caused by

susceptibility gradients in the range −522 < Gz,s < 522 µTm−1 for ∆z = 3 mm and

TE = 30 ms.

Using the z-shim calibration and DIR-EPI, scans the optimal pair of z-shim

gradients needed to recover signal in the greatest number of grey matter voxels for

each slice were then calculated on the scanner with the algorithm described above.

Resting State Functional MRI

A pair of resting-state functional MRI scans were acquired using a conventional GE-

EPI sequence and GE-EPI with z-shimming (using optimal pair of z-shim gradients

for each slice calculated above). For both scans the repetition time was 2 s, the

echo time was 30 ms, the flip angle was 73◦ and the ASSET acceleration factor

was 2. Slices were collected top-down sequentially. The order of the two scans was

counter balanced across the six subjects. For each acquisition four hundred and fifty

volumes of data (15 minutes) were acquired, preceded by four dummy acquisitions,

whilst the subject was at rest. Subjects were instructed to keep their eyes open and

to look at a cross hair projected onto the screen. In the environment of the scanner

this is relatively difficult to maintain; several subjects reported falling asleep during

the data acquisition. Because there is evidence that the effects of task-based FMRI

experiments persist for several minutes after the task has ended[291, 292] the resting-

state data were acquired before the motor and breath-hold FMRI data described

below. These data were used in several ways, firstly to measure the changes in the

temporal signal-to-noise ratio resulting from z-shimming, and secondly to determine

if z-shimming caused any changes in the detectability of resting-state networks.

Functional MRI with a Motor Task

A pair of functional MRI scans were then acquired with the same parameters as

the resting-state FMRI whilst the subject performed a motor task. As before, one

dataset was acquired with conventional GE-EPI, and the other with z-shimming.

Again, the order of the two scans counter balanced across the six subjects, to avoid

bias due to habituation effects or fatigue. For each scan one hundred and thirty five

volumes of data (4 minutes and 30 seconds) were acquired, preceded by four dummy

acquisitions, whilst the subjects performed a block-design motor task consisting of

five 30 s blocks of rest interleaved with four 30 s blocks of motor activity. During the

task periods the subjects were visually cued to squeeze a ball with their right hand

every two seconds. During the rest periods the word ‘Rest’ was projected onto the

screen at the same frequency. The squeeze ball was connected to a pressure actuator,

allowing task compliance to be monitored throughout. Prior to each acquisition of
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Breath in Breath out
Breath out 

and hold Hold your breath

Figure 5.10: Instructions presented to the subjects during the breath-hold FMRI
scans

FMRI data the pressure actuator was calibrated by measuring the pressure as the

subject squeezed the ball as hard as they could. The pressure recorded during

subsequent squeezes was then expressed as a percentage of this, subject specific,

maximum. The FMRI data were used to assess changes in the ability to detect

task-based FMRI activations resulting from the use of two-step z-shimming.

Functional MRI with a Breath-hold Paradigm

Finally a pair of functional MRI scans were acquired during which the subjects

performed a breath-hold task. The same parameters as the resting-state FMRI

acquisition were used. As for the other functional tasks one was acquired using

conventional GE-EPI, and the other with two-step z-shimming, again with the order

counter balanced across subjects. For each breath-hold experiment one hundred and

fifty eight volumes of data (5 minutes and 16 seconds) were acquired. The subject

was visually cued to perform paced breathing for 60 s, followed by interleaved blocks

of paced breathing (48 s) and breath holding on expiration (16 s) finishing with a

48 s block of paced breathing; the instructions presented to the subjects are shown

in Figure 5.10. The first six volumes of data were discarded such that the signal

in all of the data used in the analysis were acquired in a steady state condition.

This specific paradigm design was used as it has been shown to produce reliable

BOLD signal increases across grey matter (in a previous study carried out in the

Department of Neuroimaging)[293].

Following previous work, in which alternative methods were presented to reduce

signal dropout [29, 115, 279], the breath-hold data were used to assess changes

in the BOLD sensitivity [28] caused by two-step z-shimming. The task causes a

hypercapnic stress, similar to carbon dioxide inhalation[294], and reliably increases

cerebral blood flow (CBF), and hence causes increases in the BOLD signal across

grey matter.
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5.5.2 Data Analysis

Following acquisition, all imaging data were converted into the NIfTI-1 data format3

using dcm2nii4. All the data processing described below was carried out using tools

from FSL (FMRIB’s Software Library5).

The FMRI data acquired using the two-step z-shimming approach were combined

pairwise by the square root of the sum of squares (SSQ). Specifically, the first volume

of combined data was the SSQ of volumes one and two of the acquired data, the

second volume of the combined data was the SSQ of volumes two and three of the

acquired data and so on.

Z-shim Calibration

To test the earlier finding in Section 5.4.5, that optimising the pair of z-shim gra-

dients based on the signal in grey matter voxels only in each slice was superior to

optimising over all voxels in each slice, the calibration data were also processed of-

fline in MATLAB. As in Section 5.4.5, the algorithm was re-run without the grey

matter mask. For each slice, the pair of z-shim images which recovered the signal

in the most voxels, where combined by SSQ. Maps of the difference between the

between these and the SSQ images formed from the pair of z-shim images which

recovered the signal in the most grey matter voxels were calculated.

Qualitative Comparison of Signal In Regions of Through-Slice Suscepti-

bility Gradient

Representative slices through the orbitofrontal and inferior temporal regions from

data acquired with SE-EPI, GE-EPI and GE-EPI with z-shimming were visually

compared to determine if signal was recovered in regions with through-slice suscep-

tibility gradients when z-shimming was used.

Temporal Signal-to-Noise Ratio

The temporal signal-to-noise ratio was calculated from the resting-state FMRI data

sets acquired using both conventional GE-EPI and GE-EPI with z-shimming. For

each subject, all of the volumes from both datasets were registered to the first vol-

ume of the conventional GE-EPI data set using FSL MCFLIRT (Motion Correction

using FMRIB’s Linear Image Registration Tool)[205]. This corrected for motion

throughout the data acquisition and enabled a voxel-wise comparison of the TSNR

3See nifti.nimh.nih.gov/nifti-1 for details
4A program written by Chris Rorden and distributed as part of MRIcron, see:

www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html for details
5See www.fmrib.ox.ac.uk/fsl for details
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of the data acquired with the two acquisition methods. The brain was extracted

using FSL BET (Brain Extraction Tool) [267] and the resulting data were high pass

filtered using a Gaussian weighted least-squares line fit, with a cut-off σ = 50 s (0.01

Hz), to remove signal drifts [295]. The TSNR was calculated voxel-wise as the ratio

of the temporal mean to the temporal standard deviation. Maps of the percentage

change in TSNR between the data acquired with the z-shimmed and conventional

GE-EPI sequences for each subject using:

Percentage Difference = 100

(
TSNRz−shim − TSNRGE−EPI

TSNRGE−EPI

)
(5.13)

In addition, the percentages of grey matter voxels showing either increases or de-

creases in TSNR were calculated. The grey matter mask needed for this was pro-

duced by thresholding6 and binarising the DIR-EPI image.

The degree of subject motion between the z-shim calibration scan and the FMRI

data acquired with z-shimming was determined by registering the central volume

of the z-shimmed data to the central volume of the calibration data using FLIRT

(FMRIB’s Linear Image Registration Tool)[205, 296] (with six degrees of freedom

and the correlation ratio cost function). The translations and rotations of the head

were extracted from the transformation matrix using avscale (an FSL tool).

Detectability of Motor Activations

Firstly, to check that each subject performed the task, the pressure measured in

the squeeze ball (as a percentage of the pressure measured during calibration) was

plotted as a function of time for both acquisition types.

The FMRI data sets acquired whilst the subject performed the motor task were

analysed using FEAT. To correct for subject motion, each volume in the FMRI

timeseries was registered to the central volume using MCFLIRT [205]. The brain

was extracted using BET [267] and the resulting data were spatially smoothed us-

ing a Gaussian kernel with a 5 mm FWHM. The data were then scaled, by a single

multiplicative factor, such that the overall mean signal was 10000. Finally the time-

series from each voxel was temporally high pass filtered using a Gaussian weighted

least-squares line fit, with a cut-off σ = 30 s (equivalent to 0.0167 Hz).

The regions of the brain showing significant changes in BOLD signal in response

to the motor stimulus were found by fitting eight explanatory variables to the pre-

processed time series signals using the General Linear Model (GLM). This was car-

ried out with local autocorrelation correction using FILM [224]. An example of the

6The threshold, determined empirically, was 50 % of the maximum image intensity (which in
this case was defined as the 98th percentile. This is referred to as the ‘robust maximum‘ within
FSL as it reduces the impact of outliers in the intensity distribution.)

115



Figure 5.11: An example of the design matrix, generated in FEAT, used to determine
the regions of the brain showing significant changes in BOLD signal in response
to the motor stimulus. The first explanatory variable contains the stimulus design
convolved with a Gamma function. The second explanatory variable is the temporal
derivative of the first. The last six explanatory variables are subject specific motion
parameters estimated by the motion correction procedure.

design matrix for one of the subjects is shown in Figure 5.11. The first explanatory

variable contained the stimulus design convolved with a Gamma function (phase of

0 s, standard deviation of 3 s and mean lag of 6 s) to model the haemodynamic re-

sponse function. The second explanatory variable was the temporal derivative of the

first to account for small variations in the timing of the HRF and therefore reduce the

level of unexplained variance. The last six explanatory variables were subject spe-

cific; they contained the estimated motion parameters (three translations and three

rotations) from the motion correction procedure. The t-statistic maps for each sub-

ject and acquisition method, calculated using the contrast c′ = (1, 0, 0, 0, 0, 0, 0, 0),

were converted to maps of the z-statistic. These maps were then thresholded using

clusters determined areas of contiguous voxels with z > 2.3 and a (corrected) cluster

significance threshold of p = 0.05 [263].

As above, the degree of subject motion between the z-shim calibration scan and

the z-shimmed FMRI data was determined by registering the central volume of the

z-shimmed data to the central volume of the calibration data using FLIRT.

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

Firstly, to check each subject performed the task, the normalised signal from the

respiratory bellows was plotted as a function of time for both acquisition types.

The FMRI data sets acquired whilst the subject performed the breath-hold task

were analysed using FSL FEAT. The same preprocessing steps as used for the anal-

ysis of the motor task were carried out, with the exception that high pass filter

cut-off σ = 50 s in this case.

The regions of the brain showing significant changes in BOLD signal in response

to the breath-hold stimulus were found by fitting eight explanatory variables to

the pre-processed time series signals using the General Linear Model (GLM). This
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Figure 5.12: The first explanatory variable used to model the haemodynamic re-
sponse to the breath-hold task. The shaded grey regions illustrate the periods when
the subjects held their breath after expiration.

was carried out with local autocorrelation correction using FILM [224]. The first

explanatory variable contained the stimulus design, with a delay of 8 s, convolved

with a Gaussian function (phase of 0 s, standard deviation of 7.48 s and peak

lag of 5 s); Figure 5.12. These parameters were chosen based on the analysis in

previous studies using a similar breath-hold paradigm [29, 115] and the observed

mean percentage change in BOLD signal, in voxels containing grey matter7, for all

six subjects; Figure 5.13. As in the motor task analysis, the second explanatory

variable contained the temporal derivative of the first and the last six explanatory

variables were subject specific estimated motion parameters.

The t-statistic maps for each subject and acquisition method, calculated using

the contrast c′ = (1, 0, 0, 0, 0, 0, 0, 0), were converted to maps of the z-statistic. These

maps were then thresholded using clusters determined by z > 2.3 and a (corrected)

cluster significance threshold of p = 0.05. The thresholded z-statistic maps were

used to determine if increases in signal produced by z-shimming were matched by

increases in BOLD sensitivity.

As above, the degree of subject motion between the z-shim calibration scan and

the z-shimmed FMRI data was determined by registering the central volume of the

z-shimmed data to the central volume of the calibration data using FLIRT.

Detectability of Resting-State FMRI Networks with PICA

Both sets of resting-state FMRI data were preprocessed using FEAT. To correct for

subject motion, each volume in the FMRI timeseries was registered to the central

volume using MCFLIRT [205]. The brain was extracted using BET [267] and the

resulting data were spatially smoothed using a Gaussian kernel with a 6 mm FWHM.

The data were temporally high pass filtered using a Gaussian weighted least-squares

line fit, with a cut-off σ = 50 s (0.01 Hz). The data were then scaled, by a single

7The subject specific grey matter masks produced, as described above, by thresholding and
binarising the DIR-EPI data were used as a mask.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.13: The mean percentage change in BOLD signal for grey matter voxels, in
response to the breath-hold task for all six subjects for data acquired with conven-
tional GE-EPI (blue-line) and GE-EPI with z-shimming (green-line). The shaded
grey regions illustrate the periods in which the subject was instructed to hold their
breath.

multiplicative factor, such that the overall mean signal was 10000. The 12 degrees of

freedom transformations needed to register both sets of functional data into MNI152

standard-space were calculated using FLIRT [205, 296] with the correlation ratio

cost function. The inverse transformation was calculated using convert xfm (an

FSL tool).

Probabilistic Independent Component Analysis (PICA) [220] as implemented in

MELODIC, was performed to determine if the ten resting-state networks described

in Smith et al. [169] were detectable in data acquired with GE-EPI and z-shimmed

GE-EPI. Firstly, each data set was registered into MNI152 standard-space using the

transformations determined during preprocessing and resampled to 4 mm isotropic

voxels to reduce the required computational effort. The data in each voxel were then

demeaned and the variance normalised. The data acquired from all six subjects with

conventional GE-EPI were temporally concatenated. (Specifically, following prepro-

cessing the data from each subject was in MNI152 space that had been resampled to

4mm isotropic voxels, i.e. 45×54×45 voxels at 450 time points. This was reshaped

to form a 2D matrix with 109350 columns (voxels) and 450 rows (time points) (i.e.

109350 observations of 450 variables). The 2D matrices from each subject were con-

catenated in the time dimension to produce a single larger 2D matrix with 109350

columns (voxels) and 2700 rows (time points)). Using Principal Component Analysis

this data was whitened and projected into a 20-dimensional subspace (20 variables).
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Figure 5.14: A pictorial illustration of temporal concatenation PICA. The tem-
porally concatenated FMRI data sets are decomposed into a set of statisti-
cally independent spatial maps and their associated time courses. Adapted from
fsl.fmrib.ox.ac.uk/fsl/fslwiki/MELODIC

By optimising for non-Gaussian spatial source distributions using a fixed-point it-

eration technique [243] this was decomposed into sets of vectors containing the 20

estimated independent spatial components and their associated time courses. This

process is shown schematically in Figure 5.14. The vectors of estimated independent

spatial components were reshaped into three-dimensional volumes, divided by the

standard deviation of the residual noise and thresholded by fitting a mixture model

to the histogram of intensity values. As explained in [166] this process is an example

of alternative, rather than null, hypothesis testing. Two Gamma and one Gaussian

function, to model positive and negative activations and noise respectively, are fitted

to the histogram of intensity values. The posterior probability of an activation is

calculated as the ratio of the probability of the intensity value under the Gaussian

relative to the sum of probabilities of the value under the Gamma distributions.

This is thresholded at a probability of 0.5. (i.e. an equal loss is placed on false

positives and false negatives [255]). The same analysis was carried out on the data

acquired with z-shimming pulse sequence.
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(a) Posterior cingulate seed ROI (b) Left motor cortex seed ROI

Figure 5.15: Size and position of the default mode and motor network seed regions
of interest overlaid on the MNI152 standard space template.

(a) White matter ROI (b) CSF ROI

Figure 5.16: Size and position of the white matter and CSF regions of interest
overlaid on the MNI152 standard space template.

Detectability of Resting-State FMRI Networks Using Seed Based Anal-

ysis

Both sets of resting-state FMRI data were preprocessed as in the previous section,

with the exception that the data were band-pass (rather than high-pass) filtered

(0.01 to 0.08Hz).

Seed-based regression analyses were then performed to determine if the fluctua-

tions in the resting-state signals in the regions of recovered signal in the orbitofrontal

and inferior temporal regions were correlated with fluctuations from seed regions in

the default mode and sensorimotor networks. Two spherical seed regions with 4 mm

radiuses were defined in MNI space. The first was in the posterior cingulate (x = 0,

y = −53 and z = 26 mm), a node of the default mode network, and the second

in the left motor cortex (x = −36, y = 25 and z = 57 mm) [297]; Figure 5.15. A

further two regions of interest were defined in MNI space, the first in the lateral

ventricle (x = 27, y = −8 and z = 32 mm) and the second in the white matter

(x = −19, y = −36 and z = 17 mm); Figure 5.16. These were used to produce

confound regressors to reduce the contribution of motion and physiological noise in

the following analyses[297]. The analyses for each subject, acquisition method and

seed region of interest were carried out separately in the native space of each set

of functional data. The seed and confound regions of interest were registered from

MNI standard-space into each subject’s native space using the inverse transforma-

tions calculated in the preprocessing stage. The mean time courses from each of

these regions were then extracted. In addition, the global mean time course was
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Figure 5.17: An example of the design matrix, generated in FEAT, used to deter-
mine the regions of the brain showing significant changes in BOLD signal that were
correlated with the resting-state signal in the left motor cortex. All the explanatory
variables are subject specific. The first contains the mean time course from the
seed in the left motor cortex. Explanatory variables two to seven are the motion
parameters estimated by the motion correction procedure. The eighth, ninth and
tenth explanatory variables contain the mean CSF, global and white matter signals.

calculated. The regions of the brain showing significant changes in BOLD signal

that were correlated with the BOLD signal changes in each seed region were found

by fitting ten explanatory variables to the pre-processed time series signals using

the General Linear Model as implemented in FILM [224]. An example of the de-

sign matrix for one of the subjects is shown in Figure 5.17. All the explanatory

variables were subject specific. The first contained the mean time course from the

seed in the left motor cortex. Explanatory variables two to seven are the motion

parameters estimated by the motion correction procedure. The eighth, ninth and

tenth explanatory variables contained the mean CSF, global and white matter sig-

nals (which has been shown to be the optimal combination of nuisance regressors

[298]). The t-statistic maps for each subject, acquisition method and seed region,

calculated using the contrast c′ = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0), were converted to maps

of the z-statistic. These maps were then thresholded using clusters determined by

z > 2.3 and a (corrected) cluster significance threshold of p = 0.05.

5.5.3 Results

Optimal Z-shims

The optimal pairs of subject and slice specific shifts in k-space, δkz,sh, produced

by the z-shim gradient lobe, to reduce signal dropout are shown in Figure 5.18.

The large negative k-space shift for slice one in subjects two, three, five and six is

a result of the algorithm attempting to determine the optimal shims from a very

small number of voxels containing grey matter in the most superior slice. With the

exception of subject four, in the inferior regions (slices 30 to 36) the optimal pair of z-
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.18: The optimal pairs of slice and subject specific shifts in k-space, δkz,sh,
produced by the z-shim gradient lobe. As the slices were acquired from top to
bottom slice one is at the top of the head.

shim gradients produce shifts in k-space that are more negative than in the superior

slices. In all six subjects, excluding the most superior slice, the optimal k-space

offsets produced by the z-shim gradient are in the range −1/∆z < δkz,sh < 1/∆z.

Maps of the difference between the SSQ images produced using the pairs of z-shim

images which recovered signal in the most grey matter voxels and the SSQ images

calculated, offline in MATLAB, using the pairs of z-shim images which recovered

signal in the most voxels (regardless of the type of tissue they contained) are shown,

for all six subjects for representative slices through the orbitofrontal and inferior

temporal regions in Figure 5.19. For all six subjects, improved signal recovery in

the orbitofrontal and inferior temporal regions was achieved when the grey matter

masking was included in the algorithm to determine the optimal slice specific pair

of z-shim gradients.

Qualitative Comparison of Signal In Regions of Through-Slice Suscepti-

bility Gradient

Representative slices through the orbitofrontal and inferior temporal regions from

data acquired with SE-EPI, conventional GE-EPI and z-shimming pulse sequences

are shown for each subject in Figures 5.20 and 5.21. Comparing the images ac-

quired with SE-EPI and conventional GE-EPI, signal dropout is observed in both

the orbitofrontal and inferior temporal regions for all six subjects. The signal in
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Figure 5.19: Maps showing the difference in SSQ signal when the optimal pair of
z-shim gradients was calculated for grey matter voxels versus all voxels in the head.
The top row shows representative slices through the orbitofrontal cortex and the
bottom row slices through the inferior temporal lobes for the six subjects.

the large areas of these two regions is recovered when z-shimming is used. However,

some residual regions of signal dropout remain. The asymmetries observed in the

signal recovered in subject five are a result of the slices being poorly prescribed; the

imaging plane was rotated slightly downwards on the subject’s left hand side.

Temporal Signal-to-Noise Ratio

Maps of the temporal signal-to-noise ratio for each subject for data acquired with

conventional GE-EPI and z-shimmed GE-EPI are shown through the orbitofrontal

and inferior temporal regions in Figures 5.22 and 5.23. The percentage change in

the temporal signal-to-noise ratio between data acquired with conventional GE-EPI

and z-shimmed GE-EPI is shown in Figure 5.24.

As detailed in Table 5.3 the TSNR increased in, on average, 80.7 % of grey

matter voxels increased. TSNR increases were observed consistently across the six

subjects in the regions of recovered signal in the orbitofrontal and inferior temporal

regions as well as a large proportion of the other voxels. The origin of the band of

reduced TSNR anterior to the orbitofrontal region in subject one is currently not

understood.

The estimated movement of the subjects between the z-shim calibration scan and

the data used to calculate the TSNR are shown in Table 5.4. Subject one moved by

approximately half a voxel in the superior-inferior direction and subject five moved

by approximately one voxel in the same direction.

Comparing the Detectability of BOLD Signal Changes Resulting From

the Motor Task

The pressure recorded in the squeeze ball for all six subjects throughout the motor-

task FMRI scans are shown in Figure 5.25. These plots demonstrate that in the
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Figure 5.20: Representative slices through the orbitofrontal cortex of the six subjects
from images acquired with SE-EPI (top-row), GE-EPI (middle-row) and z-shimmed
GE-EPI (bottom-row). The intensity range used to display each image was chosen
so that the areas of signal dropout and recovery could be easily seen. The slices
shown are in the native space of each subject.

Figure 5.21: Representative slices through the inferior temporal lobes of the six
subjects from images acquired with SE-EPI (top-row), GE-EPI (middle-row) and
z-shimmed GE-EPI (bottom-row). The intensity range used to display each image
was chosen so that the areas of signal dropout and recovery could be easily seen.
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Figure 5.22: TSNR maps for representative slices through the orbitofrontal cortex of
the six subjects calculated from data acquired with conventional GE-EPI (top-row)
and z-shimmed GE-EPI (bottom-row).
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Figure 5.23: TSNR maps for representative slices through the inferior temporal
lobes of the six subjects calculated from data acquired with conventional GE-EPI
(top-row) and z-shimmed GE-EPI (bottom-row).
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Figure 5.24: Maps showing the percentage change in the TSNR between data ac-
quired using conventional GE-EPI and z-shimmed GE-EPI. The top row shows rep-
resentative slices through the orbitofrontal cortex and the bottom row slices through
the inferior temporal lobes for the six subjects.
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Grey matter voxels with Grey matter voxels with
Subject increased TSNR (%) decreased TSNR (%)

1 74.5 16.5
2 90.8 1.2
3 65.6 26.7
4 85.9 4.0
5 81.4 8.7
6 85.7 1.1

Mean 80.7 9.7

Table 5.3: The percentage of grey matter voxels showing increases or decreases in
TSNR when z-shimmed GE-EPI is used in place of conventional GE-EPI.

Translations (mm) Rotation Angles (rad)

Subject x y z x y z

1 0.03 0.50 -1.71 -0.010 0.008 -0.001
2 0.07 -0.21 -0.52 -0.004 0.003 -0.001
3 0.19 -0.20 0.35 -0.007 -0.002 -0.003
4 0.11 0.19 -0.65 -0.006 0.002 -0.001
5 -2.13 3.96 3.27 -0.008 -0.023 0.024
6 -0.37 -0.05 -0.66 -0.005 -0.003 0.002

Table 5.4: Estimated subject motion between the acquisition of the z-shim calibra-
tion scan and the resting-state FMRI data acquired with z-shimming. Translations
greater than half the voxel size (1.65 mm) in any direction are highlighted in red.
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(a) Subject 1 (note y-axis scale
is different to the other sub-
jects)

(b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.25: The pressure recorded in the squeeze ball (as a percentage of the
maximum pressure measured during calibration) for all six subjects for FMRI data
acquired with conventional GE-EPI pulse (blue line) and z-shimmed GE-EPI (green
line). The shaded grey regions illustrate the periods in which the subject was in-
structed to squeeze the ball in their right hand every 2 s.

majority of case the subjects performed the task consistently over the full duration

of both FMRI data acquisitions. However, differences are observed in the maxi-

mum percentage pressure between FMRI runs. Unfortunately, as the squeeze ball

pressure was re-calibrated prior to each FMRI data acquisition, it is not possible

to determine if these differences were due to the subject squeezing the ball harder

during calibration or the task itself. During the collection of the data acquired with

the z-shim sequence, subject two reduced the pressure exerted on the squeeze ball

close to the start of data acquisition, but after this step change squeezed the ball

consistently hard. Subject five failed to squeeze the ball once during the second

epoch of data acquired with the z-shim pulse sequence.

Thresholded z-statistic maps for each subject and acquisition method are shown

in Figure 5.26. The motor paradigm resulted in statistically significant BOLD signal

changes in the left motor cortex in all subject for both acquistion methods. With

the exception of subject four, statistically significant BOLD signal changes were

also observed in the supplementary motor area. As shown in Table 5.5 the peak

z-statistic was greater for data acquired with z-shimming in five of the six subjects.

The estimated movement of the subjects between the z-shim calibration scan and the
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Peak z-statistic

Subject GE-EPI 2-step z-shim GE-EPI

1 13.6 15.7
2 12.3 13.9
3 12.5 13.5
4 7.0 7.2
5 12.3 11.5
6 12.9 15.1

Mean 11.8 12.8

Table 5.5: Peak z-statistic from the GLM analysis of the motor task FMRI data
acquired with conventional GE-EPI and GE-EPI with z-shimming.

Translations (mm) Rotation Angles (rad)

Subject x y z x y z

1 0.18 1.06 -1.39 -0.017 0.008 -0.001
2 0.12 0.62 -0.89 -0.004 0.015 0.004
3 1.67 -1.13 -1.41 -0.005 0.008 -0.014
4 0.15 -0.27 1.08 0.004 0.006 -0.002
5 -4.39 7.46 5.56 -0.028 -0.050 0.0447
6 -0.02 -0.61 -0.87 -0.004 -0.004 -0.003

Table 5.6: Estimated subject motion between the acquisition of the z-shim calibra-
tion scan and the motor-task FMRI data acquired with z-shimming. Translations
greater than half the voxel size (1.65 mm) in any direction are highlighted in red.

motor-task FMRI data acquired with z-shimming are shown in Table 5.6. Subject

three moved by approximately half a voxel in the left-right direction and subject

five moved by nearly two voxels in the superior-inferior direction.

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

The variations in the subjects’ breathing throughout the breath-hold FMRI scans,

measured using the respiratory bellows, are shown in Figure 5.27 for all six subjects.

These plots demonstrate that all subjects performed the paced breathing and breath-

holding on expiration as instructed throughout both FMRI acquisitions.

Thresholded z-statistic maps showing voxels with significant changes in BOLD

signal as a result of the breath-hold task for each subject and acquisition method

are shown for representative slices through the orbitofrontal and inferior temporal

regions in Figures 5.28 and 5.29. In all six subjects statistically significant BOLD

signal changes in response to the breath-hold task are observed in the regions of

recovered signal in the orbitofrontal and inferior temporal areas.

The estimated movement of the subjects between the z-shim calibration scan
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Figure 5.26: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the motor task, overlaid on the GE-EPI data from
which they were derived, for each subject acquired with the conventional GE-EPI
(top-row) and GE-EPI with 2-step z-shimming (bottom-row) for representative slices
though the motor cortex and supplementary motor area.

Translations (mm) Rotation Angles (rad)

Subject x y z x y z

1 0.46 -0.43 0.23 0.003 0.005 -0.008
2 0.95 0.38 -1.57 -0.011 0.023 -0.001
3 2.77 -2.62 -2.09 0.002 0.015 -0.023
4 0.36 -0.03 2.60 -0.002 0.017 -0.004
5 -4.77 7.47 6.26 -0.027 -0.047 0.045
6 0.42 -0.88 -0.99 0.004 0.004 -0.001

Table 5.7: Estimated subject motion between the acquisition of the z-shim calibra-
tion scan and the breath-hold FMRI data acquired with z-shimming. Translations
greater than half the voxel size (1.65 mm) in any direction are highlighted in red.

and the breath-hold FMRI data acquired with z-shimming are shown in Table 5.7.

Subjects two and three moved by more than half a voxel in the superior-inferior

direction, subject five moved by nearly two voxels in the same direction.

Detectability of Resting-State FMRI Networks with PICA

The ten independent components from the probabilistic independent component

analyses which visually matched the resting-state networks described in Smith et al.

[169] are shown in Figure 5.30. The ten networks were readily identified from the

set of twenty independent components resulting from the analysis of the data ac-

quired with conventional GE-EPI. In the remaining ten components artefacts such

as subject motion and blood flow in the sagittal sinus were observed, in agreement

with previous findings [169]. The task of identifying the ten networks from the inde-

pendent components of the z-shim datasets proved only slightly more difficult. The

medial and occipital visual networks were observed as a single component (Figures
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 5.27: Variations in the subjects breathing during acquisition of the breath-
hold FMRI data with both conventional GE-EPI (blue line) and GE-EPI with z-
shimming (green line). The shaded grey regions illustrate the periods in which the
subject was instructed to hold their breath.

2.3

17

Figure 5.28: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal as a result of the breath-hold task overlaid on the GE-EPI data from
which they were derived for each subject acquired with conventional GE-EPI (top-
row) and GE-EPI with z-shimming (bottom-row) for representative slices though
the orbitofrontal cortex.
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Figure 5.29: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal as a result of the breath-hold task overlaid on the GE-EPI data from
which they were derived for each subject acquired with conventional GE-EPI (top-
row) and GE-EPI with z-shimming (bottom-row) for representative slices though
the inferior temporal regions.

5.30(a) and 5.30(b)) however, the remaining networks were identified as separate,

spatially independent, components.

Detectability of Resting-State FMRI Networks Using Seed Based Anal-

ysis

In all six subjects, for data acquired with conventional GE-EPI, the BOLD signal

fluctuations in the left and right lateral parietal cortex as well as in the medial

prefrontal cortex were significantly correlated with the mean BOLD signal from

a seed in the posterior cingulate; Figure 5.31. These brain regions are the main

areas involved in the default mode network. For data acquired with z-shimming a

similar spatial pattern of correlation was observed. In subjects one, two, three and

five the BOLD signal variations in the areas of recovered signal in the orbitofrontal

cortex were significantly correlated with the posterior cingulate seed, Figure 5.32.

The BOLD signal variations in the areas of recovered signal in the inferior temporal

regions were also significantly correlated with the posterior cingulate seed in subjects

three and four. However, a large number of other voxels with similar z-statistics were

also observed. The regions where the BOLD signal variations were significantly

correlated with resting-state signal changes from a seed in the left motor cortex are

shown in Figures 5.34 to 5.36. The supplementary motor area and right motor cortex

were significantly correlated with the left motor cortex in data acquired with both

aquisition techniques. For subjects one and two the thresholded z-statistic maps,

calculated from data acquired with z-shimming, also showed significant correlations

in the orbitofrontal and inferior temporal regions. Again, since a large number of

other voxels have a similar z-statistic it is difficult to determine if this is an artifact

or indicative of a functional connection to the other nodes of the motor network.
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(a) Medial Visual† (b) Occipital Pole
Visual†

(c) Lateral Visual (d) Default Mode (e) Cerebellar

(f) Sensoriomotor (g) Auditory (h) Executive
Control

(i) Right Fronto-
Parietal

(j) Left Fronto-
Parietal

Figure 5.30: Thresholded z-statistic maps (3 < z < 22) for the ten independent
components from the probabilistic independent component analyses which visually
matched those described in Smith et al. [169]. The three most informative orthogonal
slices are shown for each network. The left column in each sub-figure contains
independent components from the data acquired using conventional GE-EPI and
the right column the components from the z-shim data. The components are shown
overlaid on the MNI152 standard space template (re-sampled to 4 mm isotropic
voxel size). †The medial and occipital-pole lateral visual networks were observed as
a single component in the z-shim data.
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Figure 5.31: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes are significantly correlated with the signal variation from a
seed in the posterior cingulate, for data acquired with conventional GE-EPI (top-
row) and z-shimming (bottom-row). Representative axial slices though posterior
cingulate regions are shown for each subject.
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Figure 5.32: Thresholded z-statistic maps, showing voxels in which the resting-
state BOLD signal changes are significantly correlated with the signal variation
from a seed in the posterior cingulate, for data acquired with conventional GE-EPI
(top-row) and z-shimming (bottom-row). Representative axial slices though the
orbitofrontal regions are shown for each subject.
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Figure 5.33: Thresholded z-statistic maps, showing voxels in which the resting-
state BOLD signal changes are significantly correlated with the signal variation
from a seed in the posterior cingulate, for data acquired with conventional GE-EPI
(top-row) and z-shimming (bottom-row). Representative axial slices though inferior
temporal regions are shown for each subject.
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34

Figure 5.34: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes are significantly correlated with the signal variation from a
seed in the left motor cortex, for data acquired with conventional GE-EPI (top-row)
and z-shimming (bottom-row). Representative axial slices though left and right
motor cortex and supplementary motor area are shown for each subject.
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Figure 5.35: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes are significantly correlated with the signal variation from
a seed in the left motor cortex, for data acquired with conventional GE-EPI (top-
row) and z-shimming (bottom-row). Representative axial slices though orbitofrontal
regions are shown for each subject.
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Figure 5.36: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes are significantly correlated with the signal variation from a
seed in the left motor cortex, for data acquired with conventional GE-EPI (top-row)
and z-shimming (bottom-row). Representative axial slices though inferior temporal
regions are shown for each subject.
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5.5.4 Discussion and Conclusions

From the results of the experiments performed on the six healthy volunteers a num-

ber of conclusions may be drawn about the usefulness of the two-step z-shimming

approach in task-based and resting-state FMRI experiments.

For each of the six subjects the pair of slice specific z-shim gradients were cal-

culated on the scanner, in five seconds, from a calibration scan (with an acquisition

time of 3 minutes and 30 seconds) masked to include only voxels containing grey

matter (using a DIR-EPI scan with an acquisition time of 48 s). The range of k-

space offsets required to recover signal was −1/∆z < δkz,sh < 1/∆z, which is half

that spanned by the calibration scan. Therefore it would be possible to improve the

technique by halving the number of steps in the calibration scan (Nshim = 51); this

would save 1 minute and 40 seconds.

It is encouraging that compared to the conventional GE-EPI images, signal was

recovered in large parts of the orbitofrontal and inferior temporal regions in the SSQ

z-shimmed images. Additionally, the recovery of signal was greater in these regions

compared to when the pairs of z-shim gradients were determined using all voxels in a

slice (regardless of the type of tissue they contained). However some areas of signal

dropout remained; this remaining signal loss may have been caused by susceptibility

gradients in the frequency and phase encoding directions, which is not recoverable

by z-shimming.

Importantly the recovery of signal was accompanied by increases in the TSNR

in the same areas of the orbitofrontal and inferior temporal regions. Moderate

increases in TSNR were also observed across the majority of grey matter voxels.

This general increase can be explained by reference to the Bloch simulations shown

in Figure 5.6(b); the normalised signal intensity from the SSQ combination of two

z-shim images at the optimal shim spacing ∆k = 0.68/∆z is greater than one for

−0.4 < Gz,s < 0.4 in units of 2π
γ TE∆z

(which corresponds to −105 < Gz,s < 105

µTm−1 for TE = 30 ms and ∆z = 3 mm).

The results of the motor task FMRI experiment shows that, despite the loss of

temporal resolution caused by two-step z-shimming, statistically significant activa-

tions were detected in all six subjects in the left motor cortex. In five out of the

six subjects the peak z-statistic was greater for the data acquired with z-shimming;

i.e. for this specific task increases in TSNR translated into an increased sensitivity

to detect BOLD signal changes. However, these increases may not be achievable in

event-related FMRI experiments because of the loss of temporal resolution.

Statistically significant BOLD signal changes were observed in the breath-hold

FMRI data, acquired with z-shimming, in those in the regions with improved signal

and TSNR. This suggests that the BOLD sensitivity had increased in these regions.
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In addition, the pattern of statistically significant BOLD signal changes in the rest

of the brain was similar to that from the conventional GE-EPI data. This implies

that improvements in the BOLD sensitivity in the regions affected dropout does not

come at the cost of reduced sensitivity elsewhere. That said, because the breath-

hold task has a block-design, the impact of the loss of temporal resolution may not

be accounted for in these observations.

The probabilistic independent component analyses of the resting-state data showed

that it was slightly more difficult to identify the common resting-state functional

networks described in Smith et al. [169] in the z-shimming data as in one case two

brain networks were combined into a single independent component. This may be

a result of the changes in the temporal resolution and temporal smoothness of the

data caused by the combination of pairs of images by SSQ. However, more work is

needed to determine if this is the case.

In agreement with the very recent findings of Dalwani et al. [299] the seed-based

analysis suggests that the regions of the orbitofrontal cortex, previously obscured

by signal dropout, may potentially be functionally connected to the default mode

network. However this correlation was not consistently observed in all six subjects.

In addition, in those subjects where it was observed, a large number of other voxels,

distributed across the brain, had similar z-statistics. Furthermore, in two out of

the six subjects significant correlations between the orbitofrontal region and the

motor network were seen. These results may imply the correlations are artifactual,

potentially as a result of residual physiological noise unaccounted for by the white

matter, CSF and global signal regressors. Further work is required to determine the

true source of these correlations.

Given that the optimal z-shims were determined for each slice, the z-shimming

technique as described in this chapter could be sensitive to subject motion at a

number of points. Subject motion during the calibration scan could result in a sub-

optimal choice of the pairs of slice specific z-shim gradients. Motion between the

calibration scan and DIR-EPI acquisition would result in the algorithm determining

the optimal z-shims based on a set of voxels that may not necessarily contain grey

matter. Finally, motion between that calibration scan and the volume of FMRI data

being acquired may result in a suboptimal choice of z-shim gradients for the location

of the slices that are actually being acquired. This may hinder the signal recovery

in areas of dropout. The six healthy subjects scanned in this experiment were all

experienced and therefore were able to keep still. The largest movement observed

relative to the calibration scan was approximately two voxels in the direction of slice

selection. This did not appear to significantly impact the efficacy of the technique

however, further studies in patient cohorts are needed to determine how robust the

technique is to subject motion.
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5.6 Summary

A number of different implementations of z-shimming have previously been shown to

increase the detectability of task induced BOLD signal changes in the regions of sig-

nal dropout such as the orbitofrontal cortex, inferior temporal and parahippocampal-

amygdala regions [72, 271, 273–275]. In the last year Dalwani et al. [299] have

demonstrated that when resting-state FMRI data were acquired with z-shimming,

regions of the orbitofrontal cortex, which are affected by signal dropout in conven-

tional GE-EPI images, may be functionally connected to the default mode network.

I developed an algorithm to determine, on a slice specific basis, the optimal pair

of z-shim gradients to recover signal in the grey matter in the regions of dropout

whilst preserving the signal in grey matter in regions of homogeneous B0. This

used data acquired in a calibration scan, as well a grey matter mask produced

from a DIR-EPI acquisition. This was tailored to null the signal from white matter

and CSF. Rather than using a theoretical model that assumed perfectly rectan-

gular slice profiles, Bloch simulations were used to determine the optimal spacing,

∆kz,sh = 0.68/∆z, of the two z-shim gradients for the specific RF pulse and slice

selection gradient used on the GE Discovery MR750 system. This procedure would

be straightforward to replicate for the RF pulses used on other scanners as programs

to perform Bloch simulations are widely available. The algorithm was implemented

in C++; it took five seconds to run on the scanner. Therefore, in total, the acquisi-

tion of the calibration scan and DIR-EPI image and the calculation of the optimal

z-shim gradients required 4 minutes and 23 seconds (however, as noted above, this

could be reduced by halving the number of steps in the calibration scan).

A set of experiments were carried out on six healthy volunteers to determine if

grey matter optimised z-shimming improved the sensitivity to BOLD signal changes

in the regions affected by signal dropout. The technique resulted in increases in both

the signal and TSNR in significant areas of the orbitofrontal and inferior temporal

regions. In addition increases in the BOLD sensitivity were observed in the same

regions. Seed based analysis of the resting state data suggested that parts of the

orbitofrontal cortex, affected by signal dropout in conventional GE-EPI images, were

functionally connected to the default mode network in agreement with previous work

[299]. Further work is needed, in a greater number of subjects, to determine if this

is a genuine effect rather than a false positive finding however.

Further work is also needed to determine the impact of the loss of temporal

resolution, resulting from the need to acquire two volumes of data with different

z-shim gradients, on resting-state and event-related FMRI experiments. The PICA

analysis of the z-shimmed resting-state FMRI data showed that two of the expected

resting state networks were combined into a single independent component which
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could be a result of the loss in temporal resolution or changes in the temporal

smoothness of the data caused by the SSQ combination of pairs of images.
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Chapter 6

Reducing Signal Dropout with

Quadratic Phase Radiofrequency

Pulses

6.1 Introduction

Cho and Ro [126] were the first to demonstrate that RF excitation pulses could

be designed to reduce the signal loss caused by susceptibility gradients in the hu-

man head. They created a tailored radiofrequency (TRF) pulse which induced a

quadratic variation in the phase of the transverse magnetisation in the direction

of slice-selection. This partially cancelled the phase dispersion resulting from lin-

ear through-slice susceptibility gradients, leading to signal recovery. More recently

Chung et al. [132] modified the original TRF pulse and, with an FMRI task involving

the processing of facial attractiveness, found statistically significant BOLD signal

changes in the orbitofrontal and inferior temporal areas which were not detected

using a conventional GE-EPI acquisition. Unfortunately neither Cho and Ro [126]

nor Chung et al. [132] gave sufficient details of the functional form of their pulses

to allow their work to be replicated [30, 300]. 3D TRF pulses which completely

cancel out the phase changes induced by the susceptibility gradients have also been

developed [128–130]. They have the advantage that the signal in the regions of

homogeneous field is conserved, however, the RF design procedure is computation-

ally intensive, and hence it is not practical at present to produce subject specific

3D TRF pulses during the scanning session [131]. Therefore I extend the work of

Shmueli [30], using full-passage scaled-down complex hyperbolic secant (HS) pulses

for signal excitation. These pulses produce an approximately quadratic variation in

the phase of the transverse magnetisation in the slice-selection direction [301–303]

so they can be used to reduce signal dropout [30]. I describe a systematic approach
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to designing HS pulses for signal recovery. Bloch simulations are used to determine

the HS pulse parameters required to produce a uniform signal response across the

range of susceptibility gradients typically observed in the head. The limitations

imposed on the RF pulse amplitude and imaging gradient parameters by the MRI

scanner hardware are accounted for and an expression for the bandwidth of a HS

pulse (when used for signal excitation) is derived and used for the first time. The

ability of this optimised HS pulse to recover signal is investigated in six healthy male

subjects using both task and resting-state FMRI experiments at 3 T.

6.2 Theoretical Background

6.2.1 Theory of Signal Recovery using Quadratic Phase RF

Pulses

A linear susceptibility gradient in the direction of slice selection, Gz,s, induces a

linear variation in the phase, φ, of the transverse magnetisation, Mxy, across the

slice:

φ = γ TE Gz,sz (6.1)

As first shown by Cho and Ro [126] this phase dispersion can be cancelled out, at

least in part of the slice, using a radiofrequency pulses that induces a quadratic

variation in the phase of Mxy:

φ = az2 (6.2)

such that the overall variation in the phase is given by:

φ = az2 + γ TE Gz,sz (6.3)

Here a is a design parameter that can be used to tailor degree of quadratic phase vari-

ation. The phase as a function of position within the slice, calculated using Equation

6.3 for four illustrative cases, is shown in Figure 6.1. Firstly with a conventional RF

excitation pulse (a = 0 rad mm−2) and in the absence of a susceptibility gradient

the phase is constant and equal to zero across the whole slice; Figure 6.1(a). Sec-

ondly, if the same conventional RF pulse is used in a region of linear through-plane

susceptibility gradient, the phase of the transverse magnetisation also varies linearly

across the slice. When Gz,s = 2π
γTE∆z

the isochromats are distributed evenly in the

transverse plane and thus cancel out, Figure 6.1(b), leading to a complete loss of

signal. Thirdly, using an RF pulse that produces a quadratic phase variation in Mxy

(a = 1.67 rad mm−2) leads to a purely quadratic phase distribution in regions with-

out a susceptibility gradient. From the distribution of isochromats it can be seen
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(a) Gz,s = 0 and a = 0 rad mm−2
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(b) Gz,s = 2π
γTE∆z and a = 0 rad mm−2
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(c) Gz,s = 0 and a = 1.67 rad mm−2
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(d) Gz,s = 2π
γTE∆z and a = 1.67 rad mm−2

Figure 6.1: An illustration of the phase distribution across a 3 mm thick slice in
four representative cases; a conventional RF pulse with a uniform phase variation
through the slice both with (b) and without (a) a linear through-slice susceptibility
gradient, a quadratic phase RF pulse when Gz,s = 0 (c) and when Gz,s = 2π

γTE∆z

(d). The polar plots show the phases of eight isochromats distributed evenly across
the slice in the positions shown at the base of each plot. This figure is a modified
version of Figure 1 from Cho and Ro [126] with the addition, for clarity, of a scale
on the y-axis.

that this will result in a reduction of the signal. Fourthly, and importantly, when a

quadratic phase RF pulse is used in regions with linear through-plane susceptibil-

ity gradients signal is recovered. The phase distribution produced by the RF pulse

cancels, in a section of the slice, the linear phase resulting from the through-plane

susceptibility gradient; Figure 6.1(d).

Based on the assumption that the slice profile is perfectly rectangular, Cho and

Ro [126] showed that the signal, S, acquired at an echo time TE, in the presence

of a linear susceptibility gradient Gz,s, from a voxel with thickness ∆z, using an

RF pulse that produces a quadratic phase variation in the transverse magnetisation
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across the slice is:

S =

√√√√[∫ ∆z/2

−∆z/2

M0 cos [az2 + γ TE Gz,sz] dz

]2

+

[∫ ∆z/2

−∆z/2

M0 sin [az2 + γ TE Gz,sz] dz

]2

(6.4)

The signal, S, calculated numerically using Equation 6.4, is plotted as a function

the design parameter, a, and the susceptibility gradient, Gz,s, in Figure 6.2. Profiles

at three specific choices of the design parameter a (a = 0 rad mm−2 representing a

conventional RF pulse, a = 0.89 rad mm−2 equivalent to the pulse used in Chung

et al. [132] and a = 1.67 rad mm−2 to match the pulse used in Cho and Ro [126])

are shown in Figure 6.3. It is important to note that Cho and Ro [126] did not

specify the value of a for their TRF pulse, Shmueli et al. [300] showed that by

setting a = 1.67 rad mm−2 (for 3 mm thick slices) they could match the results of

Cho and Ro [126]. This choice of a implies that the phase at the edge of the slice

φRF (∆z/2) due to the RF pulse is:

φRF

(
∆z

2

)
= a

(
∆z

2

)2

= 1.67× 1.52

= 3.76 rad (6.5)

However, confusingly Chung et al. [132] stated that the phase at the edge of the slice

was 2π for the TRF pulse of Cho and Ro [126]. Numerical calculations of Equation

6.4 in MATLAB support the results of Shmueli et al. [300].

When a = 0 rad mm−2 , the signal is described by Equation 6.6:

S = M0∆z

∣∣∣∣sinc

(
γ TE Gz,s∆z

2

)∣∣∣∣ (6.6)

As the magnitude of the through-plane susceptibility gradient increases the signal

intensity is reduced. Complete signal loss occurs when the through-plane suscepti-

bility gradient is an integer multiple of 2π/γTE∆z, Figure 6.3(a). When TE = 30

ms and ∆z = 3 mm the first zeros fall at Gz,s = ±261 µTm−1. As the echo time or

slice thickness are increased signal dropout occurs at smaller values of Gz,s. Suscep-

tibility gradients in the range −250 < Gz,s < 250 µTm−1 have been measured at 3

T in the human head [28, 29]. As described previously [126, 132], and from Figures

6.2 and 6.3(a) it can be seen that as the degree of quadratic phase, a, is increased

increasing amounts of signal are recovered in regions with susceptibility gradients,

however signal is reduced in regions where Gz,s = 0. Hence there is a trade-off, con-

trolled by a, between signal recovery in regions currently affected by signal dropout
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Figure 6.2: Signal intensity plotted as a function of the susceptibility gradient Gz,s

and RF pulse design parameter a. The highlighted values of a = 0.89 and 1.67 rad
mm−2 match the pulses used in Chung et al. [132] and Cho and Ro [126] respectively.
These specific cases are shown in more detail in Figure 6.3. For slices with ∆z = 3
mm and at an echo time TE = 30 ms the range of gradients shown in the plot

−4
(

2π
γTE∆z

)
< Gz,s < 4

(
2π

γTE∆z

)
correspond to −1044 < Gz,s < 1044 µTm−1

and loss of signal caused by the RF pulse in regions unaffected by through-plane

susceptibility gradients. Cho and Ro [126] chose, by setting a = 1.67 rad mm−2, to

recover the greatest amount of signal. For example at Gz,s = 2π/γTE∆z the signal

is 0.52M0∆z compared to zero when a conventional RF pulse is used. However,

at Gz,s = 0 the signal is reduced to 0.51M0∆z. In contrast, Chung et al. [132] set

a = 0.89 rad mm−2 in an attempt to recover some signal whilst causing less signal

loss of regions free of through-plane susceptibility gradients.

Whilst the signal model given by Equation 6.4 [126] highlights the tradeoff,

controlled by a, between signal recovery in regions affected by signal dropout and loss

of signal in areas unaffected by susceptibility gradients, the assumption that slices

are perfectly rectangular is not possible to satisfy in practice. This assumption has

been made elsewhere, for example by Ordidge et al. [74] when deriving the effect

of z-shim compensatory gradients, and by others when correcting for the effect

of through-plane susceptibility gradients in T ∗2 maps [289, 304, 305]. One telling

example is the slice profile of the RF pulse designed by Cho and Ro [126] shown

in Figure 6.4; this is evidently not rectangular and as such does not satisfy the

assumptions of their own theoretical model. Therefore, rather than using Equation

6.4, the signal as a function of the susceptibility gradient, Gz,s, and the degree of

quadratic phase, a, is calculated by numerical simulation of the Bloch equations for

the remainder of this chapter.
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(a) Signal as a function of the susceptibil-
ity gradient

(b) Phase profiles of the RF pulses shown
in (a)

Figure 6.3: Signal intensity plotted as a function of the susceptibility gradient Gz,s

for three specific choices of the design parameter a; a = 0 rad mm−2 corresponds
to an RF pulse with a uniform variation in phase across the slice (blue line), the
signal as a function of Gz,s for the pulse with a = 0.89 rad mm−2 visually matches
that used in Chung et al. [132] (green line) and the pulse with a = 1.67 rad mm−2

matches that used in Cho and Ro [126] (red line).

Figure 6.4: Reproduction of Figure 3 from Cho and Ro [126] showing that their RF
pulse produces slices with non-rectangular profiles.
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(a) Amplitude modulation

µ lnA0

µ ln [sech (βTRF )]
...+ µ lnA0

(b) Phase modulation

Figure 6.5: Plots showing the amplitude and phase modulation of a complex hyper-
bolic secant pulse

6.2.2 Complex Hyperbolic Secant Pulses

Since neither Cho and Ro [126] nor Chung et al. [132] gave details of the functional

form of their RF pulses I extend the work of Shmueli [30] who showed that complex

hyperbolic secant (HS) RF excitation pulses could be used to recover signal in GE-

EPI images.

Introduction

HS pulses [306, 307] were first introduced as the analytical solution to the Bloch

equations in the absence of T1 and T2 relaxation. They are most commonly used for

adiabatic inversion [39], however, throughout this chapter they are used for signal

excitation[302, 303, 308]. An HS pulse with duration TRF has a B1 field [39]:

B1(t) = [A0 sech (βt)]1+iµ (6.7)

for −TRF/2 < t < TRF/2. Here A0 is the maximum amplitude of the pulse, β is the

modulation angular frequency and µ is a dimensionless parameter that determines

both the sharpness of the slice profile [307] and controls the degree of quadratic phase

[30]. Using Equation 6.7 it can be deduced that the pulse has both an amplitude

A(t) and a phase φ(t) modulation:

A(t) = A0 sech (βt) (6.8)

φ(t) = µ ln [sech (βt)] + µ lnA0 (6.9)

The amplitude and phase modulation are shown in Figure 6.5.
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(a) Variation with flip angle for
µ = 4.25 and β = 3040 Hz

(b) Variation with µ for α = 73◦

and β = 3040 Hz
(c) Variation with β for α = 73◦

and µ = 4.25

Figure 6.6: Plots showing the dependence of A0 on the flip angle, α, the modulation
frequency, β and µ.

Pulse Amplitude for Signal Excitation

The maximum amplitude1, A0, of an HS pulse used for signal excitation is a function

of the flip angle, α, modulation angular frequency, β, and µ:

A0 =
β

γ

√√√√(cos−1
[
cosh2

(
πµ
2

)
cosα + sinh2

(
πµ
2

)]
π

)2

+ µ2 (6.10)

A derivation of Equation 6.10 is given in Appendix B. The dependence of A0 on the

flip angle, modulation angular frequency, β, and µ is shown in Figure 6.6. As might

be expected, higher flip angles require greater pulse amplitudes. Increasing µ to

produce sharper slice profiles or increased degrees of quadratic phase also requires

a greater pulse amplitude. Finally, a linear increase in β, for example to reduce the

stop-band ripple in the slice profile, necessitates a linear increase in the maximum

pulse amplitude.

Excitation Pulse Bandwidth

In the previous work [30, 300] using HS pulses for signal excitation it was assumed

that the pulse bandwidth, ∆f , is:

∆finv =
µβ

π
(6.11)

i.e. the same as when the pulses are used for adiabatic inversion[307]. However,

the bandwidth of an excitation pulse is defined as the full-width at half-maximum

(FWHM) of the magnitude of the transverse magnetisation, |Mx,y|, which as shown

1This expression is equivalent to Equation 7 of Warnking and Pike [309].
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(a) Variation in bandwidth with
flip angle for µ = 4.25 and
β = 3040 Hz

(b) Variation in bandwidth with
µ for α = 73◦ and β = 3040 Hz

(c) Variation in bandwidth with
β for α = 73◦ and µ = 4.25

(d) Percentage difference in re-
sulting slice thickness as a func-
tion of flip angle for µ = 4.25
and β = 3040 Hz

(e) Percentage difference in re-
sulting slice thickness as a func-
tion of µ for α = 73◦ and
β = 3040 Hz

(f) Percentage difference in re-
sulting slice thickness as a func-
tion of β for α = 73◦ and µ =
4.25

Figure 6.7: Plots (a)-(c) show the effect of the flip angle, α, µ and β on the bandwidth
derived for HS excitation pulses, ∆f and the bandwidth, ∆finv, derived previously
for HS inversion pulses [307]. Plots (d)-(e) show the resulting percentage change in
slice thickness if it is wrongly assumed that the inversion pulse bandwidth is valid
for excitation pulses.

for the first time in Appendix C is:

∆f =
β

π2
cosh−1

cosh (πµ)
(

cos(α)− 1
2

√
3 + cos2(α)

)
+ cos(α)− 1

1
2

√
3 + cos2(α)− 1

 (6.12)

When µ ≥ 2 this simplifies to (again see Appendix C for details):

∆f =
βµ

π
+

β

π2
ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)
(6.13)

Therefore, as shown in Figures 6.7(a) to 6.7(c), the bandwidth is a function of µ, β

and the flip angle. Given that:

ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)
> 0 (6.14)

147



Figure 6.8: A numerical simulation of the Bloch equations showing the frequency
response of an HS pulse (α = 90◦, µ = 4.25 and β = 2040 Hz) to highlight the
difference between the two definitions of bandwidth, ∆finv, from Silver et al. [307]
and ∆f , given by Equation 6.12

for 0 < α < π, ∆finv is less than the true bandwidth of a hyperbolic secant excitation

pulse. As shown in Figures 6.7(d) to 6.7(f) this results in slices that are thicker

than prescribed. This is further highlighted in Figure 6.8 where the two different

definitions of the bandwidth are overlaid on a plot of the frequency response of a

HS pulse (calculated by numerically solving the Bloch equations in MATLAB).

Tailoring the Phase Variation Produced by a Complex Hyperbolic Secant

Pulse

Shmueli [30] found that a quadratic function (az2) accurately described the variation

in the phase of the transverse magnetisation, resulting from a HS pulse, over the

central 75% of the slice. In addition they showed by simulation that the degree of

quadratic phase, a, was proportional to µ. They did not, however, investigate the

dependence of the phase variation on the pulse duration, TRF , modulation frequency,

β, or the flip angle, α. These dependencies can be determined from the analytic

expression for the variation of the phase of the transverse magnetisation through

the slice, φ(z), resulting from an HS pulse [302, 303]:

φ(z) = −µ ln

(
−µβ sech (βTRF/2)√

(µβ)2 − (γGzz)2

)
+
γGzz

2β
ln

(
µβ + γGzz

µβ − γGzz

)
(6.15)
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where Gz is the amplitude of the slice selection gradient. As shown in Appendix D

the phase variation described in Equation 6.15 can be rearranged to give:

φ(z) = −µ ln

 1√
1− z2

(
2

∆z
+ 2h(α)

πµ∆z

)2


− µz

(
1

∆z
+

h(α)

πµ∆z

)
ln

1 + z
(

2
∆z

+ h(α)
πµ∆z

)
1− z

(
2

∆z
+ h(α)

πµ∆z

)
 (6.16)

where ∆z is the slice thickness and:

h(α) = ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)
(6.17)

A Taylor expansion2 of both terms makes it clear that the first order variation of the

phase is quadratic in z. It is also clear that the phase variation depends on µ and α,

however, it is independent of β and TRF . Therefore the degree of quadratic variation

in the phase of the transverse magnetisation produced by the pulse can be tailored

using µ. It is important to note, however, that if the flip angle is changed then, to

maintain the same degree of quadratic phase, µ must be modified accordingly. This

effect was not accounted for in previous studies [30].

In addition to controlling the phase variation, µ determines the sharpness of the

slice profile [307]. The dependence of the phase variation and slice profile on µ are

clear from the Bloch simulations of HS pulses with µ = 2, 5 and 8 shown in Figure

6.9.

Addendum: During the write up of this chapter a slight asymmetry in the phase

variation was noticed for µ = 2. This suggests that the pulse isodelay (used to set

the area of the slice-selection refocussing gradient) is not exactly TRF/2, for all µ,

as had been assumed. Further Bloch simulations for the optimal HS pulse (µ=4.25,

β=3040 Hz, TRF=5ms and α = 73◦) designed and used in the later parts of this

chapter suggest that the isodelay for these particular parameters is 0.5035TRF . Fur-

ther simulations showed that using a value of 0.5TRF rather than the more precise

0.5035TRF did not significantly affect the dependence of the voxel signal on the sus-

2As explained by Park et al. [302] the phase profile is approximately quadratic as the Taylor
expansion of both terms in Equation 6.15 are:

ln

(
1√

1− x2

)
=

1

2
x2 +

1

4
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(a) Slice profile (b) Phase variation

Figure 6.9: Bloch simulations of the magnitude and phase across a 3mm slice excited
using a scaled-down full passage hyperbolic secant pulse (α = 90◦ and β = 3040 Hz)
for a representative range of µ = 2 (blue), 5 (green) and 8 (red), demonstrating the
dependence of the slice profile and degree of quadratic phase on µ.

ceptibility gradient, and as such the optimisation of the pulse parameters described

below (with an isodelay of 0.5035TRF ) remains valid.

The Effect of β on the Slice Profile

As described above, the value of β does not affect the variation of the phase across

the slice, however for a pulse with a finite duration, TRF , it does impact upon the

degree of stop-band ripple in the slice profile. As shown in Figure 6.10(a) the finite

duration of the HS pulse means that its amplitude has a discontinuity at the start

and end, this truncation leads to ripples in the stop-band, Figure 6.10(b) and (c).

For comparison with previous work, this truncation is measured using the cut-off,

c, is defined as the ratio of the amplitude at the start or end of the RF pulse to the

peak amplitude [30]:

c =
A0 sech

(
βTRF

2

)
A0 sech (0)

= sech

(
βTRF

2

)
(6.20)

The cut-off, and consequently the size of stop-band ripple, are reduced as β is

increased.
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(a) Discontinuities at the start and
end of the HS pulse

(b) Slice profile on a linear scale (c) Slice profile on a loga-
rithmic scale

Figure 6.10: Graphs illustrating the discontinuities at the start and end of the HS
pulse (a), and Bloch simulations demonstrating the effect of the cut-off (10% (blue),
1% (green) and 0.1% (red)) on the stop-band ripple in the resulting slice profile
displayed with a linear (b) and logarithmic (c) scale. The cut-off shown in (a) is
10%; this is purely for illustrative purposes and is an order of magnitude greater
than is typically used in practice

a Bandwidth TRF Cut-off TE α ∆z
µ (rad mm−2) (kHz) (ms) (%) (ms) (◦) (mm)

1.0 0.25 1.5 4.0 0.02 18 90 3
5.0 1.22 1.5 20.0 0.02 34 90 3
6.8 1.67 3.0 6.6 2.02 21 90 3
10.0 2.45 1.5 20.0 1.80 34 90 3
15.3 3.75 3.0 14.9 2.02 29 90 3

Table 6.1: HS pulse parameters used by Shmueli [30] to reduce signal dropout caused
by through-plane susceptibility gradients in GE-EPI images

6.3 Designing Complex Hyperbolic Secant Pulse

for Slice Selection with Dropout Recovery

6.3.1 Previous Work

In the only previous work in which HS pulses were used to reduce signal dropout in

GE-EPI images [30, 300] the choice of the pulse parameters was based on the theory

of signal recovery for ideal quadratic phase RF pulses described in Section 6.2.1 along

with an element of trial and error. The parameters of the five HS pulses previously

tested are shown in Table 6.1. Shmueli [30] assumed that the pulse bandwidth

was given by µβ/π which as shown in Section 6.2.2 is an underestimate of the true

bandwidth and results in thicker than expected slices being excited. The degree of

quadratic phase, a, was found by fitting a quadratic function to the central 75% of

the phase profile of the pulse (which was determined by Bloch simulation) such that

the theoretical dependence of the signal on a and Gz,s given by Equation 6.4 could

be used to guide the pulse design. Apart from the pulse with a = 1.67 rad mm−2,
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clearly chosen to match the pulse used by Cho and Ro [126], it is not obvious how

the values of µ were chosen and in addition no justification was given for the choice

of the bandwidth, pulse duration, cut-off and echo time. After testing these HS

pulses on an anthropomorphic head phantom Shmueli [30] concluded that “It seems

that a HS90◦ pulse with a C between 1.22 and 2.45 rad mm−2 would result in the

best compromise between overall signal reduction in areas of homogenous field and

signal recovery in inhomogeneous regions3. Certainly a quadratic phase coefficient

of 0.25 rad mm−2 was insufficient for signal recovery in this phantom with a voxel

size of 3 mm.”. This suggests that more work is required to determine the optimal

pulse parameters in a systematic manner for a given echo time and slice thickness.

6.3.2 Optimising the Parameters of an HS Pulse for Uni-

form Signal Recovery

When FMRI data are acquired using GE-EPI with a conventional RF pulse, the

ability to detect brain activations of equal magnitude varies across the brain. This

is because susceptibility gradients cause signal loss and reductions in the BOLD

sensitivity [28, 71]. To reduce this variability the aim of the current work was to

set the parameters of the HS pulse such that the signal response across the range

of through-plane susceptibility gradients, which have been measured at 3 T in the

human head, (−250 < Gz,s < 250 µTm−1) [28, 29], was as uniform as possible.

A HS pulse was designed for an FMRI data acquisition at 3 T which could be

used for both the task-based and resting-state experiments previously described in

Chapter 3. It therefore needed to be compatible with a GE-EPI sequence with a

repetition time of 2 s during which thirty-six 3 mm slices (with 0.3 mm gaps) could

be acquired at an echo time of 30 ms, a field-of-view of 21.2 cm, a 64×64 matrix

and a flip angle, α = 73◦ (the Ernst angle[290] for grey-matter at 3 T for TR=2

s assuming T1 = 1.6 s [287]). In addition the pulse parameters were required to

be within the hardware limits, on the gradient and RF amplitudes, set by the 3 T

GE Discovery MR750 system (General Electric, Waukesha, WI, USA). The pulse

duration was therefore set to 5 ms to match the excitation pulse (designed using

the SLR algorithm), provided as standard by the manufacturer and shown in Figure

6.11. This ensured that the spatial coverage could be maintained, since the same

number of slices could be collected during each repetition time.

3Shmueli [30] use C to represent the degree of quadratic phase, whereas I use a to avoid confusion
with the cut-off.
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(a) SLR pulse (b) Slice-selection gradient

Figure 6.11: Plots showing the SLR pulse and gradient provided by the manufacturer
for slice selection in the GE-EPI sequence on a 3 T GE Discovery MR750 system.
In this example ∆z = 3 mm and α = 90◦.

Determining the Optimal Values of µ and β

Given the choice of pulse duration and flip angle the optimal values of µ and β were

determined by Bloch simulations such that the signal as a function of through-plane

susceptibility gradient was as uniform as possible over the range −250 < Gz,s < 250

µTm−1. From initial simulations, and previous studies [30, 126, 300], the search

space of µ was set to 2 < µ < 8.

To minimise the stop-band ripple the value of β was set close to its maximum

possible value over this range of µ. Depending on the scanner hardware limits β can

be limited by either the maximum gradient or the maximum RF amplitudes. By

rearranging Equation 6.12, and given that ∆fmax = γGz,max∆z

2π
, it can be seen that

the limit imposed by the maximum gradient amplitude (Gz,max = 50 mTm−1) is:

βmax =
πγGz,max∆z

2 cosh−1

[
cosh (πµ)

(
cos(α)− 1

2

√
3+cos2(α)

)
+cos(α)−1

1
2

√
3+cos2(α)−1

] (6.21)

Additionally β could by constrained by the maximum RF amplitude (A0,max = 25

µT), as shown by rearranging of Equation 6.10:

βmax =
γA0,max√[

cos−1(cosh2 (πµ2 ) cosα+sinh2 (πµ2 ))
π

]2

+ µ2

(6.22)

Both the gradient and RF contraints on β are plotted as a function of µ, for a slice

thickness of 3 mm and a flip angle of 73◦, in Figure 6.12. This shows that for all

values of µ tested, β is limited by the maximum gradient amplitude. β was therefore

set to 2.12 kHz (corresponding to c = 1%), close to its maximum possible value for
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Figure 6.12: Limitations on β imposed by the maximum gradient (red line) and RF
amplitudes (blue line) on a GE Discovery MR750 system for a slice thickness of 3
mm and a flip angle of 73◦. For all values of µ tested, β is limited by the maximum
gradient amplitude.

2 < µ < 8.

The steady state voxel signal for grey matter (at TE = 30 ms and TR = 2 s

assuming T1 = 1.6 s [287] and T ∗2 = 66 ms [289]) was determined as a function of µ

and a through-plane linear susceptibility gradient, Gz,s. For each combination of µ

and Gz,s the transverse magnetisation in the x- and y-directions, Mx(z) and My(z),

were found by Bloch simulation for −∆z < z < ∆z (i.e. including the regions either

side of the prescribed slice to incorporate the effect of the stopband ripple and non-

rectangular slice profile). The total signal magnitude was calculated numerically

using:

S =

√[∫ ∆z

−∆z

Mx(z)dz

]2

+

[∫ ∆z

−∆z

My(z)dz

]2

(6.23)

This was normalised relative to the signal4 from a perfectly rectangular slice, of

thickness ∆z. A comparison of the steady-state slice profile at the echo time from

a perfectly rectangular slice and the slice profile from a HS pulse is shown in Figure

6.13.

The normalised signal as a function of µ and Gz,s is shown in Figure 6.14(a).

For comparison this is displayed next to the theoretical predictions of Cho and Ro

4In the steady state, using Equation 18.14 from Haacke et al. [51], the transverse magnetisation
is:

|Mxy|
M0

=

(
1− e−TR/T1

)
sinα

1− cos (α)e−TE/T
∗
2

e−TE/T
∗
2 (6.24)

= 0.472

for the parameters given above. Therefore the signal from a voxel in a perfectly rectangular slice
is:

Sideal = 0.472M0∆z (6.25)

154



Figure 6.13: A comparison of the steady-state slice profile from an HS pulse (blue
line) with the steady-state slice profile from an ideal rectangular slice (green line).
µ = 4.25, β = 3040 Hz, TRF = 5 ms, and α = 73◦ for grey-matter (T1 = 1.6 s and
T ∗2 = 66 ms) when TR = 2 s and TE = 30 ms

[126] given by Equation 6.4; Figure 6.14(b). The ranges covered by the y-axes of

both plots are scaled to match each other using the linear relationship between µ

and a shown in Figure 6.15. As in Shmueli [30], this relationship between µ and a

was determined by fitting a quadratic function to the phase variation (determined

by Bloch simulation) over the central 75% of slice. As mentioned briefly in Section

6.2.1, the discrepancy between the normalised signal predicted by Equation 6.4 and

the Bloch simulations of HS pulses with varying µ is a result of the slice profiles of

the HS pulses being non-rectangular, and thus violating the assumptions required

for Equation 6.4 to be valid. From Figure 6.14(a) it can be seen that a trade-off

between the signal at Gz,s = 0 and the signal at non-zero susceptibility gradients

occurs with increasing µ (i.e. an increasing the degree of quadratic phase). Although

quantitatively different, this trade-off is qualitatively similar to that predicted by

Equation 6.4 and described in Section 6.2.1.

The optimal value of µ was determined by finding the most uniform signal profile

as function of Gz,s. The uniformity was quantified as the ratio of the standard

deviation of the signal, std(S), in the range −250 < Gz,s < 250 µTm−1 to the mean

signal over the same range, S. This ratio is plotted as a function of µ in Figure 6.16.

The optimal value of µ is found to be 4.25.

Given this choice of µ, it is possible to further refine the value of β in an effort

to reduce ripple in the stop-band of the slice profile. For µ = 4.25, ∆z = 3 mm

and α = 73◦ the maximum value of β, given by Equation 6.21, is 4.2 kHz. During

initial testing, this resulted in uncomfortable levels of acoustic noise and vibration

as a result of the switching of the slice-selection gradient. Therefore β was only

increased to 3040 Hz (equivalent to c = 0.1%); this still reduced the stop-band

ripple, whilst keeping the levels of vibration and acoustic noise within acceptable

limits.

The amplitude and phase modulation of the optimised HS pulse, as well as the
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(a) Normalised signal from complex hyper-
bolic secant pulses

(b) Theoretical signal from ideal quadratic
phase pulses

Figure 6.14: (a) The normalised steady-state signal as a function of µ and the
through-plane susceptibility gradient, Gz,s, for HS pulses with TRF = 5 ms and
β = 2.12 kHz when ∆z = 3 mm and TE = 30 ms. (b) The signal predicted by the
theory of Cho and Ro [126] given in Equation 6.4. The range of gradients shown in

both plots −4
(

2π
γTE∆z

)
< Gz,s < 4

(
2π

γTE∆z

)
corresponds to −1044 < Gz,s < 1044

µTm−1

Figure 6.15: A plot of the linear relationship between the µ and the degree of
quadratic phase a for HS pulses with β = 2.12 kHz, TRF = 5 ms and α = 73◦

Figure 6.16: A plot of the ratio std(S)/S as a function of µ. The minimum of
this ratio corresponds to the value of µ with the most uniform signal response for
−250 < Gz,s < 250 µTm−1
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(a) Amplitude modulation (b) Phase modulation (c) Slice-section gradient

Figure 6.17: Plots showing the amplitude and phase modulation of the optimised
HS pulse in addition to the accompanying slice-selection gradient. The pulse has
the following parameters; TRF = 5 ms, α = 73◦, µ = 4.25, β = 3040Hz, A0=12.3 µT
and ∆f = 4598 Hz.

accompanying slice-selection gradient, are shown in Figure 6.17. To summarise, the

pulse was optimised for a 3 T GE Discovery MR750 system with a maximum gradient

amplitude of 50 mTm−1 and a maximum RF amplitude of 25 µT. The RF pulse

duration was set to 5 ms to match the product SLR pulse5 it was replacing such that

the same number of slices could be acquired per TR. The flip angle is 73◦ to maximise

the steady-state signal from grey matter. µ is 4.25 such that the signal as a function

of susceptibility gradient is as uniform as possible over −250 < Gz,s < 250 µTm−1

when the TE is 30 ms and the slice thickness is 3 mm. β is 3040 Hz to minimise

the stop-band ripple in the slice profile. Using Equation 6.10 the maximum pulse

amplitude, A0, is 12.3 µT and the bandwidth, ∆f , calculated using Equation 6.12 is

4598 Hz. At this bandwidth the slice-selection gradient amplitude needed to excite

3 mm thick slices is 31.2 mTm−1.

The steady-state slice profile and phase variation for grey matter (at TE = 30

ms and TR = 2 s assuming T1 = 1.6 s [287] and T ∗2 = 66 ms [289]) using the

optimised HS pulse are shown in Figure 6.18. The normalised steady-state voxel

signal as a function of the through-plane susceptibility gradient is shown in Figure

6.19. As before, the signal for each value of Gz,s was calculated numerically using

Equation 6.23 from the transverse magnetisation in the x- and y-directions, Mx(z)

and My(z), found by Bloch simulation in the range −∆z < z < ∆z. This was

normalised relative to the steady-state signal from a perfectly rectangular slice, of

thickness ∆z. From Figure 6.19 it can be seen that for −250 < Gz,s < 250 µTm−1

the normalised voxel signal is highly uniform, however it is reduced to between

48.2 and 51.8% of the signal from a conventional RF pulse without quadratic phase

5When the slice-selection refocusing lobe is taken into account the total duration of the slice-
selection process for the optimised HS is 7.65 ms compared to 6.16 ms for the SLR pulse. This
moderate difference is a result of the longer isodelay of the HS pulse. This did not affect other
pulse sequence parameters. In particular, the thirty six slices could still be collected within the 2
s TR.
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(a) Slice profile (b) Phase variation

Figure 6.18: Plots showing the steady-state slice profile and phase variation for the
optimised HS pulse in grey matter at TE = 30 ms and TR = 2 s (assuming T1 = 1.6
s [287] and T ∗2 = 66 ms [289])

variation. Signal is recovered (i.e. the signal is greater than when a conventional RF

pulse is used) for through-plane susceptibility gradients more extreme than ±154

µTm−1, as indicated by the dashed lines in Figure 6.19.

Implementation on a 3 T GE Discovery MR750 System

Separate files containing the amplitude and phase modulation of optimised pulse

were generated in MATLAB. Following the addition of a header, using proprietary

software provided by General Electric, these could be played out by the scanner’s

soft- and hardware. The echo-planar imaging pulse sequence provided with the

3 T GE Discovery MR750 system (at software release 22.0) was modified in EPIC

(Extended Programming Environment in C) such that the optimised HS pulse could

be used for signal excitation. An option was added to the user interface, enabling the

user to select the HS pulse in place of the standard SLR pulse. The pulse parameters

required by the scanner’s specific absorption rate (SAR) and gradient amplitude

calculation routines, calculated in MATLAB, were included in the relevant sections

of the pulse sequence code.

Initial Pulse Testing

To validate the simulations used to optimise the parameters of the HS pulse and to

demonstrate the ability of HS pulses to reduce the signal loss resulting from through-

plane susceptibility gradients a series of images were obtained of uniform spherical

phantom6. All data were acquired using the modified GE-EPI sequence on a 3 T GE

6Containing silicone oil (dimethylpolysiloxanes) doped with a gadolinium compound
(tris(2,2,6,6-tetramethyl-3,5-heptanedionate) gadolinium (III)). The longitudinal relaxation time
T1 = 170 ms and the transverse relaxation time T2 = 25 ms. (Part Number: 2359877, General
Electric, Waukesha, WI, USA)
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154 µTm−1-154 µTm−1

Figure 6.19: A plot of the normalised steady-state voxel signal as a function of
the through-plane susceptibility gradient for the optimised HS pulse (blue line)
compared to a conventional RF pulse without quadratic phase variation (green line)
in grey matter at TE = 30 ms and TR = 2 s (assuming T1 = 1.6 s [287] and T ∗2 = 66
ms [289]).

Discovery MR750 system. A quadrature head coil was used for signal transmission

and reception. Initially the scanner was shimmed using the in-built automatic proce-

dure. To model the effects of different through-plane linear susceptibility gradients,

the shim gradient in the slice-selection direction was then deliberately mis-set. At

each different setting of the shim gradient a single 3 mm axial slice with a field-of-

view of 32 cm and a 64 × 64 acquisition matrix was acquired with a TR = 5 s and

TE = 30 ms using a HS pulse with TRF = 5 ms, α = 90◦, µ = 4.25, β = 3040Hz.

The 5 s repetition time of and 90◦ flip angle we chosen to avoid the differences in

steady-state signal resulting from the difference between the T1 of grey matter and

the phantom. The quadrature coil and large field-of-view were selected to enable

straightforward measurements of the signal and background noise.

The signal from a region-of-interest in the centre of the phantom as a function

of the ‘susceptibility’ gradient (induced by mis-setting the shim) was calculated

using tools from FSL (FMRIB’s Software Library); Figure 6.20. It is clear that

the pulse produces a near uniform signal for susceptibility gradients in the range

−250 < Gz,s < 250 µTm−1. Using the same method described earlier, the voxel

signal as a function of the through-plane susceptibility gradient was determined

by Bloch simulation, this was scaled by a constant such that it could be easily

compared to the measured data. It is clear that the variations in signal from the

phantom experiments and simulations closely match, validating the optimisation

procedure performed above.

159



Figure 6.20: Variation in the mean signal from a region-of-interest in the centre of
the phantom as a function of ‘susceptibility’ gradient (induced by mis-setting the
scanner’s shim gradient in the slice-selection direction) for a HS pulse. The error
bars represent the standard deviation of the signal in the ROI. The voxel signal
calculated by Bloch simulation (green line) is shown for comparison

6.4 Evaluating the Impact of the Optimised HS

Pulse In-vivo

To assess the impact of using the optimal HS pulse in FMRI experiments the same

battery of tests described in Section 5.5 were performed using the 3 T GE Discovery

MR750 system on the same six healthy male subjects.

6.4.1 Data Acquisition

Using the methods described in Section 5.5.1 a series of scans were performed on

each of the six subjects. Following localiser and ASSET calibration scans, a single

volume was acquired using a spin-echo EPI (SE-EPI) sequence. A single volume

DIR image, with a SE-EPI readout was then acquired. This was used to produce

a subject specific grey matter mask that was used to restrict later analyses of the

efficacy of the optimised HS pulse to grey matter, the origin of the effects of interest

in FMRI experiments. This was used in preference to segmented high-resolution

structural images because it is distortion matched with the FMRI data. As in

Section 5.5.1 three pairs of functional MRI scans were then acquired. The first

pair used the resting state paradigm, the second pair the motor-task and the third

pair the breath-hold paradigm. One scan of each pair was acquired using a GE-

EPI sequence with the conventional SLR excitation pulse and the other with the

optimised HS pulse. As before, the ordering of the acquisition method (conventional

SLR or optimised HS pulse) within each pair of scans was counter balanced across
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the six subjects.

6.4.2 Data Analysis

As described in Section 5.5.2 all imaging data were converted into the NIfTI-1 data

format, and then processed using tools from FSL. In contrast to the z-shim data

acquired in the previous chapter there was no need combine volumes by SSQ. In

addition to the preprocessing steps performed on the FMRI data described in Section

5.5.2 slice-timing correction was carried out between motion correction and brain

extraction. This accounts for the different acquisition times of each slice within each

volume of data by phase-shifting the Fourier transformed timeseries.

Qualitative Comparison of Signal In Regions with Through-Slice Suscep-

tibility Gradients

Representative slices through the orbitofrontal and inferior temporal regions from

data acquired with SE-EPI, GE-EPI with the SLR excitation pulse and GE-EPI

with the HS pulse were visually compared to determine if signal was recovered from

regions affected by susceptibility gradient induced signal dropout by the HS pulse.

Temporal Signal-to-Noise Ratio

Using the methods described in Section 5.5.2 maps of the temporal signal-to-noise

ratio (TSNR) were calculated from the resting-state FMRI data sets. Maps of the

percentage change in TSNR between the data acquired with the optimised HS and

SLR RF pulses were also calculated for each subject.

Detectability of Motor Activations

The same set of analyses as previously described in Section 5.5.2 were carried out on

the FMRI data acquired whilst the subject performed the motor task. The pressure

measured in the squeeze ball was plotted as a function of time for both acquisition

types to check that each subject performed the task. The regions of the brain

showing significant changes in BOLD signal in response to the motor stimulus were

determined using data acquired with the SLR and HS RF pulses. T-statistic maps

for each subject and acquisition method were calculated and converted to maps of

the thresholded z-statistic. In addition to the analyses described in the previous

chapter, a map of the percentage change in the unthresholded t-statistic (masked

to show results in only those voxels with significant activation from both FMRI

acquisitions) between the data acquired using SLR and HS RF pulses was calculated

for each subject. Finally the mean percentage change in the unthresholded t-statistic
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and TSNR in regions of significant activation (common to the data acquired using

both methods) was calculated for each subject.

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

The set of analyses described in Section 5.5.2 were performed on the data acquired

whilst the subject performed the breath-hold task. To confirm that each subject

adhered to the task, the normalised signal from the respiratory bellows was plotted

as a function of time for both acquisition types. In addition the variation in the

mean percentage change in BOLD signal, from voxels containing grey matter, was

calculated as a function of time for all six subjects separately. The regions of the

brain showing significant changes in BOLD signal in response to the breath-hold

stimulus were calculated from the data acquired with both the SLR and HS RF

pulses. The t-statistic maps for each subject and acquisition method were converted

to maps of the thresholded z-statistic. In addition to the analyses described in the

previous chapter, maps of the change in unthresholded t-statistic when the HS pulse

was used in place of the SLR pulse were calculated. To aid interpretation these maps

were masked to show only those voxels whose signal increased when the HS pulse

was used. Both the thresholded z-statistic and masked t-statistic difference maps

were used to determine if increases in signal were matched by increases in BOLD

sensitivity.

Detectability of Resting-State FMRI Networks

Finally the set of analyses outlined in Section 5.5.2 were performed on the resting-

state FMRI data. Probabilistic Independent Component Analysis [220] as imple-

mented in MELODIC was performed to determine if the ten resting-state networks

described in Smith et al. [169] were detectable from data acquired with the SLR

and HS RF pulses. Seed based analyses were also carried out to determine whether

resting-state fluctuations in the regions of recovered signal in the orbitofrontal and

inferior temporal lobes were correlated with fluctuations in the default-mode and

sensorimotor networks.

6.4.3 Results

Qualitative Comparison of Signal In Regions of Through-Slice Suscepti-

bility Gradient

Representative slices through the orbitofrontal and inferior temporal regions from

data acquired with SE-EPI, GE-EPI with the SLR excitation pulse and GE-EPI

with the HS pulse are shown for each subject in Figures 6.21 and 6.22. Comparing

162



Figure 6.21: Representative slices through the orbitofrontal cortex of the six subjects
from images acquired with SE-EPI (top-row), GE-EPI with the conventional SLR
excitation pulse (middle-row) and GE-EPI with the HS pulse (bottom-row). The
intensity range was chosen on a per subject and per acquisition basis such that the
areas of signal dropout and recovery could be readily appreciated.

the images acquired with SE-EPI and GE-EPI using the conventional SLR pulse,

signal dropout is observed in both the orbitofrontal and temporal regions for all six

subjects. Using the HS pulse signal is recovered in some, but not all, voxels in these

regions. The reduction in signal in regions free from susceptibility gradients, caused

by the HS pulse, causes a visible reduction in the signal-to-noise ratio.

Temporal Signal-to-Noise Ratio

Maps of the temporal signal-to-noise ratio for each subject for data acquired with

the SLR pulse and the HS pulse are shown for slices through the orbitofrontal and

inferior temporal regions in Figures 6.23 and 6.24. The percentage change in the

temporal signal-to-noise ratio between data acquired with SLR and HS pulses is

shown in Figure 6.25.

The TSNR increases to a level comparable with voxels unaffected by through

plane susceptibility gradients when the HS pulse is used. However, from Figure

6.25, the HS pulse results in decreases in TSNR of up to 60% in large areas of the

brain7. Focussing specifically on grey matter, on average across all subjects the

TSNR increased in 10.4% of voxels containing grey matter although it was reduced

7Inspection of the TSNR maps in Figure 6.24 shows that the very large percentage increases
in TSNR observed in regions affected by signal dropout in Figure 6.25 are a result of very small
TSNR in these regions when data is acquired using the SLR pulse (rather than a very large TSNR
in these regions when the HS pulse is used).
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Figure 6.22: Representative slices through the inferior temporal lobes of the six sub-
jects from images acquired with SE-EPI (top-row), GE-EPI with the conventional
SLR excitation pulse (middle-row) and GE-EPI with the HS pulse (bottom-row).
The intensity range was chosen on a per subject and per acquisition basis such that
the areas of signal dropout and recovery could be readily appreciated.
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Figure 6.23: TSNR maps for representative slices through the orbitofrontal cortex of
the six subjects calculated from data acquired with GE-EPI using the conventional
SLR pulse (top-row) and with the HS pulse (bottom-row).
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Figure 6.24: TSNR maps for representative slices through the inferior temporal lobes
of the six subjects calculated from data acquired with GE-EPI using the conventional
SLR pulse (top-row) and with the HS pulse (bottom-row).
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Figure 6.25: Maps showing the percentage change in the TSNR between data ac-
quired using the SLR and optimised HS RF pulses. The top row shows representa-
tive slices through the orbitofrontal cortex, and the bottom row, slices through the
inferior temporal lobes for the six subjects.
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Grey matter voxels with Grey matter voxels with
Subject increased TSNR (%) decreased TSNR (%)

1 8.5 85.0
2 6.6 86.2
3 5.7 86.1
4 22.1 68.9
5 15.6 72.0
6 3.6 83.9

Mean 10.4 80.4

Table 6.2: The percentage of grey matter voxels showing differences in TSNR when
the optimised HS pulse is used in place of the conventional SLR RF pulse.

in 80.4%. Subject specific changes are detailed in Table 6.2.

Comparing the Detectability of BOLD Signal Changes Resulting From

the Motor Task

The pressure recorded in the squeeze ball throughout the FMRI scans whilst the

subjects performed the motor task are shown in Figure 6.26. These confirm that all

subjects performed the task over the full duration of both FMRI data acquisitions.

As described in the previous chapter, because the pressure in the squeeze ball was

calibrated prior to each FMRI scan, it is not possible to determine if the differences

in maximum percentage pressure observed in the data from subject four are due to

them either squeezing the ball harder during the calibration or squeezing the ball

less hard during the task itself.

Thresholded z-statistic maps for each subject and acquisition method are shown

in Figure 6.27. From these maps, it can be seen that the motor paradigm results

in statistically significant BOLD signal changes in the left motor cortex and the

supplementary motor area in all six subjects in data acquired using both the con-

ventional SLR and HS RF pulses. As shown in Table 6.3 the peak z-statistic was

lower for data acquired with the HS pulse in four of the six subjects.

Maps of the percentage change in the unthresholded t-statistic between the data

acquired using SLR and HS RF pulses (masked to show results in only those voxels

with significant activation from both FMRI acquisitions) are shown in Figure 6.28.

The mean percentage change in the unthresholded t-statistic for these voxels is

shown for each subject in Table 6.4. On average, across the six subjects, the mean

reduction in the TSNR in the same region of was 21.3 %. Using Equation 4.1 from

Chapter 4 the same percentage reduction would be expected in the t-statistic. A

reduction of 17.2 % in the unthresholded t-statistic was observed which is moderately

less than expected. However, at the individual subject level this proportionality is

much less clear, for example a reduction of 0.5% in the TSNR is accompanied by a
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 6.26: The pressure recorded in the squeeze ball (as a percentage of the
maximum pressure measured during calibration) for all six subjects for FMRI data
acquired with the SLR RF pulse (blue line) and HS pulse (green line). The shaded
grey regions illustrate the periods in which the subject was instructed every 2 s to
squeeze the ball in their right hand.

2.3

13

Figure 6.27: Thresholded z-statistic maps, showing voxels with significant changes in
BOLD signal in response to the motor task, overlaid on the GE-EPI data from which
they were calculated. Maps are shown for each subject acquired with the SLR (top-
row) and HS pulse (bottom-row) for representative slices though the motor cortex
and supplementary motor area.

167



Peak z-statistic

Subject GE-EPI GE-EPI with HS pulse

1 13.2 9.3
2 12.9 11.3
3 10.9 11.2
4 9.8 8.3
5 12.1 8.8
6 11.1 11.2

Mean 11.7 10.0

Table 6.3: Peak z-statistic from the GLM analysis of the motor task FMRI data
acquired with conventional GE-EPI and GE-EPI with the HS pulse.
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Figure 6.28: Maps of the percentage change in the unthresholded t-statistic between
the motor-task FMRI data acquired using SLR and HS RF pulses overlaid on the
GE-EPI data acquired with the SLR pulse. The maps were masked to only show
changes in the area with significant BOLD activations in data acquired with both
the SLR and HS pulses.

reduction of -23.1% for subject five. This may be due to difficulties calculating the

change in TSNR in areas near the edge of the brain, it would be artifactually large

if motion correction and registration of the two data sets during data preprocessing

was imperfect.

Subject Mean change in t-statistic (%) Mean Change in TSNR (%)
1 -20.8 -23.3
2 -25.2 -33.6
3 -5.7 -31.2
4 -15.6 2.4
5 -23.1 -0.5
6 -12.7 -41.4

Mean -17.2 -21.3

Table 6.4: Mean percentage change in t-statistic for the motor task and TSNR in the
regions of significant BOLD signal change that were common to both data acquired
with the SLR and HS pulses.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 6.29: Variations in the subjects breathing during acquisition of the breath-
hold FMRI data with both the SLR (blue line) and HS (green line) RF pulses. The
shaded grey regions illustrate the periods in which the subject was instructed to
hold their breath.

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

The variations in the subjects’ breathing, measured using the respiratory bellows

throughout the breath-hold FMRI scans, are shown in Figure 6.29 for all six subjects.

These demonstrate that all subjects performed the paced breathing and breath-

holding on expiration as instructed throughout both FMRI acquisitions. The mean

percentage changes in BOLD signal are shown, for all voxels containing grey matter

as a function of time, for all six subjects are shown in Figure 6.30. Subject specific

grey matter masks were produced, as described previously, by thresholding and

binarising the DIR-EPI data. These plots show that the same percentage changes

in BOLD signal are observed with the SLR and HS pulses (i.e. reductions in the

signal, S, caused by the HS pulse are matched by proportional reductions in the

BOLD signal change ∆S).

Thresholded z-statistic maps showing voxels with significant changes in BOLD

signal as a result of the breath-hold task for each subject and acquisition method are

shown for representative slices through the orbitofrontal and inferior temporal re-

gions in Figures 6.31 and 6.33. In addition, maps of the change in the unthresholded

t-statistic (masked to show only regions where the GE-EPI signal increased when

the HS pulse was used in place of the SLR pulse) are shown in Figure 6.32. Visual

inspection of both thresholded z-statistic and unthresholded t-statistic maps shows

that the effect of the HS pulse is not consistent across subjects. For the first subject
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 6.30: The mean percentage change in BOLD signal for grey matter voxels, in
response to the breath-hold task, for all six subjects for data acquired with the SLR
RF pulse (blue-line) and HS pulse (green-line). The shaded grey regions illustrate
the periods in which the subject was instructed to hold their breath.

there is an overall reduction in the number of grey matter voxels with statistically

significant changes in the BOLD signal when the HS pulse is used. In addition the

thresholded z-statistic is generally reduced. Furthermore, from the GE-EPI images

on which the z-statistic maps are overlaid, even though signal is recovered in the

orbitofrontal and inferior temporal regions matching increases in statistically signif-

icant BOLD signal changes are not seen. However increases in the unthresholded

t-statistic are observed, Figure 6.32. For subject two the number of grey matter

voxels with statistically significant changes in the BOLD signal is again reduced

when the HS pulse is used, although to a much smaller extent. From the underlying

GE-EPI images signal is recovered in the orbitofrontal and left inferior temporal

lobe, but the BOLD sensitivity, as measured by the thresholded z-statistic, is not

increased. However increases in the unthesholded t-statistic are again observed in

these regions. The picture is different again for the third and fourth subjects; the

overall number of grey matter voxels with statistically significant changes in the

BOLD signal is reduced when the HS pulse is used, but for both subjects signal

and BOLD sensitivity is increased in the inferior temporal and orbitofrontal regions

when the HS pulse is used. For subjects five and six the reduction in the number of

grey matter voxels with statistically significant changes in the BOLD signal with the

HS pulse is, like subject two, small. Like subjects three and four both the GE-EPI

signal and BOLD sensitivity are increased in the inferior temporal and orbitofrontal

170



2.3

12

Figure 6.31: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the breath-hold task, overlaid on the GE-EPI data
from which they were calculated. Maps are shown for each subject acquired with
the SLR (top-row) and HS pulse (bottom-row) for representative slices though the
orbitofrontal cortex.

0

05

-5

Figure 6.32: Maps of the change in the unthresholded t-statistic masked to show only
regions where the GE-EPI signal increased when the HS pulse was used in place of
the SLR pulse, for all six subjects for representative slices through the orbitofrontal
(top-row) and inferior temporal regions (bottom-row).

regions when the HS pulse was used.

Detectability of Resting-State FMRI Networks with PICA

The ten independent components from the probabilistic independent component

analyses which visually matched the resting-state networks described in Smith et al.

[169] are shown in Figure 6.34. The ten networks were readily identified from the set

of twenty independent components resulting from the analysis of the data acquired

with the SLR pulse. The remaining ten components were artifactual, resulting

from, for example, subject motion and blood flow in sagittal sinus. However, the

ten distinct networks were more difficult to identify in the independent components

of the data acquired with the HS pulse. As seen in the right-hand columns of Figures

6.34(a) to 6.34(c) the medial, occipital and lateral visual networks were observed as

a single component. The components identified as the default mode and cerebellar

networks, Figures 6.34(d) and 6.34(e), are very similar between the SLR and HS

171



2.3

12

Figure 6.33: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the breath-hold task, overlaid on the GE-EPI data
from which they were calculated. Maps are shown for each subject acquired with
the SLR (top-row) and HS pulse (bottom-row) for representative slices though the
inferior temporal regions.

pulse data. The auditory and sensorimotor networks are again combined into a

single component (Figures 6.34(f) and 6.34(g)) as are the left and right fronto-

parietal networks (Figures 6.34(i) and 6.34(j)). The spatial extent of the executive

control network is reduced in the component identified from the HS pulse data;

Figure 6.34(h).

Detectability of Resting-State FMRI Networks Using Seed Based Anal-

ysis

In all six subjects, for data acquired with the conventional SLR pulse regions with

significant correlation of the resting-state BOLD signal from a seed in the posterior

cingulate are observed in the left and right lateral parietal cortex as well as in the

medial prefrontal cortex, Figure 6.35. These areas are the main regions involved in

the default mode network. For data acquired with the HS pulse a similar pattern of

correlation is observed, however in general the z-statistics are lower. Interestingly,

in all six subjects, in the region of signal recovery in the orbitofrontal cortex the

BOLD signal variations are significantly correlated with the posterior cingulate seed,

suggesting it may be a part of the default mode network, Figure 6.36. Apart from

subjects five and six, significant correlations with the posterior cingulate seed are

not observed in the regions of recovered signal in the inferior temporal regions. The

regions where the BOLD signal variations are significantly correlated with resting-

state signal changes from a seed in the left motor cortex are shown in Figures 6.38 to

6.40. As expected, since they form a functional network, the supplementary motor

area and right motor cortex are significantly correlated with the left motor cortex in

data acquired with both the SLR and HS pulses. The thresholded z-statistic maps,

calculated from data acquired with the HS pulse, also show significant correlations
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(a) Medial Visual? (b) Occipital Pole
Visual?

(c) Lateral Visual? (d) Default Mode (e) Cerebellar

(f) Sensoriomotor† (g) Auditory† (h) Executive
Control

(i) Right Fronto-
Parietal‡

(j) Left Fronto-
Parietal‡

Figure 6.34: Thresholded z-statistic maps (3 < z < 15) for the ten independent
components from the probabilistic independent component analyses which visually
matched those described in Smith et al. [169]. The three most informative orthog-
onal slices are shown for each network. The left column in each sub-figure contains
independent components from the data acquired using the SLR pulse and the right
column the components from the HS pulse data. The components are shown over-
laid on the MNI152 standard space template (re-sampled to 4 mm isotropic voxel
size).?The medial occipital pole and lateral visual networks were observed as a sin-
gle component in the HS data. †The auditory and sensoriomotor networks were
observed as a single component in the HS data. ‡The left and right fronto-parietal
networks were observed as a single component in the HS data.
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Figure 6.35: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from
a seed in the posterior cingulate, for data acquired with the SLR pulse (top-row)
and HS pulse (bottom-row). Representative axial slices though posterior cingulate
regions are shown for each subject.

2.3

34

Figure 6.36: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the posterior cingulate, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though the orbitofrontal region
are shown for each subject.

in the orbitofrontal and temporal regions for subjects two and four; whether this is

artifactual or indicating that these regions are functionally connected to the rest of

the motor network is unclear.

6.4.4 Discussion and Conclusions

The results of the experiments performed on the six volunteers demonstrate the

potential benefits of the using HS pulses for signal excitation in FMRI experiments.

MR signal was recovered in parts of the orbitofrontal and inferior temporal regions,

whilst maintaining the temporal resolution and spatial coverage of the images. The

areas of unrecovered signal may be caused by susceptibility gradients in the fre-

quency and phase encoding directions and through slice susceptibility gradients

greater than those recoverable with the HS pulse. As predicted by Bloch simu-

lations of the pulse, the localised signal recovery comes at the cost of approximately
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Figure 6.37: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the posterior cingulate, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though inferior temporal regions
are shown for each subject.

2.3

34

Figure 6.38: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the left motor cortex, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though the left and right motor
cortex and supplementary motor area are shown for each subject.

2.3

34

Figure 6.39: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the in the left motor area, for data acquired with the SLR pulse (top-row)
and HS pulse (bottom-row). Representative axial slices though orbitofrontal region
are shown for each subject.
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Figure 6.40: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the left motor area, for data acquired with the SLR pulse (top-row) and HS
pulse (bottom-row). Representative axial slices though inferior temporal regions are
shown for each subject.

50% loss of signal in regions of the brain unaffected by through-slice susceptibility

gradients. These changes in signal translate to increases in temporal signal-to-noise

in the orbitofrontal and inferior temporal regions, although these are accompanied

by losses of up to 60% in TSNR elsewhere. The changes in TSNR do not translate

in a straightforward way into BOLD sensitivity changes.

The results of the analysis of the FMRI data acquired whilst the subject per-

formed the motor task show that, despite the reduction in TSNR, statistically sig-

nificant changes in the BOLD signal could still be detected in the motor cortex and

supplementary motor area. However, the unthesholded t-statistic in the areas of

significant BOLD signal change were reduced. These results are in line with the

findings of Chapter 4; specifically that the t-statistic resulting from a GLM analysis

is proportional to the TSNR and percentage BOLD signal change. Whilst the de-

tection of activations in the motor cortex is promising, it does not necessarily imply

that BOLD signal changes induced by other FMRI paradigms will be detectable

when the HS pulse is used. Specifically, if a paradigm induces smaller changes in

BOLD signal than the motor task, as shown in Chapter 4, the t-statistic may fall

below the level deemed to be statistical significant because of the reduction in TSNR

when the HS pulse is used.

The changes BOLD sensitivity in voxels containing grey matter were assessed

with a breath-hold paradigm. The results were inconsistent across the six subjects

scanned. Inspection of the changes in unthresholded t-statistic when the HS pulse

was used in place of the conventional SLR pulse show increases in the regions of

recovered MR signal. However, statistically significant breath-hold induced BOLD

signal changes in these regions were only detected in four out of the six subjects. In

addition, in three of the subjects large reductions were observed in the number of

voxels with statistically significant activations in regions unaffected by susceptibility
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gradients.

The cause of the variations in significant BOLD signal changes between subjects

is not clear; as shown earlier task compliance and mean grey matter BOLD signal

changes were similar across subjects. The variation could arise from the order in

which the data were acquired, however no direct correlation is obvious. FMRI data

was acquired first with the conventional SLR pulse for subjects one, four and five

and second for subjects two, three and six. Further work is required to understand

the causes of this subject-to-subject variability; to determine if it is a result of

the breath-hold task or variability in the efficacy of the HS pulse across subjects.

For example the breath-hold paradigm could be replaced by a more technically

challenging experiment in which the subject breathes carbon dioxide [310], as this

would remove the variability in the execution of the breath-hold task. Alternatively

breath-hold data from a larger group of subjects could be acquired to see if the

variability in BOLD signal changes is present in a bigger sample.

The probabilisitic independent component analyses of the resting-state data show

that the reductions in TSNR caused by the HS pulse make it more difficult to identify

the common resting-state functional networks described in Smith et al. [169]. In data

acquired with the conventional SLR pulse, each independent component contains a

single resting-state network, however when the HS pulse was used several networks

were combined into a single component. This could lead to problems when trying

to determine the functional connections in the brain.

The results of the seed-based analysis suggest that the regions of the orbitofrontal

cortex, previously obscured by signal dropout, may potentially be functionally con-

nected to the default mode network. As noted in Chapter 5 this result is in agree-

ment with the very recent findings of Dalwani et al. [299]. Using a GE-EPI pulse

sequence modified to enable z-shimming they found similar significant correlations

to the default mode network in the orbitofrontal cortex. In two out of the six

subjects significant correlations between the orbitofrontal region and the motor net-

work were also found. Without further experiments it is not possible to determine

whether these correlations imply functional connections that were previously not

seen because of signal dropout.

6.5 Discussion and Conclusions

Building on the previous experiments using tailored RF pulses [30, 126, 132] I have

optimised the parameters of a full-passage scaled-down complex hyperbolic secant

pulse to recover signal in regions of the brain affected by susceptibility induced

dropout. I describe a systematic approach that can be used to design HS pulses

based on the slice thickness and echo time required for an FMRI experiment, as
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well as the hardware constraints of the MRI system. Bloch simulations were used to

determine the HS pulse parameters required to produce a uniform signal response

across the range of susceptibility gradients typically present in the head, as the

previous theoretical model [126] was shown to be inaccurate. An expression for

the bandwidth of a HS pulse (when used for signal excitation) was derived for

the first time. This enabled the amplitude of the slice selection gradient to be

calculated correctly, meaning that slices with the prescribed slice thickness were

excited. Experiments in a phantom demonstrated the ability of the HS pulse to

recover susceptibility gradient induced signal losses. A series of experiments were

then performed in six healthy volunteers to assess whether these improvements in

signal translated to improvements in the detectability of task-based and resting-

state BOLD signal changes. Reductions in the signal dropout were observed in

parts of the orbitofrontal and inferior temporal regions and the TSNR increased

in the same areas. However, this was not without cost; reductions of up to 60%

in the TSNR were measured in regions unaffected by susceptibility gradients. The

changes in BOLD sensitivity across the grey matter, assessed using a breath-hold

task, were inconsistent across the six subjects; in several subjects the improvements

in signal and TSNR were not matched by increases in BOLD sensitivity. However

in the remaining four subjects promising improvements were observed. The impact

of the HS pulse on resting-state FMRI data differed depending on the method of

data analysis. With a seed based approach significant correlations were observed

between the region of recovered signal in the orbitofrontal cortex and the default

mode network in all six subjects, suggesting it could form part of the default mode

network. However, when analysed with independent component analysis it became

harder to identify common resting-state networks from amongst the independent

components.
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Chapter 7

Combining Gradient and

Radiofrequency Pulse Based

Methods to Reduce Signal

Dropout

7.1 Introduction

In the previous two chapters it was shown that signal dropout caused by through-

plane susceptibility gradients can be reduced using either z-shimming or quadratic

phase RF pulses. However, even with these techniques some areas of signal dropout

remain caused by susceptibility gradients in both the frequency and phase encoding

directions [28, 29]. As described in Chapter 2 and Appendix A, in-plane susceptibil-

ity gradients cause image distortion and shifts of the signal in k-space. These shifts

modify the echo time and, if they are large enough, cause the echo to fall outside the

window of signal acquisition leading to signal dropout [70, 71]. A number of meth-

ods have been proposed to recover the signal from these areas. Deichmann et al. [28]

corrected for susceptibility gradients in the phase encoding direction by the addition

of a compensatory gradient pulse in the phase encoding direction. Specifically, they

demonstrated signal recovery in composite images formed (by weighted square-root

sum-of-squares) from three images acquired with different z-shim and phase-encode

compensatory gradients. A single step method was then developed; optimising the

slice angle, the direction of k-space traversal and the areas of the z-shim and phase-

encode compensatory gradients to maximise the BOLD sensitivity for a region of

interest or across the whole brain [70, 71, 124]. Even with compensation for sus-

ceptibility gradients in the phase encoding direction, some areas of signal dropout

remain. Weiskopf et al. [29] demonstrated that the signal in these areas could be
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recovered using compensatory gradient pulses in the frequency encoding direction.

Recently, Rick et al. [125] combined z-shimming with compensatory gradient pulses

in both the frequency and phase encoding directions with the aim of maximising

BOLD sensitivity in amygdala and orbitofrontal regions. They acquired data in a

single step after determining the optimal slice-specific compensatory gradients from

a field map.

In this chapter I investigate the potential of combining the quadratic phase RF

pulse, described in Chapter 6, with compensation gradients in frequency and/or

phase encoding directions to further reduce the areas of signal dropout.

7.2 Pulse Sequence Programming

The modified echo-planar imaging pulse sequences using hyperbolic secant excita-

tion pulses and z-shimming, described in the previous two chapters, were combined

and extended (at software release 22.0). The option to play out a slice specific

compensatory gradients in both the frequency and phase encoding directions was

added. The shift of the signal in k-space produced by the compensatory gradients in

the frequency (δkx,sh) and phase encoding (δky,sh) directions were controlled using

three, direction specific, parameters; the number of shim steps (Nx,shim and Ny,shim),

a parameter to allow the shift to be set in units of the voxel size (βx and βy) and the

shim number (ζx and ζy). The k-space offset in the frequency encoding direction is

given by:

δkx,sh =
1

∆xβx

(
ζx −

Nx,shim + 1

2

)
(7.1)

In the phase encoding direction the k-space offset is:

δky,sh =
1

∆yβy

(
ζy −

Ny,shim + 1

2

)
(7.2)

Here ∆x and ∆y are the the voxel sizes in the frequency and phase encoding direc-

tions respectively. The values of Nx,shim, Ny,shim, Nz,shim, βx, βy, βz, ζx, ζy, and ζz

are supplied to the pulse sequence via a text file. The position of the compensatory

gradient pulses within the modified GE-EPI pulse sequence are shown in Figure 7.1.
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Figure 7.1: Schematic of the GE-EPI pulse sequence, modified to include the opti-
mised hyperbolic secant RF pulse and to enable compensatory gradient pulses in the
slice selection (z-shim), phase encoding (y-shim) and frequency encoding (x-shim)
directions. Fat suppression was carried out with the CHESS pulse (not shown),
described in Chapter 2, played out prior to the hyperbolic secant excitation pulse.

7.3 Determing the Impact of Compensatory Gra-

dients in the Frequency and Phase Encoding

Directions on Signal Dropout

7.3.1 Introduction

The modified GE-EPI pulse sequence was used to determine the impact on signal

dropout of using the optimised hyperbolic secant pulse with compensatory gradients

in the frequency and phase encoding directions.

7.3.2 Methods

A single volume, preceded by four dummy acquisitions, was acquired of a healthy

male volunteer using the conventional GE-EPI pulse sequence on the a 3 T GE Dis-

covery MR750 system. The volunteer’s head was aligned so that the line intersecting

the anterior and posterior commissure was in the axial plane of the scanner. An

eight-channel phased array head coil was used for signal reception and the body coil

for RF transmission. Thirty-six 3 mm slices with 0.3 mm slice gaps were acquired

with a 21.2 cm field-of-view and a 64×64 acquisition matrix in a sequential manner

from the top to the bottom of the head. The view order in k-space was bottom-up

181



(i.e. positive phase encode gradient blips) as shown in Figure A.1(c). The repetition

time was 2 s and the echo time was 30 ms. The ASSET acceleration factor was two.

The CHESS pulse was used for fat suppression and the signal was excited using a

73◦ SLR pulse, as described in Chapter 2.

Twenty five volumes, preceded by four dummy acquisitions, were then acquired

using the modified GE-EPI pulse sequence for all combinations of δkx,sh = −1
∆x

, −1
2∆x

,

0, 1
2∆x

, 1
∆x

and δky,sh = −1
∆y

, −1
2∆y

, 0, 1
2∆y

, 1
∆y

. The same compensatory gradients

were used for all slices and the z-shim gradient was not used. All other imaging

parameters were the same as for the data acquired with the conventional GE-EPI

sequence.

To determine the overall signal recovery when images were acquired with dif-

ferent compensatory gradients a total of ten maximum intensity projection (MIP)

images were produced. These included a MIP of all 25 volumes, a MIP of the five

volumes acquired with δky,sh = 1
∆y

and δkx,sh = −1
∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
, a MIP of the

five volumes acquired with δky,sh = 1
2∆y

and δkx,sh = −1
∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
and so on,

for all combinations of images shown in Figure 7.2.

7.3.3 Results

Representative slices through the orbitofrontal and inferior temporal regions of data

acquired with conventional GE-EPI are shown in Figure 7.3. As expected from the

previous chapters, significant signal dropout can be seen. Representative slices from

all twenty volumes of data acquired with the modified GE-EPI acquisition and all

ten MIPs, described above, are shown for the orbitofrontal cortex in Figure 7.4 and

inferior temporal regions in Figure 7.5.

Firstly, focussing on the slice through the orbitofrontal region, shown in Figures

7.3(a) and 7.4, it can be seen that when the HS pulse is used in the absence of any

compensatory gradients (δkx,sh = 0 and δky,sh = 0 highlighted in Figure 7.4 with

a yellow outline) signal is recovered in the medial anterior part of the orbitofrontal

cortex. For the largest compensatory gradients (δkx,sh = −1/∆x, δkx,sh = 1/∆x,

δky,sh = −1/∆y and δky,sh = 1/∆y) some signal is recovered in a small number

of voxels, however signal is lost from the majority of remaining voxels. The voxels

showing increased signal with these large compensation gradients also show signal

recovery with smaller compensation gradients (δkx,sh = −1/2∆x, δkx,sh = 1/2∆x,

δky,sh = −1/2∆y and δky,sh = 1/2∆y), although signal is again reduced in a large

number of other voxels. This suggests that most susceptibility gradients present in

the had result in shifts of the signal in k-space in the ranges −1/∆x < δkx,s < 1/∆x

and −1/∆y < δky,s < 1/∆y. When all twenty five images are combined using a

maximum intensity projection no signal dropout is observed (blue outline in Figure
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Figure 7.2: A schematic showing the ten maximum intensity projections calculated
from the twenty five volumes of data acquired with all combinations of δkx,sh =
−1
∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
and δky,sh = −1

∆y
, −1

2∆y
, 0, 1

2∆y
, 1

∆y
.

(a) Orbitofrontal
region

(b) Inferior
temporal region

Figure 7.3: Representative slices through the orbitofrontal and inferior temporal
regions of an image acquired with the conventional GE-EPI pulse sequence.
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Figure 7.4: Images demonstrating the impact of using the HS pulse and twenty-five
combinations of δkx,sh = −1

∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
and δky,sh = −1

∆y
, −1

2∆y
, 0, 1

2∆y
, 1

∆y
for a

single representative slice through the orbitofrontal cortex. MIPs are shown in the
separate column on the right and separate row at bottom of the figure. The acquired
images and MIPs are arranged in an identical manner to the schematic shown in
Figure 7.2. They are all displayed using the same colour scale.
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Figure 7.5: Images demonstrating the impact of using the HS pulse and twenty-five
combinations of δkx,sh = −1

∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
and δky,sh = −1

∆y
, −1

2∆y
, 0, 1

2∆y
, 1

∆y
for a

single representative slice through the inferior temporal regions. MIPs are shown
in the separate column on the right and separate row at bottom of the figure. The
acquired images and MIPs are arranged in an identical manner to the schematic
shown in Figure 7.2. They are all displayed using the same colour scale.

185



7.4). When the five images acquired with compensation gradients in the frequency

encoding direction δkx,sh = −1
∆x
, −1

2∆x
, 0, 1

2∆x
, 1

∆x
but without any compensation gra-

dient in the phase encoding direction (δky,sh = 0) are combined only a small region

of dropout remains in the central anterior portion of the orbitofrontal cortex (red

outline in Figure 7.4). In contrast, when the five images acquired with compensation

gradients in the phase encoding direction δky,sh = −1
∆y
, −1

2∆y
, 0, 1

2∆y
, 1

∆y
and without

any compensation gradient in the frequency encoding direction (δkx,sh = 0) are

combined two larger regions of dropout remain in the more lateral portions of the

orbitofrontal cortex (green outline in Figure 7.4).

Secondly, focussing on the slice through the inferior temporal region, Figures

7.3(b) and 7.5, signal is recovered in the a part of the left inferior temporal lobe

when the HS pulse is used in the absence of any compensatory gradients. Combining

all twenty five images using a MIP (blue outline in Figure 7.5) only one small area

of dropout remains in the right inferior temporal region. As above, the shift of

the signal in k-space as a result of susceptibility gradients appear to all be in the

ranges −1/∆x < δkx,s < 1/∆x and −1/∆y < δky,s < 1/∆y. In addition, signal is

recovered in a greater number of voxels when the compensation gradients are only

in the frequency encoding direction (red outline in Figure 7.5) compared to when

they are only in the phase encoding direction (green outline in Figure 7.5).

7.3.4 Discussion and Conclusion

The results above show that the areas of unrecovered signal in images acquired with

the HS pulse can be reduced with the addition of compensatory gradients in the

frequency and phase encoding directions. The maximum intensity projection of the

data acquired with all twenty five combinations of compensatory gradients had only

one small area of remaining dropout in the right inferior temporal region. Acquir-

ing FMRI data with twenty five shim combinations would however be impractical

because of the twenty five fold decrease in the temporal resolution. To reduce this

loss of temporal resolution compensation gradients could be limited to either the

frequency or phase encoding direction. For compensation gradients in the phase

encoding direction only, the MIP has two residual areas of dropout in the lateral

portions of the orbitofrontal cortex as well as areas of dropout in the more poste-

rior regions of the temporal lobes. In contrast, with compensation gradients only

in the frequency encoding direction the MIP shows signal dropout is reduced in a

greater number of voxels. Given these observations and because the component of a

susceptibility gradient in the phase encoding direction (and by extension the signal

dropout it causes) can potentially be reduced by tilting the slices [70, 71, 124], the

combination of the HS pulse and compensatory gradients in the frequency encoding
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direction appears the most promising method for signal recovery.

7.4 Investigating the Impact of Slice Orientation

on Signal Dropout

7.4.1 Introduction

Given the results of the previous experiment, the effect of the angle of the slice on

the amount of signal dropout was investigated for data acquired with the HS pulse

and compensatory gradients in the frequency encoding direction only.

7.4.2 Methods

A two-step approach was investigated, with compensatory gradients in the frequency

encoding direction. In the previous experiment it was shown that the k-space signal

offsets resulting from susceptibility gradients were in the range −1/∆x < δkx,s <

1/∆x. Signal recovery from this range of susceptibility gradients can be achieved if

two images were acquired; the first with δkx,sh = −1
2∆x

and the second with δkx,sh =
1

2∆x
. However, this would result in large reductions in signal in the regions unaffected

by susceptibility gradients because of the effect of the low pass filtering of the k-space

data1; the compensation gradients would mean that the largest signal from these

homogeneous regions would occur very close to the edge of the k-space acquisition

window and would therefore by attenuated by the filter. It was therefore decided

to investigate the use of δkx,sh = −3
10∆x

and 3
10∆x

, because the signal from regions

of homogeneous field is then not shifted to the very edge of the data acquisition

window. The total k-space coverage in the frequency encoding (x) direction when

these two steps are acquired is −4
5∆x

< kx <
4

5∆x
; Figure 7.7.

Nineteen data sets were acquired of a healthy male volunteer using the modified

GE-EPI pulse sequence for slices at θ = 45◦, 50◦, 55◦ . . ., 125◦ and 130◦; the definition

of θ relative to the z-axis is shown in Figure 7.8. For each data set two volumes were

acquired with δkx,sh = −3
10∆x

and 3
10∆x

, preceded by four dummy acquisitions. All

1On GE systems k-space data are low-pass filtered using a Fermi filter to reduce Gibbs ringing
artefact caused by abrupt signal changes at the edges of k-space. For an acquisition with Nx×Ny
matrix, such that there are Ny phase encoding steps and Nx samples in the frequency encoding
direction the value of the fermi filter for the mth sample (−Nx/2 ≤ m < Nx/2) on the nth phase
encoding step (−Ny/2 ≤ n < Ny/2) is:

1

1 + e(r−Fc)/Fw
(7.3)

Here r =
√
n2 +m2, Fc is the cut-off of the filter, and Fw is the transition width. A Fermi filter is

shown in Figure 7.6, with the default cut-off Fc = 32 and transition width Fw = 10 for a GE-EPI
acquisition with a 64× 64 matrix size on the 3T GE Discovery MR750 system.
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Figure 7.6: The Fermi filter used as standard by the 3T GE Discovery MR750 system
to low-pass filter the raw k-space data prior to image reconstruction.

kx

ky

1

2∆y

−1

2∆y

1

5∆x

−4

5∆x

−1

5∆x

4

5∆x

Figure 7.7: The total k-space coverage of the two images acquired with compensatory
gradients in the frequency encoding direction with δkx,sh = −3

10∆x
(red) and 3

10∆x

(blue).

z

θ

Figure 7.8: A schematic showing the definition of the slice angle, θ. For a true axial
slice θ = 90◦. (The brain outline in this figure was adapted from a freely available
image from all-free-download.com)
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other pulse sequence parameters were the same as in the previous experiment. As

before, the volunteer’s head was aligned so that the line intersecting the anterior and

posterior commissure was in the axial plane of the scanner. In addition, a DIR-EPI

image was acquired with slices at θ = 90◦. This was thresholded to produce a grey

matter mask as described in Section 5.5.1.

Following the method used in a previous study (and matching the approach in

Chapter 5) which utilised in-plane compensatory gradients, composite images were

produced using the square root of the sum of squares (SSQ) combination [71]. All

SSQ images were aligned into the space of the data acquired at θ = 90◦ using

MCFLIRT [205]. Maps of the signal differences between the data acquired at each

slice angle (after realignment) and the data acquired at θ = 90◦ were calculated, and

masked to show only voxels containing grey matter using the thresholded DIR-EPI

data.

7.4.3 Results

The images combined by SSQ and the maps showing signal differences between

the data acquired at each slice angle (after realignment) and the data acquired at

θ = 90◦ are shown for representative slices through the orbitofrontal and inferior

temporal regions in Figures 7.9 and 7.10.

From Figure 7.9 it can be seen that size of the region of signal dropout in the

orbitofrontal cortex is minimised when the slices were in the axial plane of the

scanner (at θ = 90◦). When the slices were tilted forward (θ < 90◦) the signal

increased in the anterior parts of the orbitofrontal cortex, however dropout increased

in the more posterior parts. As the slices were tilted backward (θ > 90◦) the

converse was true; signal increased in the posterior parts of the orbitofrontal cortex

and dropout increased in the more anterior regions.

From Figure 7.10 it can be seen that size of the region of signal dropout in

the inferior temporal regions is minimised when the slices were tilted forward by

10◦ from the axial plane of the scanner (at θ = 80◦). When the slices were tilted

forward by larger angles (θ < 70◦) slightly more signal was recovered but the field

of view was not sufficient to cover the whole of the brain. As the slices were tilted

backward (θ > 90◦) dropout increased in the more posterior regions of the temporal

lobes.

7.4.4 Discussion and Conclusion

From the results presented above it can be seen that large areas of signal are re-

covered in SSQ images formed from two images acquired using the hyperbolic se-

cant pulse and different compensatory gradients in the frequency encoding direction
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Figure 7.9: Images demonstrating the impact of slice orientation on the degree of
signal dropout in data acquired using the HS pulse and compensatory gradients in
the frequency encoding direction for a representative slice through the orbitofrontal
region. The first row of images shows schematically the angle of the slices for the
data shown in the lower two rows. The second row shows the realigned SSQ images
and the third row the signal differences between the data acquired at each slice angle
(after realignment) and the data acquired at θ = 90◦.

Figure 7.10: Images demonstrating the impact of slice orientation on the degree of
signal dropout in data acquired using the HS pulse and compensatory gradients in
the frequency encoding direction for a representative slice through the inferior tem-
poral region. The first row shows the realigned SSQ images and the second row the
signal differences between the data acquired at each slice angle (after realignment)
and the data acquired at θ = 90◦. The slice orientations and colour scales are the
same as shown in Figure 7.9.

190



(δkx,sh = −3
10∆x

and 3
10∆x

). This means that FMRI data with reduced signal dropout

can be acquired with only a factor of two reduction in the temporal resolution. How-

ever, there were some areas of remaining signal dropout, especially in the left inferior

temporal lobe. In conclusion, for a subject aligned so that the line intersecting the

anterior and posterior commissure was in the axial plane of the scanner, the optimal

slice angle for maximum signal recovery was (for the protocol described here) 90◦

for the orbitofrontal cortex and 80◦ for the inferior temporal regions.

7.5 Evaluating the Impact of the Optimised HS

Pulses and Two-Step Gradient Based Com-

pensation In-vivo

As in the previous two chapters a series of experiments were carried out to assess the

impact of using a modified GE-EPI acquisition with a combination of x-shimming (a

compensation gradient in the frequency encoding direction) and an HS pulse (GE-

EPI-XHS) to reduce signal dropout in FMRI experiments. These were performed

on the same set of six healthy male subjects as in the previous two chapters.

7.5.1 Data Acquisition

Using the methods described in Section 5.5.1, the following set of scans were acquired

of each subject: a localiser, ASSET calibration, SE-EPI, DIR-EPI, a pair of resting-

state FMRI scans, a pair of FMRI scans with a motor task and a pair of FMRI scans

with a breath-hold paradigm. As in previous chapters, one scan of each pair was

acquired using a conventional GE-EPI sequence and the other with GE-EPI-XHS

(with δkx,sh = −3
10∆x

and 3
10∆x

). The ordering of the acquisition method within each

pair of FMRI scans was counter balanced across the six subjects. The subjects’ heads

were aligned so that the line intersecting the anterior and posterior commissure was

in the axial plane of the scanner. Based on the results of the previous experiment,

the slices were aligned in the axial plane of the scanner (θ = 90◦).

7.5.2 Data Analysis

All imaging data were converted into the NIfTI-1 data format, and then processed

using tools from FSL. The FMRI data acquired using GE-EPI-XHS were combined

pairwise by the square root of the sum of squares (SSQ) in the same manner as in

Section 5.5.2.
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Qualitative Comparison of Signal In Regions of Through-Slice Suscepti-

bility Gradient

The data acquired with the SE-EPI, conventional GE-EPI and GE-EPI-XHS pulse

sequences were visually compared to determine the extent of signal recovery in the

orbitofrontal and inferior temporal regions when the GE-EPI-XHS sequence was

used.

Temporal Signal-to-Noise Ratio

Maps of the temporal signal-to-noise ratio (TSNR) were calculated from the resting-

state FMRI data sets using the method outlined in Section 5.5.2. As in previous

chapters, maps of the percentage change in TSNR between the data acquired with

the conventional GE-EPI and GE-EPI-XHS pulse sequences were also calculated for

each subject.

Detectability of Motor Activations

The FMRI data acquired whilst the subject performed the motor task were analysed

using the method described in Section 5.5.2: To confirm the subjects performed

the task as instructed, the pressure measured in the squeeze ball was plotted as

a function of time for both image acquisition methods. The areas of the brain

showing significant changes in BOLD signal in response to the motor stimulus were

determined for the conventional GE-EPI and GE-EPI-XHS datasets. Maps of the

percentage change in the unthresholded t-statistic between the GE-EPI and GE-EPI-

XHS data were calculated for each subject. In addition, for each subject, the mean

percentage change in the unthresholded t-statistic and TSNR in regions of significant

activation (common to the data acquired using both methods) were calculated.

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

The breath-hold FMRI data were analysed using the method described in Section

5.5.2; the normalised signal from the respiratory bellows was plotted as a function

of time for both acquisition types to check whether the subjects adhered to the task.

Additionally, for each subject, the variation in the mean percentage change in BOLD

signal was calculated as a function of time from voxels containing grey matter. The

regions of the brain showing significant changes in BOLD signal in response to the

breath-hold stimulus were calculated from the data acquired with both the GE-EPI

and GE-EPI-XHS pulse sequences. Maps of the change in unthresholded t-statistic

between the GE-EPI and GE-EPI-XHS datasets were calculated. As in Chapter

6, these maps were masked so that only those voxels with increased signal in the
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GE-EPI-XHS data were shown. Both the thresholded z-statistic and masked t-

statistic difference maps were used to determine if increases in signal were matched

by increases in BOLD sensitivity.

Detectability of Resting-State FMRI Networks

The resting-state FMRI data were analysed using the techniques outlined in Section

5.5.2. PICA as implemented in MELODIC was performed to determine if the ten

resting-state networks described in Smith et al. [169] were detectable in the GE-

EPI and GE-EPI-XHS data. In addition, seed based analyses were performed to

determine whether resting-state fluctuations in the regions of recovered signal in the

orbitofrontal and inferior temporal lobes were correlated with fluctuations in the

default-mode and sensorimotor networks.

7.5.3 Results

Qualitative Comparison of Signal In Regions of Through-Slice Suscepti-

bility Gradient

Representative slices through the orbitofrontal and inferior temporal regions from

data acquired with SE-EPI, conventional GE-EPI and GE-EPI-XHS are shown for

each subject in Figures 7.11 and 7.12. As in the previous two chapters, signal

dropout is observed in both the orbitofrontal and temporal regions for all six subjects

in the conventional GE-EPI images. With the exception of subject five, the signal

in the region of dropout in the orbitofrontal cortex is recovered in nearly all voxels

in the GE-EPI-XHS images. For subject five, a small region of dropout remains in

the posterior part of the orbitofrontal region. In addition large areas of signal are

recovered in the inferior temporal regions in the images acquired with GE-EPI-XHS.

However, in all six subjects signal dropout is still evident in the more medial and

anterior parts of the inferior temporal lobes.

Temporal Signal-to-Noise Ratio

Maps of the TSNR for each subject for data acquired with conventional GE-EPI

and GE-EPI-XHS are shown through the orbitofrontal and inferior temporal regions

in Figures 7.13 and 7.14. Maps of the percentage change in the TSNR between

data acquired with conventional GE-EPI and GE-EPI-XHS, for each subject, for

representative slices through the orbitofrontal cortex and inferior temporal regions

are shown in Figure 7.15. In the regions of dropout, where signal was recovered

with the GE-EPI-XHS sequence, it can be seen that the TSNR increases from close

to zero to a level that is close to that observed in voxels in regions of homogeneous
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Figure 7.11: Representative slices through the orbitofrontal cortex of the six subjects
from images acquired with SE-EPI (top-row), conventional GE-EPI (middle-row)
and GE-EPI-XHS (bottom-row). The intensity range was chosen on a per subject
and per acquisition basis such that the areas of signal dropout and recovery could
be readily appreciated.

Figure 7.12: Representative slices through the inferior temporal lobes of the six sub-
jects from images acquired with SE-EPI (top-row), conventional GE-EPI (middle-
row) and GE-EPI-XHS (bottom-row). The intensity range was chosen on a per
subject and per acquisition basis such that the areas of signal dropout and recovery
could be readily appreciated.
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Figure 7.13: TSNR maps for representative slices through the orbitofrontal cortex of
the six subjects calculated from data acquired with conventional GE-EPI (top-row)
and with GE-EPI-XHS (bottom-row).
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Figure 7.14: TSNR maps for representative slices through the inferior temporal
lobes of the six subjects calculated from data acquired with conventional GE-EPI
(top-row) and with GE-EPI-XHS (bottom-row).

field. Because of the properties of the HS pulse, however, decreases in TSNR of up

to 60% are seen in regions unaffected by susceptibility gradients. In grey matter, on

average across all subjects, the TSNR increased in 13.5% of voxels but was reduced

in 77.8%. The subject specific changes are detailed in Table 7.1.

Comparing the Detectability of BOLD Signal Changes Resulting From

the Motor Task

The pressure recorded in the squeeze ball throughout the motor-task FMRI scans

are shown in Figure 7.16, for all six subjects, and both image acquisition methods.

These plots demonstrate that all subjects performed the task over the full duration

of both FMRI data acquisitions. The force with which subject one squeezed the ball

reduced by 25% during the final task period in the acquisition with the GE-EPI-

XHS pulse sequence. The force with which subject six squeezed the ball reduced

by approximately 40% throughout the experiment when imaging data was acquired

with conventional GE-EPI.

Thresholded z-statistic maps for each subject and acquisition method are shown
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Figure 7.15: Maps showing the percentage change in the TSNR between data ac-
quired using conventional GE-EPI and GE-EPI-XHS. The top row shows represen-
tative slices through the orbitofrontal cortex, and the bottom row, slices through
the inferior temporal lobes for the six subjects.

Grey matter voxels with Grey matter voxels with
Subject increased TSNR (%) decreased TSNR (%)

1 17.5 77.0
2 7.4 87.6
3 13.4 77.2
4 14.7 77.5
5 13.1 74.7
6 14.6 72.6

Mean 13.5 77.8

Table 7.1: The percentage of grey matter voxels showing increases or decreases in
TSNR when GE-EPI-XHS is used in place of conventional GE-EPI.
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 7.16: The pressure recorded in the squeeze ball (as a percentage of the
maximum pressure measured during calibration) for all six subjects for FMRI data
acquired with conventional GE-EPI (blue line) and GE-EPI-XHS (green line). The
shaded grey regions illustrate the periods in which the subject was instructed to
squeeze the ball in their right hand every 2 s.

in Figure 7.17. The motor task resulted in statistically significant activations of the

left motor cortex in all six subjects for both methods of data acquisition. With

the exception of subject four the same is true of the supplementary motor area.

For subject five there is a more diffuse pattern of significant activations seen in

the data acquired with GE-EPI, the origin of this is unclear. As shown in Table

7.2, the peak z-statistic was lower for data acquired with GE-EPI-XHS in five of

the six subjects. Maps of the percentage change in the unthresholded t-statistic

between data acquired with conventional GE-EPI and GE-EPI-XHS are shown in

Figure 7.18. The maps for each subject are masked to show only those voxels with

significant activations in both the data acquired with GE-EPI and GE-EPI-XHS.

The average percentage change in the t-statistic within the mask for each subject

are detailed in Table 7.3. From the maps and the table of results it can be seen that

the t-statistic is reduced in data acquired with the GE-EPI-XHS pulse sequence, on

average across all the subjects, by 20.8%. As also shown in Table 7.3, the TSNR in

the same regions is reduced by on average 10.5%.
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Peak z-statistic

Subject GE-EPI GE-EPI-XHS

1 15.4 13.0
2 15.3 14.7
3 11.4 9.9
4 9.5 8.2
5 12.6 9.9
6 12.0 12.6

Mean 12.7 11.4

Table 7.2: Peak z-statistic from the GLM analysis of the motor task FMRI data
acquired with conventional GE-EPI and GE-EPI-XHS.

2.3

16

Figure 7.17: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the motor task, overlaid on the GE-EPI data from
which they were calculated. Maps are shown for each subject acquired with the
conventional GE-EPI (top-row) and GE-EPI-XHS (bottom-row) for representative
slices though the motor cortex and supplementary motor area.

0

0

-100

200

Figure 7.18: Maps of the percentage change in the unthresholded t-statistic between
the motor-task FMRI data acquired using conventional GE-EPI and GE-EPI-XHS
overlaid on the conventional GE-EPI images. The maps were masked to only show
changes in the area with significant BOLD activations in data acquired with both
acquisition techniques.

198



Subject Mean Change in t-statistic (%) Mean Change in TSNR (%)
1 -26.4 -12.9
2 -21.5 -29.2
3 -23.6 -10.3
4 -24.6 -13.5
5 -20.7 12.9
6 -8.2 -20.2

Mean -20.8 -10.5

Table 7.3: Mean percentage change in t-statistic for the motor task and TSNR in the
regions of significant BOLD signal change that were common to both data acquired
with conventional GE-EPI and GE-EPI-XHS

Measuring BOLD sensitivity via Breath-hold BOLD Signal Changes

The variations in the subjects breathing, throughout the breath-hold FMRI scans,

measured using the respiratory bellows, are shown for all six subjects in Figure

7.19. These plots demonstrate that, in general, all subjects performed the breath-

hold task as instructed throughout both FMRI acquisitions. The one exception is

that subject six appeared to take two small breaths during the penultimate and

final breath-hold periods when imaging data were being acquired with the GE-EPI-

XHS pulse sequence. The average percentage changes in the grey matter signal as a

function of time are shown for each subject in Figure 7.20. These are similar across

subjects, however appear noisier for subjects two, three and four. The reason for

the differences is unclear, as all subjects appeared to perform the task equally well.

Thresholded z-statistic maps showing voxels with significant changes in BOLD

signal as a result of the breath-hold task, for each subject and acquisition method,

are shown, for representative slices through the orbitofrontal and inferior temporal

regions, in Figures 7.21 and 7.22. Maps of the change in the unthresholded t-

statistic (masked to show only regions where the signal increased when GE-EPI-

XHS pulse sequence was used) are shown in Figure 7.23. The effect of the GE-EPI-

XHS acquisition method is not consistent across the subjects. For subject one, use

of GE-EPI-XHS results in a reduction, across the brain, in the number of voxels

with statistically significant changes in the BOLD signal in response to the breath-

hold task. The unthresholded t-statistic does increase in the orbitofrontal and left

inferior temporal regions, however, from the thresholded z-statistic maps, it can be

seen that this increase is insufficient for the signal changes to be deemed significant.

The maps for subject two show significant BOLD signal changes in the anterior part

of the orbitofrontal region, however in the right inferior temporal lobe, where clear

recovery of signal is observed statistically significant BOLD signal changes are not

seen. For subject three, like subject one, use of GE-EPI-XHS results in a reduction,
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(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 7.19: Variations in the subjects breathing during acquisition of the breath-
hold FMRI data with both conventional GE-EPI (blue line) and GE-EPI-XHS (green
line). The shaded grey regions illustrate the periods in which the subject was in-
structed to hold their breath.

(a) Subject 1 (b) Subject 2 (c) Subject 3

(d) Subject 4 (e) Subject 5 (f) Subject 6

Figure 7.20: The mean percentage change in BOLD signal for grey matter voxels, in
response to the breath-hold task for all six subjects for data acquired with conven-
tional GE-EPI (blue-line) and GE-EPI-XHS (green-line). The shaded grey regions
illustrate the periods in which the subject was instructed to hold their breath.
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Figure 7.21: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the breath-hold task, overlaid on the GE-EPI data
from which they were calculated. Maps are shown for each subject acquired with the
conventional GE-EPI (top-row) and GE-EPI-XHS (bottom-row) for representative
slices though the orbitofrontal cortex.

2.3

16

Figure 7.22: Thresholded z-statistic maps, showing voxels with significant changes
in BOLD signal in response to the breath-hold task, overlaid on the GE-EPI data
from which they were calculated. Maps are shown for each subject acquired with the
conventional GE-EPI (top-row) and GE-EPI-XHS (bottom-row) for representative
slices though the inferior temporal regions.

across the brain, in the number of voxels with statistically significant changes in the

BOLD signal. However, in the regions of signal recovery in the orbitofrontal and

inferior temporal regions, statistically significant changes in the BOLD signal in

response to the breath-hold task are observed; i.e. the signal increases are matched

by increased BOLD sensitivity. For subjects four, five and six, improvements of the

signal in the regions of dropout in the orbitofrontal and inferior temporal regions are

matched, to a large extent, by increases in the number of voxels in these regions with

statistically significant changes in the BOLD signal in response to the breath-hold

task.

Detectability of Resting-State FMRI Networks with PICA

The independent components from the probabilistic independent component analy-

ses which visually matched the resting-state networks described in Smith et al. [169]
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Figure 7.23: Maps of the change in unthresholded t-statistic masked to show only
regions where the signal increased when GE-EPI-XHS was used in place of conven-
tional GE-EPI, for all six subjects for representative slices through the orbitofrontal
cortex (top row) and the inferior temporal lobes (bottom row).

are shown in Figure 7.24. From the data acquired with conventional GE-EPI only

eight of the networks were clearly identified; no component matched the occipital

pole visual network and the component that most closely matched the right fronto-

parietal network also has nodes in the left frontal and parietal regions. From the data

acquired with GE-EPI-XHS the medial and occipital visual networks were combined

into a single independent component (Figures 7.24(a) and 7.24(b)). The lateral vi-

sual, cerebellar, auditory, executive control and left fronto-parietal networks were

observed as separate components from the data acquired with GE-EPI-XHS. None

of the independent components from the data acquired with GE-EPI-XHS corre-

sponded to the left fronto-parietal network. The spatial extent of the sensorimotor

network was greater in the data acquired with GE-EPI-XHS than with conventional

GE-EPI. The default mode network was split into two components, one of which is

shown in 7.24(d) and the second of which is shown separately in Figure 7.25.

Detectability of Resting-State FMRI Networks Using Seed Based Anal-

ysis

As shown in Figure 7.26, for five of the six subjects, for data acquired with both con-

ventional GE-EPI and GE-EPI-XHS there are significant correlations of the resting-

state BOLD signal from a seed in the posterior cingulate with the BOLD signal in

the medial prefrontal cortex and the left and right lateral parietal cortex. No signifi-

cant correlations are observed in the medial prefrontal cortex for data acquired with

conventional GE-EPI for subject three. In addition to these significant correlation,

which are expected for the default mode network, there are, especially for subjects

two, three and four, large numbers of other statistically significant correlations dis-

tributed across the brain in the data acquired with GE-EPI-XHS. In subjects one,

two, four and six in the region of signal recovery in the orbitofrontal cortex the BOLD
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(a) Medial Visual? (b) Occipital Pole
Visual?

(c) Lateral Visual (d) Default Mode (e) Cerebellar

(f) Sensoriomotor (g) Auditory (h) Executive
Control

(i) Right Fronto-
Parietal

(j) Left Fronto-
Parietal

Figure 7.24: Thresholded z-statistic maps (3 < z < 22) for the ten independent
components from the probabilistic independent component analyses which visually
matched those described in Smith et al. [169]. The three most informative orthogonal
slices are shown for each network. The left column in each sub-figure contains
independent components from the data acquired using conventional GE-EPI and
the right column the components from the GE-EPI-XHS data. The components
are shown overlaid on the MNI152 standard space template (re-sampled to 4 mm
isotropic voxel size).?The medial and occipital pole visual networks were observed
as a single component in the GE-EPI-XHS data.

Figure 7.25: Thresholded z-statistic map showing the second independent com-
ponent that corresponds to the default mode network in the data acquired with
GE-EPI-XHS. The first component corresponding to the default mode network is
shown in Figure 7.24(d).
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Figure 7.26: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from
a seed in the posterior cingulate, for data acquired with the SLR pulse (top-row)
and HS pulse (bottom-row). Representative axial slices though posterior cingulate
regions are shown for each subject.

signal variations are significantly correlated with the posterior cingulate seed; Figure

7.27. Such significant correlation are not observed in the areas of recovered signal

in the inferior temporal lobes; Figure 7.28. Those voxels in which the BOLD signal

variations are significantly correlated with resting-state signal changes from a seed

in the left motor cortex are shown in Figures 7.29 to 7.31. In all six subjects, in the

data acquired with conventional GE-EPI, significant correlations are observed with

the right motor cortex and the supplementary motor area. The areas of activation

for subjects three, four and five however are large and encompass voxels not in the

areas recognised as belonging to the canonical resting state motor network. The

patterns of significant correlation are similar for data acquired with GE-EPI-XHS,

although for subjects three, four and six the majority of voxels in the slice through

the motor cortex are significantly correlated with the seed in the left motor cortex.

Significant correlations with the areas of signal recovery in the orbitofrontal and

inferior temporal regions are not observed.

7.5.4 Discussion and Conclusions

The experimental results described above highlight the benefits of using the HS

secant pulse which was optimised in Chapter 6, in combination with compensatory

gradients in the frequency encoding direction. Signal was recovered in the vast

majority of voxels in the orbitofrontal region. In the inferior temporal regions, some

signal was recovered, however areas of dropout remained in the more medial and

anterior regions of the inferior temporal lobes. As well as showing increased signal,

the areas with reduced signal dropout also showed increases in TSNR to levels

comparable with the rest of the brain. The reduction in signal dropout achieved

with GE-EPI-XHS however comes at a cost, firstly it results in a reduction in the
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Figure 7.27: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the posterior cingulate, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though the orbitofrontal region
are shown for each subject.

2.3

34

Figure 7.28: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the posterior cingulate, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though inferior temporal regions
are shown for each subject.

2.3

34

Figure 7.29: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the left motor cortex, for data acquired with the SLR pulse (top-row) and
HS pulse (bottom-row). Representative axial slices though the left and right motor
cortex and supplementary motor area are shown for each subject.
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Figure 7.30: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the in the left motor area, for data acquired with the SLR pulse (top-row)
and HS pulse (bottom-row). Representative axial slices though orbitofrontal region
are shown for each subject.

2.3

34

Figure 7.31: Thresholded z-statistic maps, showing voxels in which the resting-state
BOLD signal changes were significantly correlated with the signal variation from a
seed in the left motor area, for data acquired with the SLR pulse (top-row) and HS
pulse (bottom-row). Representative axial slices though inferior temporal regions are
shown for each subject.
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temporal resolution, and secondly it leads to reductions in the TSNR of up to 60%

in the regions unaffected by susceptibility gradients.

The detectability of BOLD signal changes as a result of the motor-task were

similar for the two methods of data acquisition. The reduction in TSNR using GE-

EPI-XHS, was accompanied by reductions in the unthresholded t-statistic, however

these reductions did not mean that activations were no longer statistically significant.

This result suggests that the sensitivity to robust BOLD signal changes from a block-

design experiment is only moderately reduced. However, as noted previously, it is

unclear from this experiment alone whether for other paradigms with smaller BOLD

signal changes the TSNR reductions would mean that significant activations would

no longer be detected.

The results of the BOLD sensitivity measurements using the breath-hold FMRI

experiments are inconsistent across the six subjects tested. In only three of the six

subjects were the increases in signal and TSNR, in the regions affected by dropout

in conventional GE-EPI images, matched by increases in BOLD sensitivity. In two

of the subjects (one and three) a large reduction in the number of voxels with

statistically significant BOLD signal changes was observed when the GE-EPI-XHS

acquisition method was used. As was the case in Chapter 6, the cause of these

inter-subject inconsistencies is currently not understood.

The results of the probabilistic independent component analysis of the data ac-

quired with conventional GE-EPI are not consistent with the previous two chapters.

It was previously shown that individual independent components corresponded to

the ten networks described in Smith et al. [169], however in this case only eight of

the networks were readily identified from amongst the independent components. It

is unclear why this would be the case as the same imaging protocol was used on the

same six subjects. It is however recognised that when PICA is constrained to find

only twenty components it may not converge to a stable solution [169], so the anal-

ysis was repeated three times (the results of which were not shown above), in each

case only eight networks could be identified from the independent components. For

the data acquired with GE-EPI-XHS it was also difficult to identify all ten resting

state networks; the medial and occipital pole visual networks were observed as a

single component, the default mode network was split across two components and

the right fronto-parietal network did not correspond to any of the components. This

suggests that the reductions in TSNR may have reduced the ability to detect resting

state networks with PICA, however the inconsistent results from the conventional

GE-EPI data mean that more work is necessary to confirm and quantify this.

As seen in the previous two chapters, the results of the seed based analyses of

the resting state FMRI data suggest that, in four out of the six subjects, the areas

of signal recovery in the orbitofrontal cortex may be functionally connected to the
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default mode network. It is unclear why this potential functional connection was not

observed in the PICA analysis. It would be interesting to repeat the resting state

FMRI experiments using GE-EPI-XHS in a larger group of subjects to determine if

this is real functional connection and not the result of subject motion or physiological

noise.

7.6 Discussion and Conclusions

The effect of combining the optimised hyperbolic secant pulse, described in Chap-

ter 6, with compensation gradients in the phase and frequency encoding directions

was investigated for the first time. It was shown that the areas of remaining signal

dropout when the HS pulse was used alone could be corrected by combining images

acquired with twenty five combinations of in-plane compensatory gradients. Be-

cause this would cause a large reduction in the temporal resolution, and thus make

the technique unusable for FMRI experiments, combinations of smaller number of

images were investigated. It was found that combining five images with varying com-

pensation gradients in the frequency encoding direction recovered a large amount of

the signal dropout.

Further to this, it was shown that by combining only two images acquired with

δkx,sh = −3
10∆x

and 3
10∆x

the signal dropout was reduced compared to using the

optimised HS pulse alone. In the case that the subject’s head is positioned such

that the line intersecting the anterior and posterior commissure is in the axial plane

of the scanner, the optimal slice angle for signal recovery (for the protocol described

earlier) in the orbitofrontal cortex was shown to be 90◦ ( i.e. in the axial plane of

the scanner). The optimal angle for recovery in the inferior temporal lobes was 80◦

(i.e. tilted forward by 10◦ from the axial plane).

The series of experiments performed on the six healthy volunteers showed that

the improvements in signal in the regions of dropout translated to improvements

in TSNR when the GE-EPI-XHS acquisition method was used. However, this was

accompanied by reductions of up to 60% in the TSNR in regions of homogeneous

field. In areas unaffected by susceptibility gradients, such as the motor cortex, this

TSNR reduction caused a small decrease in the sensitivity to task induced BOLD

signal changes. The changes in BOLD sensitivity across all grey matter voxels as

measured using breath-hold FMRI were inconsistent. In half the subjects, the BOLD

sensitivity increased in the areas of recovered signal in the orbitofrontal and inferior

temporal regions. Repeating these experiments, in a larger group of subjects may

help to clarify if GE-EPI-XHS can reliably improve BOLD sensitivity in regions

obscured by dropout in conventional GE-EPI datasets.

The results of the PICA and seed based analyses of the resting state FMRI
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data were inconsistent. The PICA analysis suggested that it was more difficult to

detect resting state networks from data acquired with GE-EPI-XHS, however, the

seed based analysis showed an additional functional connection between the area of

recovered signal in the orbitofrontal cortex and the default mode network. Again,

it would be useful to extend the current experiments, acquiring data from a greater

number of subjects to confirm the effect of GE-EPI-XHS on the detectability of

resting state networks.

It would be interesting to extend this work by altering the compensatory gradi-

ents on a slice by slice basis as in a recent previous study[125]. This would require

the acquisition of a field map such that the gradients could be optimised for each

slice. It would offer the potential to recover signal in a single step, thus not affecting

the temporal resolution. This could be beneficial for both resting state and event

related studies where the rapid sampling of the signal is important.
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Chapter 8

Conclusions and Further Work

Functional magnetic resonance imaging (FMRI) data acquired using gradient-echo

echo-planar imaging (GE-EPI ) suffer from signal dropout in the orbitofrontal cortex

(OFC) and inferior temporal lobes (ITL) caused by susceptibility induced magnetic

field gradients in the slice-selection, phase and frequency encoding directions. A

number of different techniques have been developed to correct this problem, all of

which have different pros and cons. The work presented in this thesis aimed to

build on several of these existing approaches. Three techniques were developed to

increase the sensitivity of GE-EPI to blood oxygen level dependent (BOLD) signal

changes in the regions affected by signal dropout whilst retaining as much sensitivity

as possible in other parts of the brain.

Initially, a theoretical model and numerical simulations were used to determine

the improvements in signal to noise ratio (SNR) necessary to increase the detectabil-

ity of BOLD signal changes in low signal regions. By combining the model of Smith

et al. [256] with the physiological noise model of Kruger and Glover [261], it was

shown that the t-statistic resulting from a GLM analysis of task-based FMRI data

does not linearly increase with the SNR. Rather, the rate of increase reduces until

the t-statistic reaches a plateau. In addition, for a given FMRI paradigm, the model

implies that there is a minimum percentage BOLD signal change below which, ir-

respective of the SNR, activations will never be deemed statistically significant at

the voxel level. Numerical simulations of both task-based and resting-state FMRI

data showed that the dependence of the observed power on the SNR followed a sig-

moid shaped curve. This suggested that moderate increases in SNR could lead to

large increases in the detectability of resting-state and task-induced BOLD signal

changes, motivating the development of techniques which reduce signal dropout.

Three different techniques were then developed, the first, described in Chapter

5, built on the z-shimming technique [27] which reduces the dropout caused by

through-plane susceptibility gradients. In a number of different implementations,

it has been shown to increase the detectability of task-induced [72, 271, 273–275]
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and resting-state [299] BOLD signal changes in the regions of signal dropout. The

second, described in Chapter 6, was an optimised implementation of the tailored

radiofrequency (TRF) pulse [30, 126] approach which, like z-shimming, reduces the

dropout caused by through-plane susceptibility gradients. The third, described in

Chapter 7, combined the TRF pulse from Chapter 6 with compensatory gradients

in the frequency encoding direction to correct much of the dropout caused by both

in-plane and through-plane susceptibility gradients.

The z-shimming approach was based on the acquisition of two images with dif-

ferent compensatory gradients in the slice-selection direction which were then com-

bined by SSQ [271, 274]. A novel aspect of this work was that in contrast to previous

methods, the algorithm to determine the slice specific pairs of z-shims aimed to re-

cover signal in only those voxels containing grey matter - the origin of BOLD signal

changes. This modification required the acquisition of a DIR-EPI image, which

was thresholded and binarised to produce a grey matter mask. A second difference

from previous studies [74, 274, 288] was that the optimal difference between the

z-shim gradients was determined by numerical simulations of the Bloch equations

for the specific RF pulse and slice-selection gradient used by the MR system. This

modification was needed because theoretical predictions of the dependence of the

signal on the through-plane susceptibility gradient assume that the slice profile is

perfectly rectangular [74] which is not true in practice. Programs to perform Bloch

simulations are widely available so it would be straightforward to replicate this op-

timisation for the RF pulses and gradients used for slice selection by other MR

scanners. The algorithm to determine the slice specific pairs of z-shim gradients

was implemented in C++ so it could be run on the scanner itself. In total, the

acquisition of the calibration scan and DIR-EPI image and the calculation of the

optimal z-shim gradients took 4 minutes and 23 seconds. The impact of two-step

grey matter optimised z-shimming was then assessed in a group of six healthy male

volunteers. The technique resulted in increases in both the signal and temporal

signal to noise ratio (TSNR) in large parts of the orbitofrontal and inferior tempo-

ral regions that are obscured by dropout in conventional GE-EPI images. For all

six subjects, greater signal recovery was achieved when grey matter masking was

included in the algorithm to determine the optimal slice specific pair of z-shim gra-

dients. In addition, the improvements in TSNR were accompanied by increases in

the BOLD sensitivity. In agreement with a previous finding [299], a seed based anal-

ysis of the resting state data suggested that parts of the orbitofrontal cortex, which

are obscured by signal dropout in conventional GE-EPI images, were functionally

connected to the default mode network. However, additional work is needed, in a

greater number of subjects, to determine if this is a genuine effect as this connection

was not seen in the probabilistic independent component analysis (PICA) of the
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same data. In addition, the PICA analysis showed that two of the resting state

networks described by Smith et al. [169] were combined into a single independent

component. This could be a result of a loss in temporal resolution or changes in the

temporal smoothness of the data caused by the SSQ combination of pairs of images,

but further work is needed to understand this observation.

In an effort to avoid the loss of temporal resolution, a hyperbolic secant (HS)

radiofrequency pulse was developed to correct dropout without the need to combine

two volumes of data. This work built upon previous experiments using tailored RF

pulses [30, 126, 132]. A systematic approach was developed that can be used to

design HS pulses based on the desired slice thickness and echo time, as well as the

hardware constraints of the MRI system. Bloch simulations were used to determine

the HS pulse parameters required to produce a uniform signal response across the

range of susceptibility gradients typically present in the head, as the previous theo-

retical model [126] was shown to be inaccurate. An expression was derived for the

bandwidth of a HS pulse (when used for signal excitation), which enabled the ampli-

tude of the slice selection gradient to be calculated correctly. Using the same battery

of tests and the same six volunteers as above it was shown that signal was recovered

in similar regions as with the z-shimming approach. However the improvements in

TSNR were not as large and they came at the cost of up to 60% losses in TSNR

in regions of homogeneous field. In addition, the changes in BOLD sensitivity were

inconsistent across the six subjects; in two subjects the improvements in signal and

TSNR were not matched by increases in BOLD sensitivity, however, in the remain-

ing four subjects promising improvements were observed. The impact of the HS

pulse on resting-state FMRI data differed with the method of data analysis. With

PICA it became harder to identify the resting-state networks described by Smith

et al. [169] from amongst the components. Promisingly, however the results of the

seed based analysis were in agreement with those using z-shimmed data; significant

correlations were observed between the region of recovered signal in the orbitofrontal

cortex and the default mode network in all six subjects. In contrast to z-shimming,

this approach was not subject specific and therefore it did not require the acquisi-

tion of either a calibration scan or DIR-EPI image. However, the pulse was designed

specifically for a given slice thickness and flip angle (chosen to maximise the steady

state signal based on the TR required and the T1 of grey matter). As it stands, for

this technique to be applied more widely a library of pulses would therefore need to

be produced that could be used with different acquisition protocols. One potential

extension of the current technique would be to use slice specific RF pulses. At its

simplest this would mean using a conventional RF pulse in the more superior slices

in the brain, since these are generally free from signal dropout, and the HS pulse in

the inferior slices. A second possible improvement would be a HS pulse designed to
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have a uniform, but greater, signal over a smaller range of susceptibility gradients.

This would potentially reduce the losses in TSNR and BOLD sensitivity across the

whole brain and could be achieved by using a smaller µ, as shown in Figure 6.14(a).

On its own, this may reduce the signal recovery in the OFC and ITL, however when

combined with a slice specific z-shim gradient, which would modify the range of

susceptibility gradients over which signal is uniform, similar levels of signal recovery

in regions affected by dropout may be possible.

Finally, the effects of combining the optimised hyperbolic secant pulse with com-

pensation gradients in the phase [28] and frequency encoding directions [29] was

explored for the first time. In a preliminary experiment it was shown that a combi-

nation of twenty five images acquired with different in-plane compensatory gradients

could correct almost all the remaining areas of signal dropout. Since this would not

be practical in FMRI, an approach combining just two images, acquired with dif-

ferent compensation gradients in the frequency encoding direction, was explored.

For the imaging protocol described in Chapter 7, this increased signal recovery in a

greater number of voxels than the optimised HS pulse alone. Using the same battery

of tests, and the same six volunteers as previously, it was shown that the improve-

ments in signal in the regions of dropout were translated to improvements in TSNR.

However, this was again accompanied by reductions of up to 60% in the TSNR in

regions of homogeneous field. In areas unaffected by susceptibility gradients, such

as the motor cortex, this TSNR reduction caused a small decrease in the sensitivity

to task induced BOLD signal changes. Similar to when the HS pulse was used with-

out correction for in-plane susceptibility gradients, the changes in BOLD sensitivity

were inconsistent across subjects; increases in the areas of recovered signal were only

observed in half the subjects tested. In addition, the results of the PICA and seed

based analyses of the resting state FMRI data were inconsistent. The PICA anal-

ysis suggested that it was more difficult to detect resting state networks. However,

in agreement with the seed based analyses carried out on the data acquired with

z-shimming and the HS pulse alone, a potential functional connection between the

area of recovered signal in the orbitofrontal cortex and the default mode network

was found. Given that susceptibility gradients in the frequency encoding direction

vary across the brain it would be interesting to explore the potential benefits of al-

tering the compensatory gradients on a slice-by-slice basis with the aim of recovering

signal in a greater number of voxels. This would require the acquisition of a field

map; however, it offers the potential to recover signal without the need to acquire

and combine two images [125], which could widen its application to event related

FMRI studies where temporal resolution is important.

One potential area that has not been explored previously would be to analyse

data acquired in two steps (i.e. from the approaches using z-shimming or compen-
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sation gradients in the frequency encoding direction) without combining the pairs

of images by SSQ, which inherently affects the data’s temporal smoothness. This

could result in inappropriate statistical inferences depending on the analysis pack-

age and options used. Instead, it may be possible to analyse the raw data with

an additional regressor in the design matrix to account for the alternating changes

in signal between the images. This may improve the sensitivity of the analysis to

BOLD signal changes.

In their current implementations, the techniques described above are suitable for

different types of FMRI experiment. Z-shimming recovers signal, TSNR and BOLD

sensitivity in the OFC and ITL without losses in the rest of the brain. It could

therefore be used to investigate the functions of the OFC and ITL with block-design

paradigms; however the lower temporal resolution makes it unsuitable for studies

with event-related designs and may make the detection of resting state networks

more problematic. The HS pulse approach, is more suited to event related designs

as well as resting-state FMRI as it does not cause a loss of temporal resolution,

however larger group sizes and/or longer acquisitions may be needed to overcome

the resulting global reduction in signal. Finally, the combination of the HS pulse and

compensation gradients in the frequency encoding direction recovers signal from the

greatest number of voxels, so it would be useful tool for investigating the functions

of the OFC and ITL with block-design paradigms; as with the HS pulse longer

acquisitions and/or larger group sizes may be needed because of the signal reduction.

So that all three new acquisition approaches can be qualitatively compared, rep-

resentative slices through the orbitofrontal and inferior temporal regions of images

from all six subjects are shown together in Figures 8.1 and 8.2.

8.0.1 Summary of Main Contributions

In summary, the research presented in this thesis has contributed the following

developments to the field:

• A theoretical model, explicitly incorporating the effect of physiological noise,

to determine the improvements in the signal-to-noise ratio needed to detect

BOLD signal changes in the areas of GE-EPI images affected by signal dropout.

• An automated method to determine the slice-specific pairs of z-shim gradients

that recover signal in voxels containing grey matter that are affected by signal

dropout, whilst maintaining signal in regions of homogeneous field.

• A method for optimising the parameters of a hyperbolic secant radiofrequency

excitation pulse for the recovery of signal in brain regions affected by through-

plane susceptibility gradients.
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Figure 8.1: Representative slices through the orbitofrontal cortex of the six subjects
from images acquired with SE-EPI (first-row), GE-EPI with the conventional SLR
excitation pulse (second-row), z-shimmed GE-EPI (third-row), GE-EPI with the HS
pulse (forth-row) and GE-EPI-XHS (fifth-row). The intensity range was chosen on
a per subject and per acquisition basis such that the areas of signal dropout and
recovery could be readily appreciated.
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Figure 8.2: Representative slices through the inferior temporal lobes of the six sub-
jects from images acquired with SE-EPI (first-row), GE-EPI with the conventional
SLR excitation pulse (second-row), z-shimmed GE-EPI (third-row), GE-EPI with
the HS pulse (forth-row) and GE-EPI-XHS (fifth-row). The intensity range was cho-
sen on a per subject and per acquisition basis such that the areas of signal dropout
and recovery could be readily appreciated.
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• An approach for correcting dropout caused by both through-plane and in-plane

susceptibility gradients by combining the hyperbolic secant radiofrequency ex-

citation pulse with compensatory gradients in the frequency encoding direc-

tion.
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Appendix A

A Derivation of the Artefacts in

Gradient Echo EPI Images Caused

by Magnetic Field

Inhomogeneities

A.1 The GE-EPI Signal

Using the notation of Farzaneh et al. [68] the signal for the nth phase encoding

line measured during a GE-EPI acquisition of an object ρ(x, y) with an Nx × Ny

acquisition matrix, Lx × Ly field of view is:

sn(t) =

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxte−iγHnydxdy (A.1)

Here x corresponds to the frequency encoding (or readout) direction and y to the

phase encoding direction. n is an integer in the range −Ny/2 ≤ n < Ny/2 , Gx is

the amplitude of the readout gradient lobes, Hn is the total area of the gradients in

the y-direction prior to the acquisition of the nth phase encoding line and −Ts/2 ≤
t < Ts/2. Rewriting the phase-encoding gradient area Hn as a function of the

phase encoding line number n, i.e. Hn = GynT
′ where T ′ is the inter-echo spacing

(T ′ = Ts+ τpe) and Gy is the change in phase-encoding gradient between each phase

encode line (Gy = Ape/T
′ = 2π/γLyT

′):

sn(t) =

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxte−iγGynT
′ydxdy (A.2)
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The signal is sampled at discrete time points m∆t (where −Nx/2 ≤ m < Nx/2)

therefore the digitised signal is:

snm =

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxm∆te−iγGynT
′ydxdy (A.3)

Incorporating the effect of signal decay (assuming that T ∗2 does not vary with posi-

tion) :

snm = e−(TE+nT ′+(−1)(n+Ny/2)m∆t)/T ∗2
∫ Ly

2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxm∆te−iγGynT
′ydxdy

(A.4)

Where TE is the echo time as entered on the scanner console. Alternate phase encod-

ing lines are traversed in opposite directions, accounted for by the term (−1)(n+Ny/2)

which is positive for the odd phase encoding lines when k-space is sampled from

bottom-left to top-right [68]. For compactness Rnm is defined as:

Rnm ≡ e−(TE+nT ′+(−1)(n+Ny/2)m∆t)/T ∗2 (A.5)

Therefore:

snm = Rnm

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxm∆te−iγGynT
′ydxdy (A.6)

A.2 The Effect of Magnetic Field Inhomogeneities

In the presence of a magnetic field offset ∆B(x, y), the digitised signal becomes:

snm = Rnm

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxxm∆te−iγGynT
′y

e−iγ∆B(x,y)(nT ′+(−1)(n+Ny/2)m∆t+TE)dxdy (A.7)

After collecting up like terms in the exponentials:

snm = Rnm

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e−iγGxm∆t(x+(−1)(n+Ny/2) ∆B(x,y)
Gx

)

e
−iγGynT ′

(
y+

∆B(x,y)
Gy

)
e−iγ∆B(x,y)TEdxdy (A.8)

Farzaneh et al. [68] showed that a magnetic field offset ∆B(x, y) = α + βx, which

represents a constant field offset α from for example the chemical shift of lipids,

and a magnetic field gradient from for example susceptibility differences across the
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object results in images with shifts due to the constant field offset and geometric

distortions due to the field gradient. Their derivation can be extended to account

for susceptibility gradients in both the x- and y-directions Gx,s and Gy,s as well as

a constant field offset α i.e. ∆B(x, y) = α + Gx,sx + Gy,sy (assuming the gradients

and field offset do not vary with position). In this case the digitised signal becomes:

snm = Rnm

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ(x, y)e
−iγGxm∆t

(
x+(−1)(n+Ny/2) α+Gx,sx+Gy,sy

Gx

)

e
−iγGynT ′

(
y+

α+Gx,sx+Gy,sy

Gy

)
e−iγ(α+Gx,sx+Gy,sy)TEdxdy (A.9)

Performing a change of variables, from x→ x′ and y → y′ using:

y′ = y +
α +Gx,sx+Gy,sy

Gy

(A.10)

x′ = x+ (−1)(n+Ny/2)α +Gx,sx+Gy,sy

Gx

= x (A.11)

Where the approximation x = x′ is valid because α/Gx, Gx,s/Gx and Gy,s/Gx are

typically small. The digitised signal is:

snm =
Rnm

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

)
e−iγGxm∆tx′

e−iγGynT
′y′e

−iγ

α+Gx,sx′+
Gy,s

(
y′−α+Gx,sx

′
Gy

)
λy

TE
dx′dy′ (A.12)

Here λy ≡ 1 + Gy,s
Gy

. To simply further the third exponential term can be expanded

into terms in x′, y′ and α:

e−iγαTEe−iγGx,sx
′TEe

−iγGy,sy
′

λy
TE
e
iγ
Gy,sα

Gyλy
TE
e
iγ
Gy,sGx,sx

′
Gyλy

TE

= e
−iγGx,sx′TE

(
1− Gy,s

Gyλy

)
e
−iγGy,sy

′
λy

TE
e
−iγαTE

(
1− Gy,s

Gyλy

)

= e
−iγGx,sx

′TE
λy e

−iγGy,sy
′

λy
TE
e
−iγ αTE

λy (A.13)

When this is substituted in the equation for snm the digitised signal becomes:

snm =
Rnme

−iγ αTE
λy

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

)
e
−i
(
γGxm∆t+

γGx,sTE

λy

)
x′

e
−i
(
γGynT ′+

γGy,sTE

λy

)
y′

dx′dy′ (A.14)
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The exponential terms can be re-expressed in terms of kx and ky by recognising that:

γGxm∆t = 2πkx,m (A.15)

γGynT
′ = 2πky,n (A.16)

It is then evident that the following terms represent shifts of the echo in k-space

δkx,s and δky,s caused by susceptibility gradients in the frequency and phase encoding

directions:
γGx,sTE

λy
= 2πδkx,s (A.17)

γGy,sTE

λy
= 2πδky,s (A.18)

The k-space shift of the signal in the frequency encoding direction, given by Equation

A.17, agrees with the result previously shown by Weiskopf et al. [29]. Using these

definitions the final expression for the digitised signal is:

snm =
Rnme

−iγ αTE
λy

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

)
e−2πi(kx,m+δkx,s)x′

e−2πi(ky,n+δky,s)y′dx′dy′ (A.19)

The consequences of each factor contributing to the B0 inhomogeneity are most

easily understood by considering each in turn, as described below.

A.2.1 The Effect of a Constant Magnetic Field Offset

If the B0 inhomogeneity is a constant field offset, ∆B(x, y) = α, caused by the

chemical shift of lipids then the signal is simply translated by α/Gy in the y-direction.

For example, the chemical shift of fat relative to water is 3.5 ppm, at 3 T corresponds

to a field offset α = 10.5 µT. For an image with a 25 cm field of view acquired with

an inter-echo spacing T ′ = 700 µs the translation of the lipid signal in the phase

encoding direction is:

α

Gy

=
α

±2π/γ (25× 10−2) (7× 10−4)
= ±7.8 cm (A.20)

The relationship between the phase encoding gradient Gy, the field of view Ly and

the inter-echo spacing T ′ is:

Gy = ε
2π

γLyT ′
(A.21)

Here ε = ±1 is a factor to account for the polarity of Gy. It is negative if k-

space is traversed from ky to −ky and positive if from −ky to ky, i.e. the direction
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Figure A.1: Gradient-echo EPI k-space trajectories

of the shift depends upon the relative polarities of the field offset α and the phase

encoding gradient Gy. The four possible directions in which k-space can be traversed

are shown in Figure A.1.

A.2.2 The Effect of a Susceptibility Gradient in the Phase

Encoding Direction

The impact of a susceptibility gradient in the y-direction has been previously in-

vestigated by Deichmann et al. [28]. The results below are in agreement with their

findings. A susceptibility gradient in the y-direction, ∆B(x, y) = Gy,sy induces

stretching or compressing of the object, depending on the sign of Gy,s relative to the

sign of Gy. In addition the signal magnitude is scaled by λy:

ρ (x′, y′/λy)

λy
(A.22)
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Echo Time Shifting

The shift of the echo in k-space δky,s due to the susceptibility gradient changes the

echo time from TE to TE ′ where:

TE ′ = TE − δt

= TE − δky,s
∆ky

T ′

= TE − γGy,sTE/λy
γGyT ′

T ′

= TE

(
Gy

Gy +Gy,s

)
=
TE

λy
(A.23)

Signal Attenuation Caused by Echo Time Shifting

This change in echo time causes a change in the T ∗2 weighting of an image as snm

is weighted by Rnm. The greatest contribution to the image intensity is from the

point kx = 0 and ky = 0. The value of n and m at which this occurs are derived

below. Firstly the value of m at which kx = 0:

kx = kx,m + δkx,s

=
γGxm∆t

2π
+
γGx,sTE

′

2π
= 0 (A.24)

Rearranging:

m = −Gx,sTE
′

λyGx∆t
(A.25)

Given the earlier assumption that Gx,s/Gx � 1 then:

m = 0 (A.26)

Secondly, the value of n at which ky = 0:

ky = ky,n + δky,s

=
γGynT

′

2π
+
γGy,sTE

2πλy
= 0 (A.27)

Rearranging:

n = −Gy,sTE

λyGyT ′
(A.28)
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Substituting m and n into Rnm:

Rnm = e
−

(TE+nT ′+(−1)(n+Ny/2)m∆t)
T∗2

= e
−

(
TE+

(
− Gy,sTE
λyGyT ′

)
T ′
)

T∗2

= e
−

(
TE−

(
Gy,sTE

λyGyT ′
)
T ′
)

T∗2

= e
−TE

′
T∗2 (A.29)

Signal Dropout Caused by Echo Time Shifting

The change in echo time can lead to signal dropout if the echo is shifted to such

an extent that it falls outside of the acquisition window [70, 71]. The range of

susceptibility gradients Gy,s, over which signal dropout does not occur, is derived

by considering the range of k-space that is sampled in the y-direction:

−Ny

2Ly
≤ ky ≤

Ny

2Ly
(A.30)

This definition of ky = 1/∆y = Ny/Ly does not include a factor of 2π to ensure

consistency with the definition k = γ
2π

∫
dt′G(t′). Therefore the maximum k-space

shift before signal dropout occurs is:

−Ny

2Ly
≤ δky,s ≤

Ny

2Ly
(A.31)

Given that δky,s = γGy,sTE

2πλy
:

−Ny

2Ly
≤ γGy,sTE

2πλy
≤ Ny

2Ly
(A.32)

Rearranging:
−πNyλy
γLyTE

≤ Gy,s ≤
πNyλy
γLyTE

(A.33)

Focussing on the first inequality, i.e. the lower limit of k-space coverage, expanding

λy and collecting terms in Gy,s:

−πNy

γLyTE
≤ Gy,s

(
1 +

πNy

γLyTEGy

)
(A.34)

Therefore:
−πNy

γLyTE
(

1 + πNy
γLyTEGy

) ≤ Gy,s (A.35)
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Similarly for the upper limit:

Gy,s ≤
πNy

γLyTE
(

1− πNy
γLyTEGy

) (A.36)

Hence the range of k-space shifts before signal dropout occurs is:

−πNy

γLyTE
(

1 + πNy
γLyTEGy

) ≤ Gy,s ≤
πNy

γLyTE
(

1− πNy
γLyTEGy

) (A.37)

Using Gy = 2πε/(γLyT
′) this expression can be written in terms of the matrix size,

Ny, field of view, Ly, and the echo time (as entered on the scanner console), TE:

−Nyπ

γLy

(
TE + εNyT

′

2

) ≤ Gy,s ≤
Nyπ

γLy

(
TE − εNyT ′

2

) (A.38)

A.2.3 The Effect of a Susceptibility Gradient in the Fre-

quency Encoding Direction

Finally susceptibility gradients in the x-direction, ∆B(x, y) = Gx,sx, result in shears

in the resulting image since:

ρ

(
x′, y′ − Gx,sx

′

Gy

)
(A.39)

Echo Time Shifting

Unlike the case for susceptibility gradients in the y-direction the k-space shift caused

by Gx,s does not cause appreciable changes in the echo time because Gx,s/Gx is small:

TE ′ = TE − δt

= TE − δkx,s
∆kx

∆t

= TE − γGx,sTE

γGx∆t
∆t

= TE

(
1− Gx,s

Gx

)
≈ TE (A.40)

Signal Dropout Caused by Echo Time Shifting

As with susceptibility gradients in the y-direction the k-space shift caused by Gx,s

can lead to signal dropout if the echo is shifted to such an extent that it falls outside

of the acquisition window[29]. The range of susceptibility gradients Gx,s over which
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signal dropout does not occur, when a susceptibility gradients Gy,s is also present is

derived by considering the range of k-space that is sampled in the x-direction:

−Nx

2Lx
≤ kx ≤

Nx

2Lx
(A.41)

Therefore the maximum k-space shift before signal dropout occurs is:

−Nx

2Lx
≤ δkx,s ≤

Nx

2Lx
(A.42)

Given that δkx,s = γGx,sTE

2πλy
:

−Nx

2Lx
≤ γGx,sTE

2πλy
≤ Nx

2Lx
(A.43)

Therefore:

− πNxλy
γTELx

≤ Gx,s ≤
πNxλy
γTELx

(A.44)

Substituting in λy

− πNx

γTELx

(
1 +

Gy,s

Gy

)
≤ Gx,s ≤

πNx

γTELx

(
1 +

Gy,s

Gy

)
(A.45)

Using Gy = 2πε/(γLyT
′) this expression can be written in terms of the matrix size,

Ny, field of view, Ly, and the echo time (as entered on the scanner console) TE:

− Nx

2γLxTE
(2π + εγLyT

′Gy,s) ≤ Gx,s ≤
Nx

2γLxTE
(2π + εγLyT

′Gy,s) (A.46)

A.3 Incorporating the Effects of Slice Selection

In a further extension the effects of slice-selection may then be incorporated by the

addition of an integration over the z-direction (as shown in the general case of any

image acquisition strategy by Haacke et al. [51]):

snm =
e
−iγ αTE

λy e
−TE

′
T∗2

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

[∫ z0+ ∆z
2

z0−∆z
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z

)
dz

]
e−2πi(kx,m+δkx,s)x′e−2πi(ky,n+δky,s)y′dx′dy′ (A.47)

Where ∆z is the slice thickness and z0 is the position of the centre of the slice.
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Slice Position, Thickness and Angle

Since Gz,s causes a deviation from the prescribed slice thickness and position [51],

the slice thickness ∆z and position z0 in the above expression are given by:

∆z =
∆ω

γ (Gz +Gz,s)
(A.48)

and:

z0 =
ωc − ω0

γ (Gz +Gz,s)
(A.49)

In addition in-plane susceptibility gradients can also impact the slice selection pro-

cess, resulting in local rotations of the excited slice, [51]. This is because the slice

select axis becomes G = Gx,sx̂+Gy,sŷ+ (Gz +Gz,s) ẑ. The angle between the slice

selection direction and the z-axis is:

θ = tan−1

√
G2
x,s +G2

y,s

Gz +Gz,s

(A.50)

and the angle between its projection into the x-y plane and the x-axis is:

φ = tan−1 Gy,s

Gx,s

(A.51)

Susceptibility Induced Signal Attenuation

A susceptibility gradient in the z-direction Gz,s causes a phase variation φ(z, t) =

γGz,szt (where t = TE ±m∆t+ nT ′) therefore the digitised signal is:

snm =
e
−iγ αTE

λy e
−TE

′
T∗2

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

[∫ z0+ ∆z
2

z0−∆z
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z

)
e−iγGz,sztdz

]
e−2πi(kx,m+δkx,s)x′e−2πi(ky,n+δky,s)y′dx′dy′ (A.52)

With the simplifying assumption that the spin density ρ(x, y, z) is constant across

the slice, and that the RF pulse excites perfectly rectangular slices [74, 126] then:

snm =
e
−iγ αTE

λy e
−TE

′
T∗2

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

[∫ z0+ ∆z
2

z0−∆z
2

e−iγGz,sztdz

]
ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z0

)
e−2πi(kx,m+δkx,s)x′e−2πi(ky,n+δky,s)y′dx′dy′ (A.53)
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Performing the integral over z leads to:

snm = ∆zsinc

(
γGz,s∆z(TE + (−1)(n+Ny/2)m∆t+ nT ′)

2

)
e−iγGz,s(TE±m∆t+nT ′)z0

e
−iγ αTE

λy e
−TE

′
T∗2

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z0

)
e−2πi(kx,m+δkx,s)x′

e−2πi(ky,n+δky,s)y′dx′dy′ (A.54)

Where sinc(x) ≡ sin (x)/x. Therefore, in addition to the image stretching and shear-

ing, intensity scaling and echo shifting caused by the x- and y- susceptibility gra-

dients, if a susceptibility gradient is present in the z-direction then the signal is

modulated by a sinc function. As before the greatest contribution to the image

intensity is from the point kx = 0 and ky = 0, therefore substituting in the values

of n and m at which this occurs:

snm = ∆zsinc

(
γGz,s∆zTE

′

2

)
e
−TE

′
T∗2

λy
e−iγGz,sTE

′z0e
−iγ αTE

λy

∫ Ly
2

−Ly
2

∫ Lx
2

−Lx
2

ρ

(
x′,

y′

λy
− α +Gx,sx

′

λyGy

, z0

)
e−2πi(kx,m+δkx,s)x′

e−2πi(ky,n+δky,s)y′dx′dy′ (A.55)
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Appendix B

A Derivation of the Maximum

Amplitude of a Complex

Hyperbolic Secant Pulse Used for

Signal Excitation

The maximum amplitude, A0, of a complex hyperbolic secant pulse used for signal

excitation, with a flip angle, α, can be derived from the expression for the longitu-

dinal magnetisation given in Equation 17 in Silver et al. [307]:

Mz(∆ω)

M0

= tanh

(
π∆ω

2β
+
πµ

2

)
tanh

(
π∆ω

2β
− πµ

2

)

+ cos

π
√(

γA0

β

)2

− µ2

 sech

(
π∆ω

2β
+
πµ

2

)
sech

(
π∆ω

2β
− πµ

2

)
(B.1)

Here ∆ω is the offset frequency, which in the presence of a slice-selection gradient

is equal to γGzz. At the centre of the slice (∆ω = 0) and the z-magnetisation is:

Mz(∆ω = 0)

M0

= tanh
(πµ

2

)
tanh

(
−πµ

2

)
+ cos

π
√(

γA0

β

)2

− µ2

 sech
(πµ

2

)
sech

(
−πµ

2

)
(B.2)

Given that hyperbolic tangent is an odd function and hyperbolic secant is an even

function this expression simplifies to:

Mz(∆ω = 0)

M0

= cos

π
√(

γA0

β

)2

− µ2

 sech2
(πµ

2

)
− tanh2

(πµ
2

)
(B.3)
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Then, recognising that the z-magnetisation at the slice centre can also be written in

terms of the flip angle, α:
Mz(∆ω = 0)

M0

= cosα (B.4)

and by equating B.3 and B.4:

cosα = cos

π
√(

γA0

β

)2

− µ2

 sech2
(πµ

2

)
− tanh2

(πµ
2

)
(B.5)

the RF amplitude as a function of β, µ and the flip angle α is after some straight-

forward rearrangement:

A0 =
β

γ

√√√√[cos−1
(
cosh2

(
πµ
2

)
cosα + sinh2

(
πµ
2

))
π

]2

+ µ2 (B.6)
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Appendix C

A Derivation of the Bandwidth of

a Complex Hyperbolic Secant

Pulse Used for Signal Excitation

The bandwidth of a complex hyperbolic secant pulse used for signal excitation is

best defined as the full-width at half-maximum (FWHM) of the magnitude of the

transverse magnetisation, |Mx,y|. This can be derived from Equation 17 in Silver

et al. [307]:

Mz(∆ω)

M0

= tanh

(
π∆ω

2β
+
πµ

2

)
tanh

(
π∆ω

2β
− πµ

2

)

+ cos

π
√(

γA0

β

)2

− µ2

 sech

(
π∆ω

2β
+
πµ

2

)
sech

(
π∆ω

2β
− πµ

2

)
(C.1)

The cosine term including the pulse amplitude, A0, can then be written in terms

involving the flip angle, α, and µ using Equation B.5:

Mz(∆ω)

M0

= tanh

(
π∆ω

2β
+
πµ

2

)
tanh

(
π∆ω

2β
− πµ

2

)
+

(
cosα + tanh2

(
πµ
2

)
sech2

(
πµ
2

) )
sech

(
π∆ω

2β
+
πµ

2

)
sech

(
π∆ω

2β
− πµ

2

)
(C.2)
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Using standard trigonometric identities1, the term involving tanh can be simplified

to:

tanh

(
π∆ω

2β
+
πµ

2

)
tanh

(
π∆ω

2β
− πµ

2

)
=

sinh2
(
π∆ω
2β

)
cosh2

(
πµ
2

)
− cosh2

(
π∆ω
2β

)
sinh2

(
πµ
2

)
cosh2

(
π∆ω
2β

)
cosh2

(
πµ
2

)
− sinh2

(
π∆ω
2β

)
sinh2

(
πµ
2

) =
cosh(π∆ω

β
)− cosh(πµ)

cosh(π∆ω
β

) + cosh(πµ2)
(C.7)

and the term involving sech to:

sech

(
π∆ω

2β
+
πµ

2

)
sech

(
π∆ω

2β
− πµ

2

)
=

1

cosh2
(
π∆ω
2β

)
cosh2

(
πµ
2

)
− sinh2

(
π∆ω
2β

)
sinh2

(
πµ
2

) =
2

cosh(π∆ω
β

) + cosh(πµ)
(C.8)

Substituting in these simplified expressions, the longitudinal magnetisation becomes:

Mz(∆ω)

M0

=
cosh(π∆ω

β
)− cosh(πµ)

cosh(π∆ω
β

) + cosh(πµ)
+

(
cosα + tanh2

(
πµ
2

)
sech2

(
πµ
2

) )
2

cosh(π∆ω
β

) + cosh(πµ)

=
cosh(π∆ω

β
)− cosh(πµ) + 2 cosh2

(
πµ
2

)
cosα + 2 sinh2

(
πµ
2

)
cosh(π∆ω

β
) + cosh(πµ)

=
cosh(π∆ω

β
) + cosh(πµ) cos(α) + cos(α)− 1

cosh(π∆ω
β

) + cosh(πµ)
(C.9)

To determine the FWHM this is first rearranged to make ∆ω the subject:

∆ω =
β

π
cosh−1

cosh (πµ)
(

cos(α)− Mz(∆ω)
M0

)
+ cos(α)− 1

Mz(∆ω)
M0

− 1

 (C.10)

1

tanh (A+B) =
sinhA coshB + coshA sinhB

coshA coshB + sinhA sinhB
(C.3)

sech (A+B) =
1

coshA coshB + sinhA sinhB
(C.4)

cosh2A =
1

2
(cosh(2A) + 1) (C.5)

sinh2A =
1

2
(cosh(2A)− 1) (C.6)
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and then written in terms of the magnitude of the transverse magnetisation2:

∆ω =
β

π
cosh−1


cosh (πµ)

(
cos(α)−

√
1−

(
|Mx,y |
M0

)2
)

+ cos(α)− 1√
1−

(
|Mx,y |
M0

)2

− 1

 (C.12)

At the centre of the excited slice, for a flip angle α, the magnitude of the transverse

magnetisation is |Mx,y|/M0 = sin (α). The half-width at half-maximum (HWHM)

is the value of ∆ω when |Mx,y|/M0 = sin (α)/2, i.e.:

∆ωHWHM =
β

π
cosh−1

cosh (πµ)

(
cos(α)−

√
1−

(
sinα

2

)2
)

+ cos(α)− 1√
1−

(
sinα

2

)2 − 1


=
β

π
cosh−1

cosh (πµ)
(

cos(α)− 1
2

√
3 + cos2(α)

)
+ cos(α)− 1

1
2

√
3 + cos2(α)− 1


(C.13)

The bandwidth, defined as the FWHM (in Hz), ∆f = ∆ωHWHM/π is therefore:

∆f =
β

π2
cosh−1

cosh (πµ)
(

cos(α)− 1
2

√
3 + cos2(α)

)
+ cos(α)− 1

1
2

√
3 + cos2(α)− 1

 (C.14)

which, for µ ≥ 2, can be shown to be approximately proportional to both µ and β:

∆f ≈ βµ

π
+

β

π2
ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)
(C.15)

The linear proportionality between the bandwidth and µ is not immediately evident

by inspection of Equation C.14, however by rearranging:

∆f =
β

π2
cosh−1

[
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

(
cosh (πµ) +

cos(α)− 1

cos(α)− 1
2

√
3 + cos2(α)

)]
(C.16)

2Using the following relationship:

M2
0 = |Mx,y|2 +M2

z (C.11)
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and making two substitutions to simplify the result:

∆f =
β

π2
cosh−1 [b (cosh (πµ) + c)] (C.17)

Where:

b =
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

(C.18)

c =
cos(α)− 1

cos(α)− 1
2

√
3 + cos2(α)

(C.19)

and by noting that for 0 < α < π and µ ≥ 2 (c is a smoothly decreasing function of

the flip angle; c→ 4/3 as α→ 0, and c→ 1 as α→ π):

cosh (πµ)� c (C.20)

the bandwidth is approximately:

∆f ≈ β

π2
cosh−1 [b cosh (πµ)] (C.21)

Then, given that inverse hyperbolic cosine can be written in terms of a natural

logarithm:

cosh−1 z = ln
[
z +
√
z2 − 1

]
(C.22)

the bandwidth is:

∆f ≈ β

π2
ln

[
b cosh (πµ) +

√
b2 cosh2 (πµ)− 1

]
(C.23)

and since b ≥ 3 for 0 < α < π this can be approximated as:

∆f ≈ β

π2
ln [2b cosh(πµ)] (C.24)

Finally given that cosh(πµ) ≈ eπµ/2 when µ ≥ 2 the bandwidth is approximately:

∆f ≈ µβ

π
+

β

π2
ln b (C.25)

≈ βµ

π
+

β

π2
ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)

i.e. the bandwidth is proportional to µ.
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Appendix D

The Dependence of the Variation

in the Phase of the Transverse

Magnetisation on the Hyperbolic

Secant Pulse Parameters

The dependence of the variation of the phase of the transverse magnetisation on

the complex hyperbolic secant pulse parameters can be derived from the analytic

expression for the phase, φ(z) given by Park and Garwood [303]:

φ(z) = −µ ln

(
−µβ sech (βTRF/2)√

(µβ)2 − (γGzz)2

)
+
γGzz

2β
ln

(
µβ + γGzz

µβ − γGzz

)
(D.1)

where Gz is the amplitude of the slice selection gradient. Given that ln (AB) =

lnA+ lnB the first term can be written as:

− µ ln (−µβ sech (βTRF/2))− µ ln

 1√
1−

(
γGzz
µβ

)2

 (D.2)

Then, since −µ ln (−µβ sech (βTRF/2)) does not depend on the spatial position, z,

it can be ignored as it only contributes a constant offset to the phase. Therefore the

phase is given by:

φ(z) = −µ ln

 1√
1−

(
γGzz
µβ

)2

+
γGzz

2β
ln

(
1 + γGzz

µβ

1− γGzz
µβ

)
(D.3)
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Recognising that slice selection gradient amplitude Gz can be written in terms of

the HS pulse bandwidth (Gz = 2π∆f/γ∆z), the phase is:

φ(z) = −µ ln

 1√
1−

(
2π∆fz
µβ∆z

)2

+
π∆fz

β∆z
ln

(
1 + 2π∆fz

µβ∆z

1− 2π∆fz
µβ∆z

)
(D.4)

As shown in Appendix C, the bandwidth, ∆f , for µ > 2, is:

∆f =
βµ

π
+

β

π2
ln

(
cos(α)− 1

2

√
3 + cos2(α)

1
2

√
3 + cos2(α)− 1

)
(D.5)

This can, for simplicity, be written as:

∆f = β

(
µ

π
+
h(α)

π2

)
(D.6)

Therefore the phase as a function of position is:

φ(z) = −µ ln

 1√
1− z2

(
2

∆z
+ 2h(α)

πµ∆z

)2


− µz

(
1

∆z
+

h(α)

πµ∆z

)
ln

1 + z
(

2
∆z

+ h(α)
πµ∆z

)
1− z

(
2

∆z
+ h(α)

πµ∆z

)
 (D.7)
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