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ABSTRACT 1 

Introduction: Dietary inorganic nitrate (NO3
-) lowers peripheral blood pressure (BP) in 2 

healthy volunteers, but lacks such effect in individuals with, or at risk of, type two diabetes 3 

mellitus. Whilst this is commonly assumed to be a consequence of chronic 4 

hyperglycaemia/hyperinsulinaemia, we hypothesised that acute physiological elevations in 5 

plasma [glucose]/[insulin] blunt the haemodynamic responses to NO3
-; a pertinent question 6 

for carbohydrate-rich Western diets. 7 

Methods: We conducted an acute, randomised, placebo-controlled, double-blind, crossover 8 

study on the haemodynamic and metabolic effects of potassium nitrate (8 or 24 mmol 9 

KNO3) versus potassium chloride (KCl; placebo) administered 1 h prior to an oral glucose 10 

tolerance test in 33 healthy volunteers. 11 

Results: Compared to placebo, there were no significant differences in systolic or diastolic 12 

BP (P=0.27 and P=0.30 on ANOVA, respectively) with KNO3, nor in pulse wave velocity or 13 

central systolic BP (P=0.99 and P=0.54 on ANOVA, respectively). Whilst there were 14 

significant elevations from baseline for plasma [glucose] and [C-peptide], no differences 15 

between interventions were observed. A significant increase in plasma [insulin] was 16 

observed with KNO3 versus KCl (n=33; P=0.014 on ANOVA) with the effect driven by the 17 

high-dose cohort (24mmol, n=13; P<0.001 on ANOVA; at T=0.75 h mean difference 210.4 18 

pmol/L (95% CI 28.5 to 392.3), P=0.012). 19 

 20 

Conclusions: In healthy adults, acute physiological elevations of plasma [glucose] and 21 

[insulin] result in a lack of BP-lowering with dietary nitrate. The increase in plasma [insulin] 22 

without a corresponding change in [C-peptide] or [glucose] suggests that high-dose NO3
- 23 

decreases insulin clearance; a likely mechanism is via NO-dependent inhibition of insulin-24 

degrading enzyme.  25 
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What is already known about this subject: 1 

 Inorganic nitrate lowers blood pressure and pulse wave velocity in healthy 2 

individuals. 3 

 These effects are absent in those with, or at risk of, type two diabetes mellitus. 4 

 This is assumed to be a consequence of chronic hyperglycaemia/hyperinsulinaemia. 5 

 6 

What this study adds: 7 

 Acute physiological elevations of plasma [glucose] and [insulin] result in a lack of BP-8 

lowering with dietary nitrate. 9 

 High-dose inorganic nitrate reduced insulin clearance, probably via NO-dependent 10 

inhibition of insulin-degrading enzyme.  11 
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INTRODUCTION 1 

The role of dietary inorganic nitrate (NO3
-) as an alternative source of nitric oxide (NO) via 2 

the enterosalivary nitrate-nitrite-NO pathway is recognised as a physiological mediator of 3 

blood pressure (BP), endothelial function and platelet aggregation (1-3). In both healthy 4 

individuals and those with chronic cardiovascular conditions, NO3
- supplementation has 5 

been shown to increase exercise capacity (4-8). This beneficial effect is thought to arise from 6 

the action of NO on skeletal muscle where it modulates excitation-contraction coupling, 7 

mitochondrial respiration, autoregulation of blood flow, and glucose homeostasis (9). 8 

However, individuals with, or at risk of, type two diabetes mellitus (T2DM) fail to exhibit a 9 

reduction in peripheral BP or pulse wave velocity (PWV) in response to NO3
- 10 

supplementation (10-12). There are a number of mechanisms that might contribute to this 11 

lack of effect including dysfunctional NO synthesis, increased NO scavenging and altered 12 

redox balance (13). To what extent this is a consequence of acute or chronic 13 

hyperglycaemia/hyperinsulinaemia is unknown.   14 

Carbohydrate (CHO) ingestion also has established benefits on exercise performance (14). 15 

However, the effects of concurrent NO3
- and CHO intake on cardiovascular haemodynamics 16 

and glucose homeostasis (both important determinants of exercise capacity) have not been 17 

studied in detail.  18 

Type two diabetes mellitus is a condition associated with excess CHO intake (15), although 19 

the aetiology of the condition is more complex (16). It has been observed that in both 20 

healthy individuals and those with T2DM, plasma [nitrate] and [nitrite] fall acutely in 21 

response to an oral glucose tolerance test (OGTT) (17, 18), likely reflecting an increase in NO 22 

consumption. However, there is a lack of agreement with regards to basal plasma [nitrate] 23 

and [nitrite], with conflicting results reported (17, 19). This lack of agreement regarding 24 

basal concentrations may be the result of the use of the Griess reactions which measures 25 

combined plasma [nitrate/nitrite] and is not sufficiently sensitive to measure physiological 26 

plasma [nitrite]. 27 

Systemic inhibition of NO synthesis results in a deterioration in glucose tolerance in non-28 

diabetic individuals in response to an OGTT, accompanied by an elevation in BP (20, 21). 29 

However, the effects of NO3
- supplementation on glucose homeostasis are less clear. In 30 

healthy individuals, NO3
-  supplementation appears to result in lower plasma [glucose] post-31 

exercise (22, 23), but without changing homeostatic responses to glucose at rest (24-26). In 32 

those with, or at risk of T2DM, studies are heterogeneous in their design and report either 33 

an improvement or null effect of nitrate on insulin sensitivity following glucose 34 

administration (26-29). 35 

In studies investigating the haemodynamic effects of NO3
-
 supplementation in individuals 36 

with T2DM there is greater consistency, as neither peripheral BP nor exercise tolerance are 37 

improved (10-12); although we have demonstrated a lowering of central SBP with 6 months’ 38 

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2509
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536
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dietary nitrate [24], with a decrease in left ventricular volumes (30). This lack of effect in 1 

those with impaired glucose tolerance may be due to impaired insulin-mediated 2 

vasodilation (31-33), but whether this is a consequence of acute or chronic 3 

hyperglycaemia/hyperinsulinaemia has not been established. 4 

The purpose of this study was to determine whether there is an interaction between NO3
- 

5 

and glucose on BP and glucose homeostasis in healthy individuals. We hypothesised that 6 

acute physiological elevations in plasma [glucose] and [insulin] would blunt the 7 

haemodynamic responses to NO3
-. This study was therefore conducted to address two 8 

complimentary questions; (i) is the BP response to NO3
- supplementation affected by 9 

concurrent glucose ingestion? and (ii) is the metabolic response to an OGTT affected by NO3
- 

10 

supplementation?   11 
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METHODS 1 

Participants 2 

Participants were healthy, normotensive volunteers aged 18 to 45 years. All participants had 3 

a body mass index (BMI) 18 to 35 kg/m2, no current or recent illness and were not taking 4 

systemic medication other than the oral contraceptive pill. A negative urine dipstick result 5 

for nitrite was required on the morning of each visit. 6 

The study was approved by the South East London Research Ethics Committee 7 

(10/H0802/52). Written informed consent was obtained from all participants. 8 

 9 

Study protocol 10 

We conducted an acute, randomised, placebo-controlled, double-blind, crossover study of 11 

potassium nitrate (KNO3) versus potassium chloride (KCl; placebo) (both Martindale 12 

Pharma) followed by an OGTT performed 1 h later. The study consisted of two independent 13 

cohorts based on the dose of KNO3/KCl ingested: (i) a ‘high-dose’ cohort received 24 mmol, 14 

and (ii) a ‘low-dose’ cohort received 8 mmol. Each study visit lasted 4 h and was separated 15 

by a minimum of 7 days. The order of allocation to KNO3 or KCl for each participant was 16 

performed using a random, computer-generated order produced by an independent 17 

researcher. 18 

Participants were asked to fast overnight (>12 hours) and to avoid nitrate-rich foods, 19 

strenuous exercise, smoking and the use of mouthwash for 24 h before the study. To 20 

minimise any dietary confounders, participants were asked to consume the same meals for 21 

the day prior to each arm of the study.   22 

On the day of the study and following an hour’s equilibration period during which baseline 23 

measurements were taken (see below), participants were randomised to receive KNO3 24 

versus KCl at Time -1 h. Both were administered with low-nitrate water (300 ml; Buxton 25 

Water) and an antacid (10-20 mL repeated if necessary; Gaviscon, GSK) to minimise 26 

gastrointestinal discomfort from the potassium supplement. A standard OGTT (75g glucose 27 

as Lucozade, GSK) was performed at Time 0 h. A schematic of the events is presented in 28 

Figure 1.  29 

 30 

Measurements 31 

Blood pressure and heart rate (HR) readings were taken in triplicate every 15 min using an 32 

oscillometric BP monitor (Omron 705CP, UK) according to guidelines. The average of the 33 

second and third readings were used for analysis to diminish the impact of any alerting 34 

response. Central systolic blood pressure (cSBP), pulse wave velocity (PWV) and 35 
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augmentation index (AIx) were measured  (Time -1 h and Time 2 h) using Finometer 1 

(Finopress Medical Systems, Netherlands) and Vicorder (SMT Medical, Germany) devices 2 

according to manufacturers’ instructions. 3 

 4 

Blood samples were taken from a cannula in the antecubital vein at time intervals shown in 5 

Figure 1. An initial 2 mL of blood was discarded, before 6 mL of blood was collected and 6 

transferred into chilled lithium heparin blood collection tubes. Blood samples were 7 

immediately centrifuged at 4500 rpm for 5 min at 4°C (Hettich Mikro 220R, Germany). 8 

Plasma was stored in duplicate in 1 mL aliquots at -80°C prior to analysis. 9 

Plasma concentrations of glucose, insulin and C-peptide were measured using standardised 10 

clinical assays (Viapath, St Thomas’ Hospital). Nitrate and nitrite concentrations in urine and 11 

plasma were measured by ozone-based chemiluminescence as previously described (1, 34). 12 

The coefficient of variation was <10% for both nitrite and nitrate quantification. Exhaled NO 13 

(eNO) was measured using a NObreath monitor (Bedfont Scientific, UK), according to the 14 

manufacturer’s instructions.   15 

Insulin sensitivity during each study arm was calculated via the Matsuda index, where a 16 

higher value represents greater insulin sensitivity (35).  17 

 18 

Data and Statistical Analyses 19 

All data were analysed with GraphPad Prism software (v7.03), and are expressed as 20 

mean±SEM unless otherwise stated. Repeated-measures two-way ANOVA with Sidak’s post-21 

test was used for comparison of the data between the two interventions. Repeated-22 

measures one-way ANOVA with Dunn’s post-test was used for comparison with baseline. 23 

Correlation was assessed using Pearson’s correlation. Where data were non-parametric, 24 

appropriate equivalent statistical tests were used. P<0.05 was considered statistically 25 

significant. 26 

 27 

Nomenclature of Targets and Ligands 28 

Key protein targets and ligands in this article are hyperlinked to corresponding entries in 29 

http://www.guidetopharmacology.org, the common portal for data from the IUPHAR/BPS 30 

Guide to PHARMACOLOGY (36), and are permanently archived in the Concise Guide to 31 

PHARMACOLOGY 2017/18 (37, 38).  32 
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RESULTS 1 

Thirty-three participants completed both visits of the study, of which 13 received high-dose 2 

(24 mmol) and 20 received low-dose (8 mmol) KNO3/KCl. Mild gastrointestinal discomfort 3 

lasting <15 min was reported by 42.4% (14/33) of participants following dosing, with no 4 

significant difference between dose or intervention. Demographic data for participants are 5 

summarised in Table 1. 6 

 7 

Nitrate metabolism 8 

The metabolism of ingested NO3
- was confirmed by a significant time-dependent increase in 9 

plasma and urinary [nitrate] and [nitrite] and eNO following KNO3 compared to KCl (Figure 10 

2). In the high-dose cohort, plasma [nitrite] was significantly increased for KNO3 versus KCl 11 

at both the time of the OGTT (Time 0 h, 399±104 versus 81±16 nmol/L; P<0.01) and at peak 12 

plasma [glucose] (Time 1 h, 721±95 versus 60±13 nmol/L; P<0.001); see Figure 2. 13 

 14 

Haemodynamic response 15 

Haemodynamic parameters pre-intervention (Time -2 h to -1 h) were similar for KNO3 versus 16 

KCl interventions (Table 2). There were no significant differences in BP or HR for KNO3 versus 17 

KCl throughout the study (Time -2 h to +2 h; SBP P=0.27; DBP P=0.30; PP P=0.74; HR P=0.12) 18 

(Figure 3). Similarly, there were no significant differences in PWV, cSBP or AIx pre- and post-19 

OGTT (Time -1 h versus +2 h; all P>0.05; Figure 4). 20 

Subgroup analyses of high-dose (24 mmol) and low-dose (8 mmol) cohorts also revealed 21 

similar haemodynamic parameters at baseline (data not shown). However, in contrast to the 22 

main analysis, significant differences in HR were observed between interventions within 23 

each cohort. In the high-dose cohort, HR was reduced with KNO3 versus KCl (mean 24 

67.29±0.55 versus 68.36±0.56 mmHg; P=0.01) (Figure 5).  25 

For the low-dose cohort, the opposite effect was observed with a significantly higher HR 26 

with KNO3 versus KCl (mean 65.89±0.62 versus 64.40±0.40 mmHg; P<0.01) (Figure 6). There 27 

were no significance differences in ΔPWV, ΔcSBP or ΔAIx for the interventions within either 28 

cohort (all P>0.05; data not shown). 29 

 30 

Glucose Homeostasis 31 

There were no significant differences between interventions for plasma [glucose] (P=0.58) 32 

or [C-peptide] (P=0.84), but significantly higher plasma [insulin] was observed for KNO3 33 

versus KCl (P=0.01) (Figure 7). Insulin sensitivity, as represented by the Matsuda index, was 34 

not significantly different for KNO3 versus KCl (mean 4.26±0.48 versus 4.37±0.48; P=0.59). 35 
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 1 

Subgroup analyses of high-dose (24 mmol) and low-dose (8 mmol) cohorts revealed that the 2 

significant difference in plasma [insulin] was driven by the high-dose cohort (P<0.001 on 3 

ANOVA; at t=0.75 h mean difference 210.4 pmol/L (95% CI 28.5 to 392.3), P=0.012) (Figure 4 

8). There was no significant difference in the Matsuda index for KNO3 versus KCl with either 5 

24 mmol (mean 5.42±0.86 versus 5.60±0.75; P=0.77) or 8 mmol (mean 3.50±0.51 versus 6 

3.57±0.57; P=0.31). 7 

high- or low-dose. No significant correlation was observed between ΔSBP/DBP and 8 

Δ[insulin]/[glucose] at timepoint 1 h and 2 h (data not shown).  9 
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DISCUSSION 1 

This acute, crossover study investigated the effects of concurrent inorganic nitrate and 2 

glucose ingestion on blood pressure and glucose homeostasis in healthy individuals. The 3 

principal findings of this study were as follows: (i) physiological elevation of plasma [glucose] 4 

and [insulin] resulted in a lack of BP-lowering with inorganic nitrate, despite elevated 5 

plasma [nitrite], and (ii) the increase in plasma [insulin] without a corresponding change in 6 

[C-peptide] or [glucose] suggests that high-dose NO3
- decreases insulin clearance. 7 

A dose-response relationship has previously been demonstrated between NO3
- ingestion (as 8 

beetroot juice or nitrate capsules) and peripheral BP reduction (1, 39, 40). Doses as low as 9 

5.1 mmol have been shown to cause significant SBP reductions (39, 40), with higher doses 10 

(up to 22 mmol as beetroot juice, and 24 mmol as potassium nitrate, as used here) resulting 11 

in SBP/DBP reductions of 10.4/8.0 mmHg, and 9.4/6.0 mmHg, respectively (1, 39). 12 

Reductions in arterial stiffness have also occurred with both acute and chronic dosing (41, 13 

42).Whilst several studies in healthy individuals failed to show a peripheral BP decrease with 14 

NO3
- supplementation, this is the first study with a neutral effect for ≥12 mmol/d NO3

-. 15 

There is a strong correlation between PWV and PP, and so the lack of change in PWV is 16 

consistent with the peripheral measurements (43). Based on our previous work in those 17 

with, or at risk of, T2DM we would have expected to observe a reduction in cSBP following 18 

NO3
- ingestion through a selective dilatory effect on medium-sized conduit vessels (12, 44). 19 

However, nitrate had no effect on cSBP with an acute glucose load. 20 

The lack of effect on both peripheral and central haemodynamics suggest that normal, 21 

physiological responses to glucose are sufficient to prevent the BP-lowering effects of NO3
- 22 

supplementation. The observed differences in HR between interventions were small and, as 23 

the magnitude of change was opposite to that expected for the two doses, their biological 24 

validity is uncertain. The lack of BP-lowering is consistent with other studies that have 25 

demonstrated inhibition of NO-dependent flow mediated dilatation of conduit and small 26 

resistance arteries following acute physiological elevations in plasma [glucose] and [insulin] 27 

(45-47). Furthermore, in a study of overweight men Joris et al reported that co-ingestion of 28 

beetroot juice (approximately 8 mmol NO3
-) counteracted the decrease in FMD associated 29 

with the intake of a mixed meal, without differences in PWV or peripheral BP between 30 

groups (48). Whilst our study was not designed to disentangle the relative contributions 31 

from glucose and insulin, we hypothesise that lack of effect was modulated by elevated 32 

plasma glucose given that insulin-mediated vasodilatation within skeletal muscle is NO-33 

dependent (31). The elevated exhaled NO demonstrated an increase in systemic NO 34 

availability following nitrate supplementation, and that the lack of BP-lowering was 35 

therefore unlikely due to interruption of the nitrate-nitrite-NO pathway. 36 

In agreement with previous studies, NO3
- supplementation did not lower resting plasma 37 

[glucose] or improve insulin sensitivity as assessed by the Matsuda index (24-26). However, 38 

in the high-dose cohort we did observe an increase in plasma [insulin] without a 39 
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corresponding increase in [C-peptide], thus suggesting decreased insulin clearance. A 1 

change in plasma [insulin] without a corresponding change in [glucose] is consistent with 2 

the multifaceted mechanisms responsible for glucose homeostasis (49, 50). Dietary nitrate 3 

has been demonstrated to enhance glucose uptake in skeletal muscle independent of insulin 4 

via translocation of glucose transporter 4 (GLUT4) (51). It is therefore possible that high-5 

dose dietary nitrate facilitated glucose uptake via insulin-independent mechanisms, thus 6 

reducing insulin clearance at the same site. Our finding is also consistent with a previous 7 

study which showed that systemic inhibition of nitric oxide synthase (NOS) with NG-8 

monomethyl-L-arginine (L-NMMA) in healthy volunteers increased insulin clearance without 9 

an effect on peripheral insulin sensitivity (21). The mechanism of increased insulin clearance 10 

following NOS inhibition was attributed to activation of the specific protease hepatic insulin-11 

degrading enzyme (IDE), which is largely responsible for whole-body insulin clearance (52). 12 

IDE is dose-dependently inhibited by NO in vitro and provides a plausible mechanism for our 13 

observation of decreased insulin clearance. Furthermore, as NO mediates glucose uptake by 14 

skeletal muscle in vitro through insulin-independent mechanisms, decreased insulin 15 

clearance may also occur peripherally following NO3
- (53, 54).  16 

This study differs from those previously conducted with regards to the nitrate dose, glucose 17 

load and relative timing of ingestion. Our use of high-dose nitrate, a full OGTT and 18 

coordination of peak plasma [glucose] with elevated [nitrite], optimised any interaction and 19 

may explain why other studies did not observe changes in plasma [insulin]. Furthermore, we 20 

opted to deliver NO3
- via capsules rather than beetroot juice, to avoid additional 21 

uncontrolled CHO ingestion (37.5 g sugar per 500 mL; James White Drinks Ltd). It is a 22 

limitation of this study that although Lucozade is routinely used to administer OGTTs in 23 

clinical practice, we cannot exclude confounders mediated by other ingredients. However, 24 

the ingredients of Lucozade are similar to those in many other sports drinks and so the 25 

potential impact on exercise may represent a ‘class effect’. Thus, the lack of an effect of 26 

concomitant administration of glucose with nitrate on BP suggests the possibility that 27 

glucose might also negate the beneficial effects of nitrate on exercise performance.    28 

In summary, our findings describe decreased insulin clearance as a previously unidentified 29 

consequence of NO3
- supplementation and provide further information regarding how diet 30 

can acutely modulate blood pressure. Further investigation is required into the potentially 31 

antagonistic interaction between glucose and NO3
-.   32 

http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=165#878
http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=253
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Tables with Legends 1 

Table 1. Demographic data for participants. Data expressed as mean±SD. [BMI: body mass 2 

index; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart rate] 3 

 All participants Subgroups 

24 mmol 8 mmol 

Number of participants (n) 33 13 20 

Gender (n male) 15 6 9 

Age (years) 27.1±6.5 27.8±7.2 26.5±6.0 

Weight (kg) 70.1±13.9 69.4±9.9  70.5±16.1 

Height (m) 1.7±0.1 1.7±0.1 1.7±0.1 

BMI (kg/m2) 23.3±2.9 23.7±3.2 23.1±2.8 

SBP (mmHg) 113.4±10.1 115.0±11.1 112.4±9.6 

DBP (mmHg) 71.2±5.8 72.0±5.3 70.7±6.2 

HR (bpm) 67.9±9.4 69.4±10.3 67.1±8.0 

Fasting glucose (mmol/L) 4.7±0.6 4.7±0.4 4.7±0.7 

Fasting insulin (pmol/L) 44.1±22.2 39.9±16.2 46.9±25.3 

 4 

Table 2. Baseline haemodynamic parameters. Time -2 h to -1 h. Data expressed as 5 

mean±SD. 6 

[SBP: systolic blood pressure; DBP: diastolic blood pressure; PP: pulse pressure; HR: heart 7 

rate] 8 

 KNO3 KCl 

SBP (mmHg) 113.1±10.0 113.2±10.9 

DBP (mmHg) 70.8±6.7 71.1±6.4 

PP (mmHg) 42.3±7.3 41.2±7.6 

HR (bpm) 66.0±7.2 65.7±6.1 

  9 
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Figure Legends 1 

 2 

 3 

 4 

Figure 1: Schematic of events. After acclimatisation (-2 h to -1 h), participants received 5 

KNO3 or KCl tablets (Time -1 h) followed by an oral glucose tolerance test (OGTT; 75 mg 6 

glucose) at Time 0 h. Blood pressure (BP) measurement, blood tests and urine collection 7 

occurred as indicated.  8 

 9 

 10 

 11 
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 1 
Figure 2: Effect of 24 mmol KNO3 versus KCl (n=13) on: (A) plasma [nitrate], (B) plasma 2 

[nitrite], (C) urine [nitrate], (D) urine [nitrite], and (E) exhaled nitric oxide (NO). Effect of 8 3 

mmol KNO3 versus KCl (n=20) on (F) exhaled NO. Data expressed as mean±SEM. Significance 4 

shown as: †P<0.05, ††P<0.01, †††P<0.001 on ANOVA, followed by *P<0.05, **P<0.01, 5 

***P<0.001, Sidak’s post-test of KNO3 versus KCl.  6 

[OGTT: oral glucose tolerance test] 7 

 8 

 9 
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 1 
 2 

Figure 3: Effect of KNO3 versus KCl (n=33) on (A) systolic blood pressure (SBP), (B) diastolic 3 

blood pressure (DBP), (C) pulse pressure (PP), and (D) heart rate (HR). Data expressed as 4 

mean±SEM. [OGTT: oral glucose tolerance test] 5 

 6 

 7 
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 1 

 2 

Figure 4. Effect of KNO3 versus KCl (n=29) on (A) pulse wave velocity (PWV), (B) central 3 

systolic blood pressure (cSBP), and (C) augmentation index (AIx). Plots show range, median 4 

and 25 to 75th percentiles. 5 

 6 

 7 

 8 
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 1 

Figure 5: Effect of 24 mmol KNO3 versus KCl (n=13) on (A) systolic blood pressure (SBP), (B) 2 

diastolic blood pressure (DBP), (C) pulse pressure (PP), and (D) heart rate (HR). Data 3 

expressed as mean±SEM. Significance shown as: †P<0.05 on ANOVA.  4 

[OGTT: oral glucose tolerance test] 5 

 6 

 7 

 8 
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 1 

Figure 6: Effect of 8 mmol KNO3 versus KCl (n=20) on (A) systolic blood pressure (SBP), (B) 2 

diastolic blood pressure (DBP), (C) pulse pressure (PP), and (D) heart rate (HR). Data 3 

expressed as mean±SEM. Significance shown as: †††P<0.001 on ANOVA.  4 

[OGTT: oral glucose tolerance test] 5 

 6 

 7 

 8 
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 1 

 2 

Figure 7: Effect of KNO3 versus KCl (n=33) on (A) plasma [glucose], (B) plasma [insulin], and 3 

(C) plasma [C-peptide]. Data expressed as mean±SEM. Significance shown as: †P<0.05 on 4 

ANOVA, followed by *P<0.05, Sidak’s post-test of KNO3 versus KCl. ¥ P<0.01 on ANOVA for 5 

KNO3 versus baseline (-1 h), with Dunn’s post-test. ‡ P<0.01 on ANOVA for KCl versus 6 

baseline, with Dunn’s post-test. 7 

[OGTT: oral glucose tolerance test] 8 

 9 
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 1 

 2 

 3 

Figure 8: Effect of KNO3 versus KCl (24 mmol, n=13; A, C and E; 8 mmol, n=20; B, D, F) on: (A) 4 

and (B) plasma [glucose], (C) and (D) plasma [insulin], and (E) and (F) plasma [C-peptide]. 5 

Data expressed as mean±SEM. Significance shown as: †††P<0.001 on ANOVA, followed by 6 

*P<0.05, Sidak’s post-test of KNO3 versus KCl. 7 

[OGTT: oral glucose tolerance test] 8 

  9 
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