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Title  

Non-invasive classification of non-small cell lung: a comparison between random 

forest models utilising radiomic and semantic features. 

Short title 

CT semantic and radiomic classification of NSCLC 

  



 

1. Abstract 

1.1. Purpose 

Non-invasive distinction between squamous cell carcinoma (SCCA) and 

adenocarcinoma (ADCA) subtypes of non small-cell lung cancer (NSCLC) may be 

beneficial to patients unfit for invasive diagnostic procedures or when tissue is 

insufficient for diagnosis. The purpose of our study was to compare the performance 

of random forest algorithms utilizing CT radiomics and / or semantic features in 

classifying NSCLC. 

 

1.2. Methods 

Two thoracic radiologists scored 11 semantic features on CT scans of 106 patients 

with NSCLC. A set of 115 radiomics features was extracted from the CT scans. 

Random forest models were developed from semantic (RM-sem), radiomics (RM-

rad), and all features combined (RM-all). External validation of models was 

performed using an independent test dataset (n=100) of CT scans. Model 

performance was measured with out-of-bag error and area under curve (AUC), and 

compared using receiver-operating characteristics curve analysis on the test dataset. 

 

1.3. Results 

The median (interquartile-range) error rates of the models were: RF-sem 24.5% 

(22.6%-37.5%), RF-rad 35.8% (34.9%-38.7%), and RM-all 37.7% (37.7-37.7).  On 

training data, both RF-rad and RF-all gave perfect discrimination (AUC=1), which 

was significantly higher than that achieved by RF-sem (AUC=0.78; p<0.0001). On 

test data, however, RM-sem model (AUC=0.82) out-performed RM-rad and RM-all 



(AUC=0.5 and AUC=0.56; p<0.0001), neither of which was significantly different 

from random guess (p=0.9 and 0.6 respectively). 

 

1.4. Conclusion 

Non-invasive classification of NSCLC can be done accurately using random forest 

classification models based on well-known CT-derived descriptive features. 

However, radiomics-based classification models performed poorly in this scenario 

when tested on independent data and should be used with caution, due to their 

possible lack of generalizability to new data. 

 

1.5. Advances in knowledge 

Our study describes novel CT-derived random forest models based on radiologist-

interpretation of CT scans (semantic features) that can assist non small-cell lung cancer 

classification when histopathology is equivocal or when histopathologic sampling is not 

possible. It also shows that random forest models based on semantic features may be more 

useful than those built from computational radiomic features. 

 

  



1. Introduction 

Non-small cell lung cancers (NSCLC) comprise 85% of all primary lung malignancies 

1. Of these, approximately 60% are adenocarcinomas (ADCA) and 35-40% are 

squamous cell carcinomas (SCCA), with large cell cancers accounting for less than 

5%1. Conventionally, ADCA and SCCA are differentiated by histopathologic 

examination of haematoxylin & eosin-stained slides. ADCAs, depending upon the 

predominant pathologic subtype, may exhibit lepidic, glandular, papillary or 

micropapillary, or solid sheet-like architecture. SCCAs are characterised by the 

presence of keratinisation, pearl formation, and intercellular bridges 2. Frequently, 

NSCLC is diagnosed on sputum cytology or clinical and radiological features, but 

adequate tissue is not available to perform histological subtyping and molecular 

analysis, requiring a multidisciplinary approach for decision-making 2. Although 

curative options for both NSCLC subtypes are similar - either surgical or with SABR - 

the two subtypes differ in prognosis and choice of targeted agents 3. Hence, an 

accurate non-invasive test for NSCLC classification could serve as a valuable 

alternative for prognostication and choosing targeted agents in patients unsuitable 

for surgical resection.  

Radiomics and machine learning (ML) are becoming increasingly popular in imaging 

research 4. Radiomics involves computational analysis of a grey-scale image to 

derive features (e.g., mean, mode, kurtosis, and skewness) which are expected to 

quantify the tumour pathophysiology 5. ML is the task of using radiomics and other 

relevant variables (e.g., age, sex, and air bronchogram) in suitable computational 

algorithms (e.g., random forests or logistic regression) to infer clinically relevant 

information, e.g., tumour subtype. CT radiomics has been shown to be moderately to 

highly accurate in predicting NSCLC subtype, with reported performance of 68% to 



90% 6–8.  However, despite its promise 5, widespread acceptance of radiomics is 

hindered by largely unmet challenges surrounding variable reproducibility, procedure 

standardisation, and biologic explanation of used variables4,9,10.  

Semantic features, i.e. features derived from subjective interpretation of CT scans by 

a radiologist, have been shown in numerous independent studies to be related to 

tumour subtype and histopathology 11–17. Air-bronchogram, and ground-glass 

opacification are more common in ADCA, whereas cavitation and spiculation are 

more common in SCCA  16,17.  To our knowledge however, despite these well-known 

associations, semantic features have not been modelled in ML algorithms to predict 

tumour sub-type and therefore help clinical decision making in a quantitative manner. 

Furthermore, no studies have compared or combined radiomic features with 

semantic features (e.g., air bronchogram and cavitation) in differentiating ADCA from 

SCCA. 

We hypothesised that multivariate predictive models combining the strengths of 

semantic and radiomic features could yield potentially higher accuracy in NSCLC 

classification than either class of variables alone. Such non-invasive classification 

would benefit patients for whom an adequate histopathological subtyping cannot be 

obtained. Therefore, the objective of this study was to develop and compare NSCLC 

classification models based on semantic features, radiomic features, and 

combination of both.  

 

2. Methods and patients 

2.1. Patient population 

The training dataset comprised patients referred to a single institution as follows: We 

identified pre-treatment CT scans of pathologically-proved NSCLC patients referred 



to our tertiary care centre from 1/1/2011 to 31/12/2015. Patients were excluded if it 

was not possible to accurately determine tumour boundaries on CT, e.g. due to 

adjacent atelectasis. The final dataset comprised 106 studies (42 SCCA, 64 ADCA; 

figure 1). The independent validation cohort (n=100) comprised 65 ADCAs and 35 

SCCAs downloaded from the Cancer Imaging archive, subsampled with respect to 

ADCAs to ensure balanced proportions 18–20. Local ethics committee waived 

informed written consent for this retrospective study of anonymised data. 

 

 

 

2.2. Imaging 

Imaging of patients in the training dataset was performed on one of three Philips 

scanners: MX8000, Brilliance iCT 256, or Brilliance 40 (Philips Medical Systems, 

Best, Netherlands). Patients were imaged in the supine position at full inspiration. 

Scanning parameters were as follows: detector collimation: 0.625-0.75; rotation time: 

0.5-0.75 seconds; tube voltage: 120 kVp; tube current: 34-229 mAs. 100-150 mL 

iopromide 300 (300 mg I/mL Ultravist, Bayer Pharma, Berlin, Germany) was 

administered intravenously at a rate of 2-4 mL/s after a 30-70 second delay.  

 

2.3. Semantic features 

Two thoracic radiologists (AN and MM, with 14 and 9 years’ experience, 

respectively), blinded to histopathologic diagnosis, independently recorded 9 nodule 

semantic feature (table 1) and  two background parenchymal features, i.e., 

emphysema (present or absent) and airway thickening (present or absent) 11,12,21–26.  

 



Discrepant findings were resolved by consensus. Annotation of the validation dataset 

was performed by a separate blinded reader, UB (10 years’ radiology experience), 

using the same descriptions. 

 

2.4. Radiomic features 

Tumours were delineated by UB open-source software ITK-Snap (version 3.4.0; 

supplemental data)27. From the segmented volumes-of-interest, 756 radiomic 

features were derived using an in-house feature extraction tool developed in 

MATLAB (Release 2016b, The MathWorks, Inc., Natick, Massachusetts, United 

States). Highly correlated redundant features (showing pairwise correlation 

coefficient >0.8; n=641) were removed to yield a final set of independent 115 

radiomic features. 

 

2.5. Random forests model development and validation 

In this study, we used random forests as machine learning classifier. Random forests 

are known for their high performance and generalisability 28. Here we present a 

summary of random forest model development; technical details are provided in the 

supplemental data.  

A random forest model is a group of a large number of decision trees, e.g., 2000. 

The name ‘random’ alludes to the fact that each split of an individual decision tree is 

developed from a random subset of input variables. Each member tree is also 

trained on a slightly different variation of the dataset by using bootstrap sampling, 

i.e., sampling with replacement whereby several cases are sampled more than once 

and others omitted altogether (labelled ‘out-of-bag’ (OOB) samples). Since the OOB 

samples have not been used in training the particular tree, they are used for internal 



validation and the proportion of misclassified cases in the OOB sample serves as a 

performance metric: OOB error. After training of all 2000 decision trees is complete, 

a new case is classified by the entire ‘random forest’ by obtaining votes from 

member trees. A decision threshold is set based on the preferred degree of 

sensitivity, to provide a final classification of each new case; for example, using a 

50% probability threshold, a case may be classifying as ADCA if > 50% trees classify 

it as ADCA, and SCCA otherwise.  

We developed three random forests classifiers using the training dataset: One 

classifier comprising semantic variables only (RF-sem), one comprising radiomic 

features only (RF-rad), and one comprising both semantic and radiomic features 

(RF-all). Model validation was performed on the independent validation cohort. 

 

2.6. Statistical analysis 

R version 3.3.2 was used for statistical analysis 29. Continuous variables were 

reported as means and standard deviations. For descriptive analysis, differences 

between ADCAs and SCCAs were determined using Wilcoxon ranked sum test for 

continuous variables and using Fisher’s exact test for categorical variables. Inter-

observer agreement between the two radiologists with regards to semantic variables 

was measured with Cohen’s kappa test and summarised as estimated weighted 

kappa scores and their 95% CIs.  A p-value cut-off of 0.05 was used to determine 

statistical significance. 

The performance of random forests models was reported in terms of two metrics: 

The OOB error of random forests models was reported as error rate of decision trees 

during internal validation. The second metric - Area under curve (AUC) – was used 

as performance metric of fully trained models and reported separately for training 



and validation data. We used two metrics instead of one to illustrate both the 

robustness of individual trees (OOB error) and that of the forest as a whole (AUC). 

Both are related, and an ideal classifier should have both a low OOB error and a 

high AUC.  

Since our random forests used large numbers of variables, we also measured the 

importance of individual variables in the training dataset using the ‘mean decrease in 

accuracy’ (MDA) metric, i.e., decrease in classifier accuracy by removing the 

variable in question. The higher the MDA of a variable the more important the 

variable is. A variable with MDA of zero has no association with the outcome (tumour 

subtype) and there is no decrease in classifier accuracy if that variable is removed. 

Variables with low but non-zero MDA are still useful since random forests by design 

work well when individual variables are weakly related to the outcome, and mitigate 

their weak association by pooling them into a robust final classifier 28 

 

3. Results 

The mean interval between pathologic diagnosis and CT chest imaging was 21 days 

(range 5 – 41 days). Patients were aged from 40.3 to 85.5 years (median: 71.4 

years), with similar gender proportions (50 females: 56 males).  There were no 

significant differences between patients with ADCA versus SCCA in terms of age 

(p=0.6), smoking (p=0.67), or gender (0.55) (Table 2). 

 Of the 13 tested semantic variables, 3 were significantly more common in ADCAs, 

i.e. air bronchogram (p <0.0001), ground-glass component (p=0.0006), and satellite 

nodules (p=0.004). Cavitation was present in relatively few cases (n=9), of which 8 

were SCCAs (p=0.002). Table 3 describes the frequencies of semantic variables in 

both NSCLC subtypes. 



 

3.1. Comparison of random forest models 

The semantic random forest (RF-sem) performed equally well on training and test 

datasets with AUC of 0.78 and 0.82 respective (figure 2). The radiomics-only and 

combined models gave performed tumour subtype discrimination on the training data 

(AUC 1), but very low performance on validation data of AUC 0.5 and 0.56 

respectively, similar to random chance (figure 2). The OOB error of RF-sem (25.5%) 

was also lower than that of RF-rad (40.6%) and RF-all (37.7%). Figure 3 shows 

example tumours of each type with class probabilities, highlighting the probabilistic 

nature of the random forest model that can be exploited in clinical decision making to 

balance probability of tumour type against individual patient circumstances. 

In terms variable importance, air bronchogram (MDA=0.039), ground-glass 

component (MDA=0.023), and cavitation (MDA=0.019) were the top-ranking 

semantic variables, whereas tumour location, spiculation, and tumour margins did 

not have any discriminatory value. Of the radiomic variables, the highest ranking 

variables were grey-level size-zone matrix (GLSZM) short zone low intensity 

emphasis (GLSZM-SZLIE; MDA=0.005), co-efficient of variation (MDA=0.004), and 

neighbourhood grey-tone difference matrix (NGTDM) coarseness (MDA=0.003). 

Variable importance of semantic features and top 10 ranking radiomic features 

(total=756) is given in table 4.  

 

4. Discussion 

We developed 3 NSCLC classification models. RF-sem semantic features obtained 

by consensus between two thoracic radiologists from training data and by a separate 

radiologist, from the validation data. RF-rad was based on computer-aided extraction 



of radiomic features from CT images of NSCLCs, whereas RF-all was a combination 

of semantic and radiomic features. RF-sem performed well on both training and 

validation data despite both data-sets having been annotated by separate 

radiologists, indicating the robustness of random forests models developed with 

semantic features to inter-observer variability. RF-rad and RF-all gave perfect 

predictions on training data but performed no better than random guess on validation 

data – indicating a high degree of overfitting of random forests developed using 

radiomic features. 

We found several semantic features highly predictive of NSCLC subtype (table 3), of 

which air-bronchogram, ground-glass component, cavitation, and satellite nodules 

ranked highest in terms of discriminatory capability (table 4). Our findings regarding 

the relative proportions of the various semantic features follow previously reported 

trends with a few differences 13,30–32: Several clinical variables including older age, 

male gender, and smoking history are known to be more frequent in SCCA, in 

addition to semantic features such as spiculation and central location 32. In our 

cohort, none of these variables were significantly different between ADCA and SCCA 

and did not make a substantial contribution to the classifier.  

The most important radiomic features in our study were GLSZM-SZLIE 

(MDA=0.005), coefficient of variation (MDA=0.004), and NGTDM coarseness 

(MDA=0.003). The biologic counterparts of these features are poorly understood; 

here we attempt an intuitive explanation of what these features might represent in 

tumour CT images: The GLSZM, described originally for texture characterisation of 

cell nuclei 33, quantifies image heterogeneity in terms of zones of contiguous voxels 

sharing the same grey level intensity. A relatively homogeneous tumour would have 

large zones of voxels sharing similar grey level intensity and vice versa. The derived 



quantity GLSZM-SZLIE, as the name implies, would be expected to be high in 

tumours with heterogeneous distribution of low grey-level (e.g., ground-glass 

density) voxels. NGTDM coarseness, originally tested on various natural (e.g., 

pebbles, grass) and synthetic materials (e.g., cloth) 34, would be high in tumours 

exhibiting similar intensities in neighbouring voxels with a low spatial rate of change 

in voxel intensities. In other words, they would comprise clusters of similar intensity 

voxels which would stand out against the background and give a ‘coarse’ appearing 

texture to the tumour. Coefficient of variation (ratio of standard deviation over mean) 

is a first-order statistical texture feature which is high in tumours exhibiting high 

variation in grey-level intensities and low mean intensities. All three features were 

slightly more common in ADCAs versus SCCAs in our cohort. 

A few authors have previously explored radiomics in NSCLC classification: In their 

proof of concept study, Basu et al. trained a classifier (accuracy: 68%) on CT-derived 

radiomic features from 74 cases of NSCLC 7. Their study focused on differentiating 

the efficacy of 2D radiomic features versus 3D radiomic features and presented a 

comparison of various model categories including random forests, support vector 

machines, decision trees, and nearest neighbours.  Their best model accuracy of 

68% was obtained by employing all 215 features in a leave-one-out cross-validation 

scheme. However, the authors did not report the best performing variables and a 

comparison with our radiomic features can therefore not be performed. Two recent 

studies done by Wu et al. (n=300) and Zhu et al (n=129) have reported higher 

performance of radiomics-models (AUC 0.72 and 0.9 respectively) 6,8.  

Other than that, neither study compared radiomic features with semantic features, 

the most important difference between our study and either two is that the subset of 

highest performing radiomic features is different in all three studies. It is possible that 



since there are hundreds of radiomic features with majority inter-correlated, some of 

the different high-ranking features might merely be variations of the same feature. A 

second possibility is that some of the radiomic models developed by other authors 

may have overfit, as seen in our study, although Wu et al used an external validation 

cohort making this unlikely in their study. Overfitting is a common design problem in 

ML studies, especially in studies with a large number of variables with respect to 

cases and lack of external validation cohort.  Radiomics is doubly challenged in 

gaining widespread acceptance due to the common use of hundreds of variables 

and issues surrounding reproducibility, although efforts are underway to standardise 

radiomics 35. 

Our study has several potential limitations: Because this was a CT study, we could 

not completely eliminate the possibility of including small regions of normal tissue, 

e.g., opacification due to adjacent atelectasis. However, we minimised such cases 

by excluding lesions that were difficult to delineate from adjacent collapsed lung. As 

a result, there may have been an under-representation of centrally located SCCAs 

because such tumours were frequently inseparable from adjacent atelectasis. 

Central location is a known feature of SCCAs and including more centrally located 

tumours, expected to be majority SCCA, may have improved model performance 33. 

Secondly, as in most radiomics studies, our original radiomic feature space 

comprised a large number (n=756) of features derived from CT scans with varying 

data acquisition parameters, especially those obtained from TCIA. Radiomic features 

are variable in terms of reproducibility and are dependent on tumour segmentation 

and image post-processing steps 27. Hence, we believe that future studies using a 

more refined selection of radiomic features, especially features engineered 

specifically for chosen classification tasks, may provide more useful results. 



 

5. Conclusions 

Our study showed that non-invasive classification of NSCLCs using semantic 

features is possible and can be done with good accuracy (AUC: 0.82) using machine 

learning algorithms. However, CT-scan radiomic features performed poorly on 

independent validation data (AUC 0.5 and 0.56 for RF-tex and RF-all respectively), 

despite perfect classification on test data, and may be unsuitable for this task. 
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7. Figures 

Figure 1 Patient inclusion workflow in our study for training and validation datasets. 

 

Figure 2 Performance curves of RF models on test data (A) and training data (B) 

show that RF models containing radiomic features (i.e., RF-rad and RF-all) yielded 

perfect discrimination (AUC 1) on training data (A), but very poor discrimination 

(AUC 0.52 and 0.56 respectively) on test data, similar to random guess (black line in 

A and B). RF-sem gave consistent good performance on training (B; AUC 0.78) as 

well as test data (B; AUC 0.82).  

 

Figure 3 showing two cases of ADCA (A and B), and two of SCCA (C and D). All 

cases were assigned high probability of respective histologies by the RF-sem model 

(inset). Among other semantic features these tumours displayed features well known 

for ADCA, i.e., ground-glass component (arrow in A) and air bronchogram (arrow in 

B), and for SCCA, i.e., spiculation (arrow in C) and cavitation (arrow in D). Since 

spiculation was not strongly correlated with SCCA histopathology, the RF-sem model 

used absence of ADCA-specific features in C, although the overall confidence for 

SCCA (probability = 75%) was relatively lower. 



8. Tables   

 

Table 1.  Nodule semantic features and their descriptions 

Semantic 

feature 

Description 

Air-

bronchogram 

Presence of visible air-filled bronchi within the lesion. Measured as 

being present or absent.  

Ground-glass 

component 

Presence of hazy attenuation, higher than background, but not 

sufficiently high to obscure bronchial and vascular margins within 

the lesion  23.   

Location Central or Peripheral, based on whether the tumour was closer to 

the hilum than the nearest segmental bronchus or not. 

Margins Irregular, smooth, or lobulated. Lobulation was defined as the 

presence of at least 3 undulations with a height of more than 2 mm 

23. 

Pleural 

indentation 

Retraction of pleura near the tumour margin 26.  

Satellite 

nodules 

Presence of smaller nodules in the immediate vicinity of the main 

lesion.  

Spiculation The presence of linear strands at least 2 mm thick extending from 

tumour margin into adjacent parenchyma 22,23. 

Cavitation Presence of a round lucency inside the lesion, usually within the 

centre of the lesion and larger than pseudo-cavitation; suggests 

necrosis 23. 



Pseudo-

cavitation 

Presence of bubble-like areas of low attenuation within the nodule. 

 

 

  



Table 2 Clinical and demographic features of patients in training dataset.  

Clinical feature ADCA SCCA 

Age in years, 

mean (range, SD) 

69 (40.2-

84.75, 10.2) 

70.8(52.35-

85.54,8.1) 

Sex (M : F) 32 : 32 24  : 18 

Smokers 65.6% (n=42)  71.4%(n=30) 

T1a 10 7 

T1b 12 6 

T2a 27 15 

T2b 3 5 

T3 10 8 

T4 2 1 

N0 50 35 

N1 3 3 

N2 11 3 

N3 0 1 

M0 64 40 

M1 0 2 

 

SD=standard deviation  



Table 3 Frequencies of semantic features according to tumour type.  

 Semantic feature 
 

Tumour type Fisher’s 

exact test 

Interobserver 

agreement 

 
  

ADCA (n=64) SCCA (n=42)  Weighted-κ (95% CI) 

1. Air-bronchogram Absent 31 (48.44%)  36 (85.71%)  <0.0001 0.34 (0.16 to 0.52)  

  Present 33 (51.56%)  6 (14.29%)   
 

  
   

 
 

2. Airway thickening Absent 31 (48.44%)  15 (35.71%)  0.2 0.44 (0.25 to 0.63)  

  Present 30 (46.88%)  20 (47.62%)   
 

       

3. Emphysema Absent 24 (37.5%)  10 (23.81%)  0.2 0.78 (0.69 to 0.86)  

  Present 20 (31.25%)  16 (38.1%)   
 

  
   

 
 

4. Ground-glass 

component 

Absent 50 (78.13%)  42 (100%)  0.0006  0.74 (0.54 to 0.94)  

  Present 14 (21.88%)  0 (0%)   
 



  
   

 
 

5. Location Central third 20 (31.25%)  10 (23.81%)  0.5 0.35 (0.16 to 0.55)  

  Peripheral two-

thirds 

44 (68.75%)  32 (76.19%)   
 

  
   

 
 

6. Margins Irregular 35 (54.69%)  22 (52.38%)  0.9 0.2 (0.04 to 0.35)  

  Lobulated 27 (42.19%)  18 (42.86%)   
 

  Smooth 2 (3.13%)  2 (4.76%)   
 

  
   

 
 

7. Pleural indentation Absent 18 (28.13%)  10 (23.81%)  0.65 0.44 (0.24 to 0.63)  

  Present 46 (71.88%)  32 (76.19%)   
 

  
   

 
 

8. Satellite nodules Absent 50 (78.13%)  41 (97.62%)  0.004 0.74 (0.55 to 0.92)  

  Present 14 (21.88%)  1 (2.38%)   
 

  
   

 
 

9. Spiculation Absent 38 (59.38%)  23 (54.76%)  0.69 0.27 (0.11 to 0.42)  



  Present 26 (40.63%)  19 (45.24%)   
 

  
   

 
 

10. Cavitation Absent 63 (98.44%)  34 (80.95%)  0.002 0.78 (0.57 to 0.99)  

  Present 1 (1.56%)  8 (19.05%)   
 

  
   

 
 

11. Pseudo-cavitation Absent 51 (79.69%)  39 (92.86%)  0.09 0.23 (0.01 to 0.45)  

  Present 13 (20.31%)  3 (7.14%)   
 

 

 

IQR = interquartile range, SD = standard deviation



 

TABLE 4. Variable importance determined by random forests classifier using MDA. A 

high MDA score of a variable corresponds to greater predictive power.  

Variable MDA 

Semantic features 

 

 

Air bronchogram 0.039 

Ground-glass component 0.023 

Cavitation 0.019 

Satellite nodules 0.015 

Airway thickening 0.008 

Pleural indentation 0.006 

Emphysema 0.004 

Pseudo-cavitation 0.002 

Location -0.002a 

Spiculation -0.005 

Margin -0.011 

  

Radiomic features 

 

 

db1 LLL GLSZM Short Zone 

Low Intensity Emphasis 

0.005 

db1 HLH Coefficient of Variation 0.004 

db1  LLL NGTDM Coarseness 0.003 

db1  HHH GLCM Cluster Shade 0.003 



db1  HHH NGTDM Coarseness 0.003 

db1  HHH GLCM Correlation 0.003 

NGTDM Contrast 0.003 

Maximum intensity 0.003 

db1  HHL Coefficient of Variation 0.002 

 

aNegative MDA means the variable did not perform better than random chance. 

MDA=Mean decrease in accuracy. Note: Only the top 10 radiomic features are given 

here. For full table, please see supplemental file. 

  



 

 

 

List of supplemental material 

Supplemental data.docx. This document details image post-processing steps 

(including a summary of derived radiomic features) and model development 

procedure. 


