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Abstract 

Although ellipticine (Elli) is an efficient anticancer agent, it exerts several adverse effects. One 

approach to decrease the adverse effects of drugs is their encapsulation inside a suitable 

nanocarrier, allowing targeted delivery to tumour tissue whereas avoiding healthy cells. We 

constructed a nanocarrier from apoferritin (Apo) bearing ellipticine, ApoElli, and subsequently 

characterized. The nanocarrier exhibits a narrow size distribution suggesting its suitability for 

entrapping the hydrophobic ellipticine molecule. Ellipticine was released from ApoElli into the 

water environment under pH 6.5, but only less than 20% was released at pH 7.4. The interaction 

of ApoElli with microsomal membrane particles containing cytochrome P450 (CYP) 

biotransformation enzymes accelerated the release of ellipticine from this nanocarrier making 

it possible to be transferred into this membrane system even at pH 7.4 and facilitating CYP-

mediated metabolism. Reactive metabolites were formed not only from free ellipticine, but also 

from ApoElli, and both generated covalent DNA adducts. ApoElli was toxic in UKF-NB-4 

neuroblastoma cells, but showed significantly lower cytotoxicity in non-malignant fibroblast 

HDFn cells. Ellipticine either free or released from ApoElli was concentrated in the nuclei of 

neuroblastoma cells, concentrations of which being significantly higher in nuclei of UKF-NB-

4 than in HDFn cells. In HDFn the higher amounts of ellipticine were sequestrated in 

lysosomes. The extent of ApoElli entering the nuclei in UKF-NB-4 cells was lower than that of 

free ellipticine and correlated with the formation of ellipticine-derived DNA adducts. Our study 

indicates that the ApoElli form of ellipticine seems to be a promising tool for neuroblastoma 

treatment. 

 

 

Keywords: Ellipticine; Apoferritin nanoparticles; Cytochrome P450-mediated metabolism; 

DNA adducts; Neuroblastoma; Cytotoxicity. 

 

 

Abbreviations:  Apo, apoferritin; ApoElli, apoferritin-containing encapsulated ellipticine; CI, 

cell index; CYP, cytochrome P450; CTCF, corrected total cell fluorescence;  DAP, 4’,6-

diamidino-2-phenylindole, dihydrochloride; DLPC, dilauroyl phosphatidylcholine; DLS, 

quasielastic dynamic light scattering; DMEM, Dulbecco’s Modified Eagle Medium;  DMSO, 

dimethyl sulfoxide; Elli, ellipticine; EPR, enhanced permeability and retention; GAPDH, 

glyceraldehyde 3-phosphate dehydrogenase; HDFn, neonatal human dermal fibroblasts; HPLC, 

high performance liquid chromatography; IMDM, Iscove’s modified Dulbecco’s medium; PEI, 

polyethylenimine; POR, NADPH:cytochrome P450 oxidoreductase; RAL, relative adduct 

labelling; RBC, red blood cells; RES, reticuloendothelial system; SCARA5, scavenger receptor 

class A member 5; TEM, transmission electron microscopy; TLC, thin-layer chromatography; 

TfR1. transferrin receptor 1. 
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1. Introduction 

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole, Fig. 1) and its derivatives are 

efficient anticancer agents that function through multiple mechanisms participating in cell cycle 

arrest and initiation of apoptosis (Auclair, 1987; Garbett et al., 2004; Kizek et al., 2012; 

Stiborova and Frei, 2014; Stiborová et al., 2011; 2015a). The main reason for the interest in 

ellipticine and its derivatives for clinical purposes is their high efficacy against several types of 

cancer (Auclair, 1987; Garbett et al., 2004; Kizek et al., 2012; Stiborova and Frei, 2014; 

Stiborová et al., 2011; 2015a). The predominant mechanisms of ellipticine’s biological effects 

were proposed to be intercalation into DNA (Auclair, 1987; Garbett et al., 2004; Tmejova et 

al., 2014) and inhibition of topoisomerase II (Auclair, 1987; Garbett et al., 2004; Kizek et al., 

2012; Stiborova and Frei, 2014; Stiborová et al., 2011; 2015a). We also showed that this 

antitumor agent forms covalent DNA adducts after metabolic activation by cytochrome P450 

(CYP) enzymes and peroxidases (Stiborová et al., 2001, 2003a; 2003b; 2004; 2007a; 2007b; 

2008; 2012b; Kotrbová et al., 2011), suggesting an additional DNA-damaging effect of 

ellipticine. This DNA damage has been found to be the major mechanism of ellipticine’s 

antitumor activities (Stiborová et al., 2011; 2012b; 2014b; 2015a; Stiborova and Frei, 2014). 

Of the CYP enzymes, human CYP3A4 is the most active enzyme oxidizing ellipticine to 12-

hydroxy- and 13-hydroxyellipticine, the reactive metabolites that dissociate to ellipticine-12-

ylium and ellipticine-13-ylium which form two covalent DNA adducts (Fig. 1) (Stiborová et 

al., 2004; 2006; 2008; 2011; 2012a; 2012b; 2014b; 2015b). CYP3A4 also generates further 

metabolites such as 9-hydroxyellipticine, which is considered to be a detoxification metabolite 

as well as 7-hydroxyellipticine and ellipticine N2-oxide (both minor metabolites) (Stiborová et 

al., 2004; 2011; 2012a; 2012b). 9-Hydroxyellipticine and 7-hydroxyellipticine are primarily 

generated by CYP1A1 whereas ellipticine N2-oxide is mainly generated by CYP2D6 (Fig. 1) 

(Stiborová et al., 2004; 2011).  

There are, however, several phenomena that can limit the clinical use of ellipticine and/or 

limit its anticancer efficiency. For instance, the clinical application of ellipticine is greatly 

limited by hydrophobicity and severe adverse toxic effects, including nephrotoxicity, 

hemolysis, xerostomia, hypertension, nausea and vomiting (Garbett and Graves, 2004; 

Stiborová et al., 2011; Stiborova and Frei, 2014). To some extent, the development of 

chemoresistance has been observed (Poljaková et al., 2009; Procházka et al., 2012; Hrabeta et 

al., 2015). One approach in mitigating these adverse effects is the encapsulation of ellipticine 

inside suitable nanocarrier, allowing targeted delivery to the tumor tissue while avoiding 

healthy cells (Chomoucka et al., 2010; Petros and DeSimone, 2010; Ali et al., 2011; Ryvolova 
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et al., 2012; Svenson, 2012; 2013; Dostalova et al., 2016). These nano-sized carriers can reach 

disease tissue and tumor cells via passive targeting (due to their size) (Dostalova et al., 2016) 

and/or active targeting (due to specific moieties on their surface) (Dostalova et al., 2016; Wu et 

al., 2012). Various materials have been tested for targeted ellipticine delivery, including 

peptide-based nanoparticles (Wu et al., 2012; Wan et al., 2016), polyHPMA-ellipticinium 

conjugates (Sedlacek et al., 2013), particles based on the triblock copolymer poly(ethylene 

oxide)-block-[tert-butylacrylamide-co-6-(N-methacryloylamino)-hexanoic acid hydrazide]-

block-poly(ethylene oxide) (Studenovský et al., 2015) poly(ethylene oxide)-block-poly(allyl 

glycidyl ether) block copolymer-based micelles (P 1191 nanoparticles) (Stiborova et al., 2014a; 

2015b), and octyl glucoside micelles (Gavvala et al., 2014). These nano-formulations seem to 

offer a promising way in overcoming some of the side effects of ellipticine (Sedlacek et al., 

2013; Gavvala et al., 2014; Stiborova et al., 2014a; 2015b). Besides these nanocarriers, those 

prepared using ubiquitous proteins or protein cages also appear suitable for several anticancer 

drugs such as doxorubicin (Yang et al., 2007; Liang et al. 2014; Dostalova et al., 2016; 2017) 

and might therefore also be considered a suitable alternative for targeted ellipticine delivery. 

They are naturally biocompatible and biodegradable, and provide receptor-mediated passage 

through the cell membranes (Dostalova et al., 2016). 

Apoferritin (Apo) is a naturally occurring iron-storage protein consisting of 24 protein 

subunits responsible for the storage and transfer of iron (Gallois et al., 1997; Kim et al., 2011; 

Kilic et al., 2012; Tmejova et al., 2013; Blazkova et al., 2013; Heger et al., 2014) that provides 

much needed properties of a drug-nanocarrier. Various ferritins are internalized by transferrin 

receptor 1 (TfR1) or scavenger receptor class A member 5 (SCARA5), overexpressed on 

membranes of some tumor cells (Mendes-Jorge et al., 2014). This can enable natural active 

targeting to those tumor cells, while passive targeting to tumor tissues is facilitated by the size 

of the ferritins (Blazkova et al., 2014; Heger et al., 2014). Apo protein subunits assemble to 

form a hollow cage with internal and external size of 8 and 12 nm in diameter, respectively, 

into which diverse low-molecular substances, such as drugs, can be placed (Uchida et al., 2007). 

It was shown that while disassembled, Apo protein subunits can be mixed with drug molecules 

and they are encapsulated within Apo cavity once reassembled (Blazkova et al., 2014; Heger et 

al., 2014). Using Apo as a nanocarrier has the potential to move undetected through the body 

without inducing any immune reaction. Furthermore, this natural protein can be modified with 

recognition ligands to achieve tumor-specific targeting (Dostalova et al., 2016; 2017). These 

extra modifications can avoid renal clearance and ensure enhanced permeability and retention 
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effect. However, they might disturb the Apo in vivo performance and biocompatibility due to 

altered surface physicochemical properties of ferritin (Dostalova et al., 2016). 

The aim of this study was to construct a nanocarrier based on apoferritin-containing 

encapsulated ellipticine (ApoElli). Therefore, we developed a simple-to-use encapsulation 

protocol in this study to creating ApoElli. Further, the prepared ellipticine-bearing nanocarriers 

were characterized and their biochemical and cytotoxic properties investigated. We also studied 

the CYP-facilitated formation of ellipticine-derived DNA adducts using ApoElli. 

 

 



 6

2. Material and methods 

 

2.1. Chemicals and reagents  

Ellipticine, NADPH (as tetrasodium salt; ~98% purity), apoferritin (L-chain ferrritin) from 

horse spleen, dilauroyl phosphatidylcholine (DLPC), glutathione, calf thymus DNA, and others 

were purchased from Sigma-Aldrich (St. Louis, MO, USA) in ACS purity (purity meets the 

standards of American Chemical Society), unless noted otherwise. Testosterone and 6-β-

hydroxytestosterone were purchase from Merck (Darmstadt, Germany).  

 

2.2. Enzymatic systems 

Human CYP3A4 expressed in SupersomesTM (CYP3A4-SupersomesTM), microsomes isolated 

from insect cells transfected with a baculovirus construct containing cDNA of human CYP3A4, 

NADPH:cytochrome P450 oxidoreductase (POR) and cytochrome b5 (molar ratio of CYP3A4 

to cytochrome b5 of 1 to 5), were purchased from Corning (Tewksbury, MA, USA). The 

enzymatic activity of the experimental CYP3A4-SupersomesTM system used was verified by 

studying its efficiency to catalyze 6-β-testosterone hydroxylation, a marker reaction for 

CYP3A4 (see below).  

 

2.3. Preparation of apoferritin-bound ellipticine  

The stock solution of ellipticine (1 mg/ml) was prepared by dissolving ellipticine in distilled 

water with addition of 1 M HCl (at a ratio of water to HCl of 150 to 1). Ellipticine was 

encapsulated into apoferritin as follows: 200 µl of horse spleen Apo (50 mg/ml) was added to 

2 ml of distilled water and 1 ml of ellipticine (1 mg). The pH was lowered from 6.7 to 2.7 by 

HCl to disassemble the Apo structure, and the mixture was shaken for 15 min to create a 

homogeneous solution. After mixing, the pH was adjusted again to neutral pH (7.2), by adding 

7 µl of 1 M NaOH. The solution was mixed again for 15 min to enable the reassembly of the 

Apo molecule and encapsulation of ellipticine molecules within (creating ApoElli). The sample 

was diafiltrated three times with water using Amicon® Ultra - 0.5 ml 3K (Merck Millipore, 

Billerica, MA, USA) at 15,000g for 5 min. The parental molecule of ellipticine was stable under 

the conditions used for the preparation of ApoElli nanoparticles. The amount of ellipticine 

encapsulated in the Apo nanoparticles were determined using fluorescence detection (excitation 

wavelength 434 nm, emission wavelength 541 nm). The final concentration of ellipticine in 

ApoElli samples was 2.2 mM.  
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2.4. Characterization of ApoElli nanocarrier during storage 

For every period of storage, aliquots were collected and prematurely released ellipticine was 

removed by diafiltration with distilled water using the Amicon® Ultra - 0.5 ml 3K (Merck 

Millipore, Billerica, MA, USA) at 13,000g for 15 min. The stability of ApoElli nanoparticles 

(1.7 mM stock solution) was determined after their incubation in distilled water at ‒20°C and/or 

+4°C for up to 10 weeks. Aliquots (150 µl) were diluted twice with water and diafiltrated using 

Amicon® Ultra - 0.5 ml 3K (Merck Millipore, Billerica, MA, USA) at 13,000g for 5 min. 

Ellipticine was extracted from 100 µl of ApoElli twice with 1 ml of ethyl acetate, the solvent 

was evaporated to dryness and residues were dissolved in 25 µl of methanol prior to analysis. 

Released and retained ellipticine was measured using HPLC as previously described (Stiborová 

et al., 2004; 2017). 

Visualization and the average size of ApoElli nanocarriers prior to removal of released 

drug molecules and the Apo nanocarriers without ellipticine were performed using transmission 

electron microscopy (TEM) with negative staining technique. For this purpose, an 

organotungsten compound, Nano-W (Nanoprobes, Yaphank, NY, USA) was utilized. Then, 4 

μl of samples was deposited onto 400-mesh copper grids coated with a continuous carbon layer. 

Dried grids were imaged by TEM (Tecnai F20; FEI, Hillsboro, OR, USA) at 80,000× 

magnification. 

The average size of Apo and ApoElli was also determined by quasielastic dynamic light 

scattering (DLS) with a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The 

nanocarrier was diluted to a concentration of 10 µg/ml of Apo, placed into polystyrene latex 

cells, and measured at a detector angle of 173°, wavelength of 633 nm, and temperature of 

25°C, with refractive index of dispersive phase 1.45 and 1.333 for dispersive environment. For 

each measurement, Zen0040 disposable cuvettes (Brand GmbH, Wertheim, Germany) were 

used, containing 50 μl of sample. Equilibration time was 120 seconds. Measurements were 

performed in hexaplicate. 

The surface zeta potential (ζ-potential) of the nanocarrier diluted to 20 µg/ml of Apo was 

measured using the Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). For each 

measurement, disposable cells (DTS1070) were employed. The number of runs varied between 

20 and 40, and calculations considered the diminution of particle concentration based on the 

Smoluchowski model, with an F(ka) of 1.5 and an equilibration time of 120 sec. Measurements 

were performed in triplicate. 

 

2.5. The effect of pH on release of ellipticine from ApoElli nanoparticles 
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 The released free ellipticine (from ApoElli) at different incubation times was determined by 

HPLC as previously described (Stiborová et al., 2004; 2017). To assay for the release of 

ellipticine, ApoElli sample (1.7 mM; 500 µl) were placed in a D-tube (molecular weight cut-

off 3 kDa, D-Tube Dialyzer midi; (Novagen, Darmstadt, Germany) and incubated with gentle 

stirring in 14.5 ml of 0.1 M potassium phosphate buffer pH 6.5 and/or 7.4 at 37°C in the dark. 

500 µl of buffer with released ellipticine was replaced and extracted twice with 1 ml of ethyl 

acetate at each time point. The solvent was evaporated to dryness and residues were dissolved 

in 25 µl of methanol before HPLC analysis. 

 

2.6. Incubations to study 6-β-testosterone hydroxylation by CYP3A4 in SupersomesTM 

The incubation mixtures for measuring the testosterone metabolism contained in a final volume 

of 0.25 ml: 100 mM potassium phosphate buffer (pH 7.4 or 6.5), 50 µM testosterone (1.25 μl 

of stock methanol solution per incubation), 1 mM NADPH, and 100 nM human recombinant 

CYP3A4 in SupersomesTM with cytochrome b5. The reaction was initiated by adding NADPH, 

the cofactor CYP-mediated enzyme system present in SupersomesTM. Negative control 

reactions lacked either CYP3A4-SupersomesTM systems or cofactors or testosterone. After 

incubation for 15 min at 37oC, 5 μl of 1 mM phenacetin in methanol was added as an internal 

standard; testosterone oxidation was linear up to 30 min of incubation (data not shown). The 

reaction was terminated by the addition of 0.1 ml of 1 M aqueous Na2CO3 containing 2 M NaCl. 

The metabolites were extracted twice with 1 ml of dichloromethane and extracts were 

evaporated to dryness. The residues were dissolved in the mobile phase for HPLC (see below). 

Testosterone and its metabolite 6-β-hydroxytestosterone were separated on Nucleosil (C18) 

HPLC column (4.6 × 25 mm, 5 µm, Macherey-Nagel, Germany). The flow rates, mobile phases 

and detection wavelength were 0.6 ml per min, 65:35 methanol/H2O (v/v), and 254 nm, 

respectively (Bořek-Dohalská et al., 2001; 2010). 

 

2.7. Ellipticine release from ApoElli nanoparticles, its transfer into SupersomesTM containing 

human CYP3A4 and cytochrome b5, and determination of its metabolism 

Release of ellipticine from ApoElli nanoparticles in the presence of CYP3A4-SupersomesTM 

with cytochrome b5, its transfer into these subcellular membrane particles and its ability to be 

metabolized were investigated in incubation mixtures of these particles in 0.1 M sodium 

phosphate buffer pH 6.5 and/or 7.4 for 20 min at 37°C. Incubation mixtures contained in a final 

volume of 0.25 ml: 100 mM potassium phosphate buffer (pH 6.5 or 7.4), 1 mM NADPH, 100 

nM human recombinant CYP3A4 in SupersomesTM co-expressed with POR and cytochrome 
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b5, and 25 μM free ellipticine or ApoElli. Stock solution of free ellipticine was 2.5 mM in 

dimethylsulfoxide (DMSO). Stock solution of Apo-bound form of ellipticine was 2.2 mM in 

water. The reaction was initiated by adding NADPH. Control incubations lacked either 

CYP3A4-SupersomesTM, cofactor (NADPH), ellipticine or ApoElli. After incubation for 20 

min at 37°C, 5 μl of 1 mM phenacetin in methanol was added as an internal standard. Ellipticine 

metabolites were extracted twice with 1 ml ethyl acetate, solvent was evaporated to dryness, 

residues were dissolved in 25 μl methanol and ellipticine metabolites were separated by HPLC 

as reported (Stiborová et al., 2004; 2017). 

 

2.8. Ellipticine release from ApoElli nanoparticles and its transfer into liposomes 

Liposomes are a form of vesicles mimicking the properties of microsomes that consist either of 

many, few or just one phospholipid bilayers. For the present study they were prepared as 

described previously (Stiborová et al., 2001) with minor modifications. Briefly, liposomes were 

prepared from dilauroyl phosphatidylcholine dissolved in chloroform (20 mg/ml). A lipid film 

was obtained by rotary evaporation of chloroform. Residual chloroform was removed by a 

stream of nitrogen. The lipid film was further dispersed with 0.1 M sodium phosphate buffer 

pH 7.4 and ultrasonicated twice at 20°C for 3 min each. In these vesicles amphiphilic and 

lipophilic molecules are solubilized within the phospholipid bilayer according to their affinity 

towards the phospholipids (Kulkarni et al., 2011). Because of these properties the possible 

transfer of ellipticine from ApoElli nanoparticles to these liposomes was tested. Appropriate 

amounts of ApoElli nanoparticles (2.2 mM ellipticine in ApoElli sample) were added to the 

prepared liposomes dispersed in 0.1 M sodium phosphate buffer pH 7.4 and the mixture was 

incubated for 20 min at 37°C. Liposomes were re-precipitated with 1 mM calcium chloride and 

centrifuged at 15,000g for 10 min as described (Kamath et al., 1971). Control incubations were 

carried out with the incubation mixture containing these components but in the absence of 

liposomes. The amounts of ellipticine present in the pellet of liposomes obtained by 

precipitation from the incubation mixture and in residual ApoElli nanoparticles retained in 

supernatant of these incubations were determined by HPLC (Stiborová et al., 2004; 2017). 

Likewise, the amounts of ellipticine present in pellet obtained by precipitation of the control 

incubation mixture (without liposomes) and in residual supernatant were determined by HPLC. 

Ellipticine from the samples was extracted twice with 1 ml ethyl acetate, solvent was evaporated 

to dryness, and residues were dissolved in 25 μl of methanol prior to HPLC analysis. 

 

2.9. Determination of DNA adduct formation by ellipticine and ApoElli by 32P-postlabeling 
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Incubation mixtures used to assess DNA adduct formation by ellipticine and ApoElli contained 

0.5 mg protein of 100 nM human recombinant CYP3A4 in SupersomesTM with POR and 

cytochrome b5 (500 nM), 0.1 mM ellipticine (dissolved in 7.5 μl DMSO) or ApoElli (in 

deionized water), and 0.5 mg of calf thymus DNA in a final volume of 0.75 ml as described 

previously for free ellipticine (Stiborová et al., 2004; 2012a; 2012b). The reaction was initiated 

by adding 0.1 mM ellipticine (in free or Apo-bound form) and incubations were carried out for 

60 min at 37°C. Ellipticine-derived DNA adduct formation has been shown to be linear up to 

90 min (Stiborová et al., 2004; 2012a; 2012b).   Control incubations were carried out without 

CYP3A4-SupersomesTM, or without NADPH, DNA, ellipticine or ApoElli. After incubation, 

DNA was isolated from the residual water phase by standard phenol/chloroform extraction. 

DNA adduct formation was analyzed using the nuclease P1 enrichment version of the 32P-

postlabeling assay (Stiborová et al., 2004; 2012a; 2012b). Resolution of the adducts by thin-

layer chromatography (TLC) using polyethylenimine (PEI)-cellulose plates (Macherey and 

Nagel, Düren, Germany) was carried out as described (Stiborová et al., 2004; 2011; 2012a; 

2012b). DNA adduct levels (RAL, relative adduct labeling) were calculated as described 

(Schmeiser et al., 2013). 

 

2.10. Cell culture 

The UKF-NB-4 cell line, established from bone marrow metastases of recurrent high-risk 

neuroblastoma, was a generous gift of Prof. Jindrich Cinatl, Jr. (University of Frankfurt, 

Germany). Neonatal human dermal fibroblasts (HDFn) were purchased from Thermo Fisher 

Scientific (Waltham, MA, USA). Cells were grown at 37°C and 5% CO2, cultivated in Iscove’s 

modified Dulbecco’s medium (IMDM) with 10% fetal bovine serum and HDFn in DMEM 

(Dulbecco’s Modified Eagle Medium) (all Life Technologies, Carlsbad, CA, USA). UKF-NB-

4 and HDFn cells were cultivated for at least 48 hours with free ellipticine or ApoElli 

nanoparticles; this incubation time was chosen as it essentially corresponds to two rounds of 

cell division (Poljaková et al., 2009). Moreover, this time period is sufficient for ellipticine to 

enter the cells and trigger apoptosis (Kim et al., 2003; Poljaková et al., 2009).  

 

2.11. AlamarBlue assay 

Cytotoxicity of ellipticine and ApoElli nanoparticles in neuroblastoma UKF-NB-4 and non-

malignant HDFn cells was determined in a 96-well plate format. For dose-response curves, cells 

were seeded in 100 µl of medium at a density of 1×104 UKF-NB-4 or 5×103 HDFn cells per 

well. Cells were treated with ellipticine or ApoElli nanoparticles (concentration of 0.04-20 µM) 
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and incubated for 48 hours. Cell viability was evaluated by the AlamarBlue assay as previously 

described (Plch et al., 2018). Briefly, after 48 hours incubation at 37°C in 5% CO2, 5 µl of 

AlamarBlue (Thermo Fisher Scientific, Waltham, MA, USA) was added to each well and the 

plates were incubated for 2 hours. The fluorescence was measured using excitation wavelength 

of 570 nm and emission of 610 nm by SpectraMax® i3x Multi-Mode Microplate Reader 

(Molecular Devices, Sunnyvale, CA, USA). The (48 hours)-IC50 values were calculated from 

at least 3 independent experiments by SOFTmaxPro software. 

 

2.12. Annexin V/DAPI double staining assay 

For detection of apoptosis, Annexin V-Dy647 (Apronex s.r.o, Jesenice u Prahy, Czech 

Republic) staining was used according to the manufacturer’s instructions and samples were 

analysed using flow cytometry (LSR II, BD, Franklin Lakes, CA, USA). Briefly, 8×105 UKF-

NB-4 cells and 4×105 HDFn cells were plated in 60 mm dishes and treated with 5 µM ellipticine 

or ApoElli nanoparticles. After 48 hours incubation, cells were washed with PBS, trypsinized, 

collected by centrifugation and resuspended in 100 μl of Annexin binding buffer containing 1 

μl of Annexin V-Dy647 and 10 μg/ml of 4’,6-diamidino-2-phenylindole, dihydrochloride 

(DAPI, Thermo Fisher Scientific, Waltham, Massachusetts, USA), cells were gently vortexed 

and incubated for 15 min at room temperature in the dark. After incubation, cells were washed 

again in PBS and resuspended in 300 μl of binding buffer and measured using flow cytometer 

and subsequently analysed by FlowLogic software (Inivai Technologies, Mentone, Australia). 

 

2.13. Cell cycle analysis 

In order to evaluate cell cycle distribution, 8×105 UKF-NB-4 and 4×105 HDFn cells were plated 

in 60 mm dishes and exposed to 5 µM individual ellipticine forms and 5 µM ApoElli 

nanoparticles in deionized water. After 24 hours exposure, cells were collected by 

trypsinization, washed by PBS and fixed with 4% paraformaldehyde for 10 min. Thereafter 

these cells were permeabilised with 90% ice cold methanol and incubated at ‒20°C for a 

minimum of 1 hour. Samples were additionally incubated in DAPI (10 µg/ml) solution in dark 

under the laboratory temperature for 30 min, washed with PBS, and measured by flow 

cytometry employing LSR II flow cytometer and percentage of cells in G0/G1, S and G2/M 

was analysed with FlowLogic software (Inivai Technologies, Mentone,  Australia). 
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2.14. Real-time monitoring of cell viability The xCELLigence RTCA DP Instrument (ACEA 

Bioscience Inc., San Diego, CA, USA) placed in a humidified incubator at 37°C and 5% CO2 

was used for real-time label free monitoring of cell viability (Ke et al., 2011). UKF-NB-4 cells 

(15,000 cells) were seeded into wells of 16-well plates for impedance-based detection. Cells 

were treated with 2.5 µM ellipticine or the same concentrations of ellipticine in ApoElli 

nanoparticles. The cell index (CI) was monitored every 30 min for 148 hours and data was 

recorded by the supplied RTCA software. 

 

2.15. Histone H2AX phosphorylation status 

To determine phosphorylation of histone H2AX, 8×105 UKF-NB-4 and 4×105 HDFn cells were 

plated in 60 mm dishes and treated with 5 µM ellipticine or ApoElli nanoparticles for 48 hours. 

After treatment, cells were washed and subsequently fixed in 4% formaldehyde in PBS for 10 

min. After washing with PBS, cells were re-suspended in ice cold 90% methanol and incubated 

for 1 hour at ‒20°C. Cells were washed three times with wash buffer (PBS containing 0.5% 

BSA and 0.2% Triton X) and then incubated in 50 μl of wash buffer containing 5 μl of γH2AX 

antibody (Alexa Fluor® 647 anti-H2AX-Phosphorylated (Ser139), Biolegend, San Diego, CA, 

USA) for 60 min at 4°C. Cells were washed, measured using a LSR II flow cytometer (BD, 

Franklin Lakes, CA, USA) and analysed with FlowLogic software. 

 

2.16. Confocal microscopy 

5×105 UKF-NB-4 or 2.5×105 HDFn cells were grown on 35 mm glass bottom culture dishes (In 

Vitro Scientific, Sunnyvale, CA, USA) for 24 hours before treatment with 10 μM ellipticine or 

10 μM ApoElli for 2 hours at 37°C and observed with a laser-scanning confocal microscope, 

Leica TCS SP8 (Leica Microsystems GmbH, Wetzlar, Germany). For excitation of the 

ellipticine, laser with wavelength of 488 nM was used; emitted light was collected in the range 

of 552–638 nM. All images were recorded with a ×100 objective and using the Leica 

Application Suite X (LAS X) system. Nuclear fluorescence intensity of ellipticine was 

evaluated with the image analysis software ImageJ (NIH, Bethesda, USA) and calculated as the 

corrected total cell fluorescence (CTCF), using the formula CTCF = Integrated Density – (Area 

of selected nuclei × Mean fluorescence of background readings). 

 

2.17. Analysis of cellular ellipticine 

 The day before analysis, UKF-NB-4 cells were seeded at 1×104 UKF-NB-4 and HDFn at 5×103 

cells per well in 96-well plate. Cells were treated with 10 μM ellipticine or 10 μM ApoElli for 
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2 hours at 37°C and fluorescence intensity of ellipticine was measured (excitation wavelength 

434 nm, emission wavelength 541 nm) with a SpectraMax® i3x Multi-Mode Microplate Reader 

(Molecular Devices, Sunnyvale, CA, USA) in individual cells using imaging cytometer module. 

 

2.18. Red blood haemolytic test  

The haemolytic assay was conducted to evaluate the haemocompatibility of Apo and ApoElli 

on erythrocytes from human donor with signed informed consent. Plasma from a fresh blood 

sample was removed by multiple washing with 150 mM sodium chloride and centrifugation at 

3000 rpm for 10 min. Then different concentrations of Apo and ApoElli (6.3-100 µM ellipticine 

in ApoElli and 13.8-220 µg/l Apo) in PBS pH 7.4 were mixed with the red blood cells (RBC) 

and incubated for 1 hour at 37°C. PBS and 0.1% Triton X-100 was used as negative and positive 

control, respectively. After completion of the incubation period, the cells were centrifuged and 

the absorbance of the supernatant containing lysed erythrocytes was measured at 540 nm. The 

percentage of haemolysis was determined by the following equation: 

                                                                          (At - Ac) 

                                        % Haemolysis =  ---------------------  × 100 

                                                                        (A100% - Ac) 

 

where At is the absorbance of the supernatant from samples incubated with the particles; Ac is 

the absorbance of the supernatant from negative control (PBS) and A100% is the absorbance of 

the positive control supernatant (completely lysed RBC incubated in the presence of 0.1% 

Triton X-100) (Goswami et al., 2015). 

 

2.19. Western blot analysis of SCARA5 

1×106 cells of each cell line (UKF-NB-4 and HDFn cells) was harvested by trypsinization, then 

centrifuged at 200 rcf for 10 min and washed with PBS with subsequent centrifugation at 200 

rcf for further 10 min. The pellet was resuspended in 100 µl of ice-cold RIPA lysis buffer (20 

mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% NP-40, 1% sodium 

deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM glycerophosphate, 1 mM Na3VO4, 1 

μg/ml leupeptin) containing 1 µl of protease inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, 

USA) and vortexed for 15-30 sec. Lysis was then performed on ice for 45 min. Lysate was 

sonicated 5 times for 3 sec to remove genomic DNA. After centrifugation for 10 min at 22 000 

rcf, the supernatant containing proteins was stored at −80°C until analysis. 10 µl containing 10 

µg of proteins was mixed with 5 µl of non-reducing SDS-PAGE loading buffer prior to 
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separation on 12.5% SDS-PAGE at 200 V for 35 min. Proteins were electroblotted onto a PVDF 

membrane. The PVDF membrane was blocked with 5% bovine serum albumin in PBS (37 mM 

NaCl, 2.7 mM KCl, 1.4 mM NaH2PO4, 4.3 mM Na2HPO4, pH 7.4) and then incubated 

separately with primary antibodies against SCARA5 (1 µg/ml = 1:1000, ab118894, Abcam), or 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH) G-9 (1:700, sc-365062, Santa Cruz 

Biotechnology) at 4°C overnight. Next, the membranes were incubated with horseradish 

peroxidase (HRP)-labelled secondary antibodies (goat anti-mouse P0260 [Dako] for GAPDH, 

1:5000 or goat anti-rabbit SAB3700831 [Sigma Aldrich] for SCARA5, 1:5000) for 1 hour at 

25°C. Chemiluminiscent detection was performed using Clarity Western ECL Blotting 

Substrate (Bio-Rad, CA, USA) and bands were analysed using Azure c600 imager (Azure 

Biosystems, Dublin, CA, USA). The membranes were visualized and processed using Azure 

c600 (Azure Biosystems, Dublin, CA, USA). 

 

2.20. Detection of ellipticine-DNA adducts in UKF-NB-4 cells by 32P-postlabeling 

 Neuroblastoma UKF-NB-4 cells were seeded 24 hours prior to treatment at a density of 1×105 

cells/ml in three 75 ml culture flasks in a total volume of 20 ml of IMDM. Cells were treated 

with 5 μM ellipticine or 5 μM ApoElli nanoparticles for 48 hours. Cells were harvested after 

trypsinizing by centrifugation at 2,000×g and washed twice with 5 ml of PBS yielding a cell 

pellet which was stored at ‒80ºC until DNA isolation. DNA was isolated using a standard 

phenol-chloroform extraction method as described (Frei et al., 2002; Poljaková et al., 2007; 

2009; Stiborova et al., 2015a). Ellipticine-DNA adducts were detected and quantified using the 

nuclease P1 enrichment version of the 32P-postlabeling assay as described previously for in 

vitro (Frei et al., 2002; Poljaková et al., 2007; 2009; Stiborova et al., 2015a) and in vivo analyses 

(Stiborová et al., 2003a; 2003b; 2008; 2011; 2014a). 

 

2.21. Statistical analysis 

Data are expressed as mean ± SD. Data was analysed using GraphPad Prism 7 using ANOVA 

with post-hoc Tukey HSD Test. P value < 0.05 was considered as significant.  

 

 

3. Results and discussion 

 

3.1. Preparation of apoferritin-bound ellipticine (ApoElli) nanoparticles 
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Apoferritin (Apo) is known to reversibly dissociate and associate, which are processes 

dependent on pH (Kim et al., 2011). When Apo is disassembled after mixing it with drug 

molecules, these molecules can encapsulate within the Apo cavity once reassembled (Kilic et 

al., 2012; Blazkova et al., 2013; Tmejova et al., 2013). As shown in Fig. 2 we utilized this easy-

to-use encapsulation protocol to prepare Apo nanoparticles encapsulated with the anticancer 

agent ellipticine (ApoElli). The ellipticine concentration in the prepared ApoElli nanoparticles 

was 2.2 mM. 

Size is one of the most important parameters influencing the in vivo biodistribution of 

nanocarriers and has a great impact on the mode of cellular internalization (Petros and 

DeSimone, 2010). Nanocarriers with the size of 20-100 nm are considered best suitable for 

enhanced permeability and retention (EPR) effect (Svenson, 2016), while avoiding 

extravasation from normal blood vessels which occurs only with particles below 10 nm 

(Appelbe et al., 2016). This also avoids removal from the body through renal clearance for 

particles below 5 nm or elimination by the reticuloendothelial system (RES) which traps 

particles above 100 nm (Liu et al., 2016).  Visualization of the ApoElli nanocarriers and 

determination of their size prior to removal of released drug molecules and the Apo nanocarriers 

without ellipticine were performed using TEM (Fig. 3A) and DLS (Fig. 3B). The average size 

of Apo and ApoElli nanoparticles determined by DLS were 11.7 ± 0.31 (n=6)  and 10.1 ± 0.57 

nm (n=6), respectively (Fig. 3B,C). Even though the reasons for these small differences 

between Apo and ApoElli nanoparticles still needs to be explained, one can speculate that they 

can result from the process of encapsulation. Specifically, some Apo subunits seem not to be 

properly reassembled and thus remain in solution. Their size might thereafter decrease the 

analysed value of the average size of ApoElli. However, this suggestion remains to be 

confirmed in future investigations. The lower size of ApoElli particles than those of Apo is not 

seen using TEM without a high resolution module (Fig. 3).  

We also utilized the DLS method to determine the polydispersive index and the surface 

ζ-potential of the prepared nanoparticles. The polydispersive index is used as a measure of the 

breadth of molecular weight distribution of polymers. For Apo and ApoElli nanoparticles this 

was 0.350 ± 0.09 (n=6) and 0.419 ± 0.24 (n=6), respectively (Fig. 3C), indicating very well 

homodispersed systems (Gaumet et al., 2008). The surface ζ-potential of Apo and ApoElli 

nanocarriers showing the electrostatic potential at the electrical double layer surrounding both 

nanoparticles in solution was also characterized. The average values of -32.0 ± 2.02 (n=6)  and 

-36.2 ± 2.65 (n=6) for Apo and ApoElli, respectively (Fig. 3C), indicate that they are strongly 
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anionic (Clogston and Patri, 2011). High values of ζ-potential result in strong repulse moments 

among the particles leading to the stability of these colloidal disperse systems.  

Next we evaluated the stability of ApoElli (i.e. the degree of ellipticine release) at two 

different temperatures (‒20°C and +4°C) for up to 10 weeks. As shown in Figure 4A, ApoElli 

was stable for up to 10 weeks of storage at +4°C. Essentially no ellipticine was released under 

these storage conditions whereas ellipticine was markedly released during storage at ‒20°C; 

25% and 60% of ellipticine is released from ApoElli in 2 and 10 weeks, respectively.  

One of the reasons that Apo was chosen in our experiments was its ubiquitous presence 

in nature and its natural property to self-assemble into                         

uniform icosahedral nanocages that are highly stable and do not form aggregates in the 

physiological environment (Gallois et al., 1997). Using TEM, we essentially found no changes 

in aggregation of ApoElli nanocarriers as well in their shape and size after storage for 28 days 

at +4°C (compare Figs. 3Ab and 3Ac).  

All these findings demonstrate that the prepared ApoElli nanoparticles with the average 

size of 10.1 ± 0.57 (n=6) nm form a homogenous system with a low polydispersity and high 

colloidal stability. This suggests their high suitability for nanomedicine; for example because 

of their stability during the storage and the size appropriate for EPR internalization (Moore et 

al., 2015) 

 

3.2. Release of ellipticine from ApoElli nanoparticles 

To investigate the release of ellipticine from ApoElli nanoparticles they were incubated either 

at pH 6.5 or pH 7.4 for 48 hours at 37°C and the release of ellipticine was subsequently 

monitored using HPLC. The release of ellipticine from the ApoElli nanoparticles proceeded in 

two stages: an initial rapid release was followed by a phase of slow and long-lasting release of 

ellipticine (Fig. 4B). At pH 7.4 ApoElli nanoparticles were essentially stable; less than 20% 

release of free drug was found over 48 hours of incubation. In contrast, at pH 6.5 ellipticine 

release was detected with a half-life of 7 hours and the maximum release of 83 ± 7% was 

reached after 48 hours (Fig. 4B). The pH-dependent release of ellipticine might be caused by 

at least two reasons. First, at pH 6.5 changes in the ApoElli structure might occur resulting in 

disintegration of Apo to its subunits (see scheme in Fig. 2) (Kim et al., 2011). This is a typical 

feature for pH-related changes to the peptide/apoferritin nanoparticle structure (Kim et al., 

2011; Zhang et al., 2019).  Second, the ellipticine as a hydrophobic base compound is easily 

released from the ApoElli nanoparticles into the water environment under the acidic conditions. 

These acidic conditions are typical for tumor microenvironments (Corbet and Feron, 2017).  
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3.3. Ellipticine release from ApoElli in the presence of CYP3A-SupersomesTM, its transfer 

into these subcellular particles and its oxidation by this enzymatic system 

Incubations of both free ellipticine and ApoElli with SupersomesTM containing human 

CYP3A4, POR and cytochrome b5 were employed to analyze the transfer of ellipticine from 

both forms of this drug into these subcellular membrane particles. For this purpose we studied 

the CYP3A4-facilitated metabolism of free and ApoElli bound ellipticine. In order to evaluate 

the suitability of CYP3A4-SupersomesTM for our experiments, we tested the system to catalyze 

testosterone 6-β-hydroxylation as a marker for CYP3A4 enzyme activity (Bořek-Dohalská et 

al., 2001). As shown in Figure 5A our results demonstrated that the Supersomal CYP3A4 

system can catalyze this marker reaction and thus we can argue that CYP3A4-SupersomesTM 

are a suitable system for our enzymatic studies. 

CYP3A4-SupersomesTM incubated with free ellipticine in the presence of NADPH were 

capable of oxidizing ellipticine to 9-hydroxy-, 12-hydroxy- and 13-hydroxyellipticine (Fig. 

5B); NADPH acts as cofactor for the CYP-mediated enzyme system present in SupersomesTM. 

The same metabolites were also generated in the presence of ApoElli nanoparticles in the 

incubation mixtures instead of free ellipticine. Beside these ellipticine oxidation products, two 

other metabolites, 7-hydroxyellipticine and ellipticine N2-oxide were also detectable. However, 

their amounts were quite low (if detectable) and therefore were not quantified. The oxidation 

of free ellipticine and ApoElli was pH-dependent. By lowering pH from 7.4 to 6.5 oxidation of 

ellipticine was decreased; the amounts of ellipticine metabolites were up to 5-times lower at pH 

6.5 than pH 7.4 (Fig. 5B). The effect of the pH on CYP3A4-mediated catalysis was confirmed 

by measuring testosterone 6-ß-hydroxylation. Our results indicated that this reaction was also 

decreased at low pH, but this effect was less pronounced compared to ellipticine oxidation 

(compare Figs. 5A and 5B).  

Interestingly, at pH 7.4 the amounts of ellipticine metabolites generated by CYP3A4 in 

the presence of NADPH were similar regardless of either form of ellipticine (free ellipticine 

and ApoElli) (Fig. 5B). Although ApoElli nanoparticles are stable at this pH (see Fig. 4B), the 

generation of ellipticine metabolites indicated that this drug is efficiently released from the 

apoferritin cage in ApoElli nanoparticles not only at pH 6.5, but even at pH 7.4. The amounts 

of ellipticine metabolites formed from ApoElli were only up to 1.4-fold lower compared to 

those formed from free ellipticine at both pH levels. This finding indicates that the presence of 

the microsomal membrane of SupersomesTM is much more important for ellipticine release from 

ApoElli in this enzyme system than pH. The properties dictated by the phospholipid bilayer 
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forming the microsomal membrane of CYP3A4-SupersomesTM might be responsible for this 

unique phenomenon that has not been described yet. Interaction of ApoElli nanoparticles with 

SupersomesTM might result in the release of ellipticine from these nanoparticles entering the 

supersomal membrane system. In order to investigate this possibility we prepared liposomes 

mimicking the properties of microsomal membrane particles and incubated them with ApoElli 

nanoparticles in order to evaluate the amounts of ellipticine released from ApoElli transported 

to these liposomes. As shown in Figure 6 ellipticine was released from ApoElli nanoparticles 

and entered the liposomes, supporting the above mentioned hypothesis.  

All these results indicated that both free ellipticine and ellipticine released from ApoElli 

nanoparticles are capable of entering the system containing the membrane of endoplasmic 

reticulum, where it can be metabolized by the CYP3A4-mediated enzymatic system.  

 

3.4. Formation of ellipticine-derived-DNA adducts from free ellipticine and ApoElli 

nanoparticles by CYP3A-SupersomesTM 

In further experiments using CYP3A4-SupersomesTM in the presence of DNA we analyzed the 

formation of ellipticine-derived DNA adducts of free ellipticine and ApoElli. These 

experiments were carried out to prove the release of ellipticine from ApoElli, its transfer to 

CYP3A4-SupersomesTM and its oxidation by this enzymatic system using a further independent 

approach. As shown in Figure 1 the oxidative activation of ellipticine to the DNA reactive 

metabolites 13-hydroxy- and 12-hydroxyellipticine is catalyzed by several human CYP 

enzymes including CYP3A4 (Stiborová et al., 2012b). Ellipticine-derived DNA adduct 

formation was detected and quantified using the 32P-postlabeling method (Fig. 5C). One major 

DNA adduct was detected (see insert of Figure 5C) and was generated at both pH 6.5 and 7.4. 

This adduct spot was shown previously to be formed from ellipticine-13-ylium generated by 

decomposition of 13-hydroxyellipticine (Fig. 1) (Stiborová et al., 2004). These results 

confirmed again that ellipticine can be released from ApoElli particles at pH 7.4, when 

Supersomal microsomes were present in the test system. Adduct 2 generated from 12-

hydroxyellipticine (Fig. 1) was not detectable under the experimental conditions (i.e. CYP3A4-

SupersomesTM) used (Fig. 5C). No adducts were detected in control incubations, where Apo 

nanoparticles without encapsulated ellipticine were present or in the absence of free ellipticine 

(Fig. 5C). 

In CYP3A4-SupersomesTM apoferritin-bound ellipticine generated up to 2.5-fold lower 

levels of DNA adducts than free ellipticine (Fig. 5C). The lower DNA adducts levels formed 

from ApoElli nanoparticles could not be explained by the amounts of ellipticine metabolites 
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formed from ApoElli as these were only up to 1.4-fold lower as compared to those formed from 

free ellipticine (compare Figs. 5B and 5C). This is probably caused by the presence of Apo 

protein retaining in the incubation mixture after ellipticine release from the ApoElli 

nanoparticles and thus this protein can compete with DNA to react with reactive ellipticine 

intermediates (i.e. ellipticine-13-ylium) forming ellipticine-derived protein (Apo) adducts 

instead of DNA adducts. Indeed, the formation of ellipticine-derived protein adducts has been 

shown previously demonstrating that activated ellipticine can efficiently bind to several 

proteins (Martínek et al., 2010).  

 

3.5. Analysis of internalization of free ellipticine and ApoElli nanoparticles into UKF-NB-4 

and HDFn cells 

One of the most important properties of nanocarriers is their ability to internalize into target 

cells and the ability of its cargo to reach the cell organelle(s) where it can effectively inhibit the 

cell growth (Stylianopoulos and Jain, 2015). Therefore, we tested the internalization of ApoElli 

into the cancer cells and as a model we used the neuroblastoma UKF-NB-4 cell line, which was 

previously found to be sensitive to ellipticine treatment (Poljakova et al., 2009; 2011; Hrabeta 

et al., 2015). Neuroblastoma UKF-NB-4 cells were also chosen as a model because they not 

only overexpress TfR1 (Krausova, 2017), a cell membrane-associated glycoprotein responsible 

for incorporation of H-chain ferritin through an endocytic process (Uchida et al., 2007; 

Nakamura et al., 2012), but also SCARA5 for L-chain ferrritin (Uchida et al., 2007). Indeed, as 

shown in Figure 7A, SCARA5 was highly expressed in UKF-NB-4 cells, in contrast to normal 

human fibroblast HDFn cells which were used as a model for non-malignant cells. Both cell 

lines were treated with ellipticine, either free or encapsulated in ApoElli, and their effects on 

these cells were investigated.  

Subcellular localization of ellipticine after treatment was analyzed by confocal 

microscopy demonstrating that both forms of ellipticine enter UKF-NB-4 and HDFn cells (Fig. 

7B). As an indicator of ellipticine concentrations we measured the fluorescence intensity of 

ellipticine in whole cells (total) which was higher in HDFn cells than in UKF-NB-4 cells; in 

both cell lines the cellular ellipticine concentration was lower after ApoElli compared to free 

ellipticine treatment (Fig. 7C). No ellipticine fluorescence was detectable in the membranes of 

the tested cells (Fig. 7B). This indicates that both forms of ellipticine (free ellipticine and 

ApoElli) overcome the plasmatic membranes of these cells. The higher uptake of free ellipticine 

than ApoElli can be explained by the high hydrophobicity and the small size of this drug, which 

both dictates the easy transfer of free ellipticine across cell membranes, as compared to the 



 20

transport of the more polar and high-molecular ApoElli compound. As described previously 

(Zhang et al., 2016), the passive diffusion pathway is responsible for the transport of free 

ellipticine into the cells. In contrast, the size and anionic properties of ApoElli nanoparticles 

(Fig. 3) prevent such a type of transport. Therefore, endocytosis, a typical process of transport 

of particles into cells (Uchida et al., 2007; Nakamura et al., 2012), seems to play a predominant 

role in the transport of ApoElli across the cell membrane in the tested cells. Nevertheless, 

further investigations are needed to confirm this suggestion but were beyond the scope of the 

present work.  

Neuroblastoma UKF-NB-4 cells treated with either free ellipticine or ApoElli 

nanoparticles showed that ellipticine fluorescence was mainly located in cell nuclei in contrast 

to non-malignant HDFn cells; ellipticine fluorescence was more than 2-fold higher in the nuclei 

of UKF-NB-4 cells than in HDFn cells (Figs. 7B and 7D). In non-malignant HDFn cells most 

of ellipticine was located in the lysosomes after the uptake of free ellipticine and ApoElli (Figs. 

7B and 7D). These results demonstrate that both forms of ellipticine are taken up by the cell 

models but accumulate it in different compartments depending on the cell type. The lower 

fluorescence intensity of ellipticine in the cells exposed to ApoElli compared to cells exposed 

to free ellipticine might be caused not only by an easier entry of ellipticine into the cells than 

ApoElli as mentioned above, but might also be caused by a slower release of ellipticine from 

ApoElli. The amounts of ellipticine are partially retained in ApoElli nanoparticles. This 

suggestion is supported by the results from experiments investigating the release of ellipticine 

form ApoElli in the presence of liposomes or CYP3A4-SupersomesTM (see Figs. 5 and 6).  

 

3.6. Cytotoxicity and induction of apoptosis by ellipticine and ApoElli nanoparticles in UKF-

NB-4 and HDFn cells, and their effects on cell cycle distribution 

We measured the cytotoxicity of free ellipticine and ApoElli in UKF-NB-4 and HDFn cells 

using the AlamarBlue viability assay and/or real-time label-free monitoring of cell impedance. 

Apo nanoparticles where ellipticine was not present were not toxic in both cell lines (data not 

shown).  

Using the AlamarBlue viability assay the IC50 values of ellipticine in UKF-NB-4 and 

HDFn cells treated with free ellipticine were 1.1±0.05 and 2.6±0.2 μM, respectively, whereas 

for ApoElli nanoparticles the IC50 values were 1.4±0.1 and 2.9±0.3 μM, respectively (Figs. 8A 

and 8B). These findings indicate that non-malignant HDFn cells are less sensitive to ellipticine 

treatment than neuroblastoma UKF-NB-4 cells. This might be explained by ellipticine 

compartmentalization in both cell types; higher levels of ellipticine were located in nuclei of 
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UKF-NB-4 cells, the target compartment for its cell toxicity (Stiborova and Frei, 2014), while 

in HDFn cells it is efficiently internalized into lysosomes, thereby decreasing its cell toxicity 

(Hrabeta et al., 2015).  

As shown in Figure 8C, apoptosis was induced in UKF-NB-4 cells after treatment with 

5 μM ellipticine and ApoElli form. However, the potency to induce apoptosis was lower after 

exposure to ApoElli nanoparticles than free ellipticine. These results are consistent with lower 

amounts of ellipticine (determined by its fluorescence) in the nuclei of these neuroblastoma 

cells after treatment with ApoElli than with free ellipticine (see Fig. 7D). In contrast, no 

apoptosis was observed in treated HDFn cells (Fig. 8D). 

To evaluate the toxicity of the ApoElli nanocarrier to other non-malignant cells we 

performed a haemocompatibility assay in human RBC. For this purpose we used fresh blood 

from a human donor with absorbance measurement and visualization in ambient light of lysed 

RBC (Fig. 8G). The ApoElli formulation showed excellent haemocompatibility. Likewise, 

control Apo (i.e. without encapsulated ellipticine) exhibited excellent haemocompatibility (data 

not shown). 

In further experiments we studied the cell cycle distribution of UKF-NB-4 and HDFn 

cells after exposure to ellipticine and ApoElli nanoparticles. Compared to controls (i.e. 

untreated cells) exposure to both forms of ellipticine resulted in increased S and/or G2/M phase 

arrest in UKF-NB-4 cells; this effect was not seen in HDFn cells (Figs. 8E and 8F). In contrast, 

HDFn cells arrested in G0/G1 phase after ellipticine and ApoElli treatment (Fig. 8F) which 

resulted in essentially no cell growth. This feature was the reason that the cytotoxic potency of 

ellipticine and ApoElli in HDFn cells could not be analyzed using the xCELLigence system. 

But this method was used to test the cytotoxicity of ellipticine and ApoElli in UKF-NB-4 cells 

(Fig. 9). UKF-NB-4 cells cultured in the presence of 2.5 μM ellipticine and the same 

concentration of this drug present in ApoElli grow exponentially up to 116 hours in culture. 

Treatment of UKF-NB-4 cells with 2.5 μM ApoElli nanoparticles for 48 hours resulted in a 1.3-

fold decrease in the value of cell index as compared to treatment with free ellipticine (Fig. 9). 

 

3.7. The effect of treatment of UKF-NB-4 and HDFn cells with ellipticine and ApoElli 

nanoparticles on phosphorylation of H2AX histone protein 

One of the DNA-damaging mechanisms leading to ellipticine cytotoxicity is based on the 

inhibition of topoisomerase II generating double-strand DNA breaks (Zwelling et al., 1982). 

Therefore, we examined the ability of ellipticine and ApoElli nanoparticles to induce double-

strand DNA breaks in UKF-NB-4 and HDFn cells. Phosphorylation of histone H2A on serine 
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139, termed γH2AX, by kinases sensing double-strand DNA breaks is a sensitive marker of this 

type of DNA damage (Nakamura et al., 2010; Sharma et al., 2012). UKF-NB-4 and HDFn cells 

were treated with 5 μM ellipticine or ApoElli and the levels of γH2AX were examined by flow 

cytometry. Whereas essentially no phosphorylation of H2AX was observed after treatment in 

HDFn with either ellipticine or ApoElli, increased γH2AX levels were detectable in UKF-NB-

4 cells (Fig. 10A). This finding confirmed that free ellipticine or ApoElli is transported into 

cancer cells where it can reach DNA in the nucleus to cause double-strand DNA breaks. The 

lower compartmentalization of ellipticine in the nuclei of non-malignant HDFn cells explains 

the lack of this DNA damage in these cells.  

The percentage of cells with γH2AX did not correlate with the cytotoxicity of ellipticine 

and ApoElli as measured by AlamarBlue assay or Annexin V positive/DAPI positive cells 

(compare Figs. 8 and 10). The levels of DNA double-strand breaks in UKF-NB-4 cells were 

~1.3-times higher after their treatment with ApoElli compared to free ellipticine. Hence, 

ellipticine-induced cytotoxicity and apoptosis in neuroblastoma UKF-NB-4 cells after exposure 

to ApoElli seems to be linked not only to the induction of DNA double-strand-breaks, but also 

to other types of DNA damage. In order to shed more light on this phenomenon, additional 

experiments were conducted to investigate covalent ellipticine-derived DNA adduct formation 

in UKF-NB-4 cells, in which ellipticine accumulates in the nuclei. 

 

3.8. The effect of treatment of UKF-NB-4 cells with ellipticine and ApoElli nanoparticles on 

the formation of covalent ellipticine-derived DNA adducts 

Ellipticine-mediated cytotoxicity is predominantly linked to covalent DNA adducts formed 

during enzymatic CYP- and peroxidase-catalyzed activation of ellipticine (Stiborová et al., 

2011; Stiborová and Frei, 2014). Therefore, we investigated the generation of ellipticine-DNA 

adducts in UKF-NB-4 cells (sensitive to ellipticine) exposed to ellipticine and ApoElli 

nanoparticles. As done in experiment with CYP3A4-SupersomesTM (see Figure 5C) we again 

employed the 32P-postlabeling assay. As shown in Figure 10B two major DNA adducts were 

observed in UKF-NB-4 cells after exposure to free ellipticine or ApoElli nanoparticles. Adducts 

1 and 2 are generated from the ellipticine metabolites 13-hydroxyellipticine and 12-

hydroxyellipticine, respectively (Stiborová et al., 2004; 2007a).  

The levels of covalent ellipticine-derived DNA adducts in UKF-NB-4 cells correlated 

with the amounts of ellipticine in the nuclei of these cells; the levels of ellipticine-DNA adducts 

generated by ApoElli were up to ~70% of those formed by free ellipticine (see Figure 10B). 

Adduct levels not only correlated with the cytotoxicity of ellipticine and ApoElli in UKF-NB-
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4 cells as measured by AlamarBlue viability assay (Figs. 8A and 8B) but also with the degree 

of apoptosis induced by ellipticine and ApoElli in these cells (Figs. 8C and 8D). These results 

demonstrate that the formation of covalent ellipticine-derived DNA adducts seems to be 

predominantly responsible for the toxic effects of ellipticine in UKF-NB-4 cells and this 

conclusion is in accordance with other studies (Stiborová and Frei, 2014, Stiborová et al., 

2014b). 

Again, these results also demonstrate that ellipticine and ApoElli might, when 

transported into the target cells, enter these cells to cause DNA damage in the nucleus. The 

mechanism of the uptake of free ellipticine and the ApoElli nanoparticles across the membrane 

is probable by diffusion and endocytosis, respectively. However additional experiments will be 

necessary in the future to better understand this process.  

 

4. Conclusions 

Apoferritin can be used to effectively delivery the anticancer agent ellipticine into cancer cells. 

We showed that ellipticine can be encapsulated by apoferritin and subsequently be released 

from its ApoElli form. Furthermore, a unique finding of our study is that ApoElli is capable of 

transferring ellipticine into microsomal subcellular particles, where it is oxidized by the CYP-

mediated system to generate reactive hydroxylated metabolites able to form covalent DNA 

adducts. These adducts are also generated in neuroblastoma UKF-NB-4 cells exposed to both 

free ellipticine and ApoElli nanoparticles. We showed that the cytotoxicity of ApoElli is lower 

than that of the free form of ellipticine. However, more importantly, whereas ApoElli 

nanoparticles were toxic in neuroblastoma UKF-NB-4 cells, their toxicity in non-malignant 

fibroblastic HDFn cells were significantly lower. This implies the suitability of ApoElli to 

inhibit the growth and development of tested cancer cells. Compartmentalization of ellipticine 

in the nuclei of neuroblastoma UKF-NB-4 cells after treatment with both forms of ellipticine 

was responsible for the induced DNA damage (i.e. DNA-double-strand-breaks and formation 

of covalent ellipticine-derived DNA adducts) in these cancer cells. Covalent modification of 

DNA seems to be the critical factor dictating the observed cytotoxicity. In contrast to drug 

internalization into the nuclei of UKF-NB-4 cells, high amounts of ellipticine are sequestrated 

in lysosomes in fibroblastic HDFn cells. The latter effect is responsible for the lower 

concentration of ellipticine in the nuclei resulting in lower cytotoxicity and/or no apoptosis in 

these non-malignant cells.  

In conclusion, we propose that apoferritin with encapsulated ellipticine might be a suitable 

carrier to target several cancer cells including neuroblastoma. The receptors TfR1/SCARA5 
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which are commonly over-expressed in these cancer cells might help to achieve this targeting 

without the need to introduce additional moieties on the surface. Therefore, this nanoparticle 

form of ellipticine seems to be a promising tool for cancer treatment.  
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Legend to Figures 

Fig. 1. Scheme of ellipticine metabolism by CYPs (in the presence [+] or absence [-] of 

cytochrome b5 [b5]) and peroxidases showing the identified metabolites and those proposed to 

form DNA adducts. The compounds shown in brackets were not detected under the 

experimental conditions and/or not structurally characterized.  

 

Fig. 2. Scheme of preparation of ApoElli nanoparticles. 

 

Fig. 3. (A) TEM micrographs of apoferritin (a), the freshly prepared ApoElli nanocarrier (b) 

and the ApoElli nanocarrier stored for 28 days at 4°C (c). (B,C) Size, polydispersive index and 

zeta potentials of Apo and ApoElli nanocarriers. Values in (C) are mean ± SD from six 

independent experiments. 

 

Fig. 4. The ApoElli stability at +4°C (red) and –20°C (blue) in panel A. Values are mean ± SD 

from three independent experiments. **p < 0.01 significant differences of stability of ApoElli 

nanoparticles without incubations (t = 0 day) (ANOVA with post-hoc Tukey HSD Test). (B) 

The kinetics of ellipticine release from ApoElli at pH 6.5 and 7.4 at 37°C. Values are mean ± 

SD from three independent experiments.   

 

Fig. 5. (A) The effect of pH on testosterone 6-β-hydroxylation catalysed by human CYP3A4 

co-expressed with cytochrome b5 in SupersomesTM. Values are mean ± SD (pmol 6-β-

testosterone/CYP3A4/min) from three independent experiments. ND, not detected. (B) 

Amounts of ellipticine metabolites generated from free ellipticine (Elli) and ApoElli by human 

CYP3A4 co-expressed with cytochrome b5 in SupersomesTM in the presence of NADPH. 

Values are mean ± SD (pmol 9-hydroxy-, 12-hydroxy and/or 13-

hydroxyellipticine/CYP3A4/min) from three independent in vitro incubations. Control – 

control incubation without NADPH. *** p < 0.001 significant differences between ellipticine 

metabolite formation at pH 7.4 and 6.5 (ANOVA with post-hoc Tukey HSD Test). (C) Amounts 

of ellipticine-derived DNA adduct 1 generated from free ellipticine (Elli) and ApoElli by human 

CYP3A4 co-expressed with cytochrome b5 in SupersomesTM in the presence of NADPH 

determined by 32P-postlabeling. Values are mean ± SD from three independent in vitro 

incubations. Control – control incubation without NADPH. RAL, relative adduct labeling. ***p 

< 0.001 significant differences between ellipticine-DNA adduct formation at pH 7.4 and 6.5; 

ΔΔΔ p < 0.001 significant differences between ellipticine-DNA adduct formation by free 
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ellipticine and its ApoElli form (ANOVA with post-hoc Tukey HSD Test). Insert: 

Autoradiographic profiles of DNA adducts generated by free ellipticine (a) and ApoElli (b) in 

the CYP3A4 Supersomal system. Adduct spot 1 is formed in deoxyguanosine residues of DNA 

by the ellipticine metabolite 13-hydroxyellipticine. 

 

Fig. 6. The amounts of ellipticine (nmol) determined in liposomes after its transfer from ApoElli 

into these liposomes and in supernatant containing residual ApoElli (full incubation). In control 

incubation, sediment corresponded to precipitated ApoElli. In this precipitate and the residual 

supernatant the amounts ellipticine was also determined. See experimental conditions for 

details.     

 

Fig. 7. (A) Expression of SCARA5 in neuroblastoma UKF-NB-4 and non-malignant HDFn 

cells. (a) Western blot analysis of SCARA5 expression in UKF-NB-4 and HDFn cells. A 

representative image of the Western blotting is shown; (b) Western blot analysis of GAPDH 

protein expression in UKF-NB-4 and HDFn cells was used as a loading control; (c) Relative 

SCARA5 expression compared with GAPDH in UKF-NB-4 and HDFn cells. (B) Subcellular 

location of ellipticine (Elli) after 2 hours exposure of neuroblastoma UKF-NB-4 and non-

malignant HDFn cells to 10 µM ellipticine and with the same concentration of ellipticine loaded 

apoferritin (ApoElli); 1 – membrane, 2 – nucleus, 3 – cytoplasm. (C) Fluorescence intensities 

(RFU, relative fluorescence units) of ellipticine in the whole cells. (D) Fluorescence intensities 

of ellipticine in cell nuclei. Values are mean ± SD from three independent experiments. ** p < 

0.01 significant differences between fluorescence intensity in UKF-NB-4 and HDFn cells; ΔΔ p 

< 0.01 significant differences between fluorescence intensity in UKF-NB-4 and HDFn cells 

treated with free ellipticine (Elli) and ApoElli (ANOVA with post-hoc Tukey HSD Test). 

 

Fig. 8. (A,B) Cytotoxicity (viable cells as percentage of control) in neuroblastoma UKF-NB-4 

(A) and fibroblastic HDFn (B) cells treated with free ellipticine (Elli) and ApoElli for 48 hour 

determined by the AlamarBlue assay. Values are mean ± SD from three independent 

experiments. (C,D) Apoptosis in neuroblastoma UKF-NB-4 (C) and HDFn (D) cells induced 

by free ellipticine (Elli) and ApoElli. Values are mean ± SD from three independent 

experiments. *** p < 0.001, ** p < 0.01, significant differences between cells treated with free 

ellipticine and its ApoElli form and control (untreated) cells (ANOVA with post-hoc Tukey 

HSD Test). (E,F) Cell cycle distributions in UKF-NB-4 (E) and HDFn (F) cells induced by 

free ellipticine (Elli) and ApoElli. Values are mean ± SD from three independent experiments. 
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*** p < 0.001, ** p < 0.01, * p < 0.05, significant differences between cells treated with free 

ellipticine or ApoElli and control (untreated) cells (ANOVA with post-hoc Tukey HSD Test). 

(G) Haemocompatibility assay of presented nanocarriers using RBC. ApoElli at various 

concentrations (ellipticine concentrations of 0; 6.3; 12.5; 25; 50 and 100 μM) was mixed in 1:1 

volume ratio with washed RBC diluted in PBS and incubated for 1 hour at 37°C. Lysed 

erythrocytes absorbance (540 nm) was measured with evaluated percentage of haemolytic RBC 

with ambient light visualization of the haemolytic RBC.  

 

Fig. 9. Cell index of neuroblastoma UKF-NB-4 cells treated with free ellipticine (Elli) and 

ApoElli. Representative data from one of three independent experiments are shown. 

 

Fig. 10. (A) Analysis of phosphorylated H2AX (γH2AX) in neuroblastoma UKF-NB-4 and 

fibroblastic HDFn cells induced by ellipticine (Elli) and ApoElli. Values are mean ± SD from 

three independent experiments. ** p < 0.01, significant differences between UKF-NB-4 cells 

treated with free ellipticine and ApoElli. ΔΔΔ p < 0.001 significant differences between UKF-

NB-4 and HDFn cells (ANOVA with post-hoc Tukey HSD Test). (B) Ellipticine-derived DNA 

adduct formation in neuroblastoma UKF-NB-4 cells treated with 5 µM ellipticine (Elli) and 5 

µM ApoElli determined by 32P-postlabeling. Values of relative adduct labelling are expressed 

as adducts per 106 normal nucleotides. Values represent mean ± SD from three independent 

experiments. * p < 0.05, significant differences between levels of ellipticine-DNA adducts in 

UKF-NB-4 cells treated with free ellipticine and ApoElli (ANOVA with post-hoc Tukey HSD 

Test). Insert: Autoradiographic profiles DNA adducts formed in UKF-NB-4 cells exposed to 

free ellipticine (a) and ApoElli (b) determined by 32P-postlabeling. Adduct spots 1 and 2 are 

formed in deoxyguanosine residues of DNA by the ellipticine metabolites 13-hydroxy- and 12-

hydroxyellipticine, respectively.  
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Fig. 4.  
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Fig. 5.  
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Fig. 9.  
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Fig. 10.  

 

 

 

 

 

 


