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An Integrated Multifunctional Hybrid Cement (pRMGIC) for Dental Applications 

 

Abstract 

Objective. Glass-ionomer and resin-modified glass-ionomer cements are versatile 

materials with the ability to form a direct bond with tooth tissues. The aim of this study 

was to formulate a novel class of dental bio-interactive restorative material (pRMGIC) 

based on resin-modified glass-ionomer cements via the inclusion of an 

organophosphorus monomer, ethylene glycol methacrylate phosphate, with a 

potential to improve the mechanical properties and also function as a reparative 

restorative material. 

Methods. pRMGIC was formulated with modification of the resin phase by forming 

mixes of ethylene glycol methacrylate phosphate (EGMP; 0-40%wt) and 2-

hydroxyethyl methacrylate monomer into the liquid phase of a RMGIC (Fuji II LC, GC 

Corp.). The physical properties of the cements were determined including setting 

characteristics, compressive strength and modulus (CS &CM), microhardness (MH) 

and biaxial flexural strength (BFS). Fluid uptake and fluoride release were assessed 

up to 60 days storage. Adhesion to sound dentine was measured using micro-tensile 

bond strength and surface integrity was analysed using SEM coupled with EDX. 

Statistical analysis was performed using ANOVA and Bonferroni post-hoc tests. 

Results. The pRMGIC cements exhibited an increase in working time with increasing 

EGMP concentration however were within the limits of standard clinical requirements. 

Although the compressive strength of pRMGIC cements were comparable to control 

cements in the early stages of maturation, the higher EGMP-containing cements 

(EGMP30 and 40) exhibited significantly greater values (p<0.05) after 4 weeks storage 



(141.0±9 and 140.4±8 MPa, respectively), in comparison to EGMP0 (128.8±7 MPa). 

A dramatic two fold increase in biaxial flexural strength (p<0.001) was observed for 

the pRMGIC’s. Furthermore, the ability to decalcify tooth apatite resulted in enhanced 

interfacial adhesion due to chelation with calcium ions of tooth apatite. The inclusion 

of EGMP encouraged formation of reinforcing complexes within the RMGIC, thus 

improving physical properties, decreasing solubility and lower fluoride release. A 

dense microstructure was observed with increasing EGMP content.  

Significance. A novel universal bio-interactive adhesive repair material will enable 

clinicians to offer more effective repair of the tooth-restoration complex, thus future 

treatments will benefit both patient and a severely constrained healthcare budget.  

Keywords: Ethylene glycol methacrylate phosphate, resin modified glass ionomer 

cements, adhesive dental cements, dental reparative biomaterial, minimally invasive 

dentistry 

 

 

 

 

 

 

 

1. Introduction 



Tooth decay (dental caries) is a bacterially-mediated, non-communicable disease 

(NCD), which is recognized as the primary cause of oral pain and tooth loss in all 

age groups globally. [1-3] According to the World Health Organisation (WHO), this is 

the most prevalent of preventable, lifestyle-related NCDs affecting humankind, which 

still presents a major global health burden especially because of its profound effect 

on general health and well-being, as well as being associated both directly and 

indirectly with other systemic, chronic conditions. [4] The treatment of its adverse 

dental effects, cavities in teeth, involves the surgical excision of necrotic tooth tissue 

followed by restoration of the cavity with artificial dental biomaterials, i.e. 

fillings/restorations, by the dental practitioner. There are a number of dental 

restorative materials which provide adequate function and aesthetics, however 

maintaining the long term functional integrity of the tooth-restoration complex (TRC) 

still remains a challenge in clinical operative dentistry. The contemporary minimally 

invasive management approach helps increase TRC longevity. [5] Tooth-restoration 

complex failures may occur either in the restorative material or the tooth itself, or 

both. Restorations are likely to fail mechanically, such as bulk fracture, staining, loss 

of retention and deficient marginal adaptation [6, 7]. In contrast, tooth failures are 

correlated to mechanical, structural and biological reasons (caries associated with 

restorations and sealants {CARS} and fractured cusps) [1, 5]. These failures may 

occur independently or combined in addition to clinician/patient-related factors [8]. In 

addition, a significant proportion of dental health service budgets are dedicated to 

the replacement of restorations, which have a limited lifespan. Hence lowering the 

burden of replacing failed restorations through minimally invasive approaches is of 

importance because with each intervention, the likelihood of unnecessary tooth 

tissue loss increases [5, 9,10]. Repair helps limit the traditional, complex and more 



destructive restorative therapy involved in replacing restorations and reduces 

treatment costs whilst allows preservation of tooth structure and consequently 

increases the longevity TRCs [9-11]. However, there are no dedicated reparative 

dental biomaterials and the use of existing materials often result in inadequate 

clinical outcomes. [10]  

Utilising the inherent ability of resin-modified glass-ionomer cements (RMGICs) [12] 

to adhere to tooth tissue [13], the incorporation of a polymerisable phosphate-based 

monomer, namely ethylene glycol methacrylate phosphate (EGMP), by immobilizing 

it in the cement, promotes the interaction of the ligating phosphate groups with the 

ions within the glass matrix and mineral component of tooth tissue. In addition, these 

polar phosphate groups tethered to the polymer backbone may enable higher affinity 

and bonding efficacy to relevant substrates. The EGMP-HEMA allows for the 

polymerisation, which is hypothesized to not only create a network of covalently-

linked phosphate groups, but additionally improve adhesion to dental resin 

composites, RMGIC/GIC’s and amalgams by virtue of the polar phosphate groups. 

EGMP is a proton-conducting electrolyte and the complexation behaviour of the 

carbonyl and phosphoryl ligating groups has been reported to enable 

remineralisation in hydrogels [14] due to the charge in the gel and also improves the 

bonding efficacy and durability of self-etching adhesives. [15-18] This study reports 

the setting kinetics, mechanical properties (compressive strength and modulus, 

microhardness and biaxial flexural strength), fluid uptake, fluoride release of the 

pRMGIC’s and investigates the efficacy of the modified cement to be used for 

repairing failed TRCs. The hypothesis tested was that the incorporation of different 

proportions of EGMP (10-40% wt.) into a commercial RMGIC have no significant 



effect on their physical and bonding properties, and subsequent ageing has no 

bearing on the properties of the modified formulations  

Materials and Methods 

Materials 

Ethylene glycol methacrylate phosphate was purchased from Polysciences Europe 

GmbH, Germany (Batch No.: 52628-03-2, molecular weight 210.12 g/mol, density1.37 

g/mL). The chemical structure is shown in Fig. 1. Commercial RMGIC Fuji II LC 

(Improved), shade A2 (batch numbers 141118, and 1412081, GC Corp., Europe) was 

used as a control. It consists of a calcium fluoroaluminosilicate glass and an aqueous 

solution containing 25-50% 2-hydroxyethyl methacrylate (HEMA), 5-10% polyacrylic 

acid, and 1-5% urethane dimethacrylate (UDMA), initiators and pigments.  

 

 

 

Figure 1- Chemical structure of ethylene glycol methacrylate phosphate 

 

Formulation and characterization of the pRMGIC 

Specimen preparation 

The new cement was formulated by incorporating different proportions of EGMP 

monomer (10, 20, 30 and 40% by weight) into the liquid phase of commercial Fuji II 

LC. The powder component of the RMGIC was used without any modification in all 

cement formulations. The unaltered Fuji II LC cement was used as a control (EGMP0), 



whereas the experimental groups were prepared by hand-mixing of the commercial 

Fuji II LC glass powder with the modified liquid (EGMP10, EGMP20, EGMP30, and 

EGMP40) using a powder/liquid ratio 3.2/1.0, at ambient temperature (23±2°C) and 

humidity (35±5%). The cement formulations with their respective codes are shown in 

Table 1. The freshly mixed cement pastes were placed in cylindrical polyethene split 

moulds (4 mm diameter, 6 mm height) to prepare test specimens for determining 

compressive strength (CS) and microhardness (MH) (ISO, 9917-2, 2010 water-based 

dental cements) [19]. A stainless-steel mould of 8.3 mm diameter and 1.3 mm 

thickness was used to prepare the disc specimens for the biaxial flexural strength 

(BFS) test. Specimens were photo-polymerised using a light curing device (Elipar™ 

DeepCure-S LED, 3M USA) with a light intensity of 1470 mW/cm2 for 30 s at each end 

of the cylindrical mold, and 20 s on the top surface of disc specimens. The CS, MH 

and BFS tests were carried out after 1, 14, 28 and 180 days storage in simulated body 

fluid (SBF) at 37°C. Water uptake behaviour and fluoride release were assessed in 

accordance to ISO guidelines (ISO 4049. Dentistry-resin based dental fillings. ISO; 

2009) [20].  

 

Table 1-   Composition of the control and experimental pRMGIC cements  

Codes/ Liquid phase Solid phase EGMP (wt %) P/ L ratios 

EGMP0  (Fuji II LC liquid) GC Fuji II LC powder 0 (control) 3.2 / 1.0 

EGMP10 GC Fuji II LC powder 10 3.2 / 1.0 

EGMP20 GC Fuji II LC powder 20 3.2 / 1.0 

EGMP30 GC Fuji II LC powder 30 3.2 / 1.0 

EGMP40 GC Fuji II LC powder 40 3.2 / 1.0 



Curing parameters 

The working and setting times of the cements were determined using an oscillating 

rheometer (Sabri Dental Enterprises, 1404 Brook drive, USA) at ambient temperature. 

A powder/ liquid ratio of 3.2/1.0 were used for preparation of the cements. 

Measurements were made in triplicate.  

Spectral analysis by Fourier transform-infrared spectroscopy (FTIR) 

ATR/FTIR vibrational analysis (IR) was performed using a Perkin Elmer Spectrum One 

FTIR Spectrometer (Perkin-Elmer, Beaconsfield, UK) with a resolution of 4 cm-1. The 

infrared spectra were recorded in the spectral range of 4000-600cm−1, with eight scans 

each.  

Mechanical properties 

320 cylindrical specimens (n=8 per each group) were prepared for CS and MH tests; 

these properties were tested after 1, 14, 28 and 180 days ageing in SBF. The surface 

microhardness was determined using a Knoop hardness testing machine (Duramin10, 

Struers, Japan) with 50 g load for 10 s at 6 randomly selected areas on each of the 8 

specimens. A universal testing machine (Instron model 5569, USA) with a 500 N load 

cell was used for testing the compressive strength and modulus at a crosshead speed 

of 0.5 mm/min. For the BFS test, the specimens (n=32 per group) were placed on a 

6.5 mm diameter circular support. A universal testing machine (Instron Model 5569, 

USA) at a crosshead speed of 0.5 mm/min, was used to load the specimens centrally 

through a rounded tip indenter, in a way that the area of maximum tensile stress was 

located at the centre of the lower face of the disc. The BFS values were calculated 

using the following equations (1, 2, and 3): [21]  

𝜎 =
𝐴𝑃

𝑡2                                                                                                                                (1) 



𝐴 = 3/(4𝜋)[2(1 + 𝑣) ln(𝑎/𝑟0
∗) + (1 − 𝑣){

2𝑎2−𝑟0
∗2

2𝑏2 } + 1 + 𝑣]                                               (2) 

Where P is the applied load at failure, 𝑣 is Poisson’s ratio (0.35) [21], a is the radius of 

support circle, b is the radius of disc specimen, t is the thickness of the disc specimen, 

and r0 is the radius of the ball used on the loading surface: 

𝑟0
∗√(1.6𝑟0 

2 + 𝑡2) − 0.675𝑡                                                                                                  (3) 

Where r0 is an equivalent radius of contact between the loading ball and the disc 

specimen, where loading can be considered to be uniform. 

Mass change during water uptake  

Disc-shaped specimens were made using moulds (10mm diameter,1mm thickness) at 

(23 ± 1)°C, following ISO standard 4949:2009 [20]. The dimensions were recorded 

and mean values were used to calculate the volume of each specimen in mm3. (Mettler 

Toledo XS105DU, Switzerland) to an accuracy of ±0.0001 g. Specimens were 

immersed in 10 ml distilled water at 37°C individually for a total immersion time of 60 

days. At defined time intervals, the specimens’ surfaces were blotted gently with filter 

paper and weighed. Several readings (𝑤𝑡) were taken on the first day, daily for a week, 

then weekly thereafter until equilibrium was achieved, indicated by four successive 

measurements being the same. The mass recorded at equilibrium was denoted 

as (𝑤𝑒 ) 

𝑊𝑒𝑖𝑔ℎ𝑡 𝑐ℎ𝑎𝑛𝑔𝑒 (%)  =
𝑤𝑡−𝑤0

𝑤0
× 100                                                                                   (4) 

 where 𝑤𝑡 , weight at t time, 𝑤0, initial weight of the specimen. The mean weight change 

(%) and standard deviation (SD) during water uptake were plotted against 

time1/2(seconds) to create the weight change profile for each tested group. After 

equilibrium, the specimens were desorbed at 37 °C to obtain water loss, until reaching 



a constant weight (𝑤𝑑). The water sorption (WSP) in µg/mm3 at the equilibrium stage 

was calculated using the equation:  

𝑊𝑆𝑃 =  𝑤𝑒 − 𝑤𝑑/V                                                                                                              (5) 

𝑤𝑒 weight at the equilibrium after uptake, 𝑤𝑑  the constant weight after desorption, V 

volume [22]. The solubility percentage was calculated by subtracting the weight after 

desorption (𝑤𝑑) from the initial specimen weight (𝑤0), Eq. (6). This is equivalent to the 

total mass of components leached from the material.  

𝑆𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 (%) = (
𝑊0−𝑊𝑑

𝑊0
) × 100                                                                                        (6) 

𝑊0 initial weight, 𝑊𝑑 weight at the equilibrium after desorption.  

The solubility (WSL) in µg/mm3 calculated using the following Eq. (7):  

𝑊𝑆𝐿 = 𝑊0 − 𝑊𝑑/𝑉                                                                                                            (7) 

𝑊0 initial weight, 𝑊𝑑 weight at the equilibrium after desorption, V volume. 

The water uptake data were plotted as Mt/M∞ against time1/2 (seconds1/2) to obtain 

the slope used to calculate the diffusion coefficient for the water uptake process, using 

Eq. (8), [22]  

𝐷 =
𝑠2 𝜋 𝑙2

4
                                                                                                                           (8) 

Where s = slope of graph; Mt= the mass uptake/loss at time t (s); M∞= equilibrium 

uptake/loss, l = the thickness of the specimens, and D is the diffusion coefficient. 



Fluoride release 

Fluoride ion release measurements were recorded 60 days (n=5 per each group) using 

disc-shaped specimens (8.3 mm diameter×1.3 mm thickness). Each specimen was 

immersed in an individually capped polystyrene tube containing 2 ml of distilled water 

(pH 7.0) and stored at 37°C for a total immersion time of 60 days. The storage medium 

was refreshed to avoid fluoride saturation of the solution, and fluoride concentration 

measured at different intervals. An equal volume (2 ml) of total ionic strength 

adjustment buffer (TISAB I BDH Ltd., Poole, England) was added prior to fluoride ion 

measurements, which increases the ionic strength of the solution to a relatively high 

level and hence increases the accuracy of the reading. Fluoride concentrations were 

recorded in ppm using a selective fluoride electrode (Cole Parmer 27502) connected 

to an ion analyzer (OAKTON 510 ion series, Singapore). The amount of fluoride eluted 

from the cements was converted into milligrams of F- released per unit surface of area 

(mg F/cm2).  

Adhesion to sound dentine  

The bonding efficacy of the RMGICs (experimental and control) to sound dentine was 

evaluated using microtensile bond strength tests (µTBS) and scanning electron 

microscopy (SEM) used to assess the mode of failure of the debonded interfaces. Ten 

permanent sound molars were collected using an ethics protocol reviewed and 

approved by NHS health research authority (16/SW/0220). The occlusal enamel was 

removed using a low-speed water-cooled diamond saw microtome (Isomet 1000, 

Buehler, Lake Bluff, IL, USA). The dentine surface was polished for 60 s using 600 grit 

polishing paper followed by the application of dentine conditioner (10% polyacrylic 

acid, GC Corp) for 20 s to remove any smear layer. The conditioner was washed with 

air/water spray for 15 s and dried with a gentle stream of dry compressed air for 15 s. 



A matrix band was secured around each specimen, and the RMGICs (control and 

experimental groups) were placed over the dentine surfaces and photo-polymerized 

for 40 s using a light curing device (Elipar™ DeepCure-S LED, 3M USA) with a light 

intensity of 1470 mW/cm2. The restored specimens were stored at 37°C and 100% 

humidity for 24 h before sectioning. Individual beams were sectioned occluso-

gingivally to produce 0.9 mm x 0.9 mm specimens, with the RMGICs comprising the 

upper half of the beam and dentine comprising the lower half. Twenty beams per group 

were stored for two weeks in SBF at 37°C. Specimens were stressed to failure under 

tension using a universal testing machine (SMAC Europe Ltd, Crawley, UK) at a 

crosshead speed of 0.5 mm per min. The failure modes of the bonds were initially 

evaluated at x40 with a stereoscopic microscope. Failures were classified as interfacial 

failure between dentine and the RMGIC, cohesive failure within the RMGIC/ or 

dentine, and mixed (combinations of cohesive failure in the RMGIC/dentine and 

interfacial failure along the dentine surface). 

Scanning electron microscopy and energy dispersion X-ray spectroscopy 

Representative surfaces from mechanical testing (CS and BFS) were dried, carbon-

coated, and viewed using scanning electron microscopy (JCM-6000 PLUS, NeoScope 

- Benchtop SEM, USA) with an accelerating voltage of 10kV. Scanning electron 

micrographs of the fractured specimens from CS test showed the microstructural 

changes for selected cement formulations (EGMP0, EGMP20, and EGMP30) at 

different magnifications (x50, x100 and x400). Scanning electron micrographs at x50, 

x600, and x1000 magnification were also performed to assess the surface morphology 

of the fractured specimens from BFS test for all formulations after four weeks’ storage 

in SBF at 37°C. These were coupled to an energy dispersive X-ray spectroscope 

(EDX) (JCM-6000 PLUS, JED-2300 Analysis Station Plus, USA) to perform elemental 



analysis for all tested cements. For the µTBS test, SEM of representative debonded 

specimens of the EGMP0 and EGMP30 only (n=2 per group) which showed mixed or 

adhesive failures were obtained. Specimens were dried and gold coated at 45 mA 

currents for 2 minutes and viewed under a SEM (JCM-6000 PLUS, NeoScope - 

Benchtop SEM, USA) at magnification power x100, and x1000.  

Statistical analysis 

Data were tested for normality using Q-Q plots and Shapiro–Wilk tests and were 

analyzed parametrically as the data followed a normal distribution. One-way analysis 

of variance (ANOVA)  and Bonferroni HSD post hoc tests were employed to calculate 

significance (alpha level=0.05) in mean values amongst the tested groups at each time 

interval. Independent t-tests (p<0.05) was also applied to determine the effects of 

different storage time on the mechanical properties per each group. All analyses were 

conducted using SPSS statistical package (version 24; SPSS® Inc., IBM®, Chicago, 

IL, USA).  

3. Results 

3.1 The curing parameters of the cements is shown in Table 1. At lower 

concentrations of EGMP, no discernible changes were observed in the working time 

of the cements. A statistically significant increase in working time (p<0.05) resulted at 

higher concentrations of 30-40wt% EGMP in the formulations (4.2 and 4 min, 

respectively) as compared to Fuji II LC (3.45 min), however they were within 

acceptable limits as stipulated by ISO standards and met the requirements for water-

based cements. The setting time of all formulations were comparable to the control 

cement and remained unaffected on inclusion of EGMP at the concentrations 

studied. 



 

 3.2 FTIR   

The FTIR spectrum of the pRMGIC cements and control RMGIC after 4 weeks 

immersion in SBF is shown in Figure 3. The FTIR spectra showed a broad medium 

absorption band at 1719 cm-1 assigned to the carbonyl stretching vibration of the 

ester groups. The characteristic peaks of the polyacrylate salt formation were evident 

with symmetric and asymmetric -COO stretching bands at approximately 1450 and 

1580 cm−1 confirming the occurrence of the acid-base reaction. Changes were 

observed in the intensity of the peak arising at 1024 cm-1, with evidence of a new 

shoulder peak at approximately 966 cm-1, which increased in intensity with 

increasing EGMP content within the matrix. This was assigned to 3 and 1 

Table 2- The working and setting time of the experimental cements with 

GC Fuji II LC powder and liquid phase with different concentrations of 

EGMP at a powder: liquid ratio of 3.2:1. (*) denotes a statistically 

significant difference at p<0.05. 

Groups/ n=3 Working time (min) Setting time (min) 

EGMP0 3.45 (0.2) 5.33 (0.1) 

EGMP10 3.44 (0.1) 5.40 (0.2) 

EGMP20 3.46 (0.2) 5.43 (0.2) 

EGMP30 4.24 (0.1)* 5.63 (0.2) 

EGMP40 4.00 (0.1)* 5.60 (0.2) 

(*) significant difference of the experimental RMGICs from the control group (Bonferroni 

test post-hoc tests, alpha level of 0.05) 



stretching vibrations of the phosphate tetrahedral structure as shown in the FTIR 

spectra in Figure 2. 

 

 

 

 

 

 

Figure 2- A comparison of the FTIR spectra of the control RMGIC and the 
experimental cements pRMGIC’s after 4 weeks interaction with water 

 

3.3 Mechanical properties  

The mechanical properties of the cements are presented in Table. 3. The compressive 

strengths of the pRMGICs (EGMP10, 30 and 40) at 24 h were similar to the control. 

After 14 days of storage in SBF at 37°C, all groups exhibited an enhanced CS in 

comparison to their early storage values (p<0.05) but with no statistically significant 

differences amongst them. The higher EGMP-containing cements (EGMP30 and 40) 

continued gaining strength after 4 weeks ageing (141.0±9 and 140.4±8 MPa, 

respectively) and were significantly higher than the control cement (128.8±7 MPa) 

(p<0.05). On longer term ageing (180 days), the CS deteriorated for the control 

cements but was maintained in all modified formulations with statistically significant 

differences from the commercial reference and their initial values (p<0.05). 
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The pRMGIC cements exhibited a significant enhancement in the compressive 

modulus in comparison to the control cement at most time points (p<0.05). The values 

increased proportionally with higher EGMP content. Prolonged ageing in SBF raised 

the CM of the EGMP20, 30, and 40 cements as compared to the control group and 

their corresponding immediate values (p<0.05). The microhardness of the pRMGIC 

cements were higher for the EGMP30 & EGMP40 cements, however on storage, all 

the pRMGIC cements showed statistically significantly higher values from the control 

up to 6 months (p<0.05). The profound effect of EGMP was evident in the biaxial 

flexural strength, which showed a two-fold increase in values (p<0.001) in comparison 

to the control at all time intervals. Ageing showed a variable effect on the values among 

experimental groups, but EGMP20 and 30 maintained high flexural strength up to 6 

months storage (Table 3).  



Table 3-   Compressive strength (CS) and modulus (CM), microhardness (MH) and 
biaxial flexural strength (BFS) of the pRMGICs (0-40%) at 1, 14, 28 and 180 days 
aged in SBF at 37°C, shown as mean (SD), n = 8. 

Days EGMP0 EGMP10 EGMP20 EGMP30 EGMP40 

 CS (MPa) CS (MPa) CS (MPa) CS (MPa) CS (MPa) 

1 
108.3          
(6.5)a 

102.9           
(8.4)a 

119.6         
(7.4)*b 

117.3         
(7.3)ab 

116.7         
(7.4)ab 

14 
131.0         
(7.6)c^ 

132.7          
(7.9)c^ 

131.8          
(7.8)c^ 

138.9             
(9.5)c^ 

131.6         
(6.0)c^ 

28 
128.8         
(7.5)d^ 

131.4           
(7.1)de^ 

132.9                
(6.6)de^ 

141.0          
(8.8)*e^ 

140.4              
(8.0)*e^ 

180 
107.8           
(7.8) 

121.9          
(8.4)*f^ 

131.5          
(8.0)*fg^ 

138.9         
(8.4)*g^ 

121.3          
(7.1)*f 

 CM (GPa) CM (GPa) CM (GPa) CM (GPa) CM (GPa) 

1 2.4 (0.4) 3.2 (0.3)*a 3.4 (0.3)*ab 3.8 (0.3)*bc 3.9 (0.3)*c 

14 3.1 (0.3)^ 4.0 (0.3)*d^ 4.3 (0.4)*de^ 4.5 (0.2)*ef 4.9 (0.3)*f^ 

28 2.8 (0.3) 3.7 (0.4)*g 3.8 (0.4)*gh 4.2 (0.5)*gh 4.4 (0.3)*h 

180 3.0 (0.3)i^ 3.6 (0.6) ij 4.2 (0.4)*jk^ 4.5 (0.3)*k^ 4.5 (0.4)*k^ 

 MH (KHN) MH (KHN) MH (KHN) MH (KHN) MH (KHN) 

1 31.7 (1.8)a 33.0 (1.3)a 35.8 (3.0)ab 38.3 (3.1)*bc 39.9 (3.9)*b 

14 32.0 (1.9) 39.6 (2.9)*^ 43.3 (1.7)*^ 48.8 (2.0)*d^ 46.8 (2.3)*d^ 

28 29.7 (3.3) 42.1 (2.9)*e^ 45.1 (3.4)*ef^ 49.0 (2.7)*f^ 45.9 (3.6)*ef^ 

180 31.5 (2.8) 36.4 (3.3)*f^ 39.2 (3.5)*fg 46.6 (2.7)*^ 45.0 (2.8)*g 

 BFS (MPa) BFS (MPa) BFS (MPa) BFS (MPa) BFS (MPa) 

1 
121.8           
(7.3) 

249.2        
(15.7)*a 

282.7         
(15.2)* 

228.2    
(14.6)*a 

200.9    
(14.9)* 

14 
143.6            

(16.6)^ 

291.7       

(15.7)*b^ 

290.6        

(17.8)*b 

265.6  

(20.2)*b^ 

219.1    

(15.7)* 

28 
94.6            
(8.6)^ 

241.1        
(11.7)*c 

269.0       
(16.4)*d 

254.2  
(11.3)*cd^ 

246.0 
(13.9)*cd^ 

180 
133.6         
(12.1) 

231.6        
(11.5)*e 

251.4       
(13.1)*f^ 

253.8      
(9.5)*f^ 

237.2 
(11.6)*ef^ 

(*) significant difference between pRMGICs and control group, (^) significant effect of ageing for the 
same group from day1 values within each column. Similar letters in rows indicate no significant 
differences among groups (ANOVA, Bonferroni test post-hoc tests, alpha level 0.05). 



  

3.4 Interaction with water 

The pRMGIC cements exhibited higher percentage water uptake as compared to the 

control (EGMP0), which increased proportionally with increasing EGMP content within 

the matrix, Figure 4, whilst all cements attained equilibrium uptake within a week. The 

water uptake values ranged from 56.7- 60.7 μg/mm3 for the pRMGIC cements with 

54.7 μg/mm3 for the control cement.  

The solubility (percentages and in μg/mm3) was significantly lower in pRMGIC in 

comparison to the control cement (EGMP0) (p<0.001) as shown in Table 4. The values 

(3.3-2.2 μg/mm3) were below the maximum recommended by the ISO 4049 (7.5 

µg/mm3). The early stages of water uptake behaviour is shown in Figure 5 and the 

linear part of the curve was used to calculate diffusion coefficients. The diffusion 

coefficient decreased with increasing concentration of EGMP.  

 

 

 

Table 4-   Water uptake  of the commercial and experimental pRMGICs for a total 
immersion time for 60 days in distilled water 37°C (n=5). (*) significant difference 
One-way ANOVA with Bonferroni post-hoc test, alpha level of 0.05. 

Days 
Equilibrium water 

uptake 
Solubility 

Diffusion 
coefficient 

 % µgmm3 % µgmm3 (10-11m2s-1) 

 EGMP0 7.9 (0.3) 54.7 (2.0) 1.5 (0.10) 9.6 (0.3) 2.29 

EGMP10 8.8 (0.3) 56.7 (2.0) 0.6 (0.02)* 3.3 (0.1)* 2.04 

EGMP20 9.4 (0.3)* 57.5 (1.6) 0.4 (0.05)* 2.5 (0.1)* 1.89 

EGMP30 10.1 (0.4)* 58.5 (1.9) 0.4 (0.06)* 2.2 (0.1)* 1.52 

EGMP40 10.1 (0.4)* 60.7 (1.3)* 0.3 (0.04)* 2.2 (0.1)* 1.02 

(*) significant difference of the experimental RMGICs from the control group. One-way ANOVA with 
Bonferroni post-hoc test, an alpha level of 0.05. 



Fluoride release 

The fluoride release up to 60 days are presented in Fig. 3. Short-term fluoride release 

was significantly lower for the pRMGIC experimental cements (EGMP10-40) in 

comparison to the control group (p<0.05). The reduced elution was proportional to the 

amount of EGMP in the matrix at the early stages. However, these correlations did not 

exhibit any statistically significant difference (p>0.05) after seven days immersion in 

distilled water, showing a similar pattern of release up to 60 days.  

 

 

 

 

 

 

Fig. 3- Fluoride release in mg/cm2 for control and experimental pRMGICs over time 

 

 Adhesion to sound dentine 

The results of the microtensile bond strength and mode of failure are summarised in 

Figure 4. One-way ANOVA analysis of the data revealed statistically significant 

differences among the groups (p<0.001). Further analysis using Bonferroni multiple 

comparison tests (p<0.05) showed that the addition of 20-40% by weight of EGMP to 

the commercial RMGIC significantly (p<0.05) enhanced its adhesion strength to sound 

dentine after two weeks storage in SBF at 37°C but this was not evident in EGMP 10 



(p=1.000). The bond strength values were comparable between EGMP20, EGMP30, 

and EGMP40 (p=1.000), Figure 7 and the interfacial failure analysis revealed higher 

adhesive failure mode in the control and EGMP10 and 20 (~40%). All groups showed 

cohesive failure within the cement, but it was higher in EGMP30 and 40. Cohesive 

failure within dentine was also seen in all groups, but it was higher in EGMP10, 20, 

and 40. Additionally, mixed failure could be recognized in EGMP30, 40, and the 

control, Fig. 8.  

 

Figure 4- Mean microtensile bond strength (µTBS) of the experimental pRMGICs 
and the control. (*) indicate a statistically significant difference of an experimental 
group from the control (p<0.05), similar letters indicate no statistically significant 
differences between groups.Mode of failure of the experimental pRMGIC bonded to 
sound dentine after two weeks storage in SBF at 37°C. 

 



SEM analysis of the failed interfaces    

The scanning electron micrographs of fractured specimens obtained from 

compression testing  are presented in Figure 5. The pRMGIC cements showed  

a dense microstructure with smaller pores and with higher EGMP concentration, the 

pRMGIC’s clearly showed evidence of particle like deposits. 
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Figure 5- Scanning electron micrographs of the fractured compressive test surfaces 
after 4 weeks immersion in SBF, at x50, x100 and x400 magnification. A more 
integrated smooth and homogeneous surface with smaller sized pores is observed in 
EGMP20-c, and 30-c, as compared to that of EGMP0. Yellow arrows in EGMP30-d 
and e show the presence of a mineral kind of deposit inside the pores of the modified 
cement (EGMP30) at x1000, and x2000 magnification after four weeks ageing in SBF. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A-2 A-3 

B-1 B-3 

C-2 C C-1 

* 

* 

C-3 

* 

B 

D-2 D-1 
D-3 

D 

* 

A-1 

E E-2 E-1 E-3 

A 

B-2 



Figure 6- SEM-EDX of the fractured surfaces after BFS testing following 4 weeks’ 
immersion in SBF at 37°C at x50, x600 and x1000 magnification power. Fig. A-E 
represent the surfaces of all groups at x50 as follow; A: EGMP0, B: EGMP10, C: 
EGMP20, D: EGMP30, and E: EGMP40. These surfaces were further analyzed at 
higher magnifications (x600, x1000), Fig. A-E (1, 2). Cement matrix in the experimental 
groups in B-E (1, 2) were interspersed by shiny particles irregularly shaped that are 
not seen in the control group (Fig A-1, 2) that showed no visible changes in the surface 
morphology after ageing. The red asterisks represent the selected points to be further 
analyzed by EDX (A-E, 3). The pRMGIC experimental cements show a similar 
chemical composition to the control group A-3 which contain elemental peaks of 
aluminum, silica, fluoride, phosphorus, and calcium, however the peak intensity of P 
increased proportionally with increasing EGMP monomer within the cement, as shown 
by blue arrows. 

 

The fractured specimens obtained post-biaxial flexural strength tests after interaction 
with SBF over 4 weeks showed irregular shaped particulate deposits and on EDX 
analysis indicated an increase in the intensity of the phosphate peaks, however with 
the cement matrix containing calcium, it is difficult to obtain a meaningful Ca/P ratio. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7- Scanning electron micrographs of the debonded interface between Fuji II LC 
(control) and sound dentin after two weeks storage in SBF at 37°C. They show mixed 
failure predominantly adhesive in A, while mostly cohesive in B. The selected areas 
(green box) showed large number of open dentinal tubules on further magnification 

A A-1 

 

 

B B-1 



(blue arrows) (A-1), with the presence of partially and completely closed tubules 
(yellow arrow, red arrows, respectively). In Figure B-1, F2LC is completely covered 
the debonded area.     

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8- Scanning electron micrographs of the debonded interface between EGMP30 
and sound dentine after two weeks storage in SBF at 37°C.They show mixed failure 
predominantly adhesive in A, mostly cohesive in B, and completely adhesive in C. 
When a selected area in the green box was further magnified to x1000 in (A-1), most 
of the dentinal tubules are recognized as partially or completely closed (yellow, red 
arrows, respectively) with some of the cement still attached to the surface with the 
presence of some opened tubules (blue arrows). In B-1, EGMP30 covered the 
debonded area with completely closed tubules (red arrow). In C there is an evidence 
of irregular shaped granular patches distributed (red asterisk) over the adhesively 
debonded cement-dentin interface indicated the mineral forming potential of the 
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cement. On further magnification (C-1), part of the cement was observed to be 
attached to the dentine surface with complete obliteration of the dentinal tubules.       

 

4.  Discussion 

4.1 Multi-functional pRMGIC cements 

Innovations in the era of minimally invasive dentistry are directed to the 

multifunctionality of restorative / reparative dental bio-interactive materials. Resin-

modified glass-ionomer cements are a class of material with an inherent ability to bond 

to tooth tissue and leach therapeutic ions. In this study, RMGICs were intercalated 

with the monomer EGMP in the presence of the existing HEMA monomer to augment 

the acid-base reaction and create a network of covalently-linked phosphate groups in 

GICs to yield a novel photo-polymerisable cement. On contact with the tooth structure, 

the negatively charged phosphoric acid groups of the methacrylate monomers 

(EGMP) have the ability to bond to Ca2+ ions that are present either in tooth apatite 

[18] or the alkaline glass, thus simultaneously anchoring to both, creating a bridging, 

stabilising structure.  

The effect on the curing parameters (Table 2), at lower concentrations of EGMP, 

showed no discernible changes were observed in the working time of the cements, 

however a significant increase (p<0.05) resulted with the higher concentrations of 30-

40wt% EGMP in the formulation. It is interesting to note that at lower concentrations 

of EGMP, the working time remained unaffected. This was most likely due to the 

phosphoric acid groups being neutralized and integrated with the calcium ions. The 

working time of the 30 and 40% EGMP-containing cements was noted to be 

statistically significantly longer than the control, which may be associated with the 



competing reaction of the phosphate and carboxyl groups to interact with the calcium 

ions, nevertheless it still meets the clinical requirements for water-based cements. [19] 

Importantly, the inclusion of EGMP did not intervene with the setting time of the 

resultant cements. Since the acid-base reaction occurs due to the presence of the 

acidic polymer solution and alkaline glass powder irrespective of the presence of 

EGMP, which undergoes photo-polymerization, the setting reaction remains 

unaffected. EGMP is miscible and compatible with the co-monomer HEMA [14] and 

the liquid phase of Fuji II LC, which was confirmed by the lack of any evidence of 

phase separation. The FTIR spectra of the cements confirmed the setting of the 

pRMGIC cements [23] and the shoulder peak appearing at 966 cm-1 confirms the 

incorporation of EGMP in the matrix but in addition may be attributed to formation of 

the mineral crystallites.  

The study of the interaction of these class of cements with water is vital since the 

progression of cement setting and maturation is dependent on moisture that drives the 

acid-base reaction, gained from the oral environment. The interaction with water was 

studied in accordance to ISO 4049 [20] with the exception of the desiccation step as 

recommended for measuring desorption as it would risk the removal of either or both 

the ‘loosely’ and ‘tightly’ bound water in RMGIC’s, which is essential for the 

progression of the acid-base reaction. The modified and control cements exhibited a 

Fickian behavior in the early stages of water diffusion, which is in agreement with 

previous findings [24]. The trend in water uptake showed a concomitant increase with 

increasing EGMP content (Table 4), which is attributed to the water affinity of the polar 

molecule which parallels earlier reports on the proportional correlation between the 

equilibrium water content of a HEMA-co-EGMP containing hydrogel and the content 

of EGMP copolymer [14]. The interaction of RMGIC with moisture is complex and 



several factors control the rate of water uptake and loss; the density of the polymeric 

network, the concentration of polar sites available for hydrogen bonding, polymer 

polarity (water affinity for hydrophilic polar groups in the polymer) and polar 

interactions within the matrix [24,25]. In the pRMGICs, the polarity and interaction of 

the acidic functional phosphate group is responsible for the higher water affinity, which 

contributes to the ongoing acid-base reaction and the formation of stable ionic 

interactions with time that leads to the formation of a denser matrix with lower porosity 

and micro-voids, as evidenced by scanning electron micrograph images shown in Fig. 

9. Although it is difficult to prevent the formation of artificial cracks within RMGIC’s due 

to the desiccation under vacuum, qualitative assessment of the surface indicated 

absence of large cracks as in the RMGIC (control cement). This “bushy” matrix 

imposes a certain resistance to water intrusion, decreasing the rate of water diffusion 

and significantly reducing the solubility as shown in Table 4. They are both correlated 

with the proportion of the EGMP monomer within the matrix; the greater weight 

percentage of the monomer, the lower the diffusion coefficient and solubility. At low 

concentrations of EGMP in the pRMGIC experimental formulations the distance 

between the phosphate groups limit the interaction between these groups and these 

molecules behave as independent hydrophilic monomeric units, however, at higher 

concentrations, the interaction between the EGMP units itself and with HEMA 

monomers may lead to H bonding, which influences the crosslinking density. 

Furthermore, this tightly bonded polyalkenoate matrix restricts the early fluoride elution 

during the first 48 h, which is proportional to the concentration of the EGMP within the 

cement matrix, since the release of  F- ion is mainly through diffusion from micro-

porosities at this stage [26]. However, the migration of the ions with time show that the 



cements ultimately show similar behavior when there is no replenishment of the 

fluoride ions (Fig. 6). 

Mechanical properties of the pRMGICs 

Compressive, flexural strength and microhardness properties are not only a reliable 

method to estimate function and clinical survival probabilities of a new cement over 

time but also predicated to the internal structural properties of the modified 

formulations, which directly influence the behaviour of the cement under load.  A 

statistically significant increase (p<0.05) in compressive strength of all the cements 

were noted after 14 days ageing in simulated body fluid at physiological temperature 

in comparison to the compressive strength of cements tested at 24 h (Table 3). When 

a polyalkenoic acid is mixed with the calcium aluminofluorosilicate glass in presence 

of water, the protons released from the acid cause the hydrolysis of the glass to 

release Ca2+, Al3+, F− and PO4
3− ions and consequently polyacrylates are formed, and 

a siliceous layer surrounds the glass particles to inhibit its further degradation. Since 

the maturation of the cement occurs over time, mechanical properties of GIC’s tend to 

improve with time and this trend is also observed in RMGICs [27]. Further ageing of 

the cements showed that the compressive strength of the cements with the higher 

EGMP concentration (30% and 40%) increased significantly as compared to the 

control (p<0.05). The long-term ageing (6 months) of all modified formulations 

presented a statistically significant increase from the commercial reference (p<0.05) 

and their correspondent values after 24 h (Table 3). The compressive modulus of the 

pRMGICs were significantly higher (p<0.05) than the control at most time points and 

increased proportionally with higher EGMP content within cement matrix. Prolonged 

ageing of the experimental formulations (EGMP20, 30, and 40)  significantly boosted 

(p<0.05) their compressive modulus values when compared to the control group, and 



their corresponding values after 24 h, Table 3. The EGMP in the composition of the 

cement also act as spacer molecules in the polyacid milieu, assisting the movement 

of the carboxylic acid groups tagged to the rigid polymer backbone providing a greater 

degree of freedom for the carboxylate ions. This allows higher conversion of the 

carboxylic acids to metal carboxylate complexes (salt-bridge formation) during the 

setting reaction and reduces the number of unreacted carboxylic acid groups due to 

steric hindrance, which in turn improves the strength of the resultant cement [28]. 

Furthermore, the EGMP monomer with methacrylate residues can be polymerized 

readily via a free-radical initiation producing a covalently linked matrix of random 

homopolymers or even copolymerized with HEMA-producing copolymers of EGMP-

HEMA [14, 29]. Both polymers can reinforce the matrix yielding cements with improved 

properties. The presence of the ligating phosphate groups in the matrix produces a 

synergistic effect via the formation of a double-network structure. The reduction of 

pores result in a denser matrix with improved microhardness and the data shown in 

Table 3 confirmed that the EGMP 30 and EGMP 40 cements exhibited statistically 

significantly higher values than the control cement (p<0.001) and this trend was 

apparent even with low fractions of EGMP when the cements were aged over 4 weeks.  

The effect of EGMP on the biaxial flexural strength (BFS) is shown in Table 3, indicated 

up to a two-fold increase in value (p<0.001) in comparison to the control cements at 

all time intervals. The interatomic or intermolecular forces within the material have a 

significant effect on the BFS, and the presence of the strong hydrophilic domains 

within the cement matrix is likely to inhibit the separation of the planes of atoms within 

matrix [30], increasing the polar-polar interaction [30,31]. This is confirmed by the fact 

that an increase in the concentration of EGMP increases BFS values with minimal 

effect on ageing. The physicochemical interactions may also affect the strength of the 



cement matrix since there is a possibility of formation of H-bonds due to the presence 

of hydroxyl, phosphate and carbonyl groups within the matrix, reinforcing the cement. 

The stronger bonds between the organic and inorganic network of the set cement, 

lead to superior mechanical properties of final set cement.  

The results of the biaxial flexural strength are consistent with the SEM findings that 

show a denser microstructure of the experimental cements (EGMP20,30) in 

comparison to the control. The microstructural and surface assessment of the 

fractured EGMP-contained cement using SEM as shown in Fig. 9 (EGMP30-1 and 2) 

and 10, show dispersion of particles with varying size and shape with clear evidence 

of mineral deposits at the surface and within matrix pores accompanied by 

morphological surface variations distinctly different from the particles of the cement 

observed in EGMP0. These changes confirm the inductive ability of these negatively 

charged functional groups for apatite precipitation within the body environment, similar 

to findings by Stancu et al., 2004 [32]. The FTIR spectra in Fig. 3 supported this 

evidence, as the modified formulations showed a strong, absorption band at 966 -1cm 

assigned to v1 stretching vibration of the phosphate PO4
3- in the apatite. 

Furthermore, EDX analysis for both experimental and the control cements showed a 

distribution of the F, Si, Al, P and Ca within their matrices, however, it was difficult to 

obtain a meaningful Ca:P ratio although an abundance of P was observed within the 

modified formulations which increased proportionally with the increasing content of the 

acidic functional monomer within the cement matrix. However, Ca2+ ions detected 

were much lower especially in the pRMGIC’s, which is attributed to the reduction in 

the oxidation state of these calcium atoms due to the charge transfer process, as the 

calcium acts as an electron acceptor. Calcium atoms that are referred to the RMGIC 



glass powder are crosslinked by the organic functional groups of the polyacrylic acid 

and the phosphate-based monomer as well, which is expected to change their 

electronic structure [33].  

Interaction of the cements with sound dentine 

RMGIC has a self-etching effect on dentine that augments the hybridisation with 

dentine, which is reflected in the micro-tensile bond strengths achieved. Since the 

pRMGIC’s contain the additional functional co-monomer EGMP, the lower pH and the 

chelating ability of the phosphate groups with the residual hydroxyapatite [10] in 

dentine lead to a more robust and durable bond with dentine over time, thereby 

accounting for the higher micro-tensile bond strengths reported in this study, Fig. 7. 

These interactions are further confirmed by a shift in the mode of failure from 

predominantly adhesive in the control group to mixed and cohesive patterns for the 

EGMP30 and 40, Fig. 8. An improved adaptation of the cement to the dentine is most 

likely caused by the moisture present that is expected to be reused by the reaction 

between the acidic functional groups and the ion-releasing basic filler particles. 

Glass-ionomer and resin-modified glass-ionomer cements can bond chemically to 

tooth tissue via the formation of an ion-enriched layer by the reaction of the carboxylic 

acid groups from the polyacid and calcium ions from the tooth tissues. However, they 

are unable to remineralise apatite-depleted dentine [34].  This is attributed to the lack 

of nucleation of new apatite even in presence of remineralising analogues and the 

inhibitory effect of polyacrylic acids on apatite formation. The interaction of EGMP0 

versus the EGMP30 with dentine was determined morphologically using scanning 

electron micrograph in Fig.11, and 12, respectively. Partial and complete closure of 

the dentine tubules can be observed on the dentine surface with mixed failure as 



compared to the control group. Additionally, dispersion of irregularly shaped particles 

could be recognized over the dentine surface following the interfacial adhesive failure 

of the dentine/EGMP30, as shown in Figure 12 (C, and C-1). This is indicative of 

mineral deposition over the surface after two weeks immersion in SBF at 37°C, which 

indicates a possibility of the new cement (pRMGIC) being able to induce mineralization 

when placed over a sound dentine substrate. However, as alluded earlier, it is difficult 

to analyze the deposits by EDX-SEM, and further studies are required for confirmation.  

Conclusions  

The novel pRMGI cements with a polymerisable phosphate containing co-monomers 

yielded superior physical properties and exhibited the ability to decalcify tooth apatite 

with simultaneous chemical bonding thereby enhancing the cement-tooth interfacial 

interaction. The potential of these cements by virtue of the pendant phosphate groups 

of the polymeric matrix to remineralise hybrid layers and restore mineral depleted 

dental collagen structures makes this a unique class of cements. The null hypotheses 

were rejected. 
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