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Abstract  37 

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial 38 

pathogens which disrupt epithelial barrier function, damage cells and activate or modulate 39 

host immune responses. Until now human pathogenic fungi were not known to possess such 40 

toxins.  Here we identify the first fungal cytolytic peptide toxin in the opportunistic pathogen 41 

Candida albicans.  This secreted toxin directly damages epithelial membranes, triggers a 42 

danger response signalling pathway and activates epithelial immunity.  Toxin-mediated 43 

membrane permeabilization is enhanced by a positively charged C-terminus and triggers an 44 

inward current concomitant with calcium influx.  C. albicans strains lacking this toxin do not 45 

activate or damage epithelial cells and are avirulent in animal models of mucosal infection.  46 

We propose the name ‘Candidalysin’ for this cytolytic peptide toxin; a newly identified, 47 

critical molecular determinant of epithelial damage and host recognition of the clinically 48 

important fungus, C. albicans. 49 

 50 

 51 

Introduction 52 

The ability of mucosal surfaces to discriminate between commensal and pathogenic microbes 53 

is essential to human health.  The fungus Candida albicans is normally a benign member of 54 

the human microbiota but is also responsible for millions of mucosal infections each year in 55 

immunocompromised hosts, often with severe morbidity1.  A defining feature of C. albicans 56 

pathogenesis is the transition from yeast to invasive filamentous hyphae2.  Hyphae damage 57 

mucosal epithelia and induce activation of the activating protein-1 (AP-1) transcription factor 58 

c-Fos (via p38-MAPK) and the MAPK phosphatase MKP1 (via ERK1/2-MAPK), which 59 

trigger pro-inflammatory cytokine responses3-7.  These signaling events constitute a ‘danger 60 

response’ against invasive hyphae, thus serving as a sensor of pathogenic C. albicans 61 

invasion8-14.  However, it is unclear how C. albicans hyphae induce epithelial inflammatory 62 

responses and cell damage during mucosal infections. Here we identify and characterize 63 

Candidalysin, the first cytolytic peptide toxin isolated from any human fungal pathogen, as 64 

the hyphal factor critical for epithelial immune activation and C. albicans mucosal infection. 65 

 66 

Ece1p is critical for epithelial activation and damage 67 

Despite the well-known association between filamentation and virulence, the molecular 68 

mechanism underlying hypha-driven epithelial activation and mucosal damage has remained 69 

obscure.  To elucidate this mechanism, we screened a panel of C. albicans gene deletion 70 
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mutants that targeted key processes, pathways and proteins known or predicted to be 71 

associated with the yeast-hyphal transition and pathogenicity (62 strains).  Only hypha-72 

producing strains induced MKP1 phosphorylation (p-MKP1), c-Fos, cytokines (IL-1α, IL-6, 73 

G-CSF) and damage in oral epithelial cells (Extended Data Table 1).  However, one C. 74 

albicans mutant (ece1Δ/Δ)15 formed normal hyphae but was incapable of inducing these 75 

epithelial danger responses.  C. albicans ECE1 (extent of cell elongation) is highly expressed 76 

by hyphae during epithelial infection (Extended Data Fig. 1a, b) and is predicted to encode a 77 

secreted protein16. To probe its function we generated a panel of C. albicans ECE1-mutants 78 

(Extended Data Table 2). The ece1Δ/Δ strain formed normal hyphae on (Extended Data Fig. 79 

1c), and adhered to and invaded human epithelial cells similarly to wild type C. albicans 80 

(Extended Data Fig. 1d, e).  Indeed, ece1Δ/Δ was capable of extensive epithelial invasion, 81 

penetrating through multiple epithelial cells (Extended Data Fig. 1f).  Despite this, invasive 82 

ece1Δ/Δ hyphae did not damage epithelia or induce p-MKP1/c-Fos mediated danger 83 

responses or cytokine secretion (Fig. 1a-d).  Thus, Ece1p is critical for epithelial damage and 84 

innate recognition of C. albicans hyphae in vitro. 85 

 86 

Ece1p is critical for mucosal pathogenesis 87 

We next assessed the role of ECE1 in two in vivo models of C. albicans mucosal infection. In 88 

murine oropharyngeal candidiasis (OPC)17, mice infected with C. albicans wild type or ECE1 89 

re-integrant (ece1Δ/Δ+ECE1) strains exhibited disease symptoms, including extensive hyphal 90 

invasion of the tongue epithelium, micro-abscesses of infiltrating neutrophils and tissue 91 

damage (Fig. 1e, f, h, i).  In contrast, tongue tissue from ece1Δ/Δ-infected animals (n = 92 

17/20) showed no invasive fungi and no inflammatory infiltrates or damage (Fig. 1g).  We 93 

detected very low numbers of ece1Δ/Δ cells in only 3/20 mice (Extended Data Fig. 2a), 94 

which showed no evidence of local epithelial damage (not shown).  Quantification of 95 

histology sections indicated that the percentage of epithelial surface infected was 96 

significantly greater with the wild type and ECE1 re-integrant strains (Extended Data Fig. 97 

2b).  In a zebrafish swimbladder model of mucosal infection18,19, neutrophil recruitment and 98 

tissue damage were both significantly lower following ece1Δ/Δ infection as compared with 99 

the wild type strain (Fig. 1j, k, Extended Data Fig. 2c, d).  Therefore, C. albicans Ece1p is 100 

critical for mucosal pathogenesis and is an innate immune activator in vivo. 101 

 102 

Ece1p encodes a cytolytic peptide toxin 103 
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Ece1p is an in vitro substrate for Kex2p, a Golgi-located protease that cleaves proteins after 104 

lysine-arginine (KR) motifs20.  Ece1p contains seven KR-processing sites, suggesting it has 105 

the potential to produce eight secreted peptides from C. albicans20 (Extended Data Fig. 3a, b).  106 

Liquid chromatography – tandem mass spectrometry (LC-MS/MS) analysis confirmed that 107 

recombinant Kex2p (rKex2p) processes recombinant Ece1p (rEce1p) and that all eight 108 

peptides generated terminated in KR (and fragments thereof, showing that less efficient 109 

processing occurs also after a single K or R) (Supplementary information).  The importance 110 

of Kex2p-mediated Ece1p processing was demonstrated using a kex2Δ/Δ null strain21, which 111 

was unable to damage oral epithelia or induce p-MKP1/c-Fos mediated danger responses or 112 

cytokine secretion (Extended Data Table 1). To determine which Ece1p peptide(s) were 113 

responsible for epithelial activation and damage, oral epithelial cells were incubated with 114 

peptides Ece1-I-VIII (1.5 – 70 µM).  Only Ece1-III62-93 induced p-MKP1, c-Fos, cytokines 115 

and damage (Fig. 2a-c, Extended Data Fig. 3c-e).  Notably, low Ece1-III62-93 concentrations 116 

(1.5 – 15 µM) were sufficient to induce c-Fos DNA binding (Fig. 2d), G-CSF and GM-CSF 117 

(Fig. 2c, Extended Data Fig. 3c), while high Ece1-III62-93 concentrations (70 µM) were 118 

required to induce damage (Fig. 2e) and the damage-associated cytokines IL-1α and IL-6, 119 

respectively (Extended Data Fig. 3d, e).  Ece1-III62-93 could also directly lyse multiple human 120 

epithelial cell types and induce hemolysis of red blood cells, a classical test for cytotoxin 121 

activity (not shown).  Neither the N-terminal hydrophobic region (Ece1-III62-85) nor the C-122 

terminal hydrophilic region (Ece1-III86-93) induced p-MKP1, c-Fos, cytokines or damage of 123 

epithelial cells, either individually or in combination (Extended Data Fig. 3f-h), 124 

demonstrating that the peptide containing both regions is required for activity.  Therefore, 125 

Ece1-III62-93 is the active region of Ece1p, acting as an epithelial immune activator and a 126 

cytolytic agent. 127 

To confirm that Ece1-III62-93 drives epithelial activation and fungal pathogenicity, we 128 

generated a C. albicans strain lacking only the Ece1-III62-93 region (ece1Δ/Δ+ECE1Δ184-279).  129 

LC-MS/MS analysis showed that the modified protein in this strain is stable, secreted, and 130 

processed into each of the predicted peptide fragments, with the exception of the deleted 131 

peptide toxin (Supplementary information). Like ece1Δ/Δ, ece1Δ/Δ+ECE1Δ184-279 efficiently 132 

formed invasive hyphae (not shown). However, ece1Δ/Δ+ECE1Δ184-279 was unable to induce 133 

p-MKP1, c-Fos DNA binding, cytokines, or damage epithelia (Fig. 2f-i).  In murine OPC, 134 

unlike the ece1Δ/Δ+ECE1 complemented strain, ece1Δ/Δ+ECE1Δ184-279-infected mice 135 

demonstrated absent (n = 4/10) or low (n = 6/10) fungal burdens, with no evidence of 136 

inflammatory infiltrates or local epithelial damage (Fig. 2j-l, Extended Data Fig. 4a and 4b) 137 
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Likewise, ece1Δ/Δ+ECE1Δ184-279 did not induce full damage in the zebrafish swimbladder 138 

model (Fig. 2m, Extended Data Fig. 4c).  In contrast, injection of lytic doses of Ece1-III62-93 139 

into the swimbladder induced epithelial damage (Fig. 2n, o).  Thus, Ece1-III62-93 is both 140 

necessary and sufficient for epithelial immune activation, damage and mucosal infection in 141 

vivo.  The amphipathic properties of Ece1-III62-93 142 

(SIIGIIMGILGNIPQVIQIIMSIVKAFKGNKR) coupled with the α-helical structure of the 143 

N-terminal hydrophobic region (Extended Data Fig. 5a, b) indicated that this fungal peptide 144 

may act similarly to cationic antimicrobial peptides and peptide toxins such as melittin22 145 

(honey bee), magainin 223 (African clawed frog) and alamethicin24 (Trichoderma viride).  146 

Cytolytic peptide toxins have not previously been found in human pathogenic fungi but 147 

bacterial cytolytic toxins are known to induce lesions after binding to target cell 148 

membranes25,26.  To investigate the importance of lipid composition for Ece1-III62-93-149 

mediated cytolysis, we used Förster resonance energy transfer (FRET) and electrical 150 

impedance spectroscopy to analyze the interactions of Ece1-III62-93 with model membranes 151 

comprised of lipid bilayers of dioleoylphosphatidylcholine (DOPC) with or without 152 

cholesterol.  While Ece1-III62-93 was able to efficiently intercalate into and permeabilize 153 

DOPC membranes, Ece1-III62-93 permeabilization was enhanced in the presence of 154 

cholesterol (Fig. 3a, Extended Data Fig. 5c).  Ece1-III62-93-induced lesions were 155 

heterogeneous and transient (Extended Data Fig. 5d), indicating that the peptide may damage 156 

target membranes through a ‘carpet-like’ mechanism27.  Patch-clamp analysis of epithelial 157 

cells demonstrated that lesion formation by Ece1-III62-93 is rapid and causes an inward current 158 

(Fig. 3b), associated with calcium influx (Fig. 3c).  Similar phenomena occur with bacterial 159 

cytolytic toxins, which are known to trigger cell activation25,26,28. 160 

We postulated that the positively-charged C-terminal KR residues of Ece1-III62-93 might 161 

be critical for interacting with negatively-charged components of host membranes to promote 162 

lesion formation.  Substitution of the KR motif to AA (alanine-alanine; Ece1-III62-93AA) did 163 

not affect membrane intercalation (not shown) but significantly reduced the peptide’s ability 164 

to permeabilize membranes, damage epithelial cells and induce calcium influx (Fig. 3c-e).  165 

Thus, the positive C-terminus of Ece1-III62-93 is critical for lesion formation and damage 166 

induction in epithelial membranes.  Notably, Ece1-III62-93AA still induced p-MKP1, c-Fos and 167 

the non-damage associated cytokine G-CSF (Fig. 3f, g) but not the damage-associated 168 

cytokine IL-1α (Fig. 3h), suggesting that Ece1-III62-93AA can be recognized by epithelial 169 

immunity without damaging cells. This finding is important as it means that epithelial cells 170 

are not only responding to damage but have evolved to specifically recognise the peptide. 171 
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 172 

Ece1-III62-92K is a secreted cytolytic peptide toxin 173 

To demonstrate that Ece1-III is generated during epithelial infection, we performed LC-174 

MS/MS analysis on the secretome from wild-type C. albicans hyphae grown in the presence 175 

and absence of epithelial cells (Supplementary information).  Notably, Ece1-III was the only 176 

peptide detected in the presence of epithelial cells, indicating that the fungus secretes this 177 

toxin during mucosal infection.  However, the predominant form of secreted Ece1-III 178 

terminated in a K residue (SIIGIIMGILGNIPQVIQIIMSIVKAFKGNK; Ece1-III62-92K) and 179 

not KR (SIIGIIMGILGNIPQVIQIIMSIVKAFKGNKR; Ece1-III62-93KR) (Extended Data 180 

Table 3).  In fungi, it is known that following Kex2p processing, many proteins are 181 

subsequently cleaved by Kex1p29 (also in the Golgi), removing the C-terminal R.  LC-182 

MS/MS analysis on the hyphal secretome of a kex1∆/∆ mutant demonstrated that the 183 

predominant peptide secreted terminates in KR (not K) (Supplementary information).  184 

Therefore, Ece1p is also subject to ordered Kex2p/Kex1p processing.  Accordingly, we 185 

confirmed that Ece1-III62-92K functioned similarly to Ece1-III62-93KR with respect to epithelial 186 

cell activation.  Specifically, Ece1-III62-92K is also α-helical (not shown) and induces c-Fos, p-187 

MKP1, cytokines (IL-1α, G-CSF), damage (LDH), membrane intercalation and 188 

permeabilization, and calcium influx (Fig 4a-g).  Thus, the dominant peptide secreted from C. 189 

albicans hyphae during mucosal infection is Ece1-III62-92K, which acts as a cytolytic peptide 190 

toxin that activates epithelial cells. 191 

Based on these data, we propose a model of C. albicans mucosal infection whereby 192 

invasive hyphae secrete Ece1-III62-92K
 into a membrane-bound ‘invasion pocket’30,31, 193 

facilitating peptide accumulation (Extended Data Fig 6).  During early stages of infection, 194 

sub-lytic concentrations of Ece1-III62-92K
 induce epithelial immunity by activating the ‘danger 195 

response’ pathway (p-MKP1/c-Fos), alerting the host to the transition from colonizing yeast 196 

to invasive, toxin-producing hyphae.  As infection progresses, Ece1-III62-92K
 levels 197 

accumulate and elicit direct tissue damage.  Mechanistically, we propose that the asymmetric 198 

distribution of charge along the α-helix of Ece1-III62-92K
 facilitates correct peptide orientation 199 

relative to the host membrane, enabling intercalation, permeabilization and calcium influx.  200 

In conclusion, our data identifies C. albicans Ece1-III62-92K as the first cytolytic peptide toxin 201 

in a human fungal pathogen and reveals the molecular mechanisms of epithelial damage and 202 

host recognition of this clinically important fungus. We propose the name ‘Candidalysin’ for 203 

this newly discovered fungal toxin. 204 

 205 



8 
 

Supplementary Information is available in the online version of the paper. 206 
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Figure Legends 318 

Figure 1|  ECE1 is required for epithelial activation and C. albicans infection. TR146 319 

cells were infected with the indicated C. albicans strains. (a) LDH release 24 h post-infection 320 

(p.i.) (MOI = 0.1). (b) Induction of p-MKP-1 and c-Fos at 2 h p.i. (MOI = 10). (c) c-Fos 321 

DNA binding at 3 h p.i. (MOI = 10). (d) G-CSF production at 24 h p.i. (MOI = 0.01). (e-i) 322 

PAS-stained tongues from mice subjected to OPC 2 d p.i. (e, g, h) Whole-mount (x25) and (f, 323 

i) high-power (x200) views of PAS-stained tongues of mice infected with C. albicans wild 324 

type (e, f), ece1Δ/Δ (g) and ece1Δ/Δ+ECE1 (h, i). Invading hyphae (black arrow) and 325 

inflammatory cells (blue arrow) are indicated.  (j) Quantification of neutrophils in zebrafish 326 

swimbladder following infection with WT C. albicans (n (number of fish) = 47), ece1Δ/Δ (n 327 

= 53) or PBS (n = 40). (k) Quantification of damaged cells in zebrafish swimbladder after 328 

infection with C. albicans WT (n = 73), ece1Δ/Δ (n = 59) or vehicle (n = 63). Data are 329 

representative (b, e-i) or the mean (a, c-d, j-k) of three biological replicates. Error bars ± 330 

SEM. Data were analyzed by one-way ANOVA (a, d), paired T test (c) or Kruskal-Wallis (j, 331 

k) and * = P < 0.05, ** = P < 0.01, *** = P < 0.001. For gel source data, see Supplementary 332 

Figure 1. 333 

 334 

Figure 2|  Ece1-III62-93 is the active region of Ece1p and is required for TR146 cell 335 

activation and mucosal C. albicans infection. (a) Induction of p-MKP-1 and c-Fos 2 h post-336 

stimulation (p.s.) with Ece1 peptides at 1.5 µM. (b) LDH release 24 h p.s. with 70 µM Ece1 337 

peptides. (c) Induction of G-CSF 24 h p.s. of with Ece1-III62-93. (d) c-Fos DNA binding 338 

induction 3 h p.s. with sub-lytic concentrations of Ece1-III62-93. (e) LDH release 24 h p.s. with 339 

Ece1-III62-93. (f) Induction of p-MKP-1 and c-Fos 2 h post-infection (p.i.) with the indicated 340 

C. albicans strains (MOI = 10). (g) c-Fos DNA binding induction 3 h p.i. with indicated C. 341 

albicans strains (MOI = 10). (h) G-CSF secretion 24 h p.i. with indicated C. albicans strains 342 

(MOI = 0.01). (i) LDH release 24 h p.i. with indicated C. albicans strains (MOI = 0.01). (j-l) 343 

PAS stained tongue sections from mice subjected to OPC, 2 d p.i. with (j, k) C. albicans 344 

ece1Δ/Δ+ECE1 (x25 and x200) or (l) ece1Δ/Δ+ECE1Δ184-279. Invading hyphae (black 345 

arrows) and infiltrating inflammatory cells (blue arrow) are shown. (m) Damaged cells in a 346 

zebrafish swimbladder 24 h p.i. with C. albicans ece1Δ/Δ+ECE1 (n (number of fish) = 44), 347 

ece1Δ/Δ+ECE1Δ184-279 (n = 58) or vehicle (n = 58). (n) Damaged cells in zebrafish 348 

swimbladders after stimulation with 9 ng (n = 51) or 1.25 ng (n = 56) Ece1-III62-93, or vehicle 349 

(40% DMSO, n = 54 and 5% DMSO, n = 55). (o) Co-localization of adherens junctions (α-350 
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catenin-citrine) with Ece1-III62-93-damaged cells (Sytox Orange-positive cells) in a zebrafish 351 

swimbladder. Data are representative (a, f, j-l, o) or mean (b-e, g-i, m-n) of three biological 352 

replicates (a-m) or ten fish (o). Error bars show ± SEM. Data were analyzed by one-way 353 

ANOVA (b, c, e, h, i) paired T test (d, g) or Kruskal-Wallis (m,n). * = P < 0.05, ** = P < 354 

0.01, *** = P < 0.001 (compared with vehicle control unless otherwise indicated). For gel 355 

source data, see Supplementary Figure 1. 356 

 357 

Figure 3|  Ece1-III62-93 functions as a cytolytic peptide toxin. (a) Kinetic changes in 358 

conductance of tethered lipid membranes after exposure to different concentrations of Ece1-359 

III62-93. . (b) Evoked inward current at a membrane potential of -60 mV in TR146 cells post-360 

addition of Ece1-III62-93 or ionomycin (positive control); individual (representative) and 361 

cumulative changes (bar chart - number of cells analysed below each bar) shown. (c) 362 

Intracellular calcium level kinetics in TR146 cells post-stimulation (p.s.) with Ece1-III62-93 363 

wild type (Ece1-III62-93KR) or Ece1-III62-93 AA C-terminal substitution (Ece1-III62-93AA). (d) 364 

Kinetic changes in conductance of tethered DOPC membranes after exposure to different 365 

concentrations of Ece1-III62-93. (e) LDH release from TR146 cells 24 h p.s. with Ece1-III62-366 

93KR or Ece1-III62-93AA. (f) Induction of p-MKP-1 and c-Fos 2 h in TR146 cells p.s. with Ece1-367 

III62-93KR or Ece1-III62-93AA. Secretion of (g) G-CSF and (h) IL-1α from TR146 cells 24 h p.s. 368 

with Ece1-III62-93KR or Ece1-III62-93AA. Data shown are representative (a, d, f) or mean (b-c, e, 369 

g-h) of three biological replicates. Error bars show ± SEM. Data were analyzed by one-way 370 

ANOVA (e, g and f) and * = P < 0.05, ** = P < 0.01, *** = P < 0.001. For gel source data, 371 

see Supplementary Figure 1. 372 

 373 

Figure 4|  Ece1-III62-92K functions as a cytolytic peptide toxin that activates and damages 374 

epithelial cells. (a) Induction of p-MKP-1 and c-Fos 2 h post-stimulation (p.s.), and (b) 375 

secretion of G-CSF and IL-1-α 24 h p.s., and (c) LDH release 24 h p.s. of TR146 cells with 376 

Ece1-III62-92K. (d) Förster resonance energy transfer (FRET) showing intercalation of Ece1-377 

III62-92K (10 µM) into lipid liposomes. (e) Average peptide concentration-dependent changes 378 

in conductance of tethered lipid membranes. (f) Ece1-III62-92K (4 μM) induced 379 

permeabilization of planar lipid membranes showing heterogeneous and transient lesions 380 

leading to membrane rupture. (g) Intracellular calcium level kinetics in TR146 cells p.s. with 381 

Ece1-III62-92K. Data shown are representative (a, d, f) or mean (b-c, e, g) of three biological 382 

replicates. Error bars show ± SEM. Data are analyzed by one-way ANOVA (b, c). * = P < 383 
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0.05, ** = P < 0.01, *** = P < 0.001 (compared with vehicle control). For gel source data, 384 

see Supplementary Figure 1. 385 

 386 

Extended Data Figure legends 387 

 388 

Extended Data Figure 1|  C. albicans ECE1 expression and phenotypic effects of ECE1 389 

gene deletion. (a) Relative expression (vs t = 0) of ECE1 in C. albicans wild type over time 390 

after addition of yeast cells to TR146 epithelial cells as measured by RT-qPCR. (b) Imaging 391 

confirmation of ECE1 expression over time within C. albicans wild type. C. albicans cells 392 

expressing GFP under the control of the ECE1 5' intragenic region, containing the ECE1 393 

promoter, were grown on TR146 epithelial cells and stained with calcofluor white (CFW, 394 

post-permeabilization) to show cell wall chitin and Alexa-Fluor-647-labelled concanavalin A 395 

(ConA, pre-permeabilization) to show carbohydrates. A composite image showing CFW, 396 

ConA, GFP and the brightfield (BF) image is shown. (c) Scanning electron micrographs (top 397 

panels, 5 h) and light microscopy (bottom panels, 24 h) showing no gross abnormalities in 398 

hypha formation between C. albicans wild type (BWP17+CIp30), ECE1-deletion (ece1Δ/Δ) 399 

and ECE1 re-integrant (ece1Δ/Δ+ECE1) strains after infection of TR146 epithelial cells. (d) 400 

No difference in adhesion of C. albicans wild type, ece1Δ/Δ and ece1Δ/Δ+ECE1 strains to 401 

TR146 epithelial cells after 60 min. (e) No difference in invasion of C. albicans wild type, 402 

ece1Δ/Δ and ece1Δ/Δ+ECE1 strains into TR146 epithelial cells after 3 h. (f) Fluorescence 403 

staining of C. albicans wild type and ece1Δ/Δ hyphae invading through TR146 epithelial 404 

cells. Fungal cells are stained with calcofluor white (CFW, post-permeabilization) and Alexa-405 

Fluor-647-labelled concanavalin A (ConA, pre-permeabilization) to show cell wall chitin and 406 

carbohydrates, respectively, and to distinguish between invading hyphae (only stained after 407 

permeabilization) and non-invading hyphae (stained both pre- and post-permeabilization). 408 

Levels of chitin and β-glucan are comparable in both strains. White arrows indicate invasion 409 

into epithelial cells. Data shown are representative (b, c, f) or the mean (a, d, e) of three 410 

biological replicates. Error bars show ± SEM. 411 

 412 

Extended Data Figure 2|  C. albicans Ece1p is critical for mucosal virulence in vivo. (a) 413 

Fungal burdens recovered from the tongues of mice infected with C. albicans wild type 414 

(BWP17+CIp30) (n = 13), ECE1-deletion (ece1Δ/Δ) (n (number of mice) = 20) and ECE1 re-415 

integrant (ece1Δ/Δ+ECE1) (n = 24) strains after 2 day oropharyngeal infection. (b) Average 416 
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percentage of the entire tongue epithelium area infected in different groups of mice infected 417 

with the different C. albicans strains. (c) Confocal imaging of 4 day post-fertilization (dpf) 418 

mpo-gfp transgenic zebrafish swimbladders infected with C. albicans wild type 419 

(BWP17+CIp30+dTomato), ECE1-deletion (ece1Δ/Δ+dTomato) and ECE1 re-integrant 420 

(ece1Δ/Δ+ECE1+dTomato) strains for 24 h. C. albicans cells appear red whilst neutrophils 421 

appear green. Red dots outline the swimbladder. Images are composites of maximum 422 

projections in the red and green channels (25 slices each, approximately 100 μm depth) with 423 

(left) or without (right) a single slice in the DIC channel overlay. Scale bars represent 100 424 

μm. (d) Confocal imaging of 4 dpf zebrafish swimbladders infected with C. albicans wild 425 

type (BWP17+CIp30+dTomato), ECE1-deletion (ece1Δ/Δ+dTomato) and ECE1 re-integrant 426 

(ece1Δ/Δ+ECE1+dTomato) strains for 24 h stained with the fluorescent exclusion dye Sytox 427 

Green. C. albicans cells appear red and damaged epithelial cells appear green. White dots 428 

outline the pronephros and red dots outline the swimbladder. Images are composites of 429 

maximum projections in the red and green channels (25 slices each, approximately 100 μm 430 

depth) with (left) or without (right) a single slice in the DIC channel overlay. High 431 

magnification images of the white boxes are shown. Scale bars (bottom right) represent 100 432 

μm (low magnification) and 30 μm (high magnification). Data shown are the mean (a, b) or 433 

representative (c, d) of at least three biological replicates. Error bars show ± SEM. Data were 434 

analyzed by Mann-Whitney test. *** = P < 0.001. 435 

 436 

Extended Data Figure 3| Ece1-III62-93 is the active region of Ece1p. (a) Amino acid 437 

sequence of Ece1p and a schematic of the protein, indicating the signal peptide (SP), lysine-438 

arginine motifs (KR) at the C-terminus of each peptide, and the processed peptides (Ece1-I-439 

VIII) produced by Kex2p cleavage. (b) Amino acid sequences of the processed peptides 440 

(Ece1-I-VIII) produced by Kex2p cleavage. Induction of (c) GM-CSF, (d) IL-1α and (e) IL-6 441 

secreted after stimulation of TR146 epithelial cells for 24 h with varying concentrations of 442 

Ece1-III62-93 (70 µM - 1.5 µM). (f) Phosphorylation of MKP-1 and c-Fos production after 2 h 443 

treatment of TR146 epithelial cells with 15 µM of Ece1-III62-85 (hydrophobic region), Ece1-444 

III86-93 (hydrophillic region), Ece1-III62-85 and Ece1-III86-93 together, or Ece1-III62-93 alone. (g) 445 

Induction of G-CSF secretion after 24 h treatment of TR146 epithelial cells with 15 µM of 446 

Ece1-III62-85, Ece1-III86-93, Ece1-III62-85 and Ece1-III86-93 together, or Ece1-III62-93 alone. (h) 447 

Fold change induction of LDH release after 24 h treatment of TR146 epithelial cells with 70 448 

µM of Ece1-III62-85, Ece1-III86-93, Ece1-III62-85 and Ece1-III86-93 together, or Ece1-III62-93 449 

alone. Data shown are representative (f) or the mean (c-e, g-h) of three biological replicates. 450 
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Error bars show ± SEM. Data were analyzed by one-way ANOVA. * = P < 0.05, ** = P < 451 

0.01, *** = P < 0.001 (compared with vehicle control). For gel source data, see 452 

Supplementary Figure 1. 453 

 454 

Extended Data Figure 4| Ece1-III62-93 is required for C. albicans mucosal infection. (a) 455 

Fungal burdens recovered from the tongues of mice infected with C. albicans wild type 456 

(BWP17+CIp30) (n = 13), ECE1-deletion (ece1Δ/Δ) (n = 20), ECE1 re-integrant 457 

(ece1Δ/Δ+ECE1) (n = 24) and Ece1-III62-93 deletion (ece1Δ/Δ+ECE1Δ184-279) (n = 10) strains 458 

after 2 day oropharyngeal infection. (b) Average percentage of the entire tongue epithelium 459 

area infected in different groups of mice infected with the different C. albicans strains. (c) 460 

Confocal imaging of 4 dpf zebrafish swimbladders infected with C. albicans Ece1-III62-93 461 

deletion (ece1Δ/Δ+ECE1Δ184-279+dTomato) and ECE1 re-integrant 462 

(ece1Δ/Δ+ECE1+dTomato) strains for 24 h stained with the fluorescent exclusion dye Sytox 463 

Green. C. albicans cells appear red and damaged cells appear green. White dots outline the 464 

pronephros and red dots outline the swimbladder. Images are composites of maximum 465 

projections in the red and green channels (25 slices each, approximately 100 μm depth) with 466 

(left) or without (right) a single slice in the DIC channel overlay. Scale bars (bottom right) 467 

represent 100 μm. Data shown are the mean (a) or representative (b, c) of at least three 468 

biological replicates. Error bars show ± SEM. Data were analyzed by Mann-Whitney test. ** 469 

= P < 0.01, *** = P < 0.001. 470 

 471 

Extended Data Figure 5| Ece1-III62-93 is a cytolytic α-helical peptide. (a) Circular 472 

dichroism spectra showing the α-helical conformation of Ece1-III62-93 in buffer (100 mM 473 

KCl, 5 mM HEPES, pH 7). Increasing the temperature from 25oC to 40oC did not affect the 474 

stability of the α-helical structure. (b) Diagram to illustrate the amphipathic nature of Ece1-475 

III62-93 (residues 62-78, left panel; residues 79-93, right panel). Residues with hydrophobic or 476 

polar/charged side chains are displayed with a blue and white background, respectively. 477 

Modified from output generated in PEPWHEEL (http://emboss.bioinformatics.nl/cgi-478 

bin/emboss/pepwheel). (c) Förster resonance energy transfer (FRET) experiments show the 479 

intercalation of Ece1-III62-93 into lipid liposomes (10 µM) composed of DOPC in the absence 480 

or presence of cholesterol. Peptide titration of Ece1-III62-93 to liposomes showed slightly 481 

enhanced intercalation for pure DOPC. (d) Ece1-III62-93 induced the permeabilization of 482 

planar lipid membranes composed of DOPC. The graph shows heterogeneous and transient 483 
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lesions leading finally to a rupture of the membrane. Ece1-III62-93 concentration was 0.125 484 

µM. Data shown are representative of at least three biological replicates. 485 

 486 

Extended Data Figure 6| Schematic of the role of Ece1-III in C. albicans infection of 487 

epithelial cells. During early stage infection of the mucosal surface by C. albicans, Ece1-III 488 

(red α-helix) is secreted into the invasion pocket created by the invading hypha (a). Sub-lytic 489 

concentrations of Ece1-III trigger epithelial signal transduction through MAPK, p38/MKP-1 490 

and c-Fos (b) resulting in the production of immune regulatory cytokines (c). As the severity 491 

of the infection increases, Ece1-III accumulates (d) and once lytic concentrations are reached, 492 

causes membrane damage and the release of lactate dehydrogenase from the host epithelium 493 

(e), concomitant with calcium influx (f). Epithelial signal transduction is maintained (g) and 494 

additionally induces the release of damage associated cytokines, such as IL-1α (h). Ece1-III 495 

may also have activity on the epithelial surface outside of the invasion pocket and on 496 

neighbouring cells not in contact with hyphae if Ece1-III is produced in sufficient 497 

concentrations. 498 

 499 

  500 
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METHODS 501 

 502 

Cell lines, reagents and Candida strains 503 

Experiments were carried out using the TR146 buccal epithelial squamous cell carcinoma 504 

line32 obtained from the European Collection of Authenticated Cell Cultures (ECACC) and 505 

grown in Dulbecco's Modified Eagle's Medium (DMEM, Sigma-Aldrich) supplemented with 506 

10% fetal bovine serum (FBS) and 1% penicillin-streptomycin. Cells were routinely tested 507 

for mycoplasma contamination using mycoplasma-specific primers and were found to be 508 

negative. Prior to stimulation, confluent TR146 cells were serum-starved overnight, and all 509 

experiments were carried out in serum-free DMEM. C. albicans wild type strains included 510 

the autotrophic strain BWP17+CIp3033 and the parental strain SC531434. Other C. albicans 511 

strains used and their sources are listed in Extended Data Tables 1 and 2. C. albicans cultures 512 

were grown in YPD medium (1% yeast extract, 2% peptone, 2% dextrose) at 30°C overnight. 513 

Cultures were washed in sterile PBS and adjusted to the required cell density. Antibodies to 514 

phospho-MKP1 and c-Fos were from Cell Signalling Technologies (New England Biolabs 515 

UK), mouse anti-human α-actin was from Millipore (UK), and goat anti-mouse and anti-516 

rabbit horseradish peroxidase (HRP)-conjugated antibodies were from Jackson 517 

Immunologicals Ltd (Stratech Scientific, UK). Ece1p peptides were synthesized 518 

commercially (Proteogenix (France) or Peptide Synthetics (UK).  519 

 520 

Generation of C. albicans ECE1 mutant strains 521 

ECE1 deletion was performed as previously described35. Deletion cassettes were generated 522 

by PCR36. Primers ECE1-FG and ECE1-RG were used to amplify pFA-HIS1 and pFA-ARG4 523 

-based markers. C. albicans BWP1737, was sequentially transformed38 with the ECE1-HIS1 524 

and ECE1-ARG4 deletion cassettes and then transformed with CIp1039, yielding the ece1∆/Δ 525 

deletion strain. For complementation, the ECE1 gene plus upstream and downstream 526 

intergenic regions were amplified with primers ECE1-RecF3k and ECE1-RecR and cloned 527 

into plasmid CIp10 at MluI and SalI sites. This plasmid was transformed into the uridine 528 

auxotrophic ece1Δ/Δ strain, yielding the ece1∆/Δ+ECE1 complemented strain. For 529 

generation of the ece1Δ/Δ+ECE1∆184-279 strain, the CIp10-ECE1 was amplified with primers 530 

Pep3-F1 and Pep3-R1, digested with ClaI and re-ligated, yielding the CIp10+ECE1Δ184-279 531 

plasmid. This plasmid was transformed into the uridine auxotrophic ece1Δ/Δ strain, yielding 532 

the ece1Δ/Δ+ECE1∆184-279 strain. All integrations were confirmed by PCR/sequencing and at 533 

least two independent isogenic transformants were created to confirm results. KEX1 deletion 534 
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was performed exactly as the ECE1 deletion but using primers KEX1-FG and KEX1-RG for 535 

creating the deletion cassette. Fluorescent strains of ece1Δ/Δ and BWP17 were constructed as 536 

previously described40. Briefly, the ece1Δ/Δ and BWP17 strains were transformed with the 537 

pENO1-dTom-NATr plasmid. Primers used to clone and construct the ECE1 genes and 538 

intragenic regions are listed in Extended Data Table 4. Strains are listed in Extended Data 539 

Table 2. 540 

 541 

Construction of C. albicans ECE1 promoter-GFP strain 542 

ECE1 promoter (primers 5'ECE1prom-NarI / 3'ECE1prom-XhoI) and terminator 543 

(5'ECE1term-SacII / 5'ECE1term-SacI) were amplified and cloned into pADH1-GFP. 544 

Resulting pSK-pECE1-GFP was verified by sequencing. C. albicans SC5314 was 545 

transformed with the pECE1-GFP transformation cassette38. Resistance to nourseothricin was 546 

used as selective marker and correct integration of GFP into the ECE1 locus was verified by 547 

PCR. Primers for cloning and validation are listed in Extended Data Table 4. Strains are 548 

listed in Extended Data Table 2. 549 

 550 

RNA isolation and real-time PCR analysis 551 

C. albicans cells grown on TR146 epithelial cells were collected into RNA pure (PeqLab), 552 

centrifuged and the pellet resuspended in 400 µl AE buffer (50 mM Na-acetate pH 5.3, 10 553 

mM EDTA, 1% SDS). Samples were vortexed (30 s), and an equal volume of 554 

phenol/chloroform/isoamyl alcohol (25:24:1) was added and incubated for 5 min (65°C) 555 

before subjected to 2x freeze-thawing. Lysates were clarified by centrifugation and the RNA 556 

precipitated with isopropyl alcohol/0.3 M sodium acetate by incubating for 1 h at -20°C. 557 

Precipitated pellets were washed (2x 1 ml 70% ice-cold ethanol), resuspended in DEPC-558 

treated water and stored at -80°C. RNA integrity and concentration was confirmed using a 559 

Bioanalyzer (Agilent). RNA (500 ng) was treated with DNase (Epicenter) and cDNA 560 

synthesized using Reverse Transcriptase Superscript III (Invitrogen). cDNA samples were 561 

used for qPCR with EVAgreen mix (Bio&Sell). Primers (ACT1-F and ACT1-R for actin, 562 

ECE1-F and ECE1-R for ECE1 - Extended Data Table 4) were used at a final concentration 563 

of 500 nM. qPCR amplifications were performed using a Biorad CFX96 thermocycler. Data 564 

was evaluated using Bio-Rad CFX Manager 3.1 (Bio-Rad) with ACT1 as the reference gene 565 

and t0 as the control sample. 566 

 567 

Western blotting 568 
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TR146 cells were lysed using a modified RIPA lysis buffer (50 mM Tris-HCl pH 7.4, 150 569 

mM NaCl, 1 mM EDTA, 1% Triton X-100, 1% sodium deoxycholate, 0.1% SDS) containing 570 

protease (Sigma-Aldrich) and phosphatase (Perbio Science) inhibitors41, left on ice (30 min) 571 

and then clarified (10 min) in a refrigerated microfuge. Lysate total protein content was 572 

determined using the BCA protein quantitation kit (Perbio Science).  20 µg of total protein 573 

was separated on 12% SDS-PAGE gels before transfer to nitrocellulose membranes (GE 574 

Healthcare). After probing with primary (1:1000) and secondary (1:10,000) antibodies, 575 

membranes were developed using Immobilon chemiluminescent substrate (Millipore) and 576 

exposed to X-Ray film (Fuji film). Human α-actin was used as a loading control. 577 

 578 

Transcription factor DNA binding assay 579 

DNA binding activity of transcription factors was assessed using the TransAM transcription 580 

factor ELISA system (Active Motif) as previously described41,42. Serum-starved TR146 581 

epithelial cells were treated for 3 h before being differentially lysed to recover nuclear 582 

proteins using a nuclear protein extraction kit (Active Motif) according to the manufacturer's 583 

protocol. Protein concentration was determined (BCA protein quantitation kit (Perbio 584 

Science)) and 5 µg of nuclear extract was assayed in the TransAM system according to the 585 

manufacturer’s protocol. Data was expressed as fold-change in A450nm relative to resting cells. 586 

 587 

Cytokine determination 588 

Cytokine levels in cell culture supernatants were determined using the Performance magnetic 589 

Fluorokine MAP cytokine multiplex kit (Bio-techne) and a Bioplex 200 machine. The data 590 

were analyzed using Bioplex Manager 6.1 software to determine analyte concentrations. 591 

 592 

Cell damage assay 593 

Following incubation, culture supernatant was collected and assayed for lactate 594 

dehydrogenase (LDH) activity using the Cytox 96 Non-Radioactive Cytotoxicity Assay kit 595 

(Promega) according to the manufacturer’s instructions. Recombinant porcine LDH (Sigma-596 

Aldrich) was used to generate a standard curve. 597 

 598 

Epithelial adhesion assay 599 

Quantification of C. albicans adherence to TR146 epithelial cells was performed as described 600 

previously43. Briefly, TR146 cells were grown to confluence on glass coverslips for 48 h in 601 

tissue culture plates in DMEM medium. C. albicans yeast cells (2 x 105) were added into 1 602 
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ml serum-free DMEM, incubated for 60 min (37°C/5% CO2) and non-adherent C. albicans 603 

cells removed by aspiration. Following washing (3x 1 ml PBS), cells were fixed with 4% 604 

paraformaldehyde (Roth) and adherent C. albicans cells stained with Calcofluor White and 605 

quantified using fluorescence microscopy. The number of adherent cells was determined by 606 

counting 100 high power fields of 200 µm × 200 µm size. Exact total cell numbers were 607 

calculated based on the quantified areas and the total size of the cover slip. 608 

 609 

Epithelial invasion assay 610 

C. albicans invasion of epithelial cells was determined as described previously43. Briefly, 611 

TR146 epithelial cells were grown to confluence on glass coverslips for 48 h and then 612 

infected with C. albicans yeast cells (1×105), for 3 h in a humidified incubator (37°C/5% 613 

CO2). Following washing (3x PBS), the cells were fixed with 4% paraformaldehyde. All 614 

surface adherent fungal cells were stained for 1 h with a rabbit anti-Candida antibody and 615 

subsequently with a goat anti-rabbit-Alexa Fluor 488 antibody. After rinsing with PBS, 616 

epithelial cells were permeabilized (0.1% Triton X-100 in PBS for 15 min) and fungal cells 617 

(invading and non-invading) were stained with Calcofluor White. Following rinsing with 618 

water, coverslips were visualized using fluorescence microscopy. The percentage of invading 619 

C. albicans cells was determined by dividing the number of (partially) internalized cells by 620 

the total number of adherent cells. At least 100 fungal cells were counted on each coverslip. 621 

 622 

Imaging of C. albicans growth and invasion of epithelial cells 623 

TR146 cells (105/ml) seeded on glass coverslips in DMEM/10% FBS were infected with C. 624 

albicans (2.5 x 104 cfu/ml) in DMEM and incubated for 6 h (37°C/5% CO2). Cells were 625 

washed with PBS, fixed overnight (4°C in 4% paraformaldehyde) and stained with 626 

Concanavalin A-Alexa Fluor 647 in PBS (10 µg/ml) for 45 min at room temperature in the 627 

dark with gentle shaking (70 rpm) to stain the fungal cell wall. Epithelial cells were 628 

permeabilised with 0.1% Triton X-100 for 15 min at 37°C in the dark, then washed and 629 

stained with 10 µg/ml Calcofluor White (0.1 M Tris-HCl pH 9.5) for 20 min at room 630 

temperature in the dark with gentle shaking. Cells were rinsed in water and mounted on slides 631 

with 6 µl of ProLong Gold anti-fade reagent, before air drying for 2 h in the dark. 632 

Fluorescence microscopy was performed on a Zeiss Axio Observer Z1 microscope, and 5 633 

phase images were taken per picture.  634 

 635 
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Scanning Electron Microscopy 636 

For scanning electron microscopy (SEM) analysis, TR146 cells were grown to confluence on 637 

Transwell inserts (Greiner) and serum starved overnight in serum-free DMEM. After 5 h of 638 

C. albicans incubation on epithelial cells at an MOI of 0.01, cell media was removed and 639 

samples were fixed overnight at 4oC with 2.5% (v/v) glutaraldehyde in 0.05 M HEPES buffer 640 

(pH 7.2) and post-fixed in 1% (w/v) osmium tetroxide for 1 h at room temperature. After 641 

washing, samples were dehydrated through a graded ethanol series before being critical point 642 

dried (Polaron E3000, Quorum Technologies Ltd). Dried samples were mounted using 643 

carbon double side sticky discs (TAAB) on aluminium pins (TAAB) and gold coated in an 644 

Emitech K550X sputter coater (Quorum Technologies Ltd). Samples were examined and 645 

images recorded using a FEI Quanta 200 field emission scanning electron microscope 646 

operated at 3.5 kV in high vacuum mode. 647 

 648 

Zebrafish swimbladder mucosal infection model 649 

Zebrafish infections were performed in accordance with NIH guidelines under Institutional 650 

Animal Care and Use Committee (IACUC) protocol A2009-11-01 at the University of 651 

Maine. To determine sample size, a power calculation was done for all experiments based on 652 

2-tails T-test in order to detect a minimum effect size of 0.8, with an alpha error probability 653 

of 0.05 and a power (1 – beta error probability) of 0.95. This gave a minimum number of 42 654 

fish for each group. The fish selected for the experiments were randomly assigned to the 655 

different groups by picking them from a pool without bias and the groups were injected in 656 

different orders. No blinding was used to read the results. Ten to twenty zebrafish per group 657 

per experiment were maintained at 33°C in E3 + PTU and used as previously described40. 658 

Briefly, 4 day post-fertilization (dpf) larvae were treated with 20 μg/ml dexamethasone 659 

dissolved in 0.1% DMSO 1 h prior to infection and thereafter. For tissue damage and 660 

neutrophil recruitment, individual AB or mpo:GFP fish (respectively) were injected into the 661 

swimbladder with 4 nl of PBS with/without 25-40 C. albicans yeast cells of ece1Δ/Δ-662 

dTomato, ece1Δ/Δ+ECE1+dTomato, ece1Δ/Δ+ECE1Δ184-279+dTomato or BWP17-dTomato. 663 

For tissue damage, 1 nl of Sytox green (0.05 mM in 1% DMSO) was injected at 20 h post-664 

infection into the swimbladder and fish were imaged by confocal microscopy at 24 h post-665 

infection. For neutrophil recruitment, fish were imaged at 24 h post-injection. For synthetic 666 

peptide damage, AB or α-catenin:citrine44 fish were injected with 2 nl of peptide (9 ng or 667 

1.25 ng per fish) or vehicle (40% DMSO or 5% DMSO) + SytoxGreen (0.05 mM in 1% 668 

DMSO) or SytoxOrange (0.5 mM in 10% DMSO) and the fish imaged by confocal 669 
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microscopy 4 h later. Numbers of neutrophils and damaged cells observed were counted and 670 

tabulated for each fish. 671 

 672 

Zebrafish swimbladder fluorescence microscopy 673 

Live zebrafish imaging was carried out as previously described40. Briefly, fish were 674 

anesthetized in Tris-buffered Tricaine (200 μg/ml, Western Chemicals) and further 675 

immobilized in a solution of 0.4% low-melting-point agarose (LMA, Lonza) in E3 + Tricaine 676 

in a 96-well plate glass-bottom imaging dish (Greiner Bio-On). Confocal imaging was carried 677 

out using an Olympus IX-81 inverted microscope with an FV-1000 laser scanning confocal 678 

system (Olympus). Images were collected and processed using Fluoview (Olympus) and 679 

Photoshop (Adobe Systems Inc.). Panels are either a single slice for the differential 680 

interference contrast channel (DIC) with maximum projection overlays of fluorescence image 681 

channels (red-green), or maximum projection overlays of fluorescence channels. The number 682 

of slices for each maximum projection is specified in the legend of individual figures. 683 

 684 

Murine oropharyngeal candidiasis model 685 

Murine infections were performed under UK Home Office Project Licence PPL 70/7598 in 686 

dedicated animal facilities at King's College London. No statistical method was used to pre-687 

determine sample size. No method of randomization was used to allocate animals to 688 

experimental groups. Mice in the same cage were part of the same treatment. The 689 

investigators were not blinded during outcome assessment. A previously described murine 690 

model of oropharyngeal candidiasis using female Balb/c mice45 was modified for 691 

investigating early infection events. Briefly, mice were treated sub-cutaneously with 3 692 

mg/mouse (in 200 µl PBS with 0.5% Tween 80) of cortisone acetate on days -1 and 1 post-693 

infection. On day 0, mice were sedated for ~75 min with an intra-peritoneal injection of 110 694 

mg/kg ketamine and 8 mg/kg xylazine, and a swab soaked in a 107 cfu/ml C. albicans yeast 695 

culture in sterile saline was placed sub-lingually for 75 min. After 2 days, mice were 696 

sacrificed, the tongue excised and divided longitudinally in half. One half was weighed, 697 

homogenized and cultured to derive quantitative Candida counts. The other half was 698 

processed for histopathology and immunohistochemistry. 699 

 700 

Immunohistochemistry of murine tissue 701 
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C. albicans infected murine tongues were fixed in 10% (v/v) formal-saline before being 702 

embedded and processed in paraffin wax using standard protocols. For each tongue, 5 µm 703 

sections were prepared using a Leica RM2055 microtome and silane coated slides. Sections 704 

were dewaxed using xylene, before C. albicans and infiltrating inflammatory cells were 705 

visualized by staining using Periodic Acid-Schiff (PAS) stain and counterstaining with 706 

haematoxylin. Sections were then examined by light microscopy. Histological quantification 707 

of infection was undertaken by measuring the area of infected epithelium and expressed as a 708 

percentage relative to the entire epithelial area. 709 

 710 

Whole cell patch clamp 711 

TR146 epithelial cells were grown in 35 mm petri dishes (Nunc) for 48 h before recordings at 712 

low cell density (10-30% confluence). Cells were superfused with a modified Krebs solution 713 

(120 mM NaCl, 3 mM KCl, 2.5 mM CaCl2, 1.2 mM MgCl2, 22.6 mM NaHCO2, 11.1 mM 714 

glucose, 5 mM HEPES pH 7.4). Isolated cells were recorded at room temperature (21-23oC) 715 

in whole cell mode using microelectrodes (5-7 MΩ) containing 90 mM potassium acetate, 20 716 

mM KCl, 40 mM HEPES, 3 mM EGTA, 3 mM MgCl2, 1 mM CaCl2 (free Ca2+ 40 nM), pH 717 

7.4. Cells were voltage clamped at -60 mV using an Axopatch 200A amplifier (Axon 718 

Instruments) and current/voltage curves were generated by 1 s steps between -100 to + 50 719 

mV. Treatments were applied to the superfusate to produce the final required concentration, 720 

with vehicle controls similarly applied. Data was recorded using Clampex software (PClamp 721 

6, Axon Instrument) and analyzed with Clampfit 10. 722 

 723 

Calcium flux 724 

TR146 cells were grown in a 96-well plate overnight until confluent. The medium was 725 

removed and 50 µl of a Fura-2 solution (5 µl Fura-2 (Life Technologies)(2.5 mM in 50% 726 

Pluronic F-127 (Life technologies):50% DMSO), 5 µl probenecid (Sigma) in 5 ml saline 727 

solution (NaCl (140 mM), KCl (5 mM), MgCl2 (1 mM), CaCl2 (2 mM), Glucose (10 mM) 728 

and HEPES (10 mM), adjusted to pH 7.4)) was added and the plate incubated for 1 h at 729 

37°C/5% CO2. The Fura-2 solution was replaced with 50 µl saline solution and baseline 730 

fluorescence readings (excitation 340 nm/emission 520nm) taken for 10 min using a 731 

FlexStation 3 (Molecular Devices). Ece1 peptides were added at different concentrations and 732 

readings immediately taken for up to 3 h. The data was analyzed using Softmax Pro software 733 

to determine calcium present in the cell cytosol and expressed as the ratio between excitation 734 

and emission spectra. 735 
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 736 

Impedance spectroscopy of tethered bilayer lipid membranes (tBLMs) 737 

tBLMs with 10% tethering lipids and 90% spacer lipids (T10 slides) were formed using the 738 

solvent exchange technique46,47 according to the manufacturer’s instructions (SDx Tethered 739 

Membranes Pty Ltd, Sydney, Australia). Briefly, 8 µl of 3 mM lipid solutions in ethanol were 740 

added, incubated for 2 min and then 93.4 µl buffer (100 mM KCl, 5 mM HEPES, pH 7.0) 741 

was added. After rinsing 3x with 100 µl buffer the conductance and capacitance of the 742 

membranes were measured for 20 min before injection of Ece1 peptides at different 743 

concentrations. All experiments were performed at room temperature. Signals were measured 744 

using the tethaPod (SDx Tethered Membranes Pty Ltd, Sydney, Australia). 745 

 746 

FRET intercalation experiments 747 

Intercalation of Ece1 peptides into phospholipid liposomes was determined by FRET 748 

spectroscopy applied as a probe-dilution assay48. Phospholipids mixed with each 1% 749 

(mol/mol) of the donor dye NBD-phosphatidylethanolamine (NBD-PE) and of the acceptor 750 

dye rhodamine-PE, were dissolved in chloroform, dried, solubilized in 1 ml buffer (100 mM 751 

KCl, 5 mM HEPES, pH 7.0) by vortexing, sonicated with a titan tip (30 W, Branson sonifier, 752 

cell disruptor B15), and subjected to three cycles of heating to 60°C and cooling down to 753 

4°C, each for 30 min. Lipid samples were stored at 4°C for at least 12 h before use. Ece1 754 

peptide was added to liposomes and intercalation was monitored as the increase of the 755 

quotient between the donor fluorescence intensity ID at 531 nm and the acceptor intensity IA 756 

at 593 nm (FRET signal) independent of time. 757 

 758 

Circular Dichroism spectroscopy 759 

CD measurements were performed using a Jasco J-720 spectropolarimeter (Japan 760 

Spectroscopic Co., Japan), calibrated as described previously49. CD spectra represent the 761 

average of four scans obtained by collecting data at 1 nm intervals with a bandwidth of 2 nm. 762 

The measurements were performed in 100 mM KCl, 5 mM HEPES, pH 7.0 at 25°C and 40°C 763 

in a 1.0 mm quartz cuvette. The Ece1-III concentration was 15 µM. 764 

 765 

Planar lipid bilayers 766 

Planar lipid bilayers were prepared using the Montal-Mueller technique50 as described 767 

previously51. All measurements were performed in 5 mM HEPES, 100 mM KCl, pH 7.0 768 

(specific electrical conductivity 17.2 mS/cm) at 37°C. 769 
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 770 

Hyphal secretome preparation for LC-MS/MS analysis 771 

Candida strains were cultured for 18 h in hyphae inducing conditions (YNB medium 772 

containing 2% sucrose, 75 mM MOPSO buffer pH 7.2, 5 mM N-acetyl-D-glucosamine, 773 

37°C). Hyphal supernatants were collected by filtering through a 0.2 µm PES filter, and 774 

peptides were enriched by Solid Phase Extraction (SPE) using first C4 and subsequently C18 775 

columns on the C4 flowthrough. After drying in a vacuum centrifuge, samples were 776 

resolubilised in loading solution (0.2% formic acid in 71:27:2 ACN/H2O/DMSO (v/v/v)) and 777 

filtered through a 10 kDa MWCO filter. The filtrate was transferred into HPLC vials and 778 

injected into the LC-MS/MS system. LC-MS/MS analysis was carried out on an Ultimate 779 

3000 nano RSLC system coupled to a QExactive Plus mass spectrometer (ThermoFisher 780 

Scientific). Peptide separation was performed based on a direct injection setup without 781 

peptide trapping using an Accucore C4 column as stationary phase and a column oven 782 

temperature of 50°C. The binary mobile phase consisting of A) 0.2% (v/v) formic acid in 783 

95:5 H2O/DMSO (v/v) and B) 0.2% (v/v) formic acid in 85:10:5 ACN/H2O/DMSO (v/v/v) 784 

was applied for a 60 min gradient elution: 0-1.5 min at 60% B, 35-45 min at 96% B, 45.1-60 785 

min at 60% B. The Nanospray Flex Ion Source (ThermoFisher Scientific) provided with a 786 

stainless steel emitter was used to generate positively charged ions at 2.2 kV spray voltage. 787 

Precursor ions were measured in full scan mode within a mass range of m/z 300-1600 at a 788 

resolution of 70k FWHM using a maximum injection time of 120 ms and an automatic gain 789 

control target of 1e6. For data-dependent acquisition, up to 10 most abundant precursor ions 790 

per scan cycle with an assigned charge state of z = 2-6 were selected in the quadrupole for 791 

further fragmentation using an isolation width of m/z 2.0. Fragment ions were generated in 792 

the HCD cell at a normalised collision energy of 30 V using nitrogen gas. Dynamic exclusion 793 

of precursor ions was set to 20 s. Fragment ions were monitored at a resolution of 17.5k 794 

(FWHM) using a maximum injection time of 120 ms and an AGC target of 2e5. 795 

 796 

Protein database search 797 

Thermo raw files were processed by the Proteome Discoverer (PD) software v1.4.0.288 798 

(Thermo). Tandem mass spectra were searched against the Candida Genome Database 799 

(http://www.candidagenome.org/download/sequence/C_albicans_SC5314/Assembly22/curre800 

nt/C_albicans_SC5314_A22_current_orf_trans_all.fasta.gz; status: 2015/05/03) using the 801 

Sequest HT search algorithm. Mass spectra were searched for both unspecific cleavages (no 802 

enzyme) and tryptic peptides with up to 4 missed cleavages. The precursor mass tolerance 803 
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was set to 10 ppm and the fragment mass tolerance to 0.02 Da. Target Decoy PSM Validator 804 

node and a reverse decoy database was used for (qvalue) validation of the peptide spectral 805 

matches (PSMs) using a strict target false discovery (FDR) rate of < 1%. Furthermore, we 806 

used the Score versus Charge State function of the Sequest engine to filter out insignificant 807 

peptide hits (xcorr of 2.0 for z=2, 2.25 for z=3, 2.5 for z=4, 2.75 for z=5, 3.0 for z=6). At 808 

least two unique peptides per protein were required for positive protein hits. 809 

 810 

Statistics 811 

TransAM and patch clamp data were analyzed using a paired t-test whilst cytokines, LDH 812 

and calcium influx data were analyzed using one-way ANOVA with all compared groups 813 

passing an equal variance test. Murine in vivo data was analyzed using the Mann-Whitney 814 

test.  Zebrafish data was analyzed using the Kruskal-Wallis test with Dunn's multiple 815 

comparison correction. In all cases, P < 0.05 was taken to be significant. 816 
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