
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1109/JSAC.2019.2904366

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Jiang, N., Deng, Y., Nallanathan, A., & Chambers, J. A. (2019). Reinforcement Learning for Real-Time
Optimization in NB-IoT Networks. IEEE Journal on Selected Areas in Communications, 37(6), 1424-1440. Article
8664581. https://doi.org/10.1109/JSAC.2019.2904366

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1109/JSAC.2019.2904366
https://kclpure.kcl.ac.uk/portal/en/publications/414b77db-d107-4ca9-9274-bb77948aa8f1
https://doi.org/10.1109/JSAC.2019.2904366


1

Reinforcement Learning for Real-Time Optimization
in NB-IoT Networks

Nan Jiang, Student Member, IEEE, Yansha Deng, Member, IEEE, Arumugam Nallanathan, Fellow, IEEE, and
Jonathon A. Chambers, Fellow, IEEE

Abstract—NarrowBand Internet of Things (NB-IoT) is an
emerging cellular-based technology that offers a range of flexible
configurations for massive IoT radio access from groups of devices
with heterogeneous requirements. A configuration specifies the
amount of radio resource allocated to each group of devices for
random access and for data transmission. Assuming no knowledge
of the traffic statistics, there exists an important challenge in
“how to determine the configuration that maximizes the long-
term average number of served IoT devices at each Transmission
Time Interval (TTI) in an online fashion”. Given the complexity
of searching for optimal configuration, we first develop real-
time configuration selection based on the tabular Q-learning
(tabular-Q), the Linear Approximation based Q-learning (LA-
Q), and the Deep Neural Network based Q-learning (DQN) in the
single-parameter single-group scenario. Our results show that the
proposed reinforcement learning based approaches considerably
outperform the conventional heuristic approaches based on load
estimation (LE-URC) in terms of the number of served IoT
devices. This result also indicates that LA-Q and DQN can
be good alternatives for tabular-Q to achieve almost the same
performance with much less training time. We further advance
LA-Q and DQN via Actions Aggregation (AA-LA-Q and AA-
DQN) and via Cooperative Multi-Agent learning (CMA-DQN)
for the multi-parameter multi-group scenario, thereby solve
the problem that Q-learning agents do not converge in high-
dimensional configurations. In this scenario, the superiority of the
proposed Q-learning approaches over the conventional LE-URC
approach significantly improves with the increase of configuration
dimensions, and the CMA-DQN approach outperforms the other
approaches in both throughput and training efficiency.

I. INTRODUCTION

To effectively support the emerging massive Internet of
Things (mIoT) ecosystem, the 3rd Generation Partnership
Project (3GPP) partners have standardized a new radio access
technology, namely NarrowBand IoT (NB-IoT) [2]. NB-IoT is
expected to provide reliable wireless access for IoT devices
with various types of data traffic, and to meet the requirement
of extended coverage. As most mIoT applications favor delay-
tolerant uplink data traffic with small size, such as data from

Manuscript received July 22, 2018; revised December 21, 2018; accepted
February 25, 2019. This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC), U.K., under Grant EP/R006466/1 and
Grant EP/R006377/1. This paper was presented in part at the IEEE Inter-
national Conference on Acoustics, Speech, and Signal Processing 2019 [1].
(Corresponding author: Yansha Deng.)

N. Jiang, and A. Nallanathan are with the School of Electronic Engineering
and Computer Science, Queen Mary University of London, London E1 4NS,
UK (e-mail: {nan.jiang, a.nallanathan}@qmul.ac.uk).

Y. Deng is with the Department of Informatics, King’s College London,
London WC2R 2LS, UK (e-mail: yansha.deng@kcl.ac.uk) (Corresponding
author: Yansha Deng).

J. A. Chambers is with the Department of Engineering, University of
Leicester, Leicester LE1 7RH, UK (e-mail: jonathon.chambers@le.ac.uk).

alarms, and meters, monitors, the key target of NB-IoT design
is to deal with the sporadic uplink transmissions of massive
IoT devices [3].

NB-IoT is built from legacy Long-Term Evolution (LTE)
design, but only deploys in a narrow bandwidth (180 KHz) for
Coverage Enhancement (CE) [4]. Different from the legacy
LTE, NB-IoT only defines two uplink physical channel re-
source to perform all the uplink transmission, including the
Random Access CHannel (RACH) resource (i.e., using Nar-
rowband Physical Random Access CHannel, a.k.a. NPRACH)
for RACH preamble transmission, and the data resource (i.e.,
using Narrowband Physical Uplink Shared CHannel, a.k.a.
NPUSCH) for control information and data transmission. To
support various traffic with different coverage requirements,
NB-IoT supports up to three CE groups of IoT devices sharing
the uplink resource in the same band. Each group serves IoT
devices with different coverage requirements distinguishing
based on a same broadcast signal (i.e., using Narrowband
Physical Broadcast CHannel, a.k.a. NPBCH) from the evolved
Node B (eNB) [4]. At the beginning of each uplink Transmis-
sion Time Interval (TTI), eNB selects a system configuration
that specifies the radio resource allocated to each group in
order to accommodate the RACH procedure along with the
remaining resource for data transmission. The key challenge
is to optimally balance the allocations of channel resource
between the RACH procedure and data transmission so as to
provide maximum success accesses and transmissions in NB-
IoT networks. For instance, allocating too much resource for
RACH to enhance access performance can result in insufficient
resource for data transmission, while allocating too less RACH
resource may lead to long access delay and uplink data
resource over-allocation.

Unfortunately, dynamic RACH and data transmission re-
source configuration optimization is an untreated problem in
NB-IoT. Generally speaking, the eNB observes the transmis-
sion receptions of both RACH (e.g., number of successfully
received preambles and collisions) and data transmission (e.g.,
number of successful scheduling and unscheduling) for all
groups at the end of each TTI. This historical information can
be potentially used to predict traffic from all groups and to
facilitate the optimization of future TTIs’ configurations. Even
if one knew all the relevant statistics, tackling this problem in
an exact manner would result in a Partially Observable Markov
Decision Process (POMDP) with large state and action spaces,
which would be generally intractable. The complexity of the
problem is compounded by the lack of a prior knowledge at the



2

eNB regarding the stochastic traffic and unobservable channel
statistics (i.e., random collision, and effects of physical radio
including path-loss as well as fading).

In this paper, we develop Reinforcement Learning (RL)
based uplink resource configuration approaches to dynami-
cally optimize the number of served IoT devices in NB-
IoT networks. To showcase the efficiency, we compare the
proposed RL-based approaches with the conventional heuristic
uplink resource allocation approaches. The contributions can
be summarized as follows:

• We develop an RL-based framework to optimize the num-
ber of served IoT devices by adaptively configuring uplink
resource in NB-IoT networks. The uplink communication
procedure in NB-IoT is simulated by taking into account
the heterogeneous IoT traffics, the CE group selection,
the RACH procedure, and the uplink data transmission
resource scheduling. This generated simulation environ-
ment is used for training the RL-based agents before
deployment, and these agents will be updated according to
the real traffic in practical NB-IoT networks in an online
manner.

• We first study a simplified NB-IoT scenario considering
the single parameter and the single CE group, where
a basic tabular Q-learning (tabular-Q) was developed
to compare with the revised conventional Load Esti-
mation based Uplink Resource Configuration (LE-URC)
scheme. The tabular-Q is further advanced by implement-
ing function approximators with different computational
complexities, namely, Linear Approximator (LA-Q) and
Deep Neural Networks (Deep Q-Network, a.k.a. DQN) to
elaborate their capability and efficiency in dealing with
high-dimensional state space.

• We then study a more practical NB-IoT scenario with
multiple parameters and multiple CE groups, where direct
implementation of LA-Q or DQN is not feasible due to
the increasing size of the parameter combinations. To
solve it, we propose Action Aggregation approaches based
on LA-Q and DQN, namely, AA-LA-Q and AA-DQN,
which guarantee convergence capability by sacrificing
certain accuracy in the parameters selection. Finally, a
Cooperative Multi-Agent learning based on DQN (CMA-
DQN) is developed to break down the selection in high-
dimensional parameters into multiple parallel sub-tasks
by using that a number of DQN agents are cooperatively
trained to produce each parameter for each CE group.

• In the simplified scenario, our results show that the
number of served IoT devices with tabular-Q consider-
ably outperforms that with LE-URC, while LA-Q and
DQN achieve almost the same performance as that of
tabular-Q using much less training time. In the practical
scenario, the superiority of Q-learning based approaches
over LE-URC significantly improves. Especially, CMA-
DQN outperforms all other approaches in terms of both
throughput and training efficiency, which is mainly due
to the use of DQN enabling operation over a large state

space and the use of multiple agents dealing with the large
dimensionality of parameters selection.

The rest of the paper is organized as follows. Section
II presents related works. Section III provides the problem
formulation and system model. Section IV illustrates the pre-
liminary and the conventional LE-URC. Section V proposes Q-
learning based uplink resource configuration approaches in the
single-parameter single-group scenario. Section VI presents the
advanced Q-learning based approaches in the multi-parameter
multi-group scenario. Section VII elaborates the numerical
results, and finally, Section VIII summarizes the conclusion
and future work.

II. RELATED WORKS

1) Real-time optimization in cellular-based networks: In
light of the proposed POMDP challenge, prior works [5, 6]
studied real-time resource configuration of RACH procedure
and/or data transmission by proposing dynamic Access Class
Barring (ACB) schemes to optimize the number of served IoT
devices. These optimization problems have been tackled under
the simplified assumptions that at most two configurations are
allowed and that the optimization is executed for a single group
without considering errors due to wireless transmission. In
order to consider more complex and practical formulations, RL
emerges as a natural solution given its capability in interacting
with the practical environment and feedback in the form of
the number of successful and unsuccessful transmissions per
TTI. Distributed RL based on tabular-Q has been proposed
in [7–10]. In [7–9], the authors studied distributed tabular-
Q in slotted-Aloha networks, where each device learns how
to avoid collisions by finding a proper time slot to transmit
packets. In [10], the authors implemented tabular-Q agents at
the relay nodes for cooperatively selecting its transmit power
and transmission probability to optimize the total number of
useful received packets per consumed energy. Centralized RL
has also been studied in [11–13], where the RL agent was
implemented at the base station site. In [11], a learning-
based scheme was proposed for radio resource management in
multimedia wide-band code-division multiple access systems
to improve spectrum utilization. In [12, 13], the authors studied
the tabular-Q based ACB schemes in cellular networks, where
a Q-agent was implemented at an eNB aiming at select-
ing the optimal ACB factor to maximize the access success
probability of RACH procedure. Unfortunately, the tabular-
Q framework in [12, 13] cannot be used to solve the multi-
parameter multi-group optimization problem in uplink resource
configuration of NB-IoT networks, due to their inability to
address high-dimensional state space and variable selection.
More importantly, whether their proposed RL-based resource
configuration approaches [12, 13] outperform the conventional
resource configuration approaches [5, 6] is still unknown.

2) Optimization in NB-IoT networks: In NB-IoT networks,
most existing studies either focused on the resource allocation
during RACH procedure [14, 15], or that during the data
transmission [16, 17]. For RACH procedure, the access success
probability was statistically optimized in [14] using exhaustive



3

nt
Repe,1=4

… … 

nt
Repe,2=8 

f t Pr
ea

,0
 

=
48

IoT 
device

eNB

F
re

qu
en

cy

CE group 0:PRSRP>γRSRP1

CE group 1:γRSRP1≥PRSRP≥γRSRP2

CE group 2: PRSRP<γRSRP2

Time tth  TTTI

nt
Rach,0 = 4 

nt
Rach,1 = 2 

nt
Rach,2 = 1 

nt
Repe,0=1 f tPrea,1 =24

f tPrea,2 =12

nt
Rach,i : Number of RACH periods

nt
Repe,i  : Repetition value                           

f tPrea,i  : Number of preambles

… … 

RE
(a) (b)

PRSRP

Fig. 1: (a) Illustration of system model; (b) Uplink channel frame structure.

search, and the authors in [15] studied fixed-size data resource
scheduling for various resource requirements. For data trans-
mission, [16] presented an uplink data transmission time slot
and power allocation scheme to optimize the overall channel
gain, and [17] proposed a link adaptation scheme, which selects
modulation and coding level, and the repetition value according
to the acknowledgment/negative-acknowledgment feedback to
reduce the uplink data transmission block error ratio. More
importantly, these works ignore the time-varied heterogeneous
traffic of massive IoT devices, and considered a snap shot
[14, 16, 17] or steady-state behavior [15] of NB-IoT networks.
To our knowledge, the most relevant work is [18], where the
authors studied the steady-state behavior of NB-IoT networks
from the perspective of a single device. Optimizing some of
the parameters of the NB-IoT configuration, namely the repe-
tition value (to be defined below) and time intervals between
two consecutive scheduling of NPRACH and NPDCCH, was
carried out in terms of latency and power consumption in [18]
using a queueing framework.

III. PROBLEM FORMULATION AND SYSTEM MODEL

As illustrated in Fig. 1(a), we consider a single-cell NB-
IoT network composed of an eNB located at the center of
the cell, and a set of static IoT devices randomly located
in an area of the plane R2, and remain spatially static once
deployed. The devices are divided into three CE groups as
further discussed below, and the eNB is unaware of the status
of these IoT devices, hence no uplink channel resource is
scheduled to them in advance. In each IoT device, uplink data
is generated according to random inter-arrival processes over
the TTIs, which are Markovian and possibly time-varying.

A. Problem Formulation
With packets waiting for service, an IoT device executes

the contention-based RACH procedure in order to establish
a Radio Resource Control (RRC) connection with the eNB.

The contention-based RACH procedure consists of four steps,
where an IoT device transmits a randomly selected preamble,
for a given number of times according to the repetition value
ntRepe,i [2], to initial RACH procedure in step 1, and exchanges
control information with the eNB in the next three steps [19].
The RACH process can fail if: (i) a collision occurs when two
or more IoT devices selecting the same preamble; or (ii) there
is no collision, but the eNB cannot detect a preamble due to
low SNR. Note that a collision can be still detected in step 3
of RACH when the collided preambles are not detected in step
1 of RACH following 3GPP report [20]. This assumption is
different from our previous works [21, 22], which only focuses
on the preamble detection analysis in step 1 of RACH.

As shown in Fig. 1(b), for each TTI t and for each CE
group i = 0, 1, 2, in order to reduce the chance of a collision,
the eNB can increase the number ntRach,i of RACH periods in
the TTI or the number f tPrea,i of preambles available in each
RACH period [23]. Furthermore, in order to mitigate the SNR
outage, the eNB can increase the number ntRepe,i of times that
a preamble transmission is repeated by a device in group i in
one RACH period [23] of the TTI.

After the RRC connection is established, the IoT device
requests uplink channel resource from the eNB for control
information and data transmission. As shown in Fig. 1(b), given
a total number of resource RUplink for uplink transmission in
the TTI, the number of available resource for data transmission
RtDATA is written as RtDATA = RUplink − RtRACH, where RtRACH
is the overall number of Resource Elements (REs)1 allocated
for the RACH procedure. This can be computed as RtRACH =
BRACH

∑2
i=0 nRach,inRepe,ifPrea,i, where BRACH measures the

number of REs required for one preamble transmission.

1The uplink channel consists of 48 sub-carriers within 180 kHz bandwidth.
With a 3.75 kHz tone spacing, one RE is composed of one time slot of 2
ms and one sub-carrier of 3.75 kHz [2]. Note that the NB-IoT also supports
12 sub-carriers with 15 kHz tone spacing for NPUSCH, but NPRACH only
supports 3.75 kHz tone spacing [2].



4

In this work, we tackle the problem of optimizing the RACH
configuration defined by parameters At = {ntRach,i, f

t
Prea,i,

ntRepe,i}2i=0 for each ith group in an online manner for every
TTI t. In order to make this decision at the beginning of
every TTI t, the eNB accesses all prior history U t

′
in TTIs

t′ = 1, ..., t − 1 consisting of the following variables: the
number of the collided preambles V t

′

cp,i, the number of the
successfully received preambles V t

′

sp,i, and the number of idle
preambles V t

′

ip,i of the ith CE group in the tth TTI for the
RACH, as well as the number of IoT devices that have
successfully sent data V t

′

su,i and the number of IoT devices that
are waiting for being allocated data resource V t

′

un,i. We denote
Ot = {At−1, U t−1, At−2, U t−2, · · · , A1, U1} as the observed
history of all such measurements and past actions.

The eNB aims at maximizing the long-term average number
of devices that successfully transmit data with respect to the
stochastic policy π that maps the current observation history
Ot to the probabilities of selecting each possible configuration
At. This problem can be formulated as the optimization

(P1) : max
{π(At|Ot)}

∞∑
k=t

2∑
i=0

γk−tEπ[V ksu,i], (1)

where γ ∈ [0, 1) is the discount rate for the performance
in future TTIs and index i runs over the CE groups. Since
the dynamics of the system is Markovian over the TTI and
is defined by the NB-IoT protocol to be further discussed
below, this is a POMDP problem that is generally intractable.
Approximate solutions will be discussed in Sections IV, V, and
VI.

B. NB-IoT Access Network

We now provide additional details on the model and on the
NB-IoT protocol. To capture the effects of the physical radio,
we consider the standard power-law path-loss model that the
path-loss attenuation is u−η , with the propagation distance
u and the path-loss exponent η. The system is operated in
a Rayleigh flat-fading environment, where the channel power
gains h are exponentially distributed (i.i.d.) random variables
with unit mean. Fig. 2 presents the uplink data transmission
procedure from the perspective of an IoT device in NB-IoT
networks, which consists of the four stages that are explained in
the following four subsections to introduce the system model.

1) Traffic Inter-Arrival: We consider two types of IoT de-
vices with different traffic models, including periodical traffic
and bursty traffic, which is a heterogeneous traffic scenario
for diverse IoT applications [24, 25]. The periodical traffic
coming from periodic uplink reporting tasks, such as metering
or environmental monitoring, is the most common traffic model
in NB-IoT networks [26]. The bursty traffic due to emergency
events, such as fire alarms and earthquake alarms, captures the
complementary scenario in which a massive number of IoT
devices tries to establish RRC connection with the eNB [20].
Due to the nature of slotted-Aloha, an IoT device can only
transmit a preamble at the beginning of a RACH period, which
means that IoT devices executing RACH in a RACH period

comes from those who received an inter-arrival within the
interval between with the last RACH period. For the periodical
traffic, the first packet is generated using Uniform distribution
over Tperiodic (ms), and then repeated every Tperiodic ms. The
packet inter-arrival rate measured in each RACH period at each
IoT device is hence expressed by

µtperiod =
TTTI

ntRach,i
× 1

Tperiodic
, (2)

where ntRach,i is the number of RACH periods in the tth TTI,
TTTI
nt

Rach,i
is the duration between neighboring RACH periods. The

bursty traffic is generated within a short period of time Tbursty
starting from a random time τ0. The traffic instantaneous rate
in packets in a period is described by a function p(τ) so that
the packets arrival rate in the jth RACH period of the tth TTI
is given by

µt,jbursty =

∫ τj

τj−1

p(τ)dτ, (3)

where τj is the starting time of the jth RACH period in the
tth TTI, τj − τj−1 = TTTI

nt
Rach,i

, and the distribution p(τ) follows
the time limited Beta profile given as [20, Section 6.1.1]

p(τ) =
τα−1(Tbursty − τ)

β−1

Tbursty
α+β−2Beta(α, β)

, (4)

In (4), Beta(α, β) is the Beta function with the constant
parameters α and β [27].

2) CE Group Determination: Once an IoT device is back-
logged, it first determines its associated CE group by com-
paring the received power of the broadcast signal PRSRP
to the Reference Signal Received Power (RSRP) thresholds
{γRSRP1, γRSRP2} according to the rule [28]

CE group 0, if PRSRP > γRSRP1,

CE group 1, if γRSRP1 ≥ PRSRP ≥ γRSRP2,

CE group 2, if PRSRP < γRSRP2.

(5)

In (5), the received power of broadcast signal PRSRP is ex-
pressed as

PRSRP = PNPBCHu
−η, (6)

where u is the device’s distance from the eNB, and PNPBCH is
the broadcast power of eNB [28]. Note that PRSRP is obtained
by averaging the small-scale Rayleigh fading of the received
power [28].

3) RACH Procedure: After CE group determination, each
backlogged IoT device in group i repeats a randomly selected
preamble ntRepe,i times in the next RACH period by using
a pseudo-random frequency hopping schedule. The pseudo-
random hopping rule is based on the current repetition time
as well as the Narrowband Physical Cell ID, and in one
repetition, a preamble consists of four symbol groups, which
are transmitted with fixed size frequency hopping [2, 21, 29].
Therefore, a preamble is successfully detected if at least one
preamble repetition succeeds, which in turn happens if all of its
four symbol groups are correctly decoded [21]. Assuming that
correct detecting is determined by the SNR level SNRtsg,j,k for



5

γCE,i  : maximum allowed RACH attempts in the ith CE group
γpMax: maximum allowed RACH attempts in all CE groups
γRRC : maximum allowed channel resources requests
cpCE  : CE counter
cpMax: RACH counter
cRRC : RRC counter

Receive 
system 

information

New 
packets?

Yes RACH 
procedure

Request 
uplink 

channel 
resource

Initial 
cRRC=0

cRRC=cRRC+1

Serving 
succeeds

Initial 
cpMax=0
cpCE=0

Waiting 
for new 
packet

Serving fails, drop packet

cpCE=cpCE+1
cpMax=cpMax+1

Yes

Step up to 
higher CE 

group, initial 
cpCE = 0

No

No

A. Traffic Inter-Arrival B. CE Group Determination C. RACH Procedure D. Data Resource Scheduling

No

RACH 
succeeds?

cpMax<γpMax?cpCE<γCE,i?

Scheduled?
Yes

 cRRC<γRRC?

No

No

No

Yes

Yes

Fig. 2: Uplink data transmission procedure from the perspective of an IoT device in NB-IoT networks.

the jth repetition and the k symbol group, the correct detecting
event Spd can be expressed as

Spd
∆
=

nt
Repe,i⋃
j=1

( 4⋂
k=1

{
SNRtsg,j,k ≥ γth

})
, (7)

where k is the index of symbol group in the jth repetition,
ntRepe,i is the repetition value of the ith CE group in the tth TTI,{

SNRtsg,j,k ≥ γth
}

means that the preamble symbol group is
successfully decoded when its received SNR SNRtsg,j,k above
a threshold γth, and SNRtsg,j,k is expressed as

SNRtsg,j,k = PRACH,iu
−ηh/σ2. (8)

In (8), u is the Euclidean distance between the IoT device and
the eNB, η is the path-loss attenuation factor, h is the Rayleigh
fading channel power gain from the IoT device to the eNB, σ2

is the noise power, and PRACH,i is the preamble transmit power
in the ith CE group defined as

PRACH,i =

{
min {ρuη, PRACHmax}, i = 0,

PRACHmax, i = 1 or 2.
(9)

where i is the index of CE groups, IoT devices in the CE group
0 (i = 0) transmit preamble using the full path-loss inversion
power control [28], which maintains the received signal power
at the eNB from IoT devices with different distance equalling
to the same threshold ρ, and PRACHmax is the maximal transmit
power of an IoT device. The IoT devices in the CE group
1 and group 2 always transmit preamble using the maximum
transmit power [28].

As shown in the RACH procedure of Fig. 2, if a RACH
fails, the IoT device reattempts the procedure until receiving a
positive acknowledgement that RRC connection is established,
or exceeding γpCE,i RACH attempts while being part of one
CE group. If these attempts exceeds γpCE,i, the device switches
to a higher CE group if possible [30]. Moreover, the IoT
device is allowed to attempt the RACH procedure no more than
γpMax times before dropping its packets. These two features are
counted by cpCE and cpMax, respectively.

4) Data Resource Scheduling: After the RACH procedure
succeeds, the RRC connection is successfully established, and
the eNB schedules resource from the data channel resource
RtDATA to the associated IoT device for control information
and data transmission as shown in Fig 1(b). To allocate
data resource among these devices, we adopt a basic random
scheduling strategy, whereby an ordered list of all devices
that have successfully completed the RACH procedure but
have not received a data channel is compiled using a random
order. In each TTI, devices in the list are considered in order
for access to the data channel until the data resource are
insufficient to serve the next device in the list. The remaining
RRC connections between the unscheduled IoT devices and the
eNB will be preserved within at most γRRC subsequent TTIs
counting by cRRC, and attempts will be made to schedule the
device’s data during these TTIs [30, 31]. The condition that the
data resource are sufficient in TTI t is expressed as

RtDATA ≥
2∑
i=0

rtDATA,iV
t

sch,i, (10)

where
∑2
i=0 V

t
sch,i ≤

∑2
i=0(V tsp,i + V t−1

un,i ) is the number of
scheduled devices limited by the upper bound denoted by IoT
devices with successful RACH V tsp,i in the current TTI t as
well as unscheduled IoT devices V t−1

un,i in the last TTI (t− 1),
rtDATA,i = BDATA × ntRepe,i is the number of required REs for
serving one IoT device within the ith CE group, and BDATA is
the number of REs per repetition for control signal and data
transmission2. Note that ntRepe,i is the repetition value for the
ith CE group in the tth TTI, which is the same as for preamble
transmission [2].

2The basic scheduling unit of NPUSCH is resource unit (RU), which has two
formats. NPUSCH format 1 (NPUSCH-1) is with 16 REs for data transmission,
and NPUSCH format 2 (NPUSCH-2) is with 4 REs for carrying control
information [4, 23].



6

IV. PRELIMINARY AND CONVENTIONAL SOLUTIONS

A. Preliminary

The optimized number of served IoT devices over the long
term given in Eq. (1) is really complicated, which cannot be
easily solved via the conventional uplink resource approach.
Therefore, most prior works simplified the objective to dynam-
ically optimize the single parameter to achieve the maximum
number of served IoT devices in the single group without
consideration of future performance [5, 6], which is expressed
as

(P2) : max
π(x
∣∣Ot)

Eπ[V tsu,0], (11)

where x is the optimized single parameter.
To maximize number of served IoT devices in the tth TTI,

the configuration x is expected to be dynamically adjusted
according to the actual number of IoT devices that will execute
RACH attempts Dt

RACH, which refers to the current load of the
network. Note that in practice, this load information is unable
to be detected at the eNB. Thus, it is necessary to estimate the
load based on the previous transmission reception from the 1th
to (t − 1)th TTI Ot before the uplink resource configuration
in the tth TTI.

In [6], the authors designed a dynamic ACB scheme to
optimize the problem given in Eq. (1) via adjusting the ACB
factor. The ACB factor is adapted based on the knowledge
of traffic load, which is estimated via moment matching. The
estimated number of RACH attempting IoT devices in the tth
TTI D̂t

RACH is expressed as:

D̂t
RACH = max

{
0, D̂t−1

RACH + max
{
− f t−1

Prea,0, D̂
t
RACH − D̂t−1

RACH

}}
(12)

where f t−1
Prea,0 is the number of allocated preambles in the

(t− 1)th TTI, and D̂t−1
RACH is the estimated number of devices

performing RACH attempts in the (t− 1)th TTI given as

D̂t−1
RACH = f t−1

Prea,0/
[
min
{

1, pt−1
ACB

(
1 +

(V t−1
cp,0 − uM,p∗)e

2f t−1
Prea,0

)
)−1
}]
.

(13)

In Eq. (13), pt−1
ACB, f t−1

Prea,0, and V t−1
cp,0 are the ACB factor, the

number of preambles and the observed number of collided
preambles in the (t − 1)th TTI, and uM,p∗ is an estimated
factor given in [6, Eq. (32)].

In Eq. (12), D̂t
RACH − D̂t−1

RACH ≈ D̂t−1
RACH − D̂t−2

RACH is the
difference between the estimated numbers of RACH requesting
IoT devices in the (t−1)th and the tth TTIs, which is obtained
by assuming that the number of successful RACH IoT devices
does not change significantly in these two TTIs [6].

This dynamic control approach is designed for an ACB
scheme, which is only triggered when the exact traffic load is
bigger than the number of preambles (i.e., Dt

RACH > f tPrea,0).
Accordingly, the related backlog estimation approach is only
used when Dt

RACH > f tPrea,0. However, it cannot estimate the
load when Dt

RACH < f tPrea,0, which is required in our problem.

B. Resource Configuration in Single Parameter Single CE
Group Scenario

In this subsection, we modify the load estimation approach
given in [6] via estimating based on the last number of the
collided preambles V t−1

cp,0 and the previous numbers of idle
preambles V t−1

ip,0 , V
t−2

ip,0 , · · · . And then, we propose an uplink
resource configuration approach based on this revised load
estimation, namely, LE-URC.

1) Load Estimation: By definition, FPrea is the set of valid
number of preambles that the eNB can choose, where each
IoT device selects a RACH preamble from f tPrea,0 available
preambles with an equal probability given by 1/f tPrea,0. For
a given preamble j transmitted to the eNB, let dj denotes
the number of IoT devices that selects the preamble j. The
probability that no IoT device selects preamble j is

P{dj = 0
∣∣Dt−1

RACH,0 = n} =
(
1− 1

f t−1
Prea,0

)n
. (14)

The expected number of preambles experiencing idles
E{Vt−1

idle,0

∣∣Dt−1
RACH,0 = n} in the (t− 1)th TTI is given by

E{Vt−1
ip,0

∣∣Dt−1
RACH,0 = n} =

( ft−1
Prea,0∑
j=1

P{dj = 0
∣∣Dt−1

RACH = n}
)

= f t−1
Prea,0

(
1− 1

f t−1
Prea,0

)n
. (15)

Due to that the actual number of preambles experiencing idles
V t−1

ip,0 can be observed at the eNB, the number of RACH
attempting IoT devices in the (t − 1)th TTI ζt−1 can be
estimated as

ζt−1 = f−1(E{V t−1
ip,0

∣∣Dt−1
RACH,0) = log

(
f
t−1
Prea,0−1

f
t−1
Prea,0

)
(
V t−1

ip,0

f t−1
Prea,0

),

(16)

To obtain the estimated number of RACH attempting IoT
devices in the tth TTI D̃t

RACH,0, we also need to know the
difference between the estimated numbers of RACH attempting
IoT devices in the (t − 1)th and the tth TTIs, denoted by
δt, where δt = D̃t

RACH,0 − D̃t−1
RACH,0 for t = 1, 2, · · · , and

D̃0
RACH,0 = 0. However, D̃t

RACH,0 cannot be obtained before the
tth TTI. To solve this, we can assume δt ≈ δt−1 according to
[6]. This is due to that the time between two consecutive TTIs
is small, and the available preambles are gradually updated
leading to that the number of successful RACH IoT devices
does not change significantly in these two TTIs [6]. Therefore,
the number of RACH attempting IoT devices in the tth time
slot is estimated as

D̃t
RACH,0 = max

{
2V t−1

cp,0 , ζ
t−1 + δt−1

}
, (17)

where 2V t−1
cp,0 represents that there are at least 2V t−1

cp,0 number
of IoT devices colliding in the last TTI.



7

2) Uplink Resource Configuration Based on Load Estima-
tion: In the following, we propose LE-URC by taking into
account the resource condition given in Eq. (10). The number
of RACH periods nRach,0 and the repetition value nRepe,0 is
fixed, and only the number of preambles in each RACH
period fPrea,0 is dynamically configured in each TTI. Using the
estimated number of RACH attempting IoT devices in the tth
TTI D̃t

RACH,0, the probability that only one IoT device selects
preamble j (i.e., no collision occurs) is expressed as

P{dj = 1
∣∣D̃t

RACH,0 = n} =
( n

1

) 1

f tPrea,0

(
1− 1

f tPrea,0

)n−1
.

(18)

The expected number of RACH attempting IoT devices in the
tth TTI is derived as

E{VtRACH,0

∣∣D̃t
RACH,0 = n} =

ft
Prea,0∑
j=1

P{dj = 1
∣∣D̃t

RACH,0 = n}

= n
(
1− 1

f tPrea,0

)n−1
, (19)

Based on (19), the expected number of IoT devices requesting
uplink resource in the tth TTI is derived as

E{Vtreqs

∣∣D̃t
RACH,0 = n} = E{VtRACH,0

∣∣D̃t
RACH,0 = n}+ V tun,0

= n
(
1− 1

f tPrea,0

)n−1
+ V t−1

un,0 , (20)

where V t−1
un,0 is the number of unscheduled IoT devices in the

last TTI. Note that V t−1
un,0 can be observed.

However, if the data resource is not sufficient (i.e., occurs
when Eq. (10) is invalid), some IoT devices may not be
scheduled in the tth TTI. The upper bound of the number of
scheduled IoT devices Vtup,0 is expressed as

Vtup,0 =
RtDATA

rtDATA,i
=
RUplink −RtRACH

rtDATA,i
. (21)

where Ruplink is the total number of REs reserved for uplink
transmission in a TTI, RtRACH is the uplink resource configured
for RACH in the tth TTI. rtDATA,0 is required REs for serving
one IoT device given in Eq. (10).

According to (20) and (21), the expected number of the
successfully served IoT devices is given by

Vtsuss(f tPrea,0) = min {E{Vtreqs

∣∣D̃t
RACH,0 = n},Vtup,0}. (22)

The maximal expected number of the successfully served IoT
devices is obtained by selects the number of preamble f t∗Prea,0
using

f t∗Prea,0 = argmax
f∈N Prea

Vtsuss(f). (23)

The LE-URC approach based on the estimated load D̃t
RACH,0

is detailed in Algorithm 1. For comparison, we consider an
ideal scenario that the actual number of RACH requesting
IoT devices Dt

RACH is available at the eNB, namely, Full
State Information based URC (FSI-URC). FSI-URC configures
f t∗Prea,0 still using the approach given in Eq. (23), while the load
estimation approach given in Section III.B.1) is not required.

Algorithm 1: Load Estimation Based Uplink Resource
Configuration (LE-URC)

input : The set of the number of preambles in each RACH period
FPrea,0, Operation Iteration I .

1 for Iteration ← 1 to I do
2 Initialization of V 0

ip,0 := 12, V 0
cp,0 := 0, D̃0

RACH,0 := 0, δ1 := 0,
and bursty traffic arrival rate µ0bursty = 0;

3 for t← 1 to T do
4 Generate µtbursty using Eq. (3);
5 The eNB observes V t−1

ip,0 and V t−1
cp,0 , and calculate ζt−1 using

Eq. (16);
6 Estimate the number of RACH requesting IoT devices

D̃tRACH,0 using Eq. (17);
7 Select the number of preambles f t∗Prea,0 using Eq. (23) based

on the estimated load D̃tRACH,0;
8 The eNB broadcasts f t∗Prea,0 , and backlogged IoT devices

attempt communication in the tth TTI;
9 Update δt+1 := D̃tRACH,0 − D̃

t−1
RACH,0.

10 end
11 end

3) LE-URC for Multiple CE Groups: We slightly revise the
introduced single-parameter single-group LE-URC approach
(given in Section III.B) to dynamically configure resource
for multiple CE groups. Note that the repetition value nRepe,i
in the LE-URC approach is still defined as a constant to
enable the availability of load estimation in Eq. (17). Remind
that the principle of LE-URC approach is to optimize the
expectation of the number of successful served IoT devices
while balancing RtRACH and RtDATA with limited uplink resource
Ruplink = RtDATA +RtRACH. In the multiple CE groups scenarios,
the resource RtDATA are allocated to IoT devices in any CE
groups without bias, but RtRACH is specifically allocated to each
CE group.

Under this condition, the expected number of successfully
served IoT devices Vtsuss,i given in Eq. (22) needs to be
modified by taking into account multiple variables, which
extremely complicates the optimization problem. To solve it,
we use a sub-optimal solution by artificially setting uplink
resource constraint RUplink,i for each CE group (RUplink =∑2
i=0RUplink,i). Each CE group can independently allocate

the resource between RtDATA,i and RtRACH,i according to the
approach given in Eq. (23).

V. Q-LEARNING BASED RESOURCE CONFIGURATION IN
SINGLE-PARAMETER SINGLE-GROUP SCENARIO

The RL approaches are well-known in addressing dynamic
control problem in complex POMDPs [32]. Nevertheless, they
have been rarely studied in handling the resource configura-
tion in slotted-Aloha based wireless communication systems.
Therefore, it is worthwhile to evaluate the capability of RL in
the single-parameter single-group scenario first, in order to be
fairly compared with conventional heuristic approaches. In this
section, we consider one single CE group with the fixed RACH
periods nRach,0 as well as the fixed repetition value nRepe,0,
and only dynamically configuring the number of preambles



8

Q-Value 
Function

Random Action

Action
max Q(St, a)

pε≥ε

pε<ε

 Executing communication 
procedures as Fig. 2

Observations at the eNB: Ut = 
[Vt

su,0, Vt
un,0, Vt

cp,0 , Vt
sp,0 , Vt

ip,0]

Environment

Rt+1=Vt
su/csu

State: St+1

Reward: Rt+1

Q-Agent

Q-Value 
Function Sync

Actor

Learner

Update using Q(St, At)
=Q(St, At)+λ(Rt+1+
γmax Q(St+1, a)

-Q(St, At))
a∈A

At          f tPrea,0

a∈A

Fig. 3: The Tabular-Q agent and environment interaction in the POMDP.

fPrea,0 at the beginning of each TTI. In the following, We first
study tabular-Q based on the tabular representation of the value
function, which is the simplest Q-learning form with guaran-
teed convergence [32], but requires extremely long training
time. We then study Q-learning with function approximators to
improve training efficiency, where LA-Q and DQN will be used
to construct an approximation of the desired value function.

A. Q-Learning and Tabular Value Function
Considering a Q-agent deployed at the eNB to optimize the

number of successfully served IoT devices in real-time, the
Q-agent need to explore the environment in order to choose
appropriate actions progressively leading to the optimization
goal. We define s ∈ S, a ∈ A, and r ∈ R as any state, action,
and reward from their corresponding sets, respectively. At the
beginning of the tth TTI (t ∈ {0, 1, 2, · · · }), the Q-agent first
observes the current state St corresponding to a set of previous
observations (Ot={U t−1, U t−2, · · · , U1}) in order to select an
specific action At ∈ A(St). The action At corresponds to the
number of preambles in each RACH period f tPrea,0 in single
CE group scenario.

As shown in Fig. 3, we consider a basic state function
in the single CE group scenario, where St is a set of in-
dices mapping to the current observed information U t−1 =
[V t−1

su,0 , V
t−1
un,0, V

t−1
cp,0 , V

t−1
sp,0 , V

t−1
ip,0 ]. With the knowledge of the

state St, the Q-agent chooses an action At from the set
A, which is a set of indexes mapped to the set of the
number of available preambles FPrea. Once an action At is
performed, the Q-agent will receive a scalar reward Rt+1, and
observe a new state St+1. The reward Rt+1 indicates to what
extent the executed action At can achieve the optimization
goal, which is determined by the new observed state St+1.
As the optimization goal is to maximize the number of the
successfully served IoT devices, we define the reward Rt+1 as
a function that positively proportional to the observed number
of successfully served IoT devices V tsu ∈ Ot, which is defined
as

Rt+1 = V tsu/csu, (24)

where csu is constant used to normalize the reward function.
Q-learning is a value-based RL approach [32, 33], where the

policy of states to actions mapping π(s) = a is learned using
a state-action value function Q(s, a) to determine an action

for the state s. We first use a lookup table to represent the
state-action value function Q(s, a) (tabular-Q), which consists
of value scalars for all the state and action spaces. To obtain an
action At, we select the highest value scalar from the numerical
value vector Q(St, a), which maps all possible actions under
St to the Q-value table Q(s, a).

Accordingly, our objective is to find an optimal Q-value
table Q∗(s, a) with optimal policy π∗ that can select actions to
dynamically optimize the number of served IoT devices. To do
so, we train a initial Q-value table Q(s, a) in the environment
using Q-Learning algorithm, where Q(s, a) is immediately
updated using the current observed reward Rt+1 after each
action as

Q(St, At) = Q(St, At) + λ
[
Rt+1 + γmax

a∈A
Q(St+1, a)

−Q(St, At)
]
, (25)

where λ is a constant step-size learning rate that affects how
fast the algorithm adapt to a new environment, γ ∈ [0, 1) is
the discount rate that determines how current rewards affects
the value function updating, max

a∈A
Q(St+1, a) approximates the

value in optimal Q-value table Q∗(s, a) via the up-to-date Q-
value table Q(s, a) and the obtained new state St+1. Note that
Q(St, At) in Eq. (25) is a scalar, which means that we can
only update one value scalar in the Q-value table Q(s, a) with
one received reward Rt+1.

As shown in Fig. 3, we consider ε-greedy approach to
balance exploitation and exploration in the Actor of the Q-
Agent, where ε is a positive real number and ε ≤ 1. In each TTI
t, the Q-agent randomly generates a probability ptε to compare
with ε. Then, with the probability ε, the algorithm randomly
chooses an action from the remaining feasible actions to
improve the estimate of the non-greedy action’s value. With the
probability 1− ε, the algorithm exploits the current knowledge
of the Q-value table to choose the action that maximizes the
expected reward.

Particularly, the learning rate λ is suggested to be set to
a small number (e.g., λ = 0.01) to guarantee the stable
convergence of Q-value table in this NB-IoT communication
system. This is due to that a single reward in a specific TTI
can be severely biased, because state function is composed of
multiple unobserved information with unpredictable distribu-
tions (e.g., an action allows for the setting with large number



9

of preambles f tprea, but massive random collisions accidentally
occur, which leads to an unusual low reward). In the following,
the implementation of uplink resource configuration using
tabular-Q based real-time optimization is shown in Algorithm
2.

Algorithm 2: Tabular-Q Based Uplink Resource Configu-
ration

input : Valid numbers of preambles FPrea, Operation Iteration I .

1 Algorithm hyperparameters: learning rate λ ∈ (0, 1], discount rate
γ ∈ [0, 1), ε-greedy rate ε ∈ (0, 1] ;

2 Initialization of the Q-value table Q(s, a) with 0 value scalars;
3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action A0 and bursty

traffic arrival rate µ0bursty = 0;
5 for t← 1 to T do
6 Update µtbursty using Eq. (3);
7 if ptε < ε then select a random action At from A;
8 else select At = argmax

a∈A
Q(St, a) ;

9 The eNB broadcasts f tPrea = FPrea(A
t) and backlogged IoT

devices attempt communication in the tth TTI;
10 The eNB observes St+1, calculate the related Rt+1 using Eq.

(24), and update Q(St, At) using Eq. (25).
11 end
12 end

B. Value Function Approximation

Since tabular-Q needs its each element to be updated to con-
verge, searching for an optimal policy can be difficult in limited
time and computational resource. To solve this problem, we
use a value function approximator instead of Q-value table to
find a sub-optimal approximated policy. Generally, selecting
a efficient approximation approach to represent the value
function for different learning scenarios is a usual problem
within the RL [32, 34–36]. A variety of function approximation
approaches can be conducted, such as LA, DNNs, tree search,
and which approach to be selected can critically influence the
successful learning [32, 35, 36]. The function approximation
should fit the complexity of the desired value function, and be
efficient to obtain good solutions. Unfortunately, most function
approximation approaches require specific design for different
learning problems, and there is no basis function, which is both
reliable and efficient to satisfy all learning problems.

In this subsection, we first focus on the linear function ap-
proximation for Q-learning, due to its simplicity, efficiency, and
guaranteed convergence [32, 37, 38]. We then conduct the DNN
for Q-learning as a more effective but complicated function
approximator, which is also known as DQN [33]. The reasons
we conduct DQN are that: 1) the DNN function approximation
is able to deal with several kinds of partially observable
problems [32, 33]; 2) DQN has the potential to accurately
approximate the desired value function while addressing a
problem with very large state spaces [33], which can be favored
for the learning in the multiple CE group scenarios; 3) DQN
is with high scalability, where the scale of its value function
can be easily fit to a more complicated problem; 4) a variety
of libraries have been established to facilitate building DNN

architectures and accelerate experiments, such as TensorFlow,
Pytorch, Theano, Keras, and etc..

1) Linear Approximation: LA-Q uses a linear weight matrix
w to approximate the value function Q(s, a) with feature
vector ~x = x(s) corresponding to the state St. The dimensions
of weight matrix w is |A|× |~x|, where |A| is the total number
of all available actions and |~x| is the size of feature vector ~x.
Here, we consider polynomial regression (as [32, Eq. 9.17])
to construct the real-valued feature vector x(s) due to its
efficiency3. In the training process, the exploration is the same
as the tabular Q-learning by generating random actions, but
the exploitation is calculated using the weight matrix w of
the value function. In detail, to predict an action using the
LA value function Q(St, a,w) with state St in the tth TTI,
the approximated value function scalars for each action a is
obtained by inner-producting between the weight matrix w and
the features vector x(s) as:

Q(St, a,w) = w · x(St)T

=
[ |~x|−1∑
j=0

w(0,j)xj(S
t),

|~x|−1∑
j=0

w(1,j)xj(S
t),

· · · ,
|~x|−1∑
j=0

w(|A|−1,j)xj(S
t)
]T
. (26)

By searching for the maximal value function scalar in
Q(St, a,w) given in Eq. (26), we can obtain the matched
action At to maximize future rewards.

To obtain the optimal policy, we update the weigh matrix w
in the value function Q(s, a;w) using Stochastic Gradient De-
scent (SGD) [32, 40]. SGD minimizes the error on predictions
of observation after each example, where the error is reduced
by a small amount following the direction to the optimal
target policy Q∗(s, a). As it is infeasible to obtain optimal
target policy by summing over all states, we instead estimate
the desired action-value function by simply considering one
learning sample Q∗(s, a) ≈ Q∗(St, a,wt) [32]. In each TTI,
the weigh matrix w is updated following

wt+1 = wt − λ∇L(wt), (27)

where λ is the learning rate. ∇L(wt) is the gradient of the loss
function L(wt) used to train the Q-function approximator. This
is given as

∇L(wt) =
(
Rt+1 + γmax

a
Q(St+1, a;wt)

−Q(St, a,wt) · x(At, St)T
)
· ∇wQ(St, At,wt)

(28)

where wt is the weight matrix, x(At, St) is the features matrix
with the same shape of wt. x(At, St) is constructed by zeros
and the feature vector located in the row corresponding to

3The polynomial case is the most well understood feature constructor and
always performs well in practice with appropriate setting [32, 34]. Furthermore,
the results in [39] shows that there is a rough correspondence between a fitted
neural network and a fitted ordinary parametric polynomial regression model.
These reasons encourage us to compare the polynomial based LA-Q with
DQN.



10

Primary Q-network θ
Random Action

max Q(St, a, θ)

pε≥ε

pε<ε
 Executing communication 

procedures as Fig. 2

Observations at the eNB: Ut = 
[Vt

su,0, Vt
sc,0, Vt

cp,0 , Vt
sp,0 , Vt

ip,0 ]

Environment

Rt+1=Vt
su/csu

Rt+1

DQN Agent

Memory 
Mr

  St, At

 ( St, At, Rt+1, St+1)

 Sample 
minibatch

Loss Function    LDDQN(θ)

Target Q-network θ

 Sj, Aj

Rj+1

Sj+1

Primary Q-network θ

max Q(Sj+1, a, θ)

Q(Sj, Aj, θ) SGD using Eq. (24)

Sync

 St+1

Actor
Leaner

 St+1

Stack

Action At          f tPrea,0
a∈A a∈A

Fig. 4: The DQN agent and environment interaction in the POMDP.

the index of the action selected in the tth TTI At. Note that
Q(St+1, a;wt) is a scalar. The learning procedure follows
Algorithm 2 by changing the Q-table Q(s, a) to the LA value
function Q(s, a;w) with linear weigh matrix w, and updating
Q(s, a;w) with SGD given in (28) in step 10 of Algorithm
2.

2) Deep Q-Network: The DQN agent parameterizes the
action-state value function Q(s, a) by using a function
Q(s, a;θ), where θ represents the weights matrix of a DNN
with multiple layers. We consider the conventional DNN,
where neurons between two adjacent layers are fully pairwise
connected, namely fully-connected layers. The input of the
DNN is given by the variables in state St; the intermediate
hidden layers are Rectifier Linear Units (ReLUs) by using the
function f(x) = max (0, x); while the output layer is com-
posed of linear units4, which are in one-to-one correspondence
with all available actions in A.

The exploitation is obtained by performing forward propaga-
tion of Q-function Q(s, a;θ) with respect to the observed state
St. The weights matrix θ is updated online along each training
episode by using double deep Q-learning (DDQN) [41], which
to some extent reduce the substantial overestimations5 of value
function. Accordingly, learning takes place over multiple train-
ing episodes, with each episode of duration NTTI TTI periods.
In each TTI, the parameter θ of the Q-function approximator
Q(s, a;θ) is updated using RMSProp optimizer [42] as

θt+1 = θt − λRMS∇LDDQN(θt), (29)

where λRMS is RMSProp learning rate [42], ∇L(θ) is the
gradient of the loss function L(θt) used to train the Q-function
approximator. This is given as

∇LDDQN(θt) =ESi,Ai,Ri+1,Si+1

[(
Ri+1 + γmax

a
Q(Si+1, a; θ̄t)

−Q(Si, Ai;θt)
)
∇θQ(Si, Ai;θt)

]
, (30)

where the expectation is taken with respect to a so-called
minibatch, which are randomly selected previous samples

4Linear activation is used here according to [33]. Note that Q-learning is
value-based, thus the desired value function given in Eq. (15) can be bigger
than 1, rather than a probability, and thus the activation function with return
value limited in [−1, 1] (such as sigmoid function and tanh function) can lead
to convergence difficulty.

5Overestimation refers to that some suboptimal actions regularly were given
higher Q-values than optimal actions, which can negatively influence the
convergence capability and training efficiency of the algorithm [35, 41].

Algorithm 3: DQN Based Uplink Resource Configuration
input : The set of numbers of preambles in each RACH period FPrea,

and operation iteration I .

1 Algorithm hyperparameters: learning rate λRMS ∈ (0, 1], discount rate
γ ∈ [0, 1), ε-greedy rate ε ∈ (0, 1], target network update frequency
K;

2 Initialization of replay memory M to capacity C, the primary
Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action A0 and bursty

traffic arrival rate µ0bursty = 0;
5 for t← 1 to T do
6 Update µtbursty using Eq. (3);
7 if pε < ε then select a random action At from A;
8 else select At = argmax

a∈A
Q(St, a,θ);

9 The eNB broadcasts FPrea(A
t) and backlogged IoT devices

attempt communication in the tth TTI;
10 The eNB observes St+1, and calculate the related Rt+1 using

Eq. (24);
11 Store transition (St, At, Rt+1, St+1) in replay memory M ;
12 Sample random minibatch of transitions

(Sj , Aj , Rj+1, Sj+1) from replay memory M ;
13 Perform a gradient descent for Q(s, a;θ) using Eq. (30);
14 Every K steps update target Q-network θ̄ = θ.
15 end
16 end

(Si, Ai, Si+1, Ri+1) for some i ∈ {t −Mr, ..., t}, with Mr

being the replay memory [33]. When t−Mr is negative, this
is interpreted as including samples from the previous episode.
The use of minibatch, instead of a single sample, to update the
value function Q(s, a;θ) improves the convergent reliability
of value function [33]. Furthermore, following DDQN [41], in
(30), θ̄t is a so-called target Q-network that is used to estimate
the future value of the Q-function in the update rule. This
parameter is periodically copied from the current value θt and
kept fixed for a number of episodes [41].

VI. Q-LEARNING BASED RESOURCE CONFIGURATION IN
MULTI-PARAMETER MULTI-GROUP SCENARIO

Practically, NB-IoT is always deployed with multiple CE
groups to serve IoT devices with various coverage require-
ments. In this section, we study the problem (1) of optimizing
the resource configuration for three CE groups each with
parameters At = {ntRach,i, f

t
Prea,i, n

t
Repe,i}2i=0. This joint opti-

mization by configuring each parameter in each CE group can



11

improve the overall data access and transmission performance.
Note that each CE group shares the uplink resource in the same
bandwidth, and the eNB schedules data resource to all RRC
connected IoT devices without the CE group bias as introduced
in Sec. III.B.4. To optimize the number of served IoT devices in
real-time, the eNB should not only balance the uplink resource
between RACH and data, but also balance them among each
CE group.

The Q-learning algorithms with the single CE group pro-
vided in Sec. V are model-free, and thus their learning structure
can be directly used in this multi-parameter multi-group sce-
nario. However, considering multiple CE groups results in the
increment of observations space, which exponentially increases
the size of state space. To train Q-agent with this expansion,
the requirements of time and computational resource greatly
increase. In such case, the tabular-Q would be extremely
inefficient, as not only the state-action value table requires a
big memory, but it is impossible to repeatedly experience every
state to achieve convergence with limited time. In view of this,
we only study Q-learning with value function approximation
(LA-Q and DQN) to design uplink resource configuration
approaches for the multi-parameter multi-group scenario.

LA-Q and DQN are with high capability to handle mas-
sive state spaces, and thus we can considerably improve
the state spaces with more observed information to sup-
port the optimization of Q-agent. Here, we define the cur-
rent state St includes information about the last Mo TTIs
(U t−1, U t−2, U t−3, · · · , U t−Mo ). This design improves Q-
agent by enabling it to estimate the trend of traffic. As our
goal is to optimize the number of served IoT devices, the
reward function should be defined according to the number
of successfully served IoT devices Vsu,i of each CE group,
which is expressed as

Rt+1 =
( 2∑
i=0

V tsu,i
)
/csu. (31)

Same as the state spaces, the available action spaces
also exponentially increases with the increment of the ad-
justable configurations. The number of available actions cor-
responds to the possible combinations of configurations |A| =
2∏
i=0

(|N Rach,i| × |N Repe,i| × |FPrea,i|) (i.e., |·| denotes the num-

ber of elements in any vector ·, A is the set of actions,N Rach,i,
N Repe,i, and FPrea,i are the sets of the number of RACH
periods, the repetition value, and the number of preambles
in each RACH period). Unfortunately, it is extremely hard to
optimize the system under such numerous action spaces (i.e.,
|A| can be over fifty thousands.), due to that the system will
fall into updating policy with only a small part of the action
in A, and finally leads to convergence difficulty. To solve this
problem, we then provide two approaches that can reduce the
dimension of action space to enable the LA and DQN in the
multi-parameter multi-group scenario.

A. Actions Aggregated Approach

We first provide AA based Q-learning approaches, which
guarantee convergent capability by sacrificing the accuracy
of action selection6. In detail, the specific action selection
can be converted to the increasing or decreasing trend se-
lection. Instead of selecting the exact values from the sets
of N Rach,i, N Repe,i, and FPrea,i, we convert it to single step
ascent/descent based on the last action, which is represented
by AtRach,i ∈ {0, 1}, AtRepe,i ∈ {0, 1}, and AtPrea,i ∈ {0, 1}
for the number of RACH periods ntRach,i, the repetition values
ntRepe,i, and the number of preambles in each RACH period
f tPrea,i in the tth TTI. Consequently, the size of total action
spaces for the three CE groups is reduced to |A|=29=512.
By doing so, the algorithms for training with LA function
approximator and DQN in the multiple configurations multiple
CE groups scenario can be deployed following Algorithm 2
and Algorithm 3, respectively.

B. Cooperative Multi-agent Learning Approach

Despite that the uplink resource configuration is managed by
a central authority, identifying the control of each parameter
as one sub-task that is cooperatively handled by independent
Q-agents is sufficient to deal with the problem with unsolvable
action spaces [43]. As shown in Fig. 5, we consider multiple
DQN agents are centralized at the eNB with the same structure
of value function approximator7 following Section IV.B.2).
We break down the action space by considering nine separate
action variables in At, where each DQN agent controls their
own action variable as shown in Fig. 5. Recall that we have
three variables for each group i, namely nRach,i, nRepe,i, and
fPrea,i.

We introduce a separate DQN agent for each output variable
in At defined as action Atk selected by the kth agent, where
each kth agent is responsible to update the value Q(St, Atk;θk)
of action Atk in shared state St. The DQN agents are trained
in parallel and receive the same reward signal given in Eq.
(31) at the end of each TTI as per problem (1). The use of
this common reward signal ensures that all DQN agents aim
at cooperatively increase the objective in (1). Note that the
approach can be interpreted as applying a factorization of the
overall value function akin to the approach proposed in [44]
for multi-agent systems.

The challenge of this approach is how to evaluate each action
according to the common reward function. For each DQN
agent, the received reward is corrupted by massive noise, where
its own effect on the reward is deeply hidden in the effects
of all other DQN agents. For instance, a positive action can
receive a mismatched low reward due to other DQN agents’
negative actions. Fortunately, in our scenario, all DQN agents

6The action aggregation has been rarely evaluated, but the same idea,
namely, state aggregation has been well studied, which is a basic function
approximation approach [32].

7The structures of value function approximator can also be specifically
designed for RL agents with sub-tasks of significantly different complexity.
However, there is no such requirement in our problem, so it will not be
considered.



12

 Executing communication procedures as Fig. 2

Environment

 St+1

Rt+1  St Ut =
[Vt

su,0, Vt
un,0, Vt

cp,0, Vt
sp,0, Vt

ip,0] 
[Vt

su,1, Vt
un,1, Vt

cp,1, Vt
sp,1, Vt

ip,1] 
[Vt

su,2, Vt
un,2, Vt

cp,2, Vt
sp,2, Vt

ip,2] 

[ At, Ut, At-1, Ut-1, At-2, Ut-2, …,  At-Mo-1, Ut-Mo-1] 

Stack

DNN-Q Agent 1

DNN-Q Agent 2

DNN-Q Agent 3

DNN-Q Agent 9

…
 ...

At
1

At
2

At
3

At
9

Memory Mr,1

Memory Mr,2

Memory Mr,3

Memory Mr,9

…
 ...

 Sample 
minibatch SGD 

  At
 (St, At

3, 
Rt+1, St+1)

 (St, At
2, 

Rt+1, St+1)

 (St, At
1, 

Rt+1, St+1)

 (St, At
9, 

Rt+1, St+1)
 At

  At = [At
0, At

1,…, At
k,…, At

9] 

[nt
Rach,0, nt

Repe,0,…, f tPrea,2]  

 St+1

Rt+1=(∑Vt
su,i)/csui=0

2

Fig. 5: The CMA-DQN agents and environment interaction in the POMDP.

are centralized at the eNB, which means that all DQN agents
can have full information among each other. Accordingly, we
adopt the action selection histories of each DQN agent as part
of state function8, thus they are able to know how reward is
influenced by different combinations of actions. To do so, we
define state variable St as
St = [At−1, U t−1, At−2, U t−2, · · · , At−Mo , U t−Mo ], (32)

where Mo is the number of stored observations, At−1 is the
set of selected action of each DQN agent in the (t − 1)th
TTI corresponding to nRach,i, nRepe,i, and fPrea,i for the ith CE
group, and U t−1 is the set of observed transmission receptions.

In each TTI, the parameters θk of the Q-function approxi-
mator Q(St, Atk; θk) are updated using RMSProp optimizer at
all agents k as Eq. (29). The learning algorithm can be im-
plemented following Algorithm 3. Different from the single-
parameter single-group scenario, we need to first initialize nine
primary networks θk, target networks θ̄k, and replay memories
Mk for each DQN agent. In step 11 of Algorithm 3, the current
transactions of each DQN agent should be stored in their own
memory separately. In step 12 and 13 of Algorithm 3, the
minibatch of transaction should separately sampled from each
memory to train the corresponding DQN agent.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed Q-learning approaches and compare them with the
conventional LE-URC and FSI-URC described in Sec. IV
via numerical experiments. We adopt the standard network
parameters listed in Table I following [2, 4, 23, 26, 30], and
hyperparameters for Q-learning listed in Table II. Accordingly,
one epoch consists of 937 TTIs (i.e., 10 minutes). The RL
agents will first be trained in a so-called learning phase,
and after convergence, their performance will be compared
with LE-URC and FSI-URC in a so-called testing phase. All
testing performance results are obtained by averaging over
1000 episodes. In the following, we present our simulation
results of the single-parameter single-group scenario and the
multi-parameter multi-group scenario in Section VII-A and
Section VII-B, respectively.

8The state function can be designed to collect more information according
to the complexity requirements, such as sharing the value function between
each DQN agent [43].

TABLE I: Simulation Parameters

Parameters Value
Path-loss exponent η 4
noise power σ2 -138 dBm
eNB broadcast power PNPBCH 35 dBm
Path-loss inverse power control threshold ρ 120 dB
Maximal preamble transmit power PRACHmax 23 dBm
The received SNR threshold γth 0 dB
Duration of periodic traffic Tperiodic 1 hour
Period of TTI TTTI 640ms
Duration of bursty traffic Tbursty 10 minutes
Set of number of preambles FPrea {12, 24, 36, 48}
Set of repetition value NRepe {1, 2, 4, 8, 16, 32}
Set of number of RACH periods NRach {1, 2, 4}
Maximum RACH attempts γpMax 10
Maximum allowed resource requests γRRC 5
Maximum allowed RACH in one CE γpCE,i 5
REs required for BRACH 4
REs required for BDATA 32
Bursty traffic parameter Beta(α, β) (3,4)

TABLE II: Q-learning Hyperparameters

Hyperparameters Value
Learning rate λ for Tabular-Q and LA-Q 0.01
Learning rate by RMSProp λRMS for DQN 0.0001
Initial exploration ε 1
Final exploration ε 0.1
Discount rate γ 0.5
Minibatch size 32
Replay memory 10000
Target Q-network update frequency 1000

A. Single-Parameter Single-Group Scenario

In the single-parameter single-group scenario, eNB is lo-
cated at the center of a circular area with a 10 km radius, and
the IoT devices are randomly located within the cell. We set
the number of RACH periods as nRach = 1, the repetition value
as nRepe = 4, and the limited uplink resource as Ruplink = 1536
REs (i.e., 32 slots with 48 sub-carriers). Unless otherwise
stated, we consider the number of periodical IoT devices to be
Dperiodic = 10000, and the number of bursty IoT devices to be
Dbursty = 5000. The DQN is set with three hidden layers, each
with 128 ReLU units. Tabular-Q, LA-Q, and DQN approaches
are proposed in Sec. V.A, V.B.1, and V.B.2, respectively. The
conventional LE-URC and FSI-URC approaches are proposed
in Sec. IV.B.

Throughout epoch, each device has a periodical traffic profile
(i.e., Uniform distritbuion given in Eq. (2)), or a bursty traffic



13

� ��� ��� 
�� ���
���$

��	

	��

��	

����

���	
�

&!
��

#�"
���

"�
��

�'
 �

�$

���

�#��� �

� ��� ��� 
�� ���
 %�����

�

�




�

��
#'

��
��"

��
��

' 
��

$

���

������

�����


���

Fig. 6: The real-time traffic load and Vsu for FSI-URC, LE-URC, and DQN.

profile (i.e., the time limited Beta profile defined in Eq. (4)
with parameters (3, 4)) that has a peak around the 400th TTI.
The resulting average number of newly generated packets is
shown as dashed line in Fig. 6(a). Fig. 6(b) plot the number
of successfully served IoT devices Vsu with the proposed
FSI-URC, LE-URC, and DQN approaches. In Fig. 6(b), Vsu
first increases gradually with the increasing of traffic shown
in Fig. 6(a), until it reaches the serving capacity of eNB.
Then, Vsu decreases slowly due to the increasing collisions
and scheduling failures with the increase of traffic. After that,
Vsu increases gradually as the collisions and scheduling failures
decrease with the decreasing of traffic. Finally, Vsu decreases
slowly with the decreasing of traffic.

In Fig. 6(b), we see that the ideal FSI-URC approach
outperforms the LE-URC approach, due to that the FSI-URC
approach uses the actual network load to perfectly optimize
V tsu at one time instance as Eq. (11). DQN not only always
outperforms LE-URC, but also exceeds the ideal DSI-URC
approach in most of TTIs. This is due to that both LE-URC
and FSI-URC only optimize V tsu at one time instance, whereas
DQN optimizes the long-term performance of the number of
served IoT devices. The optimization in one time instance
(LE-URC and FSI-URC) only takes into account the current
trade-off between RACH resource and DATA resource given in
Eq. (22), while the optimization over long-term period (DQN)
also accounts for some long-term hidden features, such as
the dropping packets due to exceeding them maximum RACH
attempts γpMax or maximum resource requests γRRC. The DQN
approach can well capture these hidden features to optimize the
long-term performance of Vsu as Eq. (1).

Fig. 7(a) compares the number of successfully served IoT
devices Vsu under Tabular-Q, LA-Q, and DQN approaches. We
observe that all these three approaches achieve similar values
of Vsu, which indicates that both LA-Q and DQN can well
estimate the optimal value function Q∗(s, a) as the converged
Tabular-Q in this low-complexity single CE group scenario.
Fig. 7(b) plots the average received reward over each bursty

Fig. 7: Vsu and the average received reward for Tabular-Q, LA-Q, and DQN.

duration E{R} = 1
Tbursty

∑Tbursty
t=0 Rt (i.e., one epoch consists of

one bursty duration Tbursty) from the beginning of the training
versus the required training time. It can be seen that LA-Q and
DQN converge to the optimal value function Q∗(s, a) (about
10 minutes) much faster than that of Tabular-Q (about 5 days).
The observations in Fig. 7 demonstrate that LA-Q and DQN
can be good alternatives for tabular-Q to achieve almost the
same number of served IoT devices with much less training
time.

���� ���� 	��� 
��� ���� ���� 
���
�,&�!)�'"��,)*+.��!-$�!*

��	

���

��	

	��

	�	

�
-!
)�
#!
�*!

)-
! 
��'

��
�
!-
$�
!* ���

�������
������

���

���� ���� 	��� 
��� ���� ���� 
���
�,&�!)�'"��,)*+.��!-$�!*

�

�

�




�

�
-!
)�
#!
� 
)'
((
! 
��
��
%!
+* ���

�������
������
���

Fig. 8: E{Vsu} and E{Vdrop} for FSI-URC, LE-URC, and DQN.

Fig. 8(a) and Fig. 8(b) plot the average number of success-
fully served IoT devices E{Vsu} and the average number of
dropped packets E{Vdrop} (i.e., this system performance can
only be summarized in simulation) over a bursty duration
Tbursty versus the number of bursty IoT devices Dbursty. In
Fig. 8(a), we observe that E{Vsu} first increases and then
decreases with increasing the number of bursty devices, the
decreasing trend starts when eNB can not afford to serve the
increasing IoT device number due to the increasing collisions



14

and scheduling failures. These collisions and scheduling fail-
ures also result in the increasing number of packet drops with
increasing traffics as shown in Fig. 8(b). In Fig. 8, we also
notice that DQN always outperforms LE-URC (especially for
relatively large Dbursty), which indicates the superiority of DQN
approach in handling massive bursty IoT devices. Interestingly,
DQN provides better performance of the number of served
IoT devices and smaller mean errors than the ideal FSI-URC
approach in most cases, which results from the long-term
optimization capability of DQN.

B. Multi-Parameter Multi-Group Scenario

Considering eNB is located at the center of a circle area
with 12 km radius, we set RSRP thresholds for CE group
choosing {γRSRP1, γRSRP2} = {0,−5}dB, the uplink resource
Ruplink = 15360 REs (i.e., 320 slots with 48 sub-carriers),
and the NPUSCH constraints for LE-URC following Ruplink,0 :
Ruplink,1 : Ruplink,2 = 1 : 1 : 1. To model massive IoT traffic,
both the number of periodical IoT devices Dperiodic and the
number of bursty IoT devices Dbursty increase to 30000. In
AA-DQN, we use one Q-network with three hidden layers each
of which is consist of 2048 ReLU units. In CMA-DQN, nine
DQNs are used to control each of the nine configuration (i.e.,
nRach,i, nRepe,i, fPrea,i for three CE groups), where each DQN
has three hidden layers, each with 128 ReLU units. AA-LA-
Q and AA-DQN approaches are proposed in Sec. VI.A, and
CMA-DQN approach is proposed in Sec. VI.B.

� ��� 
�� ��� 
��
���'

��


�

��

�"
&)
"!

��%
��
�
")

$ 
"'

���

�������
������
�������
����������
�
�
����������
����

� � 
 � 
 �� ��
�%(&'

����

����

����

��	�

�
)"

&�
#"

��
"*

�&
!'

���

�������
������
�������

Fig. 9: Vsu and the average received reward.

Fig. 9(a) compares the number of successfully served
IoT devices Vsu during one epoch using AA-LA-Q, AA-
DQN, CMA-DQN and LE-URC. The “LE-URC-[1,4,8]”
and “LE-URC-[2,8,16]” curves represent the LE-URC ap-
proach with the repetition values {nRepe,0, nRepe,1, nRepe,2}
set to {1, 4, 8} and {2, 8, 16}, respectively. We ob-
serve that the number of successfully served IoT de-
vices Vsu follows CMA-DQN > AA-DQN > AA-LA-Q�

LE-URC-[1,4,8]� LE-URC-[2,8,16]. As can be seen, all Q-
learning based approaches outperform LE-URC approaches,
due to that these Q-learning based approaches can dynamically
optimize the number of served IoT devices by accurately
configuring each parameter. We also observe that CMA-DQN
slightly outperforms the others in the light traffic regions
at the beginning and end of the epoch, but it substantially
outperforms the others in the period of heavy traffic in the
middle of the epoch. This demonstrates the capability of CMA-
DQN in better managing the scarce channel resource in the
presence of heavy traffic. It is also observed that increasing
the repetition value of each CE group with LE-URC improves
the received SNR, and thus the RACH success rate in the light
traffic region, but it degrades the scheduling success rate due
to limited channel resource in the heavy traffic region.

Fig. 9(b) plots the average received reward over each bursty
duration E{R} = 1

Tbursty

∑Tbursty
t=0 Rt from the beginning of the

training versus the consumed training time. It can be seen that
CMA-DQN and AA-DQN outperform AA-LA-Q in terms of
less training time. Compared with the results in the single CE
group scenario shown in Fig. 7, DNN is a better value function
approximator for the 3 CE groups scenario due to its efficiency
and capability in solving high complexity problems. We also
observe that CMA-DQN achieves higher E{R}∗ than AA-
DQN, due to that CMA-DQN can accurately select the exact
values from the set of actions {N Repe,N Rach,FPrea}, whereas
AA-DQN can only select ascent/descent actions, which leads
to a sub-optimal solution.

To gain more insight into the operation of CMA-DQN, Fig.
10 plots the average number of successfully served IoT devices
Vsucc,i for each CE group i, and Fig. 11 plots the average
number ntRepe,i of repetitions and the average number of
Random Access Opportunities (RAOs), defined as the product
ntRach,i × f tPrea,i, for each CE group i that are selected by
CMA-DQN over the testing episodes. As seen in Fig. 10,
CMA-DQN substantially outperforms LE-URC approaches for
each CE group i, where the reasons for this performance
are showcased in Fig. 11. As seen in Fig. 11(a)-(c), CMA-
DQN increases the number of repetitions in the light traffic
region in order to improve the SNR and reduce RACH failures,
while decreasing it in the heavy traffic region so as to reduce
scheduling failures. Surprisingly, the CMA-DQN increases the
repetition value of group 0 nRepe,0 at the same time, which is
completely opposite to the actions of nRepe,1 and nRepe,2. This
is due to that the CMA-DQN is aware of the key to optimize
the overall performance Vsu is to guarantee Vsucc,0, as the IoT
devices in the CE group 0 are easier to be served, due to they
are located close to the eNB and consume less resource. As
illustrated in Fig. 11(d)-(f), this allows CMA-DQN to increase
the number of RAOs in the high traffic regime mitigating the
impact of collisions on the throughput. In contrast, for the CE
groups 1 and 2, in the heavy traffic region, LE-URC decreases
the number of RAOs in order to reduce resource scheduling
failures, causing an overall lower throughput as seen in Fig.
10.



15

� ��� ��� 
�� ���
���$

��

��

��

�
% 
��
#�!
��$
�#
&�
��
��
&�
��
$ ����
���#!%"��


������
�����
��
�����
��

� ��� ��� 
�� ���
���$

	

��

�	

��

�
% 
��
#�!
��$
�#
&�
��
��
&�
��
$ ����
���#!%"��


������
�����
��
�����
��

� ��� ��� 
�� ���
���$

�

�

�

�

�

	

�
% 
��
#�!
��$
�#
&�
��
��
&�
��
$ ����
���#!%"��


������
�����
��
�����
��


Fig. 10: The average number of successfully served IoT devices Vsucc,i for each CE group i.

� ��� 	�� ��� ���
���

��


���

� 
& 

)")
"%
$�
�
�#
* ����� & )")"%$���#* �!%'�����'%*&���

��
����
��������
��������

� ��� 	�� ��� ���



��

�

����� & )")"%$���#* �!%'�����'%*&���

��
����
�������	
��������

� ��� 	�� ��� ���
��

��

��
����� & )")"%$���#* �!%'�����'%*&���

��
����
��������
���������

� ��� 	�� ��� ���
���(

�
	�
��

���
���
���

�

�
(

�����
�(�!%'�����'%*&��

� ��� 	�� ��� ���
���(

�
	�
��

���
���
���

� ���
�(�!%'�����'%*&��

� ��� 	�� ��� ���
���(

�
	�
��

���
���
���

�!���
�(�!%'�����'%*&��

Fig. 11: The allocated repetition value nt
Repe,i, and RAOs producted by nt

Rach,i × f
t
Prea,i.

The realistic network conditions can be different from the
simulation environment, due to that the practical traffic and
physical channel vary and can be unpredictable. This difference
may lead to inaccurate configuration that can degrade the
system performance of each approach. Fortunately, the pro-
posed RL-based approaches can self-update after deployment
according to the practical observation in NB-IoT networks
in an online manner. To model this, we use the trained
CMA-DQN agents given in Fig. 11 (i.e., the bursty traffic
is modelled by the time limited Beta profile with parameters
(3, 4)), and test them in a slightly modified traffic scenario
that the bursty traffic is with Beta(5, 6), and we set the
constant exploration rate ε = 0.001. Fig. 12 plots the average
number of successfully served IoT devices E{Vsu} per TTI
over each episode versus epochs. Our result shows that, as
expected, E{Vsu} follows CMA-DQN>LE-URC-[1,4,8]>LE-
URC-[2,8,16] at any epoch. More importantly, the performance
of CMA-DQN gradually improves along epochs, which sheds
light on the online self-updating capability of the proposed
RL-based approaches.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we developed Q-learning based uplink resource
configuration approaches to optimize the number of served IoT

Fig. 12: The average number of successfully served IoT devices per TTI over each epoch
in online updating

devices in real-time in NB-IoT networks. We first developed
tabular-Q, LA-Q, and DQN based approaches for the single-
parameter single-group scenario, which are shown to out-
perform the conventional LE-URC and FSI-URC approaches
in terms of the number of served IoT devices. Our results



16

demonstrated that LA-Q and DQN can be good alternatives
for tabular-Q to achieve almost the same system performance
with much less training time. To support traffic with different
coverage requirements, we then studied the multi-parameter
multi-group scenario as defined in NB-IoT standard, which
introduced the high-dimensional configurations problem. To
solve it, we advanced the proposed LA-Q and DQN using
the Actions Aggregation technique (AA-LA-Q and AA-DQN),
which guarantees the convergent capability of Q-learning by
sacrificing the accuracy in resource configuration. We further
developed CMA-DQN by dividing high-dimensional configu-
rations into multiple parallel sub-tasks, which achieved the best
performance in terms of the number of successfully served IoT
devices Vsu with the least training time.

From the results using the simulated traffics in our work, we
demonstrated that the proposed RL-based resource configura-
tion approaches significantly outperform the conventional ap-
proaches in terms of throughput. With realistic traffic, a direct
implementation of DRL may bring computational complexity
and processing delay at the NB-IoT BSs, so how to reduce the
complexity of DRL algorithms can be considered in future
work. Furthermore, online self-updating of each RL-based
approach can be deployed either in BSs, network edges, or
cloud, where their efficiency could be further evaluated. From
the perspective of performance improvement, a promising fu-
ture direction is to cooperatively optimize network throughput
along with the IoT devices’ key performance indicators (KPIs),
such as power consumption and transmission delay. Such
multi-objective optimization is quite challenging and should
be addressed in the future.

REFERENCES

[1] N. Jiang, Y. Deng, O. Simeone, and A. Nallanathan, “Cooperative deep
reinforcement learning for multiple-group NB-IoT networks optimiza-
tion,” IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP) invited
paper, 2019.

[2] J. Schlienz and D. Raddino, “Narrowband internet of things whitepaper,”
IEEE Microw. Mag., vol. 8, no. 1, pp. 76–82, Aug. 2016.

[3] H. S. Dhillon, H. Huang, and H. Viswanathan, “Wide-area wireless
communication challenges for the internet of things,” IEEE Commun.
Mag., vol. 55, no. 2, pp. 168–174, Feb. 2017.

[4] Y.-P. E. Wang, X. Lin, A. Adhikary, A. Grovlen, Y. Sui, Y. Blankenship,
J. Bergman, and H. S. Razaghi, “A primer on 3GPP narrowband internet
of things (NB-IoT),” IEEE Commun. Mag., vol. 55, no. 3, pp. 117–123,
Mar. 2017.

[5] D. T. Wiriaatmadja and K. W. Choi, “Hybrid random access and
data transmission protocol for machine-to-machine communications in
cellular networks,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp.
33–46, Jan. 2015.

[6] S. Duan, V. Shah-Mansouri, Z. Wang, and V. W. Wong, “D-ACB:
Adaptive congestion control algorithm for bursty M2M traffic in LTE
networks,” IEEE Trans. Veh. Technol., vol. 65, no. 12, pp. 9847–9861,
Dec. 2016.

[7] L. M. Bello, P. Mitchell, and D. Grace, “Application of Q-learning for
RACH access to support M2M traffic over a cellular network,” in Proc.
European Wireless Conf., 2014, pp. 1–6.

[8] Y. Chu, P. D. Mitchell, and D. Grace, “ALOHA and Q-learning based
medium access control for wireless sensor networks,” in Int. Symp.
Wireless Commun. Syst. (ISWCS), 2012, pp. 511–515.

[9] Y. Yan, P. Mitchell, T. Clarke, and D. Grace, “Distributed frame size
selection for a Q learning based slotted ALOHA protocol,” in Int. Symp.
Wireless Commun. Syst. (ISWCS), 2013, pp. 1–5.

[10] G. Naddafzadeh-Shirazi, P.-Y. Kong, and C.-K. Tham, “Distributed
reinforcement learning frameworks for cooperative retransmission in
wireless networks,” IEEE Trans. Veh. Technol., vol. 59, no. 8, pp. 4157–
4162, Oct. 2010.

[11] Y.-S. Chen, C.-J. Chang, and F.-C. Ren, “Q-learning-based multirate
transmission control scheme for RRM in multimedia WCDMA systems,”
IEEE Trans. Veh. Technol., vol. 53, no. 1, pp. 38–48, Jan. 2004.

[12] J. Moon and Y. Lim, “A reinforcement learning approach to access
management in wireless cellular networks,” Wireless Commun. Mobile
Comput., 2017.

[13] T.-O. Luis, P.-P. Diego, P. Vicent, and M.-B. Jorge, “Reinforcement
learning-based ACB in LTE-A networks for handling massive M2M and
H2H communications,” in IEEE Int. Commun. Conf. (ICC), May. 2018,
pp. 1–7.

[14] R. Harwahyu, R.-G. Cheng, C.-H. Wei, and R. F. Sari, “Optimization
of random access channel in NB-IoT,” IEEE Internet Things J., vol. 5,
no. 1, pp. 391–402, Feb. 2018.

[15] S.-M. Oh and J. Shin, “An efficient small data transmission scheme in
the 3GPP NB-IoT system,” IEEE Commun. Lett., vol. 21, no. 3, pp.
660–663, Mar. 2017.

[16] H. Malik, H. Pervaiz, M. M. Alam, Y. Le Moullec, A. Kuusik, and M. A.
Imran, “Radio resource management scheme in NB-IoT systems,” IEEE
Access, vol. 6, pp. 15 051–15 064, Jun. 2018.

[17] C. Yu, L. Yu, Y. Wu, Y. He, and Q. Lu, “Uplink scheduling and link
adaptation for narrowband internet of things systems,” IEEE Access,
vol. 5, pp. 1724–1734, 5 2017.

[18] A. Azari, G. Miao, C. Stefanovic, and P. Popovski, “Latency-energy
tradeoff based on channel scheduling and repetitions in NB-IoT systems,”
arXiv preprint arXiv:1807.05602, Jul. 2018.

[19] E. Dahlman, S. Parkvall, and J. Skold, 4G: LTE/LTE-advanced for mobile
broadband. Academic press, 2013.

[20] “Study on RAN improvements for machine-type communications,”
3GPP TR 37.868 V11.0.0, Sep. 2011.

[21] N. Jiang, Y. Deng, M. Condoluci, W. Guo, A. Nallanathan, and
M. Dohler, “RACH preamble repetition in NB-IoT network,” IEEE
Commun. Lett., vol. 22, no. 6, pp. 1244–1247, Jun. 2018.

[22] N. Jiang, Y. Deng, A. Nallanathan, X. Kang, and T. Q. S. Quek,
“Analyzing random access collisions in massive IoT networks,” IEEE
Trans. Wireless Commun., vol. 17, no. 10, pp. 6853–6870, Oct. 2018.

[23] “Evolved universal terrestrial radio access (E-UTRA); Physical channels
and modulation,” 3GPP TS 36.211 v.14.2.0, Apr. 2017.

[24] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “A first look at
cellular machine-to-machine traffic: large scale measurement and char-
acterization,” ACM SIGMETRICS Performance Evaluation Rev., vol. 40,
no. 1, pp. 65–76, Jun. 2012.

[25] J. Kim, J. Lee, J. Kim, and J. Yun, “M2M service platforms: Survey,
issues, and enabling technologies.” IEEE Commun. Surveys Tuts., vol. 16,
no. 1, pp. 61–76, Jan. 2014.

[26] “Cellular system support for ultra-low complexity and low throughput
Internet of Things (CIoT),” 3GPP TR 45.820 V13.1.0, Nov. 2015.

[27] A. K. Gupta and S. Nadarajah, Handbook of Beta distribution and its
applications. New York, USA: CRC press, 2004.

[28] “Evolved universal terrestrial radio access (E-UTRA); Physical layer
measurements,” 3GPP TS 36.214 v. 14.2.0, Apr. 2017.

[29] X. Lin, A. Adhikary, and Y.-P. E. Wang, “Random access preamble
design and detection for 3GPP narrowband IoT systems,” IEEE Wireless
Commun. Lett., vol. 5, no. 6, pp. 640–643, Jun. 2016.

[30] “Evolved universal terrestrial radio access (E-UTRA); Medium Access
Control protocol specification,” 3GPP TS 36.321 v.14.2.1, May. 2017.

[31] “Evolved universal terrestrial radio access (E-UTRA); Requirements for
support of radio resource management,” 3GPP TS 36.133 v. 14.3.0, Apr.
2017.

[32] R. Sutton and A. Barto, “Reinforce-
ment learning: An introduction (draft),” URl:
http://www.incompleteideas.net/book/bookdraft2017nov5.pdf, 2017.

[33] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, p. 529, Feb. 2015.

[34] G. Konidaris, S. Osentoski, and P. S. Thomas, “Value function approxi-
mation in reinforcement learning using the Fourier basis.” in Assoc. Adv.
AI (AAAI), vol. 6, Aug. 2011, p. 7.

[35] S. Thrun and A. Schwartz, “Issues in using function approximation for
reinforcement learning,” in Proc. Connectionist Models Summer School
Hillsdale, NJ. Lawrence Erlbaum, 1993.



17

[36] M. Hauskrecht, “Value-function approximations for partially observable
markov decision processes,” J. AI Res., vol. 13, pp. 33–94, Aug. 2000.

[37] A. Geramifard et al., “A tutorial on linear function approximators for
dynamic programming and reinforcement learning,” Found. Trends Mach.
Learn., vol. 6, no. 4, pp. 375–451, Dec. 2013.

[38] F. S. Melo and M. I. Ribeiro, “Q-learning with linear function approx-
imation,” in Springer Int. Conf. Comput. Learn. Theory, Jun. 2007, pp.
308–322.

[39] C. Xi, K. Bohdan, M. Norman, and M. Pete, “Polynomial regression as
an alternative to neural nets,” arXiv preprint arXiv:1806.06850, 2018.

[40] C. M. Bishop, Pattern Recognition and Machine Learning. New York,
USA: Springer print, 2006.

[41] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning.” in Assoc. Adv. AI (AAAI), vol. 2, Feb. 2016,
p. 5.

[42] T. Tieleman and G. Hinton, “Lecture 6.5-RMSprop: Divide the gradient
by a running average of its recent magnitude,” COURSERA: Neural Netw.
Mach. Learn., vol. 4, no. 2, pp. 26–31, Oct. 2012.

[43] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Trans. Syst., Man, Cybern.
C, C, Appl. Rev., 38 (2), Mar. 2008.

[44] P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi,
M. Jaderberg, M. Lanctot, N. Sonnerat, J. Z. Leibo, K. Tuyls, and
T. Graepel, “Value-decomposition networks for cooperative multi-agent
learning based on team reward,” in Pro. Int. Conf. Auton. Agents
MultiAgent Syst. (AAMAS), Jul. 2018, pp. 2085–2087.

Nan Jiang (S’16) is currently working toward the
Ph.D. degree in electronic engineering at Queen
Mary University of London, London, U.K.

His research interests include internet of things,
machine learning, and radio resource management.

Yansha Deng (S’13-M’18) is currently a Lecturer
(Assistant Professor) in department of Informatics,
Kings College London, U. K. She received the Ph.D.
degree in Electrical Engineering from the Queen
Mary University of London, UK in 2015. From
2015 to 2017, she was a Post-Doctoral Research
Fellow with Kings College London, UK. Her re-
search interests include molecular communication,
internet of things, and 5G wireless networks. She
was a recipient of the Best Paper Awards from ICC
2016 and Globecom 2017 as the first author. She

is currently an Editor of IEEE Transactions on Communications and IEEE
Communication Letters. She also received Exemplary Reviewer for the IEEE
Transactions on Communications in year 2016 and 2017. She has also served
as TPC member for many IEEE conferences, such as IEEE GLOBECOM and
ICC.

Arumugam Nallanathan (S’97-M’00-SM’05-F’17)
is Professor of Wireless Communications and Head
of the Communication Systems Research (CSR)
group in the School of Electronic Engineering and
Computer Science at Queen Mary University of
London since September 2017. He was with the
Department of Informatics at King’s College London
from December 2007 to August 2017, where he was
Professor of Wireless Communications from April
2013 to August 2017 and a Visiting Professor from
September 2017. He was an Assistant Professor in

the Department of Electrical and Computer Engineering, National University
of Singapore from August 2000 to December 2007. His research interests
include 5G Wireless Networks, Internet of Things (IoT) and Molecular Com-
munications. He published nearly 400 technical papers in scientific journals
and international conferences. He is a co-recipient of the Best Paper Awards

presented at the IEEE International Conference on Communications 2016
(ICC’2016) , IEEE Global Communications Conference 2017 (GLOBE-
COM’2017) and IEEE Vehicular Technology Conference 2018 (VTC’2018).
He is an IEEE Distinguished Lecturer. He has been selected as a Web of
Science Highly Cited Researcher in 2016. He published nearly 400 technical
papers in scientific journals and international conferences. He is a co-recipient
of the Best Paper Awards presented at the IEEE International Conference on
Communications 2016 (ICC’2016), IEEE Global Communications Conference
2017 (GLOBECOM’2017) and IEEE Vehicular Technology Conference 2018
(VTC’2018). He is an IEEE Distinguished Lecturer. He has been selected as
a Web of Science Highly Cited Researcher in 2016.

He is an Editor for IEEE Transactions on Communications. He was
an Editor for IEEE Transactions on Wireless Communications (2006-2011),
IEEE Transactions on Vehicular Technology (2006-2017), IEEE Wireless
Communications Letters and IEEE Signal Processing Letters. He served as
the Chair for the Signal Processing and Communication Electronics Technical
Committee of IEEE Communications Society and Technical Program Chair
and member of Technical Program Committees in numerous IEEE conferences.
He received the IEEE Communications Society SPCE outstanding service
award 2012 and IEEE Communications Society RCC outstanding service
award 2014.

Jonathon A. Chambers (S’83-M’90-SM’98-F’11)
received the Ph.D. and D.Sc. degrees in signal
processing from the Imperial College of Science,
Technology and Medicine (Imperial College Lon-
don), London, U.K., in 1990 and 2014, respectively.
From 1991 to 1994, he was a Research Scientist
with the Schlumberger Cambridge Research Center,
Cambridge, U.K. In 1994, he returned to Imperial
College London as a Lecturer in signal processing
and was promoted to Reader (Associate Professor)
in 1998. From 2001 to 2004, he was the Director of

the Center for Digital Signal Processing and a Professor of signal processing
with the Division of Engineering, King’s College London. From 2004 to
2007, he was a Cardiff Professorial Research Fellow with the School of
Engineering, Cardiff University, Cardiff, U.K. Between 2007-2014, he led
the Advanced Signal Processing Group, within the School of Electronic,
Electrical and Systems Engineering at Loughborough University and is now a
Visiting Professor. In 2015, he joined the School of Electrical and Electronic
Engineering, Newcastle University, where he was Professor of signal and
information processing and led the ComS2IP group and is now a Visiting
Professor. In 2017 he became the Head of the Department of Engineering at the
University of Leicester. He is also an International Honorary Dean and Guest
Professor at Harbin Engineering University, China with support from the 1000
Talents Scheme. He is co-author of the books Recurrent Neural Networks for
Prediction: Learning Algorithms, Architectures and Stability (New York, NY,
USA:Wiley, 2001) and EEG Signal Processing (New York, NY, USA: Wiley,
2007). He has advised more than 80 researchers through to Ph.D. graduation
and published more than 500 conference papers and journal articles, many of
which are in IEEE journals. His research interests include adaptive and blind
signal processing and their applications.

Dr. Chambers is a Fellow of the Royal Academy of Engineering, U.K., and
the Institution of Electrical Engineers. He was the Technical Program Chair
of the 15th International Conference on Digital Signal Processing and the
2009 IEEE Workshop on Statistical Signal Processing, both held in Cardiff,
U.K., and a Technical Program Cochair for the 36th IEEE International
Conference on Acoustics, Speech, and Signal Processing, Prague, Czech
Republic. He received the first QinetiQ Visiting Fellowship in 2007 for his
outstanding contributions to adaptive signal processing and his contributions
to QinetiQ, as a result of his successful industrial collaboration with the
international defense systems company QinetiQ. He has served on the IEEE
Signal Processing Theory and Methods Technical Committee for six years
and the IEEE Signal Processing Society Awards Board for three years. He is
currently a member of the IEEE Signal Processing Conference Board and the
European Signal Processing Society Best Paper Awards Selection Panel. He
has also served as an Associate Editor for the IEEE TRANSACTIONS ON
SIGNAL PROCESSING for two terms over the periods 1997-1999, 2004-
2007, and as a Senior Area Editor between 2011-2014.


