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SHORT REPORT Open Access

Circulating gamma-glutamyl transferase
and development of specific breast cancer
subtypes: findings from the Apolipoprotein
Mortality Risk (AMORIS) cohort
Lydia Shackshaft1, Mieke Van Hemelrijck1,4, Hans Garmo1,2, Håkan Malmström3, Mats Lambe2,4, Niklas Hammar5,6,
Göran Walldius6, Ingmar Jungner7 and Wahyu Wulaningsih1,8*

Abstract

Background: Different etiological pathways may precede development of specific breast cancer subtypes and
impact prevention or treatment strategies. We investigated the association between gamma-glutamyl transferase
(GGT) and development of specific breast cancer subtypes based on oestrogen receptor (ER), progesterone receptor
(PR) and HER2 status.

Methods: We included 231,283 cancer-free women in a Swedish cohort. Associations between GGT and breast cancer
subtypes were investigated with nested case–control and case–case analyses. We used logistic regression models to
assess serum GGT in relation to breast cancer subtype, based on individual and combined receptor status.

Results: Positive associations were found between serum GGT and development of ER+, ER− and PR+ breast
cancers compared to controls (odds ratio (OR) 1.14 (95% confidence interval (CI) 1.08–1.19), 1.11 (1.01–1.23) and 1.
18 (1.12–1.24), respectively) and of ER+/PR+ tumours. We found inverse associations between GGT levels and
PR− breast cancers compared to PR+ (OR 0.87 (0.80–0.95)), between ER+/PR− tumours compared to ER+/PR+
tumours and between ER−/PR−/HER+ compared to ER+/HER2 or PR+/HER2 tumours (OR 0.55 (95% CI 0.34–0.90).

Conclusion: The observed associations between pre-diagnostic serum GGT and different breast cancer subtypes may
indicate distinct underlying pathways and require further investigations to tease out their clinical implications.

Keywords: GGT, Breast cancer, Glucose, Triglycerides, Prospective study

Background
Increased levels of serum gamma-glutamyl transferase
(GGT) is a marker of oxidative stress [1], which may
lead to tumour development, progression and metastasis
[2] through modification of signalling pathways and
DNA damage [2–4]. We previously showed an associ-
ation between elevated serum GGT and risk of breast
cancer in Swedish women [5], which were supported in
a large systematic review and meta-analysis [6]. How-
ever, the association between circulating GGT and breast

cancer subtype is unclear. Development of specific breast
cancer subtypes significantly impacts therapeutic decisions
and prognosis, but their underlying mechanisms remain
elusive. To assess the role of oxidative stress, we now in-
vestigated the association between pre-diagnostic GGT
and breast cancer subtype in nested case–control and
case–case studies in a large Swedish cohort.

Methods
Study population
The AMORIS study has been described in detail else-
where [5, 7–9]. This cohort includes 812,073 individuals
who underwent laboratory examination at the Central
Automation Laboratory in Stockholm between 1985 and
1996 [9]. The study complied with the declaration of
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Helsinki and was approved by the Ethics Review Board
of the Karolinska institute.
From the AMORIS cohort we identified 231,283

cancer-free women aged 20 years or older with baseline
measurements of serum GGT. These women were
followed until they developed breast cancer, died, emi-
grated, or until the end of the study (31 December 2011),
whichever came first. A total of 10,861 breast cancers
(4.7%) were diagnosed during follow-up. Among them,
6934 (63.8%) had available information on oestrogen re-
ceptor (ER) status, 7145 (65.8%) had information on pro-
gesterone receptor (PR) status, and 2197 (20.2%) had
additional information on HER2 status. A nested case–
control study was performed where for each case with in-
formation on receptor status, we used incidence density
sampling to select ten controls among all women in the
cohort who were alive and did not have breast cancer at
the time of diagnosis of the case. Cases and controls were
matched for age group (less or more than 50 years old) as
an indicator for menopausal status [10] because meno-
pausal status was only available for cases. The same sets of
cases were included in the case–case analysis.

Breast cancer diagnosis and subtype
We classified breast cancer subtype based on ER and
PR and their combinations. In the subgroup with in-
formation on HER2, we defined four tumour subtypes
(ER+/HER2− or PR+/HER2−, ER+/HER2+ or PR+/HER2+,
ER−/PR−/HER2+, and ER−/PR−/HER2− (triple negative))
as previously described (Additional file 1: Figure S1) [11].
These subtypes share similar profiles with molecular phe-
notypes luminal A, luminal B, HER2 type and triple
negative [12, 13].

Assessment of exposures and covariates
All laboratory analyses were performed by automated
techniques at the CALAB laboratory, Stockholm, Sweden.
GGT (U/L) was determined using the reference method
recommended by the International Federation of Clinical
Chemistry and Laboratory Medicine (IFCC) [5, 14]. The
coefficient of variation was ≤6.0%. Samples were prospect-
ively measured prior to assignment to cases or controls.
Levels of GGT were skewed and logarithmically trans-
formed. We additionally categorised GGT into quartiles.
From the registry linkage in AMORIS [5, 9], we

collected information on socioeconomic status, educa-
tion level, parity, menopausal status at diagnosis, and
comorbidities using Charlson co-morbidity index
(CCI) [15, 16]. Serum triglycerides and glucose were
measured enzymatically [17].

Statistical analysis
In the nested case–control analysis, we used conditional
logistic regression models to assess any association

between log-transformed and quartiles of GGT and over-
all and specific breast cancer subtypes. A test for trend
was performed by using GGT quartiles as an ordinal
scale. We estimated odds ratios (ORs) of ER and PR sta-
tus individually compared to matched controls based on
these measures of serum GGT. Subsequently we com-
pared GGT levels of cases with controls based on com-
bined ER and PR subtypes.
We further conducted a case–case analysis to compare

different breast cancer subtypes [18]. Binary and multi-
nomial logistic regression models were used to assess log-
transformed levels and quartiles of GGT in relation to
breast cancer subtype, both by individual ER or PR status,
combined ER/PR status and ER/PR/HER2 status. Since ER
and PR status was available since follow-up started and
the information of HER2 status was only available after
2006, we performed a sensitivity analysis only including
cases with complete information on the three receptors.
All models were adjusted for age, socioeconomic status,

education and parity, and time interval between GGT
measurement and diagnosis. We additionally controlled
for menopausal status in the case–case analysis. Adjust-
ment for CCI was performed to take into account existing
co-morbidities [1, 5, 19, 20]. We further adjusted for
serum glucose and triglycerides to reduce potential con-
founding from metabolic disorders [11, 21–23]. All ana-
lyses were conducted with Statistical Analysis Systems
(SAS) release 9.4 (SAS Institute, Cary, NC, USA).

Results
Case-control analysis
The mean age of diagnosis was 61.68 years and most
women were postmenopausal (Additional file 1: Table S1).
Serum GGT was slightly higher in cases than in controls.
Overall, higher log-transformed GGT correlated with
higher odds of any breast cancer (OR 1.13, 95% confi-
dence interval (CI) 1.08–1.19). There was a positive asso-
ciation between continuous levels of GGT and
development of ER+, ER−, and PR+ breast cancers
(Table 1), with the strongest association seen for PR+ tu-
mours (OR 1.18, 95% CI 1.12–1.24). Results were similar
with GGT quartiles.
We subsequently investigated the association between

serum GGT and combined receptor subtypes of breast
cancer based on ER/PR status. A significant positive as-
sociation between log-transformed GGT and develop-
ment of ER+/PR+ tumours was noted (OR 1.18; 95% CI
1.12–1.24). Adjustment for serum levels of glucose and
triglycerides did not alter these findings (results not
shown). Association between GGT and ER− cancer was
no longer seen, whilst others remained, in a sensitivity
analysis only including cases with complete receptor in-
formation (results not shown).
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Case–case analysis
Cases were less likely to be PR− compared to PR+ with
increasing log-transformed GGT (OR 0.87, 95% CI
0.80–0.95). A similar trend was seen for quartiles of
GGT. No association was found for ER− cancers, with
ER+ cancers as the referent.

We subsequently investigated any association between
serum GGT and breast cancer subtypes based on the
combination of ER/PR and ER/PR/HER2 status (Fig. 1).
Compared to ER+/PR+ tumours, increasing GGT was
associated with a lower odds of ER+/PR− tumours (OR
0.83, 95% CI 0.73–0.93 for each log unit increase in

Table 1 Conditional logistic regression model with breast cancer subtype as main outcome

GGT U/L Number of hormone
receptor-positive cases

Number of controls OR (95% CI) Number of hormone
receptor-negative cases

Number of controls OR (95% CI)

ER status versus control

GGT log 5939 59390 1.14 (1.08–1.19) 1295 12950 1.11(1.01–1.23)

0–11.40 1310 13100 1 (Ref) 296 2960 1 (Ref)

11.40–15.00 1424 14240 1.08(1.00–1.17) 308 3080 1.04(0.88–1.23)

15.00–21.60 1585 15850 1.11(1.03–1.20) 340 3400 1.08(0.92–1.28)

≥21.60 1620 16200 1.25(1.15–1.35) 351 3510 1.21(1.02–1.43)

Ptrend <0.0001 0.03

PR status versus control

GGT log 4938 49380 1.18(1.12–1.24) 2207 22070 1.06(0.98–1.15)

0–11.40 1068 10680 1 (Ref) 512 5120 1 (Ref)

11.40–15.00 1175 11750 1.09(1.00–1.19) 531 5310 1.04(0.91–1.18)

15.00-21.60 1324 13240 1.16(1.06–1.26) 580 5800 1.02(0.90–1.16)

≥21.60 1371 13710 1.33(1.22–1.45) 584 5840 1.11(0.97–1.26)

Ptrend <0.0001 0.18

Hormone receptor-positive or -negative cases referred to cancer subtypes based on individual ER or PR status. Controls without breast cancer were the referent groups. All
models were adjusted for age at diagnosis, socioeconomic status, education, parity, CCI, and interval between measurement and cancer diagnosis or control selection date

Fig. 1 Multinomial logistic regression analysis for log-transformed levels of GGT with breast cancer subtype as outcome variable. ER+/PR+ and
ER+/HER2− or PR+/HER2− assigned as reference values. All models were adjusted for age at diagnosis, menopausal status, socioeconomic status,
education, parity, CCI, and interval between measurement and cancer diagnosis
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GGT). A similar but weaker trend was seen for ER−/PR−
tumours (Additional file 1: Table S2). Associations were
slightly weaker when limited to cases with complete
information on the three receptors, e.g. OR for ER+/PR−
tumours: 0.83 (95% CI 0.67–1.02) for each log-unit in-
crease in GGT.
We also found an inverse trend between GGT and

odds of being diagnosed with ER−/PR−/HER2+ cancers
(OR 0.55, 95% CI 0.34–0.90 when compared to the ref-
erent group ER+/HER2− or PR+/HER2− breast cancers).
No marked difference across GGT levels was observed
for other subtypes. Additional adjustments for serum
levels of glucose and triglycerides did not alter these ob-
servations (results not shown).

Discussion
Increasing serum levels of GGT corresponded to in-
creased odds of ER+, ER− and PR+ tumours but not re-
lated to higher risk of PR− breast cancers. Our findings
when comparing different subtypes also suggested asso-
ciations between GGT levels and specific breast cancer
subtypes.
Oxidative stress may contribute to development of

ER+ breast cancers by modifying the structure and
function of redox-sensitive ERs on the cell surface,
which reduces expression of an oxidant-sensitive set
of oestrogen-inducible genes, including genes involved
in cell growth, invasion, and PR expression [24]. This may
correlate with suppression of the PR gene [24, 25]. We
found that higher levels of GGT were associated with rela-
tively attenuated odds of ER− subtype. These conflicting
results might imply more complex underlying mecha-
nisms. The negative association found between GGT and
ER−/PR−/HER2+ breast cancers may support previous
notions that HER2-overexpressing tumours have lower
glutathione levels and GGT activity [26, 27]. However, this
would require further confirmation in larger studies. It is
also possible that this finding on HER2 was driven by the
inverse association between GGT and PR− compared to
PR+ breast cancers.
Our results may support distinct aetiological pathways

preceding breast cancer subtypes, in particular PR− can-
cers. Previously, different associations with breast cancer
subtypes have been reported with parity, first-time
births, breastfeeding and oral contraceptive [11, 28, 29].
Obesity [11, 21–23] and dietary fat intake [30–32] may
also affect subtype development via hormonal modula-
tion, increased oxidative stress and inflammation [22].
Similar roles have been indicated for circulating glucose
[17, 33, 34]. Therefore, increased GGT associated with
increased risk of breast cancer may partly be acting as a
marker of these metabolic disorders. Nonetheless, our
results were unaltered when adjusted for serum glucose
and triglycerides.

The strength of this study is the large number of
women included with complete follow-up information.
The AMORIS population is similar to the general working
population of Stockholm in terms of socioeconomic status
and ethnicity [5]. There was limited information on recep-
tor status in earlier diagnoses. However, results were
similar when limited to data with complete receptor infor-
mation, i.e. diagnoses from 2007 onwards. Information on
other risk factors such as hormone-replacement therapy,
body mass index and alcohol intake was not available,
which necessitates future studies incorporating this infor-
mation. With respect to alcohol, however, the blood sam-
ples were collected prior to the major increase in alcohol
use in women.

Conclusion
Pre-diagnostic serum GGT levels are associated with
specific female breast cancer subtypes. Given prior evi-
dence showing increased GGT to be associated with
other lifestyle-related disorders, it is important to con-
sider GGT as a proxy of these factors. Understanding of
this complex association may lead to mechanistic studies
to confirm the role of oxidative stress in specific breast
cancer subtypes, which may have clinical implications.

Additional file

Additional file 1: Supplementary tables. (DOCX 39 kb)
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