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Abstract

Integrating spatial information about atrial physiology and anatomy in a single patient from multimodal datasets, as well as gen-
eralizing these data across patients, requires a common coordinate system. In the atria, this is challenging due to the complexity
and variability of the anatomy. We aimed to develop and validate a Universal Atrial Coordinate (UAC) system for the following
applications: combination and assessment of multimodal data; comparison of spatial data across patients; 2D visualization; and
construction of patient specific geometries to test mechanistic hypotheses. Left and right atrial LGE-MRI data were segmented
and meshed. Two coordinates were calculated for each atrium by solving Laplace’s equation, with boundary conditions assigned
using five landmark points. The coordinate system was used to map spatial information between atrial meshes, including scalar
fields measured using different mapping modalities, and atrial anatomic structures and fibre directions from a reference geometry.
Average error in point transfer from a source mesh to a destination mesh and back again was less than 0.1mm for the left atrium and
0.02mm for the right atrium. Patient specific meshes were constructed using the coordinate system and phase singularity density
maps from arrhythmia simulations were visualised in 2D. In conclusion, we have developed a universal atrial coordinate system
allowing automatic registration of imaging and electroanatomic mapping data, 2D visualisation, and patient specific model creation.

1. Introduction

Characterisation of atrial electrophysiology and function re-
quires comparison and integration of clinical measurements from
different diagnostic modalities. These are measured across mul-
tiple intrapatient meshes to describe the individual, and across
large interpatient datasets to describe populations. There is a
large degree of variation in the shape, morphology and size
of human atria, making standardised visualisation and analy-
sis across large patient data sets challenging [1]. Comparing
measurements between geometries and creating patient specific
meshes are technically challenging tasks, and may require the
manual selection of a large number of landmark points, which
is time consuming and subjective [2].

The complexity of the atrial anatomy that makes registration
challenging also hinders visualisation. Surface visualisation is
more challenging for the atria due to their more complex shape.
For left atrial visualisation, [3] mapped the mitral valve (MV)
annulus to the edges of a square and the pulmonary veins (PVs)
to the centre using a technique that aimed to preserve areas and
angles; [4] further developed this method by creating a template
mapping technique in which the MV annulus was mapped to a
disk, the PVs to circles and the left atrial appendage (LAA) to
an ellipse. [5] developed a surface flattening technique to min-
imise distance distortion for two-dimensional visualisation of
the left atrium (LA). However, this technique requires manual

cutting of the mesh to determine the boundaries in two dimen-
sions and it also has the limitation that it does not result in a
standard coordinate system, and as such it is difficult to com-
pare between geometries.

Registration algorithms enable comparison of data measured
on different geometries, for example from different imaging or
electroanatomic mapping systems. Atrial wall thickness [6],
activation [7], voltage [8] and late gadolinium enhancement [9]
can all be measured across the atria in a single patient, and inte-
grating these data through registration is key to understanding
the mechanisms underlying atrial fibrillation. Machine learn-
ing algorithms, such as convolutional neural networks (CNNs),
may be used to determine relationships between clinical mea-
surables, but typically require the data to be organised in a stan-
dard spatial arrangement. As such, registration techniques are
required but their application typically requires the manual se-
lection of fiducial points and the meshes to have similar topolo-
gies.

Increasingly, integrated datasets are combined with physi-
cal and physiological constraints encoded in biophysical mod-
els. These human atrial computer models may include regional
heterogeneity, for example electrophysiological and tissue con-
ductance variations between the LA and right atrial (RA) body,
PVs, appendages, pectinate muscles (PM) and Bachmann’s bun-
dle (BB), and also fibre direction. As such, the construction of
detailed computational models requires the identification of dif-
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ferent tissue regions and assignment of fibre directions. Previ-
ous studies have manually identified tissue types [10] or used
mapping techniques [11]. Typically, fibre directions are as-
signed using a rule based approach or mapped from an atlas
using landmark points [12, 13, 14]. Construction of large pa-
tient cohorts requires an automated registration and model gen-
eration platform.

Here we develop a universal atrial coordinate (UAC) map-
ping system for application to the atria, motivated by our uni-
versal ventricular coordinate (UVC) system [15]. The UVC
system consists of four coordinates, with simple boundary points
or surfaces at the apex and base. For the atria, we use just two
coordinates for visualisation purposes, and the boundary con-
ditions are defined by lines along the valves, the roof, and the
lateral and septal boundaries. These boundaries utilise visu-
ally evident landmarks on the atrial anatomy. We motivate the
choice of coordinates, including the boundary conditions, and
detail the methodology used for mapping both scalar and vector
data, in order to visualise atrial data in two dimensions, to cal-
culate correlations between measures, and to construct patient
specific bilayer models with both electrophysiological hetero-
geneity and fibre direction. We show that the construction of the
UAC system requires the manual selection of just five points.
We further demonstrate that UACs may be used to generate pa-
tient specific bilayer meshes from segmented MRI datasets. We
compare the technique to other scalar and vector registration
techniques, and finally demonstrate an application of UACs for
2D visualisation.

2. Methods

Our methodology maps a surface mesh of an atrium (left or
right) to the unit square, allowing mapping of atlases, registra-
tion of geometries, and visualisation. We describe here the data
types used (Section 2.1), pre-processing employed (Section 2.2-
2.3) to generate the atrial meshes, followed by the point se-
lection, and boundary conditions required for the calculation
of the universal atrial coordinates (Sections 2.4). We explain
how to use these coordinates to map scalar (Section 2.5) and
vector (Section 2.6) data between geometries, which allows the
co-registration of clinical data. Finally we describe an applica-
tion of the UAC system to construct patient specific bilayer bi-
atrial meshes, with repolarisation heterogeneity, atrial anatom-
ical structures and fibre direction (Section 2.7). The schematic
in Fig 1 outlines the methodology used for constructing patient
specific bilayer geometries using the UAC system.

2.1. Data modalities

We used late-gadolinium enhancement MRI data to gen-
erate patient specific geometries, as well as electroanatomic
mapping data from the Carto system (Biosense Webster). This
study complies with the Declaration of Helsinki and was ap-
proved by the Institutional Ethics Committee at the University
of Bordeaux. All patients gave written informed consent. Late-
gadolinium enhancement MRI data were recorded at a resolu-
tion of 0.625mm x 0.625mm x 2.5mm, as previously described

A) LGE-MRI B) Trimmed LA & 
RA surfaces

C) Atrial coordinates

D) Region mapping E) Fiber mapping

0 1
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LGE-MRI

0 1 0 10 1

αLA βLAβRAαRA

Figure 1: Schematic: (A) The LA and RA were segmented from LGE-MRI
data using MUSIC software. The colour bar indicates the number of standard
deviations above the mean intensity of the blood pool for the LGE-MRI in-
tensity values. (B) The endocardial segmentations were then meshed to create
closed surface triangulations, and trimmed at the valves and veins (LA shown
in blue; RA shown in red). (C) For each of the LA and RA surfaces, two atrial
coordinates were defined. For the RA, these were a lateral-septal TV coordinate
(αRA, shown in septal-lateral view), and an IVC-SVC coordinate (βRA, shown
in lateral-septal view). For the LA, these were a septal-lateral coordinate (αLA,
shown in posteroanterior view), and a posterior-anterior coordinate (βLA, shown
in posteroanterior view). (D) These coordinates were used to map atrial struc-
tures from the original reference mesh to the target patient specific mesh. (E)
Vector fibre data were also mapped between geometries.

[16]. The CARTO3 electroanatomic mapping system generated
surface meshes for the LA with an average edge length of 1.9
mm. The methodology presented here is general and applicable
to any atrial surface data.

2.2. Segmentation and mesh modifications

Atrial geometry meshes were constructed using the follow-
ing steps. Left and right atrial late-gadolinium enhancement
data were segmented using MUSIC software (Electrophysiol-
ogy and Heart Modeling Institute, University of Bordeaux, Bor-
deaux France, and Inria, Sophia Antipolis, France, http://med.inria.fr)
(see Fig 1A). Closed surface triangulations of these segmenta-
tions were generated using the IRTK mcubes algorithm [17].
The triangulation for the LA was then cut at the MV and the
four PVs were trimmed; correspondingly, the RA was cut at the
tricuspid valve (TV), with the superior vena cava (SVC), the
inferior vena cava (IVC), and coronary sinus (CS) trimmed us-
ing Paraview software (Kitware, Clifton Park, NY, USA) (see
Fig 1B). The fossa ovalis (FO) was identified from the segmen-
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tation as the area of intersection of the LA and RA meshes, and
a circular area of each mesh corresponding to the overlapping
region was removed, as for the original bilayer mesh [18]. The
meshes were then remeshed using mmgtools meshing software
(https://github.com/MmgTools/mmg), with parameters chosen
to produce meshes with an average edge length of 0.34 mm, to
match the resolution of the previously published bilayer model
[18].

2.3. Atrial region assignment

The following atrial regions were assigned to the model: the
PVs, the SVC, the IVC, and the left and right atrial appendages
(LAA and RAA). These structures are visually evident in the
constructed LA and RA meshes, and as such may be labelled
using a variety of methods; further details are given in the sup-
plementary methods. These region labels are used in the UAC
calculation to define the boundaries between the superior veins
and the LA body, as well as between the junctions of the SVC
and IVC with the RA body.

2.4. Calculating the UACs

2.4.1. Overview
UACs were calculated by solving Laplace’s equation on the

LA or RA mesh with Dirichlet boundary conditions of zero and
one applied along two sets of boundary nodes. Each of the LA
and RA were parametrised using two coordinates selected to
be as close to orthogonal as possible everywhere. For the LA,
these coordinates were a septal to lateral coordinate, αLA, and a
coordinate from the posterior MV to the anterior MV, βLA. Cor-
respondingly for the RA, αRA was from the lateral TV to the
septal TV, and βRA passes from the IVC to the SVC. Examples
of the coordinates are shown in Fig 1C. These directions were
chosen as they result in the same LA and RA orientation that
is used clinically for 2D visualisation of biatrial basket catheter
data [19]. The Laplace solves were performed using the CARP
simulator [20]. The following sections describe the choice of
boundary nodes used for each of the coordinates, and a rescal-
ing required to define the final coordinates. We chose to define
the LA and RA coordinates to be as similar to each other as
possible. As such, we define equivalent roof boundaries using
the superior veins only for the LA, and the venae cavae for the
RA. These coordinates can be used to map scalar data including
atrial regions between meshes (see Fig 1D), and vector fields
such as fibre information (see Fig 1E).

2.4.2. User input: point selection for the UACs
Calculation of the UACs requires the manual selection of

three points for the LA and two points for the RA. For the LA,
the geometry was initially rotated to be in the posteroanterior
view, and a point chosen at the junction of the right superior
PV (RSPV) with the LA body, and at the junction of the left
superior PV (LSPV) with the LA body, at the boundary between
the posterior and anterior walls (see Fig 2). These two points
were used to construct a roof line to define how the geometry is
divided into posterior and anterior components. A third point,

A B

C

D

E

LA roof LA septum

RA

RAA

LAA

LAA

LSPV RSPV RIPV

RSPV

IVC SVC

FO

Figure 2: Selection of five landmark points: Two points were chosen on the
LA roof; one on the LA septum; and two on the RA lateral-septal boundary.
The LA roof points were chosen at the junction of the LA body with the LSPV
and RSPV, at the highest posterior location for the LA. The LA septal point was
chosen to be just anterior of the FO location. The RA lateral-septal points were
chosen in a similar way to the LA roof points; that is at the junction of the RA
body with the IVC and SVC, at the highest lateral location for the RA.

determining the septal boundary, was chosen on the LA septum,
at the anterior edge of the FO location (see Fig 2).

For the RA, two points were chosen to construct a roof line,
which was used to divide the geometry into lateral and septal
components. To select these points, the RA geometry was ro-
tated to the lateral view, specifically such that the RAA was
at the bottom right of the viewpoint, as shown in Fig 2. This
orientation allowed for the selection of points at the boundary
between the lateral and septal walls. Two points were selected
along this boundary, at the highest point in view; one of these
points was chosen at the SVC-RA body junction and the other
was at the IVC-RA body junction. These regions and points are
shown in Fig 2.

2.4.3. LA septal-lateral coordinate boundary nodes
The boundaries of the LA septal-lateral coordinate αLA were

constructed between the MV and the junctions of each of the
superior veins with the LA body. To achieve this, first the MV
ring nodes were identified as those in the largest connected edge
list, and the RSPV-LA and LSPV-LA junctions were identified
as nodes that are in elements from both regions (see Fig 3 A).
The septal boundary of the LA septal-lateral coordinate, αLA,
consisted of the shortest geodesic path between the RSPV-LA
junction nodes and the MV ring nodes that went through the
user-defined FO point (see Fig 3 B). Geodesic paths were calcu-
lated using a marching cubes algorithm [21]. The lateral bound-
ary was the shortest geodesic path between the MV ring nodes
and the LSPV-LA junction nodes that was posterior of the LAA
(see Fig 3 B). To ensure that this path was posterior of the LAA,
the path had to result in the LAA being on the anterior wall in
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the UAC system, which was automated by including a criterion
that the left inferior PV (LIPV) and LAA were assigned to op-
posite walls (see Fig 3 B).

2.4.4. LA posterior-anterior coordinate boundary nodes
Calculation of the LA posterior-anterior coordinate (βLA)

required solving the Laplace equation with a set of boundary
nodes, followed by a rescaling to separate the posterior and an-
terior components of the geometry. The first boundary was the
MV ring, which was set to zero. The second boundary was the
roof boundary nodes, which were set to one. This boundary
consisted of the geodesic path between the user-defined points
at the posterior-anterior boundary of the RSPV-LA and LSPV-
LA junctions (the LSPV-RSPV path, see Fig 3 C), together with
the posterior components of the junctions of the superior veins
with the LA body. Using only the posterior component of the
junctions of the superior veins with the LA body ensures that
the superior veins are well-defined in the UAC system.

To determine the posterior component of the superior PV-
LA junctions, four markers were automatically identified (see
Fig 3D) as follows: 1) where the septal boundary meets the
RSPV-LA junction, 2) where the RSPV-LA junction meets the
LSPV-RSPV path, 3) where the LSPV-RSPV path meets the
LSPV-LA junction, and 4) where the LSPV-LA junction meets
the lateral boundary. Each pair of points (1&2 and 3&4) di-
vided the vein openings into two segments, one posterior and
one anterior (see Fig 3 D), but it was unknown which segment
was which. The posterior portion was then automatically se-
lected as the path that mapped the superior veins to the anterior
wall in the UAC system (see Fig 3 E), which was determined
by whether the LAA, LSPV and RSPV were path connected.

The aforementioned use of markers at the path boundaries
ensures that the set of nodes consisting of the lateral, septal and
roof nodes used to separate the posterior and anterior walls form
a continuous path.

2.4.5. RA coordinate boundary nodes
The RA lateral-septal TV coordinate (αRA) was calculated

in a similar way to the LA posterior-anterior MV coordinate
(βLA, see Section 2.4.4). Specifically, the first boundary for the
Laplace solve was the TV ring, which was set to zero. The sec-
ond boundary, which was set to one, consisted of the geodesic
path between the user-defined points at the lateral-septal bound-
ary of the SVC-RA and IVC-RA junctions, together with the
lateral components of the junctions of the SVC and IVC with
the RA body. The lateral components of the SVC-RA and IVC-
RA junctions were determined using the same technique as for
βLA.

Correspondingly, the RA IVC-SVC coordinate (βRA) was
calculated in a similar way to the LA septal-lateral coordinate
(αLA, see Section 2.4.3). Specifically, the RA IVC boundary
consisted of the shortest geodesic path between the IVC-RA
junction nodes and the TV ring nodes. Similarly, the RA SVC
boundary was the shortest path between the SVC-RA junction
nodes and the TV ring nodes. The RA IVC boundary was cho-
sen such that the CS was on the septal wall in the UAC system,

A) Identify region boundaries

B) Calculate lateral and septal boundaries

C) Calculate LSPV-RSPV path

E) Determine posterior-anterior boundaries
Incorrect choice: Correct choice:

Lateral:Septal: LAA condition:

D) Candidate paths for LSPV-LA and RSPV-LA junction

Identify markers:

1

2
3

4

Candidate posterior paths:

1*
4*

3* 2*

Figure 3: Calculation of Dirichlet boundary nodes used for Laplace solves.
(A) Identify region boundaries at the RSPV-LA and LSPV-LA junctions and
MV (black lines). (B) Calculate the lateral and septal paths, ensuring the LAA
is on the anterior wall (shown in black, with the posterior wall in white and su-
perior veins in green). The intersections of these paths with the RSPV-LA and
LSPV-LA junctions are marked (by 1 and 4, respectively). (C) Calculate the
geodesic path between the LSPV and RSPV user-defined markers (purple line).
The intersections of this paths with the RSPV-LA and LSPV-LA junctions are
marked (by 2 and 3, respectively). (D) Use the four points (intersection of lat-
eral, septal and roof boundaries with LSPV-LA and RSPV-LA junctions; points
1-4) to divide the superior vein openings into anterior and posterior segments
(purple and green, respectively). (E) Determine the anterior-posterior boundary
choice (purple line) such that the superior veins are assigned as anterior (black
region).

which was automated by including a criterion that the RAA and
CS were assigned to opposite components of the geometry.

2.4.6. Solving the Laplace equation
Fig 4 B shows the Laplace solution for the IVC-SVC co-

ordinate (βRA), ranging between 0 on the IVC boundary and 1
on the SVC boundary. Similarly, the LA septal-lateral coordi-
nate (αLA) ranges between 0 on the septal boundary (RSPV-MV
path) and 1 on the lateral boundary (LSPV-MV path).

Solving the Laplace equation for the posterior-anterior MV
LA boundary nodes (to calculate βLA), or the septal-lateral TV
RA boundary nodes (to calculate αRA), resulted in a solution, ψ,
ranging between 0 at the valve ring nodes and 1 at the LA roof
or RA lateral-septal boundary (see Fig 4 A). This was then used
to calculate a coordinate between 0 and 0.5 on the posterior
LA wall (or equivalently the lateral RA wall), and between 0.5
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and 1 on the anterior LA wall (or septal RA wall), as follows.
The mesh was automatically separated into posterior LA (or
lateral RA) and anterior LA (or septal RA) segments using the
previously defined nodes. For the LA, these nodes consisted of
the lateral and septal boundaries used for αLA, together with the
roof nodes used for βLA. For the RA, these nodes consisted of
the SVC and IVC paths used for βRA, together with the lateral-
septal boundary used for αRA (see Fig 4 C). Posteriorly βLA was
then calculated as βLA = 0.5·ψ, and anteriorly as βLA = 1−0.5·ψ.
Equivalently, laterally αRA was then calculated as αRA = 0.5 ·ψ,
and septally as αRA = 1 − 0.5 · ψ (see Fig 4 C).

To ensure appropriate coordinate assignment for elements
along the septal and lateral LA boundaries (or IVC and SVC RA
boundaries), these boundary nodes (corresponding to αLA=0,
αLA=1, βRA=0, and βRA=1) were duplicated and elements renum-
bered to the posterior or anterior choice of LA node (lateral or
septal choice of RA node), as appropriate.

2.4.7. Coordinate rescaling
The septal-lateral coordinate for the LA (αLA) and the IVC-

SVC coordinate for the RA (βRA) were rescaled to account for
differences in atrial morphology between patients. This was
achieved for the LA by choosing a path spanning the poste-
rior wall by automatically selecting nodes along a geodesic of
constant posterior-anterior coordinate (βLA). Equivalently, an
RA path spanning the lateral wall was selected by automati-
cally selecting nodes along a geodesic of constant lateral-septal
TV coordinate (αRA) (see Fig 4 D). Tracing along this geodesic
yielded a mapping between the Laplace solution and the nor-
malised geodesic distance. The mapping was then applied to
the entire Laplace solution to arrive at the septal-lateral LA co-
ordinate (αLA) and IVC-SVC RA coordinate (βRA). The final
UACs are shown in Fig 4 E and F.

2.5. Scalar value mapping

To map scalar data between meshes, both the reference and
the target geometry in (x, y, z) were expressed in terms of the
universal coordinates (α, β). For each element in the reference
geometry, a change of basis matrix M from (x, y, z) to (α, β)
was calculated and used to map the mid-point of the element in
(x, y, z) to (α, β). Similarly, mid-points in the target geometry
were mapped to universal coordinate space.

To determine a scalar field value for an element in the target
geometry, we first identified the element of the reference geom-
etry in universal coordinates that contains the mid-point of the
target element. This mid-point of the target element was then
expressed in barycentric coordinates of the reference geome-
try element. The scalar value was then assigned as a distance
weighted average of the vertex values. For computational ef-
ficiency, only the five closest elements to the target mid-point
were checked (assessed using their mid-points in universal co-
ordinate space), and in the case that none of these elements
contained the target point, the scalar value was assigned as a
regular distance weighting of the three closest nodes. This use
of barycentric interpolation was necessary for transferring data
between meshes of different resolutions.

B) IVC-SVC LaplaceA) Lateral-septal Laplace

C) Lateral-septal walls D) Geodesic path rescaling

E) RA Universal Atrial Coordinates

F) LA Universal Atrial Coordinates

0 10 1

0 10 1

0 10 1

αLA βLA

βRAαRA

Figure 4: Laplace calculations and UACs. (A) The Laplace field generated by
solving for boundaries of 0 at the TV, and 1 along the lateral-septal boundary.
(B) The Laplace field generated by solving for boundaries of 0 at the IVC path,
and 1 along the SVC path. (C) Mesh partitioned into lateral and septal regions.
(D) The lateral portion of an isoline (value 0.7) for the Laplacian solve in (A)
was used to rescale the coordinate in (B). (E) UACs for the RA. (F) UACs
for the LA. Isolines are shown at 0.04 increments (except for A which is 0.08
spacing).

2.6. Vector data mapping

To map vector data such as cardiac fibre directions between
meshes, we followed the methodology used for the UVC sys-
tem [15]. Specifically, we constructed a local orthonormal ba-
sis at each point in the source mesh based on UAC, we then
interpolated the vector field to this point, and finally projected
the desired vector to this basis. We then constructed a local
orthonormal basis for each point in the destination mesh, and
projected the vector direction in UACs from the source geome-
try to Cartesian space.

2.7. Constructing patient specific bilayer meshes using scalar
and vector mapping

An application of the UAC system is constructing patient
specific meshes, which may be used for simulations of cardiac
electrophysiology, with regional heterogeneity and fibre direc-
tion. This construction utilises the previously published bilayer
model [18] as an atlas model of atrial anatomy including the
location of atrial structures and atrial fibres. To construct bi-
layer meshes, first UACs are used to define several of the atrial
structures and fibre directions; second, BB and the CS are in-
corporated using a sequence of rules; and finally the endocar-
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dial and epicardial layers are coupled using discrete resistance
line connections.

2.7.1. Region and fibre vector assignment
Both scalar and vector mapping were used to generate a bi-

layer mesh with endocardial and epicardial layers. The PVs,
LAA, RAA, SVC and IVC regions were assigned using the
techniques listed in the Supplementary material, and then scalar
mapping using UACs was used to assign the CT, PM, SAN,
line of block and sections of BB (following Section 2.5). These
structures were encoded in the original LA and RA mesh by
assigning labels to the elements in the original mesh that are
closest to each of the elements in these structures. As such,
the original mesh UACs may correspond to multiple structures.
Elements in the LA and RA mesh of the new bilayer model
were assigned atrial structure labels depending on the origi-
nal mesh label, according to the closest element mid-point in
UACs. Once these labels were assigned, additional endocardial
right atrial structures (CT, PM, line of block, SAN) were added
to the mesh by duplicating elements labelled as these struc-
tures and projecting their locations 0.1mm endocardially, so
that they appear on the endocardial but not the epicardial layer.
The projection distance and arrangement of the atrial structures
followed the original bilayer model [18]. The LA endocardial
mesh was duplicated and projected 0.1mm epicardially to gen-
erate two surface meshes to construct a bilayer model.

Vector mapping of both the endocardial and epicardial LA
fibres was performed using the LA UACs to assign these fibres
to the target atrial geometry. Fibre directions were first assigned
to the RA and RAA using UAC vector mapping, and then this
was repeated on sections of the mesh representing the CT, PM
and line of block regions to assign fibres to the corresponding
structures. Vectors were normalised.

BB and the CS require additional steps for their construc-
tion because they are not fully determined by the UAC sys-
tem. Details for their inclusion in the model, and the use of
discrete resistance line connections between atrial surfaces are
described in the supplementary material.

2.7.2. Cylindrical fibres
In the instance that the universal coordinate system does

not have complete coverage of an atrial structure, specific rules
can be used to assign fibre directions. For example, for cylin-
drical structures (such as the PVs, IVC and SVC) a possible
choice is to assign longitudinal fibre directions as a function of
normalised distance along the cylinder. Fibre directions were
modelled as parallel to the z cylinder axis at the distal rim, and
circumferential at the LA-PV junction, varying linearly within
this 90◦ range along the length of the cylinder.

3. Results

We tested and evaluated the methodology across different
applications using atrial geometry meshes constructed from late-
gadolinium enhancement MRI data for 12 patients. The LA
and RA geometries covered a range of atrial sizes (endocar-
dial surface area for the LA: 88.6 - 167.2cm2; RA: 106.3 -
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Figure 5: Average error in point transfer does not depend on geometry
surface area. Average error in µm for mapping from an atlas geometry to
either the atlas (shown as crosses) or one of twelve different atrial geometries
and back again is plotted against endocardial surface area for the LA (blue) and
RA (red).

188.1cm2). We evaluated point transfer (Section 3.1, 12 pa-
tients); scalar mapping (Section 3.2, 1 patient); construction
of patient-specific geometries (Section 3.3, 12 patients); fibre
mapping (Section 3.4, 1 patient); sensitivity to landmark selec-
tion (Section 3.5, 3 patients); and visualisation (Section 3.6, 12
patients).

3.1. Point transfer
To evaluate the accuracy of point transfer using UACs, we

mapped the mesh vertices from one geometry to another and
back again, and then computed the distance error of the mapped
points from the original vertices. Specifically, following our
UVC paper [15], we mapped xs → Xs → XD → xD → XD →

Xs → xs, where x represents points in Cartesian space, X rep-
resents points in UAC space, and the superscripts refer to the
source (s) or destination (D) mesh. We mapped from both the
LA and RA of the original bilayer model [18] to twelve differ-
ent atrial geometries. The average errors are shown in Fig. 5 as
a function of the LA or RA surface area. The anatomies cover
the clinical range of surface areas (LA range: 88.6 - 167.2cm2;
RA range: 106.3 - 188.1cm2) [22], and average error does not
depend on surface area (LA: correlation coefficient R = -0.19,
p = 0.56; RA: R=0.31, p=0.32). Average mapping error for the
LA was less than 90 µm and for the RA was less than 20 µm
(average mesh edge length was 340 µm).

3.2. Scalar maps and comparison to registration techniques
One application of the UAC system is for mapping scalar

data between different atrial geometries. Here we compare UAC
mapping to a standard registration technique for transferring
electroanatomic voltage data to an MRI geometry, with the mo-
tivation of correlating electrical and structural data. Specifi-
cally, the UAC system was used to transfer bipolar peak-to-peak
voltage data measured using the CARTO3 electroanatomic map-
ping system to a mesh generated from MRI data for the same
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Figure 6: Mapping bipolar peak-to-peak voltage: (A) Peak-to-peak voltage
measured using the Carto system. (B) Peak-to-peak voltage mapped from (A)
using UACs to a mesh created from LGE-MRI for the same patient. (C) Peak-
to-peak voltage mapped from (A) using an affine registration technique. Black
regions indicate areas without recording values. The LAA is not included in the
Carto geometry leading to a large area without data on the MRI.

patient; shown in Fig 6. The peak-to-peak voltage maps are
visually similar; the mapping using UACs was then compared
to a mapping using standard registration techniques. This reg-
istration was performed using the Medical Image Registration
ToolKit (MIRTK, https://github.com/BioMedIA/MIRTK), us-
ing the register function to perform an affine registration to the
imaging data, followed by using the transform-points function
to apply this transformation to the surface vertices. The av-
erage absolute point-wise difference in scalar values between
the UAC (Fig 6 B) and affine registrations (Fig 6 C) is 0.26 ±
0.26mV.

3.3. Patient specific geometries

Fig. 7 shows atrial structures for the reference bilayer ge-
ometry (Fig. 7 A), mapped to four of the twelve patient spe-
cific geometries (Fig. 7 C). Visually the atrial structures are
located in similar locations across meshes. This demonstrates
the utility of UACs for constructing meshes from patient imag-
ing data with atrial structures, allowing the incorporation of re-
gional heterogeneity in the model. The atrial regions are also
shown in 2D for the LA and the RA (Fig. 7 B), demonstrating
the intermediate step of the mapping.

3.4. Fibre mappings and comparison to registration techniques

Fig. 8 shows fibre directions for the original bilayer model,
as well as fibre directions mapped to different patient geome-
tries. The mapping demonstrates the use of UACs for construct-
ing patient specific meshes with fibre direction.

The technique developed in this paper for mapping of fibre
directions using UACs was compared to fibres assigned using a
previously published image based mapping method [23]. This
image based method uses a manual land-marking process fol-
lowed by a 3D thin plate spline transformation [24] and a large
deformation diffeomorphic metric mapping [25] to transform
an atlas geometry to a patient specific geometry. The optimal
deformation field calculated by this image based method is then
applied to a vector field of atlas fibres to obtain mapped patient
specific fibre orientations. The patient specific geometry con-
sidered here is from [26] for which fibres were assigned using
the image based mapping method with the atlas geometry of
[12]. To compare our mapping methodology to that of [23],
fibres were mapped using both methods from a human atrial

βLA

αLA

βRA

αRA 0

1

11

1

0

C) Meshes derived from MRI data

A) 3D representation B) UAC representation

LAA

LSPVRSPV

LIPVRIPV

RAA

PM
CT

SVC

IVC
CS

Figure 7: Patient specific geometries: (A) The original bilayer model dis-
played in posteroanterior and anteroposterior view. RA endocardial structures
are displayed as epicardial, for visualisation purposes. (B) 2D UAC representa-
tion with regions labelled for the RA (left) and LA (right). (C) Meshes derived
from MRI data for four patients.

A

B

C

D

Atlas LA epicardial posterior fibres

CT & PM fibres

RA epicardial fibres

LA epicardial anterior fibres

Figure 8: Fibre mapping: The original bilayer geometry is shown on the left
column, with fibres for the: (A) LA epicardium, posteroanterior view; (B) LA
epicardium, anteroposterior view; (C) CT and PM; (D) RA epicardial fibres.

atlas [12], where only the endocardial and epicardial surface
fibres were considered (Fig 9 A and D).

There is spatial variation in the degree of correspondence
between the methods, with a degree of agreement on the lower
posterior wall and roof, and more differences on the mid poste-
rior wall (compare Fig 9 B to C for endocardial fibres, as well as
E to F for epicardial fibres). To spatially quantify the effects of
these differences in cardiac model simulations, activation was
simulated with stimulation from two different pacing locations
for the four different fibre arrangements (Fig 9 B, C, E and F),
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Figure 9: Comparison of fibre mapping techniques: Endocardial (A-C) and
epicardial (D-F) fibre directions for a human atrial atlas (A&D) mapped to a
different patient geometry using either UACs (B&E) or an image based method
(C&F). Differences in activation time for the endocardium and epicardium with
pacing from the roof or MV respectively are shown in (G) and (J). Activation
time maps corresponding to (B, C) are shown in (H, I) for roof pacing, and for
(E, F) in (K, L) for MV pacing.

with conductivities of 0.4 S/m in the longitudinal direction and
0.1 S/m in the transverse direction. Differences between en-
docardial and epicardial activation for the same method were
small (mean total activation time difference: 4.1 ± 3.1 ms; mean
point-wise activation time difference: 3.7 ± 2.2 ms). Differ-
ences between the two methods were larger (mean total activa-
tion time difference: 12.2 ± 5.3 ms; mean point-wise activation
time difference: 7.2 ± 2.1 ms). An example map of these ac-
tivation differences for the endocardium is shown in Fig 9 G,
in which differences are seen on the posterior wall below the
RIPV due to differences in the fibres between Fig 9 B and C in
this region. Fig 9 H and I show the corresponding activation
time maps for roof pacing for the endocardial UAC fibres in B,
and the image-based fibres in C, respectively. Fig 9 J shows that
there are large differences in activation time on the roof of the
epicardial LA when pacing from the MV. Comparing the acti-
vation time maps in Fig 9 K and L shows that the isochrones on
the roof are similarly spaced, and the differences seen in Fig 9
J are due to large differences in the fibre directions on the lower
posterior wall between Fig 9 E and F, rather than differences in
fibres on the atrial roof.

3.5. Sensitivity to choice of markers

We investigated the sensitivity of the UAC mapping to as-
signment of the UAC landmark points. The left atrial coordi-
nates depend on the points selected at the LSPV-LA and RSPV-
LA junctions. This is because this path is used for the roof
Dirichlet boundary condition for βLA. To a lesser extent, this
choice also affects αLA since the roof line determines the loca-
tion of the isoline used for rescaling. The choice of the third
LA point, which is just anterior of the FO affects the location
of the septal boundary condition for αLA. For equivalent rea-
sons, the right atrial coordinates depend on the points selected
at the SVC-RA and IVC-RA junctions. We consider the MV
and TV ring positions as fixed, since these are assigned during
the segmentation and mesh modification step of the pipeline.

The sensitivity of the mapping to the five points selected for
the UAC assignment was determined. An example is shown in
Fig 10 in which the LSPV and RSPV points were modified to
be at the middle and base of the LA-PV junctions. As a final
example, the septal boundary marker was moved to be posterior
of the FO. Modifying the points as such resulted in the follow-
ing angle errors: middle roof assignment (median angle error:
6.0◦), base roof assignment (median angle error: 8.1◦), poste-
rior FO (median angle error: 7.2◦).

To investigate the effects of atrial morphology on point se-
lection, we modified the LSPV and RSPV marker locations for
two further anatomies. For one of these, the left PV were dif-
ficult to segment separately (see supplementary Fig 3); and the
other corresponded to the LA with the largest point-to-point
mapping error in Figure 5. The base roof assignment median
angle error was similar for all three anatomies: median angle
errors were 8.1◦, 8.1◦ and 7.9◦.

3.6. Visualisation

Fig 11 shows phase singularity distributions displayed on
different atrial geometries, as well as in two-dimensional UACs.
These distributions vary across geometries. The use of UACs
for two-dimensional visualisation allows each of the LA and
RA to be displayed in a single map (LA shown in Fig 11 C; RA
in Fig 11 D), so that multiple views are not necessary. Convert-
ing each map to the same 2D coordinate system also allows cor-
relations to be calculated between different geometries. These
maps are for the LA and RA epicardial surfaces. Other atrial
structures can be assessed separately, as shown in Fig. 7 B.

4. Discussion

In this paper, we present a universal atrial coordinate system
that can be used to map scalar and vector data between any two
geometries, to map multiple data sets recorded from an individ-
ual and also registering datasets recorded across a population;
to visualise atrial data in two dimensions; and to construct pa-
tient specific bilayer computational models, with electrophysio-
logical heterogeneity and fibre direction. Our methodology re-
quires the manual selection of only five points to create a patient
specific mesh with regional heterogeneity and fibre direction.
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Figure 10: Point sensitivity. (A) Boundary nodes used for the laplace solves
for the baseline case, a case with the LSPV and RSPV markers moved to the
middle of the veins (roof 1), a case with the markers at the base of the veins
(roof 2), and a case with the septal marker moved to be posterior of the FO.
These changes visibly change the boundary condition locations. (B) LA UACs.
(C) Epicardial posterior fibres. (D) Epicardial anterior fibres.

Our methodology allows 2D visualisation on a square ge-
ometry for both the LA and RA, and as such is similar to the
visualisation of [3] and [4]. This 2D representation (see Figs 7
& 11) in a standard coordinate system allows easy regional
comparison across multiple patients, calculation of correlation
between measures, and provides a format compatible with CNN
analysis. For clinical utility, we used the same LA and RA
orientation as is used for 2D visualisation of biatrial basket
catheter data [19].

Point transfer using UAC was shown to have a high accu-
racy (see Fig 5), with all mean errors much smaller than the av-
erage mesh element edge length. Average error in point trans-
fer did not depend on total LA or RA surface area, but was
affected by differences in LAA morphology. UAC scalar map-
ping performed similarly to a standard affine registration tech-
nique using MIRTK when mapping from a low resolution elec-
troanatomic mapping mesh to a higher resolution MRI geome-
try (see Fig 6). Application of the technique to a larger number
of cases is required to assess the implications of differences in
these mappings for evaluating the location of low voltage areas
(for example <0.1mV), which may be used to guide ablation
therapy. However, the UAC method is independent of the ini-
tial orientations and coordinates of the two meshes, making it
more robust to mesh location initialisation. In addition, UAC
mapping may offer better performance than affine registration

A
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0 1

1

0 1

1
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αRA

β L
A

β R
A

Figure 11: Phase singularity plots visualised in 2D: Normalised phase singu-
larity density maps for three patients in: (A) Posteroanterior view; (B) Antero-
posterior view; (C) LA 2D representation; (D) RA 2D representation. Orienta-
tion as per Fig. 7.

for cases in which the two atrial geometries have very different
morphologies.

Our atrial pipeline uses UACs to assign both atrial struc-
tures for regional heterogeneity and fibre directions to the mesh.
As such, a single technique, with the manual selection of only
five points (see Fig 2) can generate a patient specific mesh (see
Fig 7) with fibre direction (see Fig 8). [27] use a rule-based
technique with set of 13 anatomical landmark points to assign
fibres and regions to an LA model, and the location of BB and
the FO were assigned manually [28]. Many modelling stud-
ies only include the LA or else do not include atrial structures
explicitly.

Our current pipeline for constructing patient specific meshes
uses a previously published biatrial bilayer model [18] as the
reference geometry, to inform locations of atrial regions and
fibre directions. As such, all patient specific models have spe-
cific geometries from patient MRI data, but the morphology of
BB, the PM, CT, the line of block and the SA node are similar
to the original bilayer geometry. These structures cannot eas-
ily be determined from current MRI resolution, necessitating
this mapping approach. The CS was included as a cylindrical
structure with a single connection point to the LA; however, the
model could easily be modified to include multiple connection
points.

Similarly, fibres are currently mapped from the original bi-
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layer model for which fibres were included based on histolog-
ical descriptions [29], combined with a rule-based approach
[10]. The fibres assigned using our UAC methodology (see
Fig 8) are different to those using an image based approach (see
Fig 9); however, it is difficult to determine which distribution is
more appropriate. The methodology introduced in our paper is
general, and can easily use a different vector map as an input.
For example, [30] measure high-resolution fibre data in sheep
atria using histology, and the recent study of [31] provides high
resolution DT-MRI data, which could be used as an alternative
fibre field input for the mapping.

During the development of the methodology, multiple choices
of coordinates were tried and compared. Our initial motivation
for the choice of coordinates was that they should be as close to
orthogonal as possible and use clear atrial landmarks. The UVC
system uses a rotational coordinate, but we found this was not
suitable for the atria as the morphology is too far from spherical
or cylindrical. Instead, we used a lateral-septal coordinate, to-
gether with a posterior-anterior coordinate. Instead of following
the apicobasal UVC construction by assigning 0 at the valve and
1 at the roof of the atria, the posterior-anterior LA UAC (equiv-
alently septal-lateral RA UAC) was modified to have different
values on the posterior and anterior LA walls (equivalently sep-
tal and lateral RA walls). For the construction of the LA lateral-
septal coordinate, we initially tried boundary conditions of 0 at
the LAA and 1 at the FO. However, close to the FO, the field
was radial so this region of the mesh was not well defined by the
coordinate system. Using the LAA as a boundary did not create
such a problem since it is larger; however, the size and shape
of the LAA-LA boundary varies between meshes, and using a
linear boundary was found to be optimal. An alternative choice
for the origin of the LA coordinate system is the centre of the
line connecting the median points of the left and right PVs, as
suggested by [31].

Five points were manually selected for UAC assignment;
four of these points were on the veins (see Fig 2). Previous
studies have found that landmarks at the PV-LA junction are the
most accurate choice for LA registration [2, 32], which offers
further justification for our choice of markers. The UAC system
requires the selection of points on the superior veins; as such,
the coordinate system is still applicable for patients with three
or five veins as long as two veins are chosen to represent the
LSPV and RSPV. The construction of the UAC system could be
adapted to include more or fewer landmark points. For exam-
ple, more points could be included to further constrain the cur-
rent boundary lines, or to include a greater number of boundary
lines. Conversely, these landmarks could be removed by instead
using properties of the anatomy; for example, by assigning the
LSPV and RSPV markers as the points closest to the inferior
veins.

4.1. Limitations
This UAC system could be extended to three dimensions by

the inclusion of a transmural coordinate, by solving a Laplace
equation with 0 on the endocardial surface and 1 on the epicar-
dial surface as in [33], to incorporate transmural fibre assign-
ment. In addition, the technique presented here for mapping

vector data could be adapted to instead use deformation gradi-
ents as for the UVC system [15]. The degree of distortion in the
UAC space gives an indication of the morphology of the atrial
anatomy, and could be used as a geometry metric [1]. Atrial
LGE-MRI segmentation is challenging, and current resolution
limits mean we chose to map atrial structures, including BB, the
CT and PM, from a reference geometry. Future studies could
use reproducible segmentation platforms [34] and automated
segmentation techniques [35, 36]. The inclusion of BB and the
CS in the biatrial bilayer model required additional methodol-
ogy as these structures are not well represented in the UAC sys-
tem. The degree of reproducibility in region assignment could
be improved for the PVs by using an automated technique and
the system could be integrated into a single tool for clinical util-
ity; for example, following [34].

4.2. Conclusions

We have developed a novel coordinate system that has mul-
tiple applications, including mapping scalar and vector data be-
tween any two atrial geometries, visualising data in 2D and con-
structing patient specific atrial geometries. We demonstrated
that a patient specific bilayer biatrial geometry with repolarisa-
tion heterogeneity and fibre direction can be constructed with
the manual selection of just five points. The technique was val-
idated against standard registration techniques for both scalar
and vector mapping.
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