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J.A.S MACPHERSON

Abstract

Allostery is the regulation of protein function from a remote non-active binding site. Ligand

binding incites a rapid process whereby information travels significant biomolecular distances

to enact energetic changes to the the protein’s functional centre. Despite the demonstrated

importance of protein allostery in maintaining cellular homeostasis, investigating the mecha-

nisms over the molecular temporal and spatial scales remains a challenge.

Fructose 1,6-bisphosphate (FBP) activates pyruvate kinase M2 (PKM2) through a well-described

feed-forward process in glycolysis. Less understood, however, is how allosteric regulation of

PKM2 occurs on a molecular level. Moreover, as several amino acids can compete for an

additional binding site, it has thus far been unclear how concurrently bound ligands control

PKM2 catalysis.

This thesis shows that, in a panel of cancer cell lines, the intracellular concentration of FBP

exceeds that which is required to fully saturate binding to PKM2. Moreover, PKM2 is ex-

posed to a dynamic concentration range of amino acids including the activator L-serine (Ser)

and the inhibitor L-phenylalanine (Phe). When FBP is constitutively bound, Ser and Phe

competitively regulate the maximal velocity of the PKM2-catalysed reaction, independent

from changes to the protein’s oligomeric state. To investigate the molecular determinants of

multi-ligand regulation, a novel computational method AlloHubMat is developed and applied

towards the analyses of molecular dynamics simulations of PKM2, identifying a number of

’allosteric hub’ residues. A selection of the allosteric hub residues are mutated and an integra-

tive approach is used to elucidate their impact on FBP- and Phe-mediated regulation of PKM2.

The findings herein demonstrate a role for residues involved in FBP-induced allostery in en-

abling the integration of allosteric input from Phe and reveal a mechanism that underlies the

co-ordinate regulation of PKM2 activity by multiple allosteric ligands.
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Chapter 1

Introduction

1.1 Enzyme catalysts are required to sustain cellular life

Life on earth is dependent on the chemical synthesis of molecules, which constitute the build-

ing blocks of cellular organisms. Early proto-organisms had to adopt a way in which they

could ensure a constant nutrient supply, without which life would be unlikely to persist on

geological time scales. The selective pressure for auxotropy witnessed the emergence of es-

sential chemical reactions that convert naturally available nutrients into various molecules to

support specific functions. This included the provision of a wide variety of molecules suitable

for the many complex anabolic and catabolic reactions essential for the support of organismic

growth and division such as sugars, lipids, nucleotides and amino acids. The ability to perform

chemical synthesis is achieved through pathways of sequential reactions collectively known as

metabolism, and subsequently rendered organisms non-reliant on specific geochemical condi-

tions enabling them to colonise a diversity array of ecological niches.
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1.1.1 The evolutionary emergence of biological catalysts

Metabolism can be viewed as a network of inter-connected chemical reactions, whose topolog-

ical features are largely conserved in all studied organisms. Two important inferences can be

drawn from the highly conserved nature of metabolic reactions: (i) metabolic networks likely

reached a state of efficiency very early on in evolutionary time scales that could barely be im-

proved further by natural selection, and (ii) all present forms of metabolism likely descend from

the same original network1. These conclusions give rise to the hypothesis, originally proposed

by Aleksandr Oparin in his 1938 book ’The Origin of Life’2, that a common metabolic network

topology dates back to non-enzymatic chemistry in the presence of simple inorganic ions as

found in the highly reducing geochemical environment that made up the Archaen sediment.

Indeed, metabolic intermediates of two pathways in central carbon metabolism - glycolysis and

the pentose phosphate pathway (PPP) - were shown to undergo non-enzymatic interconver-

sion in chemical compositions replicating the pre-biotoic Archaen ocean3. Additionally, ions

that were abundant in the Archaean sediment, such as Fe2+ and PO3−, can catalyse reactions

which are reminiscent of the modern PPP, suggesting that modern metabolic reactions did not

necessarily result from the evolutionary selection of complex enzyme catalysts, but rather that

such reactions were able to proceed under prevailing chemical conditions in the Archaean sea4.

Small molecules such as metal ions can efficiently catalyse many chemical reactions. Sev-

eral constraints on biological systems, however, render their utility insufficient for supporting

complex cellular life per se. Many metal ion catalysts found at high concentrations in the Ar-

chaean ocean, do not accumulate to sufficient concentrations in modern biological conditions,

such that they can function as efficient catalysts. For example, ferrous iron is readily water

soluble in the absence of oxygen, and anoxic conditions in the earth’s early surface environ-

ment resulted in the Archaean milieu preserving a high iron content, whereas its oxidised form

was readily depleted upon the great oxygenation event5. This likely imposed a strong selection

pressure for species to evolve their metabolism, becoming less dependent on the presence of
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increasingly rare and/or insoluble molecules, eventually leading to the emergence of macro-

molecular catalysts.

The RNA world hypothesis provides a conceptual framework whereby the emergence of ge-

netic selection can be explained by RNA molecules acting as self-replicators, thereby unifying

heritability and the propensity for stochastic evolution6. Indeed, RNA molecules have been

used in directed evolution experiments and, in a milestone paper, Lincoln and Joyce (2009)7

presented an experimentally designed in vitro self-replicating RNA enzyme. Nevertheless, the

ability for RNA enzymes to catalyse reactions, other than phosphoester cleavage or ligation,

is limited. The design of an RNA enzyme by Fusz et al. (2005)8 that could act as an in-

termolecular catalyst of the aldol reaction was found to be Zn2+-dependent. Peptides can

also bind to metal ions, and simple metal-binding RNA or peptide structures could provide

the starting point for positive selection by supporting multiple reactions, and would have pre-

vented the loss of low concentrations of metal ions through diffusion and/or precipitation4. A

likely consequence of non-enzymatic metabolism was that early enzyme and RNA catalysts

were able to evolve in the background of non-specific metal ion-catalysed reactions. To avoid

the production of superoxide from hydrogen peroxide by ferrous iron, modern cells evolved a

complex iron transport mechanism to prevent accumulation of ferrous iron in the cytoplasm9.

Subsequently, peptide and RNA secondary structures would have increased the affinity for

some substrates, facilitating access to the retained metal catalyst, giving rise to early enzymes.

A dynamic chemical system operating at typical biological rates, with all intermediates at

concentrations in the nanomolar to millimolar range, can be constructed only by use of ef-

ficient catalysts. The emergence of enzyme catalysts enabled metabolism to cope with the

high demand for biomass, necessary to sustain the requirements of cellular organisms (Fig.

1.1). Enzymes can achieve unrivalled substrate specificity due to their complex protein folds

and can distinguish between very similar compounds, which prevents the progression of un-

desirable side-reactions4. In addition to greater fidelity, the phenomenon of enzyme substrate
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specificity frequently results in the binding of metabolites, which closely resemble the natu-

ral substrate, to the active site of the enzyme, resulting in a steric preclusion of the natural

substrate from the catalytic site. This phenomenon manifests as competitive inhibition, and

provides an example of how the kinetic properties of enzyme catalysts can be reversibly regu-

lated. Compared to small-molecule catalysts, whose catalytic activity is not readily regulated,

the complex three-dimensional structure of enzymes houses pockets which allow metabolites

and other small molecules to bind and regulate enzyme activity. The implications of enzyme

regulation for metabolism are discussed in the following section.

Figure 1.1: Biological catalysts. An illustration of the structural complexity of small molecule
catalysts, ribozymes and enzymes, and their advantages and limitations.
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1.1.2 Metabolic homeostasis is maintained by allosteric regulation

The in vivo capacity of an enzyme to realise a particular catalytic flux, at steady-state, is

determined by its abundance and kinetic properties. Enzyme abundance can be regulated by

gene expression, whereas the kinetic properties of enzyme-catalysed reactions are regulated

post-translationally through covalent modifications under the control of signalling pathways

and via interactions of enzymes with small molecules. The average concentration of a metabo-

lite in central carbon metabolism is of the order of 1 mM, while glycolytic flux varies between

0.1 and 0.3 (mM· s−1).10 Assuming steady-state conditions, where the rate of metabolite

production is approximately equal to the rate of consumption, the rate of turnover of the pool

of metabolites (r) can be determined:

r =
P

v
,where

∂P

∂t
= 0 (1.1)

where P is the pool size, v is flux and t is time. The turnover time of metabolites in gly-

colysis therefore has an approximate range in mammalian cells between 2.8 s and 0.93 s. A

quantitative model of time-dependent gene expression changes in mouse fibroblast cells esti-

mated a median transcription rate of approximately 3 mRNAs per hour and and a median

translation rate of about 140 proteins per mRNA per hour11. Therefore, if the reactions of

metabolite consumption and production are not in balance, the metabolite pool will become

rapidly consumed (or compounded) before gene expression can affect changes to enzyme ac-

tivity by changing expression levels. Uncontrollable flux imbalances in cells would precipitate

an unsustainable biological situation where the metabolite pool would be converted into a

handful of compounds, consistent with the end-products of the most energetically favoured

enzyme-catalysed reactions in the metabolic network. In essence: metabolism cannot afford

to wait for gene expression changes. Instead, the kinetic properties of metabolic enzymes must

be tightly regulated to ensure homeostasis.

Feedback inhibition in metabolism was first hypothesised by Novick and Szilard (1950)12,
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when studying the regulation the tryptophan synthesis pathway, and has since been found

in almost every biosynthetic pathway. Computational models of simple metabolic networks

found that product-feedback inhibition enables optimal growth of cells by minimizing futile

cycling and optimizing fluxes13. Goyal et al. (2010)13 showed that, while feedback inhibition

is sufficient to control fluxes, the effectiveness of simple product-feedback inhibition comes at

the cost of producing high levels of certain metabolite pools, which would likely cause toxicity

and osmotic imbalance in cells. Large metabolite pool sizes can be restricted if feedback inhi-

bition is ultra-sensitive. In addition to active (orthosteric) sites, complex enzyme structures

present additional allosteric binding pockets to which metabolites and other small molecules

can bind. Subsequent to binding to an allosteric pocket, information can be propagated over

significant biomolecular distances to enact changes to the active site, thereby changing the

kinetic properties of the enzyme. This mechanism is known as allosteric regulation and has

the potential to both inhibit and activate enzyme activity on very short temporal scales (typ-

ically in the range of ns to ms), thus providing a highly sensitive regulatory mechanism for

the maintenance of homeostasis.

Tight regulation of enzyme catalysis on short timescales is particularly evident in glycolysis,

where feed-forward and feed-back regulation manifests in rapidly oscillating concentrations

of glycolytic metabolites. This oscillatory behavior of glycolysis was first discovered in yeast

cells14. In early investigations, glucose was fed at a continuous rate to yeast cell extracts and

oscillations were observed in the concentrations of glycolytic intermediates with a frequency of

several minutes15. Acute changes to the composition of the extracellular environment also leads

to rapid changes in mammalian cell glycolysis, which can be rationalised by enzyme regulation

on short temporal scales. Empirical evidence for this hypothesis has been provided recently by

studies using fluorescence sensors to monitor the redox balance between nicotinamide adenine

dinucleotide in its oxidised (NAD+) and its reduced (NADH) forms, as representative of the

balance between oxidative and reductive metabolism. Using a genetically-encoded fluorescence

peredox sensor, Hung et al. (2011)16 found that the exchange between cytosolic NADH and
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NAD+ occurred within minutes of acute changes to culture media of mouse neuroblastoma

cells, suggesting that glycolytic flux rapidly reaches the steady-state. Taken together, the rapid

equilibration of cellular metabolites in response to changed extracellular conditions shows that

metabolic homeostasis is maintained on far shorter time scales than can be achieved by gene

expression changes, requiring allosteric regulation of enzyme catalysts.

Due to the importance of allosteric regulation in maintaining homeostatic control of cellu-

lar metabolism, subtle changes to the regulation of metabolic enzymes can result in significant

alterations to the phenotype of a cell. This is well exemplified in several disease states in-

cluding cancer, where characteristic changes to central carbon metabolism have been shown

to play essential roles in sustaining rapid growth and proliferation. Some pro-tumorigenic

features of metabolism can be attributed to changes in gene expression, such as oncogenic

mutations in the Ras/Erk pathway resulting in enhanced glucose uptake. Ras-driven over

expression of hexokinase-2 in 3T3 cells was shown to lead to increased rates of glycolytic flux,

thus increasing the rate of turnover of the metabolite pool by up to 30 %10. This introduces

a greater requirement of cancer cells for allosteric regulation of metabolic enzymes, to main-

tain metabolic homeostasis in the context of increased flux. Indeed, many of the changes to

metabolic reprogramming in cancer cells have been linked to altered allosteric regulation of

key metabolic enzymes. Changes to enzyme regulation is further compounded by aberrant

growth factor signalling, which can alter enzyme activity through post-translational covalent

modifications, and by changes to nutrient availability in the tumour microenvironment, which

can result in changes to intracellular metabolite pools.
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1.2 Metabolite-autonomous allosteric regulation of pyruvate ki-

nase

Mammalian glycolysis involves the conversion of the six-carbon sugar glucose into the three-

carbon keto-acid pyruvate, through a series of ten enzyme-catalysed reactions (Fig. 1.2).

In addition to providing cellular energy in the form of adenosine triphosphate (ATP) and

pyruvate, which can be further oxidised to form acetyl-CoA that enters into the TCA-cycle,

glycolytic intermediates also provide precursors for biomass production. Regulation of gly-

colytic flux plays an important mechanistic role in mammalian physiology, contributing not

only to circulating glucose homeostasis and providing ATP, but also to the provision of biomass

building blocks in contexts such as cell proliferation, immune activation and angiogenesis.

Glucose-utilising pathways are, in turn, coupled to the interconversion of several co-factors

including NAD(P)H that contribute to reduction-oxidation homeostasis.

Regulation of glycolysis is principally achieved through allosteric regulation of several allosteric

enzymes including hexokinase (HK), phosphofructokinase (PFK-1) and pyruvate kinase (PK).

Pyruvate kinase exists as one of four mammalian isoforms (PKM1, PKM2, PKL and PKR), all

of which catalyse the interconversion of PEP and pyruvate in the terminal step of glycolysis.

Differential splicing produces L- and R-type PK mRNA from the pkl gene. The expression

of PKL is limited to liver and some cells of the pancreas, intestine and kidney, and PKR

is expressed in erythrocytes. The human pkm gene has 12 exons with either the 9th or the

10th alternatively spliced to generate the PKM1 or PKM2 transcripts, respectively. Both the

PKM1 and PKM2 transcripts are identical in length but encode a 56-amino acid region that

differs at 22 residues. This localised difference in the primary sequence forms an allosteric

pocket in the C-domain of PKM2 to which an activator fructose 1,6-bisphosphate (FBP) can

bind.

In contrast to the M1 isoform, which is thought to be constitutively active in cells17, the
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catalytic activity of PKM2 can be modulated by several endogenous metabolites that bind to

one of two identified allosteric pockets. Allosteric activators include the up-stream glycolytic

intermediate FBP18; two amino acids L-serine (Ser)19 and L-histidine (His)20; and SAICAR21,

an intermediate in purine synthesis. Conversely, the enzyme activity of PKM2 can be in-

hibited L-tryptophan (Trp)20, L-alanine (Ala)20, L-phenylalanine (Phe)22, a phosphotyrosine

peptide23 and T3 hormone24. Expression of the M2 isoform is dominant in many adult tissues,

and is also expressed in healthy proliferative tissues such as embryonic tissue, lymphocytes

and intestinal epithelial cells25. Additionally, PKM2 is highly expressed in tumour cells26,

and the observation that elevated expression of PKM2 correlates with a poor clinical prog-

nosis27,28 precipitated efforts to inhibit the activity of PKM2 in an attempt to reduce the

elevated glycolytic flux seen in many tumours29,30. A landmark study by Christofk et al.

(2008)26, however, revealed that PKM2 over-expression could promote metabolic adaptations

to nutritional stress in cell culture and increase tumour growth. This led to the prevailing view

that lower PK activity, through the enhanced expression and regulation of the M2 isoform, is

beneficial for anabolic metabolism and thus for cell proliferation and tumour growth25,31–35.
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Figure 1.2: Allosteric regulation of glucose metabolism. PKM2 is allosterically regulated by D-
fructose-1,6-bisphosphate (FBP; an up-stream glycolytic intermediate) and by L-serine (Ser). Increased
glucose uptake results in an accumulation of up-stream glycolytic intermediates. From the current
paradigm it follows that accumulation of FBP leads to enhanced allosteric activation of PKM2, through
a feed-forward mechanism [i]. Decreased serine uptake due to nutrient deprivation results in reduced
binding of serine to PKM2, and hence reduced allosteric activation. This spares glucose carbons for de
novo serine synthesis and one-carbon metabolism.
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1.2.1 Evidence for the involvement of PKM2 regulation in supporting pro-
tumourigenic growth

A number of studies have revealed several mechanisms by which allosteric regulation of PKM2

activity contributes to tumour physiology. Growth-factor signalling pathways have been shown

to play a major role in programming metabolic pathways in cells by mediating acute as well

as long-term changes in cell metabolism. Activation of protein tyrosine-kinases had previously

been shown to result in a decrease in the enzyme activity of PKM2. Christofk et al. (2008)23

elucidated the mechanism by which protein-tyrosine kinases acutely regulate the activity of

PKM2, finding that aberrant phosphorylation of proteins at tyrosine residues inhibits PKM2

enzyme activity by precipitating the release of the allosteric activator FBP23. To examine

the effect of phosphotyrosine protein binding on FBP-bound PKM2, the authours obtained

a peptide binding motif for PKM2 by screening a phosphotyrosine-enriched peptide library

matrix to identify novel phosphotyrosine (pTyr)-binding proteins from cell lysates. Christofk

et al. then synthesized both the phosphorylated and unphosphorylated versions of the optimal

peptide: P-M2tide (GGAVDDDpYAQFANGG) and NP-M2tide (GGAVDDDYAQFANGG),

respectively for in vitro experimentation resembling the domain of a protein tyrosine-kinase

with the capacity to bind to PKM2. Moreover, PKM2 inhibition via a signalling-induced pro-

tein phosphotyrosine-binding event led to the diversion of glucose carbons away from energy-

producing pathways and into lactate and lipid production23.

Additional environmental conditions associated with the tumour microenvironment such as

hypoxia, matrix detachment and inflammation can all lead to excess production of reactive

oxygen species (ROS)36–38, which at sufficiently high concentrations can damage cellular com-

ponents and compromise cell viability39. In this context, regulation of PKM2 has been shown

to bestow cells with pro-tumourigenic survival advantages. Oxidation of PKM2 at C358 in-

hibits enzyme activity, promoting the utilisation of glucose carbons through the pentose phos-

phate pathway to sustain sufficient reducing potential for the detoxification of ROS40.
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Allosteric inhibition of PKM2 activity can facilitate the utilisation of glucose carbons for

de novo serine synthesis and one-carbon metabolism. Though generally classified as a nu-

tritionally dispensable amino acid, serine plays an essential role in a number of metabolic

processes including the synthesis of other amino acids, lipogenesis and methylation reactions

that occur via the generation of S-adenosylmethionine41. Furthermore, the folate cycle, a

serine-catabolising process, can regenerate essential cofactors such as NAD(P)H and ATP.

As tumour growth supersedes its vascular support, uptake of serine becomes necessary for

cancer cell survival. The transfer of human colon cancer cells from culture conditions con-

taining serine to serine-deprived media was found to suppress aerobic glycolysis and enhance

the utilisation of glucose carbons in energy producing metabolic pathways42. The preference

for high-flux aerobic glycolysis in the context of enhanced serine uptake is, in part, driven

by allosteric regulation of PKM2. Serine is an allosteric activator of PKM219, and reduced

activation of PKM2 enables cancer cells to adapt to life under limiting nutrient conditions

by allowing for the accumulation of glycolytic intermediates, which are subsequently diverted

into serine metabolism through phosphoglycerate dehydrogenase (PHGDH). This mechanism

ensures that rapidly proliferating cells to sense and respond to availability of serine, thereby

retaining a reserve pool of an important biosynthetic precursor.

In addition to fluctuations in extracellular concentrations of serine due to limited nutrient

supply in poorly vascularised tumors, serine availability can also be limiting due to en-

hanced activity of enzymes involved in one-carbon metabolism. Rapidly proliferating can-

cer cells demonstrate an enhanced requirement for nucleotides, resulting from DNA replica-

tion stress43. Mitochondrial serine hydroxymethyltransferase 2 (SHMT2) catalyses the con-

version of serine to glycine, while simultaneously hydrolysing tetrahydrofolate (THF) into

5,10-methylenetetrahydrofolate, a co-factor used in purine biosynthesis (Fig. 1.2). An in-

vestigation into the role of serine metabolism within the ischaemic zones of gliomas found

that high SHMT2 facilitates a cross-talk between nucleotide biosynthesis and glycolysis by

sequestering serine, FBP and SAICAR; thereby reducing oxygen consumption and eliciting a
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metabolic state that confers a survival advantage to cells in hypoxic tumor regions44. Fur-

ther in support of this hypothesis, deletion of PKM2 in non-immortalized primary cells from

PKM2-conditional mice45 lead to impaired DNA synthesis and cell cycle progression, result-

ing from severe thymidine depletion46. Limiting nucleotide biosynthesis in PKM2-null cells

could be rescued by supplementation with exogenous thymidine, suggesting that expression

of PKM2, and regulation of its enzyme activity, is required to support DNA synthesis in the

context of exponential cell growth46.

The mechanistic link between low pyruvate kinase activity and cancer cell proliferation pro-

moted drug-discovery efforts, which identified several small-molecule activators that selectively

target PKM247–49. Exogenous PKM2 activators were found to bind to an allosteric pocket,

distinct from other binding pockets for FBP and amino acids, and resulted in an increased

affinity for the substrate PEP17. An investigation into potential in vivo therapeutic effects of

the PKM2 activators found that the treatment of mice baring H1299 tumour xenografts with

one of the activators Tepp-46, resulted in an inhibition of the xenograft tumors relative to the

vehicle-treated control animals17. Impaired tumour growth was accompanied by decreased lev-

els of serine, lactate and ribose phosphate (an intermediate of the pentose phosphate pathway)

and increased acetyl-CoA, suggesting that activation of PKM2 resulted in metabolic changes

that were incompatible with pro-tumourigenic growth17,50.

Taken together, these observations demonstrate that expression of PKM2 affords cancer cells

the increased metabolic plasticity to respond to varying environmental conditions that a consti-

tutively high or low activity PK enzyme would not readily allow. Nevertheless, the differential

requirements of cancer cell metabolism, and how this is supported by pyruvate kinase expres-

sion, remain under investigation. Israelsen et al. (2013)45 generated mice with a conditional

allele that abolished PKM2 expression without disrupting PKM1 expression, which were then

crossed with a Brca1 -loss-driven breast cancer mouse model. Intriguingly, mice without expres-

sion of PKM2 showed an accelerated tumour-associated mortality compared to the wild-type
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control, suggesting that expression of PKM2 is not required for cancer cell growth and indeed

its loss may promote tumour progression under certain conditions. Germline PKM2-null mice

were found to spontaneously develop multiple macroscopic liver tumours51. More recently,

Morita et al. (2018)52 reported novel engineered mouse models that express either PKM1 or

PKM2, at protein levels equivalent those found endogenously in tissues. The authors found

that, across numerous cancer models, expression of PKM1 promoted and PKM2 inihibited

tumourigenesis relative to the wild-type control52.

The studies by Israelsen et al. (2013)45, Dayton et al. (2016)51 and Morita et al. (2018)52

highlight a potentially complex relationship between PK expression and cell proliferation. The

use of genetic tools to study the role of a metabolic gene in a complex disease are, however,

limited in by their binary nature (i.e. comparing a phenotype produced by the knock-out of a

single gene with that of wild-type gene expression). In contrast, metabolism, a product of the

complex interaction between many genes and the nutritional environment, constitutes a quan-

titative continuum of phenotypes. Furthermore, spontaneous development of hepatocellular

carcinoma in PKM2−/− models is characterised by the depletion of the nucleotides guanosine

and cytidine51, which may suggest impaired DNA replication resulting from decreased glucose

utilisation in nucleotide biosynthesis. This, in addition to high systemic inflammation and

metabolic changes reported by Dayton et al. (2016)51, may explain why the mice develop

tumours in old age.

While the metabolic conditions under which PKM2 exerts pro-tumourigenic effects are con-

troversial, allosteric regulation of PKM2 activity remains an important feature of glycolytic

control. Crucially, expression of the M2 isoform enables cells to undergo dynamic metabolic

changes, which support pro-tumourigenic growth in a number of contexts. Nevertheless, the

findings presented by Morita et al. (2018)52 suggest that the metabolic outcome of cells may

not necessarily map to a single enzyme activity status, but rather that both enhanced and

decreased pyruvate kinase activity can promote or suppress tumorigenesis, depending on the
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environment and status of all the other genes in the metabolic network53. Therefore, an un-

derstanding of the molecular basis of PKM2 regulation is critical, though this remains largely

elusive both in terms of how conformational changes are induced following the binding of

allosteric ligands and how PKM2 is able to integrate activating and inhibitory signals after

binding to a litany of endogenous allosteric effectors. In this context, the structural and

biophysical aspects of PKM2 regulation are reviewed in the following section.
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1.2.2 PKM2 protein structure

Mammalian PKM2 is a homo-tetrameric protein, each protomer containing four structural

domains: the A-, B-, C- and N- domains (Fig. 1.3). The protomers within the tetrameric

assembly of PKM2 are associated with 222 symmetry. The 222 symmetry is exact only for the

A- and C-domains, whereas the B-domains of subunits 1 and 2 are not related to each other by

exact two-fold axes because of their different orientations. The A-domain is the largest of the

four, spanning from residues N44 to G116 and P219 to I389, and forms a symmetric α8β8 TIM

barrel. The active site is located within the A-domain, underneath the B-domain cap (Fig.

1.3). The B-domain, consisting of a stretch of residues between P117 and L218 forming eight

antiparallel β-sheets, is mobile and closes on the active site upon binding of the Mg2+-ADP

substrate complex54. The C-domain is composed of residues 390-531 and forms five α helices

and five β sheets. A linear sequence diagram showing the positions of the domains is shown in

Fig. 1.4. The two-fold symmetry of the homo-tetramer gives rise to two unique protomeric

interfaces: the A-A’ and the C-C’ interfaces. The A-A’ interface is formed from the A-domains

of two adjacent protomers, consisting of a total of 75 residues with a total surface area of 2.7

nm2. There are an estimated 34 hydrogen bonds and 14 salt-bridges that span across the A-A’

interface forming contacts between the adjacent protomers. The C-C’ interface is less than

half the size of the A-A’ interface, and is formed of the C-domains of two adjacent protomers in

the tetramer assembly, with a total surface area of 1.1 nm2. An estimated 17 hydrogen bonds

and 11 salt-bridges are formed across the C-C’ interface. FBP binds to a pocket within the

C-domain of PKM2 (Fig. 1.3), proximal to the C-C’ interface and forms interactions with

W482, R489, K433, T432, S434, S437, G520 and F52155. The N-domain is composed of the

first 46 residues in the protein that form a helix-loop-helix, connected to the A-domain by a

flexible linker between L33 and G46. The N-domain forms an apolar allosteric pocket to which

the small molecule synthetic activators bind, forming contacts with F26, Y390 and L39417.

A number of amino acids competitively binding to an allosteric pocket, which is sandwiched
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Figure 1.3: A cartoon representation of the three-dimensional structure of PKM2. The
tetrameric structure of PKM2 is shown above with subunits 1, 2, 3 and 4 of the homotetramer coloured
in blue, red, orange and green, respectively. The structure of one of the four monomers within the
tetrameric PKM2 complex is shown below. Each PKM2 monomer consists of four structural domains,
which are coloured in the cartoon structure. The N-terminal helix-loop-helix is shown in blue, the A-
domain is shown in grey, the B-domain is shown in red and the C-domain is shown in green. The
C-domain contains the binding pocket for fructose 1,6-bisphosphate, which is shown in an orange space-
fill representation. Locations of the active site, the amino acid binding pocket and the small-molecule
activator binding pocket are indicated.

between the A- and C-domains20 (Fig. 1.3). Co-crystal structures of PKM2 in complex with

either L-histidine (His), L-serine (Ser), L-alanine (Ala), L-tryptophan (Trp) or L-phenylalanine
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Figure 1.4: A linear sequence diagram of PKM2. The full primary sequence of human PKM2
is annotated with the domain composition and the predicted secondary structure of the protein. The
domain composition of the primary sequence is indicated by coloured bars above the protein sequence;
the N-terminal helix-loop-helix is indicated with a blue bar, the A-domain with a grey bar, the B-domain
with a red bar and the C-domain with a green bar. The predicted secondary structure is shown below
the primary sequence; helices are indicated with cylinders and sheets are indicated with thick arrows.

(Phe), found similar binding poses for each ligand20. All amino acid ligands form charged in-

teractions between their carboxyl-groups and the Nδ group of H464. The diverse side-chain

group chemistry of the amino acid ligands is accommodated by a cavernous pocket at the

interface between the A- and C-domains.
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PDB ID Isoform Ligands† Citation
3SRD M2 FBP,GOL,K,MG,OXL Morgan et al. (2013)22

3U2Z M2 FBP,DZA Anastasiou et al. (2012)17

4JPG M2 FBP Guo et al. (2013)56

4B2D M2 FBP,SER Chaneton et al. (2012)19

4G1N M2 MG,NZT,OXL Kung et al. (2012)50

4RPP M2 FBP Wang et al. (2015)57

4QG8 M2 GOL,K,MG,MLI Wang et al. (2015)57

6B6U M2 B3P,CL,K,MG,OXL,PEG,SCN Srivastava et al. (2017)58

4QGC M2 GOL,K,SO4 Wang et al. (2015)57

4FXF M2 FBP,K,MG,OXL Morgan et al. (2013)22

4QG9 M2 ACT,MG Wang et al. (2015)57

3BJT M2 MG,OXL Christofk et al. (2008)23

1T5A M2 FBP,GOL,K,MG,OXL,PO4 Dombrauckas et al. (2005)55

6GG4 M2 CSO,K,PHE,PO4 Yuan et al. (2018)20

3BJF M2 FBP,K,MG,OXL Christofk et al. (2008)23

4QG6 M2 PRO Wang et al. (2015)57

Table 1.1: Structures of human PKM2 deposited on the Protein Data Bank. †Ligand
acronyms: D-fructose-1,6-bisphosphate (FBP), glycerol (GOL), potassium (K), oxalate (OXL), 1-(2,3-
dihydro-1,4-benzodioxin-6-ylsulfonyl)-4-[(4-methoxyphenyl)sulfonyl]piperazine (DZA), L-tartaric acid
(TLA), L-serine (SER), N-(4-[4-(pyrazin-2-yl)piperazin-1-yl]carbonylphenyl)quinoline-8-sulfonamide
(NZT), magnesium (MG), chloride (CL), malonate (MLI), pyruvate (PYR), di(hydroxyethyl)ether
(PEG), L-phenylalanine (PHE), acetate (ACT), sulfate (SO4), phosphate (PO4), S-hydroxycysteine
(CSO), unidentified atom (UNX).
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1.2.3 Kinetics of ligand binding and regulation

Allosteric regulation of PKM2 acts over long distances to affect the affinity of the enzyme

for its substrate phosphoenolpyruvate. The apo-form of the enzyme is reported to have a

Michaelis-Menten constant for PEP (KPEP
M ) of approximately 2.0 mM19,55,59. Activation of

PKM2 by FBP is associated with a decreased KPEP
M of 0.2 mM, while the rate of product

turnover (kcat) remains unchanged19,48,55,60. Some studies, however, have additionally re-

ported an elevated kcat subsequent to FBP binding20,22,61 and the reason for this discrepancy

remains unresolved. The KM for adenosine diphosphate (ADP; the second substrate) is re-

ported as approximately 0.4 mM and remains unchanged upon allosteric ligand binding19,55,59.

The reported apparent binding affinity of PKM2 for FBP varies considerably between 210

nM62 and 7.6 µM22. Curiously, isothermal titration calorimetry measurements of FBP binding

by Yan et al. (2016)62 found a sub-stoichiometric association of FBP with PKM2, evidenced

by an estimated 0.54 binding sites per PKM2 monomer, despite a reported 1.0 stoichiom-

etry found in several FBP-bound PKM2 crystal structures17,19,23,55. This result could be

explained by the finding that purification of recombinant PKM2 from an E. coli expression

vector is found to have sub-stoichiometric amounts of co-purified FBP despite extensive dial-

ysis22,23,63, supporting the notion that FBP binds tightly to PKM2.

Several amino acids including Ser, His, Phe, Ala, Trp, Val and Pro have been shown to regu-

late the activity of PKM2, though the reported effects of the amino acids on PKM2 enzyme

kinetic constants vary. Eigenbrodt et al. (1983)64 first showed that PKM2 was susceptible to

pronounced activation by Ser and inhibition by Ala, achieved through a positive or negative

effect on the enzyme’s affinity for its substrate PEP. More recently, Chaneton et al. (2012)19

reported the binding mode for Ser in the amino acid allosteric pocket with an apparent affinity

of 810 µM, acting to decrease the KPEP
M from 1.9 mM to 0.19 mM in the absence and in the

presence of saturating amounts of Ser, respectively. Taken together, this led to the prevailing
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view that amino acids act as K-type effectors, and that the rate of product turnover does

not change upon ligand binding. Nevertheless, a recent contradictory study, reporting four

co-crystal structures of PKM2 bound to Ser, Phe, Trp or Ala, purported to show that amino

acids have effects on the kcat
20.

In addition to the effects of individual ligands on PKM2 activity per se, the multiplicity of

distinct allosteric binding pockets on the surface of PKM2 may facilitate concurrent binding

of ligands. Therefore, changes to PKM2 enzyme activity are exerted through changes in the

concentrations of the metabolite ligands that regulate PKM2. Physical and temporal com-

partmentalisation of these metabolites may necessitate that PKM2 only responds to specific

stimuli, however, it is likely that at any given time several ligands are available to bind to and

regulate PKM2.

1.2.4 Concurrent regulation of PKM2 activity by multiple ligands

PKM2 can bind to multiple allosteric ligands in vitro that might either reciprocally influence

each other’s action, or exert independent effects on enzyme activity. Yet, very little is report-

edly known about how PKM2 responds to the simultaneous binding of multiple ligands. A

single-point mutation at the FBP binding pocket S473Y prevents FBP binding, though this

mutant variant can still be activated by Ser19. Conversely, H464A abolishes Ser binding but

can be activated by FBP19, suggesting that Ser activation could work independently from

FBP activation. Inhibitory amino acids that bind to the same pocket as Ser, however, fail

to inhibit enzyme activity in the presence of FBP18,20. The apparent dominant effect of FBP

activation may suggest that inhibition by amino acids is blocked by FBP binding, through

the promotion of an alternate conformation, or that FBP reduces the binding affinities of the

amino acids through a cross-talk between the two binding pockets. Similarly, FBP binding

can overcome the inhibition of PKM2 by T3 by sequestering PKM2 away from the monomeric

species, to which T3 binds24,65.
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An alternative explaination for how PKM2 is able to integrate multiple regulatory ligands

is, rather than a competitive response, through a synergistic response. This might manifest

as two activators (eg. FBP and Ser binding) resulting in supra-activated enzyme activity,

or alternatively, an activator and an inhibitor displaying a complex non-competitive kinetic

phenotype. In support of the latter, Ashizawa et al. (1991)65 found that FBP addition altered

the inhibition of PKM2 activity by Ala, producing only a 30 % inhibition compared to a 97

% inhibition of activity in the absence of FBP. Positive synergism has been experimentally

found not to occur between Ser and FBP, and between SAICAR and FBP19,21. Interestingly,

Zhong et al. (2017)66 recently reported that adenosine monophosphate (AMP) and glucose-6-

phosphate (G6P) synergistically activate M. tuberculosis pyruvate kinase. The authors found

that binding of G6P increased the apparent affinity of the protein for AMP, and conversely,

that AMP binding increased the binding affinity of G6P66. While the binding of AMP occurs

at a pocket equivalent to that of human PKM2 for FBP, G6P binds to a different pocket

that is also distinct from the equivalent amino acid interaction site on human PKM2, and it

is intriguing to speculate whether a similar cooperative mechanism occurs between FBP and

amino acid binding to human PKM2. Moreover, a recent modelling study purportedly found

a synergistic effect of concurrent FBP and Ser binding67. The authors performed molecular

dynamics simulations of monomeric PKM2 and found that the predicted free energy of bind-

ing to the substrate PEP changed from -48 kJ/mol (either FBP or Ser bound) to -57 kJ/mol

(FBP and Ser). Nevertheless, the free energies reported by Yang et al. (2016)67 translate into

a substrate binding affinity of between 10−42 M−1 and 10−35 M−1 - a very significant departure

from the reported experimental substrate affinity of 1.5 mM. The question of whether binding

of allosteric ligands promotes a synergistic effect, therefore, remains unresolved.

The problem of how PKM2 is concurrently regulated is particularly pertinent in an intra-

cellular context, where multiple allosteric ligands co-exist at varying concentrations and bind

to PKM2 with a range of affinities. Notably, the intracellular concentrations of the PK cat-
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alytic substrate PEP measured in human colorectal carcinoma cells is less than 10 µM and

only accumulates to 80 µM upon stable silencing of both PKM1 and PKM2 expression19. Low

intracellular substrate concentrations suggest that the substrate is limiting for the catalysed

conversion into pyruvate. Moreover, the intracellular concentration of FBP has been reported

as ≃ 0.5 mM across a panel of cancer cell lines68, which would represent a 2500-fold excess

relative to the reported 200 nM binding affinity to PKM262. Taken together, evidence from the

existing literature suggests that concurrent binding of multiple allosteric ligands may be feasi-

ble under certain cellular metabolic conditions, and that there is a selective pressure towards

a significant fraction of PKM2 remaining constitutively bound to FBP in order to sustain flux

through the PK reaction, which is reported to be high relative to other rate-limiting enzymes

in glycolysis69. Therefore, the interaction between PKM2 and its various allosteric ligands

warrants further investigation in order to discern the detailed molecular mechanisms involved

in the regulation of this complex glycolytic node, with roles in supporting cancer cell prolifer-

ation.

Question 1: To what extent do cellular metabolic conditions exist under which PKM2

is likely to be bound to multiple allosteric effectors? And how are the effects of concur-

rently bound ligands, with opposing functional signals, integrated by PKM2 to regulate

enzyme catalysis?

1.2.5 Regulation of PKM2 structure and oligomerisation

PKM2 molecules form in an equilibrium of monomers and tetramers, with some studies re-

porting the existence of dimers62,63,70, in which the tetramer has high enzymatic activity

whereas monomers and dimers display basal activity71. Many of the PKM2 allosteric lig-

ands have been shown to modulate PKM2 activity by changing the equilibrium between the

monomer, dimer and tetramer. The binding of FBP promotes, whereas T3 prevents, tetrameri-
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sation17,22,62,63,71. The effect of amino acids on the monomer-dimer-tetramer equilibrium,

however, remains controversial. Some reports suggest that Ala promotes the formation of

inactive PKM2 dimers18,70, whereas others have shown that inhibition by Phe, Ala and Trp

stabilises an inactive T-state tetramer by forming hydrogen bonds with the carbonyl oxygen

atom from R43, and thus repelling the N-terminal helix-loop-helix20,22.

In addition to ligand-dependent oligomerization, evidence suggests that allosteric ligand bind-

ing promotes subtle conformational changes within the tetramer. Crystal structures of L.

mexicana and T. cruzi pyruvate kinase isoforms revealed a rigid-body rocking motion of the

A- and C-domains, reorienting them within the tetramer, in the T- to R-state transition72–74.

Hydrogen-deuterium exchange experiments reported an increase in global flexibility in E. coli

type 1 pyruvate kinase upon binding of FBP, and proposed that destabilisation of β-strands

within the TIM-barrel core resulted from ligand binding75. Further attempts to gain insights

into the dynamic mechanism of human PKM2 and M. tuberculosis pyruvate kinase regulation,

found that allosteric activator binding causes R342 on the Aα6-helix to reach across the A-A’

interface of the tetramer, forming a stabilising hydrogen bound with the backbone carbonyl

group of G271 on the adjacent protomer22,66.

Ligand-induced conformational changes are likely to be limited to subtle backbone changes

and side-chain motions, evidenced by the lack of FBP-driven changes to the radius of gyration

of human PKM2 tetramers in small-angle X-ray scattering experiments62. A whole-protein

mutagenesis study of the human liver isoform of pyruvate kinase (PKL) reported by Tan and

Fenton (2017)76, found that approximately 30 % of residues, when mutated to alanine, per-

turbed allosteric activation by FBP. The authors concluded that a significant proportion of

the protein contributes to allosteric regulation. In the same study, Tan and Fenton (2017)76

found that perturbing mutations were dispersed across the structure, rather than localised to

domain-domain boundaries, suggesting that large scale domain reorientations are not exclusive

to the allosteric mechanism of PKL.
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The relative contributions of tetramerisation and local structural changes to the mechanism of

allosteric activation is disputed. Molecular dynamics simulations of human PKM2 and L. mex-

icana pyruvate kinase have revealed that allosteric activation by D-fructose-1,6-bisphosphate

(human) and D-fructose-2,6-bisphosphate (L. mexicana) result in the closure of the B-domain

over the active site74,77, consistent with flexible A/ B - inter-domain motions reported in the

crystal structure55,58. The observation by Gehrig et al. (2017)77 that FBP binding reca-

pitulates some of the experimentally described dynamic changes to the structure, within the

monomeric species, argues that the allosteric content of the protein is encapsulated within

the protomeric unit. Christofk et al. (2008)23 published the first atomic structure of human

PKM2 in the apo-form, showing that ligand binding is not required for tetramer formation.

It is not clear, however, whether apo-tetramer formation is an artefact of the high protein

concentration used for crystallisation (80 mg/mL), as polymer self-assembly is inherently a

concentration-dependent process. Moreover, PKM2 has been shown to form a mixture of

oligomeric states, in solution22 and in the gas phase63, though since FBP is known to remain

bound to preparations of purified recombinant PKM2, and it is unclear whether the observed

tetramers are simply a result of residual FBP.

The apparent dichotomy between protomer-specific conformational and oligomeric effects of

allosteric ligand binding on PKM2 activation raises important and fundamental questions

about the structural basis of its regulation. In addition to allosteric effectors, covalent post-

translational modifications (PTMs) have been suggested to influence the oligomerisation of

PKM2 protomers23,40, although the effects of PTMs on the enzyme mechanism remain elu-

sive. Nevertheless, PKM2 activity in cells is frequently inferred from the oligomeric state that

the protein is found to adopt17,26,40,78–82. Collectively, current evidence suggests that a link

between enzyme activity and the oligomeric state exists and, while not well understood, it

may play a role in PKM2 regulation.
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Question 2: What are the contributions of ligand-induced conformational and

oligomeric changes to PKM2, and what are the relationships between these allosteric

effects and PKM2 activity?

Many of the current insights into metabolic dependencies in cancer are derived from anal-

yses of developed tumours and so it is unclear whether observed metabolic changes reflect

late adaptive events, or a cumulative agglomeration of metabolic adaptations that have been

gradually emerging depending on the needs of cancer cells along the various stages of tumour

development83. Nevertheless, PKM2, and other allosterically regulated metabolic proteins

with roles in disease progression, show that genome-encoded and therefore stably propagated

metabolic changes in tumourigenesis are potentiated through protein allostery83. Therefore,

metabolic flexibility may confer advantages suitable for surviving the varying extracellular con-

ditions cancer cells are subjected to during tumourigenesis, so tools that aid the identification

of such mechanisms could hold significant power for discovery.
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1.3 Investigating the role of protein dynamics in allosteric reg-

ulation

Characterising allosteric mechanisms of enzyme regulation offers several advantages for thera-

peutic interference with the metabolism of cancer cells. Despite the importance of allostery in

regulating numerous aspects of cellular physiology, the investigation of the underlying mech-

anisms remains a challenge for conventional structural approaches and therefore necessitates

multi-disciplinary strategies. A critical obstacle in characterising protein allosteric mecha-

nisms is the inherent flexibility of protein structures, which can result in the emergence of

latent allosteric pockets84,85. Once an allosteric pocket has been identified, understanding

how information is propagated the active site is confounded by the involvement of protein

structural motions on a variety of time scales86. Furthermore, as exemplified in the case of

PKM2, many proteins contain several allosteric pockets that facilitate the simultaneous bind-

ing of several ligands. Concurrent binding of multiple allosteric ligands can modulate the

functional response of a protein through the action of multiple allosteric pathways87. It re-

mains unclear, however, whether such allosteric pathways operate independently, or integrate,

either synergistically or antagonistically, to control protein function.

1.3.1 Enzyme regulation can involve structural or vibrational motions

Static model representations of proteins are so prevalent that it is easy to misconstrue these

dynamic machines for rigid aperiodic crystals. In addition to the process of protein-folding

where a protein reaches its native state through a funnel of energetic intermediates (Fig.

1.5 A), folded proteins are soft materials with a complexity, due to the absence of periodicity

conditions, forcing the macromolecule to assume a single unique structure. Folded proteins can

adopt a variety of different structural and energetic configurations that give rise to an ensemble

of isoenergetic ground states, referred to here as conformational sub-states (Fig. 1.5 B). The

amplitudes of the structural motions are determined by the physical and chemical nature of

the transient bonded interactions that are broken and made in the transitions between sub-
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states, and are characterised by a hierarchy of vibrational and configurational motions (Fig.

1.5 B).
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Figure 1.5: The energetic landscape of protein folding and native protein dynamics. (A) A
cartoon representation of the energetic landscape of protein folding. (B) The native state of a protein
consists of an ensemble of conformations, which are termed conformational sub-states. The transitions
between conformational sub-states are characterised by a hierarchy of protein dynamics including (i)
side-chain motions, (ii) protein backbone conformational changes, (iii) secondary structural changes
(iv) inter-domain motions and (v) oligomerisation of multi-meric proteins. Each respective motion
necessitates that the protein overcomes energy barriers, the heights of which are determined by the free
energy required for a specified motion.
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Initial evidence for conformational sub-states of a protein came in the early 1970s from mea-

surements of the rate of carbon monoxide (CO) re-association to the heme centre of myoglobin

(Mb) following photolysis88–90. The first crystal structures published in 1960 by Kendrew et

al. (1960)91 had shown that Mb does not have a permanent channel through which CO can

exit, suggesting that the exit must proceed through a transient channel caused by dynamic

fluctuations of the protein. It was therefore hypothesised that the study of ligand escape

from its binding to the heme centre as a function of external parameters such as temperature,

pressure and solvent viscosity, would yield information on the fluctuations that underpin the

protein dynamics of myoglobin92.

In a seminal paper by Austin et al. (1975)90 the Mb-CO bonded interaction was photol-

ysed with a laser pulse, allowing the CO ligand to migrate within the protein and then finally

escape into the bulk solvent. The rate of CO exit (kexit) determined over a range of tempera-

tures is plotted in Fig. 1.6, along with typical rate constants of fluctuations of bulk solvent

(kβ) and fluctuations of the first hydration shell of a solvated protein (kα). While the rate of

fluctuations in the bulk solvent were found to follow the Arrhenius law, kα and kexit become

non-exponential at temperatures T < 220K. This revealed the existence of a glassy state

adopted by proteins at very low temperatures, in the absence of protein conformational flexi-

bility. Protein flexibility was found to be restored around 220 K, allowing for an exponential

rate of reversible binding of the CO ligand to the heme centre of Mb. The transition of solvated

proteins from a glass-like to a soft-matter is thought to be coupled with interactions between

the protein and hydration water in the first solvation shell. This explains the observation

that the rate of fluctuations of the solvation shell (kα) undergoes a similar non-exponential to

exponential transition around 220 K, as does the rate of CO exit from myoglobin. Subsequent

experiments measuring the rate of CO exit under varying solvent compositions, found that

the protein must overcome distinct free energy barriers as the CO moves within the protein

towards its binding site, providing the first evidence for a hierarchy of protein dynamical

motions88–90. This theory implied that a molecular system of N components (amino acids)
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Figure 1.6: Typical rate coefficients as a function of temperature. The rate constant kβ rate
of fluctuations in the bulk solvent, kα is the rate constant of fluctuations in the first hydration shell
and kexit is the rate constant of CO exit from myoglobin. All rate constants are determined over a
range of temperatures. This figure is reproduced from Figure 4 in Frauenfelder et al. (2007)93.

has approximately eN states with energies close to that of the ground state and experiences

sizeable fluctuations in its internal energy.

Experimental evidence for the existence of multiple protein sub-states prompted the inves-

tigation of the structural-basis of protein dynamics by temperature-dependent X-ray crystal-

lography. Two consecutive papers by Artymiuk et al. (1979)94 and by Frauenfelder et al.

(1979)95 provided the first direct experimental evidence for the notion that protein adopt

dynamic structures. In the former publication, authors computed the mean-squared displace-

ment of backbone atoms within human lysozyme and found that the residue displacements

constitute a characteristic rigid-body motion94. Displacements were found to be smaller within

the core of the protein and greater on solvent-exposed loops of both lysozyme and myoglobin,

due to charge fluctuations in the solvent and the hydration shell94. Moreover, Artymiuk et al.

(1979)94 found that the catalytic pocket underwent a significant conformational change upon

substrate binding, concluding that "...protein mobility may play a significant part in biological

activity...".

Allostery had originated from experiments performed by Changeux and co-workers96–98, and
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for decades the two dominant models for allostery were the ’sequential’, or KNF (Koshland-

Nemethy-Filmer) model99 and the ’symmetric’ or MWC (Monod-Wyman-Changeux) model98,

both of which still contribute to the abstraction of complex allosteric mechanisms100. The two

essential features of the MWC model were that an equilibrium was proposed to exist between

two conformational states, usually known as the R (’relaxed’) and T (’tense’) states, in the

absence of any ligand, and that symmetry is maintained, so that all subunits in a oligomeric

protein change between the R and the T states in a concerted manner101. Conversely, the

sequential model did not require conformational symmetry but instead necessitated a strict

application of induced fit, with one conformation existing only when the ligand is not bound101.

While both the MWC and KNF models agreed on the importance of structural transitions

between two pre-defined conformational states whole equilibrium was shifted by the binding of

a ligand, both were phenomenological and consequently did not answer the fundamental ques-

tion of how the binding of a ligand potentiated an allosteric effect at an atomic level of detail102.

The subsequent accessibility of experimental methods capable of determining protein struc-

ture gave rise a stereochemical model of allostery, first proposed by Max Perutz, whereby

allostery could be understood in terms of structural changes that could be gleaned through an

inspection of high-resolution structures of proteins in the apo and holo states. In this model,

oxygen binding to the T-state triggers the movement of the ferrous iron into the heme plane,

realignment of the neighbouring helices and breakage of of inter-subunit salt bridges, thereby

shifting the quarternary equilibrium toward the R conformation103. The elucidation of the

initial structures of haemoglobin in two forms (the T- and R-forms) supported the notion that

allostery as a general phenomenon might be understood, perhaps in all systems, if only the

structures of the allosteric states and the transitions between those states could be determined.

Nevertheless, crystal structures are limited in that they provide only a limited snapshot of a

single consensus conformational state.

Moreover, despite the fact that plots of estimated mean-square fluctuations versus residue
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number remain a standard part of the analysis of high-resolution structures, the contribution

of overall translation and rotation as well as crystal disorder to B-factors, continues to be a

source for concern in their interpretation104. It was understood that the best means to study

the structural basis of cooperativity displayed by haemoglobin, and other allosteric proteins,

was to have available a way of calculating the energy of the protein as a function of the atomic

positions. To this end, Gelin and Karplus developed a method for calculating the side-chain

potentials of bovine peptide tripsin inhibitor (BPTI) using an empirical energy function105.

The same approach was applied towards calculating the forces on the atoms of haemogloblin

for the minimisation of its energy in response to ligand binding on the heme group106, provid-

ing the first comprehensive description of distal side-chain motions involved in the transition.

Next, Karplus and co-workers used the forces computed from an empirical potential energy

function in Newton’s equation to simulate protein dynamics, which came to be known as

molecular dynamics (MD) simulations. MD simulation methods had already been developed,

prior to the 1970s, for simpler systems such as liquid argon with a soft-sphere (Lennard-Jones)

potential107, followed by simulations of complex fluids108. The first MD simulation of bovine

peptide tripsin inhibitor (BPTI) in vacuo performed by McCammon et al. (1977)109, made

clear that proteins are relatively soft polymers and, consequently, have significant structural

fluctuations at room temperature; i.e., the static view of the structure of biomolecules had to

be replaced by a dynamic picture.

While allosteric transitions are often accompanied by structural changes, long-range com-

munication between sites can also be mediated by changes in dynamic fluctuations about the

mean conformational state (ie. in the absence of structural changes), which are driven by

entropic changes in the protein. Dryden and Cooper (1984)110 first proposed that an allosteric

effector may simply change the broadness of the free energy basin of the protein conforma-

tional state, rather than shifting the basin to a distinctly different region. This provided a

plausible model for an entropy-driven allosteric mechanism, in the absence of stereochemical
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conformational changes. Entropy-driven allosteric mechanisms have since been experimen-

tally described. Popovych et al. (2006)111 characterised the negatively cooperative binding of

cAMP to dimeric catabolite activator protein (CAP). Two cAMP molecules bind to dimeric

CAP with negative cooperativity and function as allosteric effectors by increasing the pro-

tein’s affinity for DNA. The authors showed that the binding of the first cAMP molecule

had minimal effects on the conformation of the second cAMP binding site, but rather that

distinct change in protein motions between the two sequential cAMP binding steps results in

a large difference in conformational entropy111. This showed that allostery can be mediated

exclusively by vibrational changes, rather than large-scale conformational changes.

1.3.2 Allostery is an ensemble phenomenon

Just as protein folding can be viewed as a landscape of possible conformational states surround-

ing the native (free energy minimum) state, a folded protein has an ensemble of conformational

sub-states. According to this statistical framework, all possible conformations of a protein are

populated within the ensemble according to their free energies. The free energy landscape of

a folded protein can be smooth with many accessible states, rough with only a few states, or

somewhere in between112. Allosteric ligands can effectively remodel the energy landscape of

proteins, manifesting as enthalpic and/or entropic redistributions within the available configu-

rational space. Therefore, protein function is not determined purely by its static structure but

rather through a redistribution of already existing populations in response to ligand binding.

The energy landscape of a folded protein contains a plurality of functional mechanisms and,

as such, sub-states within the ensemble can be partitioned into configurations that account

for the active and inactive states of the enzyme. Nevertheless, investigating the relationships

between protein dynamics, activity and structure is hampered by the difficulty in observ-

ing all three characteristics simultaneously. A landmark study by Volkman et al. (2001)113,

used nuclear magnetic resonance (NMR) spectroscopy to correlate the structural states of
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the nitrogen regulatory protein C (NtrC) and its interconversion dynamics directly with its

biochemical activity. Phosphorylation of NtrC causes the displacement of several structural

elements resulting in the exposure of a hydrophobic patch on one side of the molecule, enabling

NtrC dimers to self-associate to form oligomers that regulate the transcriptional activity of

a number of genes involved in nitrogen metabolism in enteric bacteria. In order to probe µs

- ms time-scale dynamics, Volkman et al. (2001)113 measured the chemical shifts of protein

backbone atoms and found that the dynamics of various NtrC mutants correlated with their

activity, supporting the idea of a population shift between two pre-existing conformations.

The propensity of an allosteric transition to stabilise a particular sub-state within the con-

formational landscape, and hence the probability that a protein will exert a given function,

is determined by the free energy barrier between the different sub-states. Indeed, within the

boundaries of the protein’s primary sequence, the free energy between all of the accessible sub-

states constrains the landscape of a protein and encodes the structure and function. Yao et al.

(2008)114 used solution NMR measurements to quantify the free energy of the light-sensitive

LOV2 (light, oxygen and voltage) domain-Jα-helix binding equilibrium following light stimu-

lation. Blue light absorption of the LOV domain induces the formation of a covalent adduct

between a conserved cysteine residue in the LOV domain and the C4a carbon of the isoallox-

azine ring of FMN, leading to a light-dependent enhancement of phototropin kinase activity.

Yao et al. (2008)114 found that this light-sensitive switch is mediated by an equilibrium be-

tween two conformations, determined by the positioning of the Jα helix between a bound

conformation (dark; inactive) and a dissociated state (lit; active). NMR relaxation experi-

ments found that photo-excitation resulted in a redistribution between the bound-dissociated

Jα equilibrium from 98:2 in the dark state to 9:91 in the light state, with an associated free

energy difference of 3.8 kcal mol−1. The authors noted that the free energy barrier of the

allosteric transition was small relative to the energy of the blue light photons being absorbed

by the flavin chromophore (≃ 64 kcal mol−1). Thus, the bonded and non-bonded interactions

that make up the protein core fold are generally modest, suggesting that no single state will
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necessarily dominate the ensemble. As such allosteric mechanisms are likely to be controlled

by statistical equilibria and less deterministic than was suggested by classical discrete-state

models.

As exemplified by NtrC and LOV2, allosteric regulation of proteins can involve transitions

between sub-states with unique physical and biochemical properties. Therefore, the role that

structural dynamics of a protein play in biological processes can only be understood by char-

acterizing all thermally accessible protein conformations and their populations. Since the free

energy landscape of a folded protein contains many conformational sub-states, any macro-

molecular observable A can be described as an ensemble average over microscopic sub-states

given by:

A = 〈a〉ensemble =
1

N

N
∑

λ=1

a(xλ) (1.2)

where xλ is the sub-state of the λth member of the ensemble. In reality, experimental mea-

surements are made only on a single system and all the microscopic detailed motion is present.

As such, one observes an averaged observable over time of the detailed motion, which sup-

presses the microscopic details. Thus, the time average and the ensemble average should be

equivalent:

A = 〈a〉ensemble = lim
t→∞

1

t

∫ t

0
dt a(x(t)) (1.3)

It is often straightforward to determine 〈a〉 from an experiment, while the underlying distribu-

tion of a(x) is experimentally inaccessible since the experiment is a time- and ensemble-average

over molecular conformations115. A common approach to dynamic interpretation of NMR re-

laxation experimental data is to use NOE data and s2 order-parameters as constraints for

molecular dynamics simulations to simulate a conformational ensemble in agreement with ex-

perimental data116. Such approaches are limited in their application due to complications in
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performing measurements in a sufficiently diverse combination of alignment media117. Never-

theless, molecular dynamics simulations can provide a direct sampling of microscopic sub-states

a(x) and, as such, present a powerful tool for investigating allosteric transitions of proteins.

1.3.3 Identification of allosteric pathways from molecular dynamics simu-
lations

Empirical evidence suggests that subsequent to ligand binding to an allosteric site, a network

of residues mediates the communication between the allosteric site and the functional centre

of the protein (catalytic pocket in the case of enzymes). Communication across the protein,

through so-called allosteric pathways87, is mediated by networks of residues that exhibit spatial

and/or temporal correlations. It was therefore hypothesised that measuring correlated motions

within a protein structure during allosteric transitions, observed from simulated trajectories of

the protein conformational ensemble, would lead to the identification of the residues involved

in propagating information along allosteric pathways.

Covariance measurements of residue correlation

Long-range positional correlations were first observed in molecular dynamics simulations of

bovine trypsin inhibitor (BTPI) and hen white lysozyme (HEWL) by Huenenberger et al.

(1995)118. The authors measured correlated motions by computing the normalised covariance

matrix of atomic fluctuations, after a superposition of the trajectory to the first frame:

Cij =

√

〈xi · xj〉
〈x2i 〉〈x2j 〉

(1.4)

where xi and xj are the vectorial positional fluctuations of atoms i and j, respectively. As noted

by Ichiye and Karplus (1991)119 correlations measured of the form in Equ. 1.4 assumes that xi

and xj are co-linear vectors, since Cij depends on the angle between both vectors. Moreover,

the use of the covariance matrix implies a Gaussian approximation of the underlying config-

urational space density, and therefore this approach treats correlations in a quasi-harmonic
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approximation120. The quasi-harmonic approximation of the Hamiltonian implies that the po-

tential energy surface of a protein is parabolic, which is irreconcilable with empirical findings

showing that proteins have an ensemble of conformational sub-states (Section 1.3.2).

Mutual information

Rather than measuring co-linear motions, mutual information presents a more physically faith-

ful method for computing correlated motions from protein dynamics. The fluctuations of each

atom are considered to have a given distribution, and the correlations between distributions

are calculated by the joint probability distribution. The fluctuations of two atoms are con-

sidered to be completely independent if their joint probability distribution is equal to their

marginal probabilities:

p(x) =
N
∏

i=1

pi(xi) (1.5)

where p(x) is the canonical ensemble density p(x) = Z−1exp
(

− 1
kBT V (x+ 〈r〉)

)

, with par-

tition function Z, temperature T , Boltzmann constant kB, potential energy V and marginal

probability density pi(xi). The idea behind this analysis to calculate those correlations that

violate Equ. 1.5 using the Shannon mutual information:

I[x1, x2, ..., x3N ] =
3N
∑

i=1

H[xi]−H[x] (1.6)

where H is the entropy of the random variables defined as: H[x] = −
∫

p(x) log p(x) dx.

Focusing on correlations between pairs of atoms:

I[xi,xj] = H[xi] +H[xj]−H[xi,xj] (1.7)

The mutual information between pairs of fluctuating atoms was first used by Lange and Grub-

mueller (2006)120 to measure correlated motions from molecular dynamics simulations of the
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B1 domain of G protein and T4 lysozyme. The authors noted that a linear covariant qual-

ification of the covariance matrix missed more than 50 % of the correlations, attributed to

a dependence on mutual orientations of the atomic fluctuations and non-linear correlations

that emerged in the dynamics120. As such, linear mutual information between distal pro-

tein motions has subsequently emerged as a commonly used method for computed correlated

motions121,122, and is not susceptible to the problematic assumptions of covariance measures

previously highlighted.

Discrete-state mutual information

More recently, the use of mutual information to measure correlated motions that underpin

allosteric communication was further developed by Kleinjung, Fraternali, and co-workers123,124

using a discrete-state formalism for the mutual information calculation. The authors defined

a collection of 24 four-residue fragments, which comprised the so-called M32K25 structural

alphabet125. Each fragment provides a simple and explicit description of four successive Cα

atoms along the backbone of a protein and defined by three internal angles. While limited to

describing positions of Cα atoms, and not considering other fine-grained features of protein

structure, the M32K25 structural alphabet (SA) was effective in encoding the structure of all

experimental protein structures deposited in the Protein Data Bank, and could therefore be

used as a coarse graining method to define the local orientation of a protein backbone in a

simulated ensemble (Fig. 1.7 A). In this context, the local orientation of a protein backbone

is defined as the vectorial position of successive Cα atoms within a protein structure, which

is discretised into overlapping four-residue long segments. Insofar as the M32K25 SA maps

the vectorial position of successive Cα atoms, and thereby changes to the positions of these

segments that result from simulated or experimentally obtained protein dynamics, the detected

changes are localised to the affected regions of the protein backbone. This makes the analysis

of a molecular dynamics trajectory with the M32K25 SA particularly sensitive to backbone

conformational changes (e.g. secondary structure transitions) and rather insensitive to side-

chain fluctuations. Rather than a vectorial definition of atomic fluctuation, the discrete-state
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mutual information between locally-encoded fragments was computed in order to determine

distal correlations across the structure:

In(Ci;Cj) =
I(Ci;Cj)− ǫ(Ci;Cj)

H(Ci, Cj)
(1.8)

where the columns of the structural fragment alignment are given by Ci and Cj , I(Ci;Cj) is

the mutual information, ǫ(Ci;Cj) is the expected finite size error and H(Ci, Cj) is the joint

entropy. The mutual information is given by

I(Ci;Cj) =
∑∑

p(ci, cj) log2
p(ci, cj)

p(ci)p(cj)
(1.9)

where the two columns in the structural alphabet alignment Ci and Cj are random variables

with a joint probability mass function p(ci, cj), and marginal probability mass functions p(ci)

and p(cj). The joint entropy H(Ci, Cj) is defined as

H(Ci;Cj) = −
∑∑

p(ci, cj) log2 p(ci, cj) (1.10)

The discrete mutual information calculated for finite state probabilities can be significantly

affected by random and systematic errors. In order to account for this, an error term ǫ(Ci;Cj)

was subtracted from the mutual information I(Ci;Cj) in Equ. 1.8 given by

ǫ(Ci;Cj) =
B∗

CiCj
−B∗

Ci
−B∗

Cj
+ 1

2N
(1.11)

where N is the sample size and B∗
CiCj

, B∗
Ci

and B∗
Cj

are the number of states with non-zero

probabilities for CiCj , Ci and Cj , respectively.
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Figure 1.7: The M32K25 structural alphabet as a fragment-based representation of protein
structure and dynamics. (A) An illustration of the fragment-encoding procedure, whereby a protein
is encoded with the M32K25 structural alphabet. Each sequential four-residue stretch is encoded with
one of 25 fragments, previously defined by Pandini et al. (2010)125. (B) Multiple conformational
snapshots, derived from a molecular dynamics trajectory, are encoded with a string of fragments giving
a multiple sequence alignment of the conformational state of each snapshot in the trajectory. The
mutual information between each fragment in the protein is then determined by calculating the marginal
probabilities and the paired probabilities for each combination of columns in the alignment. This figure
is partially reproduced with permission of Dr. Alessandro Pandini.
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Pandini et al. (2012)123 used the M32K25 structural alphabet to encode the ensemble

of structures calculated from molecular dynamics simulations of the bacterial two-component

system NtrC, as a basis for computing the mutual information between distal fragments in

the protein. The authors found that the transmission from the phosphorylation site to the

signalling surface of the receiver domain NtrC was mediated by a layer of hub residues123.

Moreover, the location of the hubs preferentially connected to the allosteric site was found

to be in close agreement with key residues experimentally identified as involved in the signal

transmission.

A recent investigation of the allosteric mechanism of a myosin small-molecule activator ome-

camtiv mecarbil (OM) binding to cardiac myosin, used the discrete-state mutual information

approach developed by Pandini et al. (2012)123 to investigate the mechanism of action of

myosin activation. Hashem et al. (2017)126 found that OM binding to an allosteric pocket

both increased coupling of the motions of the converter and lever arm subdomains to the rest of

the protein, and established allosteric communication pathways between the OM binding site

and the functional regions in the U50K subdomain. This case-study, and others123,124,127–130,

demonstrates the utility of discrete-state mutual information as a predictor of allosteric path-

ways.

An important distinction between the method developed by Pandini et al. (2012)123 and

the linear mutual information method developed by Lange and Grubmueller (2006)120, is that

the Pandini et al. method normalises the mutual information between fragments by the com-

bined entropies. Determining the positional entropies of fragment-encoded structures is trivial

with a discrete-state model (see Equ. 1.10), and can therefore easily be computed over each

fragment in the structural alignment. Conversely, the method by Lange and Grubmueller cal-

culates the mutual information in Cartesian space. Therefore, it would be necessary to assume

the quasi-harmonic approximation in order to compute the positional entropy, offsetting the

advantages of mutual information as a statistical framework. Normalising for the combined
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entropy of each combination of fragments has the presumed effect of reducing false-positives

by normalising for random entropic motions, though a robust comparison between the two

methods is lacking. Nevertheless, due to the ease of normalising the correlations for random

thermal fluctuations within a discrete-state model, the method developed by Pandini et al.

(2012)123 holds particular promise for revealing allosteric communication pathways.

Computer simulations of protein dynamics, including molecular dynamics (MD) stochastic

dynamics (SD) and Monte Carlo (MC) simulations, continue to provide a powerful toolbox for

the investigation of allosteric transitions. An ensemble view of protein allostery86 predicates

that proteins sample an ensemble of conformations and that the configurational landscape is

modified by allosteric ligand binding. This landscape reconfiguration is achieved by pathways

of correlated residues, which can be accurately determined by computing the mutual infor-

mation between distal residues. Nevertheless, each minima in the configurational landscape

accessible to a protein gives rise to unique structural and dynamic properties, and therefore

measurements of correlated motions should account for this sampling of phase space, though

no methods to this end exist. Given the power of trajectory methods for elucidating allosteric

transitions, the present work makes use of molecular dynamics simulations to probe the con-

formational dynamics of PKM2.

Question 3: To what extent can networks of correlated motions, extracted from de-

fined conformational sub-states, be used as a means of predicting protein residues that

propagate the energetic effects of allosteric ligands?
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1.4 Summary of research questions and the contribution of this

thesis

Understanding the molecular basis for how PKM2 catalytic activity is regulated is critical to-

wards investigating its role as a disease target. This thesis follows on from work by Christofk

et al. (2008)26, Anastasiou et al. (2011)40 and Anastasiou et al. (2012)17 detailing how re-

duced PKM2 catalytic activity favours pro-tumorigenic cell growth. The prevailing view that

allosteric regulation of PKM2 promotes its disease-associated functions was subsequently sup-

ported by the a number of compound screens that led to the identification of small molecule

activators of PKM2, which were found to alleviate tumour progression by stabilising the highly

active tetrameric form of PKM217. Additional work by Chaneton et al. (2012)19, and oth-

ers, established a cross-talk between glycolysis and de novo serine biosynthesis, orchestrated

by allosteric regulation of PKM2 by serine and SAICAR. Moreover, work by Morgan et al.

(2013)22 and more recently by Yuan et al. (2018)20 found that PKM2 acts as a nutrient

sensor for a number of amino acids, which can activate or inhibit enzyme activity by binding

to a common allosteric pocket. Taken together, these studies led us to hypothesise that the

cellular activity of PKM2 is regulated by numerous allosteric ligands, and that this may be

relevant for metabolic phenotypes associated with cancer cell growth. Allosteric regulation of

PKM2 activity by numerous endogenous ligands may occur either in isolation; or concurrently,

resulting from the multiplicity of distinct allosteric pockets on the surface of PKM2. While

the mechanisms of how PKM2 responds to ligands per se has been carefully investigated, very

little is understood about how PKM2 responds to simultaneous binding of multiple allosteric

effectors with opposing functional signals. This led to the first research question: Do cellular

metabolic conditions exist under which PKM2 is likely to be bound to multiple allosteric effec-

tors? And if so, how are the effects of concurrently bound ligands, with opposing functional

signals, integrated by PKM2 to regulate enzyme catalysis? To this end, Chapter 3 investigates

possible functional mechanisms of allosteric regulation by a number of ligands, both alone and

in combination, on PKM2 enzyme activity.
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Regulation of PKM2 enzyme activity has been suggested to involve oligomeric changes and

possible subtle conformational rearrangements. Early investigations of PKM2 regulation by

Hofmann et al. (1975)70 suggested that the oligomeric structure of the protein can alternate

between lower-order oligomers and tetramers. Subsequent work by Kato et al. (1989)24, Anas-

tasiou et al. (2012)17, Morgan et al. (2013)22 and Yan et al. (2016)62 found that stabilisation of

PKM2 tetramers resulted in high enzyme activity. Nevertheless, the monomer-dimer-tetramer

distribution of PKM2 in the absence of any allosteric ligands, and the subsequent effects of

various ligands on this distribution, is disputed. Moreover, if multiple ligands concurrently reg-

ulate PKM2, under cellular metabolic conditions, the necessary relationship between enzyme

activity and oligomerisation remains to be determined. It may, for example, be the case that

a molecule of PKM2 is bound to both FBP (an activator; reportedly promotes tetramerisa-

tion) and alanine (an inhibitor; reportedly destabilises tetramers). Given the current available

knowledge in the literature, it is unclear how ligands alone, and in combination, determine

the oligomeric state of PKM2, and whether this is linked to the prevailing level of enzyme

activity. This led to the second research question, which will be addressed herein: What are

the contributions of ligand-induced conformational and oligomeric changes to PKM2, and what

are the relationships between these allosteric effects and PKM2 activity? The relationship be-

tween PKM2 activity and its oligomeric state is of greater biological interest given that PKM2

activity in cells is often inferred from the its oligomeric state17,26,40,78,79,81,82. To this end,

Chapter 4 presents an investigation of the oligomeric and structural conformation of PKM2,

and how this changes in response to concurrent allosteric ligand binding, using native mass

spectrometry and ion mobility. Chapter 5 builds on the experimental findings of the previous

chapter, and presents details about the conformational dynamics of PKM2 in response to al-

losteric regulation, gleaned from molecular dynamics simulations.

The previous finding by Anastasiou et al. (2012)17 that allosteric activation of PKM2 al-

leviates some of its pro-tumourigenic functions, suggests that genome-encoded, and therefore
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stably propagated, allosteric effects can contribute towards disease progression. Allosteric

pockets are subject to less evolutionary pressure and hence are more sequence variable than

orthosteric sites131, affording exogenous allosteric ligands greater target specificity. Therefore,

methods which [i] identify putative allosteric pockets and [ii] elucidate networks of protein

residues involved in the propagation of allosteric signals, would hold great power for drug

discovery. Particularly successful has been the use of analysis methods such as those de-

veloped by Pandini et al. (2012)123 and Lange and Grubmueller (2006)120 used to identify

distally correlated motions in the backbone of proteins in order to elucidate allosteric path-

ways. Nevertheless, work by Volkman et al. (2001)113, Lindorff-Larsen et al. (2005)116, Yao

et al. (2008)114, Guerry et al. (2013)117 and many others, has shown that protein dynamics

results in an ensemble of pre-existing conformations that determine the physico-chemical and

functional properties of enzymes. In this respect, ensemble-averaging of any dynamic time-

resolved observable is required. Additional methods are required to predict the network of

residues involved in protein allostery, with a consideration for the ensemble nature of protein

dynamics. This led to the third and final research question: To what extent can networks of

correlated motions, extracted from defined conformational sub-states, be used as a means of

predicting protein residues that propagate the energetic effects of allosteric ligands? To ad-

dress this question, Chapter 5 presents the development of a AlloHubMat, a novel method and

stand-alone software package used to predict allosteric hub residues from molecular dynamics

simulations using tools from information theory. AlloHubMat is applied towards the analysis

of molecular dynamics simulations of PKM2 and predicts a network of residues involved in

propagating the effects of FBP-induced activation. These in silico predictions are tested in

Chapter 6 using single-point mutant variants of PKM2, designed to abrogate the allosteric

pathways induced by FBP activation.

In addition to various biophysical and analytical methods, molecular dynamics simulations

are used as a detailed statistical-mechanical technique for investigating the conformational

dynamics of PKM2 in response to allosteric regulation. Moreover, the simulated trajectories
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generated from MD calculations are used as an input for AlloHubMat, to predict allosteric

pathways. Given the importance of molecular dynamics as an in silico tool for this work,

and the immense power it presents for the study of protein dynamics, the mathematical and

physical principles of MD simulations are detailed in the following Chapter.

Figure 1.8: Time line of historical discoveries in the fields of protein dynamics and al-
lostery, and PKM2 biology and biophysics. Historical discoveries relating to the fundamental
concepts of protein dynamics and allostery, with a focus on molecular dynamics simulation methods,
are shown in dark blue. Discoveries relating to PKM2 biology, structure and regulation are shown in
dark green.
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Chapter 2

Theoretical, computational and

experimental methods

2.1 Theoretical principles of molecular dynamics simulations

[Anfinsen] showed a film of the folding of a protein with "flickering helices form-

ing and dissolving and coming together to form stable substructures". Of course,

the film was purely imaginary, but it led to my asking him whether he had thought

of taking the ideas in the film and translating them into a quantitative model. He

said that he did not really know how he would do this, but to me it seemed clear

that such a model could be based on straightforward physical concepts.132

Martin Karplus

The aim of a molecular dynamics (MD) simulation is to compute the equilibrium and transport

properties of a classical many-body system. The term classical means that the interaction be-

tween particles and their movement is studied over a given time t through a classical statistical

mechanical treatment of the constituent particles. The real power of MD simulations in study-

ing protein dynamics is in the ability to complement experimental studies. MD simulations can

act as a figurative microscope affording the investigator high spacial and temporal resolution
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in the study of macromolecular dynamics. Given that most current applications of molecular

dynamics simulations of large proteins use a classical statistical mechanical framework due

to the enormous computational cost associated with solving the time-dependent Schroedinger

equation for biologically interesting molecules, the Hamiltonian of a classical system will be

introduced in the following section. This will be followed by a discussion of how molecular

forces are computed in an MD simulation, a consideration for how dynamics is calculated in

difference physical ensembles and finally, a brief description of the potential energy function

used to represent the atomic interaction energies in an MD simulation.

2.1.1 The Hamiltonian of a classical mechanical system

The Hamiltonian (H) can be used to describe a classical system of particles i with coordinates

r and momenta p. The Hamiltonian is equal to the total energy if the potential energy function

is independent from time and velocity:

H(r,p) ≡ K(p) + U(r) =
∑

i

p2
i

2mi
+ U(r) (2.1)

where K is the kinetic energy, U is the potential energy and m is the mass. A classical system

can therefore be defined by the set of values r,p, which corresponds to a point in phase space

defined by the internal coordinates of the system and their momenta.

In order to measure thermodynamic averages over a micro-canonical ensemble of states char-

acterised by the macroscopic variables (N,V,E), it is necessary to determine the probability

distribution of finding the system at each point in phase space (ρ(r,p)). With a knowledge of

this distribution of states, one can compute the phase space average of any dynamic variable

(A(r,p)) of interest:

〈A〉 = tr
(

e−βH(r,p)
)

A

tr
(

e−βH(r,p)
) (2.2)
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where H is the Hamiltonian of the system, β = 1
kBT and tr is the trace of the operator. With

this it is assumed that each quantum state of a many-body system with energy E is equally

likely to be occupied. The same thermodynamic observable can be calculated for all quantum

states of a system i:

〈A〉 =
∑

i e
−βEi < i|A|i >
∑

j e
−βEj

(2.3)

Unfortunately computing thermal averages for a many-body system by solving the Schroedinger

equation and then computing the expectation value of the operator A for all quantum states

that have a non-zero statistical weight is not possible for macromolecular systems. The number

of quantum states contributing to the operator A in Equ. 2.3 would be so large (1010
23

) that a

numerical evaluation of the system would be impractical. For this reason the basic assumption

of statistical mechanics is made, whereby it is assumed that a system with fixed number of

particles (N), volume (V ) and energy (E) is equally likely to be found in any of its quantum

states. Such an average over all quantum states of an N-body system in Equ. 2.2 is called an

ensemble average. Nevertheless, in order to compare an observable computed from a simula-

tion with that derived from an experiment, it is desirable to study the time-evolution of that

system. Thermal averages can be computed by following the motion of the system through the

phase space as a function of time (t) by integrating the system’s equations of motion, taking

the averages only over those points that are visited along the trajectory. Provided that the

initial coordinates and momenta of all atoms are defined (rN ,pN ), the time-averaged density

(ρi(r)) can be measured in a molecular dynamics simulation in a volume V , at a constant total

energy E:

ρi(r) = lim
t→∞

1

t

∫ t

0
dt′ ρi(r; t

′) (2.4)

The ergodic hypothesis states that when t tends towards infinity and that the trajectory

samples the entire phase space, the time average does not depend on the initial conditions.
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Therefore, averaging over all initial phase space coordinates is equivalent to averaging over the

time-evolved space coordinates:

ρi(r) = 〈ρi(r)〉NV E (2.5)

Generally the above is not true due to the finite length of molecular dynamics simulations,

which is constrained by computer processing speed. As such, ergodicity is unattainable for

simulations of macromolecules in the vast majority of cases. The ideal simulation length

depends primarily on the time-scale of the phenomena of interest. Taking the intrinsic dynamic

motion of protein atoms as an example, different atomic and molecular motions are dispersed

across a wide range of time scales. The positions of amino acid side chains may fluctuate with

a relatively with relatively high frequency (on the ps time scale), whereas large inter-domain

tertiary structural rearrangements of the entire protein may occur on much longer time scales

(approaching the µs to ms time scales). In reality, the time scales of these motions largely

varies from protein to protein and may depend on the physical and chemical properties of the

polypeptide chain. Nevertheless, slow structural dynamics and hence long time scales, still

represent a significant computational cost. Apart from using a ’brute-force’ approach, this can

be overcome by decreasing the number of degrees of freedom of the system, or by biasing the

energetic landscape such that the protein is able to traverse free energy barriers and explore

conformational space otherwise inaccessible. Neither of these approaches are the subject of

this thesis and, as such, will not be reviewed here.

2.1.2 The force calculation and integrating the equations of motion

To start a molecular dynamics simulation, it is first necessary to assign the initial positions

and velocities to all particles of the system. Following this initialisation step, the forces on

each particle within the system can be calculated and Newton’s equations of motion can

be solved. The positions of the atoms are adjusted such that steric clashes between the

composite particles are minimised. Additionally, prior to the start of the simulation, velocities
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are assigned to each particle such that the total momentum is zero and that the instantaneous

temperature T matches a desired value:

kBT (t) ≡
N
∑

i=1

mv2i (t)

Nf
(2.6)

Next, the forces acting on each of the particles in the system are computed. The forces are

subsequently used, along with the positions of the particles at the current and at the previous

step, in order to predict the positions at the next step. If a given pair of particles are close

enough to interact, the forces along the x-direction between these particles are derived from

the potential energy (U(rN )):

fx(r) = −∂U(r)

∂x
(2.7)

The potential energy between each interacting particle in the system is defined by empirically-

defined force field potentials. The functional form of these potentials will be described later. It

is worth mentioning here that the force evaluation is the most time-consuming step of a molec-

ular dynamics simulation, as it is necessary to consider the contribution to the force on particle

i due to all its neighbours. Considering only the interaction between a particle and the nearest

image of another particle, it is necessary to evaluate N ·N−1
2 pair distances, which scales as N2.

Having computed all the forces for each of the constitutive particles of the system, New-

ton’s equations of motion can be integrated. The simplest way to construct an integrator is

through a Taylor expansion of the positions and velocities:

r(t+∆t) = r(t) + v(t)∆T +
f(t)

2m
∆t2 +

∆3

3!

...
r +O(∆t4) (2.8)

r(t−∆t) = r(t)− v(t)∆T +
f(t)

2m
∆t2 − ∆3

3!

...
r +O(∆t4) (2.9)
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r(t+∆t) ≃ 2r(t)− r(t−∆t) +
f(t)

m
∆t2 (2.10)

These equations have been modified to make them time-reversible133, thus increasing the

accuracy and robustness of the integration.

2.1.3 Molecular dynamics in various ensembles

Until this point, concepts for simulating a system in the microcanonical (NVE) ensemble have

been introduced. Nevertheless, in order to replicate the conditions of a particular experimental

set-up, it is often desirable to perform molecular dynamics calculations in different ensembles

(ie. NVT or NPT). Physical and mathematical considerations for simulating in these ensembles

will be discussed briefly.

Constant temperature (NVT)

A constant temperature can be imposed by bringing the system in thermal contact with a large

heat bath. This allows for the study of different molecular systems at different temperatures

and sampling of the canonical statistical ensemble. Under these conditions, the probability

of the system populating a given energy state is given by the Maxwell-Boltzmann velocity

distribution:

P (p) =

(

β

2πm

)3/2

· exp
[−βp2

2m

]

(2.11)

We then obtain a simplified relation between the imposed temperature T and the kinetic

energy for each particle in the system

kBT = m〈v2α〉 (2.12)
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where kB is the Boltzmann constant, m is the mass of the particle and 〈v2α〉 is the time averaged

αth component of its velocity. This equivalence is often used to measure the temperature of a

microcanonical system. Given that the temperature of a system is proportional (though not

directly) to the average kinetic energy of the particles, the temperature can be controlled by

scaling the velocities. If the temperature at time t is T (t) and the velocities are multiplied by

a factor λ, then the system temperature can be calculated by:

∆T =
1

2

∑

i=1

2
mi(λvi)

2

NdfkB
− 1

2

∑

i=1

2
miv

2
i

NdfkB
(2.13)

∆T = (λ2 − 1)T (t) (2.14)

λ =

√

T0

T (t)
(2.15)

Multiplying the velocities at each time step by a factor λ =
√

T0/T (t), where T (t) is the

current temperature calculated from the kinetic energy and T0 is the desired temperature pro-

vides the simplest way of keeping a constant system temperature.

A simpler formulation of velocity scaling is given by the Berendsen temperature coupling

algorithm, in which the velocities are scaled at each step such that the rate of change of the

temperature is proportional to the difference in temperature

dT (t)

dt
=

1

τ
(T0 − T (t)) (2.16)

where τ is a parameter which determines how tightly the system is coupled to the thermal bath.

The Berendsen temperature coupling algorithm gives an exponential decay of T (t) towards
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T0. The coupling parameter τ is given by

λ2 = 1 +
δt

τ
·
[

T0

T (t− δt
2 )

− 1

]

(2.17)

In practice the coupling parameter τ is empirical and the choice of its value alters the strength

of coupling between the system and the thermal bath and should be chosen within a reasonable

range. Despite the empirical nature of the Berendsen coupling algorithm, it is very efficient

for converging systems towards a desired temperature and consequently is commonly used in

the equilibration step of an MD simulation134. Nevertheless, to accurately probe the canonical

ensemble, the Extended System approach was first proposed simultaneously by Nosé135 and

Hoover136. The premise of the Nosé-Hoover approach is to an extended Lagrangian to consider

the thermal bath as part of the system by adding a dynamic variable s̃ , which has a non-zero

mass and a velocity ˙̃s. In the extended system the atomic coordinates are identical to the

non-coupled system, however the time scale is stretched by the factor s̃ so that

dt = s̃dt (2.18)

The Lagrangian for the extended system is given as

LNose =
N
∑

i=1

mi

2
s2ṙ2i − U(r2) +

Q

2
ṡ2 − L

β
ln s̃ (2.19)

where Q is the mass of s̃. The first two terms of the extended Lagrangian represent the

potential energy subtracted from the kinetic energy of the real system. The third and forth

terms represent the kinetic energy minus the potential energy assigned to s̃. The energy of the

real system will fluctuate about a mean and accompanying the fluctuations of s̃, heat transfers

occur between the system and the thermal bath, which regulate the system temperature. The

momenta conjugate to ri and s follow directly from Equ. 2.19:

pi ≡
∂L

∂ṙi
= mis

2ṙi (2.20)
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ps ≡
∂L

∂ṡ
= Qṡ (2.21)

This gives the extended Hamiltonian of the system if N particles plus the additional coordinate

s:

HNose =
N
∑

i=1

ṗ2
i

2mis2
+ U

(

r2
)

+
p2s
2Q

+ L
ln s

β
(2.22)

Constant pressure (NPT)

Many experiments are conducted at a constant pressure, and rather than adjusting the volume

of a simulation box in the canonical ensemble, it is often more convenient to ensure a constant

pressure. Constant pressure simulations can be attained in the isothermal-isobaric ensemble

by considering the volume as a dynamic variable that changes during the simulation. Similar

to Hoover scheme to regulate the temperature of the water box, the volume parameter is

accounted for by an extended Hamiltonian. The equations of motion for the positions and the

momenta are137:

ṙi =
pi

mi
+

pǫ
W

ri (2.23)

ṗi = Fi −
(

1 +
d

dN

)

pǫ
W

pi −
pξ1
Q1

pi (2.24)

where N is the number of particles; the thermostat variable, its momentum and mass are

given by ξ1, pξ1 and Q1, respectively. This is similar to the thermostat in the Nosé-Hoover

chain algorithm. Additionally, a barostat is introduced via the variables ǫ, pǫ and W , which

give the additional variable, along with its momentum and mass, respectively. The dynamic
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variable ǫ that accounts for the barostat is defined as the logarithm of the volume V of the

system:

ǫ = ln

(

V

V0

)

(2.25)

where V0 is the volume of the system at time t = 0. The corresponding equations of motion

for the volume are given by:

V̇ =
dV pǫ
W

(2.26)

ṗǫ = dV (Pint − Pext) +
1

N

N
∑

i=1

p2
i

mi
− pξ1

Q1
pǫ (2.27)

where Pext is the external pressure, which is selected at the outset of the calculation. The

internal system pressure of the system (Pint) is given by:

Pint =
1

dV

[

N
∑

i=1

(

p2
i

mi
+ ri · Fi

)

− dV
∂U(V )

∂V

]

(2.28)

The Hamiltonian of the extended system is given by:

HNPT = H(p, r) +
p2ǫ
W

+
∑

i=1

p2ξ1
Q

+ (dN + 1)kBT ξ1 + kBT
∑

i=1

ξi + PextV (2.29)

2.1.4 The functional form of the potential energy

When calculating the forces on each particle i using Equ. 2.7, it is necessary to evaluate the

potential energy of each interaction in the system. The potential energy between each consti-

tutive particle in a system is represented by an empirically-derived force field potential, which

describes the interaction energy between atoms in terms of the atom coordinates (r) and the

force field parameters (s). The potential energy is written as a sum over different contribu-
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tions, which can correspond to physical atomic interactions or to unphysical interactions that

may be applied to the system:

U(r; s) = Uphys(r; s) + U special(r; s) (2.30)

Special unphysical interactions can correspond to restrains to bond lengths and distances, or

additional forces applied to the system, though these will not be described here in any further

detail. The physical interactions within the system can be further sub-divided into bonded

and non-bonded interactions between the composite atoms:

Uphys(r; s) = U bonded(r; s) + Unon−bonded(r; s) (2.31)

The functional form of the bonded interactions of the Gromos force field parameter set, used

herein, are the sum of the bond, bond angle, harmonic dihedral angle and trigonometric

dihedral angle terms138:

U bonded(r; s) = U bond(r; s) + U bondangle(r; s) + Uharmonic(r; s) + U trig.(r; s) (2.32)

The non-bonded interactions are a sum over the potential associated with van der Waals and

electrostatic interactions between all pairs of atoms138:

Unon−bonded(r; s) = UvdW (r; s) + U electrostatic(r; s) (2.33)

Bonded interaction potential

The energetic potential of covalent bonded interactions is calculated as the sum over all Nb

bonds and depends on the parameters Kb and b0, which were originally parametrised against

experimental spectroscopic and X-ray diffraction data for small molecules. The functional
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form of the bonded potential is:

U bond(r;Kb, b0) =

Nb
∑

n=1

1

2
Kbn [bn − b0n ]

2 (2.34)

where bn is the actual bond length, b0 is the optimal bond length and Kb is the bond force

constant. The parameters Kb and b0 vary depending on the nature of the bonded interaction

between given pairs of atoms (Fig. 2.1 A). The potential due to the angle between bonded

interactions is calculated as a sum of all Nθ bond angles and depends on the parameters Kθ

and θ0:

U bondangle(r;Kθ, θ0) =

Nθ
∑

n=1

1

2
Kbθ [cos θn − cos θ0n ]

2 (2.35)

where θn is the actual bond angle, θ0 is the optimal bond angle and Kθ is the bond angle force

constant (Fig. 2.1 B). The harmonic torsion angles are used to maintain a specific planar

configuration for four specific atoms (eg. maintaining a tetrahedral configuration about an sp3

hybridised carbon atom). This potential is calculated as the sum over all improper dihedral

interaction centres Nξ, with parameters Kξ and ξ0
138:

Uharmonic(r;Kξ, ξ0) =

Nξ
∑

n=1

1

2
Kbξ [ξn − ξ0n ]

2 (2.36)

where ξn is the actual harmonic torsion (Fig. 2.1 C). Similarly, the trigonometric torsion

angles are defined as a sum over all Nϕ torsion angles, with parameters Kϕ, δ and m:

U trig.(r;Kϕ, δ,m) =

Nϕ
∑

n=1

Kϕn [1 + cos(δn) cos(mnϕn)] (2.37)

where δ is the phase shift, mn is the multiplicity of the torsion angle and ϕ is the actual

trigonometric torsion angle (Fig. 2.1 D).
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Figure 2.1: Examples of bonded interaction potential energies for arbitrarily selected
atoms. (A) The interaction potential for a C-O bond length. (B) The interaction potential for a
H-N-C bond angle. (C) The harmonic torsional potential energy for a tetrahedral centre. (D) The
trigonometric torsional potential energy for a -C-C- torsion.
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Non-bonded interactions

In the GROMOS force field parameter set, the non-bonded interactions are calculated as the

potential between all atoms that are not involved in a covalent (ie. bonded) interaction.

There are a number of exceptions to this collection of interactions, including those that fall

outside of a defined inter-atomic cut-off range. Two principle non-bonded interaction types

are considered: van der Waals interactions and electrostatic interactions. The non-bonded van

der Waals potentials are calculated as a sum over all interacting non-bonded atom pairs i, j

using a Lennard-Jones 12/6 interaction function with parameters C12 and C6:

UvdW (r;C12, C6) =
∑

i,j

(

C12i,j
r12i,j

− C6i,j
r6i,j

)

(2.38)

Electrostatic interaction potentials are defined as three separate terms: a Coulomb interac-

tion potential, a distance-dependent reaction-field contribution and a distance-independent

reaction-field term. The Coulomb potential is given as a sum over all interacting pairs UC ,

with parameters q defined as the partial charges qi on the atoms138:

UC(r; q) =
∑

i,j

qiqj
4πǫ0ǫ1

· 1

rij
(2.39)

where the dielectric permittivity of a vacuum and that of the solvent in which the atoms are

embedded is given by ǫ0 and ǫ1, respectively. In addition to the direct Coulomb interactions,

a reaction-field URF is determined, which represents the interaction of atom i with an induced

dielectric field outside a defined cut-off distance RRF in the presence of atom j. Finally, a

distance-independent reaction-field term is given as a constant contribution to the potential

for every pair of atoms taken into account.
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Evaluating long-range electrostatic interactions

Increasing computational power has allowed for the simulation of ever larger molecular sys-

tems. Nevertheless, it is crucial that the computation of all pair interactions is avoided, as

otherwise the time complexity of a molecular dynamics algorithm would be proportional to

the square of the number of particles. The expense of a molecular dynamics simulation could

be reduced rather drastically by truncating the potential of long-range electrostatics, thus

assuming that the long-range part of the potential is unimportant. Truncation of long-range

electrostatics removes the expensive part of the calculation but introduces serious inaccura-

cies. Other techniques are available for handling long-range electrostatic interactions and,

while more expensive than a simple truncation, have the advantage that they more faith-

fully respect the long-range character of the forces between a charge-charge pair of atoms.

Of the techniques available to evaluate long-range electrostatics, the so-called particle-mesh

Ewald summation is often used for biomolecular systems and scales with a time complexity of

O(n log n).

The particle-mesh Ewald scheme is used as a numeric approximation to Ewald summation. In

the Ewald summation method, long-range electrostatic interactions are split into two parts: a

short-range contribution and a long-range contribution. The short-range contribution is solved

in real-space, whereas the long-range contribution is calculated using a Fourier transform. The

time complexity for a fully optimised Ewald summation scheme scales to the number of par-

ticles as O(n2/3), due to the expense of the reciprocal-space part of the Ewald sum. For the

simulation of systems where the number of particles is of the order of 105 it is necessary to

have a scheme that handles the Fourier part of the Ewald summation more efficiently. To

this end, particle mesh Ewald methods allow for the efficient evaluation of the Fourier part of

the Ewald summation scheme by using a so-called Fast Fourier Transform139. First, charged

particles are assigned to discrete points on a lattice. Next, a Fast Fourier Transform method

is used to compute the Poisson equation for the discrete charge distribution on the defined
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lattice. Once Poisson equation has been computed to give the electrostatic energy, the forces

are calculated and assigned back to the particles on the system.

2.2 Parameters used for molecular dynamics simulations of PKM2

Molecular dynamics (MD) simulations were used throughout this study to characterise the

functional dynamics of PKM2 in explicit solvent and in vacuo.

2.2.1 Molecular dynamics simulations in explicit solvent

MD simulations of monomeric and tetrameric human PKM2 were performed with the GRO-

MACS 5.2 engine140, in SPC-E water141. Interactions between protein atoms and solvent

were modelled using the Gromos 53a6 force field parameter set138. The input coordinates for

monomeric PKM2 in the apo form (mPKM2apo) were extracted from the Protein Data Bank

crystal structure structure 3bjt23. Coordinates for mPKM2Phe were extracted from 4fxj22;

mPKM2FBP , tPKM2FBP and mPKM2Tepp−46 from 3u2z17; and coordinates for tPKM2FBP+Phe

and tPKM2FBP+Ser were extracted from 4b2d19. Missing residues were modelled using holo-

mogy modelling within the Modeller suite142. The force-field parameters for FBP and Tepp-46

were determined using a quantum mechanical assignment of the partial charges using the ATB

server143. Structures were solvated in a dodecahedral period box, such that the distance be-

tween any protein atom and the periodic boundary was a minimum of 1.0 nm. The system

charge was neutralised by adding counter ions to the solvent (Na+ and Cl−). Equations of

motion were integrated using the leap-frog algorithm with a 2 fs time step. The system was

equilibrated for 5 ns in the NVT ensemble at 300 K and 1 bar. This was followed by a further

5 ns equilibration in the NPT ensemble. Following equilibration, multiple replicate production

run simulations were performed for 400 ns under constant pressure and temperature condi-

tions, 1 bar and 300 K. Temperature was regulated using the velocity-rescaling algorithm,

with a coupling constant of 0.1. Covalent bonds and water molecules were restrained with

the LINCS144 and SETTLE145 methods, respectively. Electrostatics were calculated with the
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particle mesh Ewald method139, with a 1.4 nm cut-off, a 0.12 nm FFT grid spacing and a

four-order interpolation polynomial for the reciprocal space sums.

2.2.2 Molecular dynamics simulations in vacuo

Structural models of the 15+ monomer, 23+ A-A’ and C-C’ dimers and 33+ tetramers were

generated from the PDB crystal structure 3bjt23 by randomly assigning positive charges to

histidine residues distributed throughout the protein. Models were simulated in vacuo using

the OPLS- AA/L force-field parameter set146. Systems were minimised using the Steepest

Descent algorithm for 5 x 106 steps, with a step size of 1 J mol−1 nm−1 and a maximal force

tolerance of 100 kJ mol−1 nm−1. Next, systems were equilibrated at consecutively increasing

temperatures (100 K, 200 K and 300 K) each for 5 ns, with the Berendsen temperature coupling

method and an integration step size of 1 fs. Production run simulations were performed for

10 ns with an integration step size of 2 fs in the canonical ensemble. Pressure coupling and

electrostatics were turned off. Temperature was held constant at 300 K using the Berendsen

coupling method. The most prevalent structures were extracted using the GROMOS clustering

algorithm147. Theoretical collision cross sections were calculated for each clustered structure,

using the projection approximation method, as outlined by Ruotolo (2008) et al.148, and using

the exact hard-sphere scattering model, as implemented in the EHSSrot software149.
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2.3 Protein biophysics

2.3.1 Recombinant protein expression and purification

PKM2 single-point mutant plasmids were generated through a single-step PCR reaction us-

ing hot-start KOD polymerase (Merck Millipore; Burlington MA, USA) and a pET28a-His-

PKM2(WT) template plasmid (plasmid no. 42515 AddGene; Cambridge MA, USA). Plasmids

were sequence-verified by Sanger Sequencing (Source Bioscience; Nottingham, UK). Expres-

sion of plasmids was achieved by transforming 40 ng pET28a-His-PKM2 into 40 µL E. coli

BL21(DE3)pLysS (60413; Lucigen, Middleton WI, USA). Colonies were inoculated in LB

media at 37 °C and grown to an optical density of 0.8 AU (600 nm). After bacteria had

reached exponential growth, expression of the N-terminal His6-PKM2(WT) was induced with

0.5 mM isopropyl b-D-1 thiolgalactopyranoside (Sigma Aldrich, St. Louis MS, USA) at 24

°C for between 16 and 18 hours. The pellet was harvested and re-suspended in a lysis buffer

consisting of 50 mM Tris-HCl pH 7.5, 10 mM MgCl2, 200 mM NaCl, 100 KCl and 10 mM

imidizole, with the EDTA-free Complete protease inhibitor cocktail (Sigma Aldrich, St. Louis

MS, USA). Cells were lysed by sonication at 4 °C. DNase was added at 1 µL/mL prior to

centrifugation of the lysate at 20000 xg for 1 hour at 4 °C. The supernatant (the water-soluble

cell fraction) was loaded onto a HisTrap HP nickel-charged IMAC column (GE; Boston MA,

USA) and was washed with five column-volumes of wash buffer [10 mM HEPES pH 7.5, 10

mM MgCl2, 100 mM KCl, 10 mM imidazole and 0.5 mM tris-2-carboxyethyl phosphine hy-

drochloride (TCEP; Sigma Aldrich, St. Louis MS, USA)]. After consecutive wash steps, the

protein was eluted from the IMAC column with elution buffer buffer (10 mM HEPES pH

7.5, 10 mM MgCl2, 100 mM KCl, 250 mM imidazole and 0.5 mM TCEP). The N-terminal

His6-epipope tag was cleaved with at 4 °C for 18 hours in cleavage buffer (50 mM Tris-HCl pH

8.0, 10 mM CaCl2) with recombinant bovine thrombin, immobilised on agarose beads. Puri-

fied recombinant PKM2 was eluted from the thrombin-agarose column. Affinity purification

was followed by size-exclusion chromatography on a HiLoad 16/60 Superdex 200 pg column

(28-9893-35; GE, Boston MA, USA) at 500 mL/min flow rate with protein storage buffer (10
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mM HEPES pH 7.5, 10 mM MgCl2, 100 mM KCl, and 0.5 mM TCEP) at 4 °C. Eluted PKM2

was collected and concentrated to a final protein concentration of 7 mg/mL with centrifugal

concentrating filters (Vivaspin 20, 10 kDa molecular-weight cut-off, 28-9323-60; GE, Boston

MA, USA). Protein purity was assessed by SDS-PAGE. The final concentration of the protein

was obtained by measuring the fluorescence absorbance spectrum between 240 nm and 450

nm. The concentration was estimated (molar extinction coefficient of 29.910 M−1 cm−1 at 280

nm).

†Oligo I.D Sequence

JM.G122P.F CCTGAGATCCGAACTCCGCTCATCAAGGGCAGC

JM.I124G.F ATCCGAACTGGGCTCGGCAAGGGCAGCGGCACT

JM.G204P.F AATGGTGGCTCCTTGCCGAGCAAGAAGGGTGTG

JM.G204A.F AATGGTGGCTCCTTGGCGAGCAAGAAGGGTGTG

JM.F244V.F ATGGTGTTTGCGTCAGTGATCCGCAAGGCATCT

JM.R246Q.F TTTGCGTCATTCATCCAGAAGGCATCTGATGTC

JM.R246A.F TTTGCGTCATTCATCGCGAAGGCATCTGATGTC

JM.K247P.F GCGTCATTCATCCGCCCGGCATCTGATGTCCAT

JM.D288R.F ATCCTGGAGGCCAGTGCGGGGATCATGGTGGCT

JM.D288N.F ATCCTGGAGGCCAGTAACGGGATCATGGTGGCT

JM.K305Q.F GAGATTCCTGCAGAGCAGGTCTTCCTTGCTCAG

JM.F307P.F CCTGCAGAGAAGGTCCCGCTTGCTCAGAAGATG

JM.F307A.F CCTGCAGAGAAGGTCGCGCTTGCTCAGAAGATG

JM.C326S.F GGGAAGCCTGTCATCAGCGCTACTCAGATGCTG

JM.A327S.F AAGCCTGTCATCTGTAGCACTCAGATGCTGGAG

JM.A327D.F AAGCCTGTCATCTGTGATACTCAGATGCTGGAG

JM.D357S.F GTCCTGGATGGAGCCAGCTGCATCATGCTGTCT

JM.C358A.F CTGGATGGAGCCGACGCGATCATGCTGTCTGGA

JM.G435A.F GTCCTCACCAAGTCTGCGAGGTCTGCTCACCAG

JM.G435P.F GTCCTCACCAAGTCTCCGAGGTCTGCTCACCAG

JM.R489Q.F GAGGACGTGGACCTCCAGGTGAACTTTGCCATG

JM.R489L.F GAGGACGTGGACCTCCTGGTGAACTTTGCCATG

JM.F492A.F GACCTCCGGGTGAACGCGGCCATGAATGTTGGC

†Identifier: JM.<single point mutant substitution>.<forward (F) / reverse (R)>

Table 2.1: Forward primer sequences for single-point mutants of PKM2
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†Oligo I.D Sequence

JM.G122P.R GCTGCCCTTGATGAGCGGAGTTCGGATCTCAGG

JM.I124G.R AGTGCCGCTGCCCTTGCCGAGCCCAGTTCGGAT

JM.G204P.R CACACCCTTCTTGCTCGGCAAGGAGCCACCATT

JM.G204A.R CACACCCTTCTTGCTCGCCAAGGAGCCACCATT

JM.F244V.R AGATGCCTTGCGGATCACTGACGCAAACACCAT

JM.R246Q.R GACATCAGATGCCTTCTGGATGAATGACGCAAA

JM.R246A.R GACATCAGATGCCTTCGCGATGAATGACGCAAA

JM.K247P.R ATGGACATCAGATGCCGGGCGGATGAATGACGC

JM.D288R.R AGCCACCATGATCCCCGCACTGGCCTCCAGGAT

JM.D288N.R AGCCACCATGATCCCGTTACTGGCCTCCAGGAT

JM.K305Q.R CTGAGCAAGGAAGACCTGCTCTGCAGGAATCTC

JM.F307P.R CATCTTCTGAGCAAGCGGGACCTTCTCTGCAGG

JM.F307A.R CATCTTCTGAGCAAGCGCGACCTTCTCTGCAGG

JM.C326S.R CAGCATCTGAGTAGCGCTGATGACAGGCTTCCC

JM.A327S.R CTCCAGCATCTGAGTGCTACAGATGACAGGCTT

JM.A327D.R CTCCAGCATCTGAGTATCACAGATGACAGGCTT

JM.D357S.R AGACAGCATGATGCAGCTGGCTCCATCCAGGAC

JM.C358A.R TCCAGACAGCATGATCGCGTCGGCTCCATCCAG

JM.G435A.R CTGGTGAGCAGACCTCGCAGACTTGGTGAGGAC

JM.G435P.R CTGGTGAGCAGACCTCGGAGACTTGGTGAGGAC

JM.R489Q.R CATGGCAAAGTTCACCTGGAGGTCCACGTCCTC

JM.R489L.R CATGGCAAAGTTCACCAGGAGGTCCACGTCCTC

JM.F492A.R GCCAACATTCATGGCCGCGTTCACCCGGAGGTC

†Identifier: JM.<single point mutant substitution>.<forward (F) / reverse (R)>

Table 2.2: Reverse primer sequences for single-point mutants of PKM2
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2.3.2 Spectrophotometric assay to determine molar amounts of fructose
1,6-bisphosphate

Purified recombinant PKM2 was heat-precipitated at 90 °C and supernatant was carefully ex-

tracted. The supernatant was subsequently analysed for amounts of fructose 1,6-bisphosphate

(FBP) using an assay with three coupled enzymatic steps. The reaction mixture contained

20 mM Tris-HCl pH 7.0, 150 µM NADH, 0.7 U·mL−1 glycerol 3-phosphate dehydrogenase

(G-3-PDH), 7 U·mL−1 triose phosphate isomerase (TPI) and the supernatant of 5-50 µM

purified recombinant PKM2 after heat-precipitation at 90 °C. Reactions were initiated by

adding between 0.008 and 0.016 U·mL−1 to a total reaction volume of 100 µL. The enzymes

rabbit muscle TPI and G-3-PDH were purchased as a mixture from Sigma (50017, Sigma

Aldrich; St. Louis MS, USA). Rabbit muscle aldolase was also purchased from Sigma (A2714,

Sigma Aldrich; St. Louis MS, USA). For each molecule of FBP consumed in the reaction,

two molecules of NADH are oxidised. Therefore, FBP amounts were quantified by monitoring

NADH oxidation over time at 25 °C in a 1 mL quartz cuvette (1 cm path-length) by measuring

the NADH absorption signal at 340 nm using a Jasco V-550 UV-Vis spectrophotometer. For

the assay calibration, known amounts of FBP from a powder stock were used instead of the

heat-precipitated PKM2 supernatant.

2.3.3 Measurement of PKM2 steady-state enzyme kinetics

Initial velocities for the forward reaction of pyruvate kinase [phosphoenolpyruvate (PEP) and

adenosine diphosphate (ADP) conversion to pyruvate and adenosine triphosphate (ATP) (Fig.

2.2)] were measured using a reaction coupled to rabbit muscle lactate dehydrogenase. The

reaction monitored the oxidation of NADH (ǫ340nm = 6220 M−1 cm−1) at 37 °C in a buffer

containing 10 mM Tris-HCl pH 7.5, 100 mM KCl, 5 mM MgCl2 and 0.5 mM TCEP. Initial

velocity versus substrate concentrations for PEP were measured in the absence and in the

presence of allosteric ligands, in a reaction buffer containing 180 µM NADH and 8 U·mL−1

rabbit muscle lactate dehydrogenase (Sigma; St. Louis MS, USA). Reactions were initiated

by adding PEP at the desired concentration, with ADP at a constant concentration of 5 mM.
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A total protein concentration of 5 nM PKM2 was used for all enzyme reactions, in a total

volume of 100 µL per well in a 96-well plate. Apparent kinetic constants KM and kcat were

determined by fitting initial velocity curves to Michaelis-Menten steady-state kinetic models.

Figure 2.2: The catalytic mechanism of the pyruvate kinase-catalyzed conversion of phos-
phoenolpyruvate and ADP to pyruvate and ATP. 1. A phosphoryl group is transferred from
phosphoenolpyruvate (i) to ADP (ii) by an apparent SN2

mechanism, to yield the enolate of pyruvate
(iii) and ATP (iv). 2. A water molecule at the active site protonates the enolate (iii) at the 2-si
face of the double bond to form keto pyruvate (v.). 3. the hydroxide is reprotonated by the active site
residue His-78. Divalent cations Mg2+ or Mn2+ are thought to enhance the acidity of the solvent
molecule150. K+ does not directly contact the substrate or intermediate, but instead is thought to
influence the structure of the active site through interactions with R72, R119 and K269 55.
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2.3.4 Analysis of the steady-state kinetics of PKM2 enzyme activity inhi-
bition by Phe

The dependence of the PKM2 enzyme kinetic constants KM , kcat and kcat
KM

on the concentration

of Phe were determined, in order to assign the mechanism by which Phe inhibition of PKM2 oc-

curs in the absence and in the presence of FBP. Steady-state measurements of PKM2 enzyme

activity (as described in Section 2.3.3) were performed by titrating the substrate phospho-

enolpyruvate at several different concentrations of phenylalanine and a constant concentration

of 5 mM adenosine diphosphate. In order to investigate the allosteric K-type effect of Phe on

enzyme affinity for its substrate PEP, a single-substrate-single-effector paradigm was assumed.

Under prevailing equilibrium conditions the rate equation of the general modifier mechanism

reveals apparent values of KM and kcat:

v

[E]t
=

kappcat [S]

Kapp
M + [S]

(2.40)

v

[E]t
=

k2
1+β

[X]
αKX

1+
[X]

αKX

[S]

KM

1+
[X]
KX

1+
[X]

αKX
+[S]

(2.41)

where [E]t is the concentration of enzyme active sites, X is the inhibitor (Phe), S is the

substrate, KX is the dissociation constant of the specific component of the enzyme mechanism,

α is the reciprocal allosteric coupling constant and β is the factor by which the inhibitor

affects the catalytic constant k2. It then follows that the dependence of the equilibrium

constants Kapp
M , kappcat and (kcatKM

)app on the concentration of a modifier (X) (the allosteric

inhibitor phenylalanine) are written as follows151:

kappcat = k2 ·
1 + β [X]

αKX

1 + [X]
αKX

(2.42)
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Kapp
M = KM ·

1 + [X]
KX

1 + [X]
αKX

(2.43)

(

kcat
KM

)app

=
k2
KM

·
1 + β [X]

αKX

1 + [X]
KX

(2.44)

Rate curves measuring the dependence of [Phe] on the three kinetic constants were fit to the

equations above to solve for Ks, Kx, α and β. The kinetic mechanism was assigned based on

the topology of rate-modifier mechanisms detailed by Baici (2015)151.

2.3.5 Measurement of the allosteric coupling co-efficient

PKM2 initial velocities were measured at 37 °C using a lactate dehydrogenase assay over a

range of phosphoenolpyruvate concentrations with a constant concentration of 5 mM ADP,

as previously described in Section 2.3.3. Activity measurements were repeated following pre-

incubation of the PKM2 variant with saturating concentrations of FBP (2 µM for all variants,

with the exception of R489L which was incubated with 50 mM FBP to saturate this variant).

The allosteric coupling constant (Q) was calculated to determine the coupling between FBP

binding and catalysis, as previously described152:

Q =
Kia

Kia/x
(2.45)

where Kia and Kia/x are equilibrium dissociation constants for the binding of the substrate

(a) in the absence or presence, respectively, of the allosteric effector (x). Q > 1, indicates

positive allosteric coupling between the binding of x to the protein and the binding of a to the

substrate binding pocket. Conversely, where Q < 1, negative coupling exists between the a

and x sites. Measurements were repeated after addition of 400 µM Phe to the protein variants

that had been pre-incubated with FBP, and activity was measured over a range of substrate
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concentrations.

2.3.6 Circular dichroism spectroscopy

A JASCO J-815 spectrometer was used to record far-UV circular dichroism (CD) spectra

(Jasco; Oklahoma City, OK USA) from 200 nm to 260 nm with 300 µL of 0.2 mg/mL PKM2

ion a quartz cuvette with a path length of 0.1, at a temperature of 20 °C. Raw data in units of

mdeg were converted to extinction co-efficient of the mean residue CD extinction co-efficient,

in units of M−1 cm−1:

∆ǫmrw =
S ·MRW

32980 · c · L (2.46)

where c is the molar concentration of the protein, L is the path length, S is the raw mea-

surement of CD intensity (in units of mdeg) and MRW is the molecular weight of the protein

divided by the number of amino acids in the protein.

To measure the thermal stability of recombinant protein, the CD intensity at 222 nm was

monitored over a range of temperatures. Melting curves were fit to a two-state equilibrium

model, which assumes that the protein is either folded or unfolded and that there is no inter-

mediate (semi-folded) state ever populated:

F
Ku−−⇀↽−−
Kf

U (2.47)

where N is the native state, U is the unfolded state, Ku is the unfolding constant and Kn is

the folding constant. The unfolding constant is defined as:

Ku =
[F ]

[U ]
=

Ff

Fu
=

1− Ff

Ff
(2.48)

The CD absorbance signal at 222 nm over a range of temperatures, starting from the folded

and ending in the unfolded state, is assumed to reflect a linear combination of detected optical
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signals from the folded and the unfolded species in solution:

Sobs = SfFf + SuFu =
Sf + SuKu

1 +Ku
=

Sf + Sue
−∆G
RT

1 + e
−∆G
RT

(2.49)

where S is the signal and F is the fractional content of either species. Substituting for ∆G

with the Gibbs-Helmholtz equation gives:

Sobs =
Sf + Suexp

[

−∆HTm

RT

(

1− T
Tm

)

− ∆Cp

RT

(

(T − Tm)− T · ln
(

T
Tm

))]

1 + exp
[

−∆HTm

RT

(

1− T
Tm

)

− ∆Cp

RT

(

(T − Tm)− T · ln
(

T
Tm

))] (2.50)

where Tm is the melting temperature, ∆HTm is the enthalpy change at T = Tm and ∆Cp is

the heat capacity change.

2.3.7 Measurements of FBP binding to PKM2

PKM2 binding to FBP was measured by titrating a concentrated solution stock solution of

FBP into 5 µM PKM2 in a buffer containing 10 mM HEPES pH 7.0, 100 mM KCl and 10 mM

MgCl2 at 20 °C. Intrinsic fluorescence emission spectra of PKM2 were recorded using a Jasco

FP-8500 fluorescence spectrofluorometer with an excitation wavelength of 280 nm (bandwidth

of 2 nm) and emission scanned from 290 nm to 450 nm (bandwidth of 5 nm) in a 0.3 cm

path length quartz cuvette (Hellma Analytics; Muellheim, Germany). A ratio of the emission

intensities at 325 and 350 nm was plotted against the concentration of the titrant. Binding

curves were fit to a model assuming a 1:1 binding stoichiometry (1 FBP molecule per monomer

of PKM2) with a non-linear least squares regression fit of the following:

Sobs = SPP0+SLL0+(SPL−SP−SL)·
(KD + P0 + L0)−

√

(Kd + P0 + L0)2 − 4(P0L0)

2
(2.51)

where the spectral signal Sobs is the ratio of fluorescence emissions at 325 nm and 350 nm; SP ,

SL, and SPL are the spectral signals of the free protein, the free ligand and the protein-ligand

complex, respectively. The apparent dissociation constant is given by KD. The free protein

84



J.A.S MACPHERSON CHAPTER 2

concentration ([P0]) was corrected by subtracting the percentage of protein pre-bound to co-

purified FBP, as determined from the aldolase-coupled assay.

To automate the solution of Equ. 2.51 for binding data, an R package ligBind was writ-

ten. The package consists of two simple functions 1. to fit binding data to Equ. 2.51

and 2. to plot the binding curve along with the raw data and the residuals of the fit

to Equ. 2.51. A brief description of ligBind is given here, which will provide a tutorial

for how to use the package to estimate the binding affinity for a ligand-receptor interac-

tion. ligBind can be compiled from source and is freely available to download at https:

//github.com/jamieAmacpherson/ligand_binding/tree/master/ligBind. Once ligBind has

been compiled, the user can fit binding data to estimate the affinity and visualise the binding

curve, in an automated manner. For the purposes here we will use test data that is shipped

with the package.

After the package has been compiled, the user can calculate the binding affinity of the protein-

receptor interaction using the function fit.binding(). The fitting function requires as inputs:

(1) a data-frame with two equal columns containing the ligand concentration and the bind-

ing response, (2) a predicted binding affinity and (3) the protein concentration used in the

experiment. The function fit.binding() prints the calculated binding affinity along with the

associated error. The function also returns a four-element list containing the summary of the

fitting procedure, the raw binding data, the fitted binding model and the residuals between

the fitted model and the raw data. This list can be used as a direct input for the plotting

function ligBind::plt.binding.curve() to visualise the binding data and the predicted model.

An example output of the plotting function in ligBind is shown in Fig. 2.3.
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Listing 1: Use of ligBind to calculate binding affinity and visualise ligand-

receptor binding data.

## Load ligBind package

library(’ligBind ’);

## Initialise the test data

test_data = dat;

## Calculate the binding affinity of the protein -receptor

## interaction.

test_data_fit = ligBind ::fit.binding(bindingdat = test_data ,

kd_pred = 3000,

prot_conc = 5);

## Visualise the binding curve

ligBind ::plt.binding.curve(test_data_fit );
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Figure 2.3: Visualisation of a ligand-receptor binding curve fitted using the ligBind pack-
age. The output of ligBind::plt.binding.curve() function shown above in Listing 1.
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2.3.8 Microscale thermophoresis measurements of phenylalanine and serine
binding

Microscale thermophoresis (MST) is an experimental technique that is used to measure protein-

ligand binding. In this technique, a protein-ligand mixture is prepared in a buffered solution

and is loaded into a glass capillary. During the MST experiment, a temperature gradient

is induced by an infrared laser, which induces protein-ligand molecules to disperse from the

focal point of the laser. The directed movement of the protein-ligand molecules is detected by

monitoring the fluorescence absorption or emission properties at a defined wavelength using

either covalently attached fluorophores or the intrinsic fluoresence of either the protein or the

ligand. The thermophoretic properties of a protein is strongly dependent on its size, charge,

hydration shell and conformation. Therefore, protein-ligand binding which perturbs any of

these biomolecular properties can be detected using MST.

The binding of Phe and Ser to PKM2 was measured using MST on a Monolith NT.115 in-

strument (Nanotemper Technologies; Munich, Germany). PKM2 was fluorescently labelled

with an Atto-647 fluorescein dye (NT-647-NHS; Nanotemper, Munich, Germany). 250 µL of

20 µM recombinant PKM2 was labelled with 250 µL of 60 µM dye in a buffer containing 100

mM bicarbonate pH 8.5 and 50 % DMSO for 30 minutes at room temperature in the dark.

Free dye was separated from labelled PKM2 using a NAP-5 20 ST size-exclusion column (GE;

Boston MA, USA). The stoichiometry of labelled- to unlabeled-PKM2 was determined by

measuring the fluorescence absorbance ratios at 647 nm (labelled; PKM2-NT495NHS) and

280 nm (unlabeled PKM2). Thermophoresis measurements of labelled PKM2 were obtained

using a Monolith NT.115 instrument (Nanotemper; Munich, Germany). Labelled PKM2, at

a constant concentration of 30 nM, was titrated with either Phe (up to 5 mM) or Ser (up to

10 mM) in a buffer containing 10 mM HEPES pH 7.5, 100 mM KCl, 5 mM MgCl2, 0.5 mM

TCEP and 0.1 % tween-20. Prior to each thermophoresis measurement, capillary scans were

obtained to determine sample homogeneity. Apparent binding curves were fit assuming a 1:1

stoichiometry.

88



J.A.S MACPHERSON CHAPTER 2

2.4 Native mass spectrometry

Micro Bio-Spin 6 chromatography colums (Bio-Rad Laboratories, Hercules, CA, US) were used

to buffer-exchange PKM2 samples into 200 mM ammonium acetate (Fisher Scientific, Lough-

borough, UK). Protein samples were diluted to a concentration of 5 µM - 20 µM. Ligands

were dissolved in 200 mM ammonium acetate and added to the protein prior to MS analysis.

Three separate instruments were used for native mass spectrometry experiments: an Ultima

Global (Micromass, UK) extended for high mass range, a modified Synapt G2 (Waters; Wilm-

slow, UK) where the triwave assembly was replaced with a linear drift tube and a Synapt

G2-Si. Positive ionisation mode was used in analysing samples. Nano-electrospray ionisation

was applied from borosilicate glass capillary tips, pulled in-house on a Flaming/Brown P-1000

micropipette puller (Sutter Instrument Company, Novato CA, USA). A platinum wire was

inserted inside the tip after the protein solution had been loaded, to allow the application of a

positive voltage. All voltages were kept as low as possible to achieve spray while keeping the

protein in a native-like state. Typical conditions used were a capillary voltage of ≃ 1.2 kV, a

cone voltage of ≃ 10 V and a source temperature of 40 °C.

2.4.1 Mass-deconvolution of native spectra

The mass-deconvolved spectrum o was estimated from protein spectra y by maximising the

conditional probability P (o|y) using the Bayes Rule:

P (o|y) = P (y|o)P (o) (2.52)

The prior probability of the mass spectrum P (o) is given by:

P (o) =
N !

o1!, o2!, ..., ok!
Zo1
1 Zo2

2 , ..., Zok
k (2.53)
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where Z is defined by an initial guess of the parent mass spectrum. The probability for the

native m/z spectrum y given the mass spectrum o is given by the following term:

P (y|o) =
∏

i

exp

[

−(yi − ai)
2

σ2

]

(2.54)

2.4.2 Ion mobility mass spectrometry

An in-house modified Synapt G2 was used for IM-MS measurements, in which the original

triwave assembly was replaced with a linear drift tube with a length of 25.05 cm. Drift times

were measured in a helium buffer gas at a temperature of 298.15 K and a pressure of 1.99 -

2.00 torr. Motilities for all charge states were converted into rotationally averaged collision

cross sections (DTCCSHe) using the Mason-Schamp equation:

K =
3q

16N
·
(

1

m
+

1

M

)
1
2
(

2π

kBT

)
1
2 1

Ω
(2.55)

where K is the measured mobility, q is the charge of the analyte ion, N is the density of

the buffer gas, m is the mass of the analyte ion, M is the mass of the buffer gas, kB is

the Boltzmann constant, T is temperature and Ω is the rotationally-averaged collision cross

section. The collision cross sections of each charge-state species were further converted into

a single collision cross section distribution in which all charge states contribute towards the

overall distribution, in proportion to their intensity in the mass spectrum153.
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2.5 Measurement of metabolite concentrations in human cell

lines

2.5.1 Liquid chromatography-mass spectrometry (LC-MS) detection of metabo-
lites

Samples were injected into a Dionex UltiMate liquid chromatography system (Thermo Sci-

entific; Waltham MA, USA) with a pHILIC (150 mm x 4.6 mm, 5 µm particle size) column

(Merk Sequant; Millipore Sigma, Burlington MA, USA). An elution gradient was used with

a 80:20 solvent mixture composed of 20 mM ammonium carbonate (solvent A) and acetoni-

trile (solvent B). The elution gradient was run over 15 minutes, followed by a 5 minute wash

with a solvent mixture of 95:5 solvent A to solvent B. Additional parameters: 10 µL injec-

tion volume; auto-sampler temperature 4 °C; flow rate 300 µL min−1; column temperature 25

°C. Positive/negative polarity switching was performed using a Q Exactive Orbitrap (Thermo

Scientific; Waltham MA, USA) with a HESI II (Heated electrospray ionisation) probe. The

following mass spectrometry parameters were used: spray voltage 3.5 kV (positive mode) and

3.2 kV (negative mode); probe temperature 320 °C; sheath and auxiliary gases 30 and 5 art-

ibrary units, respectively. A full scan range between 70 m/z to 1050 m/z with settings of AGC

target (3× 106) and a mass resolution setting of ’Balanced and High (70,000). The Xcalibur

3.0.63 software suite (Thermo Scientific; Waltham MA, USA) was used for data acquisition.

Prior to data analysis, a Thermo Scientific Calmix solution was used as a standard to perform

mass calibration in both electrospray ionisation polarities and ubiquitous low-mass contam-

inants were used to apply lock-mass correction to each analytical run in order to enhance

calibration stability. Parallel reaction monitoring (PRM) acquisition parameters: resolution

17,500 (ion count), auto gain control target 2×105, maximum isolation time 100 ms, isolation

window m/z 0.4. The collision energies were set individually in the high-energy collisional

dissociation mode. In order to assess the stability and performance of the system, quality

controls were performed by extracting an equal volume of each sample and pooling them.

This quality control mixture was subsequently analysed throughout the run. Data analysis
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was performed using the Xcalibur Qual Browser and Tracefinder 4.1 software suites (Thermo

Scientific; Waltham MA, USA).

2.5.2 Metabolite extraction and cell volume calculations

Cells were seeded in 6 cm dishes in RPMI media containing 10 % dialysed foetal calf serum, 24

hours prior to the start of the experiment. An hour prior to treatment of cells, the media was

refreshed and then changed again at the start of the experiment to RPMI with or without 11

mM glucose; or to Hank’s Balanced Salt Solution (HBSS) with or without supplemented amino

acids as described in the text. Four technical replicate plates were used for each condition,

and 2-4 plates for each cell line were used to count cells and measure mean cell diameter.

This was then used to determine the intracellular volume of the cells, and subsequently the

intracellular concentrations of the detected metabolites. Media treatments were performed for

1 hour, after which plates were washed twice with ice-cold 120 mM phosphate buffer saline

(PBS), and 725 µL of ice-cold methanol was used to quench the cells. The cells were scraped

from the plates and were transferred into 180 µL H2O and 160 µL CHCl3. A further 725 µL

methanol was used in a second scraping of each plate. The final methanol-chloroform-water

mixtures containing the cells were vortexed and sonicated in a sonicating water bath at 4 °C.

Extraction of the metabolites was allowed to proceed at 4 °C for 16 hours, before sedimenting

precipitated material and then drying down the supernatant. Polar and apolar phases were

separated by re-suspending the dried metabolites in a 1:3:3 mixture of chloroform-to-methanol-

to-water, with a total volume of 350 µL. Polar metabolites were then analysed by LC-MS (as

detailed above). For absolute quantification of the metabolites of interest, known quantities of

13C-labelled versions of those metabolites were spiked into lysates. Amounts of the unlabelled

compounds could then be determined as a proportion of the intensity given by the labelled

compound. Previously determined cell numbers and volumes were then used to determine the

intracellular concentrations of each of the metabolites of interest.
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2.6 Absolute quantitation of intracellular PKM2 amounts using

targeted proteomics

The absolute amounts of trypsin-digested PKM1 and PKM2 peptides, isolated from four cancer

cell lines (MCF7, LN229, SN12C and HCT116), were measured using a targeted proteomics

approach. The cell lines used for these experiments have previously been shown to highly

express PKM2. The exon-9/10 splicing event of the pkm transcript is mutually exclusive

and so either PKM1 or PKM2 is expressed by a given cell. Nevertheless, to control for

amounts of both PKM1 and PKM2 protein in the cells, proteotypic peptides for both isoforms

were synthesised, along with several peptides that mapped to both the PKM1 and PKM2

primary sequences. A pilot experiment identified five peptides to be used for the quantitation

of PKM2/1. These peptide standards were synthesised by the Crick Proteomics STP with

arginine and lysine labelling (Arginine: 13C6, 15N4; and Lysine: 13C6, 15N2).

Peptide Sequence Specificity

1 GDLGIEIPAEK PKM1/PKM2
2 APIIAVTR PKM1/PKM2
3 ITLDNAYMEK PKM1/PKM2
4 LAPITSDPTEATAVGAVEASFK PKM2
5 LFEELVR PKM1

All peptides were synthesised with arginine and lysine heavy labelling (Arginine: 13C6, 15N4;
and Lysine: 13C6, 15N2).

Table 2.4: Proteotypic peptide standards used for absolute quantification of PKM2 in cell lysates.
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2.6.1 Trypsin digestion

Cell lysates containing a total of 50 µg of protein content were precipitated by adding ice-cold

acetone. Samples were centrifuged at 8000 xg for 10 minutes at 4 °C, following overnight

incubation at -20 °C. The supernatant was removed and any residual acetone was evaporated

at room temperature. The pellet was dissolved in 50 mM TEAB, reduced with 10 mM DTT

and alkylated with 20 mM iodoacetamide. Next, protein was digested with 1 µg of trypsin

overnight at 37 °C, after which each sample was spiked with a mixture of the five heavy-labelled

peptide standards (Table 2.4). For mass spectrometry analysis, 1 µg of peptide was loaded

onto a 50 cm Easy Spray C18 column (Thermo Scientific; Waltham MA, USA).

2.6.2 Analysis of peptides by LC-tandem MS (LC-MS/MS

A Dionex U3000 system (SRD3400 degasser, WPS-3000TPL-RS autosampler, 3500RS nano

pump) coupled to a QExactive electrospray ionisation hybrid quadruole-orbitrap mass spec-

trometer (Thermo Scientific; Waltham MA, USA) was used for mass spectrometic analysis.

Reverse-phase chromatography with a buffer of 5 % DMSO in 0.1 % formic acid (mobile phase

A) and 5 % DMSO, 80 % acetonitrile in 0.1 % formic acid (mobile phase B) was used at a flow

rate of 250 nL·min−1. Digested samples were run of linear gradient of mobile phase B in 90

minutes, giving a total run time (including column conditioning) of 120 minutes. The nanoLC

was coupled to a QExactive mass spectrometer using an EasySpray nano source (Thermo Sci-

entific; Waltham MA, USA), with a spray voltage of +2.1 kV, a capilary temperature of 250

°C an an S-lens radio-frequency level of 55 AU.
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Chapter 3

Enzyme kinetics and ligand binding

biophysical studies reveal a combined

role for multiple allosteric ligands in

the regulation of PKM2.

3.1 Introduction

PKM2 enzyme activity is regulated by a number of intracellular metabolites. The upstream

glycolytic intermediate fructose 1,6-bisphosphate (FBP) stimulates PKM2 catalysis by binding

to an allosteric pocket in the C-domain of the protein55,65,70,71. Additionally, serine (Ser) and

histidine (His) increase; whereas phenylalanine (Phe), alanine (Ala), tryptophan (Trp), valine

(Val) and proline (Pro) inhibit PKM2 enzyme activity by binding to a common pocket, sand-

wiched between the A- and the C-domains19,20,22,64,65. Crystallographic structures of PKM2

showing that the FBP- and amino acid binding pockets are physically and chemically distinct,

suggests that PKM2 can concurrently bind to both FBP and an amino acid19. What remains

unclear, however, is how simultaneous binding of multiple ligands with, opposing functional

effects, control PKM2 enzyme activity.
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The following chapter investigates the functional consequences of allosteric regulation by a

number of regulators, both alone and in combination, on PKM2 enzyme activity. In support

of in vitro findings, we explore cellular metabolic conditions required for concurrent allosteric

regulation of PKM2.
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3.2 Characterising the kinetics of FBP binding to and activa-

tion of PKM2

Activation of PKM2 by FBP is a prototypical and long-studied example of feed-forward reg-

ulation in cellular metabolism154. Nevertheless, the mechanism of PKM2 activation is dis-

puted; some studies have reported an increased affinity for the substrate phosphoenolpyruvate

(PEP)19,47–49 and others reporting changes to the rate of substrate turnover20,22. To reconcile

the differing results in the literature, and to characterise PKM2 regulation at the basal level,

we started by investigating the kinetics of FBP binding and regulation of PKM2 activity.

3.2.1 FBP binds to PKM2 with nanomolar affinity

PKM2 contains three tryptophan residues, two of which (W482 and W515) are proximal to

the FBP binding pocket55. Previous studies have reported that addition of FBP leads to

changes to the intrinsic fluorescence emission spectrum of PK155, likely resulting from side-

chain conformational changes to W482 and W515 upon FBP binding22. Therefore, FBP

binding to PKM2 was measured by monitoring tryptophyl fluorescence (λEX = 280 nm,

λEM = 350 nm).

Measurements of PKM2 fluorescence suggested sub-stoichiometric FBP binding

We found that titrating PKM2 with a stock solution of FBP resulted in a ligand concentration-

dependent excitation and red-shifting of the protein emission spectrum (Fig. 3.1 A). The

effect of FBP on the fluorescence of PKM2 was sufficiently large to allow for a determination of

the dissociation constant from titrations of the fluorescence change. Nevertheless, an inspection

of the fluorescence spectra revealed that full saturation of the PKM2 fluorescence response to

FBP addition occured at ligand concentrations less than the concentration of protein used in

the titration (Fig. 3.1 A), suggesting sub-stoichiometric binding despite a 1:1 stoichiometry

reported in several crystal structures17,19,55. We therefore hypothesised that purification of

recombinant PKM2 may co-purify residual amounts of FBP produced by the E. coli expression
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vector, which had been previously reported22,23,63.

Sub-stoichiometric amounts of FBP are co-purified with recombinant PKM2

Preparations of purified recombinant PKM2 were assessed for their content of co-purified FBP

using a three-step aldolase assay156, which couples the conversion of FBP into glyceraldehyde

3-phosphate (GA-3-P) and dihydroxyacetone phosphate (DHAP) with the oxidation of NADH

by glycerol 3-phosphate dehydrogenase (G-3-PDH), requiring the conversion of GA-3-P to

DHAP by triosephosphate isomerase (TPI) as an intermediate step (Fig. 3.1 B). The assay

was calibrated by quantifying molar amounts of FBP from a known solution of the compound

made up from powder (Fig. 3.1 C). Subsequent quantitation of FBP in several independent

preparations of purified PKM2, following heat-precipitation of the protein, revealed that up to

77.5 % of purified PKM2 was pre-bound to FBP (Fig. 3.1 D and E), consistent with previous

reports of FBP co-purification with PKM223,63. Many attempts to purify recombinant PKM2

under denaturing conditions, and thereby remove co-purified ligand, were unsuccessful (data

not shown). Therefore, all subsequent experiments were performed with preparations of PKM2

with less than 25 % of the protein pre-bound to FBP, so that experimental data could be

interpreted consistently. Experiments performed on purified PKM2 in the absence of any

added ligands, though containing quantified sub-stoichiometric amounts of FBP, are denoted

with an asterisk (Apo∗).

Determination of the free protein concentration was used to calculate the KFBP
D

Quantification of the FBP-PKM2 saturation status using the aldolase assay allowed for an

estimate of the concentration of free protein in the purified PKM2 sample, which was essential

for accurately calculating the binding constant in the ligand titration experiment because the

fluorescence signal is produced by the free protein P0 upon association with the free ligand L0 in

solution. A variable proportion of the total PKM2 (Ptotal) was sequestered in a protein-ligand

complex PL and would therefore not produce a fluorescence change upon further addition of
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the ligand. Therefore, the free protein concentration of a given preparation of PKM2 could

be calculated:

P0 = Ptotal − PL (3.1)

It was unclear, however, whether sub-stoichiometric pre-occupancy of FBP meant that ligand

binding was distributed amongst the protomers, producing a mixed population of tetramers

with varying FBP-binding stoichiometries (0:4, 1:4, 2:4, 3:4 and 4:4), or whether a fixed

percentage of PKM2 tetramers were fully bound to FBP. The distribution of stoichiometries

in the starting material was likely determined by the cooperativity of FBP binding to PKM2; in

an infinitely cooperative system, binding of a limiting pool of ligand to a multi-site oligomeric

protein would be expected to be all or none. Nevertheless, it was assumed that the binding

affinities of FBP to each of the four structurally identical pockets in the PKM2 homo-tetramer

was identical, and produced equivalent fluorescence spectral changes upon ligand binding.

Moreover, it was posited that the PKM2 fluorescence change was a result of ligand binding

only, and that any potential oligomeric changes would not contribute to the emission spectrum.

Therefore, the changed PKM2 fluorescence signal, observed upon addition of FBP, is given by

a mixture of fluorescence signals from P0 and PL:

Sobs = SP · [P0] + (SPL − SP ) · [PL] (3.2)

where SP and SPL are optical properties of P0 and PL, respectively. The concentration of

PL at equilibrium is given by:

[PL] =
(KD + [P0] + [L0])−

√

(KD + [P0] + [L0])2 − 4([P0][L0])

2
(3.3)
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where KD is the dissociation constant of the FBP-PKM2 interaction. Substituting the ex-

pression for [PL] back into Equ. 3.2:

Sobs = SP [P0]+(SPL−SP ) ·
(KD + [P0] + [L0])−

√

(KD + [P0] + [L0])2 − 4([P0][L0])

2
(3.4)

After correcting for the partial pre-occupancy of FBP, a solution for the quadratic function

Sobs(SP , SL, SPL, P0, L0,KD) (Equ. 3.4) was calculated using a non-linear least squares pro-

cedure to provide an estimate of the dissociation constant KD. The calculation of the binding

affinity of a protein-ligand interaction was automated in an R package ligBind (see Methods

section 2.3.7 for details and software tutorial). An average apparent KFBP
D of (21.4 ± 9.0)

nM was estimated from a total of six replicate FBP binding measurements (Fig. 3.1 F).

101



J.A.S MACPHERSON CHAPTER 3

Figure 3.1: FBP binds to PKM2 with nano-molar affinity. (A) Fluorescence spectra of human
PKM2 in 10 mM HEPES pH 7.5, 100 mM KCl, 10 mM MgCl2 at 20 °C. A protein concentration of 5
µM was used for all curves and the concentration of FBP is specified in the legend. (B) Molar amounts
of FBP co-purified with recombinant PKM2 were quantified using a three-step enzymatic assay, as
described in the text. (C) Calibration of the aldolase assay to estimate the sensitivity for measuring
amounts of co-purified FBP. The assay was tested by adding 4 µM or 10 µM purified FBP. (D)
Preparations of 5 µM (green), 19 µM (blue) and 40 µM (red) of purified PKM2 were heat-precipitated at
90 °C to release any co-purified FBP. The supernatant was subsequently analysed for its molar contents
of FBP, as previously described in (B). (E) Quantitation of the percentage saturation of PKM2 with
FBP in six independent preparations of purified recombinant PKM2. (F) Binding was monitored from
spectroscopic measurements of PKM2 fluorescence emission with increasing concentrations of FBP.
The relative changes to emission at 325 nm and 350 nm is plotted against the concentration of added
FBP. The binding affinity was calculated, as described in the text. Means and standard deviations from
six separate experiments are plotted.
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3.2.2 Technical note: the protein concentration determines the error asso-
ciated with the KD of PKM2-FBP binding

Experimental measurements of PKM2 fluorescence in Section 3.2.1 were necessarily performed

at a protein concentration of 5 µM because of the limited quantum-yield of tryptophan. As

such, P0 was approximately 220-times greater than the estimated KFBP
D . Measurements of

ligand binding are known to be increasingly imprecise under conditions where [P0] >> KD be-

cause small additions of L are sequestered into the PL complex (i.e L0 << Ltotal ≃ PL)157,158,

which was accounted for in our numerical treatment of the binding data (see Section 3.2.1).

We therefore questioned to what extent using a protein concentration orders of magnitude in

excess of the binding constant would contribute the imprecision of the affinity estimate.

To this end, a numerical approach was employed whereby theoretical ligand-protein bind-

ing data were simulated using the ligBind::simtitr() function within a new R package ligBind

(see Methods section 2.3.7). Binding data were simulated over a range of increasing P0 and

a defined theoretical KD of 1 µM. The simulated binding data were subsequently fit using

Equ. 3.4 to estimate a calculated KD, which was compared to the initialised theoretical KD

to determine the percent error of the affinity calculate for a given P0. Where the theoretical

KD >> P0, the transition between unbound and fully bound is achieved over a gradient of

ligand concentrations (Fig. 3.2 A). In contrast, where KD << P0, the resulting quadratic

function Sobs(SP , SL, SPL, PL,KD) has a sharp apex, leading to a higher percent error (Fig.

3.2 B).

Next, the KD was calculated for simulated binding data over a range of [P0] up to 250 µM. We

found that, where [P0] ≤ 50 ·KD the calculated binding affinity was approximately equivalent

to the true binding affinity when fitted with the quadratic function Sobs(SP , SL, SPL, PL,KD)

(Fig. 3.2 C), resulting in a negligible percent error of the apparent affinity. As the free

protein concentration was increased such that P0 ≥ 50 ·KD, we observed a non-linear increase

in the calculated binding affinity (µKD) (Fig. 3.2 C).
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For comparison, the same binding data were fitted with a hyperbolic function of the form:

Sobs =
[Ltotal]

[Ltotal] +KD
(3.5)

similar to other classical fitting methods, where binding is expressed as a function of the total

ligand concentration ([Ltotal]), but does not account for the concentration of the three species

present at equilibrium (P0, L0 and PL). Fitting simulated binding data over a range of P0

using a classic graphical approach in Equ. 3.5, high P0 leads to an unacceptable percentage

error of > 10000 % (Fig. 3.2 D), which dwarfs the relatively moderate error we obtain by

fitting with the quadratic function in Equ. 3.4 (Fig. 3.2 C).

Therefore, given the experimental limitations (outlined above) that precluded us from us-

ing PKM2 concentrations close to the KD, the fit of the quadratic equation permitted the use

of our binding data to determine KDs. Importantly, Fig. 3.2 C suggests that at higher P0,

the calculated KFBP
D reported in Section 3.2.1 is likely higher than the theoretical KD (i.e.

FBP binds even tighter than our data suggest).
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Figure 3.2: Simulated protein-ligand binding data show that the measured binding affin-
ity is over-estimated when high concentrations of protein are used in the experiment.
(A) Binding data (open circles) were simulated with a defined theoretical KD of 1 µM and a protein
concentration (P0) of 0.1 µM (i.e KD >> P0). A binding curve was calculated from the simulated
data (red curve), using the quadratic function Sobs(SP , SL, SPL, PL,KD) described in Equ. 3.4. (B)
Binding data were simulated as in (A) with a defined theoretical KD of 1 µM and a protein concen-
tration (P0) of 250 µM (i.e KD << P0). (C) Binding affinities were calculated for simulated binding
data with a theoretical KD = 1 µM over a range of P0 concentrations, using the quadratic function
Sobs(SP , SL, SPL, PL,KD) (Equ. 3.4) or (D) using the hyperbolic function Sobs(KD) (Equ. 3.5).
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3.2.3 FBP binding leads to an increase in the affinity of PKM2 for its
substrate

To investigate the mechanism of FBP-induced activation, steady-state kinetic parameters of

PKM2 were determined in the presence and absence of FBP. In the absence of any added

FBP, the KPEP
M was (1.22 ± 0.02) mM with a kcat of (349.3 ± 40.9) s−1 (Fig. 3.3 A and B).

Addition of saturating concentrations of FBP resulted in a six-fold reduction in the KPEP
M to

(0.23 ± 0.04) mM, without a significant change in kcat (Fig. 3.3 A and B). The activation

constant (ACFBP
50 ) for FBP was measured as (118.1 ± 19.0) nM (Fig. 3.3 C), in excess of our

previously measured KFBP
D . Taken together, steady-state measurements of PKM2 catalysis

suggested, consistent with previous findings, that FBP acts as a K-type activator to increase

the binding affinity of the catalytic substrate PEP, without changing the rate of substrate

turnover (kcat).
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Figure 3.3: Addition of FBP results in an increase in the substrate affinity of PKM2
for phosphoenolpyruvate. (A) Specific activity of 5 nM PKM2 was measured using an LDH-
coupled spectrophotometric assay (see Methods Section 2.3.3) in the absence (black) and in the presence
(green) of 2 µM added FBP. A constant concentration of 5 mM ADP was used, while varying the
concentration of PEP. Measurements were performed at 37 °C. Rate curves were fitted using Michaelis-
Menten kinetics. Means and standard deviations from four separate experiments are plotted. (B)
Kinetic parameters were quantified from activity measurements of PKM2 in the absence (black) and in
the presence (green) of 2 µM FBP. Significance was assessed using a Wilcoxon rank-sum test. Asterisk
(*) marks significant changes (p-value < 0.05). (C) Specific activity of 5 nM PKM2 was measured
at 1.5 mM PEP and 5 mM ADP, varying the concentration of FBP. A binding curve was fitted to
the resulting rate curve assuming a 1:1 stoichiometry, to estimate the apparent activation constant
(ACFBP

50 ). Means and standard deviations of four separate experiments are plotted.
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3.2.4 A phosphotyrosine peptide binds competitively with FBP to PKM2

Given the finding that FBP binds to PKM2 with nano-molar affinity in vitro (Section 3.2.1),

consistent with previously reported KFBP
D measurements59,62,63, we sought to investigate pos-

sible mechanisms by which the affinity is reduced by competition with other ligands. Growth

factor signalling mediated by phosphorylation of proteins at tyrosine residues, which is often

upregulated in cancer, inhibits PKM2 activity by outcompeting FBP with a phosphotyrosine

peptide motif23. The mechanism of PKM2 phosphotyrosine peptide regulation, however, and

the kinetics of its competition with FBP have not been characterised. We therefore sought

to investigate the kinetics with which the phosphotyrosine peptide (M2tide) identified by

Christofk et al. (2008)23 displaces FBP.

M2tide binds to PKM2 with an apparent affinity of 150 µM

To this end, competition binding experiments between FBP and M2tide were performed by

measuring the fluorescence anisotropy (λEX = 494 nm, λEM = 518 nm) of a fluorescein-

labelled M2tide variant (fluor-M2tide)159,160. The sequence of fluor-M2tide is given: Fluorescein-

GGAVDDD(PTyr)AQFANGG-COOH.

Preliminary experiments found that addition of PKM2 resulted in an increase in the anisotropy

of fluor-M2tide (data not shown). Subsequent titrations of fluor-M2tide with PKM2 resulted

in a concentration-dependent increase in the anisotropy of the peptide, which were used to

calculate an apparent binding constant [Kfluor−M2tide
D = (153 ± 19) µM] (Fig. 3.4 A).

Measurements were repeated with a single-point mutant PKM2(K433E), previously shown to

disrupt phosphotyrosine binding to PKM223. Consistent with this, we found that fluor-M2tide

did not bind to PKM2(K433E), though a linear increase in the fluorescence anisotropy of the

fluorescein probe was observed, likely a non-specific concentration-dependent effect of the la-

belled peptide (Fig. 3.4 B). The notion that the linear fluorescence signal of the peptide

arose from a non-specific effect, was supported by the observation that titrating the peptide
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with purified bovine serum albumin (BSA) resulted in a similar linear fluorescence anisotropic

signal (Fig. 3.4 B).

M2tide and FBP competitively bind to PKM2

To investigate the competitive binding kinetics between fluor-M2tide and FBP, fluorescence

measurements of FBP-PKM2 binding were performed (as previously in Section 3.2.1) in the

presence of increasing concentrations of fluor-M2tide. We found that addition of the peptide

was accompanied by a linear increase the apparent KFBP
D (Fig. 3.4 C), suggesting that the

peptide and FBP competitively bind to PKM2. Conversely, while the K433E mutant abolished

binding of fluor-M2tide, FBP binding was maintained albeit with a lower affinity [KD = (6.46

± 1.46) µM] (Fig. 3.4 D). Taken together, these results suggest that fluor-M2tide binds

adjacent to the FBP pocket and that residue K433 provides a critical charged interaction for

its binding, which would imply that the binding pockets for fluor-M2tide and FBP partially

overlap.
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Figure 3.4: Fluor-M2tide competes with FBP for binding to PKM2. (A) Fluorescence
anisotropy measurements of a fluorescein-labelled peptide (fluor-M2tide) were performed at increasing
concentrations of recombinant PKM2. The apparent binding affinity was estimated from a non-linear
least squares regression of the binding curve. (B) Fluorescence anisotropy measurements of fluor-
M2tide were acquired, titrating the concentrations of either PKM2(K433E) (blue) or bovine serum
albumin (black). Anisotropy measurements were fitted with a linear regression. (C) Fluorescence
emission measurements of PKM2 were performed to estimate the binding affinity of FBP at vary-
ing concentration of the fluor-M2tide peptide. Means and standard deviations from three independent
titrations are plotted. (D) Fluorescence emission spectroscopy measurements of PKM2(K433E) were
performed over a range of FBP concentrations. (E) A structural view of residue K433 relative to FBP
bound in the crystal structure. Structural coordinates were extracted from the PDB accession code
3u2z.
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3.3 FBP binding to PKM2 induces inter-protomeric coopera-

tivity

Consistent with previous reports of FBP-induced activation of PKM255,59,161, the previous

Section found a K-type mechanism whereby FBP binding increases the effective affinity of

the protein for the substrate phosphoenolpyruvate. The reciprocal relationship between FBP

binding and enzyme activation, however, is further complicated by the reported association

of monomers and/or dimers into stable tetramers, which may invoke ligand-induced commu-

nication pathways between the four active sites in the tetramer forming the basis of inter-

protomeric cooperativity. Alternatively, enzyme catalysis and subsequent activation of PKM2

protomers may act in isolation within the purported tetramer assembly.

3.3.1 Titrating PKM2(WT) with the catalytically-dead PKM2(R72A) re-
sults in a non-linear decay in enzyme activity

A mutant-doping assay can be used to quantify inter-subunit cooperativity of a
hetero-oligomeric protein

In order to test the hypothesis that FBP-induced allosteric activation promotes inter-subunit

co-operativity, we sought to monitor the kinetics in the decay of PKM2 activity as PKM2(WT)

was titrated with a catalytically-inactive mutant variant of PKM2, in a so-called mutant doping

assay162–165. In this assay, PKM2(WT) was titrated with a catalytically-inactive mutant

variant of PKM2 to form hetero-oligomeric species with defined stoichiometric ratios of WT

subunits and inactive subunits. The enzyme activity of each mixture is measured, which

decreases with increasing concentrations of the inactive species in the mixture. For proteins

with a cooperative dependence on the adjacent subunits in an oligomeric assembly, the decrease

in activity is non-linear. Conversely, for proteins where the subunits function independently

of their neighbouring subunits within an oligomeric assembly, the activity decay is linear.

Therefore, the inter-subunit of an oligomeric protein can be quantified by fitting the decay in

enzyme activity as the WT protein is doped with an inactive variant.
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PKM2(R72A) is inactive and hetero-oligomerises with PKM2(WT)

To first identify a single-point mutant that depleted PK phosphotransferase activity, the en-

zyme activity of three active site mutants [PKM2(R72A), PKM2(R120A) and PKM2(K270A)]

were measured. Initial velocity curves revealed that, compared to PKM2(WT) [kcat = (538.4±

18.0)s−1] the rate of product turnover was decreased by approximately 1.7-fold for PKM2(R120)

[kcat = (308.4±5.7)s−1] and PKM2(K270A) [kcat = (270.8±5.3)s−1] (Fig. 3.5 A). Moreover,

activity of PKM2(R72A) was almost entirely abolished, evidenced by a 63-fold decrease in the

apparent rate of substrate turnover [kcat = (8.5± 1.4) s−1] (Fig. 3.5 A).

To measure the inactivating effect of introducing catalytically inactive protomeric units into a

hetero-oligomeric assembly with PKM2(WT), it was first necessary to establish that PKM2(R72A)

did not disrupt oligomerisation. First, microscale thermophoresis (MST) measurements of

fluorescein-labelled PKM2(WT) were performed with titrated amounts of unlabelled PKM2(WT),

to measure PKM2(WT) oligomeric association. A concentration-dependent change in PKM2

thermophoresis was detected, from which an apparent oligomerisation constant (Koligo
D ) of

(90.8 ± 5.7) nM was estimated for PKM2(WT) (Table 3.1). The apparent oligomerisation

constant of PKM2(WT) was found to be unchanged upon addition of saturating concentra-

tions of FBP, yielding a Koligo
D of (97.9 ± 1.8) nM (Table 3.1).

MST measurements of labelled-PKM2(WT) were repeated with titrated amounts of PKM2(R72A),

revealing a 4-fold increase in the Koligo
D both in the absence [(410 ± 20) nM] and presence

[(390 ± 40) nM] of saturating concentrations of FBP (Fig. 3.5 B) and Table 3.1). Despite

the reduction in the apparent Koligo
D for [WT]PKM2 and PKM2(R72A) association, a similar

maximal thermophoretic behaviour of the labelled-PKM2(WT) at high concentrations of the

mutant suggested that the catalytically-dead variant formed hetero-oligomeric assemblies with

the wild-type, albeit with marginally weaker binding.
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Titrant Ligands Koligo
D (nM)

PKM2(WT) None 90.8 ± 5.7
PKM2(WT) 2 µM FBP 97.9 ± 1.8
PKM2(WT) 2 µM Tepp-46 54.6 ± 2.1
PKM2(WT) 5 mM ADP 75.8 ± 6.4
PKM2(WT) 10 mM PEP 52.1 ± 10.1
PKM2(R72A) None 410.0 ± 20.0
PKM2(R72A) 2 µM FBP 390.0 ± 40.0

Table 3.1: Dissociation constants for PKM2 self-association and hetero-association with
PKM2(R72A), under various liganded conditions. All measurements were made by titrating
fluorscein-labelled PKM2(WT) with either unlablled PKM2(WT) or unlabelled PKM2(R72A).

Titration of PKM2(WT) with PKM2(R72A) results in a non-linear decay in en-
zyme activity

Next, the mutant doping assay was performed whereby stoichiometric mixtures of PKM2(R72A)

and PKM2(WT) were assayed for pyruvate kinase activity. PKM2(WT)-PKM2(R72A) mix-

tures were prepared at a total protein concentration of 5 µM, an order of magnitude in excess

of the measured Koligo
D , thereby circumventing the reduced affinity of the mutant for the wild-

type. A linear decay in activity was observed over a range of substrate concentrations, with

increasing [PKM2(R72A)]
[PKM2(WT )] , in the absence of added FBP (Fig. 3.5 C). Conversely, addition

of saturating concentrations of FBP resulted in a non-linear decay in enzyme activity of the

[PKM2(R72A)]
[PKM2(WT )] mixtures (Fig. 3.5 D), suggesting an FBP-induced cooperative effect between

the PKM2 subunits.
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Figure 3.5: A mixture of wild-type and catalytically-dead PKM2 has a non-linear decay
in activity. (A) Initial velocity measurements were recorded over a range of PEP concentrations
at a constant concentration of 5 mM ADP at 310 °C for PKM2(WT) (black) and active-site mutant
variants PKM2(R72A) (teal), PKM2(R120A) (orange) and PKM2(K270A) (blue). The mean and
standard deviation of four separate experiments are shown, for each protein variant. Kinetic param-
eters were estimated from Michaelis-Menten fits of the rate curves. (B) Microscale thermophoresis
measurements were acquired for titrations of fluorescein-labelled PKM2(WT) with PKM2(R72A). (C)
Mixtures of PKM2(WT) with PKM2(R72A) were assayed for enzyme activity over a range of substrate
concentrations in the absence and (D) in the presence of 2 µM FBP.
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3.3.2 A numerical framework for modelling oligomeric enzyme cooperativ-
ity

The non-linear decay in enzyme activity of mutant-doped PKM2, upon FBP addition (Section

3.3.1), suggested a ligand-dependent inter-subunit cooperativity. To rationalise this observa-

tion, a numerical framework was constructed whereby the inter-subunit cooperativity of a

tetrameric protein could be simulated, and compared to experimental data.

To this end, a model was generated to consider the enzyme activity resulting from the mixture

of active PKM2(WT) oligomers (A) and inactive PKM2(R72A) (I ) oligomers. We assumed

that the measured association between PKM2(WT) and PKM2(R72A) formed tetramers and

that the composition of the tetramers was purely stochastic. Moreover, it was posited that

the mixture of A and I was defined by the ratio of the concentrations of A and I.

Given the above assumptions, five configurations of hetero-tetramers resulting from the mix-

ture of PKM2(WT) and PKM2(R72A) are possible, not counting permutations under the

assumption of a stochastic association: AAAA, AAAI, AAII, AIII, IIII. The concentration of

A is given by a and the concentration of I is given by i. Therefore the ratio between A and I

is:

r =
a

i
(3.6)

The total concentration is trivially given by:

C = a+ i (3.7)

A final assumption made in this model was that the enzyme activity of A is 1 AU (activity unit)

and that the corresponding activity of I is equal to 0 AU. Additionally, under conditions where

A and I catalytic sites function in complete isolation (ie. no inter-subunit cooperativity), the
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enzyme activity (ea) of the mixtures are given by the following expression:

ea(AAAA) =
4

3
· ea(AAAI) = 2 · ea(AAII) = 4 · ea(AIII) (3.8)

ea =

4
∑

n=1

n(A+ I) (3.9)

From this, the probability of observing a fully active tetrameric species from a sequential

mixture of a and i is given by a binomial distribution:

P (A) =

[(

n

A

)

aA(1− a)n−A

]AC

(3.10)

where AC is the allosteric coefficient, an added exponential term, defined by the strength

of inter-protomeric cooperativity between individual subunits in the tetramer assembly (Fig.

3.6 A).

The mixture model in Equ. 3.10 was simulated over a range of increasing values of AC.

Where AC = 1, a linear decrease in activity was observed (Fig. 3.6 B). Conversely, where

AC > 1 a non-linear decay in activity of the model was observed (Fig. 3.6 C). The magni-

tude of the non-linear decrease in activity was found to be enhanced, with greater pre-defined

values for AC (Fig. 3.6 C).

3.3.3 FBP binding induced inter-subunit cooperativity under conditions of
limiting substrate concentrations

The mixture model of enzyme activity was applied towards analysing initial velocity measure-

ments resulting from ratio-metric mixtures of PKM2(WT) and PKM2(R72) by performing a

non-linear regression of the activity data to Equ. 3.10. Solutions for the allosteric coefficient

(AC) were computed using a non-linear least squares procedure, as a means of quantifying
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the strength of inter-protomeric cooperativity within hetero-oligomeric assemblies of PKM2.

The linear decay in enzyme activity, in the absence of any added FBP, supported the hy-

pothesis that protomers within PKM2 oligomers were acting largely in isolation, with no

detectable cooperativity between the individual catalytic pockets. This expectation was re-

flected in the solution to the AC, which was found to be ≃ 1 (Fig. 3.6 D). In contrast,

the observed non-linear decay in enzyme activity, upon addition of saturating concentrations

of FBP resulted in an increase in the solution for the allosteric coefficient. Moreover, this

non-linear effect, and as such the allosteric coefficient strength, was found to increase at con-

centrations of substrate below the KPEP
M (Fig. 3.6 D). The correlation of the AC with the

concentration of phosphoenolpyruvate suggested a mechanism whereby FBP binding acts to

increase the cooperativity between individual subunits under conditions where the substrate

is limiting. Conversely, when the substrate concentrations are near-saturating, FBP-induced

inter-subunit cooperativity is diminished, regulate the activity of PKM2.
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Figure 3.6: FBP binding results in inter-subunit cooperativity as defined in a numerical
model. (A) A probability distribution for the five model hetero-oligomers AAAA, AAAI, AAII, AIIII
and IIII over a range of mixtures of active and inactive protein (i). (B) Simulation of the decay in
enzyme activity of a non-cooperative system. (C) Simulation in the decay in enzyme activity for a
cooperative system, where increasing allosteric coefficients (AC) model the magnitude of inter-subunit
cooperativity. (D) Solution for the allosteric cooperativity coefficient for WT:R72A mixtures in the
absence of any added FBP (empty) and in the presence of 2 µM FBP (solid).
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3.4 FBP and amino acids combinatorially regulate PKM2 ac-

tivity

In addition to the functional effects of FBP on PKM2, demonstrated here, several amino

acids compete for a common allosteric pocket19,20,22 to regulate PKM2 enzyme activity. The

regulatory effects of amino-acid binding per se is disputed; some studies have reported al-

losteric effects on substrate affinity18,19,59,71, while others report effects on the rate of sub-

strate turnover20,22. Moreover, little is known about how simultaneous binding of FBP and

amino acids concurrently regulate PKM2.

3.4.1 Phe and Ser per se are K-type modulators of PKM2 catalytic activity

To this end, we started by measuring the functional effects of an activating amino acid (L-

serine; Ser) and an inhibitory amino acid (L-phenylalanine; Phe) on PKM2 enzyme catalysis

per se. Phe and Ser were chosen because their binding had been structurally resolved19,22,

though at the time of writing a subsequent study by Yuan et al. (2018)20 reported further

structures of PKM2 in complex with Ala, Trp and His. PKM2 enzyme activity was measured

in the absence and in the presence of Ser and Phe. Consistent with previously published

findings, we found Phe addition to increase the Michaelis-Menten constant for the substrate

KPEP
M to (7.09 ± 1.58) mM, without a detectable effect on the product turnover number [kcat

= (324.7 ± 23.0) s−1] (Fig. 3.7). Conversely, addition of Ser resulted in a decrease in the

KPEP
M to (0.22 ± 0.03) mM, without a significant change in the rate of product turnover (Fig.

3.7). These results show that, in agreement with several existing studies18,19,59,71, Ser and

Phe regulate PKM2 in a K-type manner per se by modulating the apparent substrate affinity

for PEP, without changing the apparent rate of substrate turnover.
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Figure 3.7: FBP and amino acids have distinct combined roles in regulating PKM2 activ-
ity. Steady-state kinetic parameters of recombinant PKM2 were measured with a spectrophotometric
assay coupled to lactate dehydrogenase over a range of concentrations of the substrate phosphoenolpyru-
vate at 37 °C. Kinetic parameters KM and kcat were estimated in the absence of added ligands (empty
green bars) and in the presence of 2 µM FBP (solid green), 400 µM Phe (empty orange), 400 µM
Phe and 2 µM FBP (solid orange), 200 mM Ser (empty blue) and 200 mM Ser and 2 µM FBP (solid
orange). Measurements were independently repeated four times. Significance was assessed using a
Wilcoxon rank-sum test. Asterisk (*) marks significant changes (p-value < 0.05). Data are shown in
a tabular form in Table 3.2.
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3.4.2 The mechanism of phenylalanine inhibition of PKM2 catalysis is dis-
tinct depending on FBP binding.

In order to investigate the inter-dependence between amino acid and FBP regulation, PKM2

enzyme activity was measured following addition of FBP and either Ser or Phe. Addition of

Ser, subsequent to FBP did not produce detectable changes to the KPEP
M and the kcat (Fig.

3.7), showing that FBP and Ser do not synergistically activate PKM2.

In the presence of FBP, Phe reduces the substrate affinity and the maximal ve-
locity of PKM2 catalysis

Next, PKM2 activity was measured in the presence of FBP and Phe. We found that in the

presence of FBP, Phe significantly decreased the kcat of PKM2 in a dose-dependent manner

by 57 % from 349.3 s−1 at [Phe] = 0 µM, to 222.8 s−1 at [Phe] = 400 µM. In contrast,

no Phe-dependent change to the kcat was detected in the absence of FBP (Fig. 3.7). In

addition to the observed reduction in the product turnover number, Phe addition reduced the

operational substrate binding affinity from 0.22 mM, in the absence of Phe and saturating

FBP, to (0.65 ± 0.03) mM at [Phe] = 400 µM (Fig. 3.7. Taken together, these data revealed

that Phe addition, in the presence of FBP, produces a distinct inhibitory effect on PKM2

activity compared to the effects of Phe addition per se.

Phe per se acts as a hyperbolic specific inhibitor of PKM2

In order to assign the mechanism of Phe inhibition per se, the dependence of the enzyme

kinetic constants KM , kcat and (kcatKM
)app on the concentration of phenyalanine were analysed

(as described in Methods Section 2.3.4) (Fig. 3.8 A-C). Phenylalanine was found to act

as a hyperbolic specific inhibitor of PKM2 in the absence of FBP (Fig. 3.8 D). Formation

of the enzyme-effector (EX) complex was favoured over the enzyme-substrate complex (ES)

due to an affinity of the enzyme for Phe (KX = 0.019 mM), which was approximately 14-

times greater than the measured effective substrate affinity (KS = 0.250mM). However, the

affinity of the substrate for the EX complex was found to be very weak (αKS > 20 mM),
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thus sequestering the enzyme in the EX complex, leaving less enzyme available for the ES

and ESX complexes, to facilitate turnover of the product. Notably, increasing concentrations

of phenylalanine had little effect on the coefficient β and so the rate of product turnover (k2)

between the ES and ESX complexes remained unchanged.

In the presence of FBP, Phe per se acts as a hyperbolic mixed inhibitor of PKM2

The dependence of the enzyme kinetic constants KM , kcat and (kcatKM
)app on the concentration

of phenyalanine was next analysed in the presence of saturating amounts of FBP (Fig. 3.8

E-G). In the presence of saturating FBP, the effective substrate binding constant to FBPE

(KS = 0.170 mM) was found to be approximately three-times greater than the effector bind-

ing constant (KX = 0.540 mM), marginally favouring the formation of the FBPES complex

over the FBPESX complex (Fig. 3.8 H). Nevertheless, Phe was found to have a significant

effect on the effective substrate affinity of the FBPEX complex (αKS = 1.130 mM), compared

to substrate binding to FBPE, thereby acting to sequester a fraction of FBP-bound enzyme

away from substrate binding. Moreover, Phe addition was found to significantly reduce the

β coefficient resulting in a reduction of the rate of product turnover from the FBPESX com-

plex (βk2 = 174.4 s−1), compared to the rate of product turnover from the FBPES complex

(βk2 = 459.0 s−1). Therefore, the inhibitory effect of Phe binding to PKM2FBP could be

accounted for by a mixed mechanism of both reduced substrate binding and reduced prod-

uct turnover, and as such could be assigned as a hyperbolic mixed (predominantly specific)

allosteric inhibitor of PKM2FBP (Fig. 3.8 H).

Together, these data revealed that FBP mechanistically alters the mode of PKM2 inhibi-

tion by phenylalanine from a hyperbolic specific inhibitor, to a mixed hyperbolic inhibitor.

When FBP is absent, Phe acts exclusively as a K-type inhibitor whereas, in the presence of

saturating concentrations of FBP, Phe addition acts on both the KPEP
M and the kcat, as a

mixed V- and K-type inhibitor.
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Figure 3.8: Phenylalanine inhibition follows one of two distinct mechanisms, depending
on the presence of FBP. Recombinant PKM2 activity was measured at varying concentrations of
PEP and a constant concentrations of 5 mM ADP and 5 nM PKM2, at 37 °C. Initial velocities were
performed in the presence of a range of Phe concentrations between 0.08 mM and 5 mM. Rate curves
were fitted to Michaelis-Menten kinetic models, from which the parameters kcat, KPEP

M and kcat

KPEP

M

were computed for Phe inhibition of PKM2apo∗ (black; A, B and C). (D) The dependence of the
three steady-state kinetic parameters kcat, KPEP

M and kcat

KPEP

M

were fit to the steady-state modifier-rate

equations defined in the text. (E-H) An analysis of phenylalanine inhibition was repeated as in (A-D),
in the presence of 2 µM FBP (saturating amounts).
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Ligand KPEP
M (mM) kcat (s−1) kcat

KPEP
M

(s−1 ·mM−1)

Apo∗ 1.22 ± 0.02 349.3 ± 40.9 285.6 ± 34.1
Phe 7.08 ± 1.58 324.7 ± 23.9 46.8 ± 6.0
Ser 0.22 ± 0.04 323.1 ± 43.2 1489.8 ± 84.7
FBP 0.23 ± 0.04 356.7 ± 25.7 1540.4 ± 96.9
FBP and Phe 0.65 ± 0.03 222.3 ± 6.3 342.1 ± 11.1
FBP and Ser 0.20 ± 0.04 348.7 ± 44.3 1620.0 ± 253.6

Table 3.2: Steady-state Michaelis-Menten kinetic parameters for PKM2apo∗, and following
the addition of FBP, Phe and Ser.
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3.4.3 Ligand-induced changes in affinity cannot explain the changed phenylalanine-
inhibition of PKM2 by FBP

Results in Sections 3.4.1 and 3.4.2 revealed that FBP addition changes the inhibition kinetics

of Phe. It was unclear whether this was a result of a combinatorial effect of both ligands on

the bind affinity of the other, or whether the result reflected a bona fide functional cross-talk

between the two ligands. Indeed, the effective Phe binding constant to PKM2apo∗ [Kapo∗
X =

(0.019 ± 0.077) mM] was found to be significantly different compared to that of Phe bind-

ing to PKM2FBP [KFBP
X = (0.540 ± 0.06) mM] (Fig. 3.8 D and H). Nevertheless, since

a simplified single-substrate-single-enzyme mechanism was assumed, it was unclear whether

the changed (KX) reflected a changed binding affinity or whether a more complex interaction

between PKM2, phosphoenolpyruvate and adenosine diphosphate (the second substrate not

considered in the above mechanism) was at play. To this end, the mutual effects of FBP and

amino acids on binding to PKM2 was investigated.

We first estimated the apparent affinities of each ligand in the presence of saturating amounts

of the other. In the presence of saturating concentrations of either Phe or Ser, the KFBP
D

decreased, however this was found not to be statistically significant (p = 0.150 and p = 0.054,

respectively) (Fig. 3.9 A).

Next, the binding of Phe and Ser to PKM2 was measured, in the absence and in the presence

of FBP, using MST. Phe and Ser addition to PKM2 produced dose-dependent changes to the

thermophoresis of labelled PKM2. The estimated binding affinites of Phe [(191.0 ± 86.2) µM)

and Ser [(507.5 ± 218.8) µM) (Fig. 3.9 B), were unaffected by the addition of saturating

amounts of FBP (Fig. 3.9 C).

Taken together, these measurements suggested that alteration in the binding affinity of one

ligand by the presence of the other cannot account for the distinct FBP-dependent modes of

PKM2 inhibition by Phe. Rather, the altered mechanism of Phe inhibition upon FBP binding
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may reflect a mechanistic dependence between the two allosteric regulators.
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Figure 3.9: Amino acids and FBP do not reciprocally affect binding. (A) FBP binding to
PKM2 was measured using fluorescence emission spectroscopy (as described previously) in the absence
of amino acids (green) and in the presence of 400 µM Phe (orange) and 200 mM Ser. (B) MST
measurements of fluorescein-labelled PKM2 were performed to monitor serine (Ser) and phenylalanine
(Phe) binding to PKM2. Labelled PKM2, at a constant concentration of 30 nM, was titrated with either
Phe or Ser, and the thermophoretic properties of the resulting protein-ligand interaction was measured.
The mean and standard deviations of four separate titrations are shown. (C) MST experiments were
repeated for Phe (orange) and Ser (blue) in the presence of 2 µM FBP. (D) The overlapping modes
of Phe and Ser binding to PKM2 are superimposed from two crystal structures19,22.

127



J.A.S MACPHERSON CHAPTER 3

3.5 Simultaneous regulation of PKM2 by multiple ligands is

relevant for enzyme regulation in cells

Results presented in this chapter demonstrate that FBP binds tightly to PKM2 with a high

affinity, and that Phe attenuates FBP-induced activation by stabilising a distinct kinetic state

with a reduced maximal velocity. The fraction of PKM2 bound to allosteric ligands in cells,

and hence the ability of these ligands to exert their respective regulatory effects, is determined

by their intracellular concentrations and their binding affinities. To investigate whether FBP

and amino acids are likely to concurrently bind to PKM2 and whether this is relevant for

PKM2 regulation, we sought to quantify the fractional saturation of PKM2 bound to FBP,

Ser and Phe, in proliferating cancer cells. The cellular fraction of PKM2 bound to allosteric

ligands is given by:

[PL] =
(KD + [Pic] + [Xic])−

√

(KD + [Pic] + [Xic])2 − 4(Pic[Xic])

2
(3.11)

s =
[PL]

[Pic]
(3.12)

where [Pic] and [Xic] are the intracellular protein and metabolite concentrations, respectively.

3.5.1 Intracellular FBP binding to PKM2 is constitutive whereas Phe and
Ser bind reversibly

The intracellular concentration of FBP is in excess of its binding affinity to PKM2

To this end, the range of intracellular concentrations of FBP, Ser and Phe in three human

cancer cells lines of different tissue origin (HCT116, LN229 and SN12C), cultured in the pres-

ence of physiological (human blood serum) concentrations of glucose (Gluc+). [FBP ]ic varied

between between 240-360 µM across the three cell lines (Fig. 3.10 A). This concentration

range of FBP, under physiological glucose culture conditions, was in excess of the KFBP
D be-
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tween 11919- and 17755-fold. The fraction of cellular PKM2 bound to FBP, calculated using

Equ. 3.12, found a fractional saturation of 0.99, which remained unchanged even in cells

cultured in the absence of glucose (Gluc−) (Fig. 3.10 B), despite a marked reduction in the

[FBP ]ic to between 20-70 µM across the three cell lines.

The intracellular concentrations of Ser and Phe constitute a dynamic range around
their respective affinities for PKM2

Next, cells were supplemented with either 100 µM Ser and 500 µM Phe (S100F 500) or 500 µM

Ser and 100 µM Phe S100F 500). Under physiological media concentrations, the intracellular

concentrations varied between 200-320 µM for Phe and 2000-4000 µM for Ser, across the three

cell lines (Fig. 3.10 C). The measured [Phe]ic and [Ser]ic were close to the apparent binding

affinities for PKM2 [KPhe
D = (191.0 ± 86.3) µM and KSer

D = (507.5 ± 218.2) µM]. The asso-

ciated fractional saturation of PKM2 with Phe was between 0.53-0.75, and between 0.81 and

0.92 with Ser. The range of predicted fractional saturations in the complete absence of amino

acids (aa−) or 5x physiological concentrations was 0.05 and 0.18 for Phe and Ser, respectively,

in culture conditions devoid of amino acids (aa−). The fractional saturation of both Phe and

Ser was found to increase to 0.90 and 0.98, respectively, in conditions of S100F 500 and S500F 100

(Fig. 3.10 D).

Estimations for the fraction of PKM2 bound to Ser and Phe did not take into account the fact

that these two ligands compete for binding. Moreover, the calculation assumed that binding

was unaffected by other amino acids, which have been shown to bind competitively at the

same allosteric pocket20. As such, the predicted fractional saturation of Phe and Ser is likely

to be an under-estimation of the true cellular value. Conversely, FBP binding was predicted

to be constitutively saturated, evidenced by a predicted binding saturation approaching 1 in

all conditions (Fig. 3.10 D).
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Figure 3.10: Cellular concentrations of PKM2 allosteric effectors reveal a physiological
role for multi-ligand regulation. (A) Intracellular concentrations of FBP were measured using
liquid-chromatography mass spectrometry (LC-MS) from HCT116, LN229 and SN12C cells cultured
in fully-fed conditions (RPMI containing 11 mM glucose; green bars) and glucose-deprived conditions
(RPMI containing 0 mM glucose; purple bars) for 1 hour. (B) A phase diagram for intracellular FBP
binding to PKM2 was computed over a range of [FBP] and [PKM2] values. Saturation of ligand-protein
binding is represented by a colour scale; a fractional saturation approaching 0 indicating conditions
under which PKM2 is fully apo∗ with respect to its interaction with FBP, and a fractional saturation
equal to 1 indicates that each FBP binding site on the cellular pool of PKM2 is occupied. The predicted
fractional saturation for each of the three cell lines (four technical replicates) are shown in the phase
diagram. The intracellular concentration of PKM2 was measured for each cell line using a targeted
proteomics approach (see Methods Section 2.5.2). (C) Intraceullar concentrations of Phe and Ser were
measured in media devoid of amino acids (aa−), containing 500 µM Phe and 100 µM Ser (F 500S100)
or 100 µM Phe and 500 µM Ser (F 500S100). Phase diagrams were computed for phenylalanine (D)
and serine (E), as for FBP above.
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3.5.2 The addition of exogenous FBP does not change PKM2 activity in
HCT116 cell lysates

Under conditions where FBP binding is constitutive, the intracellular activity of PKM2 would

be predicted to be unresponsive to the addition of further amounts of exogenous FBP. To

test this hypothesis, we assayed HCT116 cell lysates for PKM2 activity, following culture in

glucose-fed and glucose-depleted media. Cells were gently lysed in hypotonic lysis buffer, in an

attempt to maintain the intracellular FBP-PKM2 stoichiometry. It was observed that, while

addition of 100 µM FBP to recombinant PKM2 had the effect of decreasing the KPEP
M by

7-fold, very little change to PKM2 activity was apparent in HCT116 lysates upon addition of

up to 1 mM exogenous FBP (Fig. 3.11 A).

Phe addition reduces the maximal velocity of PKM2 activity in cell lysates

Addition of physiological concentrations of exogenous Phe to HCT116 cell lysates resulted in

an apparent inhibition of PKM2 activity, and a dose-dependent reduction in the kcat
KPEP

M

(Fig.

3.11 B). It was observed that a Phe dose-depedent reduction in the maximal velocity was

the main kinetic determinant in the inhibition of the kcat
KPEP

M

of PKM2. No detectable change

to the KPEP
M , however, was apparent upon addition of Phe to HCT116 lysates, similar to the

observed mechanism of Phe inhibition of recombinant PKM2FBP . Furthermore, the addition

of exogenous molar concentrations of Ser out-competed the inhibitory effect of Phe, restoring

the maximal velocity to ’FBP-bound’ levels (Fig. 3.11 C).

Binding of PKM2 to PEP in cells is predicted to be sub-saturating

Intracellular concentrations of the catalytic substrate phosphoenolpyruvate (PEP) were mea-

sured in the low micro-molar range between (9.6 ± 3.5) µM and (2.3 ± 1.3) µM under glucose-

fed and glucose-deprived conditions, respectively (Fig. 3.12 A). The estimated KPEP
A was

therefore between approximately 24-fold and 100-fold in excess of [PEP ]ic, suggesting that a

very low fraction of the protein was bound to its substrate in cells (sPEP < 0.04) (Fig. 3.12
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B). Conditions where the substrate is limiting give further credence to the relevance of Phe

and Ser competitively modulating the rate of product turnover, in the context of constitu-

tive FBP binding. Nevertheless, possible channelling of the substrate and/or differential PEP

sequestration in different cellular compartments, could not be discounted.

Figure 3.11: PKM2 activity from HCT116 lysates is not further activated by addition of
exogenous FBP. (A) PKM2 activity in HCT116 cells cultured under glucose-fed conditions was as-
sayed, in the presence of increasing concentrations of exogenously added FBP. Initial velocities were
measured over a range of PEP concentrations. (B) Activity measurements were repeated in pres-
ence of increasing concentrations of exogenous phenylalanine and (C) serine. The fold-change in the
Michaelis-Menten constants (D) KPEP

M and kcat measured from PKM2 activity of recombinant PKM2
(orange) and PKM2 activity in HCT116 cell lysates (teal). The fold-change is plotted between the
’apo∗’ condition and upon addition of either 2 µM FBP or 400 µM Phe.
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Figure 3.12: Intracellular concentrations of phosphoenolpyruvate are predicted to be con-
stitutively limiting for PKM2 binding. (A) Intracellular concentrations of phosphoenolpyruvate
were determined in three cancer cell lines under 11 mM glucose-cultured (teal) and glucose-deprived
(red) conditions. (B) A phase diagram of phosphoenolpyruvate binding to PKM2. A binding constant
of 0.22 mM was used, as determined from PKM2 activity measurements under conditions of FBP
binding.
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3.5.3 High milli-molar phospho-peptide concentrations are required to re-
versibly displace FBP binding

In this chapter, it is shown that competition between Phe and Ser regulating the rate of

PKM2FBP product turnover. The observed V-type effect of Phe and Ser is dependent on

saturating FBP concentrations. We therefore reasoned that the combined regulatory effects

of amino acids and FBP could be perturbed upon phosphopeptide-induced displacement of

FBP binding. Nevertheless, exploring the stoichiometry of peptide binding to PKM2 in cells

is complicated by the likelihood that multiple peptide binding motifs bind with varying affini-

ties. Therefore, an accurate quantification of the fraction of PKM2 bound to phospho-peptides

would require a comprehensive phospho-proteomics screen combined with a high-throughput

peptide affinity effort, which was beyond the scope of this thesis.

Instead, to estimate the intracellular concentration of PKM2-binding phosphopeptide, required

to reduce the binding affinity of FBP to levels which facilitate a non-constitutive phenotype,

Equ. 3.12 was computed for a range of simulated phosphopeptide concentrations. It was as-

sumed that all phosphopeptide molecules have the same binding affinity for PKM2, and that

they all displace FBP with the same kinetics as measured in recombinant protein (see Section

3.2.4). We found that phosphopeptide concentrations of approximately 40 mM were required

to reduce the fractional saturation of FBP to 0.5 (Fig. 3.13).

Together, these observations supported the hypothesis that, during steady-state cell prolif-

eration under cell culture conditions, FBP is constitutively bound to PKM2. Under these

conditions, amino acids can reversibly bind and thereby regulate the enzyme activity of PKM2

by modulating its maximal velocity, in the background of post-translational modifications that

are likely to occur to PKM2 in cells.
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Figure 3.13: Milli-molar concentrations of phosphorylated peptide is required to out-
compete FBP binding in cells. The fraction of PKM2 bound to FBP in HCT116, SN12C, MCF7
and LN229 cell lines was computed over a range of phospho-peptide concentrations.
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3.6 Conclusion

Evidence, presented in this chapter, derived from measurements of PKM2 activity suggests

that allosteric effectors can modulate the velocity and substrate affinity through a complex

series of intra- and inter-protomeric couplings. Moreover, simultaneous regulation of PKM2 by

FBP and amino acids is likely to occur over a large range of cell culture conditions. A major

mechanism that has been suggested to result from allosteric effector binding is the regulation

of the oligomeric state of PKM2. We therefore wanted to understand if, and to which extent,

the findings of this chapter could be explained by ligand-induced oligomerisation of PKM2.

We next turned to native mass spectrometry to investigate the potential of allosteric regulators

to effect changes in the oligomeric state of PKM2.
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Native mass spectrometry reveals the

structural basis of distinct ligand

modes of action.

4.1 Introduction

The oligomeric state adopted by PKM2, and how ligand binding affects changes to the

monomer-dimer-tetramer equilibrium, remains controversial. PKM2 forms a homotetrameric

complex in crystal structures, both in the absence and in the presence of various co-crystalised

allosteric ligands and substrates17,19,20,22,23,55. Solution-phase chromatographic measure-

ments of PKM2 size, however, have shown that PKM2 forms an equilibrium of monomers

and tetramers17,20,22,24,70, with some studies reporting the existence of dimers21,62, in which

the tetramer has high enzymatic activity whereas monomers and dimers display lower levels of

activity17,33,65,70,71. Accordingly, the regulation of PKM2 oligomerisation by various allosteric

ligands in solution17,20–22,62,70,71 and in the gas phase63, has been previously reported as a

mechanism by which PKM2 activity can be modulated. In addition to oligomerisation, several

studies of PKM2 and its homologues have implicated ligand-induced conformational changes

as contributing to the inactive-active state transition20,22,55,66,72–74,77. What is unclear, how-
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ever, is the relative contribution of ligand-induced oligomerisation and conformational changes

towards regulation of PKM2 enzyme activity.

Measurements of the steady-state enzyme kinetics of PKM2, in Chapter 3, found that al-

losteric regulators FBP, Ser and Phe act per se in a K-type mechanism to modulate the

effective substrate affinity of PKM2 for PEP. Moreover, it was found that FBP binding alters

the mode of phenylalanine inhibition from a hyperbolic-specific to a hyperbolic-mixed mech-

anism, suggesting a mechanistic cross-talk between the two ligands. Given that modulation

of the oligomeric state of PKM2 has been previously demonstrated as an important regula-

tory mechanism, we sought to investigate whether ligand-induced activity changes could be

explained by PKM2 oligomerisation and/or conformational transitions.

In this chapter, a characterisation of PKM2 oligomerisation in the gas phase is presented.

Two mass spectrometry techniques, nano-electrospray ionisation mass spectrometry (nESI-

MS) and ion-mobility coupled to nESI-MS (IM-MS), were used to explore the distribution of

PKM2 oligomers and ensemble of conformations, respectively in the native-state.
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4.2 FBP binding regulates oligomerisation of PKM2

4.2.1 PKM2 forms a mixture of oligomeric states

To mass-resolve the oligomeric states of PKM2 in the gas phase, native spectra of PKM2

in the absence of any added ligands were obtained. As was detailed in Chapter 3, prepa-

rations of PKM2 co-purified with sub-stoichiometric amounts of FBP. All experiments were

performed with a single preparation of PKM2 containing less than 25 % of its sites pre-bound

to FBP. Experiments performed on purified PKM2 in the absence of any added ligands, though

containing quantified sub-stoichiometric amounts of FBP, are denoted with an asterisk (Apo∗).

The native spectrum of PKM2 showed a mixture of monomers, dimers and tetramers at

an approximate ratio of 1:7:10 (Fig. 4.1 A). To investigate the concentration-dependence of

PKM2 oligomerisation, additional native spectra of PKM2 were acquired at protein concen-

trations between 1 µM and 70 µM. A concentration-dependent effect on the relative intensities

of the three oligomeric species was observed, favouring a higher proportion of tetramers in the

more concentration protein samples at the expense of the dimeric species (Fig. 4.1 A and

B). Additionally, the relative intensities of the monomeric charged-state species were found to

increase towards higher protein concentrations. This may suggest an inherent instability of the

dimeric species at higher protein concentrations, which pushes the equilibrium of oligomeric

states towards the tetrameric and monomeric states.
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Figure 4.1: The concentration-dependence of PKM2 oligomerisation. (A) Nano-electrospray
ionisation mass spectrometry was used to acquire native spectra of PKM2apo∗. The protein was sprayed
from a 100 mM ammonium acetate solution containing a total PKM2 concentration of 1 µM, 10 µM,
35 µM and 70 µM. (B) The oligomeric state distribution was quantified for each of the concentration
of PKM2 and presented as stacked bars showing the relative intensities of monomers (orange), dimers
(white) and tetramers (blue).
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4.2.2 PKM2 dimers form stably about the A-A’ interface

PKM2 dimers might form two possible assembles about the A-A’ and C-C’ inter-
faces

The inherent two-fold symmetry of PKM2 tetramers may give rise to one of two possible

dimeric assemblies about the A-A’ interface (the A-A’ dimer) or about the C-C’ interface (the

C-C’ dimer) (Fig. 4.2 A). It was unclear whether the PKM2 dimers observed in the native

spectra (Fig. 4.1 A) were of the A-A’ or C-C’ assembles, or a mixture of the two. PKM2

protomers have the same primary structure and hence, identical masses, and so it was not

possible to mass-resolve the two possible species. Nevertheless, an inspection of the overall

shape of in silico models generated of the two dimeric assemblies showed a difference in shape

between the two possible dimer species (the A-A’ dimer is more globular than the elongated

C-C’ dimer assembly; Fig. 4.2 A). As such, we hypothesised that the two dimer assemblies

could be distinguished by their mobilities in the gas phase.

In silico calculations find that A-A’ and C-C’ dimers have distinct ion mobilities

To this end, we used IM-MS to measure the experimental drift time of selectively activated

PKM2 dimer charge states. The drift time of the ion in a defined buffer gas (tD) is proportional

to the rotationally-averaged collision cross section (CCS, Ω), which can be interpreted as the

shape adopted by a given molecular ion under particular gas phase conditions166:

Ω =

√
18π

16

ze√
kBT

[

1

mI
+

1

mN

]0.5 tDE

L

760

P

T

273.2

1

N
(4.1)

where e is the elementary charge, E is the charge carried by the ion, N is the number density,

L is the path length of the drift cell, T is the temperature and kB is the Boltzmann constant.

For comparison with experimental measurements, the CCS of the 23+ A-A’ and C-C’ dimers,

the 15+ monomer and the 33+ tetramer ions were computed from short 10 ns molecular dy-

141



J.A.S MACPHERSON CHAPTER 4

namics simulations of A-A’ and C-C’ dimer in silico models (see Methods Section 2.2.2).

The CCS was calculated from the representative clustered structures using a projection-

approximation (PA) approach (PACCS), which has been used for many years to calculate

rotationally-averaged CCS values for molecules166. PA methods, however, fail to account for

long-range interactions and all the physical details of the scattering process between the ion

and the buffer gas166. For a more explicit treatment of the scattering process in calculating the

CCS, PACCS was supplemented with additional CCS calculations using an elastic hard-sphere

scattering (EHSS) approach (EHSSCCSHe), in which the CCS is calculated by averaging the

momentum transfer cross section which is related to the scattering angles between the incoming

and departing gas atom trajectory166.

A comparison between theoretical and experimental CCS measurements finds that
dimeric PKM2 forms the A-A’ assembly

The experimentally determined collision cross section for the 15+ monomer ion (DTCCSHe)

was (34.5 ± 9.9) nm2, 3.3 % larger than the theoretical EHSSCCSHe (Fig. 4.2 B). Although

the difference between the EHSSCCSHe and the experimental DTCCSHe was found to be

significant (p-value < 0.001), a more pronounced structural compaction in gas-phase molec-

ular dynamics simulations has been previously reported to manifest in smaller collision cross

sections, relative to the experimental measurements167. The theoretically determined PACCS

was found to further underestimate the experimental DTCCSHe by 10.1 % [PACCS = (31.00

± 1.71) nm2] (Fig. 4.2 B), likely because the PA approach does not account for the effects of

multiple ion-gas collisions, and hence for ions of masses greater than 2 kDa, this method will

underestimate the CCS and is know to be of limited use for the study of larger biomolecules166.

The experimentally measured DTCCSHe for the 33+ tetramer ion [(92.46 ± 2.57) nm2] was

in good agreement with the theoretically-determined CCS as determined using the EHSS-

approach [EHSSCCSHe = (92.98 ± 3.41) nm2] (Fig. 4.2 B). Taken together, the agreement

between theoretically and experimentally determined CCS values for PKM2 monomer and
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tetramer ions suggested that similar measurements of the dimer ion would have predictive

power in elucidating the assembly of dimeric PKM2 in the gas phase.

The C-C’ dimer was found to have a theoretical CCS of [EHSSCCSHe = (61.08 ± 6.73)

nm2], 13 % larger than the A-A’ dimer [EHSSCCSHe = (53.20 ± 2.23) nm2] (Fig. 4.2 B),

suggesting that the two possible dimer assemblies have distinct ion mobilities. Experimental

CCS measurements of the 21+ dimer ion [DTCCSHe = (52.59 ± 9.37) nm2] were in close

agreement with the theoretically-determined CCS of the A-A’ dimer (Fig. 4.2 B). The close

match between the theoretical CCS of the A-A’ dimer and the experimentally-measured CCS

of dimeric PKM2, suggested that PKM2 dimers form the A-A’ assembly in the gas phase.
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Figure 4.2: Ion mobility measurements reveal that PKM2 dimers are stable about the A-A’
interface. (A) Structural models of [i] A-A’ dimers and [ii] C-C’ dimers, shown in cartoon repre-
sentation. (B) The CCS of the 15+ monomeric (orange), 23+ dimeric (white) and 33+ tetrameric
(blue) PKM2apo∗ calculated experimentally by IM-MS (shaded bars) and from MD simulations of
the respective ions using the Projection Approximation (PACCS) and Exact Hard-Sphere Scattering
(EHSSCCSHe) approaches.

144



J.A.S MACPHERSON CHAPTER 4

4.2.3 FBP induces PKM2 tetramerisation

Consistent with previous studies19,48,55,60, a characterisation of enzyme kinetics of PKM2 in

Chapter 3 showed that the binding of FBP increases the effective substrate affinity of PKM2

for phosphoenolpyruvate. To explore whether this functional effect of activator binding was

accompanied by an induced change in the oligomeric state, we acquired native spectra of PKM2

titrated with FBP. FBP addition was found to increase the relative abundance of tetrameric

charged-state species in a dose-dependent manner (4.3 A and B). Additionally, an apparent

m/z shift in the tetrameric peaks and a qualitative change to the overall charged-state envelope

was observed (4.3 C). The m/z shift was expected to result from the binding of at least three

molecules of FBP to each PKM2 tetrameric species, given that preparation of protein had

been previously characterised as containing ≃ 23 % of the binding sites pre-occupied with

co-purified FBP (Section 3.2.1).
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Figure 4.3: FBP addition induces a dose-dependent tetramerisation of PKM2. (A) Native
spectra were acquired for PKM2 titrated with FBP. The ratio of protein-to-ligand is indicated. (B)
The relative intensities of oligomeric states was determined for each ratio-metric mixture of FBP-
PKM2. (C) Native spectra of the 33+ tetrameric charge state species for each stoichiometric mixture
of FBP-PKM2.
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4.2.4 PKM2Apo∗ tetramers are formed from a mixture of apo and holo pro-
tein

In order to resolve the apparent mass shift of tetrameric PKM2 upon FBP addition, spectra

of PKM2 were acquired under high cone-voltage conditions in order to remove salt adducts

during the ionisation process, which would otherwise add to the overall weight of analyte ions.

Mass-deconvolution of the subsequent spectra (see Methods Section 2.4.1) could thus be com-

pared to the theoretical mass of the PKM2 from its primary sequence.

The mass-deconvolved spectrum of FBP-saturated PKM2 (PKM2FBP ) revealed a single mass

peak at 234.190 kDa (Fig. 4.4) corresponding to the theoretical mass of tetrameric PKM2

bound to four molecules of FBP (234.273 kDa). In contrast, tetrameric PKM2 in the ab-

sence of any added FBP (PKM2apo∗), consisted of five separate peaks (Fig. 4.4 and Table

4.2). The difference in mass between the different PKM2apo∗ mass peaks were approximately

equivalent to the mass equivalents of a single molecule of FBP (340 Da), suggesting that the

peaks reflected tetrameric PKM2 species bound to 0, 1, 2, 3 and 4 molecules of FBP (Fig.

4.4). The intensities of the five mass peaks of PKM2 in the absence of added FBP, reaffirmed

the finding that considerable molar amounts of FBP are retained during the purification of

PKM2 (Section 3.2.1). Additionally, these results show that FBP binding is not required

for PKM2 tetramer formation. Moreover, the relative apex-intensities of the five mass peaks

of PKM2apo∗ may provide information on the degree of cooperativity associated with FBP

binding. For an infinitely cooperative system, where the concentration of ligand is limiting,

one would expect appreciable quantities of only the apo and holo species. The distribution of

peaks with an approximate ratio of 5:2:2:2:1, however, suggests that FBP binding is weakly

cooperative.
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Molecule Mass (Da)

Monomeric PKM2 58218.16
Tetrameric PKM2 232872.60
D-fructose-1,6-bisphosphate 350.0
Tetrameric PKM2 + 1 FBP 233222.6
Tetrameric PKM2 + 2 FBP 233572.6
Tetrameric PKM2 + 3 FBP 233922.6
Tetrameric PKM2 + 4 FBP 234272.6

Table 4.1: Theoretically-determined masses of PKM2 and FBP

System Conditions
Number of tetramer
peaks

Mass (Da)

10 µM PKM2 High voltage 4 232880, 233220, 233580, 233930, 234290
+ 10 µM FBP Native-like 1 235030
+ 10 µM FBP High voltage 1 234190

Table 4.2: Maximum entropy mass estimation of tetrameric PKM2 from nESI-MS m/z spectra under
native-like and high cone-voltage ionisation conditions.

Figure 4.4: The mass-deconvolved spectrum of PKM2apo∗ reveals a mixture of apo and holo
species. Mass-deconvolved spectra were calculated from spectra of PKM2apo and PKM2FBP . Nor-
malised mass spectra of PKM2apo∗ (black) and PKM2FBP (green) are shown. Peaks are annotated
with the corresponding FBP-PKM2 stoichiometric species, as determined from the exact mass of the
measurement.
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4.2.5 FBP binding induces subtle changes to the shape of tetrameric PKM2

Previous studies have suggested that allosteric ligands induce inter-domain conformational

changes within the PKM2 tetramer22,55,62,77 and other pyruvate kinase homologues66,72,74,75.

Therefore, we investigated the possibility that FBP binding induced conformational changes

that could be detected by an altered mobility in the gas phase.

To this end, IM-MS measurements of PKM2 were acquired in the absence and in the presence

of saturating amounts of FBP, from which a global CCS was calculated for each tetramer

(see Methods Section 2.4.2). We found that differences in the DTCCSHe distribution, which

reflects the conformational heterogeneity of proteins, suggested that FBP caused subtle con-

formational changes in the tetramer (Fig. 4.5). The negative difference in the DTCCSHe

distribution between PKM2apo∗ and PKM2FBP at DTCCSHe > 10000 suggested that FBP

binding marginally reduces the compaction of the tetramer.

Figure 4.5: FBP binding changes the global collision cross section of PKM2 tetramers.
DTCCSHe distribution of PKM2apo∗ and PKM2FBP calculated from analyses of arrival time distribu-
tion measurements of PKM2 tetramer peaks (see Methods Section 2.4.2). Average calculated values are
shown in solid lines and the standard deviations are shown as shaded ribbons. The difference spectrum
between PKM2apo∗ and PKM2FBP is shown as a dashed line.
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4.3 Inhibitory amino acids have distinct effects on tetramerisa-

tion depending on whether FBP is bound

Measurements of the steady-state kinetics of PKM2 in Chapter 3 found that while FBP addi-

tion promoted high substrate affinity, simultaneous addition of phenylalanine (Phe) and FBP

prevented FBP from exerting its maximally activating allosteric effect by reducing the kcat.

nESI-MS experiments supported the hypothesis that FBP activation involves tetramerisation

of PKM2, linking activation to the oligomeric state. Competing views of amino acid inhibi-

tion of PKM2 debate the effects of Phe and Ala binding on PKM2 oligomerisation20,22,70. We

therefore set out to determine the effects of amino acids on the oligomeric state of PKM2, and

to explore whether Phe impedes FBP-induced activation of PKM2 by affecting changes to the

oligomeric state of the protein.

4.3.1 Phe addition does not disrupt FBP-induced PKM2 tetramerisation

Addition either Phe to PKM2 at a protein-to-ligand ratio of 30:1, resulted in an increase in

the relative abundance of dimeric PKM2 charge state species (Fig. 2.1 A and B), suggesting

that Phe addition per se favoured the dimeric form of PKM2. The perference of Phe for

dimerisation is in agreement with previous solution-phase analytical ultracentrifugation stud-

ies70,168. Broadening of the dimeric and tetrameric charge state peaks was observed, likely

due to additional salt molecules binding to the protein upon addition of high concentrations

of the ligand (Fig. 2.1 A and B). The apparent effects of Phe addition in promoting the

dimeric state of PKM2, while significant in its magnitude, may have been underestimated due

to the stoichiometry of binding. Considering the measured binding affinities of both ligands,

calculated estimates of the fraction of 10 µM PKM2 bound upon addition of 300 µM Phe is

0.68, leaving a considerable fraction of the unbound protein. Attempts at measuring native

m/z spectra of PKM2 at higher ligand concentrations were unsuccessful due to the unaccept-

ably high salt content of the protein-ligand mixture.
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Next, native spectra of PKM2 were acquired following pre-incubation with saturating concen-

trations of FBP. As before (Section 4.2.3), FBP addition resulted in PKM2 tetramerisation

(Fig. 4.6 A and B). Addition of Phe subsequent to pre-incubation with FBP did not perturb

the tetrameric state of PKM2, while FBP binding to PKM2 pre-incubated with Phe resulted in

protein tetramerisation, indicating that the dominant effect of FBP on PKM2 tetramerisation

was not effected by the order of ligand addition (Fig. 4.6 A and B).

Figure 4.6: Phe binding does not disrupt FBP-induced PKM2 tetramerisation. (A) Na-
tive spectra of 10 µM PKM2apo∗ and in the presence of 10 µM FBP (PKM2FBP ), 300 µM Phe
PKM2Phe, 300 µM Phe followed by addition of 10 µM FBP PKM2Phe+FBP and 10 µM FBP followed
by addition of 300 µM Phe PKM2FBP+Phe. Relative oligomeric state abundances were calculated and
are shown in (B).
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4.3.2 Phe and FBP synergistically promote PKM2 tetramerisation

It appeared from from the preceding native spectra of PKM2, that Phe had a neutral effect

on the oligomeric state of FBP-bound PKM2 and that their binding was simply a passenger

to FBP-induced tetramerisation. This hypothesis was found not to hold in the context of sub-

stoichiometric FBP addition, where the subsequent addition of either Phe was found to act

synergistically with FBP to promote PKM2 tetramerisation with slow kinetics [ktet = (812.5

± 284.6) s−1] (Fig. 4.7). Conversely, the addition of equivalent half-stoichiometric amount

of FBP in the absence of Phe, were unable to fully convert PKM2 monomers and dimers into

tetramers (Fig. 4.7). The propensity for Phe to enhance FBP-induced tetramerisation im-

plied a functional synergism between the activator and either amino acid inhibitors, favouring

tetramer formation despite to apparent opposing effects of these ligands, individually, both on

enzyme activity and oligomerisation.

Figure 4.7: FBP and Phe synergistically promote PKM2 tetramerisation. The time-resolved
ratio of tetramer-to-dimer charge state intensities of 10 µM PKM2 following pre-incubation with either
(i) 5 µM FBP, or (ii) 5 µM and 400 µM Phe. Time-resolved intensities are fit to a two-state sigmoidal
model.
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4.3.3 Analytical evidence for simultaneous binding of FBP and Phe to
PKM2

The failure of Phe addition to destabilise FBP-bound PKM2 tetramers suggested a dominant

effect of FBP on the oligomeric state of the protein. Moreover, it was predicted that the si-

multaneous addition of Phe and FBP to PKM2 would result in doubly-liganded PKM2, given

the the finding from ligand binding studies that the binding affinity of Phe was unaffected

by FBP binding, and vice versa. Nevertheless, to address the possibility that under ionising

conditions into the gas phase Phe does not bind to PKM2FBP , we sought analytical evidence

for simultaneous binding of Phe and FBP to PKM2.

Evidence for concurrent Phe and FBP binding to PKM2 was provided by the m/z shift pro-

duced by ligand addition to PKM2. Close inspection of the +33 tetramer charge state found

that the PKM2apo∗ spectrum contained a doublet of tetramer peaks: the left portion of the

peak was the fully-apo protein and the right portion resulted from ions of 1, 2, 3 and 4 FBP

molecules bound to PKM2 tetramers (Fig. 4.8 A). Addition of saturating amounts of FBP

resulted in a small m/z shift towards higher CSD values (Fig. 4.8 A). A further shift of the

PKM2FBP 33+ peak was observed upon addition of Phe to FBP-bound PKM2 (Fig. 4.8 A).

The shift towards lower charge-states upon addition of Phe was found to be reversible when the

cone voltage (CV) in the electrospray ionisation source was increased from 10 V to 100 V. In-

creasing the CV had the observed effect of reducing the negative charge of the PKM2FBP+Phe

peaks and converting them to align with the PKM2FBP (Fig. 4.8 A). This was achieved by

displacing Phe molecules bound to PKM2FBP . Conversely, increasing the CV of the ESI source

did not convert the +33 PKM2FBP ion to the ’apo-like’, suggesting that the high FBP-PKM2

binding affinity stabilised the interaction from dissociation even at high ionisation energies.
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Figure 4.8: FBP and Phe can simultaneously bind to PKM2. (A) Mass spectra of PKM2
were acquired in the absence of any added ligands (PKM2apo∗), and following the addition of stoi-
chiometric amounts of FBP (PKM2FBP ); addition of 400 µM Phe to 10 µM PKM2 pre-incubated
with FBP (PKM2FBP+Phe); or addition of 10 µM FBP to PKM2 pre-incubated with 400 µM Phe
(PKM2Phe+FBP ). Spectra were acquired with the cone-voltage of the electrospray ionisation source set
at either 10 V (native-like) or 100 V (collisional activation). Positions of the m/z peaks are shown as
dashed lines. (B) The relative abundances of monomer (orange), dimer (white) and tetramer (blue)
species were quantified from the spectra in (A).
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4.3.4 Phe partially reverses PKM2 to an ’apo-like’ conformation

Previous calculations of the CCS (Section 4.2.5) revealed subtle conformational changes in

PKM2 in response to FBP binding. Given that the subsequent addition of Phe was found

to reduce the kcat
KM

ratio to apo-like levels (Chapter 3) we questioned whether the apparent

conformational changes might be predictive of the enzyme activity level of the protein. To

this end, IM-MS measurements of PKM2 were repeated following concurrent addition of Phe

and FBP. We found that simultaneous binding of Phe and FBP partially reversed the FBP-

induced shift towards higher DTCCSHe values (Fig. 4.9), suggesting that Phe might reverse

the conformational changes associated with FBP-induced enzyme activation.

Figure 4.9: Phe partially reverses FBP-induced conformational changes. IM-MS measure-
ments of PKM2 in the absence of any added ligands (black) in the presence of stoichiometric amounts
of FBP (green) and in the presence of FBP and 300 µM Phe (orange). A protein concentration of 10
µM was used for all measurements.

155



J.A.S MACPHERSON CHAPTER 4

4.4 Conclusion

Collectively, enzymology, biophysics and native mass spectrometry suggest that allosteric reg-

ulators of PKM2 exert distinct effects on PKM2 catalysis by modulating the KPEP
M and the

kcat. Furthermore, this differential effect on alternative aspects of enzyme catalysis is proposed

to be routed in the oligomeric structure of PKM2. A characterisation of amino acid and FBP

binding revealed that the kinetics of ligand binding to these two pockets occcur independently.

The binding of amino acids was found to occur with the same apparent dissociation constant

irrespective of whether or not FBP is bound to its pocket, and vice versa. Concurrent bind-

ing of Phe and FBP to PKM2 was further supported by the finding that subsequent ligand

addition results in further reversible shifts to the charge-state distribution of PKM2 tetramers.

However, a functional cross-talk between the two binding pockets is proposed. In support

of this hypothesis we have found that the enzyme kinetics of PKM2 are distinct when both

amino acids and FBP are bound simultaneously, compared to their effects per se. Moreover,

the functional synergism between amino acid and FBP binding is manifest by enhanced ki-

netics PKM2 oligomerisation, despite opposing effects of Phe and Ala stabilising dimers and

FBP stabilising the tetrameric state. This suggested a functional cross-talk routed in the

mechanism of allosteric signal transfer from either allosteric pocket to the protomer interfaces

and the active sites, possibly through cooperation between the allosteric pathways connecting

these functional sites.

In order to understand the molecular basis of this functional cooperation between amino

acid and FBP regulation, we sought to model the effect of these allosteric ligands on the

conformational dynamics of PKM2 using molecular dynamics simulations. In addition, we

developed a computational method designed to extract allosteric pathways from molecular

dynamics simulations in a statistically robust manner.
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Molecular dynamics simulations

predict hub residues involved in the

allosteric transition of PKM2.

5.1 Introduction

Allosteric ligand binding was shown in the previous two Chapters to affect changes to PKM2

activity by regulating the oligomeric state and the global conformational shape of the pro-

tein. Previous investigations have suggested that human PKM222, and some of its ortho-

logues66,72,75, undergo a concerted rigid-body structural motion in response to FBP binding.

In contrast, very little is known about the fine-grained molecular mechanism by which FBP

and amino acids regulate PKM2; both in terms of the consequent energetic changes (either

enthalpic or entropic) and the amino acid residues involved. Moreover, the structural resolu-

tion afforded by fluorescence spectroscopy and mass spectrometry measurements is limited.

An efficient strategy for probing allosteric regulation with sufficient temporal, spatial and

energetic resolution, is the use of molecular dynamics (MD) simulations to model the con-

formational dynamics of proteins83,169,170. Therefore, we sought to investigate the molecular
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mechanism of PKM2 allosteric regulation with a view towards identifying the specific pro-

tein residues, which are involved in propagating activating or inhibitory effects from distinct

allosteric sites to the catalytic pocket, using MD simulations. In this Chapter, results are

presented from a comprehensive study of the energetics and dynamics of monomeric and

tetrameric PKM2 using computer simulations. Additionally, a novel computational method

AlloHubMat is described and applied towards extracting predicted allosteric hub residues in

PKM2.
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5.2 Molecular dynamics simulations of PKM2 capture ligand-

induced conformational changes

To explore possible protein backbone conformational changes, elicited by allosteric ligand bind-

ing to PKM2, MD simulations of PKM2 were performed in the absence and in the presence

of several allosteric ligands. Given that PKM2 exists as an equilibrium of oligomeric states

(Section 4.2.1), simulations of both monomeric and tetrameric protein were performed to in-

vestigate differences in the conformational dynamics between the two oligomers. Monomeric

PKM2 was simulated in the apo-form (mPKM2apo), bound to the endogenous inhibitor Phe

(mPKM2Phe), the endogenous activator FBP (mPKM2FBP ) and the exogenous small-molecule

activator Tepp-46 (mPKM2Tepp). Similarly, to investigate the dynamics involved in the ligand-

induced conformational transition of PKM2 (Section 4.2.5), simulations of tetrameric PKM2

were seeded from protein crystal structures in the apo-form (tPKM2apo), bound to FBP

(tPKM2FBP ), concurrently bound to serine and FBP (tPKM2FBP+Ser) and bound to pheny-

lalanine and FBP (tPKM2FBP+Phe).

5.2.1 An integration time step of 2 fs appropriately conserves the energy
in monomeric PKM2 simulations

Prior to production runs in the NPT ensemble, short 40 fs simulations of mPKM2apo were

performed in the microcanonical (NVE) ensemble to evaluate the conservation of total energy

of the system with integration time step sizes of 2 fs, 3 fs and 4 fs.The total energy fluctuations

of the system were compared to those of the potential energy and the kinetic energy:

∆E =
√

(E − 〈E〉)2 (5.1)

where E is either the total, kinetic or potential energies of the system.

Increasing the integration time step of the short NVE simulations resulted in a consider-

able increase in the amplitude of the fluctuations of the potential and kinetic energies (Fig.
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5.1). To reduce errors propagated from integrating the equations of motion, fluctuations of

the total energy should be less than one-fifth of the fluctuations of the kinetic or the potential

energies171. This criteria was not fulfilled for simulations using time steps larger than 2 fs

(Table 5.1), and so an integration time step of 2 fs was used in all subsequent simulations of

monomeric and tetrameric PKM2.

Figure 5.1: Energy fluctuations calculated for different integration time-steps. Simulations
with constant energy (NVE) were performed to evaluate how well the total ennergy was conserved for
4 fs simulations of mPKM2apo, using integration time steps sizes of 2 fs (black), 3 fs (red) and 4 fs
(green).

Time step ∆Etotal

∆Ekinetic

∆Etotal

∆Epotential

2.0 0.2303 0.2317
3.0 0.9811 0.8420
4.0 1.3500 1.5445

Table 5.1: Single precision NVE simulation without thermostat or barostat coupling. Quan-
tification of the energy fluctuations in NVE simulations of mPKM2apo, as shown in Fig. 5.1.
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5.2.2 FBP binding causes PKM2 monomers to sample two distinct confor-
mational states

To investigate the mechanical response of PKM2 upon FBP and Phe binding we performed

MD simulations of mPKM2apo, mPKM2FBP and mPKM2Phe at a constant temperature of 300

K and a pressure of 1 atm. To simplify the high-dimensionality of the trajectories and to study

the molecular determinants related to the binding Phe or FBP, principal component analyses

were performed of the positional coordinates of the three simulations. After removing roto-

translational degrees of freedom, the covariance matrix (σ) of the atomic positional fluctuations

was calculated with the elements:

σij = 〈(xi − 〈xi〉)(xj − 〈xj〉)〉 (5.2)

where {x1, x2, x3, ..., x3N} are the Cartesian coordinates of the protein. The covariance matrix

was then trivially expressed in mass-weighted coordinates:

σ′ = Mσ (5.3)

where M is the mass matrix of the protein. From the mass-weighted covariance matrix (σ′),

eigenvalues (λ) and eigenvectors (x) were determined through a linear transformation:

0 = (σ′ − Iλ)x (5.4)

where I is the unit matrix. The eigenvalue problem in Equ. 5.4 was solved for the eigenvalues

and the eigenvectors of the system.

Simulated trajectories of mPKM2FBP were found to sample two discrete conformational states

in eigenvector space over the course of a 500 ns simulation (Fig. 5.2 A). A k-means clustering

of the PCA plot found that two clusters [i] and [ii] explained all of the point variability of

the data set. Transition between clusters [i] and [ii] was dominated by the movement of the
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B-domain into the closed conformation over the substrate-binding pocket, and a change to the

N-terminal helix-loop-helix (HLH) into an alternative, stable conformation (Fig. 5.2 A). The

nature of the B-domain motion led to the annotation of cluster [i] as the open conformation

and cluster [ii] as the closed conformation.

MD simulations of mPKM2apo, mPKM2Phe and mPKM2Tepp−46 were similarly analysed for

positional variance about the first two eigenvectors by transforming their positional coordi-

nates into eigenvector space (Fig. 5.2 B). In order to project all four monomer trajectories

into the same eigenvector space, the same rotation matrix was applied to each coordinate

system. Analyses of mPKM2apo and mPKM2Phe trajectories were confined to cluster [i], thus

sampling the open conformation, whereas mPKM2Tepp−46 was found to sample the closed

conformation.
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Figure 5.2: Conformational plasticity and essential dynamics of monomeric PKM2. (A)
PCA projection of a 500 ns MD simulation of PKM2 bound to FBP. Two clusters were found to explain
100 % point variability of the data set. Single most dominant conformations of mPKM2FBP were
extract from clusters [i] and [ii] and are shown in cartoon representation above. The first eigenvector
accounted for 37.5 % of the total variance and the second eigenvector accounted for 13.1 % of the
total variance. (B) Superimposition of eigenvalues from mPKM2apo (black), mPKM2Phe (red) and
mPKM2Tepp−46 (blue) onto the first two eigenvectors determined from an eigenvalue decomposition
of the Cα coordinates of mPKM2FBP (green).
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The open to closed transition of the B-domain in the first 300 ns of mPKM2FBP simula-

tions was observed to occur as a single two-state transition, and a re-opening of the B-domain

was not observed within this time scale. To investigate the conformational equilibrium of the

B-domain state transition, MD simulations of mPKM2FBP were extended for a further 200

ns. The resulting B-domain cap dynamics was quantified by measuring the distance between

the centre of mass of the A- and B-domains. Extended MD simulations of mPKM2FBP

found a reversal between energy minima about the open and closed conformations, with an

intermediate semi-closed conformation additionally detected (Fig. 5.3 A and B).

Taken together, these data suggested that the reversible closure of the B-domain in monomeric

PKM2 was dependent on FBP binding, within the simulated time scales, and that this is a

feature of PKM2 activation. Consistent with this interpretation, mPKM2Apo and mPKM2Phe

were found to same the open conformation, whereas mPKM2Tepp sampled to closed confor-

mation (Fig. 5.3 C-E). It was therefore hypothesised that B-domain closure contributes to

enzyme activation.
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Figure 5.3: Conformational equilibrium of FBP-induced cap closure from a 500 ns MD
simulation. (A) The distance computed between the centre of mass for the A-domain and the centre
of mass of the B-domain over the course of an MD simulation of mPKM2FBP . Surface distribution
of states plot, with Boltzmann averages of states calculated by B-domain cap distance as a function
of the RMSD of the B-domain for (B) mPKM2FBP , (C) mPKM2Apo, (D) mPKM2Phe and (E)
mPKM2Tepp.
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5.2.3 B-domain closure traps highly resident water molecules in the active
site

previous studies have found that a water molecule is required as part of the catalytic mechanism

of PKM2 to protonate the enolate intermediate150. This is supported by crystal structures

of PKM2 showing a cluster of water molecules proximal to the active site residues T328 and

S36223,55. In light of the observation of ligand-dependent B-domain dynamics affecting the

solvent exposure of the catalytic pocket, we postulated that the closure of the B-domain would

affect the solvent dynamics in the catalytic pocket and that this may play a role in catalysis.

An analysis of water density maps172 calculated from representative structures from MD sim-

ulations of mPKM2FBP in the open and the closed conformations, found that the active site

pocket contained an increased number of highly resident water molecules when the B-domain

cap was closed (Fig. 5.4). Moreover, a cluster of resident water molecules were positioned

proximal to T382 and S362 in the closed state. This would suggest that B-domain closure con-

tributes to catalysis by trapping necessary water molecules, proximal to the substrate binding

pocket.

Figure 5.4: Water residence time at the active site of mPKM2-FBP. Water density was cal-
culated on a 0.5 Å-spaced grid and averaged over snapshots exracted from the mPKM2-FBP simulation
every 0.1 ps for the (A) open and (B) closed conformations of the B-domain cap. The hydration sites
(spheres) are coloured from white to blue according to increased water density.
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5.2.4 B-domain dynamics is correlated with structural changes to catalytic
residues in the active site

To further explore whether B-domain closure was accompanied by other features of PKM2

activation, we investigated the side-chain dynamics at the active site of the protein. A su-

perimposition of PKM2 active site residues from crystal structures deposited in the protein

data-bank, found that the catalytic residue H78 adopts an altered side-chain conformation

when the protein is bound to allosteric activators FBP and Tepp-46 (PDB ID: 3u2z) and

L-serine and FBP (PDB ID: 4b2d), compared to crystal structures of apo PKM2 (PDB ID:

3bjt) and PKM2 bound to the inhibitor phenylalanine (PDB ID: 4fxj) (Fig. 5.5 A). H78 has

been implicated the phospho-transfer reaction of PKM2 as a proton-donor and acceptor in

the catalytic cycle150. In the activator-bound structures, the Nδ1 group was found to be posi-

tioned towards the active site, and was found positioned away from the active site in apo- and

Phe-bound structures (Fig. 5.5 A). Consistent with this change following allosteric activator

binding, the conformation of H78 was proposed to provide a potential read-out for whether

PKM2 was in the active or the inactive states.

To investigate possible changes to the orientation of H78 in the MD simulations of PKM2,

the χ2 torsion angle of H78 was measured in simulations of mPKM2FBP and mPKM2apo.

We found that the closure of the B-domain was accompanied by the catalytic H78 adopt-

ing a χ2 torsion angle of between 100° and 110°, in agreement with the χ2 torsion angles

of the crystal structures of activator-bound PKM2 (108.2° for PKM2FBP+Ser and 103.0° for

PKM2FBP+Tepp; Fig. 5.5 A). Conversely simulations of mPKM2apo and mPKM2Phe dis-

played variable H78 χ2 torsion angles approximately equivalent to that the inhibited crys-

tal structures (≃ −70°; Fig. 5.5 A). This further suggested that the open conformation

corresponds to the inactive state of PKM2 and that FBP-induced closure of the B-domain

contributed to the transition to the active state.
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Figure 5.5: Active site residue H78 adopts a distinct side-chain conformation depending
on the liganded state of the protein. (A) The active site residue histidine 78 (H78) shown in
stick representation for crystal structures of apo- FBP and activator-, phenylalanine-, and serine and
FBP-bound PKM2. Below, 18 evenly spaced snap-shots of the conformation of H78 are shown for a MD
simulated trajectory of mPKM2FBP in the open and following the transition to the closed states. In the
open state [Cluster (i) in Fig. 5.2 A], the side chain of H78 is flexible and switches into a conformation
seen in that of the active crystal structures following the transition of the simulation into cluster ii
[Cluster (ii) in Fig. 5.2 B]. The time evolution of the dihedral angle of H78 along MD simulations of
mPKM2apo, mPKM2Phe, mPKM2FBP and mPKM2Tepp−46, colour-coded according to the scale
on the right. (B) The PKM2 catalytic pocket, annotated to show the active site residues. (C) Cα
active site corrdinates of the mPKM2apo active site (gold), mPKM2Phe (red), tPKM2apo (orange),
mPKM2FBP (green), mPKM2Tepp−46 (blue) and tPKM2FBP (purple) are projected onto the first
two eigenvectors of mPKM2FBP . This figure is partially adapted from77, which is made available
under a Creative Commons Attribution license (CC-BY).
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While the orientation of H78 correlated with the activity status of the crystal structures,

we could not exclude the possibility that the observed flipping of the imidazole side chain of

H78 was an artefact of the structure-refinement process. Therefore, a PCA analysis of the

positional coordinates was performed for all active site residues (Fig. 5.5 B) in simulations

of mPKM2apo, mPKM2Phe, mPKM2Tepp, mPKM2FBP , tPKM2apo and tPKM2FBP . This

analysis found that the simulations could be separated into two clusters. The first cluster [i]

contained coordinates of mPKM2apo, mPKM2Phe and tPKM2apo, while the second cluster [ii]

contained coordinates of mPKM2FBP , mPKM2Tepp and tPKM2FBP (Fig. 5.5 C). Moreover,

crystal structures of PKM2apo (PDB ID: 3bjt) and PKM2FBP (PDB ID: 3u2z) localized to

the first and second clusters, respectively. Together, this suggested that side-chain active site

changes were involved in the inactive-active transition. Nevertheless, the partition of active

and inactive simulations into the two clusters observed in the PCA analysis of active site

residues persisted for the entirety of the simulations and transitions between clusters [i] and

[ii] is not observed for simulated trajectories of mPKM2FBP . This suggested that an active-

to-inactive transition, upon B-domain closure, does not completely describe the mechanism of

enzyme activation.
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5.2.5 Comparative dynamics between tetrameric and monomeric PKM2

Investigation of the oligomeric state of PKM2 by native mass spectrometry in Chapter 4 found

that FBP binding results in tetramerisation. Moreover, additional experiments found that Phe

and Ser compete for binding to modulate PKM2 activity, in the context of constitutive FBP

binding.

There are two distinct dimer interfaces within the PKM2 tetramer; the A-A’ interface between

the A- and C-domains of chains 1 and 2 and chains 3 and 4, and the C-C’ domains between

the C-domains of chains 1 and 3, and chains 2 and 4. The C-C’ domain of PKM2 is formed

of adjacent C-domains aligning in a ’tail-to-tail’ fashion and interacts in a four-helical bundle.

Particularly prominent to the C-C’ domain interface is the protrusion of Lys-421 across the

interface and through the loop between residues 399 to 407 on the adjacent monomer. This

loop into which Lys-421 extends has a negative electrostatic potential and thus forms the ba-

sis for several charged interactions with Glu-409 and Try-443. In contrast, the A-A’ interface

largely encompasses several contacts between adjacent A-domains of chains 1 and 3 and chains

2 and 4, with additional bonds formed between the B-domains and N-terminal helix-loo-helix

domains of the adjacent chains. Notably, helix 11 (residues 341-353) protrude into a lipophilic

pocket within the first 34 residues of the N-terminal helix-loop-helix domain and the top half

of helix 12 (residues 368-378) of the opposing monomer. The apparent dissociation constant of

PKM2 hetero-oligomerisation measured using MST in Chatper 3 (see Table 3.1) was found

to be 0.9 µM and the concentration of PKM2 in three cultured cell lines was approximately

2 µM. Given that the apparent dissociation constant of PKM2 oligomerisation is similar to

its cellular concentration, PKM2 may undergo reversible oligomerisation in a cellular context.

The monomer-dimer-tetramer equilibrium subsequently described in Chapter 4 is likely per-

turbed in cells by ligands and other interacting partners. Nevertheless, a robust description

of the the cellular nature of the oligomeric equilibrium of PKM2 would necessitate further in

situ experimentation. To provide a more detailed physico-chemical model of PKM2 dynamics,
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tetrameric PKM2 was simulated in the apo-form (tPKM2apo), bound to FBP (tPKM2FBP ),

bound to FBP and Phe (tPKM2FBP+Phe) and bound to FBP and Ser (tPKM2FBP+Ser).

In contrast to MD simulations of monomeric PKM2, analyses of tetrameric PKM2 MD tra-

jectories did not show the same FBP-dependent lateral B-domain closure over the active site,

as for mPKM2FBP . Rather, an inspection of the simulated trajectories of tPKM2FBP found

that a network of inter-protomeric charge-charge interactions was established between R342

and two aspartate residues (D178 and D179) on a flexible loop of the B-domain on the ad-

jacent protomer. This charged interaction was observed to form after approximately 10 ns

of the simulation resulting in a twisting of the B-domain cap (Fig. 5.6 A). The positioning

of the R342 side-chain was such that it blocked the B-domain cap from closing laterally over

the active site, by flipping into the far side of the active site pocket (Fig. 5.6 B). In con-

trast, while the position of R342 and the other residues at the A-A’ interface is largely similar

between the crystal structures of tPKM2apo and tPKM2FBP (Fig. 5.6 A), an inspection

of simulated trajectories of tPKM2apo found that R342 flipped away from the neighbouring

active site pocket and the B-domain of the opposite protomer (Fig. 5.6 B).

The distance between R342 and D179 was quantified from MD trajectories of tPKM2apo,

tPKM2FBP , tPKM2FBP+Ser and tPKM2FBP+Phe (Fig. 5.6 C). The formation of charged

interactions about the interface of tPKM2FBP was reflected in the short inter-atomic distance

between the R342 guanidino group and the acidic side-chain of D177, whereas MD trajecto-

ries of tPKM2apo showed distances out of the range for charged-charged interactions between

these two residues (Fig. 5.6 C [i] and [ii]). A similar molecular behaviour to tPKM2FBP

was observed in simulated trajectories of tPKM2FBP+Ser in the proximity between R342 and

D177, resulting from a lateral twisting of the B-domain cap (Fig. 5.6 C [iii]). Conversely,

the A-A’ interface of tPKM2FBP+Phe was less compact, owing to a greater distance between

R342 and D177, in a manner similar to the dynamics of tPKM2apo (Fig. 5.6 C [iv]).
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Taken together, an analysis of MD simulations of tetrameric PKM2 found that the conforma-

tional dynamics of the B-domain is different to that of the monomer due to steric hindrance of

lateral B-domain movement by interface residues. Nevertheless, charged interactions between

R342 and D177 at the A-A’ interface appeared when the tetramer was bound to allosteric

activators FBP and concurrently to FBP and Ser, resulting in twisting of the B-domain and

an observed structural tightening. Conversely, the apo- and FBP and Phe-bound tetramers

did not show this behaviour, suggesting that ligand-dependent conformational changes may

accompany PKM2 regulation.
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Figure 5.6: Charged-charged interactions at the A-A’ interface prevent lateral B-domain
closure in tetrameric PKM2. (A) Structures of tPKM2apo at 0 ns and 400 ns show that R342
and D177 flip away from the A-A’ interface, breaking a crucial interface charge-charge interaction.
(B) Structures of tPKM2FBP at 0 ns and at 400 ns show a tightening at the A-A’ interface. (C)
The distance between R342 and D177 about the A-A’ interface is quantified for [i] tPKM2apo, [ii]
tPKM2FBP , [iii] tPKM2FBP+Ser and tPKM2FBP+Phe.
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5.2.6 The configurational entropy of PKM2 does not change upon allosteric
ligand binding

Entropy-driven allosteric regulation has been described in a number of proteins110,111,173–175

where, in the absence of large-scale structural changes, allosteric ligand binding modulates

the amplitude of thermal fluctuations by altering the local effective elastic modulus of the

protein86. The configurational entropy of a macromolecular system can be calculated using a

formalism first proposed by Juergen Schlitter (1993)176, using the covariance matrix of atom-

positional fluctuations.

The derivation of the Schlitter entropy for macromolecular systems is based on a quantum-

mechanical treatment of a system with a of a one-dimensional degree of freedom x with states

n and energies of states given by ǫn. The canonical partition function is given by:

Z =
∑

n

exp

(

− ǫn
kBT

)

(5.5)

where kB is the Boltzmann constant at temperature T . The entropy of this system can be

expressed by:

S = −kB
∑

n

pn ln pn (5.6)

where pn is the probability of finding the system in a given state, given by:

pn =
exp

(

ǫn
kBT

)

Z
(5.7)

A single harmonic oscillator demands that the energy of a state is proportional to its variance

(ǫn ≃ 〈n|x2|n〉), and the complete entropy of a single harmonic oscillator is given by:

S =
kBα

eα − 1
− kB ln [1− e−α] (5.8)
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where α = h̄ωβ, h̄ = h
2π , h is Plank’s constant and ω is the frequency of the oscillator,

which depends on the quantum-mechanically defined variance 〈x2〉. For a classical system the

equipartition function provides the link between the quantum-mechanically defined variance

and that defined in classical mechanics. Therefore, the configurational entropy of a classical

system can be given by:

S′ =
1

2
kB ln

(

1 +
e2

α2
Mσ′

ij

)

(5.9)

where σ′
ij is the mass-weighted covariance matrix as previously defined in Equ. 5.2.

The approximative configurational entropy was calculated for all simulations of tetrameric

PKM2 using Equ. 5.9, in order to determine whether allosteric ligands might induce an

entropic change to the PKM2 structure. No significant differences in the converged configura-

tional entropy calculated from simulated trajectories of tPKM2apo, tPKM2FBP , tPKM2FBP+Ser

and tPKM2FBP+Phe (Fig. 5.7), negating the likelihood of a purely entropy-driven allosteric

mechanism of PKM2 regulation.

Figure 5.7: Allosteric ligands do not change the configurational entropy of PKM2. The
time-dependent configurational entropy was computed for simulated trajectories of tPKM2apo (grey),
tPKM2FBP (green), tPKM2FBP+Ser (blue) and tPKM2FBP+Phe (orange).
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5.3 Identification of PKM2 allosteric hub residues using a novel

software AlloHubMat

Ligand-induced changes to the collision cross section of PKM2 (Section 4.2.5) together with

evidence from MD simulations of B-domain closure upon allosteric activator binding (Section

5.2.5) suggested that backbone motions within tetrameric PKM2 contribute towards the al-

losteric transition of the protein. In the absence of changes to the configurational entropy of

PKM2 upon ligand binding (Section 5.2.6), we hypothesised that FBP binding elicits a net-

work of correlated motions within the backbone of PKM2, and that these concerted motions

form the basis of a network of residues which connect the FBP binding pocket to the active site.

We set out to quantify the network of correlated motions in MD simulations of PKM2 as

a means for identifying residues involved in the allosteric mechanism. Particularly success-

ful has been the the use of structural fragment analysis methods177, and in particular the

GSAtools developed by Pandini et al. (2013)124, which were applied towards identifing dis-

tally correlated motions in the backbone of proteins in order to elucidate allosteric pathways

driven by local conformational switches123,125,128,130. The GSAtools method uses information

theory to compute the normalised mutual information (nMI) between each fragment-encoded

position in the protein (Section 1.3.3). Given that each element in the nMI matrix has a time

component, the network of correlated motions is likely to change over the simulated time. In

this context, the time-evolution of correlated motions derived from an information theoretical

treatment of the protein structure has never been explored. Moreover, no methods had been

previously developed to allow for the comparison of nMI matrices extracted from multiple

replicate MD trajectories.

We therefore developed a novel computational framework, named AlloHubMat (Allosteric

Hub prediction using Matrices that capture allosteric coupling), to predict allosteric hub

fragments from the network of dynamic correlated motions, based on explicitly identified con-
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Function Description

read_pdb_file() Read PDB topology file.
read_traj_file() Read DCD MD trajectory file.
superpose_trj() Remove roto-translational motion from MD trajectory.
encode_dcd_trajectory() Encode trajectory with the M32K25 structural alphabet.
split_sa_align() Split the structural alphabet alignment into regular blocks.
mi_mat() Compute the mutual information matrix.
comp_eigensystem() Compute the eigen system of the mutual information matrix.
block_overlap() Compute the covariance overlap between each mutual

information matrix.
matrix_smooth() Linear smoothing of the covariance overlap blocks.
detect_sectors() Detection of conformational sub-states.
extract_sectors() Extract mutual information for each conformational sub-state.
allosteric_path() Minimal distance pathfinder between allosteric and active sites.
identify_hubs() Identify allosteric hub residues.
sectors_2dplot() Plot the covariance overlap of time-contiguous covariance overlap.
sectors_3dplot() Plot the covariance overlap of all combinations of time-blocked

covariance overlap.

Table 5.3: Available functions contained within the R package AlloHubMat1.0

formational sub-states from multiple MD trajectories (Fig. 5.8 A). Extraction of correlated

motions from multiple sub-states within a consistent information theoretical framework al-

lowed us to compare the allosteric networks, both between replicas of the same liganded state

and between different liganded states of PKM2. To automate the prediction of allosteric hub

residues from MD trajectories, AlloMatHub was implemented as a stand-alone R package

(Fig. 5.8 B). Here, the core functionalities of AlloHubMat will be described, followed by a

discussion of how the method was used to identify allosteric residues in PKM2.
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Figure 5.8: Schematic of the AlloHubMat and software flowchart. (A) Multiple replicate
molecular dynamics (MD) simulations are calculated using the GROMACS molecular dynamics en-
gine140. All MD simulations are encoded with the M32K25 structural alphabet125, and the strength of
dynamic protein backbone correlations over the MD trajectory is computed using information theory
mutual information statistics. The backbone correlations are explicitly used to identify and extract
configurational sub-states from the MD trajectories. A global allosteric network is then constructed
by integrating over the correlation matrices, and their respective probabilities, from which allosteric
hub (AlloHub) fragments are extracted. AlloHub fragments are overlapping regions of four consecu-
tive amino acid residues. (B) A software flowchart of AlloMatHub showing the functionalities of the
software.
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5.3.1 Explicit identification of sub-states from MD simulations using infor-
mation theory

Correlated motions have demonstrated as important towards protein dynamics and allostery.

To extract correlated motions from MD trajectories, an information theoretical framework was

used based on a coarse-grained representation of the protein backbone conformation with the

M32K25 structural alphabet125, as previously described (Section 1.3.3).

MD trajectories of tPKM2apo, tPKM2FBP , tPKM2FBP+Ser and tPKM2FBP+Phe were sub-

divided into 20 non-overlapping blocks with an equal time length of 20 ns each. For each block,

the normalised mutual information between distal backbone-encoded fragments [In(Ci;Cj)]

was calculated for all pairs of fragments (i, j):

InB(Ci;Cj) =
IB(Ci;Cj)− ǫB(Ci;Cj)

HB(Ci, Cj)
(5.10)

where the columns of the structural fragment alignment are given by Ci and Cj , I(Ci;Cj) is

the mutual information, ǫ(Ci;Cj) is the expected finite size error and H(Ci, Cj) is the joint

entropy (see Section 1.3.3 for a full derivation of the individual terms of the equation). The

normalised mutual information InB(Ci;Cj) has a range between 0 and 1. Two independent,

random distributions would have a normalised mutual information score of 0, whereas two

identical distributions would have a normalised mutual information equal to 1. Therefore,

two fragments with a normalised mutual information approaching 1 indicates that these two

fragments are correlated in their motion throughout the simulation. In contrast, two frag-

ments with a normalised mutual information approaching 0 reveals that these two fragments

are uncorrelated in their motion.

With the goal of identifying conformational sub-states from a time-trajectory of mutual in-

formation matrices, eigenvalue decomposition was used to compute the geometric evolution of

the protein backbone correlations. The elements of the mutual information matrix are pro-
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portional to the square of the displacement, so the square root of the matrix is required to

examine the extent of the matrix overlap:

d(A,B) =

√

tr[(A
1
2 −B

1
2 )2] (5.11)

=

√

tr[A+B − 2A
1
2B

1
2 ] (5.12)

=

√

√

√

√

3N
∑

i=1

(λA
i + λB

i )− 2

3N
∑

i=1

3N
∑

j=1

(λA
i · λB

j )
1
2 (vA

i · vB
j )

2 (5.13)

ΩA;B = 1− d(A,B)√
trA+ trB

(5.14)

where λA and λB denote the eigenvalues and vA and vB the eigenvectors of mutual informa-

tion matrices A and B, N is the number of fragments used to encode the polypeptide chain.

The covariance matrix overlap (Ω) ranges from 0 when matrices A and B are orthogonal, and

1 when they are identical.

The geometric difference between any two mutual information matrices, with identical di-

mensions, could be numerically compared by calculating the covariance overlap between the

mutual information from time-contiguous trajectory blocks:

ΩB;B−1 = 1−
d
[

InB(Ci;Cj)− InB−1(Ci;Cj)
]

√

tr
[

InB(Ci;Cj)
]

+ tr
[

InB−1(Ci;Cj)
]

(5.15)

The covariance matrix overlap between each time-contiguous mutual information matrix (Equ.

5.15) revealed an oscillatory similarity in the nMI over time (Fig. 5.9 A and B). For some

regions of the MD trajectories the nMI matrices were very self-similar, reflected by ΩB;B−1 >

0.2, suggesting that the protein was sampling a local sub-state. Conversely, other regions of

the MD trajectories contained nMI matrices which were very different from the previous time

block (ΩB;B−1 → 0), implying non-ergodic sampling. Sub-states were heuristically defined

as regions which displayed Ωi values in the top quartile (Fig. 5.9 C and D). The mutual

information was averaged for each unique sub-state identified from a given trajectory, for
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further analysis.

Figure 5.9: Conformational sub-states are identified from the geometric progression of the
mutual information matrix. The time-dependent matrix covariance overlap between contiguous
mutual information matrices computed from contiguous trajectory blocks is quantified using Equ. 5.15
for an example replica of (A) tPKM2Apo and (B) tPKM2FBP . The matrix covariance overlap was
computed for all combinations of time-resolved nMI blocks. The resulting matrices were smoothed and
are shown for example replicate MD simulations of (C) tPKM2apo and (D) tPKM2FBP . Sub-states
were identified as regions containing a covariance overlap in the top quartile of the trajectory (shown
as dashed boxes).

182



J.A.S MACPHERSON CHAPTER 5

5.3.2 PKM2 sub-states cluster according to the liganded state of the MD
simulation

A total of 7 substates were identified for all MD simulations of tPKM2apo, 6 for tPKM2FBP , 4

for tPKM2FBP+Ser and 3 for tPKM2FBP+Phe. To investigate whether the correlated motions

for each sub-state could be attributed to the liganded state of the MD simulation, the mutual

information matrices extracted from each unique sub-state were compared with a complete-

linkage hierarchical clustering, using the covariance matrix overlap in Equ. 5.14 as a distance

metric (Fig. 5.10). Clustering of the sub-states revealed four predominant clusters (de-

noted as C1 - C4 ). nMI matrices from tPKM2apo were found to predominate in cluster 1,

tPKM2FBP in cluster 2 and tPKM2FBP+Ser in cluster 3. We found cluster 4 to be populated

by both tPKM2apo and tPKM2FBP+Phe, as well as a number of tPKM2FBP replicas.

The commonality between the sub-state mutual information matrices of the same liganded

state suggested that each of the replicate MD simulations converged to a common sub-state,

which was ligand-dependent. Moreover, this suggested that allosteric ligand-dependent corre-

lated motions were captured by the preceding analysis. Therefore, an ensemble-averaged nMI

matrix was computed for PKM2 in each of the four liganded states, as an integral over all

sub-states (Inss) of the protein (r) weighted by the probability of the sub-state (p):

〈Inens〉 =
∫

Inss p(r) dr (5.16)
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Figure 5.10: PKM2 correlated motions cluster according to the liganded state of the
simulation. A complete-linkage hierarchical clustering of mutual information matrices, computed
from simulated trajectories of tPKM2apo (grey), tPKM2FBP (green), tPKM2FBP+Ser (blue) and
tPKM2FBP+Phe (orange). Four clusters are assigned C1 - C4. For every sub-state, the network of
correlations from each of the four protomers is presented individually.
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5.3.3 A disperse network of hub residues are predicted to propagate FBP-
induced activation of PKM2

The ensemble-averaged matrix of correlated motions identified from the analysis of tPKM2apo

were subtracted from those of tPKM2FBP to isolate the fragment positions predicted to be

involved in the allosteric state transition, which were termed allosteric hub fragments (Allo-

HubFrags). An inspection of the frequency distribution of the mutual information matrices

of tPKM2apo and tPKM2FBP found that the strength of the fragment correlations were log-

normally distributed with a large Gaussian component, and a long tail to the distribution (Fig.

5.11 A and B). Subtracting the mutual information matrices resulted in the z-transformation

of the distribution of correlations, with a mean µIn = 0 and a standard deviation σIn = 0.04

(Fig. 5.11 C).

The variance of each of the 2119740 individual backbone couplings were computed within

the multiple conformational sub-states for tPKM2apo and tPKM2FBP . We found that when

the average difference in the mutual information between the two liganded states (µ∆FBP )

was inspected against the variance of each of the couplings (σ∆FBP ), the resulting plot formed

a v-shape with highly correlated fragments showing a high degree of variance (Fig. 5.11 D).
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Figure 5.11: The sub-state mutual information matrix is log-normally distributed. The
distribution of mutual information couplings for the ensemble-averaged mutual information matrices
of (A) tPKM2apo, (B) tPKM2FBP , and (C) the subtracted mutual information matrices of the
preceding two liganded states. (D) The variance of each coupling was computed over each of the
multiple conformational sub-states, for each fragment coupling.
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Rather than ranking fragment positions by their nMI score, the significance of the change

in nMI was computed for each coupling (Fig. 5.12 A). From a total of 76 fragments identified

as significant, the top AlloHubFrags were selected for further analysis (Hubs1−10). Hub5 and

Hub6 were found to overlap with a two amino acid residue difference between the two hubs.

The AlloHubFrags were found to be spatially diverse across the PKM2 structure, though not

obviously structurally contiguous (Fig. 5.12 B). Hub5 and Hub6 were proximal to the A-A’

interface, Hub9 was proximal to the FBP binding pocket, Hub10 localised to the C-C’ inter-

faces and Hub1 and Hub2 were in the B-domain (Fig. 5.12 B).

The subtracted mutual information matrix was next distance-weighted using the Cα distance

matrix (M) determined from the PKM2 crystal structure:

In(Ci;Cj)
′ = In(Ci;Cj) ·

1

M
(5.17)

Re-weighting the mutual information matrix with the inverse of the distance matrix had the

effect of down-weighting long-distance correlations and up-weighting short-range correlation,

along which non-bonded chemical interactions could occur. From the distance-weight mu-

tual information matrix, minimal distance pathways between FBP binding-pocket fragments

and active-site fragments were computed using the Dijkstra algorithm in order to predict the

allosteric pathways elicited by FBP. This analysis revealed that all AlloHubFrags, with the

exception of Hub5 and Hub6, were connected to the predicted pathways (Fig. 5.12 B), sup-

porting the hypothesis that the AlloHubFrags propagate the allosteric effect of FBP.

Of the 40 residues within the top ten-ranked AlloHubFrags, we sought to rationally guide

the selection of a number of residues for experimental mutagenesis. Each fragment used to

encode the backbone conformation of the MD trajectories of PKM2 is a collection of four

contiguous residues, and as such, the mutual information between two fragments could not be

readily assigned to an individual amino acid residue. Nevertheless, the chain rule for mutual
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information states that the mutual information of a collection of random variables is the sum

of the conditional mutual informations:

I(X1, X2, ..., Xn;Y ) =
n
∑

i=1

I(Xi;Y |Xi−1, Xi−2, ..., X1) (5.18)

Assuming that the variables X1, X2, ..., Xn are random, it would be possible to reconstruct

the per-residue mutual information and thus select top-ranked residues with high mutual

information content for mutagenesis. The validity of this assumption was tested by computing

the distribution of mutual information between neighbouring fragments (Fig. 5.12 C). We

observed a distribution of mutual information between neighbouring fragments, which was

skewed towards higher values, when compared to the same log-normal distribution of the

entire mutual information matrix, suggesting that the majority of neighbouring fragments

were correlated and were non-random. This proved that the underlying assumption of Equ.

5.18 did not hold. Thus, it was not possible to numerically assign a per-residue mutual

information score.
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Figure 5.12: Hub residues are predicted to propagate energy transfer along allosteric path-
ways. (A) A volcano plot showing the difference in mutual information couplings between tPKM2apo

and tPKM2FBP . (B) The spatial distribution of the top ten predicted AlloHubFrags projected onto
a cartoon representation of PKM2. Predicted allosteric pathways between the FBP binding pocket and
the active site are shown as black lines. (C) The distribution of normalised mutual information for
all fragment combinations (black) and for neighbouring fragments (red).

189



J.A.S MACPHERSON CHAPTER 5

5.3.4 Design of allosteric hub mutants (AlloHubMs)

In lieu of an analytic solution to the per-residue mutual information, allosteric hub mutants

(AlloHubMuts) were generated by substituting AlloHubFrag residues with amino acids that

were predicted to be tolerated at the respective position based on their occurance in a mul-

tiple sequence alignment of 5381 pyruvate kinase homologues. Of the residues within the

top-ten AlloHubFrags, there was variability in the degree of sequence conservation. Hub7 and

Hub8 contained several highly conserved hydrophobic residues on parallel β-sheets within the

A-domain of the protein. Of these V324, I325, A327, G355 and D357 were found to be very

highly conserved within the alignment (Fig. 5.13 A). Conversely, residues R489 - F492 within

Hub10; and residues T121 - I124 within Hub1 and L203 - K206 Hub2 in the B-domain, were

highly sequence variable (Fig. 5.13 A) and are exposed in the crystal structure of human

PKM2 (Fig. 5.13 B).

Amount a total of 32 PKM2 AlloHubMuts generated, we chose to experimentally charac-

terise seven variants [I124G, F244V, K305Q, F307P, A327S, C358A, R489L (Fig. 5.13 B)]

because they expressed as soluble protein and had very similar secondary structure profiles to

that of PKM2(WT).
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Figure 5.13: Design of Allosteric Hub Mutants (AlloHubMuts). Allosteric Hub Mutants (Al-
loHubMuts) were designed based on an empirical prediction of which residues would be tolerated at
each AlloHubFrag position. (A) A logo-plot of the AlloHubFrags from a multiple sequence alignment
of 5381 pyruvate kinase homologues. (B) The residue positions of the AlloHubMuts.
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5.4 Conclusion

Ion-mobility coupled to mass spectrometry measurements in Chapter 4 revealed that PKM2

undergoes conformational changes upon FBP binding, though the molecular details of the

conformational changes were elusive. To this end, we performed an extensive characterisation

of the conformational dynamics of PKM2 bound to various allosteric ligands. MD simulations

of monomeric and tetrameric PKM2 found that allosteric activator binding induces the closure

of the B-domain over the catalytic pocket. The ligand-dependent dynamics of the B-domain

is therefore proposed as a determinant of enzyme activation, which traps highly resident water

molecules proximal to the substrate binding pocket.

A computational method AlloHubMat was developed and applied towards identifying allosteric

hub residues, which orchestrate the transmission of allosteric information between ligand bind-

ing pockets and the active site. We found a network of allosteric hub residues, which are

predicted to potentiate the effects of FBP allosteric within PKM2. The AlloHubFrags were

used as a template to design a collection of single-point mutant variants (AlloHubMuts) of

PKM2, to test the hypothesis that these residues are involved in the allosteric mechanism of

the protein.
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Chapter 6

Allosteric mutants reveal distinct

ligand pathways that combinatorially

regulate PKM2.

6.1 Introduction

Chapter 5 described a novel computational method AlloHubMat to predict allosteric hub

residues from an ensemble of conformational sub-states obtained from multiple replicate molec-

ular dynamics (MD) simulations. The method was applied towards analysing MD trajectories

of tPKM2apo and tPKM2FBP , revealing a network of residues that are predicted to propagate

FBP allostery. We hypothesised that changing the side-chain chemistry of a selection of these

AlloHub residues would perturb allosteric coupling between the FBP pocket and the active

site, thus validating the involvement of these residues in the allosteric mechanism of PKM2.

To this end we designed a selection of AlloHub mutants (AlloHubMuts; I124G, F244V, K305Q,

F307P, A327S, C358A, R489L) and sought to comprehensively characterise their biophysical

and enzymatic behaviour using an integrative experimental strategy detailed herein (Fig.

6.1).
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Figure 6.1: An integrated computational and experimental strategy for identifying residues
which transmit allosteric information between a binding pocket and the active site of
a protein. AlloHubMat is used to identify candidate allosteric residues, which guide the rational
design of allosteric hub mutants (AlloHubMuts). The AlloHubMuts are characterised with a series of
experimental methods, in order to interrogate their biophysical and enzymatic response to FBP, Phe
and Ser.
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6.2 Biophysical characterisation of the AlloHubMuts

6.2.1 AlloHubMuts have the same secondary structure content as PKM2(WT)

Small changes to the local chemical composition of proteins can result in significant confor-

mational changes. Even single-point mutants can affect the stability of proteins, resulting in

changes to secondary structural content178. In order to investigate the secondary structure

content of the AlloHubMuts and to determine whether the inserted amino acid changes sig-

nificantly affected the protein fold, far-UV circular dichroism (CD) spectra were acquired for

PKM2(WT) and for each of the AlloHubMuts. A superimposition of the AlloHubMut far-UV

CD spectra with that of PKM2(WT) revealed very little detectable difference in the shape and

intensities of the spectra (Fig. 6.2), suggesting that none of the AlloHubMuts appreciably

changed the secondary structure content of PKM2.
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Figure 6.2: Far-UV circular dichroism spectra of AlloHubMuts suggest no change in sec-
ondary structure content. Far-UV CD spectra of PKM2(WT) and of the seven AlloHubMuts were
acquired between 200 nm and 260 nm. Spectra of the AlloHubMuts (red) are superimposed with that
of PKM2(WT) (blue); (A) I124G, (B) F244V, (C) K305Q, (D) F307P, (E) A327S, (F) C358A,
(G) R489L. A protein concentration of 0.15 mg · mL−1 was used in the acquisition of all spectra.
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6.2.2 AlloHubMuts at either the A-A’ or C-C’ interfaces show distinct
thermodynamics properties

The far-UV CD spectra of the AlloHubMuts were similar to that of PKM2(WT), suggesting

that the mutants did not significantly alter the secondary structure of the protein. Never-

theless, a substantial alteration in secondary structure content would likely be required for

changes to become apparent in the far-UV CD spectrum, given the large size of the PKM2

tetramer (234 kDa). Moreover, local conformational changes could conceivably perturb pro-

tein stability without enacting changes to the secondary structure content.

To this end, thermal unfolding experiments were performed to determine the melting tem-

perature (Tm) of each AlloHubMut. PKM2(K305Q) and PKM2(R489L) were found to be

thermally destabilising, reflected by a significant decrease in the Tm relative to PKM2(WT)

(Fig. 6.3 and Table 6.1). None of the other AlloHubMuts were found to have a signifi-

cant effect on the melting temperature, compared to PKM2(WT) (Fig. 6.3 A-G). The two

destabilising mutants K305Q and R489L are located at subunit interfaces within the PKM2

structure. K305 forms a charged interaction with E384 on the protomer on the opposite

side of the A-A’ interface (Fig. 6.3 H). Replacing the ǫ-ammonium group of lysine with an

amide group of glutamine caps the side-chain charge and likely prevented the formation of

inter-protomeric charged interactions at position 305, possibly reducing oligomer formation

and stability of the protein. R489 is positioned proximal to the C-C’ interface, though does

not form inter-protomeric interactions in the crystal structure of PKM2. Rather, its guani-

dino group forms charged interactions with the 1’-phosphate group of FBP (Fig. 6.3 I), and

therefore contributes to the binding of FBP. Replacing the guanidino group with an isobutyl

group at position 489 likely reducing the binding affinity of FBP.

Ligand binding can increase a protein’s thermal stability because the ligand favours the folded

state in the folded-to-unfolded equilibrium. Nevertheless, we consistently found that the addi-

tion of saturating concentrations of FBP to PKM2(WT) did not change the melting temper-

197



J.A.S MACPHERSON CHAPTER 6

ature of the protein (Fig. 6.4 A). The lack of FBP-induced thermal stabilisation was likely

due to co-purification of PKM2(WT) with endogenous FBP (Section 3.2.1). Similarly, I124G,

F244V, F307P, A327S and C358A showed no significant changes in their thermal stabilities

upon FBP addition (Fig. 6.4 and Table 6.1), suggesting that these variants also retain sub-

stoichiometric amounts of endogenous FBP during protein purification.

The mutation with the largest destabilising effect was PKM2(K305Q), which produced a

19.1 ◦C decrease in the apparent melting temperature and a 174.9 (kJ/mol) decrease in the

change in enthalpy at Tm, compared to the wild-type. In contrast, the PKM2(R489L) at the

C-C’ interface produced a comparatively small decrease in the melting temperature (5.6 ◦C).

Intriguingly, the thermal stability of the R489L mutant was rescued the ∆TWT→R489L
m from

5.6 to 2.4 ◦C - equivalent to wild-type levels (Fig. 6.4 and Table 6.1). In contrast, even when

in the presence of 1 mM FBP, PKM2(K305Q) was markedly less stable than the wild-type

protein (Fig. 6.4 and Table 6.1).

Taken together, experimental analyses of the thermal stability of the AlloHubMuts revealed

that all AlloHubMuts, with the exception of K305Q and R489L, had similar equilibrium un-

folding kinetics as PKM2(WT). Given that the position of R489 is proximal to the FBP

binding pocket and the finding that FBP addition rescued the thermal stability of the mutant

variant, it is likely that PKM2(R489L) reflects the thermal stability of PKM2 devoid of FBP.

Conversely, PKM2(K305Q) is hypothesised to introduce changes to the A-A’ interface charged

interactions, resulting in protein destabilisation, which is not rescued by FBP addition.
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PKM2 variant ∆H (kJ/mol) ∆S (kJ/K · mol) Tm (◦C)

WT 525.8 ± 44.8 8.2 ± 0.7 63.9 ± 0.1
WT + 1 mM FBP 492.4 ± 23.6 7.8 ± 0.4 63.1 ± 0.1

I124G 336.5 ± 23. 1 5.4 ± 0.4 61.3 ± 0.1
I124G + 1 mM FBP 600.0 ± 22.6 9.8 ± 0.4 61.3 ± 0.4

F244V 477.2 ± 16.9 7.6 ± 0.3 62.5 ± 0.1
F244V + 1 mM FBP 525.0 ± 34.5 8.6 ± 0.6 61.3 ± 0.1

K305Q 350.9 ± 13.5 7.8 ± 0.3 44.8 ± 0.1
K305Q + 1 mM FBP 479.5 ± 20.9 8.7 ± 0.4 54.8 ± 0.1

F307P 477.8 ± 18.2 7.7 ± 0.3 62.3 ± 0.1
F307P + 1 mM FBP 695.2 ± 36.2 11.3 ± 0.6 61.7 ± 0.1

A327S 558.2 ± 14.8 9.2 ± 0.2 60.8 ± 0.4
A327S + 1 mM FBP 653.4 ± 40.8 10.9 ± 0.7 59.9 ± 0.1

C358A 493.9 ± 20.1 7.9 ± 0.3 62.7 ± 0.1
C358A + 1 mM FBP 660.4 ± 22.2 11.0 ± 0.4 60.3 ± 0.1

K433E 488.4 ± 9.6 5.1 ± 0.2 56.8 ± 0.1
K433E + 1 mM FBP 678.0 ± 27.6 11.6 ± 0.5 58.1 ± 0.1

R489L 232.9 ± 21.4 4.0 ± 0.4 58.2 ± 0.3
R489L + 1 mM FBP 643.3 ± 45.6 10.5 ± 0.7 61.5 ± 0.1

Table 6.1: Equilibrium thermal unfolding kinetic parameters of the AlloHubMuts. A two-
phase unfolding model (Methods Section 2.3.6) was fit to each of the unfolding curves shown in Fig.
6.3. The change in enthalpy (∆H ) and entropy (∆S) between the folded and semi-unfolded states, as
well as the melting temperature (Tm) is reported.
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Figure 6.3: Thermal unfolding spectra of the AlloHubMuts fitted to a two-phase unfolding
model. (A-G) Far-UV CD intensity at 222 nm of PKM2(WT) (blue) and the AlloHubMuts (red)
were monitored over a range of temperatures between 30 °C and 80 °C, in the absence of any added
ligands. Data points were fitted to a two-phase unfolding curve. (H) A schematic of the local structure
of K305 at the A-A’ interface and (I) R489 at the FBP binding pocket.
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Figure 6.4: The thermal stability of PKM2(K305Q) and PKM2(R489L) is increased upon
FBP addition. Far-UV CD intensity at 222 nm was monitored for (A) PKM2(WT) and (B-H) the
AlloHubMuts in the absence (blue) and in the presence (green) of 1 mM FBP.

201



J.A.S MACPHERSON CHAPTER 6

6.2.3 R489L reduces the binding affinity to FBP

The reduced thermal stability of PKM2(R489L) and the fact that R489 forms a charge-charge

interaction with the 1’-phosphate group of FBP, suggested that this mutant may have a reduced

FBP binding affinity. Binding affinities of the AlloHubMuts to FBP (Table 6.2) were calculated

from fluorescence titration measurements (Fig. 6.5 A-G), as previously described (Section

3.2.1). All of the AlloHubMuts bound to FBP with nano molar affinity, with the exception

of PKM2(R489L), which was estimated to bind to FBP with an apparent affinity of (14.0

± 2.7) mM. Despite the two-order of magnitude decrease in the apparent binding affinity

of PKM2(R489L) for FBP, ligand binding saturated the measured tryptophan fluorescence

changes at mM concentrations (Fig. 6.5 G).

PKM2 KFBP
D

WT (21.4 ± 9.0) nM
I124G (39.5 ± 33.5) nM
F244V (30.7 ± 33.1) nM
K305Q (39.4 ± 34.1) nM
F307P (4.0 ± 12.8) nM
A327S (43.2 ± 48.7) nM
C358A (35.3 ± 23.6) nM
R489L (14.0 ± 2.7) mM

Table 6.2: Steady-state dissociation constants of the AlloHubMuts for FBP. A 1:1 stoi-
chiometry binding curve (3.2.1) was fit to the binding curves in Fig. 6.5. The KFBP

D is reported in
variable units.
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Figure 6.5: The AlloHubMuts have a nano molar affinity for FBP with the exception of
PKM2(R489L). The ratio of the fluorescence emission intensity at 325 nm and 350 nm were recorded
over a range of FBP concentrations. Apparent binding curves were fit assuming a 1:1 stoichiometry
(red).
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6.3 Characterisation of the functional response of AlloHubMuts

to allosteric ligands

The AlloHubMuts were identified by the software AlloHubMat as candidate residues, which

coordinated the allosteric effect of FBP. It was postulated that changing the chemical compo-

sition of these residues would perturb the allosteric coupling between the FBP binding pocket

and the active site. To test this hypothesis we sought to characterise the steady-state enzyme

kinetics of each AlloHubMut and the activity response of each mutant to the addition of FBP.

6.3.1 Several AlloHubMuts attenuate the allosteric coupling between the
FBP pocket and the active site

To assess the functional effect of perturbing the in silico-determined allosteric pathways, we

measured the steady-state kinetics of the AlloHubMuts in the absence and in the presence

of saturating concentrations of FBP. Initial velocity curves were determined over a range

of concentrations of phosphoenolpyruvate and revealed that all of the AlloHubMuts had a

lower apparent maximal velocity, compared to PKM2(WT), in the absence of FBP (Table

6.3). The addition of FBP resulted in a marked increase in the apparent maximal velocity

of PKM2(I124G) and PKM2(R489L) (Table 6.3). PKM2(K305Q) was inactive, both in the

absence and in the presence of FBP, suggesting that this AlloHubMut was catalytically dead

(Table 6.3). In contrast, PKM2(F307P) appeared to be constitutively active, with a low ap-

parent KPEP
M , which was unchanged upon FBP addition (Table 6.3).

As described previously in Chapter 3, FBP was found to exert its functional allosteric effect

on PKM2(WT) by increasing the enzyme-substrate affinity, without changing the maximal

velocity. It was therefore postulated that allosteric activation results from a coupling between

FBP and PEP binding, mediated by the AlloHub residues (Fig. 6.6 A). Consequently, we

sought to quantitatively determine the coupling between the FBP pocket and the active site

for PKM2(WT) and each of the AlloHubMuts, to discern whether, and to which extent, mu-

tations along the predicted FBP pathway perturbed the allosteric coupling.
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Assuming a single-substrate-single-modifier mechanism of PKM2 catalysis (Fig. 6.6 B),

the coupling between the allosteric pocket and the substrate binding site was determined by

calculating the log-fold ratio of the Michaelis-Menten constant of the protein saturated with

FBP (K0
M ), divided by Michaelis-Menten constant in the absence of FBP (KX

M )152:

Q =

(

αKS

KS

)

(6.1)

A logQ > 0 indicates a positive coupling (activation) and logQ < 0 negative coupling (inhibi-

tion). AlloHubMuts I124G, F244V, K305Q, F307P and R489L were all found to show attenu-

ated allosteric coupling between the active site and the FBP pocket compared to PKM2(WT)

(Fig. 6.6 C), indicating that AlloHubMat identified residues that mediate the allosteric effect

of FBP. In contrast, AlloHubMuts A327S and C358A both had a coupling co-efficient (Q),

which was unchanged from that of WT, suggesting either that the amino acid substitutions

were functionally neutral, or that these residues are not required for FBP-induced activation.

6.3.2 AlloHub residues A327 and C358 mediate multi-ligand allosteric cou-
pling

Previous work presented in Chapters 3 and 4, found that the allosteric inhibitor phenylalanine

(Phe) acts to reduce the activating effect of FBP through a functional cross-talk. We sought

to investigate whether AlloHubMuts, which abrogated FBP-induced allostery, also perturbed

the cross-talk between FBP and Phe.

To this end, the coupling co-efficient was measured for the doubly liganded PKM2FBP+Phe

state (QFBP+Phe). AlloHubMuts I124G, F244V and R489L revealed the same QFBP+Phe as

the wild-type variant (Fig. 6.6 D), suggesting either that the allosteric coupling between

FBP, Phe and the active site was unchanged for these mutant substitutions, or that residues

I124, F244 and R489 do not contribute to the FBP-Phe cross-talk.
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In contrast, the simultaneous addition of FBP and Phe failed to produce an allosteric re-

sponse for AlloHubMuts K305Q and F307P (Fig. 6.6 D), further suggesting that these

variants are allosterically inert. Moreover, the addition of Phe to A327S and C358, failed to

attenuate FBP-induced activation of these AlloHubMuts, indicating that residues A327 and

C358 have a role in coupling the allosteric effect of Phe with that of FBP.
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Figure 6.6: The AlloHubMuts perturb either FBP-active site coupling or FBP-Phe cou-
pling. (A) A structural schematic showing the locations of the AlloHubMuts on PKM2 protomer.
(B) A single-substrate-single-modifier scheme was used to quantify the coupling co-efficient (Q) be-
tween FBP and substrate binding and between FBP and Phe and substrate binding. (C) The allosteric
response of PKM2(WT) and AlloHubMuts to FBP, quantified by the allosteric coefficient, which de-
notes the change of the KPEP

M upon addition of saturating concentrations of FBP (see Methods Section
2.3.5). The Q-coefficient for wild type PKM2 (WT) is shown as a dotted line for comparison. Each
of the Q-coefficients of the AlloHubMuts were statistically compared to PKM2(WT) using a Wilcoxon
ranked-sum test (n = 4); a p-value < 0.05 was deemed significant (denoted by an asterisk); n.s.: not
significant. (D) The magnitude of allosteric inhibition by Phe, in the presence of FBP, determined
for PKM2(WT) and AlloHubMuts, quantified by the allosteric co-efficient Q as in (B). Raw initial
velocity rate curves are shown in the absence of added ligands in (E), in the presence of saturating
FBP (F) and in the presence of saturating FBP and 400 µM Phe (G).
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AlloHubM Ligand KPEP
M (mM) kcat (s−1) kcat/KPEP

M (s−1· mM−1)

I124G Apo 1.07 ± 0.13 190.27 ± 7.31 177.82 ± 56.23
FBP 0.29 ± 0.04 307.10 ± 6.11 1058.97 ± 152.75
FBP+Phe 1.44 ± 0.34 221.92 ± 17.26 153.98 ± 37.88

F244V Apo 1.14 ± 0.11 237.44 ± 7.36 210.44 ± 27.15
FBP 0.55 ± 0.07 279.62 ± 9.93 522.42 ± 87.51
FBP+Phe 1.15 ± 0.30 222.51 ± 18.29 195.87 ± 55.46

K305Q Apo 0.01 ± 0.01 8.06 ± 0.57 790.01 ± 605.56
FBP 0.01 ± 0.04 8.40 ± 0.43 1038.01 ± 535.50
FBP+Phe 0.04 ± 0.01 12.21 ± 1.40 408.37 ± 136.10

F307P Apo 0.13 ± 0.01 180.47 ± 3.05 1413.87 ± 133.12
FBP 0.15 ± 0.02 227.20 ± 5.02 1508.53 ± 190.71
FBP+Phe 0.21 ± 0.03 328.71 ± 12.37 1568.32 ± 268.58

A327S Apo 1.37 ± 0.42 31.8 ± 2.43 23.21 ± 5.79
FBP 0.17 ± 0.02 119.01 ± 6.86 700.06 ± 343.00
FBP+Phe 0.15 ± 0.02 100.19 ± 5.32 667.93 ± 266.00

C358A Apo 4.71 ± 0.99 214.73 ± 21.40 45.59 ± 21.62
FBP 0.58 ± 0.18 191.13 ± 16.22 329.53 ± 90.11
FBP+Phe 1.25 ± 0.07 199.01 ± 21.87 159.20 ± 31.24

R489L Apo 0.69 ± 0.19 60.05 ± 4.91 89.38 ± 36.93
FBP 0.36 ± 0.10 112.25 ± 7.60 317.20 ± 125.71
FBP+Phe 1.44 ± 0.40 132.99 ± 15.74 158.19 ± 122.56

Table 6.3: Steady-state enzyme kinetic parameters of the AlloHubMuts. The enzyme activity
of the AlloHubMuts were measured over a range of phosphoenolpyruvate concentrations between 0 mM
and 10 mM in the absence of added ligands, in the presence of saturating concentrations of FBP and
in the presence of FBP and 400 µM (physiological concentrations) Phe. A protein concentration of 5
nM was used for all measurements. Activity measurements were repeated four times; the mean and
standard deviations are shown.
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6.3.3 Native spectra of AlloHubMut uncouples oligomerisation from al-
losteric activation

Native spectra of PKM2(WT), in Chapter 4, showed that FBP-induced allosteric activation is

accompanied by stabilisation of the high-substrate affinity tetrameric state. This observation

led to the hypothesis that tetramerisation and enzyme activation are coupled. It would be

expected, therefore, that a mutant which prevents tetramer formation would reveal a reduced

(or no) allosteric response to FBP, prompting the lack of oligomerisation as a possible expla-

nation as to why some of the AlloHubMuts had a reduced coupling between the FBP pocket

and the active site (Sections 6.3.1 and 6.3.2).

To this end, native spectra of the AlloHubMuts were acquired in the absence of any added lig-

ands (Fig. 6.7 A), and following pre-incubation with FBP at a ratio of 2:1 (ligand-to-protein)

(Fig. 6.7 B). A327S and C358A both formed of monomers, dimers and tetramers, at an ap-

proximate ratio of 1:3:6 (Fig. 6.7 C). The addition of FBP to A327S and C358A resulted in

a complete conversion of lower-order oligomers into tetramers, similar to PKM2(WT) (Fig.

6.7 C). In contrast, F244V and R489L formed monomer-dimer-tetramer equilibria, both at

approximate ratios of 1:3:6, which was unperturbed following the addition of FBP (Fig. 6.7

C). The oligomeric response of A327S and C358A and the lack of response of F244V and

R489L fit with the previous observation that A327S and C358A maintain an intact allosteric

coupling between the FBP pocket and the active site, and that F244V and R489L have a

significantly reduced enzymatic response to FBP (Section 6.3.1).

PKM2(I124G) formed a monomer-dimer-tetramer mixture, in the absence of added ligands,

at an ratio equivalent to that of the wild-type (Fig. 6.7 C). The addition of FBP to I124G

resulted in an apparent tetramerisation, despite the observation that this mutant has a signif-

icantly reduced enzymatic response to FBP binding. Conversely, K305Q exclusively formed

monomers in the absence of FBP, likely due to the removal of a charged interaction between

K305 and E384 at the A-A’ interface (Fig. 6.3 H). Nevertheless, the addition of FBP
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to K305Q resulted in the formation of a significant fraction of tetramers, with a monomer-

dimer-tetramer distribution of approximately 4:1:5 (Fig. 6.7). Taken together, the finding

that I124G and K305Q undergo an apparent tetramerisation upon FBP addition, despite the

negated coupling between the FBP pocket and the active site, provided evidence to suggest

that PKM2 allosteric activation is uncoupled from oligomerisation.
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Figure 6.7: Native spectra of the AlloHubMuts reveal a complex relationship between al-
losteric activation and oligomerisation. Nano-electrospray ionisation mass spectrometry was
used to acquire native spectra of (A) PKM2(WT) and the AlloHubMuts, individually in the absence
of added ligands and (B) in the presence of FBP. PKM2 variants were pre-incubated with FBP at
a ratio of (2:1; protein-to-ligand). (C) The oligomeric state distribution was quantified for each of
the AlloHubMuts and presented as stacked bars showing the relative intensities of monomers (orange),
dimers (white) and tetramers (blue).
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6.4 Conclusion

In summary, evaluation of the allosteric properties of AlloHubMuts demonstrated that a novel

computational method AlloHubMat identified residues involved in FBP-induced allostery. Two

of the AlloHubMuts were found not to response to FBP per se, but rather to attenuate Phe-

induced disruption of allosteric activation by FBP, revealing two residues (A327 and C358)

that mediate a functional cross-talk between allosteric networks elicited from distinct ligand

binding pockets on PKM2.
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Discussion

Cellular life exists under conditions where the concentrations of nutrients, growth factors and

oxygen are in constant flux. The dynamic instability of extracellular conditions requires that

biological catalysts are highly efficient so that essential chemical compounds are generated at

sufficient concentrations from the available extracellular nutrient pool. Moreover, the rate of

chemical synthesis must be tightly controlled to maintain cellular homeostasis in response to

signalling cues. Allostery is an important feature of enzyme regulation, which is potent and

highly specific, and contributes towards maintaining organised flux through cellular pathways.

Despite the ubiquity and demonstrated importance of allosteric regulation, an understanding

of its mechanisms at the molecular level is limited, as is the curration of proteome-wide data

on allosteric proteins.

A detailed description of the regulatory mechanisms of PKM2 is relevant for understand-

ing metabolic reprogramming in disease settings such as cancer, where it has been shown

that inhibition of PKM2 activity can promote cancer cell growth by facilitating the provi-

sion of glucose-derived carbons for anabolic processes such as de novo lipogenesis17, serine

biosynthesis19, nucleotide synthesis17,44, and the production of reducing equivalents such as

glutathione40. The discovery of a class of small molecules that activate PKM2 catalysis47–49,
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and the finding that these small molecule activators alleviate the progression of xenograft

breast tumours17, support the hypothesis that exogenous regulation of PKM2 activity acts on

a metabolic vulnerability of cancer cells25,31,32,34. Given the cancer-associated role of PKM2

regulation, knowledge of the molecular processes by which ligand binding incites changes to

enzyme activity are of therapeutic interest.

In addition to feed-forward activation by fructose 1,6-bisphosphate (FBP), PKM2 is regu-

lated by a number of other endogenous ligands, including the amino acids L-serine (Ser; an

allosteric activator)64 and L-phenylalanine (Phe; an allosteric inhibitor)168. Investigations

into PKM2 regulation, thus far, have focused on the effects of individual ligands per se on

the structure17,20,55,63, function17,19,23 and dynamics62,66,74 of PKM2. It is unclear whether

ligands that concurrently bind to distinct allosteric pockets elicit in functionally independent

effects, or whether the binding of multiple allosteric ligands with opposing functional signals

produces a synergistic response.

Here I offer evidence that PKM2 regulation constitutes a functional cross-talk between the ef-

fects of FBP and amino acids, which act in a combinatorial manner to modulate the allosteric

transition of the tetrameric form of the protein between the inactive and active states. Using a

novel method for predicting allosteric hub residues, AlloHubMat, a network of protein residues

is identified that couple FBP binding with enhanced substrate affinity. Moreover, two residues

(A327 and C358) are identified that facilitate the cross-talk between FBP and Phe.
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7.1 PKM2 is concurrently regulated by multiple allosteric lig-

ands in a range of cellular conditions

An investigation into PKM2 regulation was initiated by determining the binding affinity of

PKM2 to its endogenous regulators. An apparent dissociation constant in the nano-molar

range [KFBP
D = (21.4 ± 9.0) nM] was estimated from measurements of FBP binding to PKM2

(Section 3.2.1). Tight binding between FBP and PKM2 resulted in purified recombinant

PKM2 retaining substoichiometric amounts of E. coli -derived FBP throughout the purifica-

tion, despite extensive dialysis (Section 3.2.1). Amounts of co-purified FBP were quantified

in all purifications of PKM2 and found that as much as 75 % of the protein was pre-bound to

the ligand (Section 3.2.1). Previous studies have reported co-purification of FBP with PKM2,

suggesting a similarly high binding affinity as that reported here22,23,63. Our estimate of the

binding affinity is in approximate agreement with that of Yan et al. (2016)62: KFBP
D = 210

nM; and Gavriilidou et al. (2018)63: KFBP
D = 910 nM. Neither publication, however, provide

estimates of the amounts of FBP in the starting material of purified PKM2 and it is therefore

unlikely that these studies account for the effect of ligand co-purification on the starting free

protein concentration.

The consequence of tight binding between FBP and PKM2 has been overlooked, thus far,

as it raises questions regarding the biological role of FBP as an allosteric regulator of PKM2.

To this end, intracellular concentrations of FBP were measured under fully-fed and glucose-

deprived culture conditions in three human cancer cell lines (Section 3.5.1). Our findings re-

vealed that intracellular FBP concentrations far exceeded the concentration of ligand required

to achieve full saturation of PKM2. Consequently, under steady-state growth conditions, a

significant fraction of PKM2 is predicted to be bound to FBP, even in the background of other

regulatory stimuli such as post-translational-modifications, that influence FBP binding23,82

(Section 3.5.3).
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A protein concentration of 5 µM was used to measure the fluorescence spectrum of PKM2

and thereby monitor FBP binding (Section 3.2.1), which was approximately 240-fold greater

than the calculated FBP binding affinity. Ideally, the concentrations of protein and ligand

used for binding experiments should be in the same range as the measured KD. Owing to the

low quantum yield of tryptophan in intrinsic PKM2 fluorescence measurements, it was neces-

sary to use PKM2 concentrations in the low µM range in order to obtain measurements with

acceptable signal-to-noise ratios. Furthermore, PKM2 is a notoriously ’sticky’ protein with a

tendency to bind to the walls of the tube. While for many of the assays it was possible to

avoid this (use of coated tubes, minimal sample mixing) diluting PKM2 to low concentrations

for fluorescence measurements leads to significant loss of protein that makes such conditions

unsuitable.

With these considerations in mind, the question is: can we derive meaningful KD values

from our binding data? Simulations of ligand-receptor binding, and fitting of these data with

the quadratic expression in Equ. 3.4, found that as the free protein concentration increases, the

% error in calculating the KD also increases and reaches 130 - 175 % at protein concentrations

240-fold in excess of the binding affinity (similar to our experimental conditions in measuring

FBP-PKM2 binding). This observation also reflects the large experiemental error reported

for the KD of FBP for PKM2 (48 %). Nevertheless, in spite of the large error associated

with this measurement, due to the experimental limitations detailed above, we are still able to

determine a range and an upper limit for the KD values we measure. The upper-limit of the

FBP-PKM2 binding affinity, taking into account the theoretical percentage error, corresponds

to 58 nM. Importantly, this upper limit is between 500- and 4000-fold lower that the measured

intracellular concentration of FBP and therefore our assertion that PKM2 is saturated remains

valid. This assertion is further supported by the persistence of FBP binding to purified PKM2

despite extensive dialysis during the process of purification. Furthermore, in addition to FBP

binding to PKM2, we also determined the AC95, which indicates the concentration of FBP

that results in 95 % PKM2 activation, which we show is 529 nM i.e. 610-fold lower than the
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measured intracellular concentration (Section 3.2.3).

The notion that FBP is constitutively bound to PKM2 under a range of extracellular glu-

cose conditions (0 mM - 11 mM) is supported by the finding that addition of exogenous

FBP had little effect on PKM2 activity assayed in cell lysates, cultured both in fully-fed and

glucose-starved conditions (Section 3.5.2). Moreover, exogenous addition of phenylalanine to

HCT116 cell lysates resulted in a dose-dependent decrease in the kcat (Section 3.5.2), rather

than an increase in the KPEP
M observed when purified recombinant PKM2 activity was assay

upon addition of phenylalanine (Section 3.4.1). While seemly contradictory, Phe inhibition of

recombinant purified PKM2 in the presence of saturating concentrations of FBP was found

also to reduce the kcat, revealing an alternate mechanism of inhibition by Phe, and possibly

other inhibitory amino acids, in the presence of constitutively bound FBP (Section 3.4.1), fur-

ther supporting the hypothesis that, under the presently tested cell culture conditions, PKM2

is constitutively bound to FBP. Additionally, our results show that competition between ac-

tivating (Ser) and inhibiting (Phe) amino acids determines the rate of product turnover of

PKM2, while constitutive FBP binding maintains the protein in a high-substrate affinity state

(Section 3.4.1).

Other amino acids L-alanine (Ala), L-tryptophan (Trp) and L-cysteine (Cys) have previous

been shown to inhibit PKM2 activity per se in the same way as Phe20. Therefore, com-

petition between activating and inhibitory amino acids may provide a potent mechanism of

feed-forward activation and feed-back inhibition of FBP-bound PKM2 activity (Fig. 7.1).

Under conditions of high PKM2 activity, glucose-derived phosphoenolpyruvate is rapidly con-

verted to pyruvate, expanding the intracellular pool size of pyruvate. Excess pyruvate can

then be consumed by a number of reactions including reduction by lactate dehydrogenase

to form lactate, or oxidation by pyruvate dehydrogenase to form acetyl-CoA. Alternatively

pyruvate can be used as a substrate by one of the alanine aminotransferase enzymes. Alanine

aminotransferase 1 (GPT)-catalysed transamination between pyruvate and glutamate forms
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α-ketoglutarate and alanine (Fig. 7.1). Accumulation of the alanine pool would feed-back

inhibit FBP-bound PKM2 (PKM2FBP ), likely by the same hyperbolic-mixed mechanism ob-

served for phenylalanine. Sustained allosteric inhibition of PKM2FBP would result in the accu-

mulation of glycolytic intermediates, leading to utilisation of 3-phosphoglycerate for de novo

serine biosynthesis. Subsequent accumulation of serine would feed-forward activate PKM2

(Fig. 7.1), as shown by Chaneton et al. (2012)19. The findings presented herein, which

support the idea that PKM2 is constitutively saturated with the activator FBP, suggest that

serine-induced activation does not act to increase the substrate affinity of PKM2. Rather, high

concentrations of serine, relative to the concentrations of alanine and other inhibitory amino

acids, would act to out-compete the inhibitory amino acids from the amino acid binding pocket

on PKM2, thereby alleviating the negative effect on the kcat. Given that Phe, Ser, Ala, His and

Trp bind to a common allosteric pocket20, it is likely that their relative, rather than absolute,

concentrations determine the activity of FBP-bound PKM2 (Fig. 7.1). Whether intracellular

flux through lower glycolysis is determined by the ratio between activating-to-inhibiting amino

acid ligands is beyond the scope of this thesis, and warrants further investigation.
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Figure 7.1: Proposed model of PKM2 regulation by amino acids. Work presented herein
suggests that FBP is constitutively bound to PKM2, thereby locking the enzyme in a high-substrate
affinity state. PKM2 enzyme activity can subsequently be regulated by activating and inhibitory amino
acids which collectively compete for a single binding site. Therefore, high concentrations of inhibitory
amino acids relative to activating amino acids, would act to reduce the rate of product turnover through
a hyperbolic-mixed allosteric mechanism. Conversely, high concentrations of activating amino acids,
relative to the pool size of inhibitory amino acids, would result in a high kcat by alleviating the effect
of inhibitory amino acids.
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7.2 FBP and Phe regulate PKM2 through a functional cross-

talk

The proposed model of PKM2 regulation outlined in Section 7.1 is supported by the finding

that, while FBP and Phe bind to spatially distinct pockets on PKM2, both ligands influence

the mode of action of the other without reciprocal effects on their binding affinities. The

ability of Phe to perturb FBP-induced activation, suggests a functional cross-talk between

the allosteric mechanisms of FBP and Phe. Previous studies have suggested that PKM2 en-

zyme activity is correlated with oligomerisation17,20,22,59,63,64,70,168. Therefore, to explore

whether the combined effects of concurrent FBP and Phe regulation could be explained by

changes to the oligomeric state of the protein, native mass spectrometry (MS) was used as

a means to study the oligomeric structure and dynamics of PKM2 in the gas phase (Chapter 4).

Native spectra of PKM2 revealed that the protein adopts a mixed population of monomers,

dimers and tetramers (Section 4.2.1). FBP addition was found to promote tetramerisation

(Section 4.2.3), in agreement with a recent native MS study63. An integrative approach using

ion-mobility MS and in vacuo MD simulations found that the dimers in the native spectra

were formed stably about the A-A’ interface (Section 4.2.2), which implies that FBP binding

induces dimer-dimer association about the C-C’ interface. This is supported by a previous

study showing that a G415R mutation prevents tetramerisation about the C-C’ interface and

is thereby insensitive to FBP-induced activation62. In contrast, Phe addition had the effect of

preferentially stabilising the dimeric species of PKM2 (Section 4.3.1). Our results thus support

the concept that FBP-induced activation stabilises the tetrameric species, while Phe-induced

inhibition promotes dimeric PKM2.

The finding herein that Phe binding per se destabilises tetramers is in agreement with previous

studies70,168, and contests the findings of two recent reports suggesting that Phe, and several

other amino acids, promote the formation of an inactive tense T-state tetramer20,22. Critically,
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our observation that concurrent addition of Phe and FBP synergistically promotes the for-

mation of tetramers (Section 4.3.2) raises the possibility that Phe-induced stabilisation of the

inactive tetramer reported by Morgan et al. (2013)22 and Yuan et al. (2018)20 is confounded

by the presence of residually co-purified FBP. Indeed Morgan et al. (2013)22 generated a mu-

tant variant R489A in order to "[abolish] FBP binding and [prevent] contamination by FBP,

which is commonly bound during purification of the protein from Escherichia coli culture."

Nevertheless, it is unclear whether partial FBP occupancy is accounted for in these studies,

as the amounts of co-purified FBP in preparations of recombinant purified PKM2 are not

reported. It is notable, therefore, that Morgan et al. (2013)22 chose to test oligomerisation

upon Phe addition with PKM2(WT) (partially FBP-bound) rather than with PKM2(R489A)

(fully apo). Based on the findings presented herein, one might speculate that the stabilisation

of PKM2 tetramers by Phe observed by Morgan et al. (2013)22 and Yuan et al. (2018)20

could be attributed to significant amounts of residually co-purified FBP from E. coli, which

we found to be as high as 78 % of the concentration of purified PKM2 (Section 3.2.1).

In addition to allosteric effects on PKM2 oligomerisation, several studies have invoked inter-

domain structural changes consequent to ligand binding20,22,55,62,77. To this end, ion mobil-

ity coupled to native mass spectrometry (IM-MS) measurements were used to compute the

rotationally-averaged collision cross section (DTCCSHe) of PKM2 as a measure of the confor-

mational heterogeneity of the protein. FBP binding resulted in a subtle shift in the DTCCSHe

distribution, favouring a more extended form of the protein (Section 4.2.5). This was par-

tially reversed by the simultaneous addition of both FBP and Phe, favouring a more apo-like

DTCCSHe distribution (Section 4.3.4). The apparent ligand-induced changes in PKM2 ion

mobility may indicate a conformational shift between the T-state (tense) and the R-state (re-

laxed) tetramer, as described previously by Morgan et al. (2013)22 and Yuan et al. (2018)20.

Although informative, it is difficult to relate changes in ion mobility with specific structural

events. Therefore, to study the process of ligand-induced structural rearrangement, we turned

to an in silico thermodynamic model of PKM2 (Chapter 5).
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MD simulations of tetrameric PKM2 found that allosteric activators FBP and Ser induced a

closure of the B-domain cap over the active site pocket, whereas simulations of PKM2FBP+Phe

and PKM2Apo tetramers revealed an opening of the B-domain cap (Section 5.2.5). The concept

of PKM2 ligand-dependent B-domain cap dynamics is supported by high B-factors calculated

fro atoms in the B-domain of a crystal structure previously published by Dombrauckas et

al. (2005)55. This hypothesis is supported by molecular dynamics simulations published by

Gehrig et al. (2017)77 and by Naithani et al. (2015)74, both describing an FBP-induced

closure of the B-domain. Nevertheless, high-resolution evidence of the simulated phenomena

remains elusive. Small-angle X-ray scattering measurements of PKM2 tetramers by Yan et al.

(2016)62 observed a small decrease in the radius of gyration upon addition of FBP from 43 Åto

41 Å. The authors attributed no significance to the observed FBP-induced change, stating that

"binding of FBP did not significantly alter the Rg of PKM2(WT)"62. In retrospect, however,

it is tempting to speculate that this small change in the Rg may reflect the B-domain cap

closure in the T- to R-state tetramer transition. This could be addressed experimentally us-

ing methyl-TROSY (transverse relaxation optimised spectroscopy) NMR spectroscopy, which

enables the study of the conformational dynamics of large biomolecular systems179.
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7.3 AlloHubMat reveals residues that mediate the cross-talk

between FBP- and Phe-induced allosteric regulation

To identify residues that mediate allosteric regulation of PKM2, the conformational dynam-

ics of PKM2 tetramers upon FBP addition were analysed using molecular dynamics simu-

lations of PKM2apo and PKM2FBP tetramers. Building on a previous approach by Pandini

et al. (2012)123, the mutual information between sampled conformational states from MD

trajectories encoded in a coarse-grained representation within the framework of the M32K25

structural alphabet125. Proteins have been shown both experimentally117,180,181 and compu-

tationally147,182 to sample distinct conformational sub-states. This sampling of phase space

is relevant for allosteric regulation of enzyme activity87,183–185, leading to the prevailing view

that protein dynamics and allosteric regulation are ensemble phenomena86. Therefore, explic-

itly identifying allosteric signals that are representative of the ensemble of protein sub-states is

critical. To this end, a novel computational framework, named AlloHubMat (Allosteric Hub

prediction using Matrices that capture allosteric coupling) was developed to predict allosteric

hub fragments from the network of dynamic correlated motions, based on explicitly identified

conformational sub-states from multiple MD trajectories and obtain an ensemble-averaged

mutual information network (Section 5.3).

At its core, AlloHubMat uses the M32K25 structural alphabet (SA) as a low-dimensional

representation of the torsional space accessible to proteins125. Each fragment in the alphabet

contains two angles and a torsion angle, and is partitioned into 25 states forming a discrete-

state model of protein structure. Previous SAs have used a similar fragment-based representa-

tion in the form of a set of Cartesian coordinates (MSM2000)186, or a vectorial description of

consecutive Cα atoms (CGT2004)187. The M32K25 SA has the advantage, compared to other

SAs, of being derived from a density-based approach188, so that the most dominant conforma-

tions are highly populated with multiple states125. Therefore, even relatively subtle changes in

the protein backbone are captured by changes between states within the M32K25 model. Allo-
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HubMat overcomes limitations of previous approaches120,123 that do not account for how distal

correlated motions may change in direction and magnitude as the protein samples distinct sub-

states over the course of an MD simulation, and predicts networks of allosteric residues from

MD simulations using a consistent numerical framework to measure time-dependent correlated

motions. The approach used by AlloHubMat facilitates the extraction of consensus allosteric

networks from replicate MD simulations of a protein in a given liganded state, and the com-

parison of the consensus networks between simulations of different liganded states.

Analysis of MD simulations of tetrameric PKM2 with AlloMatHub identified a number of

candidate fragments as allosteric hub fragments (AlloHubFrags; Section 5.3.3). Starting from

a selection of allosteric hub fragments (AlloHubFrags), single-point mutant variants (Fig. 7.2

A) were designed and tested for their enzymatic response to FBP binding. Mutagenesis of

several of the hubs (I124G, F244V, K305Q, F307P and R489L) disrupted FBP-induced ac-

tivation (Section 6.3.1), demonstrating the utility of AlloHubMat for identifying bona fide

mediators of allostery. Of the five mutants that abrogated allosteric activation of PKM2,

three mutants (F244V, F307P and R489L) disrupted the process of oligomerisation (Section

6.3.3), suggesting that these AlloHubs mediate the FBP-induced monomer/dimer to tetramer

transition (Fig. 7.2 B). Conversely, AlloHubMuts I124G and K305Q maintained the ability

to tetramerise upon FBP addition (Section 6.3.3), though their allosteric activation was per-

turbed (Section 6.3.1). Additional mutants of residues A327 and C358 preserved the allosteric

coupling between FBP binding and enzyme activation, though prevented the inhibitory effect

of Phe on PKM2FBP activity (Fig. 7.2 B; Section 6.3.1). The finding that A327S and C358A

maintained wild type-like FBP activation but perturbed Phe inhibition indicated a role for

these two residues in mediating a cross-talk between the allosteric mechanisms of Phe and

FBP, which enables the inhibitory amino acid to inhibit the effect of FBP. C358 has been

previously identified as an oxidation substrate of reactive oxygen species, whereby PKM2 can

be post-translationally modified resulting in enzyme inhibition40. None of the AlloHubMuts

fell within residues 389-429 that differ between PKM2 (allosterically regulated) and the consti-
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tutively active splice-isoform (PKM1), suggesting that residues that confer differences in the

allosteric properties of the two isoforms are dispersed throughout the protein structure. Zhong

et al. (2017)66 recently reported a synergistic mechanism whereby adenosine monophosphate

(AMP) and glucose-6-phosphate (G6P) activate M. tuberculosis pyruvate kinase. AMP binds

to the equivalent of the FBP binding pocket, whereas G6P binds to a different pocket that

is also distinct from the equivalent of the amino acid binding pocket on human PKM2. The

synergistic mechanism between G6P and AMP is somewhat similar to the one described be-

tween FBP and Phe, here. Therefore, it is tempting to speculate that allosteric synergism

upon concurrent binding of different ligands is a common mechanism of enzyme regulation.

Evidence presented in Chaters 5 and 6 suggests that AlloHubMat is able to identify residues

involved in the allosteric mechanism of an enzyme. Nevertheless, a recent large-scale alanine

scanning mutagenesis study of liver pyruvate kinase (PKL) approximated that more than 30

% of the protein residues are involved in its allosteric regulation76. Consequently, it can be

argued that a statistical validation of AlloHubMat should focus on measuring the effect of

mutating non-hub residues as negative controls for assessing the precision of the method. A

comprehensive validation of the method was beyond the scope of this Thesis. Moreover, the

mechanism enzyme regulation is likely case-dependent; for some proteins configurational en-

tropy is the main driver of allostery110,111,173–175, and for others enthapic motions dominate

the allosteric transition113,167,179,189–191. This reasoning would conclude that a case-by-case

validation of methods to predict allosteric regulation is required, which largely defeats the pur-

pose of a predictive computational method. Moreover, high-throughput analyses of protein

allostery using site-directed mutagenesis is compounded by the challenging task of purifying

a very large number of mutant variants and investigating whether the introduced chemical

perturbations abrogate coupling between distal sites, oligomerisation, or both. To this end,

proteome-wide curation of data resulting from the experimental characterisation of enzyme

mutants would address the outstanding challenge of benchmarking AlloHubMut and other

computational methods for predicting allosteric hubs.
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The spatial resolution of AlloHubMat is currently limited to fragments of four successive Cα

atoms. In Chapter 5, single-point mutants were designed from four-residue candidate hubs,

based on an empirical analysis of the per-residue conservation within the identified hubs. In

addition to identifying hub fragments, it would be desirable to explicitly identify the residue(s)

within a hub fragment that contribute most to ochestrating the allosteric mechanism. Given

that neighbouring fragments were found to be correlated, it was not possible to derive the per-

residue mutual information using the chain rule for mutual information (Section 5.3.3). Future

developments could improve the resolution of AlloHubMat by incorporating other sequence-

based192,193 and statistical mechanical194–196 methods, to build a combined predictive score.

Sequence-based methods to measure residue co-evolution of distal residues197 have been highly

successful in predicting allosteric pathways in a number of cases198,199, and would add chem-

ical and evolutionary information that is lost in our coarse-grained approximation of protein

dynamics.
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Figure 7.2: The location and function of the AlloHubMuts. (A) A structural schematic of
PKM2 showing the location the seven AlloHub mutations (AlloHubMuts) on the protomer. The FBP
molecule is shown in green and the locations of the amino acid binding pocket and the active site are
annotated. (B) FBP-induced tetramerisation is propagated by a network of residues involving F244,
F307 and R489. An apo T-state tetramer is populated in the ensemble of available states, to which
FBP can bind, inducing a transition to the R-state tetramer. This T-state to R-state transition is
accompanied by subtle conformational changes, likely involving the closure of the B-domain cap over
the active-site pocket, which is correlated with an increased substrate binding affinity. The R- to T-state
transition is mediated by I124 and K305, and mutations at these positions perturb the formation of a
high substrate-affinity R-state tetramer.
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7.4 Conclusion

Allosteric regulation of PKM2 by FBP has long been viewed as a prototypical example of feed-

forward regulation in biology, though the molecular mechanism of FBP activation remained

largely elusive. PKM2 is additionally regulated by a plethora of endogenous ligands including

several amino acids. It has been unclear, thus far, how PKM2 integrates the signals elicited by

concurrently bound ligands, and the functional consequences of multi-ligand binding. To this

end, the allosteric mechanism of PKM2 was investigated using an integrative computational

and experimental approach.

Estimations of the fraction of intracellular PKM2 bound to its ligands found that that FBP

concentrations far exceed that, which is required for full saturation of PKM2. Under steady-

state growth conditions, a significant fraction of PKM2 is already bound to the activator FBP,

even in the context of other regulatory cues, such as PTMs, that may influence ligand bind-

ing. Constitutive PKM2-FBP binding implicated FBP as an ’allosteric co-factor’, rather than

a reversible activator of PKM2 catalysis, raising questions regarding how PKM2 activity is

regulated in the context of saturating FBP. Subsequent to FBP binding, amino acids Phe and

Ser were found to reversibly modulate the maximal velocity of FBP-bound PKM2, suggesting

an important role of amino acid regulation in lower glycolysis.

Simultaneous Phe and FBP binding was found to synergistically promote PKM2 tetrameri-

sation, despite the two ligands revealing opposing effects on oligomerisation per se, revealing

a functional cross-talk. To unravel the atomic basis by which allosteric coupling between

distal sites is propagated within a protein, a novel computational method AlloHubMat was

developed. Analysis of molecular dynamics simulations using AlloHubMat, and extensive

experimental characterisation of candidate mutant variants, found that the process of FBP-

induced activation is propagated by a network of residues involving I124, F244, K305, F307

and R489. Moreover, mutations of A327 and C358 were found to perturb the effect of Phe on

228



J.A.S MACPHERSON CHAPTER 7

FBP-induced activation, thus revealing molecular details of the FBP-Phe cross-talk.

In summary, results herein reveal that PKM2 integrates multiple allosteric inputs to regu-

late enzyme activity. This phenomenon is analogous to multiple-input-single-output (MISO)

controllers in control system engineering, which integrate multiple transmission signals (al-

losteric ligands) and relay a single signal to a receiver (enzyme activity). Beyond PKM2, it is

likely that many more proteins in the cell possess the ability to bind to multiple regulatory

ligands. Though whether a systems-control mechanism of integrating the inputs from multiple

ligands is a general property of such proteins is unknown. Identifying allosteric hubs using

AlloHubMat to design mutants that perturb the allosteric response of proteins to individual,

or multiple, ligands presents a powerful toolbox for the study of both the mechanistic basis of

allosteric signal integration as well as the functional consequences of combinatorial allosteric

inputs on enzyme regulation.
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