
This electronic thesis or dissertation has been 

downloaded from the King’s Research Portal at 

https://kclpure.kcl.ac.uk/portal/  

Take down policy 

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing 

details, and we will remove access to the work immediately and investigate your claim. 

END USER LICENCE AGREEMENT 

Unless another licence is stated on the immediately following page this work is licensed 

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International 

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/ 

You are free to copy, distribute and transmit the work

Under the following conditions: 

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and 

other rights are in no way affected by the above. 

The copyright of this thesis rests with the author and no quotation from it or information derived from it 

may be published without proper acknowledgement. 

A Functional Magnetic Resonance Imaging Study Evaluating the Effects of Intranasal
Insulin on Food Related Reward and Appetite 

Wingrove, Jed Oliver

Awarding institution:
King's College London

Download date: 12. Jan. 2025



A Functional Magnetic Resonance Imaging Study 
Evaluating the Effects of Intranasal Insulin on 

Food Related Reward and Appetite 
 

 

 

 

 

Jed Wingrove 

 

 

 

 

 

 

Thesis submitted to King’s College London for the degree of 
Doctor of Philosophy in Neuroimaging 

2018 

 

 

 

 



 2 

Acknowledgements 

 

I would like to thank all the participants that took part in this study. Without your 

time and co-operation this research could not have been performed. With this in 

mind I would like to extend my gratitude to the radiography team at the centre for 

neuroimaging sciences as well as all the administration staff who supported and 

facilitated this neuroimaging study. I must acknowledge my funders; the engineering 

and physical sciences research council (EPSRC) and Unilever UK for providing funds 

for my PhD studentship, the neuroimaging experiments and a generous travel 

allowance for international conferences. I would like to thank Dr Louise Brown from 

Unilever for sourcing additional funds for aspects of the study and for your help 

during the study design phase of this PhD. 

 

A massive thanks has to be extended to Steph and Ndaba for helping me with the 

clinical aspects of this study. Your wealth of experience in running pharmacological 

research studies was immeasurably helpful. I have gained a considerable amount of 

knowledge and developed a great number of clinical skills from both of you. In terms 

of practical clinical support, I must also thank Andy Pernet, Dr Meera Lawda and Dr 

Muna Nwokolo from the diabetes research team for your time supervising me and 

also taking blood samples during the early scanning sessions. Furthermore, would 

like to thank Dr Pratik Choudhary and Dr Yee Cheah for their valuable input and 

pragmatic discussions during research meetings.   

 

I am grateful to be surrounded by such a great group of people and am fortunate to 

say that I really enjoyed my time during this PhD at the centre for neuroimaging 

sciences. This is mainly because of my colleagues Amanda, Vasileia, Pete and Will 

who have helped keep the work life enjoyable throughout my time and provided the 

necessary distractions and laughs needed along the way.  

 

I am thankful to Dr Owen O’Daly for being selfless in his efforts to pass on his fMRI 

analysis wisdom and to go above and beyond to help me with my data analysis. I 



 3 

must thank Professor Ben Forbes, Dr Magda Swedrowska, Glynis Ivin and Martin 

Heasman for all their help in sourcing the nasal pumps, insulin formulation and 

distribution of study drugs, if it wasn’t for you this study could not have been 

conducted.  

 

I want to thank my two fantastic supervisors. Firstly, Dr Fernando Zelaya, who 

provided an environment with the perfect amount of support and guidance to bring 

the best elements out of my work. I truly appreciate our daily discussions, the 

friendship that we have developed and how you have always been there for me 

throughout this process. Secondly, Professor Stephanie Amiel for inviting me into the 

diabetes research team and developing me as a researcher in this field. I thoroughly 

enjoyed our discussions, and your excitement and passion for research has really 

motivated me throughout my time. Thank you both. 

 

Finally, I would like to thank my committed partner, Sophie. This PhD has had its 

many challenges along the way and I can’t thank you enough for your continual 

support, sacrifice and love. I am grateful for your patience and how you always made 

sure I was mentally and physically healthy through the tough, and what seemed like 

never ending, data collection and writing stages. I want to thank you for initiating 

insightful and critical discussions which have helped to keep me grounded and 

present throughout this entire experience. Thank you.  

 

 

 

 

 

 

 

 

 

 

 



 4 

Abstract 

 

Central insulin resistance is common to both Type 2 Diabetes and Obesity. Magnetic 

resonance imaging (MRI) studies that investigated the effects of intranasally 

administered insulin, have highlighted the involvement of insulin in homeostatic, 

hedonic and to a lesser extent cognitive regulation of appetite control. 

 

This thesis documents a study that set out to explore the effects of intranasal insulin 

on brain function, using a pharmacological MRI protocol that probed the effects of 

insulin on resting state connectivity, resting state cerebral perfusion and the cerebral 

reward response to a food administration paradigm. This study was conducted in a 

group of healthy, male individuals, with normal and overweight participants.  A drug 

delivery device optimised for efficient nasal delivery of insulin, was employed.  

 

A customised, long-label pseudo continuous arterial spin labelling sequence was 

employed. It was shown that intranasal insulin leads to decreases in cerebral blood 

flow in the left insula, putamen, hippocampus and para-hippocampal gyrus. These 

decreases were limited to the overweight group. Furthermore, both hippocampal 

and putamen blood flow responses in the overweight group were associated with 

their dietary intake of saturated fat and sugar.  

 

Functional, blood oxygen level dependent (BOLD) images acquired during a paradigm 

in which participants received glucose and artificial sugar solutions, highlighted group 

differences in response to intranasal insulin in prefrontal, cognitive regions of brain. 

The normal weight individuals showed greater engagement of the anterior cingulate 

cortex, ventromedial prefrontal cortex and nucleus accumbens compared to 

overweight individuals when presented with conditioned stimuli for sweet tasting 

rewards.  

 

Resting state connectivity data was acquired with a novel, multi-echo pulse 

sequence, developed to minimise artefactual sources of temporal variance.  A seed-
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based connectivity analysis showed that connectivity between the left posterior 

hippocampus and the left fusiform gyrus was increased in response to intranasal 

insulin in normal weight individuals. Furthermore, normal weight group connectivity 

between the left posterior hippocampus and prefrontal regions was increased 

compared to overweight individuals following insulin administration.  

 

The results from this pharmacological MRI study indicate differential insulin 

responsiveness in normal weight and overweight individuals. These differences in 

responsiveness show changes in brain function as a result of increased weight in 

otherwise healthy individuals. This work adds to a large body of knowledge on central 

insulin signalling and has provided further supporting evidence of the involvement of 

insulin in the cognitive modulation of appetite control.  
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Chapter 1 The role of cerebral insulin 
in the modulation of food intake: 
investigations using imaging methods 
 

 

This introductory chapter will outline the basis for the aims of my investigation and 

the experimental procedures conducted and presented within this thesis. 

Throughout this introduction the reader will be given sufficient information with 

which to understand the reasons for conducting this research and also the reasons 

for implementing certain methodologies and protocols. Following this introductory 

chapter, the reader will be guided through the main methods implemented in the 

study, along with their relevant supporting theories. Then the experimental design 

and protocol will be described in detail with reference to the rationale and reasoning 

behind why and how the protocol was created. Following these three chapters 

(introduction, methods and study design) the five main experimental chapters and 

their results will be presented. Each chapter will contain introduction, methods, 

results and discussion sections. The final chapter within this thesis will present a 

summary and discussion of the main findings of each chapter, methodological 

considerations, suggestions for future work and final conclusions. 
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1.1 Type 2 Diabetes Mellitus 

 

Type 2 diabetes mellitus (T2DM) is major global health concern, and has been 

described as one of the “major challenges to human health in the 21st century” 

(Unnikrishnan et al. 2017). T2DM is a metabolic disorder characterised by high blood 

sugar levels and poor blood sugar regulation. Initially considered a ‘western 

population’ disease, T2DM has reached global pandemic status, with widespread 

prevalence in emerging economies in continents such as Asia, Africa and Latin 

America (Unnikrishnan et al. 2017).  In 2017, approximately 425 million people 

worldwide suffered from diabetes and this number is set to increase to 629 million 

by 2045 (Atlas 2017). The prevalence and development of T2DM continues to grow 

due to the combination of a sedentary lifestyle and overconsumption of energy 

dense foods that are high in saturated fat and processed carbohydrates. The risk of 

developing T2DM is associated with a number of other factors; genetic and 

epigenetic (Poulsen et al. 1999), smoking and alcohol consumption (Manson et al. 

2000; Cullmann, Hilding, and Ostenson 2012) and obesity; rendering T2DM a multi-

factorial and highly complex disorder. T2DM causes increased risk of cardiovascular 

disease morbidity and mortality (Martín-Timón et al. 2014), microvascular effects 

that can lead to blindness and neuropathic pain (Fowler 2008), cognitive dysfunction 

and Alzheimer’s Disease (AD) (Sridhar, Lakshmi, and Nagamani 2015) and some 

cancers (liver, pancreatic) (Giovannucci et al. 2010).   

 

1.2 Obesity 

Obesity is characterised and defined by a disproportionate body weight to height 

ratio that is coupled with accumulation of adipose (fat) tissue. Obesity is usually 

assessed by anthropometric measures such as body mass index (BMI) that uses the 

ratio between body mass and the square of the height. A BMI between 25-29.9 kg/m2 

classifies people as overweight and a BMI greater than 30 kg/m2 classifies subjects as 

obese. (Normal weight BMI = 18.5 – 24.9 kg/m2). More than 2 billion people 
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worldwide are classified as overweight or obese based on BMI (Gonzalez-Muniesa et 

al. 2017). Obesity is a complex disorder that is often accompanied by systemic 

inflammation and increased risk for development of T2DM, some cancers (Renehan 

et al. 2010), cardiovascular disease (Nordestgaard et al. 2012), cognitive impairments 

(Jauch-Chara and Oltmanns 2014) and mood impairments and is also a significant 

economic burden (Renehan et al. 2010; Nordestgaard et al. 2012; Wang, McPherson, 

et al. 2011; Jauch-Chara and Oltmanns 2014). In very simplistic terms, the increased 

fat deposition seen in obese individuals results from an imbalance between energy 

intake (in the form of calories); and energy expenditure. This difference is known as 

the ‘energy balance’. In light of this simplistic view, obesity is a result of chronic 

increased food intake coupled with low physical activity.  

 

 

The rise of T2DM and obesity during the ‘modern’ age is primarily a product of the 

changes in lifestyle and diet that have accompanied modern civilisation. Originally 

seen as western diseases, T2DM and obesity continue to affect countries in growing 

economies and even within tribal communities, for example the aboriginal natives of 

Australasia. The environment we live in is changing at an exponential rate, a rate 

much faster than genetics and physiology are capable of. The introduction of 

automation and technology has revolutionised the capabilities of knowledge and 

technical efficiency, but at a cost of a decrease in physical activity and health. The 

diet of the modern age has changed considerably from originally consisting of 

unrefined whole foods to an increase in cheap and highly accessible processed foods 

high in saturated fats and carbohydrates. Common to T2DM and obesity and their 

related diseases and disorders is dysregulation of insulin and the pathways and 

mechanisms that insulin determines.  
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1.3 Insulin 

 

In 1869, Paul Langerhans, a German anatomy student explored the anatomy of the 

pancreas and described “islands of clear cells” that populated this organ. These 

clusters/islands of clear cells are now known as “the Islets of Langerhans” and were 

later found to be responsible for the endocrine properties of the pancreas (Baskin 

2015). The islets boast a highly efficient vascular system and are also innervated by 

autonomic nerve fibres and terminals, that contain neurotransmitters such as acetyl 

choline and noradrenaline. Each islet consists of a mixture of cell types, the main 

types being the insulin secreting beta cells and the glucagon secreting alpha cells 

(Cabrera et al. 2006). 

 

Insulin is a small peptide hormone produced and released into the bloodstream by 

the beta cells of the pancreatic islets of Langerhans. The beta cell functions to both 

store as well as produce and secrete insulin into the peripheral circulatory system, 

where it acts to lower blood glucose concentration (Roder et al. 2016). The beta cells 

are highly specialised to meet the metabolic demands of the body, characterised by 

rapid insulin release into the bloodstream in response to acute physiological changes 

(Song et al. 2013). The alpha cells of the islets of Langerhans secrete glucagon, which, 

in contrast to insulin,  increases blood glucose levels (Goke 2008). Through the 

balanced secretion of both these hormones the pancreas is able to promote and 

maintain blood glucose concentrations between 4-6 mmol/L in healthy humans 

(Roder et al. 2016), despite wide fluctuations in energy availability and expenditure, 

a process known as ‘glucose homeostasis’. 

 

This endocrine system is a key physiological system that requires a finite balance of 

hormone release in order to achieve tightly controlled glucose homeostasis. The 

following sections will focus on insulin’s role in this process, its functions within the 

brain; and novel experimental methods that have been implemented to better 

explore insulin action within the brain.  
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1.3.1 Insulin release 

Insulin is secreted into the circulation from the pancreas in response to circulating 

metabolites (predominantly glucose) but can also be regulated by changes in other 

peripheral hormone species and fatty acids (Fu, Gilbert, and Liu 2013). An elevation 

in blood glucose concentration is known as hyperglycaemia and a low blood glucose 

concentration is known as hypoglycaemia. The beta cells of the pancreas are 

equipped to sense changes in physiological levels of glucose in the blood and to 

respond by releasing appropriate amounts of insulin in order to reach and maintain 

normoglycemia (euglycemia), a state of normal blood glucose concentration.  

 

During an increase in blood glucose, such as after a mixed meal (postprandial state), 

the glucose molecules enter the pancreatic beta cells via glucose transporters (GLUT-

1,2 and 3) along a concentration gradient (Richardson et al. 2007). Inside the beta 

cell, the glucose is phosphorylated by glucokinase, which acts as a glucose sensor and 

controls the subsequent release of insulin. Glucokinase is also found in the liver as 

well as the hypothalamus where it plays a role in hepatic glucose metabolism and 

top down control of glucose intake, respectively (Massa, Gagliardino, and Francini 

2011; Hussain et al. 2015). Insulin release in response to these glucose 

concentrations displays a biphasic profile: a rapid, but transient initial phase shortly 

followed by a more prolonged second phase (Caumo and Luzi 2004). The initial phase 

peaks approximately five minutes after pancreatic glucose sensing characterised by 

a large insulin burst, and the second phase releases the remaining insulin (Roder et 

al. 2016). The instantaneous availability of insulin is permitted through the 

recruitment of insulin storage vesicles close to the plasma membrane which are 

pivotal to the speed at which insulin can be secreted upon stimulation.   
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1.3.2 Peripheral insulin effects 

The insulin receptor belongs to the tyrosine kinase family of receptors and is found 

on the plasma membrane of the target cells within the insulin-responsive tissue 

types. The main sites of insulin action comprise skeletal muscle, adipose tissue and 

the liver (Fulop, Larbi, and Douziech 2003). A major anabolic role of insulin in the 

body is to regulate and maintain normal blood glucose levels by promoting cellular 

blood glucose extraction, glucose oxidation and energy storage in skeletal muscle 

and adipose tissue (Wilcox 2005). The rate of glucose uptake into these cell types is 

dependent on the quantity of glucose transporters, predominantly glucose 

transporter type 4 (GLUT-4), present on the cell surface (Kido, Nakae, and Accili 

2001). Insulin signalling at the cell surface, via the insulin receptor, and subsequent 

downstream interactions stimulates the translocation of GLUT-4 from the cytoplasm 

to the cell surface, thus rendering skeletal and adipose tissue glucose uptake, insulin 

dependent (Chang, Chiang, and Saltiel 2004). In the liver, GLUT2 is the predominant 

glucose transporter, and is not insulin responsive. Insulin acts within the liver where 

it stimulates glycogen synthase and inhibits glycogen phosphorylase, promoting 

glucose storage in the form of glycogen and inhibition of   glycogenolysis, respectively 

(Rui 2014). The combination of these effects is key to glucose homeostasis and 

underpins the anabolic effects of insulin.  

 

Aside from glucose stimulated insulin release, the release of pancreatic insulin is 

sensitive to other external factors. For example, the gut hormone glucagon-like 

peptide-1 (GLP-1), which is secreted in response to fructose, free fatty acid and 

glucose ingestion, potentiates pancreatic insulin release (incretin effect) (Kreymann 

et al. 1987).   
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1.4 Insulin Resistance 

Peripheral insulin resistance is defined as a pathological state in which the ability of 

insulin to produce its homeostatic effects on normal circulating glucose 

concentrations is reduced (Sears et al. 2009). In other words, peripheral insulin 

resistance is an impairment in the ability of insulin to control hepatic glucose output 

or to maintain uptake of glucose into peripheral target tissues. Insulin resistance 

refers to an inefficient peripheral response to insulin, thus requiring a greater 

concentration of circulating insulin to extract glucose from the blood into the liver 

and muscle cells. This inefficiency leads to a prolongation of the second phase 

pancreatic insulin release which, over time, significantly strains the islet beta cells of 

the pancreas. Insulin resistance precedes the development of T2DM and obesity and 

contributes to many of the complications associated with other metabolic diseases, 

such as the metabolic syndrome (Stears et al. 2012). Insulin resistance is a major risk 

factor for cardiovascular disease (Trevisan et al. 1998) and is known to contribute to 

accelerated ageing (Ryan 2000).   

 

The complexities of both T2DM and obesity are associated with similar dysfunctions 

in the brain and therefore the action of insulin in the brain has been explored in depth 

to understand the central impairments common to both these disorders.  

 

1.5 Insulin in the Brain 

For a long time the brain was considered to be an insulin “insensitive” organ (Gray, 

Meijer, and Barrett 2014). The brain relies predominantly on glucose as a fuel source, 

with the adult human brain, which accounts for only 2% of total body weight, 

consuming roughly 20% of the body’s total glucose and oxygen content 

(Mergenthaler et al. 2013). Glucose, as in the majority of cell types, is metabolised in 

neurons and glial cells to produce adenosine tri-phosphate (ATP), the basis of cellular 

maintenance and energy for neuronal function (Erbsloh, Bernsmeier, and Hillesheim 

1958). As the brain is such an energy demanding organ, there are requirements for a 
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constant glucose supply which is facilitated by the selective permeability of glucose 

through the blood brain barrier (BBB) (Mergenthaler et al. 2013). Blood glucose 

passes through plasma membrane GLUT-1 transporters along a concentration 

gradient into the extracellular fluid of the central nervous system (CNS). Once here, 

cell specific uptake is facilitated by GLUT-3 transporters for neuronal and GLUT-1 for 

glial and endothelial cell uptake, respectively (Ghasemi et al. 2013). These 

transporters, unlike GLUT-4, do not require insulin to initiate uptake and therefore 

glucose uptake within the majority of brain tissue cells can be classified as insulin-

independent. However insulin receptors do exist within the brain and may have a 

different role in the brain in comparison to its actions of peripheral tissue target sites 

(Plum, Schubert, and Brüning 2005).   

 

1.5.1 Insulin receptor distribution  

In humans, insulin receptors are found on neurons within the hypothalamus, 

amygdala, hippocampus, cerebellum and maintain the highest density within the 

olfactory bulb (Schulingkamp et al. 2000). Insulin action within the brain is regionally 

dependent and is involved in a number of key central functions, from metabolism, 

memory and mood to appetite control (Heni et al. 2015; Kullmann et al. 2013; 

Kullmann, Heni, Veit, Scheffler, Machann, Häring, et al. 2015; Guthoff et al. 2010; 

Kroemer et al. 2013; Winocur, Moscovitch, and Bontempi 2010).  

1.5.2 Insulin transport to the brain tissue  

Circulating insulin enters the CNS via a saturable receptor-mediated transport 

mechanism across the blood-brain barrier (BBB) into the cerebrospinal fluid and 

interstitial fluid compartment (Blázquez et al. 2014). Measuring this concentration of 

insulin within the central nervous system (CNS) is not straightforward, however, 

estimations in cerebrospinal fluid (CSF) can be used as a surrogate measure (Banks, 

Owen, and Erickson 2012; Wallum et al. 1987). CSF insulin concentrations are 

considerably lower than those measured from the peripheral circulation but show 

proportional rises following a meal or with peripheral insulin infusion (Kleinridders et 
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al. 2014). The rate of insulin transport across the BBB shows regional variation with 

greatest BBB transport rates occurring in the olfactory bulb (Banks, Kastin, and Pan 

1999). It is also known that some regions of the brain have an inherent reduction in 

BBB integrity, such as the hypothalamus, that renders these regions ‘leaky’ thus 

permitting greater BBB transport of insulin across the BBB (Kleinridders et al. 2013). 

In people with obesity and AD, reduced insulin transport into the CSF has been 

demonstrated, resulting in decreased concentrations of centrally available insulin 

and subsequent reductions in central insulin signalling (Kern et al. 2006; Craft et al. 

1998). Impaired brain insulin signalling is known as central insulin resistance, a 

physiological state that has been observed alongside peripheral insulin resistance 

(Heni, Schöpfer, et al. 2014). Transport of insulin into the brain decreases with age 

(Sartorius et al. 2015) and an association between increased dietary fat intake and 

reduced CNS insulin uptake has been observed in dogs maintained on a high fat diet 

for seven weeks (Kaiyala et al. 2000). The exact mechanism behind this disrupted 

transport across the BBB is not fully elucidated although some have suggested that 

this impairment is thought to occur due to fatty deposits lining the cerebral 

vasculature, physically blocking transport across the BBB (Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015). 

 

1.5.3 Brain insulin resistance 

Much like the description of peripheral insulin resistance, central insulin resistance 

can be defined as the failure of brain cells to respond to insulin (Mielke et al. 2005). 

1.5.3.1 In utero 

As central insulin resistance is largely associated with peripheral insulin resistance, 

some of the causes may be considered common to both types. Studies have shown 

the link between in utero development of brain insulin resistance in fetuses of insulin 

resistant mothers (Linder et al. 2014; Linder et al. 2015). These studies showed that 

administration of an oral glucose solution (the oral glucose tolerance test) in insulin-
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resistant mothers led to a slower fetal post-glucose brain response in comparison to 

insulin-sensitive mothers (Linder et al. 2014; Linder et al. 2015). 

1.5.3.2 Diet 

Saturated fat intake is associated with a decrease in brain insulin sensitivity seen from 

rodent experiments focused on the amygdala (Boghossian et al. 2009; Oh et al. 2013). 

These studies showed that intracerebroventricular (ICV) injection of insulin to the 

amygdala leads to a significant reduction in food intake in wild type rats. These 

animals showed reduced amygdala responsivity to ICV insulin injections after just 3 

days of a high fat diet, which was not coupled with significant changes in peripheral 

insulin sensitivity (Boghossian et al. 2009). Interestingly, this  amygdala specific 

central resistance could be reversed upon switching to a low fat diet, and the rate at 

which sensitivity could be regained was dependent on the duration of the initial high 

fat diet (Boghossian et al. 2009).  

 

1.5.4 Increasing insulin concentrations in the brain 

To understand the effects of insulin resistance in the brain, it is necessary to discuss, 

firstly, the actions of insulin in the brain and secondly, to what extent these actions 

are dysregulated in those with central insulin resistance. To this end, explorations of 

insulin action in the brain have relied upon increasing insulin concentrations in the 

brain, which can be achieved by modulating endogenous pancreatic release or by 

increasing exogenous insulin concentrations. The common methods used are 

presented in Table 1.5.1. 
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In clinical settings the hyperinsulinemic-euglycemic clamp technique is considered 

the gold standard method for assessing insulin sensitivity (Kim 2009); and is a useful 

tool for increasing insulin concentrations whilst avoiding the gustatory response that 

occurs following a meal ingestion. This clamp technique requires maintaining fasting 

blood glucose levels (euglycemia) by glucose infusion, and the amount of glucose 

required to achieve this can be used as a determinant of whole body insulin 

sensitivity (for example, high glucose = high insulin sensitivity). This method involves 

intravenous (iv) infusions, making this an invasive technique which, used as a 

Table 1.5.1 Laboratory methods commonly used to increase insulin concentrations in the periphery 
and the brain in humans. Light grey rows refer to those methods used to increase pancreatic insulin 
secretion, whereas the dark grey rows describe methods used to increase exogenous insulin 
concentrations.  
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research tool, is fairly labour intensive. Furthermore, by increasing peripheral and 

subsequently central insulin concentrations (Kleinridders et al. 2014) simultaneously, 

dissociating peripheral and central insulin effects becomes unachievable. A recent 

addition to the repertoire of methods that can be used to increase central insulin 

concentrations is intranasal administration.  
 

1.6 Intranasal Insulin  

Insulin administered via the nasal cavity is a method that permits direct brain 

administration of insulin, circumventing peripheral blood glucose regulation and 

control (Henkin 2010). This route bypasses the BBB, by diffusion across the olfactory 

epithelia into the subarachnoid space (Dhuria, Hanson, and Frey 2010; Spetter and 

Hallschmid 2015), effectively reaching CSF within 30-60 minutes (Born et al. 2002), 

increasing CNS insulin concentration without going through the peripheral 

circulation. This method requires deposition of insulin, either in solution or as a 

powder aerosol, to the superior-posterior region of the nasal cavity using a nasal 

spray device. The anatomical pathways and mechanical methods used for this 

administration technique will be detailed in Chapter 4.    

 

Following Born’s seminal study profiling intranasal insulin (IN-INS) kinetics (2002), 

research in this area has grown substantially in the last decade (Born et al. 2002). The 

discovery that IN-INS shows beneficial effects on memory and cognition in patients 

suffering from AD (Benedict et al. 2004; Freiherr et al. 2013; Ott et al. 2012; Spetter 

and Hallschmid 2015) was a pivotal factor for the growing application of this 

technique to other basic science and neurophysiological questions. IN-INS is an 

attractive tool for assessing insulin effects on brain function using functional 

magnetic resonance imaging (fMRI) (Schilling et al. 2014; Grichisch et al. 2012). A 

body of behavioural and imaging related published literature has shown a 

modulatory role of insulin in appetite control and food intake. The next sections will 

introduce the mechanism involved in the processes of food intake, that extend 

beyond survival and the detrimental effects that occur as a result of dysregulation of 

these systems.   
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1.7 Food Intake and Appetite Control 

Appetite control and subsequent food intake are complex multi-faceted functions 

that combines a range of dynamic, semi-dissociable mechanisms regulated within 

the brain. The interplay of these systems and mechanisms ultimately control eating 

behaviour from when food intake will occur, through what constituents the meal will 

be comprised of and how much will be consumed in the time between the next meal 

and subsequent meals thereafter. Dysregulation of these systems is likely to lead to 

poor appetite control, seen from the increased body weight and increased fat mass 

that is observed in overweight individuals. A long-term positive energy balance (more 

energy consumed than expended) that may result from poor appetite control is 

coupled with an increase in risk of insulin resistance and development of T2DM and 

obesity (Gonzalez-Muniesa et al. 2017). 

 

Traditional research into appetite control has focused on two main systems; the 

homeostatic and the hedonic system. The homeostatic system can be referred to as 

the metabolic system as it is characterised by a co-ordinated communication 

between peripheral hormonal and nutrient sensing molecules; and the brain, largely 

the hypothalamus and midbrain. The homeostatic system acts to maintain energy 

balance through the dynamic variations in signalling molecule concentrations 

throughout the body, and signals that convey metabolic needs to the brain. In 

contrast, the hedonic system operates and drives desire for food consumption based 

on the palatability of food and the natural rewarding aspects and pleasure associated 

with food consumption. The hedonic system, driven by these potent rewarding 

effects, is capable of overriding the metabolic needs of the body, leading to periods 

of positive energy balance. These two systems are somewhat dissociable but not 

entirely independent due to crosstalk between the neurochemical substrates across 

both systems (Berthoud 2006). For example, the palatability of high calorie energy 

rich foods is increased when hungry in comparison to periods of satiation (Goldstone 

et al. 2009).  

 



 44 

Recent work into the modulation of appetite control and food intake argues that 

there is a third mechanism involved in this multi-faceted network of appetite control 

and food intake; the cognitive system (Higgs 2016). This cognitive system concerns 

processes such as inhibitory control of food intake, dietary restraint, as well as 

learning value from food rewards, creating memory of foods and driving attention 

towards aspects of eating. This mechanism or system is a relatively new addition to 

the appetite control theories and mounting evidence continues to grow within this 

field regarding the cognitive aspects associated with food appetite and reward.  

 

This thesis explores the role of central insulin in appetite control. The following 

sections will describe the regulation of the three control systems (homeostatic, 

hedonic, cognitive) with an emphasis on intranasal insulin; and research based on 

the use of functional magnetic resonance imaging (fMRI). Furthermore, the known 

dysfunctions associated with these systems, that occur in obesity and T2DM will also 

be discussed; as well as how modulation of central insulin affects these 

dysregulations.  
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1.7.1 Homeostatic system 

The complexity of the homeostatic system is beyond the scope of this chapter, but it 

is necessary to explain a selection key metabolic peptide and hormone signals 

involved in homeostatic regulation of food intake. For a thorough review Coll et al., 

is recommended (Coll, Farooqi, and O'Rahilly 2007). As described earlier, the 

homeostatic system works to maintain energy balance (where energy intake equals 

energy expenditure) and body weight by integrating circulating signals that promote 

food intake and those that supress food intake. Peripheral signals originate from the 

gastrointestinal (GI) tract, adipose tissue stores and also from the pancreas and are 

key to sensing changes in nutrient availability such as glucose, fatty acids and amino 

acids. These signals are integrated largely within the homeostatic centre of the brain, 

the hypothalamus, via the arcuate nucleus (ARC) and the connections between 

hypothalamic and extra-hypothalamic regions of the brain, for example the nucleus 

tractus solitarius. For the purpose of describing the homeostatic system within the 

context of this thesis only a selection of signals involved will be described. An 

example of the integrated and dynamic activity of these signals is presented in Figure 

1.7.1 during fasting and in the postprandial state in healthy and obese individuals.  

 

 

1.7.1.1 Leptin 

Leptin is released by adipose tissue and is considered an ‘adiposity signal’ or marker. 

In normal weight individuals, leptin levels are relatively stable over time, but they are 

increased in overweight/obese individuals who possess high amounts of adipose 

tissue (Carlson et al. 2009). Leptin supresses food intake by inhibition of the 

neuropeptide Y/Agouti-related (NPY/AgRP) peptide-expressing neurons and 

stimulates the cocaine and amphetamine-related transcript (CART) and the pro-

opiomelanocortin (POMC)-expressing neurons located in the hypothalamus. As 

mentioned, leptin levels are raised during obesity but the sensitivity of leptin as an 

appetite suppressant is significantly reduced in obesity (Myers et al. 2010).Leptin is 

a marker of adiposity and does not show large dynamic variations during low energy 
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(fasting) or high energy (postprandial) states (Korbonits et al. 1997), having little 

impact on food intake.  

 

1.7.1.2 Peptide YY 

Peptide YY (PYY) is an amino acid secreted in response to food ingestion from the 

endocrine L cells of the gut. PYY exists in two forms PYY1-36 and PYY3-36, which are 

both metabolically active. Secretion of PYY rapidly increases during the postprandial 

state but is low during fasting. PYY has anorectic effects, suppressing food intake, by 

inhibition of NPY activity either through penetration across the BBB or through 

activation of the vagus nerve. Overweight and obese individuals show a PYY 

deficiency that is well correlated with reduced satiety (le Roux et al. 2006). 

 

1.7.1.3 Glucagon-like Peptide-1 

Glucagon-like Peptide-1 (GLP-1) is a peptide released by the L cells of the small 

intestine. GLP-1 is released in response to food ingestion. GLP-1 is an incretin peptide 

that stimulates glucose-dependent insulin secretion from the pancreas and acts to 

supress glucagon release. GLP-1 agonists are used in the treatment of T2DM and 

obesity and display glucose lowering effects as well as weight loss effects. There is 

evidence to suggest that GLP-1 exerts its weight loss inducing effects at the level of 

the hypothalamus (Chaudhri et al. 2006). GLP-1 secretion to glucose ingestion is 

attenuated in obese individuals but shows a normal secretory response to oral fat 

ingestion (Ranganath et al. 1996).  
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1.7.1.4 Ghrelin 

In healthy normal weight individuals during periods of negative energy balance, for 

example between meals or following an overnight fast, there is an increase in ghrelin 

secretion from the oxyntic cells of the stomach (Coll, Farooqi, and O'Rahilly 2007). 

Ghrelin is an enteric hormone that stimulates appetite. Peripheral administration of 

ghrelin stimulates food intake through activation of the NPY/AgRP expressing 

neurones of the hypothalamus. Ghrelin levels are highest during fasting and are 

supressed following calorie intake in the postprandial state (Goldstone et al. 2014). 

In obese individuals ghrelin is lower or comparable during fasting conditions vs 

normal weight individuals, however there is a significant delayed response in ghrelin 

level reduction following meal ingestion in obese individuals compared to lean, which 

leads to a reduction in satiety (Erdmann et al. 2005).  
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Figure 1.7.1 Schematic diagram showing a selection of homeostatic signals, described above, before 
and after a meal in normal weight and obese individuals. In normal weight individuals during the 
fasted state, ghrelin levels increase which promotes food intake. Following a mixed meal, ghrelin 
levels will decrease whereas GLP-1, PYY and insulin secretion will be increased. GLP-1 is an incretin 
and promotes pancreatic insulin release. All these signals will eventually reach the hypothalamus to 
supress further energy intake. In obese individuals, both leptin and insulin levels are higher in 
comparison to lean individuals but both brain leptin and insulin sensitivity is decreased. Ghrelin is 
largely unchanged between lean and obese during fasting. Following a mixed meal, there is a high 
increase in peripheral insulin (assuming no T2DM), postprandial ghrelin levels fall much slower in 
obese vs lean. GLP-1 response is attenuated to sugar but not fat. PYY levels remain largely 
unchanged following feeding. Insulin levels are high (during fasting and postprandial) due to 
decreased insulin sensitivity.  
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1.7.1.5 Insulin and its role in the homeostatic system  

The presence of insulin receptors within the hypothalamus initiated the notion that 

insulin is key to the homeostatic control of food intake (Ott et al. 2012; Schulingkamp 

et al. 2000). Brain insulin receptor gene knockout mice (NIRKO mice) show increases 

in body weight and development of diet-sensitive obesity (Bruning et al. 2000), 

demonstrating a role of central insulin signalling in homeostatic weight regulation.  

 

In humans, IN-INS administered four times per day for eight weeks resulted in 

significant weight loss (1.3kg) and a reduction in total adipose tissue in men 

(Hallschmid et al. 2004). However, this effect was not observed in women, which in 

contrast caused a small weight increase as a result of excess fluid retention 

(Hallschmid et al. 2004). However, the same treatment regimen in obese individuals 

did not lead to any differences in weight loss (Hallschmid et al. 2008). A suggested 

explanation for the absent treatment effect in the obese cohort is that obesity is 

associated with chronic endogenous brain insulin resistance and this route of 

administration, although effective in increasing CSF insulin, was not capable of 

increasing sensitivity to the weight reducing effects of insulin (Hallschmid et al. 2008).  

 

Several studies have examined the effect of acute administration of IN-INS on 

responses to food intake. For example, three separate studies probing the 

differential gender effects mentioned above, showed that total food intake was 

reduced following IN-INS administration in men (Jauch-Chara et al. 2012; Benedict et 

al. 2008) but not in women (Hallschmid et al. 2012; Benedict et al. 2008). Firstly, 

following 40 international units (IU) IN-INS, men showed a significant reduction in 

food intake (breakfast ad libitum buffet), predominantly carbohydrate and protein 

based foods, in comparison to IN-PLA (Jauch-Chara et al. 2012). Secondly, in a sperate 

study, 160 IU IN-INS induced significant reductions in total food intake (breakfast 

buffet) in men (Benedict et al. 2008). These results suggest that central insulin in men 

has an appetite suppressant, anorexigenic effect. Benedict et al., further showed that 

the female comparator group were not sensitive to the anorexigenic effects of 

insulin, but, interestingly, presented with IN-INS related cognitive and memory 
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enhancing effects which were absent in the male group (Benedict et al. 2008). These 

differential effects have been seen in rodents, and research has shown that high 

brain oestrogen levels  decrease insulin sensitivity, but in contrast increase leptin 

sensitivity (Clegg et al. 2006). The final study from these three studies mentioned 

showed a selective reduction of energy dense cookies, chocolate chip, in women 

following postprandial administration of IN-INS (160 IU) (Hallschmid et al. 2012). This 

postprandial reduction in cookie consumption was only in the cookies that were 

rated most palatable. This decrease did not result in a reduction in total calorie intake 

as intake of the other snacks available were slightly increased (not significant). These 

effects suggest that insulin may also interact with other satiety signals, thus 

restricting additional eating of palatable foods following a meal. The kinetics of 

endogenous insulin release from the pancreas to the brain CSF are slow (on the scale 

of 4 hours) and hence would render insulin an unlikely satiation hormone (Banks, 

Owen, and Erickson 2012; Wallum et al. 1987; Schwartz et al. 1990); however it can 

be seen that manipulation of central insulin concentration, via exogenous intranasal 

administration, could be an indirect method for reducing food intake in men and 

intensifying selective satiety of palatable foods alongside the plethora of metabolic 

signals released upon food ingestion.   

 

fMRI studies implementing blood oxygen level dependent (BOLD) contrast have 

shown decreases in hypothalamic activity in response to glucose infusion and glucose 

ingestion (Opstal et al. 2017; Smeets et al. 2005). Importantly, the hypothalamic 

decrease in BOLD response is more pronounced followed glucose ingestion as 

opposed to glucose infusion, again suggesting a complementary role for insulin 

alongside other homeostatic signal molecules (Smeets et al. 2007). In keeping with 

this, the decrease in hypothalamic BOLD response (vs baseline) seen in response to 

glucose ingestion is augmented following elevation of central insulin concentrations 

via IN-INS (Opstal et al. 2017). Furthermore, an IN-INS triggered reduction in 

fractional amplitude of low frequency fluctuations (fALFF) (a measure of resting 

neuronal activity), was witnessed in the hypothalamus (Kullmann et al. 2018). 

Accumulation of these findings suggest an insulin-associated role in the 

hypothalamus supporting the role of insulin as a signalling molecule within the 
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homeostatic appetite control system. In contrast to the insulin sensitivity effects 

mentioned, Heni et al., showed measures of insulin resistance (using the homeostatic 

model assessment of insulin resistance (HOMA-IR)) to increase thirty minutes after 

IN-INS administration when compared to intranasal placebo (IN-PLA), which returned 

to comparable levels soon after (Heni et al. 2012). Heni et al., demonstrated that this 

increase in insulin resistance positively correlated with changes in hypothalamic 

fALFF measures (Heni et al. 2012). Insulin sensitivity was assessed by HOMA-IR using 

plasma glucose and plasma insulin concentrations. In this study a significant increase 

in plasma insulin and a significant decrease in plasma glucose was seen as a result of 

residual IN-INS absorption into the central circulation. HOMA-IR is typically used for 

measuring basal insulin sensitivity from fasting blood measures. This study 

implements a pharmacological challenge (IN-INS) and therefore cannot be 

considered basal conditions, especially given the significant changes in plasma 

glucose and insulin concentrations.  

 

 

The BOLD responses reported from a selection of the aforementioned studies 

(Kullmann, Heni, et al. 2017; Kullmann et al. 2018; Heni, Wagner, et al. 2014; Heni et 

al. 2012) were acquired using traditional whole brain T2* weighted gradient echo 

Echo Planar Imaging (EPI) methods, which suffer from susceptibility-related signal 

dropout effects (Deichmann et al. 2003; Ojemann et al. 1997). Signal dropout due to 

magnetic field distortions at air-tissue boundaries, such as the orbitofrontal cortex 

and midbrain regions (hypothalamus), negatively influence image quality and 

therefore one must be slightly sceptical of these reported hypothalamic BOLD 

changes. Furthermore, the correlations reported between hypothalamic BOLD 

responsiveness and measures of insulin sensitivity, do not demonstrate a significant 

hypothalamic response when compared to IN-PLA and so these must also be viewed 

with caution.  

 

In parallel with those investigations, studies using Arterial Spin Labelling (ASL), to 

assess changes in regional cerebral blood flow (CBF), have shown supporting 

evidence for insulin related changes in the hypothalamus. Using a high dose of IN-
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INS (160 IU) Kullmann et al., presented an insulin-dependent decrease in 

hypothalamic cerebral blood flow (CBF) (Kullmann et al. 2018). Decreases in IN-INS 

related hypothalamic CBF have shown correlations with pancreatic insulin secretion, 

as measured with an oral glucose tolerance test (oGTT) performed on a separate day, 

illustrating a strong hypothalamus CBF decrease in individuals that secrete less 

pancreatic insulin to restore normoglycemia (Kullmann, Fritsche, et al. 2017), 

suggesting a link between hypothalamic and peripheral insulin sensitivity. Kullmann 

et al., also showed IN-INS associated decreases in hypothalamic CBF, compared to 

pre-administration measures in both lean (insulin sensitive) and overweight/obese 

(insulin resistant) individuals, highlighting that this insulin related response in CBF is 

also seen in those with peripheral insulin resistance. Furthermore, these significant 

CBF decreases from baseline in the hypothalamus following IN-INS (15 minutes after 

administration) correlated moderately (r=0.37, p = 0.015) with whole body MRI 

measurements of visceral adipose tissue (VAT) (Kullmann, Heni, Veit, Scheffler, 

Machann, Häring, et al. 2015). These findings suggest that those individuals with high 

amounts of visceral fat may have impaired hypothalamic insulin signalling, although 

the trend for this is arguably not very strong. Some ASL image acquisition schemes 

that do not use EPI readouts show good image quality in the regions typically affected 

by tissue susceptibility gradients in gradient-recalled EPI readouts. However, many 

of the ASL based studies did use EPI readouts and therefore the signal of 

hypothalamic change in these areas must also be interpreted with caution. In spite 

of this, the imaging evidence from both BOLD and CBF based studies is, at large, 

compelling; and suggests a role for insulin in the homeostatic control of food intake, 

primarily acting in the hypothalamus.  
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1.7.2 Hedonic mechanisms 

Hedonic mechanisms underlying appetite and food consumption have been 

classically investigated through a conceptual framework that utilises two distinct 

reward concepts; liking (palatability of food) and wanting (motivation and drive for 

food) (Berridge 2004, 2009). ‘Wanting’ is predominantly governed by the 

dopaminergic (DA) neurotransmitter system which is comprised of midbrain and 

striatal structures and networks; the ventral tegmental area (VTA), substantia nigra 

(SN), nucleus accumbens (NAcc), caudate and putamen (Volkow, Wang, and Baler 

2011; Berridge 2009)  ‘Liking’, in the classical reward sense, can be defined by the 

hedonic properties of stimuli. With food, for example, the hedonic properties would 

be measured as palatability and appeal of certain food stimuli. This liking of food 

stimuli is considered to be underpinned by the opioid and endocannabinoid system 

(Pecina and Berridge 2005). Both systems show widespread receptor profiles that 

cover the striatum, midbrain, insula, thalamus, amygdala and regions of the 

prefrontal cortex too (Karlsson et al. 2015).  

 

The hedonic control of appetite and food intake is posited to reflect the integration 

of these sub-systems and signals within cortical (insula, orbitofrontal cortex) and 

limbic regions (NAcc, caudate, putamen, amygdala, hippocampus). The dysregulation 

of these systems, scholars argue, underpins the disrupted appetite control and 

overeating of energy dense (highly palatable) foods that is associated with obesity 

(Volkow, Wang, Fowler, et al. 2008; Volkow, Wang, and Baler 2011; Drewnowski 

2007). In general, the hedonistic value of food is underpinned by factors such as taste 

and flavour with high fat containing foods correlating with high palatability, which to 

some extent is supported by the overconsumption of fatty foods in obese 

populations (Dagher 2012; Drewnowski 2007). Consumption of palatable foods 

activates the mesolimbic system, a neural circuitry that mediates reward and 

motivation via dopaminergic (DA) neurons and neurotransmitters (Volkow, Wang, 

and Baler 2011). These systems are active when consuming palatable foods as well 

as during anticipation of sensory stimuli (Burger and Stice 2011a; Stice et al. 2008). 
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1.7.2.1 Insulin and the hedonic system 

An intuitive example or argument for the involvement of insulin in hedonic 

processing of food is that during prolonged periods of negative energy balance (food 

deprivation) the responsiveness to food stimuli is increased. From our understanding 

of insulin’s dynamic role in the body, during these times circulating insulin levels 

would be very low (Figlewicz and Benoit 2009) and these low levels could be 

associated with the drive and desire to seek food rewards. Likewise, increases in 

circulating insulin levels (such as that after a mixed meal) could attenuate the reward 

driven desires and motivations, a concept known as motivational salience. In healthy 

individuals, fasting increases motivational salience, whereas during food intake 

motivational salience decreases. In obese individuals, however, this motivational 

salience pattern is dysregulated, described throughout the sections below.   

 

In humans, the hedonic value of food (liking) can be assessed behaviourally through 

questionnaires and ratings of palatability. ‘Wanting’ for food can be assessed by how 

much food is consumed and the amount of effort willing to exert to acquire certain 

food stimuli. Hallschmid et al., performed a study to investigate the effects of IN-INS 

on postprandial snack consumption in women (Hallschmid et al. 2012), which has 

been mentioned previously. In this study they evaluated snack intake (a choice of 

three types of cookies) two and a half hours after a substantial lunch (four mini 

pizzas). Shortly after lunch termination, participants were administered either IN-INS 

(160 IU) or IN-PLA. IN-INS did not show a reduction in total snack intake, however, 

IN-INS did evoke a significant reduction in palatability ratings for the most favoured 

cookie type (chocolate chip - measured under IN-PLA conditions) which was coupled 

with a significant reduction in chocolate chip cookie intake (Hallschmid et al. 2012). 

This result suggests that insulin does not inhibit postprandial intake as there was no 

difference between net snack consumption; but that insulin specifically reduced 

consumption of highly palatable snacks. Results like this might make the dissociation 

of ‘wanting’ and ‘liking’ effects more difficult. In theory, both ‘liking’ and ‘wanting’ of 

the highly palatable chocolate cookies decreased in the presence of central insulin 
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increases; suggested by the decrease in palatability ratings and reduced consumption 

for the chocolate cookies, respectively.  

 

fMRI permits the assessment of behaviour in tandem with changes in neurovascular 

physiology, in response to changes in neuronal activity. ‘Liking’ of food stimuli can be 

assessed through the use of food cue responsiveness when participants are 

presented with a food related stimuli for example pictures of food, smells, tastes etc 

(Dagher 2012). Responsiveness to these cues is often processed by cortical structures 

in the brain; such as the insula, orbitofrontal cortex (OFC), fusiform gyrus and 

occipital regions (LaBar et al. 2001; van der Laan et al. 2011; Verhagen 2007). Food 

cues often engage sensory regions such as the insula, commonly known as the 

gustatory cortex, as well as regions involved in encoding stimulus value, for example 

the OFC (Gottfried, O'Doherty, and Dolan 2003).  

 

Guthoff et al., were the first to show changes in food cue responsivity with increased 

central insulin concentrations, using IN-INS. Administration of IN-INS (160 IU) 

induced reduced cortical activity in comparison to IN-PLA in the fusiform gyrus, 

hippocampus, as well as the superior temporal gyrus (Guthoff et al. 2010). These 

decreases in BOLD contrast were exclusive to food pictures only suggestive of an IN-

INS related decrease in salience or liking of the food picture stimuli presented. 

However, these findings must be carefully considered as the authors report these 

changes at a statistically liberal threshold (p < 0.001, uncorrected for multiple 

comparisons) and therefore these results could be suggestive of a trend, rather than 

a significant finding. Ferreira de Sa et al., did not provide complementary support to 

this finding, publishing a study that showed no central effect of IN-INS on food cue 

processing using an acoustic startle response technique (Ferreira de Sa et al. 2014). 

This study used a lower dose of IN-INS (40 IU) and a different technique and so it is 

difficult to directly compare these two studies. Despite this, with the same low dose 

(40 IU) Schilling et al., presented IN-INS related changes in CBF during the resting 

state (Schilling et al. 2014). They showed regional CBF (rCBF) increases in the insula 

and putamen, two key regions involved in gustatory integration and reward 

processing (Schilling et al. 2014). Although these individuals were not engaged in a 
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functional paradigm, the change in CBF might reflect a change in basal activity which 

could modulate engagement of these areas if recruited by a task. Resting-state fMRI-

BOLD data that probed IN-INS (160 IU) related changes of fALFF in lean women 

observed a decreased in fALFF measures in the hypothalamus as well as the OFC 

(Kullmann et al. 2013). The OFC is a region with well documented involvement in 

palatable food reward valuation (O'Doherty et al. 2002) and could suggest that at 

rest, the sensitivity of this region is reduced following IN-INS, reducing reward 

sensitivity and thus reducing desire for food intake. However, it must be noted that 

both resting state studies (Schilling et al. 2014; Kullmann et al. 2013) were not 

designed to assess insulin related responses to food liking and furthermore there was 

no change in appetite ratings observed in response to IN-INS administration.  

 

‘Wanting’ for food can be assessed by how much food is consumed and the amount 

of effort willing to exert in order to acquire certain food stimuli. Measures of 

motivation for rewarding or salient stimuli and ‘wanting’, are more easily measured 

from pre-clinical neuroscience experiments (Berridge 2009). In humans, however, 

these components of reward are often difficult to dissociate, given the significant 

overlap between liking and wanting, and the commonly self-reported measures used 

to ascertain these metrics (Finlayson, King, and Blundell 2007). Measures of 

motivation or desire for example could be sub-conscious or could be biased by self-

reporting and therefore quantitative tools that use reactive measures, for example 

force grip, are being developed for implementation in neuropsychological research 

environments (Ziauddeen et al. 2014).  

 

In regards to the effects of insulin on reward related behaviour, one must look to pre-

clinical work in order to ascertain the modulatory effects of insulin on the 

dopaminergic system. Converging pre-clinical literature has suggested that insulin 

plays a role in modulating reward related circuitry and thus exerts much of its 

anorexigenic effects through modulation of the mesolimbic pathway. Firstly, in the 

rodent brain, insulin receptors have been found on DAergic neurons of mesolimbic 

regions such as the VTA, SN and also the NAcc, caudate and putamen (Figlewicz et al. 

2003). In rats, direct administration of insulin to the VTA and hypothalamus resulted 
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in a concentration-dependent suppression of DA in the VTA due to an increase in DA 

transporter (DAT) reuptake of DA coupled with decreased sucrose self-

administration (Mebel et al. 2012). This data suggests that insulin reduces DA 

signalling in limbic regions and therefore suppresses the rewarding effects usually 

obtained from eating, reducing the motivation and pursuit of food consumption. This 

data would suggest that ‘wanting’ of food as determined by self-administration is 

modulated via insulin’s effects in the VTA, thus increased central insulin could lead 

to reduced hedonic drive thus terminating feeding. This would support a common 

hypothesis related to obesity, that obese compared to lean individuals, who present 

with lower insulin CSF levels (Kern et al. 2006), experience greater reward from food 

stimuli (hyper-responsivity) and therefore encourages increased food consumption 

(Davis, Strachan, and Berkson 2004; Dawe and Loxton 2004).  

 

1.7.2.2 Hyper-responsivity to food cues 

Some theories propose that greater reward evoked from food intake is a risk factor 

that contributes to the overeating associated with obesity (Stice et al. 2008; Davis, 

Strachan, and Berkson 2004; Rothemund et al. 2007). Evidence to support this theory 

comes from observations of greater activation in limbic (NAcc) and cortical regions 

(insula, OFC) from presentation of food picture stimuli in obese compared to normal 

weight individuals (Rothemund et al. 2007). Developing this further, overweight and 

obese patients with T2DM showed increased BOLD responses in the insula, OFC and 

caudate region upon presentation of food pictures in comparison to age and weight 

matched controls (Chechlacz et al. 2009). As the control group were weight matched 

it could be suggested that these hyper-responsive regions observed following food 

picture stimulation could be as a result of changes in insulin sensitivity both centrally 

and peripherally. An example of this aberrant cue responsivity is highlighted in Figure 

1.7.3 as well as ‘normal’ responsiveness in Figure 1.7.2. 
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In contrast, there is a corollary hypothesis which postulates that obese individuals 

experience a decrease in mesolimbic reward activation from food intake in 

comparison to lean individuals, driving compensatory overeating and consumption 

(Comings and Blum 2000; Volkow, Fowler, and Wang 2002). This theory is known as 

the hypo-responsivity theory. 

 

1.7.2.3 Hypo-responsivity to food intake 

The hypo-responsivity theory, or sometimes referred to as the reward deficiency 

theory, posits that individuals who experience low reward effects or low engagement 

of reward circuitry are at risk of overeating (Stice et al. 2008). This reward deficiency 

thus drives repeated consumption or increased consumption of palatable foods to 

achieve equivalent reward. Brain regions known to encode reward upon 

consumption of food; insula, VTA, NAcc, caudate and putamen show decreases 

overtime that correlate with satiety (Small et al. 2003). Furthermore, DA levels within 

the NAcc, as measured by C-11 raclopride positron emission tomography (PET) are 

increased upon consumption of a pleasant meal, with the magnitude of release 

showing close association to subjective measures of meal pleasantness (Small, Jones-

Gotman, and Dagher 2003). Support for this theory largely comes from observations 

of low dopamine receptor (D2 receptor) availability and lower DA levels in the NAcc 

in obese vs lean individuals, as measured with C-11 raclopride PET (Volkow, Wang, 

Telang, et al. 2008; Wang et al. 2001). An example of the hypo-responsive system can 

be seen in Figure 1.7.3. 
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Figure 1.7.2 Simplified schematic models during anticipation of food intake and consumption in 
healthy individuals. Prior to food consumption the metabolic state can influence the hedonic value of 
foods, driving the salience of these foods, increased ‘motivational salience’. Salience and attention 
increases motivation and drive which is essential for food intake. During consumption, homeostatic 
signals will update the metabolic state of the individual and the reward related response acts to 
reduce the salience or hedonic value of palatable foods, reduced ‘motivational salience’. 

Figure 1.7.3 Simplified schematic models during anticipation of food intake and consumption in  obese 
individuals. Prior to food consumption the metabolic state can influence the hedonic value of foods, 
driving the salience of these foods, increased ‘motivational salience’. Salience and attention is hyper-
responsive to food cues which increases motivation and drive for food intake. During consumption, 
aberrant homeostatic signals fail to update the metabolic state of the individual and the reward 
related response from food intake is largely blunted, ‘hypo-responsive’ consummatory reward. As a 
result the ‘stop’ eating signals are not effective or present which results in overconsumption.  
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1.7.2.4 Insulin and the hypo-responsivity theory 

From the literature, there are lines of evidence that show how central insulin 

signalling agrees with this proposed theory. Firstly, Stouffer et al., have recently 

shown that insulin enhances DA release from striatal (caudate and putamen) 

terminals and in the nucleus NAcc via an indirect mechanism involving insulin 

receptor expressing excitatory cholinergic interneurons (Stouffer et al. 2015). They 

further show that in obese mice this DA responsiveness is reduced compared to wild 

types and enhanced in food restricted mice (Stouffer et al. 2015). Finally, a PET study 

using a C-11 raclopride tracer, has shown that people with insulin resistance have 

decreased DA release in the NAcc after drinking a sugary drink in comparison to 

healthy individuals (Wang et al. 2013). This work was presented at a conference of 

which the methodological details cannot be gathered from the abstract. However, 

the data presented are suggestive of an increased modulation of insulin with regards 

to DA neurotransmission and limbic system reactivity.  

 

A product of both the hypo and hyper responsivity theories is what many believe 

drives overeating seen in obese individuals. The increased (hyper) salience of food 

cues drives motivation to eat initially, however, upon receipt of food or consumption 

the rewarding effects are decreased (hypo). It is this discrepancy between the 

predicted reward value and the reward value encoded during consummation that is 

suggested to be a risk factor for overeating in obese individuals. This can be seen in 

Figure 1.7.3. 

 

Limited human imaging studies have shown insulin related effects in the nucleus 

accumbens and striatal regions or explored these mechanisms. However, one study 

has observed functional BOLD responsiveness to food images (mixed high and low 

calorie) vs non-food images in insulin sensitive (normal weight) and insulin resistant 

(overweight and obese) individuals as measured using HOMA-IR (Tiedemann et al. 

2017). This study showed that under placebo conditions the insulin resistant 

individuals displayed significantly lower BOLD responsiveness to food pictures vs 

non-food in the bilateral NAcc and left VTA compared to insulin sensitive individuals 
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(Tiedemann et al. 2017). This opposes the hyper-responsive food cue reward theory 

of obesity but with insulin resistant individuals. In this study, participants were also 

pharmacologically challenged with IN-INS (160 IU) administration. Following IN-INS 

the insulin sensitive group showed an IN-INS related decrease in NAcc and VTA 

activity, while the effect was reversed in the insulin resistant group who presented 

with increased IN-INS related activity of the NAcc and VTA (Tiedemann et al. 2017). 

Interestingly, this study also showed that preference ratings for the food items 

decreased under IN-INS reflecting a decrease in salience for these images in the 

insulin sensitive group. This effect was not seen in the insulin resistant group, but a 

trend (p = 0.09) towards significance was found, which presented a slight increase in 

food preference values following IN-INS. These data suggest that in healthy insulin 

sensitive individuals, insulin works to reduce reward related processing which is 

associated with reductions in palatability ratings of food. Yet, however, in those with 

differential peripheral sensitivity the effects of insulin show an opposing effect. 

Elucidating and exploring these effects in a more rigorous way, as well as 

investigating the opposing effects of changes in central insulin seen in those 

individuals presenting with peripheral insulin resistance, is imperative for future 

research.  

 

The interplay between metabolic state and hedonic mechanism that drives 

overeating can be observed in healthy individuals and at times healthy individuals 

will ‘binge’ or overeat energy dense food or increase calorie intake significantly, in 

certain circumstances. However, the chronic overeating seen in metabolic disorders 

such as obesity or individuals at risk of developing metabolic problems is a result of 

an inherent dysregulation of these systems. Understanding whether this 

dysregulation precedes adverse metabolic manifestations or is an observation seen 

in obese individuals is largely unknown.  

 

Understanding the role of insulin in this interplay has been illuminated in the last 

decade given the introduction of IN-INS and the increasing availability of functional 

imaging access for researchers in the field. The main relevance of hedonic 

dysregulation to T2DM and obesity is that the powerful systems that contribute to 
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hedonic hunger can override homeostatic signals promoting increased food and 

energy consumption. Dysregulation of the hedonic system coupled with a 

dysregulation in the homeostatic system arguably increases the risk of entering a 

pathological cycle of chronic positive energy balance, adipose storage, irreversible 

effects on health, increased risk for CVD and increased mortality. With homeostatic 

eating there are peptide signals such as ghrelin that act to promote eating, but there 

are also inhibitory satiety signals (PYY, GLP-1 etc). In contrast, the hedonic system 

which primarily describes a series of excitatory responses that drive and promote 

overeating does not describe a subset of inhibitory mechanisms. A large amount of 

research in humans has focused on the inhibitory control mechanisms that govern 

the hedonic system and the associated role these systems have in food intake 

dysregulation. These systems together are known as the ‘cognitive mechanisms’.  

 

1.7.3 Cognitive mechanisms 

The homeostatic and hedonic system cannot completely account for all the processes 

involved in appetite control. On a primal level these systems do largely dictate energy 

regulation, which has been demonstrated by elegant animal model experimentations 

(Berridge 2004; Berridge and Kringelbach 2008). As humans operate at a higher 

cognitive level than primates and rodents, there exists an additional component to 

this integrative model of appetite control, which for a long time has been neglected 

by the classical theories of appetite dysregulation. The homeostatic and hedonic 

system present a restricted view on food intake that does not take into account the 

ability for restraint and inhibition of food intake (Higgs 2016). Examples of cognitive 

modulation of appetite control are seen in everyday situations, for example inhibiting 

the consumption of unhealthy, highly palatable foods, in pursuit of long-term 

healthier outcomes (Hare, Camerer, and Rangel 2009). Interestingly, evidence from 

behavioural tasks show that obese individuals display a preference for high 

immediate rewards at a cost of increased risk of future reward loss in comparison to 

normal weight individuals (Weller et al. 2008; Epstein et al. 2010). There is further 

evidence from imaging studies to suggest that high BMI impairs general cognitive 
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functioning, particularly executive function of prefrontal regions of the brain (Sellaro 

and Colzato 2017; Volkow et al. 2009). Regional brain glucose metabolic deficits 

measured with 2-deoxy-2 [18F] fluoro-d-glucose – PET (FDG-PET) negatively 

correlated with BMI in the ventromedial prefrontal cortex (vmPFC) , dorsolateral PFC 

(dLPFC), the anterior cingulate gyrus (ACC)  as well as the medial OFC region (Volkow 

et al. 2009). Examples of cognitive inhibitory control can be seen in Figure 1.7.4. 

 

 

1.7.3.1 Insulin and cognitive control of food intake 

Imaging studies that have investigated the response to IN-INS administration have 

shown that effects within these prefrontal regions to be limited. Kullmann et al., 

showed that in lean women, IN-INS (160 IU) administration gave rise to an increase 

in resting fALFF within the ACC and superior frontal gyrus that was significantly 

associated with BMI (Kullmann et al. 2013). This study was limited to normal weight 

individuals and although the data suggests central insulin sensitivity increases with 

BMI, these interpretations must be restricted to BMI within the ‘normal’ range only. 

Additional resting state investigations, which also investigated the effects of IN-INS 

(160 IU) administration showed increases in regional fALFF within the lateral PFC 

Figure 1.7.4 Simplified schematic highlighting how the cognitive inhibitory control mechanism is 
involved in food intake. In those with strong food inhibition the top down inhibitory effects are 
sufficient to reduce the motivation and drive to palatable, salient food. In those individuals with poor 
inhibitory control, salient food salience and subsequent motivation is too significant to inhibit and 
thus food is ultimately consumed.  
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(Kullmann et al. 2018); and regional increases in CBF within the middle frontal gyrus 

in lean individuals (Kullmann, Heni, Veit, Scheffler, Machann, Häring, et al. 2015). In 

contrast to  the IN-INS related increase in CBF mentioned above, the same study also 

highlighted a significant decrease in middle frontal gyrus CBF in response to IN-INS 

vs IN-PLA in overweight/obese insulin resistant individuals (Kullmann, Heni, Veit, 

Scheffler, Machann, Haring, et al. 2015).  

 

The data from the limited studies presented provide grounds to suggest that IN-INS 

has a modulatory effect on prefrontal cortical regions. The role of insulin within these 

areas and the role of insulin as a central modulator of inhibitory control over the 

hedonic system remains to be elucidated. Higgs et al., provide an interesting 

presentation of when cognitive control and not just inhibitory control mechanisms 

are involved in appetite regulation. They argue that cognitive processes are involved 

in all aspects of food intake, from before a meal, during a meal and also periods after 

and between the next meal or energy intake periods (Higgs et al. 2017).  

 

1.7.4 Cognitive processes involved before feeding  

It is now thought that the cognitive system is required to make valuations of potential 

meal choices on the bases of taste, energy density and the health risks that might be 

associated with those decisions (Hare, Camerer, and Rangel 2009). These valuations 

are encoded within the vmPFC and based on these valuations decisions are made 

within the dLPFC and mOFC (Hare, Camerer, and Rangel 2009; Vassena et al. 2014). 

This prefrontal network provides humans with the ability to engage in goal directed 

behaviour as opposed to cue-driven behaviour. The ability to inhibit confounding 

cues such as palatable foods or smells and the desire for the long-term or short term 

goals must therefore require attention.  
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1.7.5 Cognitive processes involved during feeding  

During a meal or food consumption it is generally well understood that the 

motivation and salience for specific food decreases over time, known as sensory 

specific satiety (Rolls et al. 1981) and also food in general, known as alliesthesia 

(decrease in motivational salience) (Stoeckel et al. 2007). In reality, these two 

mechanisms increase ‘satiation’ as opposed to satiety. These mechanisms are known 

to be associated with reductions in DA transmission, but also with increases in dLPFC 

activity that correlate with measures of satiety (Thomas et al. 2015). Attention also 

seems to form a significant component during the meal consumption phase. Being 

cognitively distracted during meal consumption such as by watching television leads 

to increased food intake (Braude and Stevenson 2014) and suggests the cognitive 

domains are important for selectively inhibiting the hedonic system to induce satiety.  

 

1.7.6 Cognitive processes involved during feeding intervals 

There is evidence to suggest that memory of a previous meal influences further 

eating behaviour (Higgs 2016). As an extreme example, people who suffer from 

amnesia and are unable to remember meal periods will often eat multiple meals with 

relatively short durations between them (Higgs et al. 2008). Within this work Higgs 

et al., also showed that sensory specific satiety was intact in amnesic patients thus 

providing evidence for intact dopaminergic transmission and potentially fully 

functioning hedonic systems (Higgs et al. 2008). In rats, inactivation of dorsal 

hippocampal neurons following a sucrose meal decreases the time interval between 

two meals, suggesting that this cognitive-memory association during postprandial 

and post-absorptive state are modulated by hippocampal-dependent processing 

(Parent 2016).  

 

Taken together, these findings suggest that cognitive processes are a contributor to 

net food intake and that it is the integration of all three systems (homeostatic, 

hedonic and cognitive) that governs and controls food intake. Previous literature has 
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outlined insulin’s involvement in homeostatic and hedonic pathways and to some 

extent the cognitive pathway too. The cognitive benefits of IN-INS on working 

memory, declarative memory in healthy individuals (Benedict et al. 2004; Benedict 

et al. 2008) and also in patients with mild cognitive impairment (MCI) and Alzheimer’s 

Disease (AD) (Freiherr et al. 2013; Craft et al. 2012) suggest that insulin may have an 

important role in the cognitive pathways involved in food intake and appetite 

control. 

 

1.8 Aims of Thesis 

Given the evidence for insulin’s involvement in the three systems engaged in appetite 

control, this thesis aims to explore these components further through a 

pharmacological neuroimaging framework. This investigation employs intranasal 

administration as a method to increase central insulin concentrations, hoping to give 

rise to a limited effect on peripheral hormone and peptide concentrations. This 

investigation has implemented a functional magnetic resonance imaging protocol to 

observe effects of intranasally administered insulin on the brain during rest as well 

as when engaged in a functional task probing the reward system. The studies set out 

to look at the effects of IN-INS in a group of healthy male individuals across a wide 

BMI range that included normal weight and overweight individuals. The study design 

and rationale behind the study are detailed in section 3.1. 

 

The three aims of this thesis and exploratory investigation are: 

 

1) To interrogate changes in Cerebral Blood Flow in response to IN-INS  

2) To interrogate IN-INS related changes in functional connectivity between 

limbic and cortical regions and the rest of the brain 

3) To interrogate the effects of IN-INS during engagement in a task that exposes 

the participant to primary food reward stimuli 
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Chapter 2 General Methods: 
Intranasal Insulin Imaging Study 
Protocol 
 

The study that is being presented in this thesis is a pharmacological investigation of 

the effects of intranasally administered insulin on human brain function. In this study, 

I have implemented a range of functional Magnetic Resonance Imaging (MRI) 

techniques to explore the effects of intranasal insulin in comparison to intranasal 

placebo. This chapter will describe these imaging methods. The fundamental 

processes involved in functional image acquisition will be explained in a generalised 

format. The detailed parameters (and data analysis) of each methodology will be 

described in the individual chapters. 
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2.1 Nuclear Magnetic Resonance 

The phenomenon of nuclear magnetic resonance (NMR) arises because of the 

quantum mechanical properties of nuclei and its constituent particles.  Below I 

present a description of NMR based mainly on a classical rather than quantum 

mechanical formalism. 

 

NMR refers to the interaction between magnetic moment and angular momentum, 

which occurs in atomic nuclei that possess an odd number of protons, for example 

hydrogen (1H), carbon (13C) and Fluorine (19F). The effect occurs in the presence of an 

external magnetic field (Purcell, Torrey, and Pound 1946). The odd number of 

protons inherent within these nuclei produces a small magnetic character and their 

finite angular momentum around their own axis, is known as nuclear spin. This 

‘rotation’ or spin produces a small magnetic field known as a magnetic dipole 

moment (MDM) (Figure 2.1.1). Although in principle, Nuclear Magnetic Resonance 

(NMR) signals can be obtained from any nucleus with a finite magnetic dipole 

moment;  Magnetic Resonance Imaging (MRI) has predominantly exploited this 

physical property from hydrogen atoms, because their nuclei provide the strongest  

NMR signals and are ubiquitously abundant within the human body (Bloembergen, 

Purcell, and Pound 1948). Hydrogen nuclei are found in water, lipids (-CH2-) and in 

most biological tissue. 

 
Figure 2.1.1 A Magnetic Dipole Moment precessing 
about an external magnetic field B0.  
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When magnetic moments are placed in a strong external magnetic field, B0, such as 

that produced by an MRI scanner, some of these magnetic moments will align with 

the magnetic field direction (B0) and some will align in the opposing direction. For 

conventional MRI scanners and for this description, the main magnetic field direction 

refers to the z-axis and the orthogonal direction is the x-y plane. Exposed to this 

external magnetic field B0, there will be a NET difference between spins that line up 

parallel and anti-parallel with the external field, giving rise to a NET bulk 

magnetisation vector (Mz) along the longitudinal (z) axis.  Because of the angular 

momentum of this magnetisation vector, a finite torque between this vector and the 

external field causes these spins to undergo a motion known as precession, whereby 

the hydrogen spins rotate at a finite angle around the main magnetic field axis, MZ, 

as if describing a ‘cone’.  

 

The precession frequency of the spins is known as the Larmor frequency, ω (Bloch 

1946). The value of the Larmor frequency is governed by the product of the strength 

of the magnetic field (B0, Tesla (T)) and the gyromagnetic ratio of the spin species (g, 

MHz/T), which for hydrogen protons is 42.6 MHz/T (see below). 

 

𝜔 = 	𝛾𝐵0	
 

Detection of NMR signals is almost always achieved by establishing a resonance 

condition. In ‘pulsed NMR’ this is achieved by ‘tipping’ the net magnetisation vector 

from the longitudinal axis to the transverse plane, by delivering a radiofrequency 

pulse (RF) at the same frequency as the precessing spins (i.e. the Larmor frequency), 

via a RF transmission coil. The pulse of radio-frequency is delivered to the spins, for 

a time long enough to cause a 90o  rotation of the net magnetisation vector onto the 

axis of detection of the coil.  The signal that is then detected by the coil is known as 

the “free induction decay”. 

 

For any arbitrary angle of rotation (i.e. not necessarily 90 degrees), the magnetisation 

can be defined by two separate components: 1) the remaining magnetisation along 



 70 

the longitudinal axis (which experiences ‘longitudinal’ relaxation) and 2) the 

magnetisation along the transverse axis (which experiences ‘transverse’ relaxation). 

 

2.1.1 Longitudinal relaxation  

Immediately following a 90° flip of the net magnetisation vector into the transverse 

plane, the precessing spins will naturally begin to rotate back to their equilibrium 

state. The process by which this relaxation process takes place can be approximated 

by a simple exponential function: 

 

𝑀4(6)8	𝑀9 	:1 −	𝑒
6
=$> ? 

 

where Mz(t) is the instantaneous value of the longitudinal magnetisation, M0 is its 

equilibrium value and the time constant of the exponential (T1) is known as the 

‘Longitudinal Relaxation time’.  The process of T1 relaxation is also referred to as spin-

lattice relaxation, during which the spins simply ‘return’ the energy absorbed from 

the RF pulse into the surrounding lattice or environment. T1 relaxation is therefore 

driven by the ability of these spins to emit energy to the tissue and the dynamics of 

this process changes with tissue type.  Therefore, images ‘weighted by’ or sensitive 

to differences in T1 provide a powerful mechanism to obtain T1 contrast in our 

images.  As the magnetisation vector returns to the longitudinal axis, this process 

contributes to the loss of signal in the transverse plane (Figure 2.1.2) 
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2.1.2 Transverse relaxation   

Immediately following a 90° flip, the magnetisation vector is now in the transverse 

plane and the spins are in a higher energy state. The magnetisation is coincident with 

the axis of the detection coil and therefore the signal of the free induction decay is 

at a maximum. Over time, the net magnetisation vector will also decay with what is 

known as T2 relaxation. In the transverse plane the individual spin components will 

rotate around the longitudinal axis. During this rotation the spins will begin to 

dephase with respect to each other resulting in an overall decrease in the magnitude 

of the transverse magnetisation vector; and hence the signal. Two processes 

contribute to this decay (independent of T1).  In this instance, the two main processes 

that contribute to this dephasing are: the interactions between spins and also the 

external magnetic field inhomogeneities.  

Figure 2.1.2 Longitudinal and transverse relaxation. A) Shows the longitudinal magnetisation vector 
(red arrow) and transverse magnetisation vector (blue arrow) in the rotating frame. During 
equilibrium the longitudinal vector Mz is aligned with B0 in the z-axis. Upon excitation by a 90° RF 
pulse the bulk magnetisation vector is flipped into the transverse plane, and MXY is maximal. The 
transverse magnetisation vector will decay exponentially as can be seen in figure (C) known as T2* 
relaxation. The longitudinal magnetisation vector will recover, known as T1 relaxation (B).   
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The former dephasing mechanism is often referred to as spin-spin relaxation and is 

it a result of the interactions between individual spins. These local interactions 

reduce spin phase coherence which in turn reduces the net transverse magnetisation 

vector.  For example, the differing density of tissue types affects the rate at which 

the spins dephase. Spins in dense tissues, that closely interact, dephase at a faster 

rate in comparison to those in less dense tissues. For instance, spins within white 

matter tissue will decay at a much faster rate (short T2) in comparison to spins within 

freely diffusing water, which will dephase more slowly (long T2).  

 

The latter dephasing mechanism is in practice very relevant and describes additional 

spin dephasing in the transverse plane due to inhomogeneities in the external 

magnetic field.  It is easy to see how if the field is different, the Larmor frequencies 

of spins will also be also different and therefore phase coherence between spins is 

reduced and eventually lost.  The combination of both spin-spin interactions and the 

field inhomogeneities leads to a decrease of the free induction decay signal with a 

process that can be approximated by a single exponential function with a time 

constant known as T2* (see Figure 2.1.3) 

 

Figure 2.1.3 Schematic diagram of the rotating frame showing spin dephasing over time in the 
transverse plane following an RF pulse excitation  
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2.1.3 Free induction decay 

In a frame of reference rotating at the Larmor frequency, and following the flip of 

magnetization from MZ to MXY , the spins will appear to be ‘in phase’ and precessing 

at the same frequency in the transverse plane.  However, as the spins begin to 

dephase, the magnetisation vector MXY will begin to decay with a time constant T2*. 

During this time, the magnetization vector rotates around the z-axis inducing an 

oscillating signal in the receiver coil. This oscillating signal is known as free induction 

decay (FID) and oscillates at the Larmor frequency and the amplitude of this FID 

decays exponentially with T2* (𝑒@
%
&'∗) (Hoult and Richards 1975).  The FID will decay 

exponentially with respect to T2* as seen in Figure 2.1.4 

 

 

The duration of the FID signal depends obviously on the physical properties of the 

spins in each tissue type and the spatial homogeneity of the magnetic field.  It is 

possible to see how imaging methods can exploit these differences in T2* to obtain 

additional tissue contrast.  The duration of the FID can, in some instances, be very 

short (100ms or less) and in reality measuring the signal only from a single FID is not 

effective.   

Figure 2.1.4 Free induction decay as a result dephasing in the transverse plane and 
external  magnetic field inhomogeneities.   
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As will be explained below, there are methods that allow us to make further 

measurements by manipulating the evolution of the signal. Generally speaking, this 

is conducted using what is known as an MR pulse sequence. An MR pulse sequence 

describes a set of RF and gradient pulses that are applied to the object being scanned. 

Gradient coils are housed within the magnet and will be explained in later sections. 

 

2.1.4 Spin echo 

One of the earliest pulse sequences developed to eliminate the need to depend on 

measurements using the FID, is the spin echo sequence. A spin echo sequence 

consists of a 90° RF pulse that flips the net magnetization vector into the transverse 

plane. As shown in Figure 2.1.5 the spins will begin to dephase over time due to spin-

spin interactions and external field inhomogeneities (T2* decay). However, after a 

short period of time (τ), a 180° RF pulse is applied, which inverts the direction of these 

dephasing spins. Through this inversion, the spins will travel in the opposing 

direction, in the direction they just came from, and begin to rephase. At time 2τ the 

spins will be refocused, in-phase, for a moment before dephasing again through T2* 

Figure 2.1.5 Diagram showing the spin echo sequence in the rotating frame as well as the MR 
signal produced and sampled. Spin echo uses a 180° refocusing RF after the spins have begun 
to dephase (TE/2). Following this refocusing pulse the spins begin to rephase producing an 
echo, with maximal signal intensity at TE. Not that the echo itself decays via T2* as an echo 
of the FID, whereas the peak of the echo decays with T2.  
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relaxation. The rephasing, in-phase (peak) and dephasing components following the 

inversion pulse are known as an ‘spin echo’; and forms the basis behind many of the 

pulse sequences adopted for MRI (Hahn 1950).  

 

As will be seen later, spin echoes are useful because they extend the time available 

for encoding spin frequencies in order to generate an image.  It can also be seen that 

this approach makes the spin echo signals insensitive to the effect of differences in 

magnetic field homogeneity. 

 

2.1.5 Gradient echo 

A gradient echo sequence is another method of producing an echo-like signal, 

however, instead of using an inversion pulse to rephase and create an echo of the 

FID, one or more gradient pulses are used. Following a 90° RF pulse, the FID will begin 

to decay via T2* as the spins in the transverse plane dephase. At this point a finite 

gradient (dephasing gradient) is applied for duration, τ, which acts to accelerate the 

dephasing of the spins. Following this dephasing gradient, another gradient of 

opposite polarity but equal amplitude and duration (rephasing gradient) is applied 

which acts to refocus the transverse evolution of the spins. At time τ of the rephasing 

gradient, the spins will regain the phase evolution they would have had along the 

transverse plane before the application of the gradient pulses.  

 

For both spin echo and gradient echo the time at which the echo peaks is known as 

the echo time (TE). For spin echo acquisition the inversion pulse is applied at TE/2.  

 

2.1.6 Image formation 

The FID and echo signals induced into the RF coil during image acquisition contain 

information regarding the entire brain or region of the brain excited. These signals 

do not contain any spatial information and therefore there are additional steps 

required to localise the origin of the tissue signals in space. This is achieved through 
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the use of external gradient coils that manipulate the magnetic field across the z, x 

and y planes in order to make the Larmor frequencies dependent on position. These 

gradient coils are housed in the MRI scanner. Each gradient coil is required during 

the MRI experiment to obtain spatial information and the gradients are commonly 

referred to as: 

 

• Slice encoding gradient  

• Phase encoding gradient  

• Frequency encoding gradient  

 

The gradient coils change the magnetic field most commonly in a linear manner and 

it is the combination of gradients applied across the imaging object, which imparts 

information about spatial location. Gradients are used to temporarily create non-

uniformity across the magnetic field, which alters the spin frequency precession 

across the imaging object, thus creating spatial inhomogeneity across the magnetic 

field in a controlled manner.  

 

2.1.6.1 Slice encoding gradients 

The slice encoding gradient is used to selectively excite the spins within a finite region 

of space. Slice encoding gradients are applied during excitatory 90° RF pulses, which 

are designed to have a finite excitation bandwidth. In all instances, the excitation 

pulse used to flip the spins covers a range of radiofrequencies referred to as ‘the 

bandwidth of the pulse’. By applying a gradient across the field the spins within the 

imaging object will precess at a range of frequencies above and below the Larmor 

frequency.  A common ‘RF pulse shape’ employed in imaging sequences is the sinc 

function, whose corresponding envelope in the frequency domain is a rectangular 

profile.  By virtue of the applied gradient, application of an excitatory RF pulse with 

a rectangular bandwidth of frequencies, will only excite those spins that correspond 

to a discrete portion of space in the direction of the slice encoding gradient, as 

opposed to the whole object. The thickness of the slice excited can be decreased by 
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increasing the strength of the slice encoding gradient or decreasing the bandwidth 

of frequencies excited by the RF pulse, or a combination of both.  

 

2.1.6.2 Frequency encoding gradients 

The frequency encoding gradient, sometimes referred to as the readout gradient 

creates a linear gradient across a chosen direction. The frequency encoding gradient 

is applied as the signal is captured (usually using an Analogue-to-Digital Converter 

(ADC) and so during this time, as long as the bandwidth of the receiver is sufficiently 

large, the MR signal that is collected contains information from all the frequencies of 

the object encoded by the ‘frequency encoding’ gradient.  

 

The orthogonal dimension of the selected slice could also be encoded and acquired 

using a second frequency encoding gradient, but it turns out practically more difficult 

to achieve this.  This is because magnetic field gradients add as vectors and the result 

of the simultaneous application of two gradients is in fact a single gradient along the 

direction of the vector sum of its components.  Although this is the way in which MR 

imaging was originally achieved (Lauterbur 1973), a practical modification was later 

introduced which made imaging more practically achievable. 

 

2.1.6.3 Phase encoding gradients 

In 1980, Edelstein and colleagues (Edelstein et al. 1980) introduced the use of what 

was later known as ‘phase encoding gradients’.  A phase encoding gradient is a 

gradient across the orthogonal direction of the frequency encoding direction. The 

phase encoding gradient is usually applied any time before the application of the 

frequency encoding gradient. The phase encoding gradient effectively changes the 

phase at which the spins are precessing across its direction, within the slice that has 

been initially excited. Following the application of the phase encoding gradient, from 

the point of view of the frequency encoding axis, the spins will be resonating with 

different phases depending on their location along the phase encoding direction.  
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The combination of phase and frequency encoding gradients on the object being 

imaged provides the ability to now distinguish between individual signals of different 

phase and frequency by creating a measured signal which reflects the summation of 

multiple measurements and frequencies over time. A signal measurement is made 

along the frequency encoding direction for every value of the phase encoding 

gradient. Each of these sampled signals is collected into a data grid, which 

corresponds to the inverse domain of the object.  This ‘inverse space’ of frequency 

encoding temporal signals is known commonly as k-space, because of its analogy 

with X-ray crystallography. 

 

Conventionally, this data grid is filled ‘line by line’, known as Cartesian sampling 

although other methods for sampling trajectories are also used for MRI applications 

(Hennig 1999). Once the entire k-space grid (known as the data acquisition matrix) 

has been sampled, then the signals are reconstructed into an image by means of a 

discrete inverse Fourier transform which transforms the frequency components of 

the measured signal into real (Cartesian) space. In an MRI experiment each slice will 

be encoded by a single plane of its corresponding k-space.  

 

2.1.7 Tissue contrast 

T1 and T2 relaxation are inherent to individual tissue types and these relaxation 

differences are fundamental for differentiating between tissues. This is the basis of 

tissue contrast. Tissue contrast can be modulated and optimised through definition 

of two crucial imaging parameters; the repetition time (TR) and echo time (TE) 

(Damadian 1971). 

 

TR is roughly defined as the time between two RF pulse excitations corresponding to 

different portions of k-space. A long TR will permit spins to relax fully through T1 

relaxation, allowing the net magnetisation vector to align more closely to MZ, 

whereas a shorter TR will prevent the MZ vector for certain tissues to fully relax.  
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TE on the other hand is defined as the time between the excitation RF pulse and 

when the signal measurement from the transverse signal is taken. Dense tissues with 

shorter T2 values (due to increased spin-spin interactions) would require a shorter 

TE to capture the signal before the MXY vector decays, whereas tissues with a longer 

T2, such as water, can be imaged with a longer echo time (see Figure 2.1.6).  

 

 

 

By defining both TR and TE parameters and with prior knowledge of the associated 

T1 and T2 relaxation rates of the tissues of interest, contrast of different tissue types 

within images can be achieved. For example, in a T1-weighted image acquired with a 

short TR (and a short TE), spins with a short T1 will provide a large signal.  On the 

other hand, in a T2-weighted image acquired with a long TE (and long TR), spin 

species with a long T2 will exhibit larger signal amplitudes.  

 

 

 

 

Figure 2.1.6 An example of how different tissues will decay at 
different exponential rates. By choosing an appropriate TE 
optimal contrast (difference in signal) between tissues can be 
obtained.  
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2.2 Functional Brain Imaging 

Functional brain imaging using MRI, known as fMRI, has been vital to the present 

understanding of brain function and its modification in disease. fMRI adopts MRI 

techniques that are sensitive to neurophysiological and neurovascular changes that 

occur in response to neuronal activation (Attwell and Iadecola 2002). Although not a 

description of methods the next section will describe some of the key 

neurophysiological processes that occur during this neurovascular response.  

 

2.2.1 Measuring neuronal activation – neurovascular coupling 

The brain parenchyma is supplied with a fresh supply of oxygenated blood by 

cerebral arteries, arterioles and capillaries, this phenomenon is known as Cerebral 

Blood Flow (CBF) and is also referred to as brain tissue perfusion (Attwell and 

Iadecola 2002). Brain tissue perfusion is maintained at a relatively constant level; and 

as the brain is a highly metabolic organ, producing most of its energy through 

oxidative metabolism, any major disturbances or perturbations to this system can 

lead to severe gross pathology, for example stroke (Girouard and Iadecola 2006). 

Neural information is transferred throughout the brain via conduction along 

neuronal axons. The primary mechanism for information transfer between neurons 

across the synaptic cleft, is by the action of neurotransmitter molecules released 

from the pre-synaptic cleft which bind upon post-synaptic neurotransmitter 

receptors. These neurotransmission events are largely fuelled by oxidative glycolysis 

and therefore lead to metabolic changes within the neurons and surrounding glial 

cells as a result of a higher local demand for oxygen delivery. This close spatial 

relationship between the neurons, glial cells and the vascular system, which allows 

the local energy demands to be met by increasing regional blood flow at a cellular 

level, is known as neurovascular coupling (Attwell et al. 2010).  

 

As previously mentioned, the brain has a very high level of resting metabolism, 

consuming approximately twenty percent of the body’s total oxygen supply (Attwell 
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et al. 2010).  The bulk of oxygenated arterial blood is delivered or supplied by two 

major groups of feeding arteries: the bilateral internal Carotid and Vertebral arteries.  

At the Circle of Willis, these cerebral feeding arteries bifurcate into smaller cerebral 

vessels known as pial arteries. These pial arteries are the anterior, middle and 

posterior cerebral arteries (Cipolla 2009). Pial arteries span across the surface of the 

entire brain parenchyma within the pia-subarachnoid space and perfuse all regions 

of the cerebrum. Surrounded by cerebrospinal fluid (CSF), the pial arteries advance 

into arterioles that ‘penetrate’ the brain tissue via the Virchow-Robin Space (Cipolla 

2009). The vascular wall of arterioles is made of smooth muscle.  Within the tissue 

architecture, the vessels are classified as parenchymal arterioles and are bounded by 

astrocytic end-feet which terminate on the outer layers of these arterioles. 

Downstream of these arterioles is the capillary bed, which forms a highly connected 

and dense network of vessels with a large surface area for efficient vessel to neuronal 

tissue nutrient exchange. Capillaries no longer have smooth muscle in their walls. 

Exchange of nutrients is produced by an intra-capillary pressure gradient that when 

increased leads to enhanced tissue perfusion facilitated by specialised capillary 

endothelial cells (Begley and Brightman 2003). Therefore, an increase in nutrient 

exchange, in most cases oxygen and glucose, requires an increase in intra-capillary 

pressure.  

 

The auto-regulatory control mechanisms that act to maintain sufficient blood flow 

and react in response to increased neuronal metabolism do so at the level of the 

parenchymal arterioles not at the capillary bed. However, this change in flow is 

accompanied by an increase in capillary pressure thus there are several mechanisms 

that must be achieved to increase oxygen supply to meet metabolic demands. These 

arterioles are comprised of three layers; the inner endothelial cell layer, the middle 

smooth muscle layer and the outer collagenous layer. The smooth muscle layer is 

capable of dilating and constricting the vessel walls, permitting increases and 

decreases in flow, respectively. Vascular resistance is governed by Pousille’s Law 

which identifies the vessel radius as the main effective constituent. Vascular 

resistance is inversely proportional to radius (r) to the fourth power and therefore 
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any small change in vessel radius or lumen width is coupled with a dramatic change 

in flow (Washburn 1921).   

 

Increases in synaptic transmission have been shown to directly influence the rate of 

regional brain tissue perfusion (Harris, Reynell, and Attwell 2011). A proposed 

mechanism suggests that, among the milieu of processes that occur during synaptic 

transmission, neuronal-astrocytic messenger molecules are generated that act to 

either modulate calcium (Ca2+) ion channel activity on smooth muscle cells or to 

affect the sensitivity of contractile units to Ca2+ within the parenchymal arteriole 

smooth muscle cells (Attwell et al. 2010). In addition to interactions on Ca2+ channel 

activity there are agents or messenger molecules released during synaptic 

transmission that act on potassium channels (K+) present on the smooth muscle cells 

of the arterioles. Opening of these channels causes cell hyperpolarisation, reducing 

intracellular Ca2+ and consequently leading to smooth muscle relaxation and an 

associated increase in flow (Buxton 2013). Furthermore, nitric oxide (NO) is known 

to interfere with the intracellular sensitivity of contractile units within smooth muscle 

to Ca2+ signalling (Buxton 2013) and is thought to be highly involved in this 

neurophysiological response.  

 

This response to neuronal activity/metabolism can be termed functional hyperaemia 

as the increase in blood flow is coupled with an increase in oxygen supply. The two 

common fMRI techniques, used in the current study of intranasal insulin, and in most 

fMRI studies, are perfusion fMRI and blood oxygenation level dependent (BOLD) 

fMRI. Perfusion fMRI techniques permit assessment of neuronal activity through 

estimation of changes in cerebral blood flow (CBF). Blood Oxygen Level Dependent 

(BOLD) fMRI, however, permits the assessment of neuronal activity primarily by 

being sensitive to changes in the relative concentration of deoxygenated 

haemoglobin in the blood.  This in itself is driven by changes in blood flow, oxygen 

metabolism and the changes in magnetic susceptibility that accompany this 

neurovascular response. The neurophysiology of the BOLD effect along with methods 

used to capture this effect will be outlined in section 2.3.  
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2.2.2 Cerebral blood flow and arterial spin labelling 

Assessment of resting cerebral blood flow (CBF) for the SNIFAR study was conducted 

using a non-invasive perfusion imaging technique known as arterial spin labelling 

(ASL). Using blood water as an endogenous contrast agent ASL is a technique that 

can quantify regional CBF in traditional physiological units of ml / 100g of tissue / min 

(Petersen et al. 2006), it is a measure of the amount of arterial blood delivered to the 

brain tissue regardless of directionality.  

 

In the simplest form, ASL requires the acquisition of a minimum of two images; one 

labelled image and one control image. The labelled image is produced in two steps. 

Step 1: water spins within arterial blood are magnetically labelled (inverted with 

respect to the static signal). Step 2: following this labelling period the spins are 

allowed to travel along the arterial cerebral tree to the capillary bed at which point 

an image is acquired. The control image is an image acquired in the same way as the 

label but without labelling of arterial blood (Detre et al. 1992). The control image 

theoretically contains signal contributions from flowing blood which are 

indistinguishable from the static signal; in turn, the static signal is also largely 

identical to that from the labelled image. Pairwise subtraction of these images 

(control – label) produces a difference image, known as a ‘perfusion weighted image’, 

with signal intensities that arise from the contribution of labelled, inflowing blood 

magnetisation. Acquiring and subtracting images in this manner achieves signal 

differences of approximately 0.5-1.5% (corresponding to the proportion of proton 

spins in the capillary volume relative to those of the rest of each voxel), but with 

multiple average acquisitions, sufficient signal to noise ratio (SNR) can be achieved 

(Alsop et al. 2014). The signal difference obtained from ASL is also dependent on 

factors such as T1 longitudinal relaxation of arterial blood, time taken for labelled 

spins to travel from the labelling plane to the imaging plane as well as haemodynamic 

properties such as cerebrovascular constriction and dilation (Petersen et al. 2006; 

Wang, Chen, et al. 2011a).  
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A huge benefit of ASL is that whole brain physiologically relevant information, CBF, 

can be ascertained that is easily interpretable and applicable to many research and 

clinical applications (Alsop et al. 2014; Wang et al. 2003). Another benefit is that 

unlike Positron Emission Tomography (PET), ASL does not require ionising radiation 

in order to generate perfusion contrast.  In PET, this is normally achieved by injecting 

radiolabelled water (H2
15O, due to the fact that  15O is a positron emitter). This 

technique is still considered in some quarters as the ‘gold standard’ method for CBF 

quantification (Ramsay et al. 1993; Ye, Berman, et al. 2000). Due to the non-invasive 

character of ASL, serial ASL images and CBF maps can be acquired over the course of 

longitudinal MRI investigations,  which is perhaps one of the main reasons why this 

method has become an attractive alternative in pharmacological investigations. The 

term pharmacological MRI (phMRI), coined by Jenkins et al., describes a 

methodology used to correlate changes in pharmacokinetic data (PK) with changes 

in functional MR signal (Jenkins 2012). Originally implemented with Blood Oxygen 

Level Dependent (BOLD) techniques, this concept has also been adopted with ASL 

through acquisition of serial measurements during an MRI experiment, for example 

in Paloyelis et al., (Paloyelis et al. 2014). 

 

The next section will discuss in detail the fundamental physics of ASL and the evolved 

sophistication that this method has experienced, in order to provide more reliable 

quantitative estimates of CBF. Both the labelling and imaging components will be 

described in general and more specifically with reference to the technique used for 

the SNIFAR study.  

 

2.2.2.1 Labelling  

In general, there are three types of commonly used ASL techniques, classified 

depending on the nature of their labelling methods: pulsed ASL (PASL), continuous 

ASL (CASL) and a variant of CASL called pseudo-continuous ASL (pCASL) (Alsop et al. 

2014). 
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PASL uses a single and relatively short (10-20ms) RF pulse to achieve labelling, 

through inversion of inflowing water spins in the region of the carotid arteries.  CASL, 

which is the original ASL method realised in 1992 (Detre et al. 1992; Williams et al. 

1992) requires application of a continuous RF pulse of 2-4 s duration as a labelling 

mechanism across a plane perpendicular to the feeding carotid arteries in the neck. 

Coupled with this pulse is a constant magnetic field gradient applied in the blood flow 

direction which causes flowing arterial (carotid) spins to experience slow moving 

variations of their resonance frequency as they move along this gradient, ultimately 

resulting in spin inversion (Williams et al. 1992).  

 

The inversion of spins produced by the combination of an applied RF pulse and 

gradient vector in the flow direction is known as ‘adiabatic inversion’ or ‘velocity 

driven adiabatic inversion’, because it works as long as the target spins are moving, 

which is the case for arterial spins. Spins that flow through the labelling plane will 

possess a tendency to follow the slow rotating effective field producing an inversion 

of the magnetisation (Dai et al. 2008). The method works as long as the spins 

experience inversion at a rate faster than that at which they are losing magnetisation 

due to T2 relaxation; but slower than the rate of rotation of the effective field, hence 

the adiabatic character of the process.  This condition can be summarised by the 

following expression  

 

 

 

where G is the amplitude of the gradient in the direction of flow and v is the flow 

velocity. 

 

pCASL, a variant of CASL developed by Dai et al., achieves flow driven adiabatic 

inversion through application of a series of short (500-100 microsecond) Hanning 

shaped RF pulses coupled with a train of gradients with a small (non-zero) net value, 
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as opposed to a continuous RF pulse (Dai et al. 2008). The net amplitude of RF power 

in the presence of a net, finite magnetic field gradient, achieves flow driven adiabatic 

inversion.  The Hanning shape of each pulse ensures that aliasing planes of the label 

fall outside of the desired image volume.  The phase of each RF unit is incremented 

so that at the end of the RF train, the spins experience a net phase shift of:  

 

𝛾𝐺CD6∆4𝐿𝐷 

 

Where Gnet is the net gradient in the direction of flow, Dz is the position of the 

labelling plane relative to the magnet iso-centre and LD is the labelling duration. 

 

In the control condition, the amplitude of each RF pulse unit is inverted and the 

gradient lobes are balanced so as to produce a net gradient of zero in the direction 

of flow.  Therefore, the control condition has the same RF power deposition, the 

same magnetisation transfer contribution but no flow encoding.  

 

The general scheme for a pCASL sequence is displayed in Figure 2.2.1 

 

The net duration of the train of labelling RF pulses (labelling duration-LD) is an 

important parameter included in the CBF quantification calculation. The current 

recommended LD for pCASL, in healthy volunteers is 1800ms (Alsop et al. 2014).  

 

2.2.3 Label duration 

The effect of label duration (LD) has been explored by several groups in an effort to 

increase the ASL signal measured from pCASL experiments. The small amount signal 

provided from labelled arterial blood coupled with low capillary volume in the brain 

makes ASL a relatively low SNR technique (Buxton 2005). Explorative work with 

pCASL label durations has shown evidence that increased SNR can be achieved by 

increasing the labelling duration to 3.5 - 4s seen from both simulated and measured 

pCASL data (Zun et al. 2014). Any further increases are prevented by the hardware 
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constraints of the amplifier, the Specific Absorption Rate (SAR) limit and the need to 

have sufficient fresh inflowing blood for the next TR. Increasing the LD gives rise to a 

linear increase in the bolus width of the arterial label, which leads to greater 

perfusion induced signal difference in the perfusion weighted images. Selectively 

increasing the LD, with no change to the imaging readout parameters, provides an 

increase in contrast to noise ratio. With those values of LD, pCASL can be carried out 

without a significant increase in SAR (Dai et al. 2012).  

 

 

 

 

2.2.3.1 Imaging and post labelling delay 

Immediately after labelling, the inverted spins will travel through the arterial 

vasculature to the capillary bed. The time between the end of the labelling pulse and 

the arrival of the labelled bolus to a voxel in brain tissue is known as the Arterial 

Transit Time (ATT) (Qiu et al. 2010); this is an important parameter for CBF 

quantification. In most pCASL protocols, a single delay period between labelling and 

image acquisition is used, sometimes also known as the post labelling delay (PLD). In 

an ideal ASL experiment, the PLD should match the ATT  at every voxel so that image 

acquisition will be performed as the labelled spins are in the capillary bed. In reality 

this is of course impossible to achieve as the ATT is a physiological parameter that 

differs between subjects, it can vary with age, and also differs between brain regions 

and lobes (MacIntosh et al. 2010). If the chosen PLD is too short, labelled spins that 

are still within the arterial compartment will lead to signal hyperintensity in the 

arteries; whereas PLD times that are much longer than the ATT will lead to signal 

Figure 2.2.1 An example of a pCASL sequence. The labelling scheme (green) is applied 
for a set  length, defined by the labelling duration (LD). Following labelling of inflowing 
arterial spins there is a delay period (PLD) to allow the labelled bolus to flow into the 
imaging volume an image is acquired (readout).  
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corresponding to the venous compartment; and because of labelled signal decay via 

longitudinal relaxation (discussed in more detail below), this would lead a 

considerable loss in SNR. An optimal, single PLD for pCASL acquisition is one when 

most of the labelled bolus resides in the capillary domain. This value  is approximately 

1800 ms for young, healthy volunteers (Alsop et al. 2014). 

 

The implementation of multi-PLD ASL acquisition schemes has seen an increase in 

popularity and development over the last few years. Multi-PLD refers to ASL 

acquisitions that acquire perfusion weighted images after more than one PLD time 

(Gonzalez-At, Alsop, and Detre 2000). In doing so, the inflow and outflow of labelled 

spins can be modelled more accurately. From this extra information, estimates of 

ATT can also be performed, in addition to measures of CBF for each voxel. Acquiring 

this additional information incurs a penalty on overall acquisition time. More 

complex methods to remedy this penalty, whilst still providing the gain in additional 

temporal information have been developed.  One such method is known as 

Hadamard encoding ASL sequences (Dai et al. 2012; Wells et al. 2010; Gunther 2007).  

 

2.2.3.2 Hadamard encoding 

Typical pCASL or CASL perfusion weighted image formation requires the acquisition 

of a label image and a control image, which are subtracted to provide a perfusion 

weighted difference image. For Hadamard encoding acquisition the principle is to 

acquire a series of images following implementation of a labelling module that is 

constructed from several control and label sub-blocks (Wells et al. 2010). The 

labelling module oscillates between label and control sub-blocks of a set duration 

which produces an image that is composed of a mixture of control and label signals 

from these sub-blocks. The ordering of sub-blocks is determined by a Hadamard 

matrix which is then applied during image-processing to separate this mixture of 

signals through a linear combination of the images. Following image processing a set 

of perfusion weighted images with differing PLD times is created. To create a set of 

perfusion weighted images of seven different PLD’s an 8 x 8 Hadamard matrix is used 
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that requires eight acquisitions. In comparison to conventional multi-PLD which 

would require fourteen total acquisitions (7 control, 7 label) to achieve seven PLD 

difference images (Dai, Shankaranarayanan, and Alsop 2013). In addition to this 

temporal benefit, Hadamard encoding also boasts an increase in SNR due to the way 

the images are linearly combined and also reduced number of acquisitions (Dai, 

Shankaranarayanan, and Alsop 2013).  

 

For the SNIFAR study, we chose to employ a single-PLD pCASL ASL sequence. 

Following labelling of arterial blood, the inverted spins will decay with T1 during the 

PLD time; leading to a sub-optimal ASL signal difference, even in the presence of high 

RF inversion efficiency. Therefore, the readout imaging modules for ASL should 

ideally possess a high temporal resolution. Both 2D and 3D readouts can be utilised 

with pCASL. The main advantage of 3D readouts over 2D is that the entire imaging 

volume can be acquired during a single excitation permitting a single PLD to be used 

for quantification, as opposed to slice dependent PLDs that need to be adjusted for 

each slice location. Furthermore, suppression of background tissue signal (see below) 

is better executed because the inversion times of the background suppression 

module are relevant to the whole image volume.  

 

2.2.3.3 Background suppression 

Background suppression is a technique used to supress signal from tissues or 

components that are not of interest, to achieve higher contrast between the signals 

of interest (Garcia, Duhamel, and Alsop 2005; Ye, Frank, et al. 2000). In theory the 

perfusion weighted subtraction images should remove the static unwanted tissue 

signal however   subject motion during ASL acquisition produces signal fluctuations 

proportional to the tissue of interest signal prior to this subtraction. By reducing the 

signal from the background, the sensitivity of pCASL can be improved dramatically 

(Garcia, Duhamel, and Alsop 2005). This is done using a combination of saturation, 

spatially selective and non-selective inversion pulses prior to labelling and readout to 
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essentially null the static signal at the start of the readout window (Garcia, Duhamel, 

and Alsop 2005).  

2.2.3.4 Imaging readout 

Readout modules should be considered independent of the labelling modules (see 

Figure 2.2.1). In the SNIFAR study, a single shot 3D fast spin echo (FSE) stack of spirals 

imaging readout was implemented (Ahn, Kim, and Cho 1986). In this sequence, the 

excitation pulse is applied to the entire imaging volume. Following a flip of 

magnetisation into the transverse plane a number of refocusing 180O pulses are 

applied to produce a train of echoes, known as FSE sequence, originally called a Rapid 

Acquisition with Refocused Echoes (RARE) (Hennig, Nauerth, and Friedburg 1986). 

Each echo is sampled with a spiral trajectory, known as a spiral arm, with application 

of a phase encoding gradient along the slice direction between each of the echoes, 

so that each echo is sampled in an ascending slice order. As the peak of each echo 

within this train of sequential echoes (echo train) will decay with T2, there is a 

decrease in signal in the slice encoding direction, which leads to what is known as ‘z-

blurring’ (Figure 2.2.3). A compromise between number of slices (which determines 

the length of the echo train) and the slice thickness must be considered in order to 

avoid deleterious blurring in the slice encoding axis (Glover 2012). This is most visible 

from coronal images.  

 

Spiral imaging is a non-Cartesian method of sampling k-space that follows a spiral 

trajectory as opposed to filling k-space in a rectangular trajectory. This type of 

sampling is temporally efficient as using this trajectory, all the area of the k-space 

plane can be sampled within a single shot (Glover 2012). Spiral imaging sampling 

methods can be used to acquire data from the centre of k-space outwards or from 

the outside inwards. Both of these trajectories can increase the time taken to sample 

k-space by under-sampling the high frequency data points in the corner of k-space 

(Irarrazabal and Nishimura 1995; Glover 2012). Sampling in this way can provide a 

21.5% reduction in overall acquisition time and by oversampling in the centre of k-

space can provide some resistance to subject related movement (Liao et al. 1997). 
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Spiral readouts have been utilised in functional imaging experiments for these 

reasons (Glover 2012).  To create a spiral trajectory in k-space the phase and 

frequency encoding gradients oscillate in a sinusoidal manner during the readout 

window (Ishimaru et al. 2007). This can be seen in Figure 2.2.2. 

 

 

2.2.3.5 Decreasing the voxel size of CBF maps 

 Whilst the spatial resolution of a 2D image in MRI is dictated by the inverse of the 

area sampled in k-space, the ability to resolve the higher spatial detail encoded by 

higher gradient amplitudes, depends on being able to acquire information from 

smaller voxels with sufficient SNR. For spiral acquisitions, this can be achieved by 

increasing the number of points sampled per arm in k-space, and in the orthogonal 

dimension by increasing the number of frequency encoding steps. In the plane of the 

image, higher spatial detail can be obtained in two ways; by increasing the number 

of spiral arms acquired and by also increasing the number of points sampled per 

spiral arm. Increasing the number of arms leads to an associated increase in overall 

scanning time as each additional spiral arm requires an additional TR. Furthermore, 

Figure 2.2.2 Example of a typical k-space trajectory adopted with a spiral readout sequence. A) The 
trajectory sampled in k-space with spiral readout. B) Depicts the Kx and Ky coordinates over time. C) 
The oscillating phase and frequency encoding gradients GX and GY that are required for spiral sampling. 
Gradient amplitude increases over time as the spiral increases in diameter.   
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increasing the number of data points sampled per arm increases the echo spacing; 

and therefore the effective echo time of the through-plane sample, introducing 

greater T2 signal loss across the slice encoding gradient direction and consequentially 

exhibiting a greater degree of ‘T2-blurring’ along the z-axis.  

 

 

 

 

 

 

Figure 2.2.3 An example of the 3D spiral sequence trajectory. Each echo is 
sampled along a single spiral arm. In between each echo a slice encoding 
gradient moves to the next plane of k-space to acquire the subsequent echo and 
so on. As the sequence acquires from bottom to top there will be a blurring 
effect in this direction due to T2 decay of the echo train.    
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From previous work conducted as part of my MRes project, this 3D-pCASL FSE stack 

of spiral sequence was implemented in a pCASL sequence package that possessed 

the ability to deliver long label durations  (up to 4s, in comparison with the 1.5s 

default duration of the conventional package). In this work, a pCASL sequence was 

optimised using a long LD to increase SNR within the perfusion weighted image 

acquisition. Increasing the LD from a standard label duration (1.5s) to 3-4s displayed 

a significant gain in SNR (approximately 30%, at in plane resolution of 3.4 x 3.4 mm2), 

when compared with identical readout parameters, which turned out to be highly 

beneficial in spite of an overall decrease in temporal resolution (increased TR). Using 

this gain in signal, the project explored the effect of increasing the spatial resolution 

(decreasing the voxel size) in an effort to acquire pCASL images and CBF maps with 

sufficient resolution to better resolve small anatomical structures and better define 

Figure 2.2.4 Examples of k-space spiral trajectories and how the sampling density can 
be increased by additional spiral arms or additional data point per spiral arm. 
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the cortical gyri. As mentioned in the previous chapter, increasing the resolution 

requires increasing the spiral sampling density which was achieved through obtaining 

an optimal combination of spiral arms and points sampled per arm. The optimal 

combination based on image quality and taking into consideration the overall scan 

time, was selected to be an isotropic resolution of 3mm3. This sequence was used 

throughout the pharmacological investigation of intranasal insulin which will be 

presented in this thesis.  

 

2.2.3.6 Partial volume averaging  

The average adult CBF for grey matter (GM) is approximately 55 – 65 ml/100g/min 

whereas the average CBF for white matter (WM) is considerably less, roughly 20 

ml/100g/min (Parkes et al. 2004). CBF tends to show a decline with age independent 

of cerebral GM atrophy (Chen, Rosas, and Salat 2011). From ASL acquisition, a 

measure of CBF for each voxel can be obtained. Voxels at the boundaries between 

grey matter and white matter will contain signal contributions from both of these 

tissue types reflecting a signal average of both tissue (Chappell et al. 2011). This is 

known as a partial volume contamination (PV) effect and is inherent to imaging 

techniques but is accentuated in acquisitions with large signal differences between 

tissue types and techniques with low spatial resolution, such as ASL (Asllani, 

Borogovac, and Brown 2008). Similarly, these PV effects also arise at the GM and 

cerebrospinal fluid (CSF) boundaries. PV effects for CBF mapping leads to an 

underestimation of CBF within these boundary regions which is particularly 

problematic in studies looking at ageing where the cortical GM ribbon is largely 

reduced due to cortical atrophy processes (Creasey and Rapoport 1985). There are a 

number of PV correction methods that are available (Asllani, Borogovac, and Brown 

2008; Chappell et al. 2011) which have struggled to be adopted in general ASL 

processing practices. Given the lack of an accepted and standardised PV correction 

approach we have opted to increase the SNR as much as possible to reduce the voxel 

size to an optimum dimension. 
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2.2.3.7 Cerebral blood flow calculation 

A crucial advantage of ASL as a functional brain imaging tool is the ability to create 

quantitative maps of CBF. Assuming the static tissue signal from control and label 

images has been subtracted effectively the perfusion weighted image signal 

(difference) will be proportional to the efficiency of inversion, the  amount of labelled 

arterial blood delivered to each voxel during the PLD and the specific capillary volume 

at each location.  All these factors contribute to the computed regional value of CBF. 

Quantification of CBF is conducted through a voxel-wise calculation of perfusion 

weighted images (control – label) and also a reference scaling image (commonly a 

proton density (PD) image) along with additional parameters (Buxton 2005; Buxton 

et al. 1998) which depend on the specific pulse sequence employed.  

 

There are several methods and models that can be used for CBF quantification, but 

the simplest model is the single compartment model which will be presented and for 

single PLD ASL data has been shown to be appropriate (Alsop et al. 2014). This model 

of CBF assumes that the entire labelled bolus has entered the target tissue. In healthy 

individuals, this assumption can be largely satisfied by selecting a PLD that is longer 

than both the longest ATT and tissue transit time (Alsop et al. 2014). Liu et al., showed 

that a typical tissue transit time was approximately 1900ms for healthy individuals 

and that a PLD of approximately 2s is hence sufficient to allow for arterial labelled 

spins to completely enter the tissue space (GM) (Liu, Uh, and Lu 2011). Additional 

parameters required in this model are calibration factors that take into account the 

T1 relaxation time of arterial blood (T1blood), the labelling efficiency of the ASL label 

(𝛼) and also the proportion of proton spins in blood vs the proton spins in tissue, 

known as the blood brain barrier partition coefficient  (λ). The model also requires 

the value of the temporal width of the labelled bolus duration (𝜏); which in pCASL 

and CASL corresponds to the duration of the labelling pulse.   
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The formula, for pCASL using a single PLD is presented below:  

 

𝐶𝐵𝐹 =	
6000.		𝜆	.		𝑃𝑊	.		𝑒	

PQR
=STUVVW

2	.		𝛼	.		𝑇1𝑏𝑙𝑜𝑜𝑑	.		𝑃𝐷	.		(1 − 	𝑒
@]

				=STUVVW)
 

 

The PLD and 𝜏	are prescribed parameters of the sequences whilst the other 

parameters in the equation can be measured or, are known from reference values. 

For example, the T1blood set to 1650ms at 3T (Lu et al. 2004), α for pCASL is 0.85 

(Dai et al. 2008) but the efficiency of  background suppression also has to be taken 

into account (in our sequence this value was 0.8). λ is 0.9mL/g (Herscovitch and 

Raichle 1985). The PD image, used in the quantification is acquired with the same 

readout parameters as the control and label images, is employed as a scaling factor. 

The 6000 in the above equation is a conversion factor to produce CBF measurements 

as ml of blood per 100g of tissue per minute (Alsop et al. 2014).  

This single compartment tissue model assumes that all labelled spins diffuse from the 

capillary compartment to the tissue compartment immediately, and therefore the 

signal contribution from each tissue voxel is from spins within the tissue space, 

assuming a long enough PLD. In reality this exchange is not immediate and 

furthermore, not all labelled spins will diffuse from vessel to tissue thus leading to 

inaccuracies in CBF estimation. Parkes et al., developed a kinetic CBF model that 

accounts for these two issues, which they call the T1 effect and outflow effect (Parkes 

and Tofts 2002; Parkes 2005).  Although more accurate estimations of CBF can be 

obtained using those models, these were not employed in this work. 
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2.3 Blood Oxygen Level Dependent Contrast 

The origin of the BOLD signal stems from the differential magnetic properties of 

haemoglobin which when oxygenated is diamagnetic and when de-oxygenated is 

paramagnetic; and from the uncoupling of blood flow and oxygen utilisation as a 

result of changes in neuronal activity. The paramagnetic properties of 

deoxyhaemoglobin alter the local magnetic susceptibility in its vicinity, both within 

and outside of the venous capillaries, ultimately producing a reduction in the regional 

transverse MR signal, as result of additional loss of phase coherence. As stated above, 

the origin of the BOLD effect exploited in fMRI experiments stems from a 

neurophysiological phenomenon that occurs in response to increased neuronal 

activity.  Increases in neuronal activity are almost always associated with local 

increases in CBF as a result of the phenomenon of neurovascular coupling. Upon 

changes in neural activation this regional increase in CBF is proportionally much 

greater than the relative increase in cerebral metabolic rate of oxygen (CMRO2) and 

this results in a decrease in oxygen extraction fraction (OEF) coupled with a decrease 

in the relative concentration of deoxyhaemoglobin in the venous domain (Fox and 

Raichle 1986). Because the blood, localised to the neuronal activation, is (as a whole) 

now more oxygenated than deoxygenated, the net magnetic field distortions are 

decreased and there is hence an increase in the local transverse MR signal. This 

dependence of the MR signal on the neurophysiological response of the tissue, also 

known as the ‘haemodynamic response’, is more strongly reflected in imaging 

methods that are sensitive to local field distortions, such as the case of gradient echo,  

T2* weighted echo Echo Planar Imaging (EPI) (Mansfield 1977). 

 

The BOLD effect signal is a therefore the result of the sum of contributions from 

changes in CBF, CMRO2 and Cerebral blood volume (CBV) partially mixed over the 

course of this haemodynamic process, and it is known as the ‘haemodynamic 

response function’ (HRF) (Buxton et al. 2004). A detailed description of the 

underlying mechanisms of the neurophysiological phenomenon of the BOLD effect is 

elegantly described in Buxton et al., (Buxton et al. 2004). The next section will guide 
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the reader through the BOLD effect in response to task-based stimulus, common to 

fMRI experiments and how these effects are measured.  

 

Pioneering work by Turner et al., and Ogawa et al., initially showed how decreases in 

the MR signal surrounding cerebral blood vessels (following changes in blood 

oxygenation levels from respiratory gas challenges) could be observed in the cat and 

rodent brain, respectively (Turner et al. 1991; Ogawa et al. 1990). This work 

suggested that deoxygenated blood, in other words rich in deoxygenated 

haemoglobin, could be used as an intrinsic contrast agent when acquired with 

gradient echo imaging sequences. Shortly following these findings, Ogawa et al., 

showed that these MR signal  changes could be observed in the human occipital 

region and calcarine fissure while the subject was presented with a bright visual 

stimulus (Ogawa et al. 1992). This evidence highlighted the sensitivity of rapid 

gradient echo sequences to local changes in deoxyhaemoglobin that could be 

perturbated by external stimuli and opened the door to a new field which we now 

know as BOLD contrast fMRI. Bandettini et al, (1992) also showed how similar 

changes could be measured in primary motor cortex in response to a ‘finger tapping’ 

task (Bandettini et al. 1992).  

 

Fundamental to the ability to observe BOLD contrast changes in the human brain 

during a task requires a gradient echo scanning protocol that fulfils certain 

acquisition qualities. Firstly, to capture these temporal effects, the acquisition needs 

to be conducted rapidly, in order to capture signatures of these neurophysiological 

changes with sufficient accuracy and reliability (Turner et al. 1998). Secondly, images 

need to be acquired with sufficient spatial resolution in order to resolve local changes 

in BOLD contrast that are reflective of the underlying anatomy in small structures. 

And finally, to permit explorations of functional stimuli on the whole brain, an 

acquisition scheme capable of acquiring multiple slices during the BOLD contrast 

event is necessary. As indicated earlier, a rapid acquisition sequence known as 

gradient recalled Echo Planar Imaging (EPI) (Mansfield 1977), possesses these 

qualities and has been the ‘workhorse’ of the fMRI BOLD contrast research 

conducted over the last 26 years. EPI readouts are rapid (~40-100ms) but carry a cost 
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of spatial resolution and therefore a compromise between temporal and spatial 

resolution is required.  

2.3.1 Echo planar imaging 

With this method, it is possible to acquire whole brain data (20-30 T2* weighted 

images) in a  single TR, which is approximately 2s for most conventional fMRI 

protocols. The term TR in this instance refers to the time taken to acquire all the slices 

as opposed to the time between subsequent RF excitations. A readout scheme 

known as blipped EPI is commonly used. This type of readout fills the entirety of k-

space in a rectangular trajectory, following a single RF excitation pulse. As outlined 

in the beginning of this chapter, application of an excitatory RF pulse generates a 

Free Induction Decay  (FID) signal. In the blipped EPI sequence, the FID decay is 

initially accentuated by application of a large phase and frequency de-phasing 

gradient. Following this, the receiver coil is opened and the first lobe in a train of 

frequency encoding gradient is applied, generating a gradient recalled echo from 

which a single line of k-space is sampled. A frequency encoding gradient of the same 

strength and duration is applied in the opposite direction preceded by a small phase 

encoding gradient (blip) to acquire another, the next, line of k-space. This frequency 

encoding gradient switching and blipped encoding sequence is repeated until the 

entire matrix of k-space data is ‘filled’. Once filled, a slice encoding gradient is applied 

to excite the next slice and the same sequence is followed until all data for the next 

slice has been acquired. This process is repeated over an fMRI experiment producing 

a serial collection of T2* weighted images, known as a ‘a functional timeseries’. From 

this time series, the haemodynamic response can be measured by obtaining a 

sufficiently large number of time points for each voxel.  Several analysis methods can 

then be used to model the haemodynamic response function, in response to sensory 

or cognitively induced neuronal activation.  
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2.3.2 Task based fMRI and the haemodynamic response  

Task based fMRI describes an MRI experiment where a participant is required to 

execute a paradigm whilst in the scanner; during which a functional time series of 

MRI data is acquired. Actions can range from basic sensory stimulations such as visual 

stimuli to more cognitively demanding tasks that involve learning, decision making 

or memory related functions (Amaro and Barker 2006). The series of actions within a 

task are known as ‘the paradigm’ and compiled using a pre-defined playlist of actions 

with explicit timings and duration for all the actions.  

 

A convenient property of the HRF is that it is additive when more than one stimulus 

is applied within the temporal width of the HRF.  Hence, a useful design for paradigms 

is what is known as a ‘block periodic design’; in which images collected within periods 

of a certain type of sensory or cognitive engagement are contrasted against those 

collected within a ‘reference’ condition.  

 

In response to a stimulus, the haemodynamic response function (HRF) can be 

observed as a temporal change in MR signal. The HRF can be broken down into three 

parts; the initial dip, the peak and the post stimulus undershoot. (HRF shown in Figure 

2.3.1) 

 

Figure 2.3.1 The haemodynamic response function.  

  



 101 

2.3.2.1 The initial dip 

A somewhat controversial topic, the initial dip reflects a transient dip in MR signal 

that occurs following neuronal stimulation (Hu and Yacoub 2012). This dip in signal is 

attributed to a transient increase in Oxygen metabolism (CMRO2) in the absence of 

an increase in CBF, that leads to an increase in deoxyhaemoglobin concentration; and 

therefore a decrease in local MR signal (Menon et al. 1995; Hu and Yacoub 2012).  

2.3.2.2 The peak  

The haemodynamic response evolves over time, characterised by a local increase in 

both CBF and in the ratio of oxy to deoxyhaemoglobin concentration; as well as an 

increase in blood volume, which together give rise to an increase in the MR signal. 

The evolution of this response is slow compared with electric and magnetic field 

signatures observed with other techniques; and peaks at approximately six to eight 

seconds following stimulus presentation (Logothetis and Pfeuffer 2004).  

 

As seen in data from block design studies, in which a stimulus or action is preformed 

repetitively over a period of time (for example 20s), the magnitude of this response 

will grow until a plateau is reached (Logothetis and Wandell 2004; Glover 2011). As 

stated earlier, in a block design paradigm the periods of stimulation, known as 

epochs, are contrasted with control epochs where the participant is not engaged 

(rest) or performing a less demanding action (Amaro and Barker 2006). In contrast, 

paradigms in which a single stimulus is presented for a brief period of time (as seen 

in Figure 2.3.1) (but repeated several times with a time interval longer than the full 

width half-maximum of the HRF), are known as event-related paradigms. This type 

of paradigm presentation is possible as a result of the speed at which T2* weighted 

data can be acquired with EPI based techniques. This design permits more cognitively 

demanding paradigms which, for example, involve learning or neuronal responses 

that may change over time, i.e. as a result of  habituation.  
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2.3.2.3 The BOLD signal ‘undershoot’ 

After stimulus evoked neural activity, the BOLD response peak begins to decrease, 

returning to a baseline, eventually passing beyond the baseline level, producing a 

small decrease in MRI signal (Buxton 2013). This is supposed to occur in response to 

a sustained increase in CMRO2 coupled with a reduction in CBF, increasing the 

deoxy/oxy-haemoglobin concentration ratio (van Zijl, Hua, and Lu 2012).  

 

Debate and controversy can be found in the neurophysiological literature regarding 

the physiological underpinnings of both the ‘initial dip’ and the ‘undershoot’. This 

debate exists largely because the BOLD response is a product of at least three 

variables (CBF, CBV and CMRO2); and trying to decipher or disentangle the effects of 

each of these responses is problematic and can lead to discrepancies. Despite this, 

the wealth of knowledge the BOLD contrast phenomenon has provided the 

neuroimaging community with, has been substantial.  

 

2.3.3 Resting BOLD: image acquisition and analysis techniques 

Building on from task based fMRI, BOLD data acquired during the resting-state, or 

better put, in the absence of an administered task of cognitive or sensory 

engagement, has grown in popularity and importance over the last decade. Measures 

of resting functional connectivity, i.e. the identification of regions that show 

synchronous activation (or deactivation), is a very useful alternative to investigate 

brain function. Its application has found utility in pharmacological MRI (phMRI) 

studies, as well as being a complementary tool alongside task-based fMRI 

experimentation (Murphy and Mackay 2010). Resting state connectivity analysis 

permits the interrogation of resting activity at a whole brain network level, allowing 

the researcher to infer and interpret changes beyond those recruited by cognitive 

engaging tasks (Lv et al. 2018). Furthermore, resting fMRI offers a significant 

pragmatic benefit since no task-administration is required, and therefore it is easier 

to make acquisition conditions more consistent across different studies. The main 

requirement from the participant is to stay awake and keep still, removing 
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performance bias or non-compliance often found in task-based studies, which can 

also lead to significant variability (Murphy, Birn, and Bandettini 2013). Biswal et al., 

first reported synchronous fluctuations in the BOLD signal that occurred during rest 

between the left and the right sensorimotor regions and the supplementary motor 

area (Biswal et al. 1995). These synchronous MR signals were observed at 

frequencies below 0.1Hz and since this initial observation considerable work has 

been conducted to better understand, observe and analyse these low frequency 

signal fluctuations during rest. Through this work a number of well-defined low-

frequency networks have been characterised (Smith et al. 2013) and examining the 

modulation patterns on these fluctuations has been and continues to be a great tool 

for pharmacological MRI (Mehta and O'Daly 2011; Jenkins 2012). 

 

2.3.3.1 Functional connectivity 

Functional connectivity is defined by the degree of temporal correlation within the 

BOLD timeseries across different brain regions. Those regions that share a statistically 

significant degree of temporal correlation are labelled as being ‘functionally 

connected’.  The identification of these regions of functional connection is almost 

always made by identifying the independent frequency components of the time 

series and back-projecting those components onto the regions from which they are 

detected (see section 2.3.3.3). The validity and interpretation of this concept remains 

controversial. 

2.3.3.2 Seed based functional connectivity analysis 

There are a number of different ways to assess this degree of functional connectivity 

across the brain (for a review see (Cole, Smith, and Beckmann 2010) but one of the 

simplest in terms of both implementation and interpretation is ‘seed-based 

connectivity’ analysis (Biswal et al. 1995). Seed based analysis requires the selection 

of a ‘functional seed’ region, based on an a priori hypothesis or rationale, for which 

the BOLD time course for this seed is extracted, and used as a regressor within a 

whole brain General Linear Model (GLM) analysis, to derive whole-brain correlation 
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(connectivity) maps (Cole, Smith, and Beckmann 2010).  This type of approach is 

considered hypothesis-driven as the researcher will select a seed or number of seeds 

based on one or more hypotheses.  

 

2.3.3.3 Independent component analysis 

In contrast, independent component analysis (ICA), is a data-driven tool that is also 

commonly used for resting state analysis (McKeown, Hansen, and Sejnowsk 2003). 

ICA for resting-state purposes is used to identify and decompose a functional BOLD 

timeseries into a set of spatially segregated components or maps, combined with the 

time course for each component (Cole, Smith, and Beckmann 2010). This type of 

decomposition processing is popular for defining discrete resting state networks and 

can be used at the single subject level as well as within a group analysis protocol. ICA 

uses the entire dataset in comparison to seed based analysis which restricts the 

analysis to just a single time course selected by the researcher thus is capable of 

finding effects that may be missed. With ICA, constraints can be imposed upon the 

decomposition to reduce the number of components that may be ‘unmixed’ from 

the data.  

2.3.3.4 Resting state data quality 

In contrast to task based fMRI data, with which a model of haemodynamic activity 

can be created and correlated with the time series data, resting state data lacks an 

‘input function’ and has no prior knowledge regarding which signals are related to 

the BOLD contrast and which might be likely to derive from other sources. As the ICA 

method does not use prior information regarding resting state network components, 

the decomposition can also find spatial components that are attributable to non-

neuronal source or noise. The BOLD response originating from neuronal activity 

within resting state data comprises 2-5% of the overall signal measured, which is 

sometimes largely corrupted by artefactual sources of signal change. Artefactual 

signal changes can arise as a consequence of (for example) involuntary head motion, 

cardiac pulsatile motion, breathing related motion, breathing related changes in 
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arterial carbon dioxide, scanner drift and thermal noise (Caballero-Gaudes and 

Reynolds 2017; Murphy, Birn, and Bandettini 2013). The corruption of data through 

artefactual perturbations severely affects the functional connectivity analysis of 

resting-state fluctuations in the BOLD signal, which are typically measured in the 0.01 

to 0.1Hz frequency range. Some of these effects can be removed from the time series 

through temporal filtering processes, for example application of a bandpass filtering 

to restrict the time series data to only a defined frequency range (for example, 

removing those frequencies below 0.01Hz and greater than 0.1Hz) (Murphy, Birn, 

and Bandettini 2013). Given the large number of sources of signal corruption 

observed in resting-state data, there exists a need to perform denoising/cleaning 

methods prior to functional connectivity analysis.  

 

A benefit of ICA is that non-constrained decomposition is useful for spatially defining 

these sources of corruption into spatially independent components (Salimi-Khorshidi 

et al. 2014). Several methods exist to identify nuisance components following ICA 

decomposition, one of which requires a different acquisition approach and therefore 

must be considered prior to protocol commencement (Kundu et al. 2012). ICA based 

denoising methods that use conventional acquisition protocols require identifying 

and defining the decomposed spatial components into neuronal origin (BOLD) or 

artefactual origin (non-BOLD) components. This can be done by subjective operator 

involvement, which is not typically recommended, or by the assistance of algorithms 

based on machine learning classifying techniques; for example:  ICA-based X-

noiseifier (ICA-FIX, ‘Functional MRI laboratory (FMRIB), (Salimi-Khorshidi et al. 2014)) 

and FMRIB’s ICA-based Automatic Removal Of Motion Artefacts (ICA-AROMA, (Pruim 

et al. 2015)). Both of these nuisance component identification methods show good 

denoising capabilities, however a comparative resting state study published in 2017 

(Dipasquale et al. 2017) provided evidence to suggest that a technique known as 

multi-echo ICA (Kundu et al. 2012) was superior for noise removal compared to the 

two former machine learning ICA based methods. This technique requires a different 

acquisition approach to the conventional gradient echo methods described so far; 

and uses ICA coupled with a different signal analysis method for characterising 

components based on the nature of their corresponding T2* decay characteristics 
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(Kundu et al. 2013; Kundu et al. 2012). This technique was implemented in the 

current study of intranasal insulin and is described in detail below.   

 

2.3.4 Multi-Echo ICA: acquisition and processing 

As stated earlier, conventional BOLD contrast fMRI data is commonly acquired using 

gradient-echo echo planar imaging (EPI) using a single echo time (TE) for each image 

volume. BOLD contrast is maximal from gradient echo acquisition when the TE is 

equal to or close to the T2* value of grey matter (Howseman and Bowtell 1999), 

typically found to be 30 -35ms for acquisitions made at 3T. The TE set is a suitable 

compromise value so as to be able to acquire a sufficiently appropriate number of 

slices for the whole brain. However, the T2* of grey matter is not uniform throughout 

the brain and therefore some regions will inevitably display sub-optimal BOLD 

contrast.  For example, gradient echo EPI image acquisition with a long TE will lead 

to susceptibility artefacts and greater signal dropout particularly in prefrontal regions 

(Deichmann et al. 2003), whereas a short TE will be associated with high global signal 

intensity, less signal dropout but a reduction in BOLD sensitivity in those regions with 

larger T2* values (Howseman and Bowtell 1999).  

 

Multi-echo, gradient echo EPI (ME-EPI) acquisition is an acquisition approach that 

acquires multiple whole brain EPI images with increasing TE within a single TR (Posse 

et al. 1999). With this approach, every time point within the time series will have 

multiple whole brain volumes or better put, the data will consist of multiple time 

series each acquired with a different TE. The signal intensity across the echo 

acquisitions in each voxel will typically show an exponential T2* signal decay 

described in Figure 2.3.2.C  and presented visually in Figure 2.3.2.A,B.  

 

The use of this technique has been made possible through the advancement and 

development of rapid functional image BOLD contrast acquisition approaches. ME-

EPI was initially implemented in an effort to reduce susceptibility related signal 

dropout whilst gaining maximum T2* contrast (Posse et al. 1999). This was achieved 
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by firstly, fitting the data to an exponential decay curve to attain the T2* value of 

that of each voxel and with this information average the signal across the different 

echoes together using a weighted approach, optimal for the T2* of the tissue within 

each voxel (Posse et al. 1999).  

 

 

 

 

 

Figure 2.3.2 An example of a multi echo EPI acquisition with three echoes. A) 
for each TR three whole brain EPI images are created. B) The final output can 
be divided into three timeseries each acquired at a different TE. C) the signal 
intensity for each echo will decay as a function of T2* and initial signal 
intensity, S0. 
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ME-ICA is a pre-processing technique developed to reduce the impact of noise and 

artefacts present in resting state data (Kundu et al. 2012), made possible through the 

combination of both acquisition and pre-processing techniques. Very simply, the 

multi-echo ICA processing employs a more sophisticated de-noising approach by 

assessing the T2* decay that is observed across the echoes, classifying signals that 

decay in an exponential fashion with T2* as ‘BOLD-like’ and those that do not show 

this relationship as ‘non-BOLD-like’ (Kundu et al. 2012). The appeal of this approach 

is that the independent components are classified based on their inherent T2* 

relaxometry characteristics; and attempts to identify BOLD components as opposed 

to simply identifying only the noise components. For this reason and also the 

superiority compared to other de-noising techniques (Dipasquale et al. 2017) the 

implementation of this technique is growing in the field of resting state functional 

connectivity analysis; as well as in task-based fMRI BOLD (Dipasquale et al. 2017; 

Kundu et al. 2013; Kundu et al. 2017; Lombardo et al. 2016; Power et al. 2018; 

Gonzalez-Castillo et al. 2016).  

 

The method, proposed and developed by Kundu et al., (Kundu et al. 2012), bases this 

approach on the idea that within a small range of TE’s the BOLD signal measured 

from tissue will decay exponentially with  the T2* time constant of that tissue. In 

response to a change in neural activity the change in oxy/deoxy-haemoglobin 

concentration reduces the local susceptibility effects, increasing the apparent T2* 

value of that region and ultimately leading to an increase in MR signal (measured 

with gradient echo EPI). It has been shown that this signal difference increases when 

acquired at longer TE’s (Bandettini et al. 1994) and therefore the change in MR signal 

displays a scaling factor that is dependent on TE. Therefore, confirmation of this type 

of TE-dependence can be considered a good marker of signal changes of a ‘neuronal 

origin’. 
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On the other hand, observations of a change in MR signal could also arise from non-

BOLD origins, such as those caused by motion. Following head movement for 

example, the tissue signal in the underlying voxel will be different and therefore the 

“spin-history” of the signal, will be also be different. This can be seen in Figure 2.3.3. 

 

In this figure, the two voxels show different levels of steady state magnetisation due 

to differing T1 relaxation rates between voxels, however have a similar T2* value. As 

a result of the different steady state vectors the initial signal intensity (So) in the 

transverse plane will be different between these two voxels and therefore the signal 

within these voxels will decay differently according to the equation presented in 

Figure 2.3.2.C. In response to neural activity in Voxel B, a change in T2* is observed 

and in increase in T2* constant leads to a signal difference measured between 

sequential TR’s if acquired at a suitable TE. However, in response to motion there is 

a displacement of the voxels and now Voxel A is located where Voxel B was. As Voxel 

A had a larger magnetisation vector in the steady state, the initial signal intensity, S0, 

following RF excitation will be greater now that this displacement has occurred. This 

is an example of a ‘spin history’ effect. Given a higher S0, the MR signal sampled at 

the same TE will exhibit very different changes in MR signal between successive TR’s. 

The changes in MR signal between a true change in T2* (BOLD-effect) and those 

coming from a change in S0, are essentially indistinguishable when using a single TE.  

In this scenario, spurious changes in MR signal are likely to be observed as a result of 

motion and changes in S0 , thus corrupting the data.  

 

Interestingly, the MR signal change produced from this change in S0 does not show a 

linear relationship with increasing TE, therefore it becomes TE-independent. This 

crucial element therefore permits the use of fitting to model the TE dependence of 

the time series (or independence) and to use it as the basis for identifying 

components as BOLD and non-BOLD origin (Kundu et al. 2012).  
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Figure 2.3.3 A diagram showing the effects of neural activity and motion on T2* decay and MR signal. 
Top panel shows two voxels, the associated steady state magnetisation curves and the T2* decay 
profile for both voxels when acquired with gradient echo EPI. Note the two voxels have differing S0. 
Middle panel shows that in response to neural activity in Voxel B there is a change in T2* constant 
which could be observed if detecting changes between TRs. Bottom panel shows how if there is a 
motion displacement that shifts voxel A to Voxel B location then a change in S0 will show a MR signal 
increase of measured with a single TE. This is known as a spin-history effect. 
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The ME-ICA approach has been widely used and has several steps which will be 

described in sequence: 

 

Step 1: 

An average T2* map is produced based from the echo signal intensities at each voxel, 

averaged over the entire time series. Based on this T2* value, the signal intensities 

from each voxel and each echo are combined using a weighting scheme that is 

optimal for the T2* value assigned for that voxel (Posse 2012). The combined echo 

time series is thus optimal for the T2* value of each voxel (Posse et al. 1999) with 

optimal contrast to noise ratio (CNR). In their software, this is known as the ‘optimally 

combined’ dataset.  

 

Step 2:  

The optimally combined dataset is run through a spatial ICA. The ICA algorithm is 

unconstrained, so the total number of components extracted can range between 

subjects.  

 

Step 3:  

Within each identified component, the algorithm assesses the degree to which the 

signal intensity represents T2* decay (by characterising its TE-dependence) or 

whether the signal change across echoes does not arise from an exponential T2* 

decay (TE-independence). This process is conducted at each time point by fitting the 

TE signal change as a function of TE to a TE-dependence model and also to a TE-

independent model. For each time point a goodness of fit value is assigned for both 

of the models and a summary measure for the TE-dependence and TE-independent 

models is assigned for the component. These summary measures are defined as 

kappa, 𝜅, and rho, 𝜌. A high 𝜅 value signifies a component that correlates well with 

TE-dependence in an exponential fashion. A low 𝜌 value signifies a component that 

correlates well with the TE-independence model. A component defined with a high 

𝜅 and low 𝜌 value would be deemed to correspond to signal decay indicative of a 

‘true- BOLD’ origin (of greater probability of arising from genuine changes in neuronal 

activity). Conversely, a low 𝜅  and high 𝜌 component is deemed to exhibit signal 
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changes that are likely to arise from non-neuronally driven sources (e.g. motion or 

physiological nature) and likely to be artefactual.  

 

Step 4:  

Based on the distribution of the 𝜅 and 𝜌 values, the ME-ICA algorithm defines 

thresholds for each component; and those components that show 𝜅 and	𝜌 values 

greater and lower, respectively, (than the calculated thresholds) are then classified 

as having the appropriate TE-dependence. Those that fall outside of an established 

range of 𝜅 and 𝜌 values,  are classified as TE-independent and some that fall in the 

middle are classified as “unidentified” (Kundu et al. 2012).  

 

Step 5: 

Timeseries of components classified as non-BOLD (low 𝜅 and high 𝜌)  are then 

regressed from the optimally combined echo time series in a similar way to which 

motion parameters are regressed in a General Linear model. The regressed time 

series is considered to be “de-noised”. The main output from the ME-ICA de-noising 

process is therefore a single time series of functional volumes that have been 

optimally combined based on the T2* value and in principle ‘cleaned’ of non-BOLD 

components as described above (Kundu et al. 2012). 

 

The next chapter will describe the application of these techniques for a 

pharmacological MRI study that explored the effects of intranasal insulin in healthy 

male volunteers.  
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Chapter 3  Study Design 
 

3.1 Investigation of the Effects of Intra-nasally Administered 

Insulin on Food Appetite and Reward: The SNIFAR study 

This is a double-blind, placebo controlled, crossover MRI study to investigate the 

effects of insulin in the central nervous system (CNS), using intranasal administration. 

This study was designed to evaluate the effects of intranasal insulin on both 

homeostatic appetite control and also hedonic food reward.  A good proportion of 

investigations using intranasally administered insulin literature have focused on its 

effects on cognition, mood and also food related neural processing. This study aims 

to extend our understanding of the effects of this important compound by using a 

food administration paradigm that has not been reported in previous studies. This 

study also intends to contribute to the limited literature on resting state perfusion in 

response to intranasal insulin, through the implementation of an optimised arterial 

spin labelling sequence. Finally, the study reported here builds upon the current 

insulin related connectivity literature through the use of an artefact noise removal 

T2* weighted image acquisition and processing technique called multi-echo 

independent component analysis denoising  (Kundu et al. 2012). Also included within 

this thesis is a chapter focused on work that was conducted to optimise a 

commercially available nasal pump, to provide optimal insulin delivery to the CNS.  In 

this work (conducted using active insulin) I carried out key in vitro measurements 

that were made to determine the efficiency of nose-to-brain insulin delivery.  
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3.1.1 Participants 

This study was approved the King’s College London Psychiatry Nursing and Midwifery 

Ethics Committee (ethics no. RESCM-17/18-2282). Participants for this study were 

predominantly recruited through the King’s College recruitment website although 

some were recruited through word of mouth. Participants liaised with the head 

researcher through email initially and also a short phone conversation to filter out 

participants who did not fulfil the immediate inclusion criteria. The study consisted 

of three visits in total. Visit one was a screening session and the remaining two 

sessions were experimental imaging sessions.  

 

3.1.2 Screening and inclusion criteria 

This study evaluated drug effects in healthy right-handed male volunteers (aged 

between 20-36 years of age). All participants provided informed written consent.  

Participants were screened to ensure they had no history of psychiatric illness or 

diabetes assessed by clinical interview, no cardiac-related complications (assessed at 

the screening visit by means of a 12-lead electrocardiogram (ECG)), no history of 

eating disorders, asthma or allergies associated with breathing difficulties and did 

not adhere to a vegetarian or vegan diet. During the screening, height and weight 

measurements were taken, as well as resting blood pressure and heart rate 

measurements in the supine and standing position.  

 

During the screening session, participants answered three questionnaires to assess 

eating behaviours, to obtain an indication of weekly food intake and to assess how 

stable their eating behaviours were, using a three-factor eating questionnaire 

(Stunkard and Messick 1985), the dietary free fat and sugar subscale questionnaire 

(Francis and Stevenson 2013) and the council of nutritional appetite questionnaire 

(Wilson et al. 2005). These questionnaires are based on general eating behaviours 

and are highly unlikely to change during the length of the study; therefore, they were 

completed during the screening visit only. The council of nutritional appetite 

questionnaire (CNAQ) was used a screening tool. The CNAQ is commonly employed 
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to assess the likelihood of future weight loss, typically implemented in anorexia 

research (Wilson et al. 2005). The CNAQ consists of eight questions using a 5-point 

scale (1-5), total scores range from 8-40. Scores greater than 28 indicate a normal or 

good appetite, whereas scores  ≤ 27.9 reflect poor appetite. Participants with scores 

representative of poor appetite were deemed not eligible for this study (Wilson et al. 

2005).  

 

The three factor eating questionnaire (TFEQ) and dietary free fat and sugar subscale 

questionnaire (DFS) was also used in the data analysis of the study. The TFEQ is 

commonly employed in obesity related research and measures three factors: dietary 

restraint, disinhibition and hunger (de Lauzon et al. 2004). The TFEQ is a 36 part 

questionnaire that uses both true and false questions as well as 4-point and 5-point 

Likert scales. TFEQ scores for each factor are calculated and severity ratings of ‘low’, 

’medium’ and ‘high’ for each factor can be ascertained.  

 

Dietary restraint has an impact on weight control and how this can be achieved, for 

example by reducing food portions or restricting eating (Bryant, King, and Blundell 

2008). High dietary disinhibition is reflected by a tendency to overeat, particularly at 

opportunistic moments within obesogenic environments. The final factor, hunger, 

explores the feelings of hunger and how these feelings can evoke food intake 

(Stunkard and Messick 1985).  

 

The dietary fat and sugar (DFS) questionnaire provides an approximate guide to 

examine how often meals or food that contain high amounts of saturated fat and 

sugar are consumed. From the DFS the overall frequency of foods high in saturated 

fat, sugar as well as food that contains both high levels of fat and sugar can be 

calculated (Francis and Stevenson 2013). This questionnaire contains 26 food types 

for which the participant must mark on a scale how often that food type is consumed. 

The scale ranges from “less than once per month” to “5 + times per week” on a 5 

point scale. The questionnaire is quick to complete and has been shown to produce 

valid and reliable measures of saturated fat and free sugar consumption when 
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compared with weekly food diaries which are also more arduous on the participant 

(Francis and Stevenson 2013).  

 

During the screening session participants were given full details on what was 

required from them, familiarised with the study protocol, scanner paradigms as well 

as shown how to correctly operate the nasal administration pump.  

3.1.3 Study cohort stratification 

Participants with a body mass index (BMI) between 18 and 30 kg/m2 were included.  

These subjects were then subdivided into two groups: below and above 25 kg/m2   to 

examine differences between healthy and near-obese individuals. 

 

This division allowed us to study individuals in a metabolic state between normal 

weight and obese, who are at risk of evolving into a condition of obesity along with 

its associated risks (González-Muniesa et al. 2017). In the UK approximately 40% of 

adult males are overweight as assessed by BMI, with 33% normal weight and 26% 

obese, therefore the majority of males in the UK are classified as overweight 

according to BMI (Barker 2018). Regarding the study of intranasal insulin, some 

reports have shown a lack of effectiveness in weight loss via long term intranasal 

insulin administration in obese men but not in normal weight men (Hallschmid et al. 

2008). Therefore, the study of this group of individuals is important for establishing 

possible markers of brain function that may be associated with this ‘at risk’ 

population. Furthermore, overweight individuals represent an interesting study 

group as they are essentially healthy albeit ‘less so’ then normal weight individuals 

(González-Muniesa et al. 2017).  

 

Furthermore, this study recruited men only. As described in the introduction central 

insulin has some differential gender effects as a result of interactions of central 

oestrogen on insulin anorexigenic effects (Clegg et al. 2006; Benedict et al. 2008). To 

avoid or limit these potential confounding effects of oestrogen males were 

exclusively recruited in this study.  
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For this repeated-measures design a sample size of sixteen was required to detect 

changes in cerebral blood flow (CBF) of 3 ml/100g/min, based on a standard 

deviation of 4 ml/100g/min and an effect size of 0.75 with a two tailed, paired t-test 

(α = 0.05, 1-β= 0.8). (G*Power, (Faul et al. 2007)). Therefore, this study aimed to 

recruit sixteen subjects within each group for a total of thirty-two subjects in the 

entire study (lean plus overweight). This specific change in CBF was used as a guide 

for this power calculation based on research by Kullmann et al., who presented 

changes in the hypothalamus of this magnitude from this dose of intranasal insulin 

(Kullmann et al. 2018) 

 

3.1.4 Post absorptive state 

Participants were instructed to follow an overnight fast, with their last meal to be 

consumed no later than 10pm the night before (approximately a 12-hour fast). As 

this study probed the effects of insulin on homeostatic and hedonic food related 

processing, it was important for the participants to be in a fasted/post absorptive 

state. Participants were allowed to drink water throughout the morning.  

 

By skipping breakfast, participants entered into a negative energy balance thus 

promoting hunger. Previous functional imaging research comparing the fed and 

fasted state has shown that in the fasted state the appeal of food imagery is 

increased (LaBar et al. 2001) and is also associated with increased preferences or bias 

towards foods high in calories in comparison to low calorie food pictures (Goldstone 

et al. 2009). Findings from studies like these have provided a methodological 

foundation for investigating functional brain responses to food cues and food stimuli 

by placing the participant or patient in a state of negative energy balance and 

therefore increasing responsiveness to task based paradigms focused on appetite 

and reward (Dagher 2012). We implemented an overnight fast as the goal was to 

observe how this negative energy balance would affect brain responsiveness 

following intra-nasal administration of insulin compared to placebo. By 

implementing an ‘overnight’ fast rather than a prolonged fasting period (> 24 hours) 
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the effect of ketone bodies on brain metabolism was avoided (Cahill 1970). Following 

all scanning procedures a ‘standard’ lunch was administered to the participants. 

3.1.5 Abstinence of vasoactive substances  

Participants were further instructed not to consume alcohol 24 hours prior to 

scanning and also not to have caffeinated drinks on the morning of scanning, only 

water was allowed. Both caffeine and alcohol are vasoactive substances leading to 

global decreases and increases in cerebral perfusion, respectively (Vidyasagar et al. 

2013; Gundersen, van Wageningen, and Gruner 2013) and therefore would introduce 

significant variability in the study.  

3.2 Imaging Sessions 

The first imaging session was conducted no later than thirty days following the 

screening session and the second imaging session no later than 15 days following the 

first imaging session. The protocol for each imaging visit is shown in Figure 3.2.1.  

 

 

The next sections will discuss the non-imaging related components of the protocol 

using Figure 3.2.1 as a reference.  

 

Figure 3.2.1 Protocol for the imaging sessions. All black boxes are considered non-imaging and the 
blue box will be referred to as the imaging component.  
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3.2.1 Participant arrival and physiological measurements  

Participants arrived at the centre for neuroimaging sciences at 9am or 9:30am to 

begin scanning at either 10 or 10:30am, respectively. Upon arrival participants were 

required to fill out the necessary MRI safety forms and to relax before any 

physiological measurements were taken. After 20 minutes, seated blood pressure 

(BP) and heart rate (HR) were recorded. These vital physiological measurements are 

necessary to ensure that it is safe for the participant to start the full imaging session 

protocol.  

 

Blood sampling was performed at two time points; before drug administration (pre-

dose) and after scanning (post-scan).  Using venepuncture techniques, blood samples 

were collected by filling one grey top (2.5 ml, Fluoride/Oxalate – for plasma glucose) 

and one gold top (serum separator tube – for serum insulin and C-peptide) 

Vacutainer (Becton, Dickinson U.K. Limited, Berkshire). In addition, a drop of blood 

from the butterfly needle was used to measure blood glucose concentration using a 

portable blood glucose monitor (FreeStyle Optium, Medi Sense, MPT Pharma Ltd, 

Walsall, UK). This measurement was recorded for safety reasons so that the 

researcher could be aware of the approximate baseline blood glucose concentration 

and if the participant felt unwell or showed signs of hypoglycaemia a second sample 

could be taken (via a pin-prick approach) and used to compare against the baseline 

measure permitting appropriate action to be taken in response to any adverse 

effects.  

 

Samples were separated into plasma and serum by spinning the samples in a 

centrifuge at 4°C and 3000 rpm for 10 minutes. Plasma and serum were separated 

into 2.5ml aliquots and stored at -20°C until processed. These samples were 

processed and analysed for plasma glucose, serum insulin and serum C-peptide 

concentrations at the King’s College Hospital clinical biochemistry department. All 

assays were conducted by a commercial contractor called ViaPath located within 

King’s College Hospital site (King's College Hospital, Bessemer Wing, Denmark Hill, 

London, SE5 9RS).  
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3.2.2 Plasma and serum assays  

Plasma glucose was determined using the glucose-oxidase method using an ADVIA 

2400 Chemistry system (Siemens Healthcare Diagnostic Ltd, Newton House, Surrey, 

UK).  Serum insulin and C-peptide concentrations were determined using a 

chemiluminescence assay using an ADIVA centaur system (Siemens Healthcare 

Diagnostic Ltd, Newton House, Surrey, UK).  

3.2.3 Drug preparation and administration protocol  

Twenty minutes prior entering the scanner, participants received a total dose of 160 

IU insulin (Humulin®, 500 IU/ml, Eli Lily) or placebo (0.9% saline solution, Fresenius 

Kabi) by means of four intranasal applications (see details in the next section).  

 

Insulin and placebo solutions were provided by KCL pharmacy department on the 

morning of each imaging session, in a plain white nasal pump device (SP270+ pump 

with 3959 actuator)(Nemera, La Verpillière, France), these contained 2ml of either 

insulin or saline solution.  

 

The dosing protocol closely followed previous intranasal insulin dosing protocols 

reported in the literature (Guthoff et al. 2010). We employed a total of four nasal 

sprays over a four-minute period with each spray containing 40 IU of insulin (total 

dose = 4 x 40 IU = 160 IU). To employ this protocol, the insulin solution provided by 

pharmacy required dilution by the researcher. A single spray of the nasal pump 

contains 0.1ml solution. The insulin solution (500 IU/ml) dispensed by pharmacy was 

diluted with 0.5ml of saline solution to create a 2.5ml insulin solution with a new 

concentration of 400 IU/ml and the resulting insulin concentration per 0.1ml spray 

was 40 IU as per the protocol requirements. As this study was double blinded the 

dilution steps were performed for every imaging session.  
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Nasal spray administration was performed approximately thirty minutes prior to 

functional data acquisition (resting-state BOLD acquisition) in an effort to acquire 

data after insulin concentrations in the central nervous system have increased, in line 

with the pharmacokinetics of intranasal insulin previously reported(Born et al. 2002). 

 

Participants were familiarised with the intranasal application procedure at the 

screening sessions and were then able to self-administer the dose under instruction 

from the head investigator at each of the imaging sessions. Participants received a 

total of 4 sprays, alternating between nostrils and leaving one minute between each 

spray to allow for sufficient diffusion time and to avoid the dose running out of the 

nostrils. Participants assumed a bent forward position and used their left hand to 

administer to the right nostril and vice versa (presented in Figure 3.2.2). Following 

each administration spray, participants were instructed to hang their head down and 

forward to prevent any fluid ‘run out’ and also to take advantage of gravitational 

forces, in an effort to facilitate droplets to travel towards the posterior regions of the 

nasal cavity (see Figure 3.2.2) 
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Figure 3.2.2 Nasal Self Administration process. The nasal administration process starts with 
the participant holding the spray between the thumb and fingers. The nasal pump nozzle is 
then inserted into the nose using the opposite hand, the image shows the right hand being 
used for the left nostril. The participant then bends forward, keeping the spray bottle upright 
and administers a single dose (spray). Immediately after administration the participant hangs 
there head down to prevent the dose running out of the nose and also to help the dose travel 
to the posterior region of the nasal cavity with the pull of gravity. Participants would only hang 
for 15-20 seconds or so, as instructed by the researcher.  
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The insulin solution carried a strong scent which was not replicated by the placebo 

solution. Prior to nasal administration the pump required ‘priming’. Priming requires 

spraying the pump 3-4 times in the air in order to fill the pump and pump feeding 

tube with the solution. To avoid scent detection and potential unblinding by either 

the participant or the researcher a distraction protocol was implemented. 

Immediately before dosing the participant was given a ‘dummy’ pump defined as a 

“practice pump” which was filled with diluted TCPä solution. The participant was 

instructed to spray the pump into the air 5-6 times with both right and left hands in 

preparation for dosing and to ‘warm up’ their hands. At the same time the researcher 

primed the nasal pump that was to be used for the study by spraying in the air 3-4 

times. By spraying both fluids simultaneously, the scent of the solution under 

investigation was masked by the strong smelling TCP and thus both the researcher 

and participant remained blinded to the treatment.  

 

3.2.4 Visual analogue scale (VAS) scores 

Prior to entering the scanner and also imminently after scanning had terminated the 

participants completed visual analogue scales (VAS) to assess subjective hunger. This 

type of subjective rating is reproducible and a powerful marker of subjective appetite 

and hunger (Flint et al. 2000).  

 

The question was “how hungry do you feel right now?” and each participant 

answered by placing a mark on a 10cm scale from “not at all” to “very”. The first of 

the hunger score VAS assessments was performed after dosing and therefore these 

hunger VAS scores will be termed ‘pre-scan’ and not pre-dose from here on in.  
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3.3 Imaging Protocol 

The SNIFAR study adopts a multi-modal MR imaging approach to investigate the 

effects of intranasal insulin on brain function. The following sections will provide the 

methodologies used for each component of the imaging protocol, the principles of 

each of these techniques are described in chapter 2. In an effort to aid the reader, 

the individual analysis techniques for each component will be detailed in each 

chapter. The following sections will highlight the main acquisition techniques and 

give information on the tasks that were implemented, and the equipment used in 

the functional paradigm. Furthermore, pre-processing that was common to all the 

functional imaging data will also be discussed.  

 

 

 

 

 

 

 

 

Figure 3.3.1 Imaging protocol for the SNIFAR study. Different colours refer to a different category of 
image acquisition, Blue = structural, Green = resting-state, Dark blue and purple = task based fMRI 
BOLD. * Food Picture fMRI data was collected for another study.   
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3.4 Image Acquisition 

All scanning was conducted using a MR750 3 Tesla GE Discovery Scanner (General 

Electric, Waukesha, WI, USA) with a 32-channel receive only head coil. Each 

participant was provided with a button box (2 buttons, left and right), this device was 

placed in their right hand to allow for selections during task performance. 

Physiological data for each participant was also recorded for each participant using 

bellows (for breathing rate) wrapped around the diaphragm and a pulse oximeter 

(for heart rate) placed on the index or middle finger of the left hand. 

3.4.1 Anatomical image acquisition  

Structural images were acquired for each participant at the beginning of the scanning 

protocol. T2 and Fluid Attenuated Inversion Recovery (FLAIR) images were acquired 

during the first imaging session. The Centre for Neuroimaging Science’s local policy 

requires acquisition of a T2 weighted and FLAIR image for every participant studied, 

these are assessed by a radiologist in the event of any incidental pathological 

findings.  

3.4.2 T2 weighted 

For each participant an axial T2 weighted fast recovery fast spin echo (FR-FSE) image 

was acquired with the following parameters: slice thickness (∆𝑧)=2mm, slices = 72, 

slice gap = 2mm, TR = 4380ms, TE = 65ms, flip angle = 111°, matrix size (DM) = 

320x256 with a Field of View (FOV) = 24cm. Acquisition time 2:03 min. 

3.4.3 FLAIR 

For each participant an axial T2 FLAIR image was acquired with the following 

parameters: slice thickness (∆𝑧)=4mm, slices = 36, slice gap = 4mm, TR = 8000ms, TE 

= 65ms, Inversion Time (TI) = 2000ms, flip angle  = 111°, DM = 256x128 with a FOV = 

24cm.  Acquisition time 2:33 min. 
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3.4.4 T1 weighted  

At the second imaging session a high resolution (1.1 x 1.1 x 1.1 mm) T1 weighted 

image was acquired at the beginning of the protocol. The T1 weighted image was 

used in the SNIFAR study for co-registration and normalisation of functional imaging 

data to Montreal Neurological Institute (MNI) standardised space.  

 

This sequence used a T1 weighted 3D Magnetisation Prepared Rapid Acquisition 

Gradient Recalled Echo (MP-RAGE) with the following parameters: slice thickness 

(∆𝑧)=1.2mm, slices = 196, TR = 7.312ms, TE = 3.016ms, inversion time (TI) = 400ms, 

flip angle (FA) = 11°, matrix size (DM) = 256x256 with a FOV = 27cm.  Acquisition time: 

5:37 min. 

 

3.4.5 Resting state BOLD 

For each participant a resting state BOLD timeseries was acquired using a multi-echo 

EPI sequence. The multi-echo EPI sequence was chosen for this part of the study due 

to documented effects of artefact removal that can be achieved through the 

implementation of the multi-echo independent component analysis (ME-ICA) 

denoising algorithm proposed by this approach (Kundu et al. 2012).  

 

For the acquisition of these data in SNIFAR study participants were instructed to look 

at a white ‘fixation’ cross presented to them on a black projector screen. Participants 

were instructed to keep still for the duration of the scanning and to let their mind 

wander naturally. The projector screen was situated at the back of the scanner bore. 

 

3.4.6 Resting state perfusion - Arterial Spin Labelling 

Resting state Cerebral Blood Flow (CBF) data was acquired using a 3D-pseudo 

continuous (3D pCASL) sequence. The sequence was used with a long label duration 

of 3500ms to maximise the signal-to-noise-ratio of this measurement (see details of 

long labelling in section 2.2.3.  
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As in the case of the resting state BOLD scan, participants were instructed to look at 

a white ‘fixation’ cross presented to them on a black projector screen. Participants 

were instructed to keep still for the duration of the scanning.  

 

3.4.7 Taste task  

The taste paradigm was performed as the second functional task in the SNIFAR 

protocol. The taste task was designed to evaluate the effects of receiving three 

different taste stimuli whilst in the scanner. This task employed an MR compatible 

system capable of delivering a pre-defined volume (0.5mL) of liquid to the 

participants during fMRI-BOLD acquisition.  

 

3.4.7.1 Taste delivery system   

The taste delivery system is known as the “MR Fluid Liquid Automatic Vendor (MR-

FLAV) and was designed and built by the Engineering Section of the Department of 

Neuroimaging, KCL. The device is an automated, high speed liquid delivery system 

that dispenses a calibrated bolus of 0.5mL. The dose is restricted to 0.5mL to 

minimise any swallowing difficulties that may occur with a larger bolus whilst laying 

down; and to prevent the possibility of the fluid blocking the subjects’ airways. The 

MR FLAV system can be broken down into three constituent parts: 1) the Pneumatic 

control device which resides in the scanner control room, 2) the dispensing unit 

which houses the liquid reservoirs and calibrated dose syringes and 3) the delivery 

tube which extends from the main unit to the subject’s mouth (see Figure 3.4.2 and 

Figure 3.4.1). 

 

The pneumatic control device is located in the MR control room and is the driving 

force behind the delivery pump system. This unit translates the paradigm commands 

into a pneumatic programmed sequence. The device receives air inflow and pumps 

this out as pressurised air along the 4-metre long piping tubes to the dispensing unit 

which is located in the scanner room, at the foot of the scanner bed.  
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The dispensing unit itself is MR safe and for this study was situated under a pillow, 

underneath the participants’ legs. The dispending unit contains four separate 

reservoirs linked to 4 different syringes. Upon a taste delivery trigger, the syringe 

which is calibrated to 0.5ml is pneumatically pushed from the pressurised air, 

expelling a 0.5mL bolus of fluid along the delivery tube (see Figure 3.4.3.B). After 

delivery the syringe mechanism retracts via pneumatic suction which draws up the 

next 0.5 mL bolus from the reservoir, ready for the next administration.  

 

The delivery tube extends from the dispensing unit to the head coil. In the internal 

part of the head coil there is a custom designed cradle/holder that holds the delivery 

tube during the taste task. At the end of the delivery tube is a solid mouthpiece 

shaped like a baby bottle teat which is purposefully designed to fit disposable rubber 

baby bottle teats over its surface (see Figure 3.4.1). 

 

The system requires filling each reservoir with the experimental taste liquids and 

preparing the system so no air bubbles are within the liquid containing pipes or 

syringes.  
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Figure 3.4.1 The pneumatic controlled device is not MR compatible and is located in the control 
room. The Dispensing unit is located in the scanner room and was placed underneath the 
participants legs in this study. The dispensing unit contains the calibrated syringes and 
reservoirs. The delivery tube extends from the dispensing unit into the bore of the scanner to 
the participants mouth. 

  

Figure 3.4.2 Taste bolus delivery mouthpiece. The mouthpiece is shaped like a baby-bottle teat 
and perfectly fits rubber disposable teats (left). The mouthpiece is an outlet for the three taste 
stimuli and has a separate outlet for each taste solution (right). 
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3.4.7.2 Taste stimuli 

 

The taste stimuli used for this paradigm were selected to examine the primary taste 

response to sweet stimuli. Two sweet stimuli were used; a sucrose solution and a 

non-nutritive, low calorie, sweetener solution. In addition, a control mineral water 

solution was the third taste stimulus. Each taste stimulus was prepared the evening 

before scanning and was kept at 4°C in the fridge overnight. On the morning of 

scanning each taste stimulus was loaded in the designated reservoir prior to subject 

arrival, approximately an hour before scanning. The taste stimuli maintained a cool 

temperature by being in the reservoirs. For every visit, this protocol was followed 

and therefore one can assume that the temperature of stimuli was similar across all 

scanning sessions.  

 

Water (control): 

Bottled water (‘Harrogate mineral water’) was used as a control solution for this 

paradigm. Water is not tasteless and has been shown to activate the taste cortex 

(Zald and Pardo 2000). The taste of water however is markedly less intense in 

comparison to the two sweet stimuli, and therefore it is suitable in this instance as a 

non-sweet control stimulus.  

 

Sucrose: 

The sucrose solution was produced by diluting 12.5g (approximately 3 teaspoons) of 

table sugar (99.99% sucrose) (Caster Baking Sugar, Tate and Lyle) into 150ml of the 

mineral water (bottled Harrogate water - vehicle). This produced a 0.08g/ml 

(sucrose/water) stock solution. Each 0.5ml sucrose bolus delivered contained 0.04g 

of sucrose.  

 

Stevia: 

Stevia solution was created using a granulated sweetener made from the stevia leaf 

marketed as TruviaÒ (The Truvia Company LLC).  In reference to the manufacturer’s 

notes, TruviaÒ is three times sweeter than sugar. Therefore, stevia solution, the 

name that will be used herein, was produced by diluting 4.2g (approximately 1 
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teaspoon) of TruviaÒ into 150ml of bottled water. Each stevia solution stimuli 

contained 0.014g of TruviaÒ from a stock stevia solution of 0.028g/ml.  

 

Stevia is a natural sweet-tasting non-nutritive (calorie free) extract from the Stevia 

rebaudiana  leaves indigenous to South America (Goyal, Samsher, and Goyal 2010). 

Extracts from the stevia leaf are being used more regularly as alternative sweeteners 

to sugar. Interestingly, stevia has shown beneficial effects on postprandial blood 

glucose and plasma insulin concentration in humans (Anton et al. 2010). 

Furthermore, meals sweetened with stevia showed comparable satiation effects 

when compared with sucrose sweetened meals, in conjunction with decreased 

postprandial glucose and insulin responses (Anton et al. 2010). The main constituent 

of TruviaÒ is erythritol, a non-sugar carbohydrate that belongs to the family of 

polyols.  Steviol glycoside and extract from the stevia leaf, is the other constituent 

within TruviaÒ. TruviaÒ is FDA approved and is one of the leading stevia based 

products on the market in the US with Companies such as Coca-Cola using stevia 

based extracts and sweeteners like TruviaÒ in some of their products as sugar free 

alternatives. 

 

3.4.7.3 Taste dispenser setup in situ 

The taste task occurs midway through the imaging protocol and therefore the 

researcher had to enter the scanner room for the setup of this paradigm. The 

participant was informed to remain as still as possible whilst the researcher 

positioned the MR compatible taste dispenser for the task. 

 

The taste outlet mouthpiece was positioned into the right hand-side of the 

participant’s mouth between the teeth and cheeks. This position ensured comfort 

for the participant for the duration of this paradigm. The taste outlet positioning was 

similar for all participants to ensure taste bud stimulation remained similar across all 

subjects. (shown in Figure 3.4.3.A). 
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3.4.8 Experimental paradigm 

Participants became familiar with the experimental procedure at the screening 

session and completed a mock run of the paradigm outside the scanner without the 

taste stimuli. Furthermore, participants were reminded of the details of the paradigm 

prior to scanning by the researcher. The details of the paradigm and the three 

different trials are shown in Figure 3.4.4. 

 

This was an ‘event-related’ paradigm.  At the start, one of three abstract, arbitrary 

fractal images were presented at the beginning of each trial, with each fractal image 

being associated with either the water, sucrose or stevia stimulus. This relationship 

Figure 3.4.3 Schematic drawings of the taste dispenser in situ and during bolus delivery. A) The 
taste paradigm requires the taste dispenser box to be situated close to the bore of the scanner, 
either on a side table (seen from this picture) or under the participant’s legs. The outlet tube and 
dispenser mouthpiece are positioned in the participant’s mouth, inside the scanner. B) Schematic 
drawings of the syringe pumps that are used to administer the taste bolus, calibrated to 0.5ml. The 
three pictures (from left to right) show the evolution of a single taste bolus delivery. 
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between presented image and taste stimuli remained constant throughout the entire 

paradigm. This visual stimulus, referred herein as ‘the cue’, was presented for 2s 

either on the left or the right hand side a white fixation cross, positioned in the 

middle of the screen. Upon cue presentation, the participant was required to signal 

the direction of the cue presentation using an MR compatible button box. The period 

between the cue and impending taste stimulus delivery consisted of a white fixation 

cross and was set to 3s for every trial. Following this, the cross went from white in 

colour to green which signalled delivery of the taste stimulus. The delivery signal was 

present for 3s, however the taste stimulus (0.5ml delivery bolus) itself was delivered 

over the first 1.5s of this event. Following bolus delivery the participants were 

required to keep the liquid bolus in their mouth until the presentation of a “swallow 

now “ prompt, known as a paired trial (Figure 3.4.4). The time spent with the stimulus 

in the mouth varied from 3 to 6s and began when the fixation cross returned to white 

in colour from green. The “swallow now” cue was presented for 2s which was 

followed by a fixed inter trial interval of 1.5s. Trials were presented in a pseudo-

random order, so that each taste trial was never followed by the same taste. On 40% 

of the trials the taste stimulus was not delivered. This event is termed ‘withheld 

delivery’. In these instances, the visual cue was presented, however when the cross 

turned green the taste stimulus was withheld, referred to as ‘withheld delivery’. As 

there was no stimulus delivered the swallow prompt was not presented/required 

and the next trial started following the inter-trial interval (see Figure 3.4.4) 

 

An entire run of this paradigm consisted of 45 trials, 9 delivery trials and 6 delivery 

withheld trials for each of the three taste stimuli. This paradigm consisted of 2 runs 

in total, performed in succession. 

 

The first time each taste stimulus was delivered and swallowed two questions 

followed: “how much do you like the taste?” and “how sweet did you find this 

taste?”, for which the visual analogue scale (VAS) ranged from “not at all” to “very” 

(0 to 100, respectively).  The participant responded by pressing the left and right 

buttons of the button box, using their index and middle fingers, respectively, thus 

placing their chosen score in a visual analogue scale (VAS).  These questions were 
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also presented following the final stimulus, at the end of the second run (VAS trial – 

see Figure 3.4.4), Fractal cues were different between visits and the paradigm 

playlist, which determined the order of presentation of the stimuli, also differed 

between visits.  

 

 

 

 

 

Figure 3.4.4 A diagram to show the three different trial types of the taste paradigm. Black 
boxes represent the events that are modelled as events of interest (cue, delivery and 
withheld delivery, respectively). Grey boxes represent events that are modelled in the 
first level model but not of interest or used for contrast creation (swallow and VAS scoring 
periods). A paired trial is the most common trial type and involves the delivery of a 0.5ml 
bolus/stimulus following visual cue presentation. An unpaired trial does not deliver the 
0.5ml bolus as expected, instead nothing is delivered. A VAS trial is when the delivery of 
the bolus is followed by two VAS questions, this happens for each taste at the very 
beginning of the first run and at the very end of the second run. 
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3.5 Image Processing  

3.5.1 Co-registration and normalisation of T1 weighted images  

All the T1 weighted images from all subjects were used to create a group template 

using Advanced Normalisation Tools (Avants et al. 2014; Avants et al. 2011) (ANTs, 

templatecreate), which was registered to standardised MNI space using the FLIRT 

routine  (Jenkinson and Smith 2001; Jenkinson et al. 2002) of the Functional Software 

Library (FSL, FMRIB, Oxford University, version 3.2, http://www.fmrib.ox.ac.uk/fsl ).  

The parameters for co-registration of the T1 weighted image to the group template 

(T1 to template) and also from the template to MNI space (template to MNI) were 

saved as text files to be later used for functional image registration (see Figure 3.5.1). 

The MNI template had an isotropic resolution of 2mm3.  

 

All functional imaging datasets were pre-processed prior to group level analysis. 

Specific details for image pre-processing differed between pCASL, multi-echo EPI and 

single echo EPI task-based datasets and therefore the individual pre-processing 

pipelines will be outlined in the respective chapters. However, all images whether 

CBF maps or time series data were co-registered and normalised to standard space 

Montreal Neuroimaging Institute (MNI) co-ordinates to facilitate group level 

inferences . 

 

This involved creating a functional image to subject T1 co-registration (functional to 

T1) transform. And then the final stage involved application of three transformation 

parameters to the T1-weighted image using ANTs (Avants et al. 2011). The three 

transform parameters are defined as: 

• Functional to T1 

• T1 to Template 

• Template to MNI 
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3.6 Lunch and Discharge 

Following the final blood sample collection, participants were given a lunch meal 

which consisted of a sandwich, ‘crisps’ and a piece of fruit. The volume of food 

consumed was not assessed in this study.  Participants discussed elements of the 

scanning with the researcher and after a final Blood Pressure and Heart Rate 

measurement, they were discharged.  

 

 

 

Figure 3.5.1 Pre-processing pipeline for co-registration and normalisation of images to MNI. The 
transformation files created at each point in the pipeline are outlined in blue. These three steps show 
the last of the pre-processing steps that would be taken for all the functional image acquired. The 
functional image datasets were pre-processed differently for each modality and is not shown in this 
diagram.  
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Chapter 4  Nasal Pump 
characterisation 
 

Nasal administration of insulin has been utilised as a drug delivery method and 

research tool to supply insulin directly to the brain; in order to study its effects with 

limited interference from systemic insulin-glucose interactions. Nose-to-brain 

delivery bypasses the blood brain barrier (BBB), by diffusion across olfactory epithelia 

and effectively reaches brain tissue within 30-60 min (Banks, Owen, and Erickson 

2012). Thus, nasal insulin administration can be utilised as a tool for research in 

patients with diabetes, obesity and Alzheimer’s disease where regular receptor 

mediated transport of insulin across the BBB to the brain tissue is disrupted (Craft et 

al. 1998; Kullmann, Heni, Veit, Scheffler, Machann, Häring, et al. 2015). For optimum 

delivery to the brain via this route, insulin must be deposited in the upper and 

posterior regions of the nasal cavity. Nasal cavity anatomy varies considerably 

between subjects and thus achieving maximal delivery for every subject is not always 

feasible using a single device. However, previous studies using both in vitro nasal cast 

experiments and computational modelling methods (Inthavong et al. 2006; 

Inthavong et al. 2008) have provided a general framework about nasal pump 

performance characteristics to achieve appropriate drug deposition in this region. 

This chapter will introduce the reader to some general aspects of nasal 

administration for drug brain delivery and the process by which I characterised and 

optimised a nasal pump to achieve successful nose to brain drug delivery.  
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4.1 Introduction  

Delivery of therapeutic agents via the nasal cavity has long been utilised for 

treatment and research purposes alike (Ghori et al. 2015). The nasal cavity is a largely 

accessible route of drug administration and is well tolerated in most people and 

patient populations (Guastella et al. 2013). The nose is the main entrance point for 

inhaled air in humans and majority of land animals (Phalen 1976). The nasal cavity, 

which is situated just beyond the nostrils is the first anatomical landmark within the 

mammalian respiratory system. The nasal cavity acts primarily to filter and also 

modify inhaled air for efficient gas exchange within the lower airway structures. In 

addition to this air conditioning role, the nasal cavity contributes to many other 

functions such as olfaction, speech production and also taste which is permitted via 

the complex architecture and physiological functioning of the nasal cavity (reviewed 

thoroughly in (Geurkink 1983)).   

 

The nasal cavity is a large structure that spans lengthways from the nasal vestibule 

to the nasopharynx (»120-140 mm in length) and from the cavity floor to the cavity 

ceiling (cribriform plate) (»40 mm in height) in adults (see Figure 4.1.1 and Figure 

4.1.2). The nasal cavity is subdivided into two chambers by a cartilage wall called the 

nasal septum (Ghori et al. 2015). Within each of these chambers there are three 

further regional subdivisions: the vestibular, turbinate and olfactory regions, 

respectively (Cheesman and Burdett 2011). The vestibular region acts primarily to 

filter and remove large particles (10𝜇𝑚) within ambient air during inhalation. More 

posteriorly resides the turbinate region, which consists of upper, middle and lower 

turbinates’ and are comprised of mucus secreting epithelial cells which serve to 

humidify incoming air and create flow turbulence effects for efficient gas exchange 

in the lower respiratory system (Kim, Kim, and Kwon 2018). The olfactory region, 

which is positioned just below the ethmoid bone and cribriform plate is responsible 

for odour recognition and comprises only 8% of the nasal cavity surface area (Ghori 

et al. 2015). The olfactory region consists of a mixture of cell types that have discrete 
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functionality which form several layers to bridge the gap between the nasal cavity 

and the CNS.  

 

 

The olfactory bulb sits on top of the cribriform plate which is a sieve like structure at 

the most superior region of the nasal cavity and has olfactory nerve endings that 

protrude through into the olfactory region of the nasal cavity.  

 

 

Figure 4.1.1 The anatomy of the nasal cavity. A) Schematic showing the nasal cavity from a sagittal 
view. Labelled are the vestibular, turbinate and olfactory regions of the nasal cavity as well as the 
olfactory nerve endings and air flow passage. B) Representative sagittal T1 anatomical MRI image 
showing the nasal cavity and the three nasal regions (vestibular, turbinate and olfactory, respectively). 

 

Figure 4.1.2 Representative MRI images showing the olfactory bulb and cribriform plate 
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The exact mechanisms of drug delivery via the nasal cavity to the CNS are not yet 

entirely understood, or agreed upon amongst the nose-to-brain drug delivery 

community. However, there is substantial agreement that the nerve cells and 

bundles connecting the nasal passages to the CNS (olfactory and trigeminal nerves) 

are heavily involved in this process (Pardeshi and Belgamwar 2013). It is most likely 

that nose to brain delivery is possible via several routes (olfactory nerve, trigeminal 

nerve, lymphatic and CSF pathways) and that specific drug delivery characteristics 

such as mode of delivery and formulation dictate which of these routes may 

dominate (Pardeshi and Belgamwar 2013). To this end, this chapter will briefly 

discuss the relevant olfactory and trigeminal nerve pathways as these are considered 

the most prominent and significant pathways for CNS drug delivery via the nasal 

cavity (Agrawal et al. 2018; Dhuria, Hanson, and Frey 2010).   

 

 

4.1.1 Nose to brain drug penetration via nerve pathways 

Whether through the olfactory or trigeminal nerve pathway, nasal drug delivery to 

the brain can be broken down into three distinct steps: 

1. Drug transport across the nasal epithelial barriers 

2. Drug transport to brain tissue entry points  

3. Drug transport from brain tissue entry points to other brain tissue areas  

 

For each of these steps there exist several potential mechanisms of which some are 

more validated and accepted than others. A thorough explanation of all the possible 

mechanisms is beyond the scope of this chapter and so the next sections will highlight 

only the most significant and accepted mechanisms. The reader should be aware that 

the majority of these mechanistic studies have been conducted in animal models 

which do not necessarily translate well to human models especially those conducted 

in rodents (Lochhead and Thorne 2012).     
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4.1.2 Olfactory nerve pathway 

The olfactory nerve is comprised of the olfactory nerve endings, olfactory bulbs and 

olfactory tracts Figure 4.1.3 which connect the olfactory regions of the nasal cavity 

with the olfactory cortex (inferior pre frontal cortex) as well as the amygdalae and 

hippocampal structures (Dhuria, Hanson, and Frey 2010).  

 

Olfactory nerve cells project from the olfactory bulb through the cribriform plate to 

the olfactory epithelium of the nasal cavity and are crucial for odour sensing. In 

combination with the columnar supporting cells and basal cells the olfactory nerve 

cells help to form the a blood brain barrier (BBB) at the level of the olfactory 

epithelium (Agrawal et al. 2018). Direct contact with peripheral toxins within the 

nasal cavity requires these olfactory nerve cells to regenerate every 3-4 weeks. This 

dynamic nature and constant regeneration results in immature cell formations (see 

Figure 4.1.3) that lack important protein components for BBB integrity and thus is  
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Figure 4.1.3 Olfactory bulb, nerves and epithelium. 
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considered a ‘leaky’ barrier (Balin et al. 1986). Furthermore, within this highly 

innervated region of the olfactory region there are myelinated cells, called olfactory 

ensheathing cells which wrap over the protruding olfactory nerve cell axons. As well 

as myelination, these ensheathing cells create fluid filled spaces between the 

olfactory nerve cells, peri-neuronal spaces, even during olfactory nerve cell 

regeneration (Lochhead and Thorne 2012).  

4.1.2.1 Drug transport across the nasal epithelial barriers 

Drug transport across the olfactory epithelium can occur via two mechanisms: the 

intra-neuronal and extra-neuronal route. The intra-neuronal route is extremely slow 

(up to 24 hours) and involves the transport of drug molecules along nerve bundles 

via intracellular and transcellular transport mechanisms (Kristensson and Olsson 

1971). The extra-neuronal route on the other hand, is recognised as the predominant 

mechanism for nose to brain drug delivery of therapeutic agents. If sufficient drug 

molecules are deposited at the region of the olfactory epithelium these molecules 

can diffuse through the leaky barrier permitted by the creation of peri-neuronal 

spaces by olfactory ensheathing cells. Access via these peri-neuronal openings has 

been shown in rodents as well as non-human primates (Balin et al. 1986). Once 

successfully past the olfactory epithelium the molecules will have to cross the lamina 

propria to reach the subarachnoid space and CSF.  

4.1.2.2 Drug transport to brain tissue entry points  

Once in the lamina propria these molecules and substances could be absorbed or 

drained into the nasal vascular system or cervical lymph nodes, as a result of the rich 

vasculature and nasal lymphatics within the lamina propria (Dhuria, Hanson, and Frey 

2010). Those substances that avoid uptake at this level can proceed through the peri-

neuronal spaces from the lamina propria into the subarachnoid space and CSF 

beyond the cribriform plate. Furthermore, it has been shown that once in this space 

there are small openings for which some substances can enter into nerve bundle 

sheaths from the subarachnoid/CSF space (Faber 1937). Diffusion into the outer 
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nerve bundle compartments is thought to be established via a diffusion gradient and 

that sufficient quantities of substances can enter via these bulk movement effects 

(Jansson and Bjork 2002).  

4.1.2.3 Drug transport from brain tissue entry points to other brain tissue areas 

The peri-neuronal spaces connecting to nerve bundles are also surrounded by large 

amounts of blood vessels and can also provide suitable perivascular spaces for drug 

transport. The theory for drug molecule movement from the olfactory site to other 

regions on the brain relies on bulk flow within these perivascular and peri-neuronal 

spaces. This bulk movement is enhanced by the pulsatile motion of cerebral arteries 

(Ying 2008). Once at these more distal regions within the brain, substances can either 

diffuse into brain tissue or bind to cell receptors for cell mediated transport or as an 

agonist/antagonist. Studies have suggested that utilisation of this extra-neuronal 

route can produce adequate drug concentrations within the CNS in roughly 30 mins 

in rodents (Ichimura, Fraser, and Cserr 1991). With regards to insulin delivery to the 

brain via intranasal administration Born et al., showed that a low dose of insulin 

(40IU) administered with a nasal spray device could produce an increase in insulin 

concentrations measured from CSF within 30 minutes in humans compared to 

baseline measures (Born et al. 2002). This seminal paper showed for the first time 

that intranasal delivery of neuronal active peptides show increased levels in the CNS 

compartment as measured via CSF (Born et al. 2002).   

4.1.2.4 Trigeminal nerve pathway 

In addition, the trigeminal nerve, which is the largest cranial nerve, has connections 

with the nasal cavity, oral cavity and eyelids via the V1, V2 and V3 branches of the 

trigeminal nerve, respectively. The ophthalmic nerve bundle (V1) and maxillary nerve 

bundle (V2) have processes that connect from the midbrain to the olfactory region 

and also the turbinate regions of the nasal cavity, respectively (Kamel and Toland 

2001). The turbinate region of the nasal cavity is rich in ciliated mucous producing 

cells crucial for toxin clearance and so, it is unlikely that large amounts, if any, of drug 

molecules can enter the CNS at this entry point. It is therefore suggested that the 
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mechanisms of entry via peri-neuronal spaces at the olfactory epithelium and 

superior regions are present for this route also (Lochhead and Thorne 2012). Bulk 

movement of substances and pulsatile motion enhancements, as mentioned with the 

olfactory route, is likely to drive movement alongside the trigeminal nerve route. The 

overall trigeminal route, from nerve endings to midbrain entry sites, is greater in 

length than the olfactory route  and is predicted that this route will take longer for 

compounds to travel along.  

 

For both of these complex nose to brain administration routes the active 

pharmaceutical must first traverse beyond the vestibular and turbinate regions and 

deposit sufficient dose content in the olfactory region. Diffusion through these extra-

neuronal pathways relies heavily on bulk movement and it is essential that these 

active substances have enough residence time within the olfactory region to facilitate 

movement into central nervous system compartments (Agrawal et al. 2018). 

4.1.2.5 Nose to brain delivery considerations 

This study formally characterises three commercially available nasal spray devices 

using the same dose of insulin solution that was implemented in the imaging phase 

of the study. Intranasal delivery of insulin solution in humans has previously been 

used in other research projects due to the quick onset of action in the CNS coupled 

with a limited effect on peripheral glucose concentrations (Born et al. 2002; 

Kullmann, Heni, Fritsche, et al. 2015). Most of these studies have used a nasal spray 

device and liquid solution which when sprayed (termed ‘actuated’), produces a 

plume of liquid droplets that travels through the nasal cavity. Some of these droplets 

will deposit on the vestibular, turbinate and olfactory regions or if small enough can 

pass through to the lungs. Hopefully, the mechanistic definitions above illustrate the 

complexity of this administration to the reader. The next sections will highlight the 

relevant nasal anatomy, device mechanisms and formulation properties that must be 

considered for nose to brain drug delivery of insulin and will give the reader sufficient 

knowledge to understand the rationale and methodological aspects behind this 

characterisation study. 
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4.1.2.6 Nasal anatomy considerations 

Firstly, the nasal cavity is architecturally complex with thin air filled passages that 

twist and turn from the nostrils through to the trachea. The narrowest region of the 

nasal cavity is called the nasal valve and is situated roughly 2-3 cm beyond the nostril 

entrance (Ghori et al. 2015). The nasal valve is the narrowest and most difficult of 

obstacles for any nasal delivery device to overcome (Haight and Cole 1983). Nasal 

valve cross sectional area is at its smallest during sharp inhalation through the nose 

and thus nasal administration is sub-optimal when sniffing or inhaling sharply 

through the nose. Optimal administration should be performed during light 

inhalation when the nasal valve is not minimal and there is a nasal air flow present 

(Djupesland 2013).  

 

The nasal cavity undergoes dynamic cleaning and congestive swelling every 2-4 

hours, alternating between the left and right sides, known as the nasal cycle. This 

autonomic mechanism results in one side being more congested (see Figure 4.1.4) 

and thus leads to a reduced cross sectional area within that nasal cavity passage, 

adding further hurdles for nasal spray droplet delivery (Djupesland 2013). There is 

little that can be done to avoid this, practically. However, implementing an 

administration protocol that alternates between nostrils will help to avoid either 

problems that might be encountered by using a single nostril.  
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4.1.2.7 Nasal pump 

In this experiment, three commercial nasal spray devices were characterised. All the 

devices are known as ‘metred nasal pumps’, which means that the pump itself will 

dispense a pre-determined, fixed volume of liquid (dose) for every spray/actuation, 

permitted if actuation is performed correctly. All devices were metred to 0.1ml per 

spray, which is common for most nasal spray applications and is at the top end of the 

absorption capacity of the nasal cavity. Figure 4.1.5 shows a typical nasal spray  

pump, very similar to the pumps characterised in this study. The nasal device consists 

of three parts: The actuator, pump mechanism (and dip tube) and the bottle. To 

actuate the device, the actuator is squeezed down which produces a spray/plume 

that is released from the orifice at the tip of the actuator. After actuation, the pump 

will release naturally due to spring mechanism and will simultaneously draw up the 

next dose via the dip tube. Generation of a plume is key to the success of any nasal 

pump. Upon actuation the metred dose volume inside the pump (0.1ml in this 

instance) is put under sufficient pressure causing the dose to be propelled into 

Figure 4.1.4 Coronal View of Nasal Cavity in a healthy 
volunteer. Notice the congestion on the right hand side, which 
would be due to the nasal cycle. 
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streams that run up the side of the nozzle. At the top of the nozzle these streams 

enter into a small cylindrical compartment called the swirl chamber via inlets. Within 

this chamber a vortex is created which is expelled into the air through an orifice at 

the tip of the nozzle. The plume itself goes through several stages of development: 

initial phase, stable phase and end phase, with the stable phase being the most 

relevant and important for in vitro nasal spray characterisation (Fung et al. 2013). 

 

 

 

Figure 4.1.5 Nasal spray pump and actuation process. The nasal spray pump assembly consists of an 
actuator, the pump mechanism, dip tube and bottle. Pumps are actuated by applying a downward 
force onto the actuator which propels the liquid from the pump mechanism upwards. The liquid enters 
a swirl chamber and through this process produces sufficient force to propel out through the orifice, 
located at the top of the actuator, in the shape of a plume. Upon release, once a plume has been 
created, a spring mechanism returns the actuator back to its normal position and simultaneously a 
metred dose is drawn up via the dip tube.  
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Assessment of nasal cavity deposition pattern from nasal administration devices  can 

be conducted in vivo, in vitro and in silico, using radiolabelled isotope imaging, human 

nasal cast model studies and advanced computational modelling, respectively 

(Suman et al. 2002; Inthavong et al. 2006; Pu et al. 2014). These types of evaluations 

are valuable for nasal delivery system assessment pipelines and observations from 

these datasets has provided a generalised framework of nasal pump characteristics 

that that are optimal for olfactory drug deposition leading to efficient nose-to-brain 

drug delivery with a typical nasal spray (Cheng et al. 2001; Inthavong et al. 2006; 

Newman, Moren, and Clarke 1988). Assessment of device characteristics such as the 

size of the droplets and plume shape can be assessed using more accessible in vitro 

techniques and therefore are useful as surrogate measures prior to or in the absence 

of nasal device deposition pattern analysis. These type of measures are also the first 

point of call for any device pipeline and are useful for determining reliability of spray 

performance.  

 

A nasal pump plume will contain a mixture of small and large droplets. For nasal 

delivery of any kind, droplets must be between 30 and 120𝜇𝑚. Larger droplets will 

show very poor nasal cavity penetration and tend to deposit in the anterior regions 

of the nasal cavity due to the inability to travel with the air flow (Dayal, Shaik, and 

Singh 2004). Smaller droplets on the other hand, will travel and deposit within the 

olfactory regions whereas very small droplets (< 10𝜇𝑚) can travel beyond this and 

penetrate into the distal regions of the respiratory tract and lungs, which can be very 

harmful (Agrawal et al. 2018). The distance and degree a droplet or particle can travel 

is dependent on the interactions with the environment in which it is situated and the 

inertial components of that droplet within that environment. Smaller droplets have 

less inertia than large droplets and therefore will follow airflow streamlines and are 

more likely to  avoid obstacles within the nasal cavity compared to large droplets 

(Inthavong et al. 2006). For olfactory epithelium deposition it is therefore crucial for 

a device to produce a consistent plume comprised of smaller droplets to reach this 

anatomically distal region within the nasal cavity.  
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The FDA released a guidance and recommendation document in 2003 that 

highlighted necessary parameter measurements and methodologies for in vitro 

characterisation of nasal sprays (FDA 2003). This was used as a reference for this 

study, and all methods were conducted to the standards set out in this guidance 

document.  

 

Laser diffraction is a method recommended to measure droplet size (FDA 2003). This 

is an optical method that measures the size of droplets in flight (following actuation) 

(see Figure 4.1.6). A plume is actuated through a horizontal laser beam that runs 

between a laser source and detector. The plume will cause the laser light to diffract 

as it passes through the beam, reducing the signal detected (obscuration). Following 

this, a distribution of obscuration is measured from which the droplet size 

distribution can be calculated over the lifetime of a single actuation or during the 

stable phase (FDA 2003). 

 

 

 

 

 

Figure 4.1.6 Schematic of the laser diffraction method setup.  
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Another aspect that needs to be considered for drug deposition inside the nasal 

cavity is the plume itself following actuation (Cheng et al. 2001). The plume is often 

cone shaped and a typical measure to assess the geometry of the plume is plume 

angle. This measure, which is conducted in vitro, is thought to be a useful 

determinant of penetration within the nasal cavity, particularly how much of the 

plume will penetrate past the nasal valve. One study showed that a narrow plume 

angle of 35° shows greater penetration beyond the nasal valve in comparison to a 

wider spray with a plume angle of 70° (Newman, Moren, and Clarke 1988).  

 

Measuring plume angle requires a sagittal image of the plume (side view) during the 

stable phase, when the plume is at its largest. Recommendations for plume angle 

methodology is through the use of a high speed digital camera and laser light sheet 

combination. For this, a high speed digital camera is positioned to capture the nozzle 

pump and the impending plume. A laser light sheet is projected across the space 

above the nozzle. During actuation the plume is sprayed upright and is dissected by 

the laser sheet thus becoming illuminated and captured by the high speed digital 

camera (see Figure 4.1.7).    

 

 

Figure 4.1.7 Schematic of the light sheet photography method setup. 
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Both droplet size and plume angle can be modified through the combination of the 

nasal delivery device and drug formulation (Dayal, Shaik, and Singh 2004). The drug 

formulation in this instance was the concentration of insulin that was to be used in 

the imaging phase of the SNIFAR study and therefore this aspect was not investigated 

or characterised in this study. In this study the primary objective was to characterise 

three nasal spray devices using in vitro measures of droplet size and plume angle with 

insulin formulation. Following this characterisation, the pump with the properties 

that best reflected olfactory deposition in humans would be adopted in this 

pharmacological investigation. Pump performance was compared to the generalised 

framework: a plume with a spray angle between 30° and 45° and droplets between 

20 and 50 µm (Cheng et al. 2001; Inthavong et al. 2006; Newman, Moren, and Clarke 

1988). The pump that has characteristics most similar to the generalised framework 

would be used in the SNIFAR study. In addition, testing a device is fit for purpose is 

very important and the current literature would suggest that this step is not routinely 

performed. This study is the first to report a preliminary nasal device testing stage 

with insulin, for use in a pharmacological human research study. 
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4.2 Materials and Methods 

Human Insulin (Humulin®, 500 IU/ml) was purchased from Eli Lilly, USA (Eli Lilly and 

Company, Cambridge, MA). Three nasal spray pumps (100 µL) were provided by 

Nemera (La Verpillière, France), the SP270+® with two crimp on actuator types (3959 

and 4290; Figure 4.2.1 A and B, respectively) and a new prototype device with a single 

crimp on nasal actuator (5701; Figure 4.2.1 C). An insulin stock solution was prepared 

by diluting the insulin with saline to create an insulin solution of 400IU/ml. The two 

SP270+® pump configurations and the prototype device were filled with 2.5 mL and 

4.5 mL of insulin solution (400 IU/mL), respectively, due to different length dip tubes. 

With this stock solution there was enough to fill 5 bottles for each pump 

configuration. For ease of differentiation, the tested pump combinations will be 

labelled pump 1, 2 and 3: 

• Pump 1 — SP270+® pump with 3959 actuator (n=5) 

• Pump 2 — SP270+®  pump with 4290 actuator (n=5) 

• Pump 3 — Prototype device with 5701 actuator (n=5) 

 

 

 

 

Figure 4.2.1 The three commercial pumps characterised with 
insulin formulation. 



 153 

 

 

All characterisation steps were performed in accordance with the Food and Drug 

Administration (FDA) guidance for industry document, that was designed to ensure 

nasal device analytical assessments were conducted to the highest quality (FDA 

2003). The analytical procedures were performed personally at Intertek Melbourn, 

(Intertek, Melbourn, Cambridge, UK) according to good manufacturing practices as 

part of a collaboration with King’s College London Institute of Pharmaceutical 

Sciences, Intertek Melbourn and Nemera.    

 

4.2.1 Droplet size measurement 

Droplet size was determined by laser diffraction using a Malvern Spraytec ® system 

(Malvern Instruments, Inc, Southborough, MA). A Proveris Vero® (Proveris  Scientific 

Corporation, Malborough, MA) automated actuator was also used for reliable and 

automated actuation of each pump configuration and is recommended over manual 

actuation by hand (FDA 2003). Actuation force was kept constant for all experiments 

and pump configurations at 6.8 kg. The automated actuator was placed between the 

Figure 4.2.2 A schematic showing the nasal pump characterisation pipeline that was implemented.  
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laser emitter and the detector lens at 90° to achieve vertical spray actuation. Data 

was collected at a single distance from the tip of the actuator to the middle of the 

laser beam (30mm) and a single actuation at this distance for each pump was tested. 

Data was processed and analysed using the Malvern software (Malvern Instruments, 

Inc, Southborough, MA). Plots of obscuration over time were used to manually 

identify the stable phase of each actuation, when the plume is most constant, which 

was selected for analysis. From this phase the point in the size distribution up to and 

including 10, 50 and 90% of the total sample volume ( known as Dv10, Dv50 and 

Dv90) , as well as the respirable droplets (<10 µm) were estimated for each pump 

and sample. Furthermore, a cumulative size distribution plot was created to help 

visualise the droplet size distribution and used to calculate the percentage of 

droplets that were in the range of 20-50 µm for each pump type.  

 

4.2.2 Plume geometry and spray pattern measurement 

A Proveris SprayView® setup and Proveris Vero® automated actuator (Proveris  

Scientific Corporation, Malborough, MA), actuation settings as above, were used to 

assess plume angle. The SprayView® setup couples a high-speed camera and a pulsed 

laser light sheet to capture high quality images of the insulin plume as it is emitted 

from the pump. For plume angle, the light sheet is positioned to dissect the centre of 

the plume, parallel to the plume flow. A single actuation is required for each pump 

sample.  

 

For image assessment the Proveris software was used (Viota Software, Proveris  

Scientific Corporation, Malborough, MA). Axial plume images with maximal image 

intensity, i.e. when the plume is at its largest, were identified from signal over time 

plots and were used for analysis. From this image the tip of the nozzle was located 

and defined as the origin point. From this origin, two lines were aligned along the left 

and right edges of the plume using a manual threshold selection process. The angle 

(plume angle) created by these two arms was measured in degrees (°). 
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4.2.3 Statistical analysis 

All processing and analysis for both droplet size and plume angle were measured 

individually for each pump sample (n=5) and then averaged together for each pump 

type. Data are presented as mean ± standard deviation. Unpaired t-tests were 

performed between data from all pump configurations for the measures obtained 

from droplet size, spray pattern and plume geometry analysis. P values were judged 

to p < 0.05 and p < 0.01 significance. All analysis was performed using R statistical 

analysis software (Rstudio - Version 1.1.453, Boston, MA, http://www.rstudio.org/).   
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4.3 Results 

4.3.1 Droplet size distribution 

Mean droplet size values for Dv10, 50 and 90 are presented in Figure 4.3.1. No 

significant differences in Dv10, 50 or 90 were seen between pump 1 or pump 2. 

Significant differences were seen between pump 1 – pump 3 (mean difference         = 

-5.9, -22.9 and -50.8, for Dv10 (p < 0.05), 50 (p < 0.05) and 90 (p < 0.001), 

respectively). Significant differences were also seen between pump 2 –and pump 3 

(md=-7.8, -26.2 and -55.6, for Dv10 (p < 0.001), 50 (p < 0.001) and 90 (p < 0.001), 

respectively). Respirable droplets (data not shown) for all pump configurations were 

very low (less than 0.7% for all devices), with no significant differences.   

 

 

 

Figure 4.3.1 Bar graph displaying the droplet size measures recorded. All measures were taken 
at a 30mm distance. Values plotted are mean ± SD (n=5, for each pump). * p < 0.05, ** p < 
0.01, unpaired t-test.  
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From the droplet size distributions the proportion of droplets between 20-50𝜇𝑚 was 

measured and has been presented in Table 4.3.1. Although not statistically tested, 

pump 3 showed the smallest proportion of droplets in this range (29.76 ± 11.58%) 

with pump’s 1 and 2 showing larger proportions (48.88 ± 2.06% and 51.38 ± 5.32%, 

respectively) (this can also be seen graphically in Figure 4.3.2).  

Table 4.3.1 Median droplet size values for each pump as well as the % of 
droplets that are between 20-50 µm. Values shown are mean  SD.  

Figure 4.3.2 Droplet size distribution curves for each pump. This graph shows the cumulative frequency 
(%) of droplet sizes created from each pump. The grey shaded area represents the desired size range 
of droplets (20-50 µm). From the graph it is clear that both pumps 1 and 2 have a greater proportion 
of droplets that fall within this range compared to pump 3. Values plotted are mean ± SD at each point 
(n=5, for each pump).  
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4.3.2 Plume angle 

Plume angle was measured for each device using light sheet high speed photography. 

Mean angle values are presented in Figure 4.3.3 as well as some representative 

images displaying the spray profile Figure 4.3.3. No significant differences were seen 

between pump 1 (37.8 ± 3.9°) or pump 2 (42.7 ± 3.7°). Plume angle was significantly 

different between pumps 1 and 3 (p < 0.05)  as well as pumps 2 and 3 (p < 0.01) 

(pump 3: 27.5 ± 7.8°).  

 

 

Figure 4.3.3 Bar graph displaying mean plume angle values and example images of plumes generated 
by each pump taken using light sheet high speed photography. A) The bar graph displays the mean ± 
SD plume angle calculated for each pump (n=5). The red dashed lines represent the desired plume 
angel range. * p < 0.05, ** p < 0.01, unpaired t-test. B) High speed photography images of 
representative plumes acquired during maximal plume creation. Pump 3 visibly creates a narrower 
plume than that of both pumps 1 and 2.   
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4.4 Discussion 

This was a comparative study that analysed the performance of three commercial, 

nasal pump delivery devices and configurations with insulin solution. This study has 

provided information on pump performance that can be used to help predict the 

nasal deposition profile that may be achieved for the SNIFAR MRI study. The data 

reported here was collected to, firstly, see if any of the tested commercial nasal spray 

devices with insulin solution were capable of producing deposition suitable for nose 

to brain delivery in humans. And, secondly, to provide sufficient information for the 

researcher to make an informed decision about which pump, if any, to implement in 

the SNIFAR study. From previous flow dynamic modelling and in vitro cast model 

results, the optimal pump should have the following characteristics: small droplets 

(between 20µm and 50µm), contained in a narrow plume (between 30° and 45°) 

(Cheng et al. 2001; Inthavong et al. 2006; Newman, Moren, and Clarke 1988).  

 

The respirable fractions for all the pumps were very low and therefore any of these 

could be implemented in a human study. From droplet size data it was clear that both 

pumps 1 and 2 had smaller droplets within the stable phase of the plume when 

compared with pump 3. Pumps 1 and 2 were not statistically dissociable from any of 

the droplet size measures assessed. All measures were assessed from the stable 

phase, when the plume is fully developed, based on obscuration thresholds. Within 

this stable phase, roughly 50% of that volume contained droplets that were within 

the desired range (20-50 µm) for pumps 1 and 2. Pumps 1 and 2 were comprised of 

the same pump mechanism but with different actuators, which would suggest that 

although physically quite different, these two actuators have similar plume creation 

properties. This is slightly surprising given that published data show changes in orifice 

size as well as actuator shape and length have significant impact on the size of the 

droplets produced (Dayal, Shaik, and Singh 2004).  

 

The analytical data reported here with insulin further showed significant differences 

in plume angle between the three tested pumps. Pumps 1 and 2 both produced wider 

plumes as shown by both a larger angle from the nozzle orifice compared to pump 3. 



 160 

It is known from previous work that increased droplet size leads to a narrower plume 

generation and given the smaller droplets produced from pumps 1 and 2 the 

associated wider plume was expected (Trows et al. 2014). No significant differences 

were seen between pump 1 and 2, a similar result as seen from the droplet size data. 

After gathering and analysing this data it can be concluded that pump 1 and pump 2 

both displayed characteristics that were closest to the a priori metrics identified to 

be important for nose to brain delivery. The large droplets generated by pump 3 

coupled with a very narrow plume < 30°, would be unable to penetrate past the 

anterior portion of the nasal cavity and thus not fit for purpose in this instance. A 

very narrow plume with big droplets acts more in the fashion of jet/hose then a mist 

which is sub-optimal for nasal cavity dispersion and likely lead to drug run out of the 

nose and would not be efficient for olfactory drug delivery. Both pump 1 and pump 

2 produced more favourable results in comparison. Both of these pumps would be 

suitable for the SNIFAR study, however are not dissociable following this simple 

characterisation of each. Therefore, the physical and ergonomic characteristics of the 

two pump actuators were used to help decide between these two pumps. The term 

‘fit for purpose’ in this context covers more than just the plume profile. A major 

consideration is that the device has to be user friendly for first time nasal spray users 

and have sufficient design flexibility to cater for individual differences, in for example 

nasal anatomy and hand sizes. The user friendliness was not explored through by a 

quantitative experimental approach and so has been based on qualitative 

assessments and backed by rationale specific to the intended use: a pharmacological 

MRI study in humans.  

 

The actuator for pump 1 is narrow in shape and boasts lateral finger grips to aid 

manual actuation and manoeuvrability. Pump 2 has a slightly shorter and thicker 

actuator nozzle compared to pump 1, and does not have such obvious finger grips, 

rather a thick ring at the base of the nozzle.  

 

In this study actuation of nasal sprays were controlled using an automated device, 

which is recommended for in vitro characterisation of nasal devices. The actuation 

force used was set to 6.8kg as per standard operating procedures (SOP) within the 
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laboratory this analysis was conducted at. Interestingly, this setting is slightly higher 

than the average adult actuation force, which was recorded as 5.82kg (range = 2.44- 

8.64kg) from a group of 20 inexperienced adults (Doughty et al. 2011). Actuation 

force has been shown to affect the size of droplets emitted within the generated 

plume, with stronger forces producing smaller droplets (Dayal, Shaik, and Singh 

2004). Therefore, the finger grips in the case of the pump 1 would hopefully provide 

the participant to actuate with sufficient force, close to the 6.8kg described by the 

automated actuator implemented during characterisation.  

 

Furthermore, as mentioned in the Chapter 3 (section 3.2.3), the participants 

administered the nasal spray in a ‘forward leaning’ position to aid olfactory 

deposition whilst keeping the nasal pump bottle upright. The participants will be 

required to insert the nozzle at least 1.5cm into to the nostril and roughly at a 60° 

angle, as recommended for olfactory deposition (Guastella et al. 2013). The slightly 

narrower and longer actuator would be beneficial in this situation due to increased 

insertion depth and degree of angular movement once inside the nostril compared 

to pump 2.  

 

The ergonomic benefits of pump 1 is believed to have greater translatability for the 

use in the SNIFAR study. Therefore pump 1, the SP270+ and 3959 actuator, was 

chosen for the imaging phase of the SNIFAR study.  
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Chapter 5 Demographics, blood 
analysis, ratings and questionnaires  
 

This chapter will present demographic data from the cohort investigated during the 

SNIFAR study as well as results from peripheral blood samples taken during each 

scanning session and questionnaires conducted both at screening and during 

scanning visits. Every participant enrolled in the SNIFAR study completed all three 

visits, however, four participants were excluded entirely from the analysis due to 

protocol non-compliance and other issues that warranted exclusion, which will be 

discussed in this chapter. The format of this chapter will present methods and results 

together followed by explanations of the findings for each component in the 

discussion section. This chapter will touch on how the findings impacted the SNIFAR 

study and how these data were used to supplement the imaging results.  
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5.1 Methods and Results 

5.1.1 Participants 

Forty one healthy male participants attended screening sessions for this 

neuropharmacological MRI investigation. Of these, thirty one fulfilled all the 

eligibility criteria, could commit to the study and were recruited for the imaging 

phase of the SNIFAR study. Those participants who were not eligible were excluded 

as a result of either baseline blood pressure issues (hypertension), electrocardiogram 

irregularities, logistically unavailable or deemed unsuitable for the research 

investigation by the researcher due to poor punctuality and communication 

difficulties. Participants were recruited in two groups, based on body mass index 

(BMI), in order to explore the effects of intranasal insulin (IN-INS) compared to 

intranasal placebo (IN-PLA) in both normal weight, referred herein as lean, and 

overweight (OW) individuals (lean BMI = 18.5 – 24.9 kg/m2, overweight BMI = 25 — 

29.9 kg/m2). 

5.1.2 Screening questionnaires 

Three questionnaires based on eating behaviours and diet composition were 

completed by each participant at the screening session, which was at least seven days 

prior to the first imaging session.  

5.1.2.1 Council for nutrition appetite Questionnaire 

One of these questionnaires was used primarily as a screening tool: the council of 

nutrition appetite questionnaire. All of the forty one participants who attended the 

screening session scored above the threshold score (score = 28) for exclusion from 

the council of nutrition appetite questionnaire. The council of nutritional appetite 

questionnaire is used predominantly to look for poor nutrition, and from this 

questionnaire a low score (< 28) gives an indication of poor nutrition and appetite as 

well as a risk of at least 5% weight loss within six months (Wilson et al. 2005). This 
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test was used as a screening tool as the SNIFAR study aimed to assess central insulin 

effects within a cohort of male individuals that had a stable weight and appetite.   

The two remaining questionnaires (three factor eating questionnaire and dietary fat 

and sugar questionnaire) were implemented in order to assess eating behaviour  and 

diet composition between groups as opposed to a screening tool, the results of which 

are presented below.  

 

All statistical analysis performed was conducted using R statistical analysis software 

(Rstudio - Version 1.1.453, Boston, MA, http://www.rstudio.org/).   

 

5.1.2.2 Three factor eating questionnaire 

The three factor eating questionnaire (TFEQ) provides an assessment of dietary 

restraint, disinhibition and hunger as explained in Chapter 3 (section 3.1.2). Upon 

questionnaire marking a score for each factor is ascertained. The higher the mark the 

greater the severity, which ranks low, moderate and high. To test differences 

between BMI groups, unpaired t-tests were performed across groups for each factor 

using the factor scores as opposed to the severity category (judged to p > 0.05 

significance). TFEQ scores are presented in Table 5.1.1 and graphically in Figure 5.1.1 

 

 

 

 

 

Table 5.1.1 TFEQ scores for lean and OW groups and associated  p values 
produced from unpaired t-tests comparing groups.  
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There were no significant group differences between the dietary restraint, 

disinhibition or hunger factors. For each factor the OW group displayed a higher 

score compared to the lean group with the biggest difference seen for the 

disinhibition factor (see Figure 5.1.1) In terms of severity category both lean and OW 

groups showed medium severity for dietary restraint and low severity for 

disinhibition. For the hunger factor, the lean group averaged a low severity score, 

whereas the OW group averaged a medium severity score.  

  

5.1.2.3 The dietary fat and sugar questionnaire 

The dietary fat and sugar (DFS) questionnaire provides an approximate guide to 

examine how often meals or food that contain high amounts of saturated fat and 

sugar are consumed, within an average week. From the DFS the overall frequency of 

foods high in saturated fat, sugar as well as food that contains both high levels of fat 

and sugar can be calculated. For each food category unpaired t-tests were conducted 

to interrogate group differences between the lean and OW groups.  

 

Data are presented in Figure 5.1.2. There were no statistically significant group 

differences found for any of the three food categories tested (saturated fat, p = 0.27, 

Figure 5.1.1 Three factor eating questionnaire scores. Scores for each factor are 
presented as mean ± SEM for lean (n=12) and OW (n=15) groups. 
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sugar p = 0.31, sugar and fat p = 0.26). However, similar to the TFEQ scores there was 

a slight group trend seen for all food types, that showed the OW group displaying 

slightly higher frequency scores for all three food categories; saturated fat, sugar and 

both sugar and fat, respectively.  

Figure 5.1.2 Dietary fat and sugar scores. Intake scores describe the frequency with which food 
containing saturated fat and sugar are consumed per week. Presented are scores for both lean (n=12) 
and OW (n=15). Data is presented as mean ± SEM. 

5.1.3 Pre scan requirements 

Participants were required to undergo an overnight fast and instructed to consume 

their last meal, which should be a regular size meal, no later than 10pm the night 

before. Furthermore, they were instructed to abstain from alcohol use the evening 

before and to avoid caffeinated drinks on the morning of scanning.  

 

5.1.4 Blood analysis: as a screening tool 

Blood samples were taken prior to dosing (defined as the pre-dose sample), once 

acclimatised, and immediately following the conclusion of the scanning protocol 

(post-scan sample) on both visits. Blood samples were spun and plasma separated  

on-site, for analysis conducted in batches off-site. Subject blood samples were 

collected to primarily measure the effects of IN-INS on plasma glucose, serum insulin 

and serum C-peptide concentrations over time and comparatively with IN-PLA 

sessions.  
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Having attained these particular metabolite and hormone measures, additional 

analyses were conducted to benefit the study. Firstly, blood samples were used to 

assess participant compliance with the study protocol. For example, abnormally high 

‘pre-dose’ blood metabolite and hormone concentrations suggested the subject was 

not fully fasted. In this instance, a serum insulin concentration of > 50 mIU/L was 

used as a marker of non-compliance and any participant who exceeded this 

threshold, pre-dose, was excluded from the analysis. Using pre-dose insulin 

measures as a  compliance measure was added to the SNIFAR protocol following data 

collection completion. In many cases blood analysis results were not analysed until 

the participant had completed both of the imaging sessions and therefore exclusion 

based on compliance was performed retrospectively at the data analysis stage. 

 

As a result of high fasting insulin, three participants were removed from the analysis 

due to non-compliance with the fasting protocol. Furthermore, a fourth participant 

was excluded entirely from the analysis as a result of attending the final scanning 

session with only 1-2 hours sleep as a result of work related activity and stress. This 

lack of sleep was highlighted and coupled with a very low appetite rating from 

subjective measures of appetite. Thus the revised total number of participants 

included in the analysis of the SNIFAR study was twenty seven (n=27). Of those 

included twelve were normal weight (lean), fourteen were overweight (OW) and one 

was obese (BMI=31.4) but was included in the OW group. The two groups differed 

significantly for BMI but did not differ in age as assessed through unpaired t-tests 

(p<0.05 significance). Mean BMI and age are presented in Table 5.1.2 .  

Table 5.1.2 Age and BMI for the whole cohort and for the lean and overweight group. *** p < 
0.0001, unpaired t-test. 
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Whole body peripheral insulin resistance was ascertained using the homeostasis 

model assessment of insulin resistance (HOMA-IR) (Levy, Matthews, and Hermans 

1998; Matthews, Hosker, et al. 1985). 

 

5.1.5 Blood analysis: as a measure of insulin resistance 

Baseline measures (pre-dose) of insulin sensitivity/resistance for each participant 

were calculated using the HOMA-IR 2 model (Matthews, Hosker, et al. 1985) for each 

visit. HOMA-IR can be calculated using plasma glucose and serum insulin 

concentrations or plasma glucose with serum C-peptide concentrations. Given that 

there was a significant difference in baseline (pre-dose) serum insulin levels within 

the lean group, but C-peptide levels were highly comparable between sessions, the 

HOMA-IR calculation using serum C-peptide was used. The online, publicly available 

HOMA-IR 2 calculator v2.2.3 was used (https://www.dtu.ox.ac.uk/homacalculator/). 

Measures of HOMA-IR were calculated for both visits. The average HOMA-IR score 

for each participant (visit 1 + 2 / 2) was calculated and compared between groups 

(unpaired t-test). Furthermore, a correlation analysis was performed to look at the 

association between HOMA-IR and BMI for each group, using Pearson’s correlation 

coefficient. Correlation coefficients (r) greater than 0.4 or less than -0.4, with an 

associated p value < 0.05 were deemed significant. Correlation coefficient thresholds 

were set to only look for ‘moderate to very strong’ correlations (i.e. 0.4 to 1.0) based 

on Evans’ guide to correlational analysis (Evans 1995).  

 

Participant HOMA-IR values did not significantly differ between groups (lean: 0.88 ± 

0.22, OW: 1.07 ± 0.37, p = 0.12). Pearson’s correlation analysis did not reveal a 

relationship between BMI and HOMA-IR in the lean group, however, a significant 

strong positive correlation was identified between BMI and HOMA-IR in the OW (r = 

0.70, p = 0.003, Pearson’s)(presented in Figure 5.1.3). 
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Figure 5.1.3 BMI vs HOMA-IR scores. The OW group HOMA-IR scores (averaged pre-dose across visits) 
show a strong positive correlation with BMI.  

 

Through observing Figure 5.1.3, it can be seen that the lean group display a fairly 

tight range of HOMA-IR scores ranging from approximately 0.6 to 1.2, whereas the 

OW group display a much larger variation ranging from approximately 0.5 to 1.7. The 

strong positive correlation seen between OW BMI and OW HOMA-IR scores is 

interesting.  There appears to be a BMI threshold of approximately 28 kg/m2 at which 

HOMA-IR scores split into ‘lower’ and ‘higher’ HOMA-IR groups. This observation 

suggests that while BMI across the entire range does not correlate well with HOMA-

IR, the  increases in peripheral insulin resistance are observed from the upper end of 

the overweight BMI strata.   

5.1.6 Blood analysis: to assess the effects of IN-INS 

Plasma and serum blood concentrations were assessed to document the effects of 

IN-INS on plasma glucose concentration. Measuring serum C-peptide simultaneously 

with serum insulin permits the assessment of whether increases in serum insulin are 

attributed to endogenous pancreatic insulin release, which would be coupled with 

an increase in C-peptide, or from exogenous insulin increases, i.e. from overspill of 

IN-INS into the systemic circulation (Kullmann et al. 2018).   
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Pre-dose and post-scan blood concentrations for both placebo and insulin conditions 

were entered into a within-group repeated measures analysis of variance model 

(ANOVA), to look for main effects of treatment and time as well as interaction effects 

for plasma glucose, serum insulin and serum C-peptide concentrations separately. In 

light of a significant main effect of drug or time (p < 0.05), two planned comparison 

t-tests (paired) were conducted to ascertain from which time point or which 

treatment was driving this main effect, respectively, as post hoc tests (using a p < 

0.05 statistical threshold). In response to an interaction effect, a post hoc Tukey test 

was performed to assess where the differences lay (applying a p < 0.05 statistical 

threshold). In the OW group, one participant did not provide a full set of blood 

samples, due to blood sampling issues that were encountered and therefore the OW 

blood analysis was conducted on fourteen participants.  

 

Data are presented graphically in Figure 5.1.4. Within both groups there was a slight 

decrease in plasma glucose concentrations over time on both the placebo and IN-INS 

visit. The decrease in glucose following IN-INS was, in both BMI groups, visually 

greater compared to placebo albeit did not yield any significant effects of time or 

treatment on ANOVA. Within the lean group there was an IN-INS related decrease in 

glucose of 0.21 ± 0.22 mmol/L and in the OW group a decrease of 0.17 ± 0.46 mmol/L. 

In the lean group there was a significant main effect of treatment (F1,23 = 5.75, p = 

0.021, ANOVA). Planned comparison t-test revealed a significant difference in serum 

insulin concentrations between placebo and IN-INS pre dose (t(11)= -2.28, p = 0.04, 

paired t-test, placebo (pre): 5.18 ± 2.51, IN-ins (pre): 13.98 ± 12.18) but no significant 

treatment effects from post-dose serum insulin measurements (p = 0.14).  In the OW 

group there was significant main effect of treatment (F1,27 = 9.15, p = 0.003, ANOVA). 

Planned comparison, post hoc t-tests showed significantly higher post-scan serum 

insulin levels in the IN-INS condition compared to IN-PLA (t(13) = -3.13, p = 0.008, 

paired t-test) but no pre-dose differences were detected in the OW group. 
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Figure 5.1.4 Lean and OW Blood analysis plots. A) Blood analysis shown for the lean group show the 
measured concentrations of plasma glucose, serum insulin and serum C-peptide for both IN-PLA and 
IN-INS sessions over time (n=12). B) Blood concentrations for the OW group are plotted (n=14). A 
significant increase in post scan serum insulin for IN-INS vs IN-PLA, as tested using paired t-test. Plots 
illustrate a significant decrease over time of serum C-peptide concentration.  * p < 0.05, ** p < 0.01, 
plots show mean ± Standard error of the mean (SEM). 
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In both groups there were significant main effects of time (pre-dose – post-scan) on 

serum C-peptide concentration (lean: F1,23 = 9.70, p = 0.003; OW: F1,27 = 5.47, p = 0.02, 

ANOVA). In the lean group planned comparison t-tests revealed a significant effect 

of time in both treatment conditions (IN-PLA: t(11) = 3.17, p = 0.009, IN-INS: t(11) = 

4.47, p = 0.001, paired t-test). Similarly, in the lean group significant differences over 

time were found in both conditions (C-peptide: IN-PLA: t(13) = 2.79, p = 0.015; IN-

INS: t(13) = 2.89, p = 0.013, paired t-test).  

 

 

 

Table 5.1.3 Blood analysis values for both lean and OW groups. Data are displayed as mean 
± SD lean (n=12), OW (n=14). a,b – significant treatment effect lean (p < 0.025) and OW (p < 
0.01), respectively. c,d and e,f – significant effect of time lean (p < 0.01) and OW (p < 0.001).   



 173 

5.1.7 Subjective hunger scores 

Prior to entering the scanner (but after dosing, pre scan) and also imminently after 

scanning had concluded (post scan) participants completed visual analogue scales 

(VAS) to assess subjective hunger. This type of subjective rating has been shown to 

be a reproducible and powerful marker of subjective appetite (Flint et al. 2000). 

These appetite ratings were an additional point of assessment within the protocol 

that was implemented after the first four participants had completed all sessions and 

therefore only available for twenty three participants. The appetite scores were 

assessed individually for each group; firstly, within treatment appetite ratings were 

compared over time (pre vs post) and, secondly, changes in hunger over time (post 

minus pre), were compared across treatment (insulin vs placebo) using paired t-tests 

(p < 0.05, significance).  

 

Within the lean group there were no significant differences between pre and post 

measurements of appetite following either IN-PLA or IN-INS. There was a trend 

towards significance (p = 0.06, paired t-test) for an increase in appetite over time in 

the placebo condition. There were no significant differences seen from comparing 

the changes over time following each drug treatment within the lean group.  

 

In the overweight group, there was a significant increase in appetite ratings over time 

between the pre and post scan measurement within the placebo condition (pre: 55.0 

± 16.5, post: 73.85 ± 15.25, t(7) = -2.94,  p = 0.01, paired t-test). No drug related 

differences were observed within the OW group between any of the hunger change 

measurements. Data presented in Figure 5.1.5.  
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Figure 5.1.5 Pre and post-scan hunger VAS ratings for lean and OW groups. A) Lean hunger ratings 
did not show a statistically significant increase in hunger over time under both treatment 
conditions (n=8). B) Within the OW group, following IN-PLA administration there was an increase 
in hunger over time (n=12) (pre vs post-scan). C) Change in hunger over time following each 
treatment. There was no difference in change in hunger between treatment conditions. * p < 0.05, 
bars represent mean ± SEM. Light grey bars = pre scan, Dark grey bars = post scan, black bars = 
IN-PLA change in hunger and red bars = IN-INS change in hunger over time.  
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5.2 Discussion  

The results from the non-imaging data are very informative and even within such a 

small sample there are some trends that can be observed. It is worth initially 

mentioning that the exclusion of four participants was unfortunate and even more 

unfortunate that both visits had been completed before this exclusion decision was 

made. In retrospect, issues of non-compliance such as fasting could be avoided by 

either bringing participants in to stay overnight or by conducting studies later in the 

day and controlling their meals or lack thereof. However, implementation of study 

protocols like this are time-consuming and more labour intensive for both the 

researcher and the participant and is not always feasible as was the case for this 

study, which was conducted predominantly by a single researcher.   

5.2.1 HOMA - Insulin Resistance  

HOMA-IR scores are useful for assessing peripheral insulin sensitivity and often used 

to correlate with some other physiological measure such as BMI (Vogeser et al. 2007). 

The HOMA is a tool to asses pancreatic beta cell function as well as IR  (Wallace, Levy, 

and Matthews 2004) and as it is based on fasting measures, the latter primarily 

reflects hepatic insulin sensitivity rather than peripheral. It has been suggested that 

implementing C-peptide alongside glucose concentrations for HOMA calculations is 

better for predicting beta cell function, whereas predicting IR or insulin sensitivity is 

better conducted with glucose and insulin entered into the calculation (Wallace, 

Levy, and Matthews 2004). However, the scores in this case were calculated using 

the pre dose C-peptide blood measurements for the following reasons. There was a 

large amount of variability within the serum insulin data, as seen from the large 

standard deviation values (see Table 5.1.3). Furthermore, several participants had 

levels below the lower limit accepted by  the HOMA-IR 2 online calculator used (Levy, 

Matthews, and Hermans 1998). These two points reflect the inherent variability in  

the insulin assay adopted in this study. Concerns regarding insulin assay 

standardisation do exist (Robbins et al. 1996), which is beyond the scope of this 

discussion but do support the justification in using C-peptide in this measurement. 
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Furthermore, these measures were not used clinically  and were purely for research 

purposes and supplementation.  Even with the more reliable c-peptide measure, 

there were no formal differences in HOMA-IR scores between the lean and the OW 

group. HOMA-IR has been shown to positively correlate with BMI (Vogeser et al. 

2007) as well as many other factors, including age (Karakelides et al. 2010). The 

cohort enrolled and investigated as part of the SNIFAR were young, and otherwise 

healthy, which may explain the lack of difference between these two groups. A strong 

positive correlation was observed however between HOMA-IR and BMI which was 

exclusive to the OW group. From the BMI x HOMA-IR plot (Figure 5.1.3) a trend can 

be seen that shows a slight group separation in HOMA-IR at approximately a BMI of 

28 m/kg2. The absence of a correlation in the lean group may reflect a narrow range 

of BMI measures in this group, but may also reflect a healthy phenotype across the 

range of lean values, while a phenotype above the BMI threshold of 28 shows an 

impact of BMI on insulin sensitivity.    

 

Previous imaging studies have assessed HOMA-IR in an effort to stratify study cohorts 

into insulin sensitive and insulin resistant groups in order to make inferences based 

on peripheral insulin sensitivity (Tiedemann et al. 2017). This was not possible in this 

case and therefore pre dose HOMA-IR scores primarily benefited the study through 

providing these values as ‘covariates of interest’ into the design matrix for whole 

brain second level random effects statistical models for functional imaging data 

analysis, as will be presented in the chapters to follow. This additional physiological 

information may in some cases help to account for some of the between subject and 

also within-subject variance inherent to the functional imaging data collected.  

 

Blood was sampled on only two occasions during the present protocol. Sampling 

serial blood measurements throughout the duration of the scanning protocol might 

have been preferable and is used for pharmacological fMRI research, as drug activity 

can be closely correlated with pharmacokinetic data (Mehta and O'Daly 2011). In this 

instance, however, temporally rich blood sampling was not feasible and was also not 

a primary aim of this study. Furthermore, it was considered desirable not to disturb 

the participant during scanning. As such, only pre-scan (before dosing) blood 
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concentrations and HOMA-IR measures were employed as covariates for imaging 

data analysis. The addition of blood concentration and HOMA-IR covariates was 

purposely restricted to the resting state blood oxygen level dependent and the 

resting state cerebral blood flow data, which were acquired at the beginning of the 

functional imaging protocol. 

 

5.2.2 Effects of IN-INS on blood glucose and hormone concentration 

An acute 160 IU dose of IN-INS was implemented in this study via two nasal 

administrations in each nostril. A recent meta-analysis (Schmid et al. 2018) has 

formally looked at the safety aspects and concerns regarding hypoglycaemia and 

other adverse events in response to IN-INS. This meta-analysis reports 17 separate 

research papers that have studied the acute effects of a single dose of 160IU of IN-

INS. From all of these studies there were no reports of severe hypoglycaemia 

(although not explicitly defined by the authors (Schmid et al. 2018)) but there were 

reports of IN-INS related decreases in blood glucose of approximately 0.24 mmol/L 

(Benedict et al. 2008), 0.2 mmol/L (Heni et al. 2012) and 0.48 mmol/L (Santiago and 

Hallschmid 2017) in response to a 160IU dose. For the SNIFAR study an explicit 

definition for a ‘hypoglycaemia alert’ was set to £ 3.9 mmol/L as defined in Seaquist 

et al., (Seaquist et al. 2013). From the data reported above a mean IN-INS related dip 

in plasma glucose concentrations of 0.21 mmol/L and 0.17 mmol/L in lean and OW 

groups, respectively, similar to those reported previously (Benedict et al. 2008; Heni 

et al. 2012; Santiago and Hallschmid 2017).  

 

The trend towards a decrease in plasma glucose levels is very likely due to increased 

peripheral insulin concentrations from the IN-INS administration. In the OW group 

IN-INS administration was coupled with a significant increase in post scan serum 

insulin concentrations in comparison to IN-PLA. This increase was, however, not 

coupled with a rise in C-peptide levels which suggests that this increase detected is a 

result of exogenous insulin increases in the periphery from IN-INS administration. In 

the lean group however, there is a surprising statistically significant difference 
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between pre dose serum insulin levels between the IN-INS session and IN-PLA 

session. One might suspect that this difference has resulted from some participants 

not having been fasting on the IN-INS sessio . However, the increased pre dose serum 

insulin concentration seen on IN-INS sessions vs IN-PLA is not coupled with an 

associated increase in serum C-peptide. In fact the serum C-peptide levels between 

sessions are very similar pre dose and as alluded to before the discrepancy may be a 

consequence of an unreliable assay. Nevertheless, although all participants 

confirmed verbally to the researcher that they were fasted at the start of each study, 

the very high insulins of three participants did lead to their exclusion from the data 

analysis, on the basis that a non-fasted state could not be ruled out.   

 

As mentioned the OW group displayed an increase in serum insulin concentrations 

after IN-INS compared to IN-PLA. Interestingly this increase was coupled with a slight 

but insignificant decrease in plasma glucose concentration. This lack of significant 

blood glucose decrease given the insulin rise may be reflective of a BMI related 

peripheral insulin insensitivity. Even though none of the OW participants were 

classified as IR this lack of significant glucose decrease could be an early sign of 

decreased peripheral insulin sensitivity within the OW group. The increase in post 

scan serum insulin seen within the OW group is strongly suggested to be as a 

consequence of drug absorption into the peripheral circulation. This is a consequence 

of using a high dose of insulin (160 IU) and also the route of administration. As 

described in detail in Chapter 4; the nasal cavity epithelium is highly vascularised. The 

nasal pump carefully selected for the SNIFAR study was superior to the comparator 

pumps tested against, but is arguably not fully optimal pump for nose to brain insulin 

delivery. In fact, given the complex architecture of the nasal cavity and large surface 

area of the nasal epithelium (Djupesland 2013) even a purposefully designed nose to 

brain nasal pump would lead to some residual drug deposition within the nasal 

epithelium which would subsequently be absorbed into the circulatory system. This 

spill over effect of IN-INS into the circulation was not however, coupled with any 

hypoglycaemic events or adverse reactions, similar to that observed from previous 

reports (Schmid et al. 2018). An exogenous insulin dose of 160 IU delivered 

intravenously would lead to severe hypoglycaemia. As there was a limited effect on 
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peripheral glucose levels following IN-INS there is strong evidence to suggest that a 

large majority of the 160 IU dose was delivered to the central nervous system (CSF) 

via olfactory and trigeminal nose to brain delivery routes (Djupesland 2013). It will 

be argued therefore, that imaging data differences seen within the SNIFAR data are 

due to central increases of insulin within the central nervous system (CNS) from nose 

to brain delivery of insulin solution.  

 

C-peptide in all cases significantly decreased over time. The understating of this is 

that being in the fasted state for the duration of the protocol would not require 

pancreatic insulin release and subsequent C-peptide levels would drop over time as 

a result of C-peptide degradation (Matthews, Rudenski, et al. 1985). The larger drop 

after IN-INS is compatible with the systemic action of some of the exogenous insulin, 

presumably through a direct effect, as importantly the plasma glucose did not fall in 

any subject to or below 3.9mmol/l, the levels associated with the onset of the 

pancreatic homeostatic responses of reduced pancreatic insulin and increased 

pancreatic glucagon responses (Seaquist et al. 2013).   

 

5.2.3 Hunger ratings 

From subjective hunger ratings taken outside of the scanner it can be seen that there 

is an insulin related hunger blunting effect. In all cases hunger increased over time 

but was only significant in the OW group from the IN-PLA session. This may suggest 

the OW group are more susceptible to feelings of hunger during fasting. Comparing 

the change in hunger over time between intranasal treatments did not reveal any 

treatment related differences. The application of 160 IU IN-INS has been previously 

shown to reduce calorie consumption in healthy young men compared to IN-PLA 

(Benedict et al. 2008). Although ratings of hunger are physically different from food 

consumption it still serves as a good reflection of energy balance. One study looking 

at the effects of IN-INS on cerebral perfusion additionally reported no effect of IN-

INS on self-reported subjective hunger following 40 IU IN-INS (Schilling et al. 2014) 

suggesting that the anorexigenic appetite reducing effects of IN-INS may be dose 
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dependent. These hunger ratings nonetheless showed a general trend towards an 

IN-INS related effect on hunger suppression in the OW group. These effects were 

subtle and do not suggest that IN-INS induces satiety but these observations are 

useful when interpreting the results from the functional imaging data collected which 

are subsequently analysed in the following chapters.  

 

5.2.4 Questionnaires 

Previous research has found that BMI correlates positively with both TFEQ 

disinhibition and hunger factor scores, but not dietary restraint (Zimmerman et al. 

2017). These correlation results previously reported are in support of the trend seen 

from the data presented from the SNIFAR study. As the TFEQ questionnaire was 

completed at screening there are no drug related effects that can be attained from 

these scores. From previous research, the TFEQ has been used to good effect as a 

statistical regressor against functional imaging related data. For example, Kullmann 

et al., showed that TFEQ disinhibition scores correlated with cerebral blood flow 

(CBF) responses to IN-INS within the prefrontal cortex (Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015). The TFEQ scores gathered from screening 

may benefit and help to compound the understanding of imaging data collected via 

correlational analysis as has been described previously (Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015) and were applied in this way when possible.  

The DFS is a rough marker of diet composition. The two groups differed by only one 

BMI category and therefore this might explain why a general trend was seen as 

opposed to formal statistical differences between the two groups. For all food 

categories the OW group showed slightly higher intake frequency scores suggesting 

that the OW group in general consume slightly more foods containing saturated fats, 

sugar and a combination of both sugar and fat. Similarly to the TFEQ scores, the use 

of these DFS scores will benefit the imaging data acquired through implementation 

of explorative correlational analyses. The SNIFAR study did not assess adiposity and 

therefore the self-reported saturated fat intake may serve as a partial surrogate for 

this.  
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All questionnaires performed at the screening were done so as to reduce the 

workload for the participants during the imaging visits of the study. Although the 

results from the questionnaires do not reveal differences between lean and OW 

groups, the information from these scores will be important additions to the imaging 

data analysis. The scores for the questionnaires were used within exploratory 

correlation analyses, particularly to supplement region of interest based analysis.  

In conclusion, there are some interesting results from the demographic, 

questionnaire and blood concentration data. The SNIFAR study was implemented in 

an age matched group of healthy male volunteers who were stratified into two BMI 

groups; normal weight/lean and overweight. Differences in questionnaire scores 

were subtle and not statistically significant, as was also true of measures of insulin 

resistance. Therefore, these two matched cohorts were also matched for diet 

composition, dietary restraint, disinhibition and hunger permitting strong inferences 

to be made based on BMI.  
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Chapter 6 The modulatory effects of 
intranasal insulin on cerebral 
perfusion  
 

This chapter will document the measurements of cerebral perfusion that I carried out 

in this study. Resting perfusion weighted imaging data were acquired using a ‘work 

in progress’ arterial spin labelling sequence that permitted the use of long labelling 

durations  (> 1.5s). The sequence parameters chosen for this investigation of the 

effects of intranasal insulin on resting perfusion were chosen derived from a previous 

sequence optimisation project that I conducted during the MRes phase of this 

program, prior to the beginning of this PhD (Wingrove et al. 2015). The main focus of 

this chapter, therefore, will be the data analysis and results for the perfusion-related 

component of the SNIFAR study which will be presented and discussed with 

reference to the relevant literature.  
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6.1 Introduction 

Arterial spin labelling (ASL) is an ideal imaging technique to explore regional changes 

in cerebral perfusion, or cerebral blood flow (CBF), in response to a pharmacological 

challenge (Wang, Chen, et al. 2011b). CBF measured through ASL is both quantitative 

(ml/100g of brain tissue/min) and physiologically relevant when examining drug 

induced effects in the brain (Mehta and O'Daly 2011). Regional CBF changes can be 

reflective of direct compound interactions on the cerebral vasculature, for example 

caffeine (Perthen et al. 2008), or as a result of increased metabolic demand required 

from neuronal populations due to neuroactive effects (see section 2.2.1). Previous 

work in humans using ASL has provided some evidence to suggest that exogenous 

insulin has little direct interaction with the cerebral vasculature (Grichisch et al. 2012) 

and that insulin-associated effects on CBF are driven by neuronal origins.  

 

A small number of experiments looking at the modulatory effects of intranasal insulin 

have employed ASL to explore regional perfusion changes in healthy lean, obese, 

insulin resistant and also healthy elderly individuals (Schilling et al. 2014; Kullmann, 

Heni, Veit, Scheffler, Machann, Häring, et al. 2015; Akintola et al. 2017). The present 

study, however, is the first to explore these effects in a group of overweight 

individuals in comparison to an age matched normal weight group. Furthermore, 

within this interrogation, a pseudo-continuous ASL (pCASL) sequence with long 

labelling abilities was implemented, in an effort to acquire quantitative images of CBF 

with a voxel size adequate to resolve cortical and sub-cortical features with limited 

partial volume effects. CBF measurement with ASL is prone to image degradation 

effects, known as partial volume effects, as a result of the combined signal 

contribution from both grey matter (GM) and white matter (WM) (Asllani, 

Borogovac, and Brown 2008; Chappell et al. 2011). More often than not, an 

investigator is interested in GM perfusion, which is typically three times greater than 

that of WM. Voxels at GM/WM boundaries will inevitably comprise signal 

contributions from both tissue types, thus the WM contribution may introduce an 

underestimation of CBF. The sequence aims to limit the effects caused by partial 

volume through acquisition of images with smaller voxels in an effort to reduce CBF 



 184 

underestimation. There have been no reported studies that have adopted a pseudo-

continuous ASL (pCASL) sequence with long labelling abilities for use in a 

pharmacological MRI (phMRI) experiment. The sequence used has been optimised 

to achieve a balance between in-plane spatial resolution, temporal resolution, signal 

to noise ratio and blurring in the slice encoding direction (z-axis).  

 

The aim of this experiment is to identify CBF changes in response to intranasal insulin 

administration in both lean and overweight individuals. The use of this pCASL 

sequence will permit the resolution of cortical and sub-cortical structures known to 

be insulin responsive and be sensitive to resolve significant insulin associated 

changes in regional CBF. We hypothesise that 160 IU IN-INS will produce significant 

changes in CBF within the limbic and cortical structures that possess insulin 

receptors. We predict that these changes will be decreases in CBF based on previous 

CBF literature with this dose (Kullmann et al. 2018) and that these decreases will be 

greatest in the lean group of individuals in comparison to the overweight group.  
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6.2 Methods 

6.2.1 Participants and study protocol 

As mentioned previously in Chapter 5 (see section 5.1.4) of the 31 participants 

scanned, 27 were included in the analysis of cerebral perfusion Three of these were 

removed due to possible non-compliance of the overnight fast and one was excluded 

due to a lack of sleep the evening before one of the scanning sessions. In total there 

were 12 lean participants (BMI = 22.40 ± 1.89 (mean ± standard deviation)) and 15 

OW participants (BMI = 27.76 ± 1.92) that were included in this analysis of cerebral 

perfusion (groups did not differ in age, as mentioned in Chapter 5 (see section 5.1.1)).   

 

6.2.2 ASL acquisition 

Resting state ASL was performed directly after the acquisition of resting-state blood 

oxygen level dependent (BOLD) data and was the final resting acquisition within the 

SNIFAR protocol (see section 3.4.6). Given previous literature on intranasal insulin 

pharmacokinetics (Born et al. 2002) it is likely that CSF and interstitial brain insulin 

concentrations would be close to peak elevation levels at this time point.  

 

All scanning was conducted using a MR750 3 Tesla GE Scanner with a 32 channel head 

coil. Whole brain resting cerebral perfusion images were collected using a 3D pseudo-

continuous arterial spin labelling (pCASL) sequence acquired with a fast spin echo 

(FSE) stack of spiral readout. The following parameters were used; 10 spiral arms, 

600 points per arm, in plane resolution 2.94 x 2.94 mm2, slice thickness = 3mm, 54 

slices, label duration (LD) = 3500 ms, post label delay (PLD) = 2025 ms, echo time/ 

repetition time (TE/TR) = 11.8 / 7325 ms, number of averages = 2, total time of 

acquisition = 5.22 mins. A background suppression module was applied, to null static 

signal, using default scanner calculated pulses. This consisted of one single selective 

saturation pulse applied to the imaging volume and an imaging selective inversion 
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pulse prior to labelling followed by four non-selective inversion pulses between the 

end of the labelling block and the readout window. 

 

The labelling plane for this pCASL sequence is automatically set to 2 cm below the 

imaging volume. The imaging volume was positioned on the inferior surface of the 

cerebellum for all subjects to allow for both optimal labelling plane positioning and 

labelling efficiency, perpendicular to the carotid and vertebral arteries just below the 

Circle of Willis. The pCASL sequence automatically acquires a 3D proton density (PD) 

image using identical readout parameters for cerebral blood flow quantification 

purposes and was also used to aid co-registration. During resting pCASL acquisition 

participants were instructed to keep their eyes open and look at a fixation cross 

displayed to them via a projector screen.   

  

6.2.3 Cerebral blood flow quantification  

CBF maps were computed from perfusion weighted (PW) and PD images using the 

single compartment model using online GE scanner software, by performing the CBF 

calculation at each voxel, defined in section 2.2.3.7, of the acquisition methods 

chapter (chapter 2). 

 

6.2.4 Image processing 

PD images, which boast higher tissue contrast compared to both CBF maps and PW 

images were co-registered to 3D T1 images using epi_reg (FMRIB software Library, 

version 3.20, University of Oxford, UK, www.fmrib.ax.ac.uk/fsl - FSL (Jenkinson et al. 

2002)). Subject CBF maps were registered to MNI space by applying the saved 

transformations (from the T1 normalisation steps, see section 3.5.1, in the study 

design chapter (chapter 3)) and warps using Advanced Normalisation Tools software 

(ANTs) (Avants et al. 2014). Normalised CBF maps were smoothed using a full width 

half maximum (FWHM) Gaussian kernel of 6 x 6 x 6mm3 using the Statistical 

Parametric Mapping smooth function (SPM-12, Wellcome Trust Centre for 
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Neuroimaging, University College London, UK, www.fil.ion.ucl.ac.uk/spm ). This 

smoothing kernel, approximately twice the acquired spatial resolution, was 

implemented in reference to recommendations for group statistical inferences with 

functional BOLD data (Worsley and Friston 1995). 

 

6.3 Group level CBF Image Analysis 

6.3.1 Whole brain analysis 

Pre-processed CBF maps were analysed at the second-level using SPM. These maps 

were entered into a random effects second level voxel-wise repeated measures 

factorial model analysis with the three factors; subject, Drug (PLA, INS) and Group 

(LEAN, OW) (known in SPM as a flexible factorial model). The inclusion of the subject 

factor as an explanatory variable to encode the between subject-variability helps to 

reduce the amount of unexplained variance within the data and has been shown to 

increase detection sensitivity within pharmacological experiments (Mehta and 

O'Daly 2011). Mean grey matter (GM) CBF values, calculated from a liberal GM mask, 

were added to this model as a covariate to account for within-subject between 

session GM CBF variability. Analysis was constrained to those voxels within the GM 

by applying an implicit GM mask. Contrast T-maps for the main effect of PLA and INS 

were created as well as interaction effect contrasts (Drug X BMI) (see Figure 6.4.2). 

Voxel wise whole brain analysis results were set to a cluster forming threshold of p < 

0.01. Significant clusters were classified based on cluster correction for multiple 

comparisons using a family wise error threshold (FWE) of p < 0.05. In response to  a 

significant interaction effect (p < 0.05 FWE) or an interaction trend (0.05 < p < 0.1 

FWE) 2nd level whole brain paired t-tests were created for each group for both main 

drug effects, INS > PLA and INS < PLA, using the same cluster forming threshold as 

mentioned above (p < 0.01) and again including the global GM mean CBF as a 

covariate.  
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To assess changes in global CBF whole brain median grey matter (GM) CBF values, 

constrained to a standardised GM mask, were extracted from the pre-processed 

maps  using Analysis of Functional Neuroimage (Cox 1996) (AFNI, 3dmaskave) 

software. GM CBF values were entered into a repeated measures analysis of variance 

(ANOVA) model to test for main effects of drug group and interaction effects. 

Following a significant main effect of drug two paired t-tests were conducted to see 

if drug related changes were significant within the lean or overweight group, or both.  

Following a significant group effect two unpaired t-tests were conducted to explore 

whether these group differences in CBF were detected following placebo or insulin 

administration, or both. These t-tests will be referenced as planned comparisons and 

formed a post hoc analysis as opposed to testing all possible combinations. To correct 

for these two planned comparisons a Bonferroni multiple comparison correction was 

applied providing a significance threshold of p < 0.025. Following a significant 

interaction effect a Tukey test was performed post hoc to test all possible 

comparisons. Tukey tests inherently adjust for multiple comparisons and thus a 

significance threshold of p  < 0.05 was employed. 

 

Blood analysis results presented in Chapter 4 showed a degree of variability in 

baseline serum insulin concentrations in the lean group between imaging visits. This 

variability proved sufficient to produce significant differences in pre-scan serum 

insulin concentrations between the two imaging visits in the lean group only. In an 

effort to account for some of this variability, HOMA-IR scores, calculated and 

presented in chapter 4 for both INS and PLA, were added to the paired t-test model 

as a regressor of no interest (nuisance regressor) in the lean group only. The whole 

brain paired t-test was run both with and without the addition of the nuisance 

regressor. 

6.3.2 Region of interest analysis 

Small volume correction (SVC) analysis was conducted on whole brain t-maps to 

permit a more thorough exploration within pre-defined regions of interest (ROI). 

Bilateral anatomical regions were selected, as ROIs for this analysis. These regions 
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were defined a priori based on high insulin receptor density profiles and also from 

previous publications that have shown insulin induced responses within these ROIs 

and potential functions in food intake and behaviour (detailed in Table 6.3.1) 

(Schulingkamp et al. 2000; Schilling et al. 2014). Insulin receptor dense regions were 

defined as the hippocampus and amygdala (Schulingkamp et al. 2000) and the ROIs 

based on previous intranasal insulin literature were the insula and the putamen 

(Schilling et al. 2014).  

 

 

All subcortical bilateral ROIs were defined in SPM-12 using the Functional MRI tool 

of the Wake Forest University School of Medicine (http://www.ansir.wfubmc.edu) 

known as ‘WFU pick atlas’, implemented with automated anatomical labelling (AAL). 

The insula is a relatively large cortical structure with well-established functional roles 

in the processing of appetite related cues and reward (Frank, Kullmann, and Veit 

Table 6.3.1 Regions of interest used in this cerebral perfusion analysis of IN-INS. 
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2013). As a result of the size and diverse neural functionality of the insula was 

subdivided into the posterior and anterior subdivision in an effort to infer more 

specificity in reference to CBF related effects seen within the insula. These 

subdivisions used were based on publicly available cytoarchitecture data (Kurth, 

Eickhoff, et al. 2010). All ROIs are visually displayed in Figure 6.4.4. 

 

SVC was applied to whole brain maps of both the main effects and interaction effects 

for the five ROIs described above. A significance threshold was calculated to correct 

for multiple comparisons by dividing the p < 0.05 by the number of ROIs used (ROIs 

= 5). The significance was set to p < 0.01 for SVC analysis.  

 

Furthermore, median CBF values were extracted from the five bilateral ROIs defined 

above (Cox 1996) (AFNI, 3dmaskave). Median CBF values for each ROI were entered 

into a repeated measures ANOVA factorial model with two factors drug and group. 

Five ANOVA models were created to assess the five different ROIs. Main effects of 

drug and group were explored as well as drug by group interactions. Main effects and 

interactions were assessed to a significance threshold of p < 0.05. Following a 

significant main effect of drug two paired t-tests were conducted to see if drug 

related changes were significant within the lean or overweight group, or both.  As 

with the median GM CBF analysis described earlier, following a significant group 

effect two unpaired t-tests were conducted to explore whether these group 

differences in CBF were detected following placebo or insulin administration, or both. 

A Bonferroni multiple comparison correction for two planned comparisons was 

applied providing a significance threshold of p < 0.025 (0.05/2). Following a 

significant interaction effect a Tukey test was performed post hoc to test all possible 

comparisons. Tukey tests inherently adjust for multiple comparisons and thus a 

significance threshold of p  < 0.05 was employed.  
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6.3.2.1 Correlational analysis 

As an additional exploratory analysis, drug induced changes in regional CBF within 

each group were assessed for correlations with dietary saturated fat intake and sugar 

intake measured through the dietary fat and sugar (DFS) subscale questionnaire that 

each participant completed during the screening. Insulin induced CBF changes from 

the five ROIs (∆%) were defined as PLA – INS / PLA * 100,  and self-reported dietary 

saturated fat and also sugar intake scores were in arbitrary units. ∆% CBF changes for 

each ROI were examined for associations with fat and sugar intake using Pearson’s 

correlation coefficient. A relevant correlation was defined as rho (r)=  > 0.4 or <  - 0.4 

with a p value < 0.05.  

 

6.3.2.2 Statistical analysis 

Descriptive parametric statistics were used to describe the results and noted as mean 

± standard deviation unless stated otherwise. All ROI analysis was conducted using R 

statistical analysis software (Rstudio - Version 1.1.453, Boston, MA, 

http://www.rstudio.org/).  Repeated measure ANOVA models were used to look for 

main effects of group and drug as well as interaction effects from the median 

extracted CBF values extracted from each of the ROIs defined. For within group and 

within treatment comparisons paired and unpaired t-tests were implemented, 

respectively.  
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6.4 Results 

6.4.1 Grey matter cerebral blood flow 

Median CBF (ml/100g/min) values extracted from GM voxels (presented in Table 

6.4.1) revealed no significant effect of drug, BMI or interaction effect on global GM 

CBF. 

 

6.4.2 Repeated measures factorial model analysis 

For the repeated measures factorial model four contrasts were created (Figure 

6.4.2): 

• INS > PLA 

• INS < PLA 

• Interaction 1 (LEAN INS > PLA, OW INS < PLA) 

• Interaction 2 (LEAN INS < PLA, OW INS > PLA) 

Table 6.4.1 Median Grey Matter CBF. Data are presented as the average  ± SD.  

Figure 6.4.1 Axial CBF map slices from a representative volunteer acquired using the long 
label pCASL FSE stack of spiral readout sequence. The perfusion weighted data for this map 
was acquired with an in-plane spatial resolution 2.94 mm2 with a 3mm slice thickness.  
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This model was employed at the second level to identify clusters of significant change 

in regional CBF associated with the main effects of INS on CBF in both the lean and 

OW groups combined, and to search for any interaction effects or trends between 

these groups. The main effect of drug  (INS > PLA), provided no significant clusters 

when corrected for multiple comparison (FWE p <0.05 at the cluster level). Similarly, 

the opposite drug effect contrast, INS < PLA, did not reveal any significant clusters 

(FWE p < 0.05).  

Figure 6.4.2 Repeated measures factorial model design matrix and contrasts. A) The design matrix for 
the repeated measures factorial model that was implemented for the 2nd level random effects analysis. 
Three factors (subject, drug and BMI) were used and the mean GM CBF (Global GM) was added as a 
regressor of no interest. B) Four contrast vectors were tested with this model, shown graphically.    
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Two interaction contrasts were tested to look for any differential responses between 

lean and OW groups, noted above. Neither of these interaction contrasts revealed 

any significant clusters, when corrected for multiple comparisons at the whole brain 

level. However, for interaction 1 (Lean INS > PLA, OW INS < PLA) a trend towards 

significance was seen from a large  cluster (1399 voxels) situated within the right 

middle temporal gyrus (p = 0.052, FWE-corrected) (MNI co-ordinates: x = 52, y = -60, 

z = 6) Figure 6.4.3.  

 

 

 

 

 

 

 

 

 

 

 

Five a priori defined anatomical ROIs (see Figure 6.4.4) were used for small volume 

correction (SVC) analysis on all contrast maps created from the factorial model 

analysis. All contrast maps were evaluated at a significance cluster forming threshold  

of p < 0.01 prior to SVC .  A significance threshold for SVC of p < 0.01 was applied to 

correct for type I error inflation from multiple comparisons.  

 

For main effects of drug defined as “INS > PLA” and “INS < PLA” none of the 

anatomical bilateral ROIs survived the significant threshold following SVC. For the 

interaction 1 contrast (see Figure 6.4.2) the bilateral posterior insula showed an  

interaction effect (p = 0.04) but did not survive Bonferroni correction.   The origin of 

the interaction effect was the left posterior insula at MNI coordinates x = -38 y = -6 z 

= -6, and, x = -38 y = -14 z = -6, respectively (p = 0.040 and p = 0.041, t = 3.86, 3.85, 

respectively). Interaction 2 contrast did not provide any significant changes from SVC, 

from any of the five anatomical ROIs tested.  

Interaction 1 

y = -60 x= 48 
z = 0 z = 5 

Figure 6.4.3 Interaction 1 trend (p=0.052, FWE) cluster seen within the 
middle temporal gyrus. Group level statistical parametric t-map overlaid 
onto an MNI template. Cluster forming threshold p < 0.01, cluster extent 
threshold 1000 voxels.   
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6.4.3 Whole brain, lean and OW voxel wise paired t test analysis  

Whole brain results from the repeated measures factorial model showed a trend 

towards an interaction effect (interaction 1) within the right middle temporal gyrus 

(p = 0.052, FWE-corrected). As a result of this trend whole brain within-group paired 

t-tests were conducted post hoc to further interrogate this trend.  

 

For the lean group both INS and PLA CBF images were entered into a whole brain 

paired t-test in SPM-12. Linear contrasts for drug effects were created (INS > PLA and 

INS <  PLA). Mean GM CBF values were entered into the model, as described before, 

as a regressor of no interest. An additional paired t-test was created which added an 

additional regressor to the model. Measures of pre scan insulin sensitivity (HOMA-

IR) calculated in chapter 5 (section 5.1.5) were entered into the model as a regressor 

of no interest for the lean group only.  

 

For the OW group a whole brain paired t-test model was created and linear contrasts 

for both drug effects were created. Mean GM CBF values were entered in the model, 

as described before, as a regressor of no interest. Blood concentration covariates 

were not entered into the model as one participant did not have a complete blood 

sample profile.  

Figure 6.4.4 Regions of interest used for further analysis. 
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Both paired t-tests had a cluster forming threshold of p < 0.01 applied. Clusters that 

survived a FWE-corrected significance threshold of p < 0.05 were reported as 

significant.  

 

Finally, SVC analysis was employed using the five anatomical ROIs as described 

previously, with a significant threshold p > 0.01 for multiple comparison.  

 

6.4.3.1 Insulin effects on CBF – lean  

Whole brain voxel wise paired t-tests for both, INS > PLA and INS < PLA, contrasts 

revealed no significant changes in CBF at the whole brain level. Additionally, inclusion 

of HOMA-IR scores as a regressor of no interest did not yield any significant effects.  

SVC analysis was applied to the two contrasts with and without the additional insulin 

sensitivity regressor. No significant changes were seen in any of the ROIs tested for 

the paired t-test model without HOMA-IR scores for either of the contrasts. With 

HOMA-IR added as a nuisance regressor an effect was seen within the amygdala from 

the INS < PLA contrast created t map but did not survive the statistical significance 

threshold for multiple comparison correction (t(11) = 5.02, p = 0.025, paired t-test, 

MNI coordinates x = 24  y = 2  z = -20).  

 

6.4.3.2 insulin effects on CBF - overweight 

Voxel wise paired t-test for the INS > PLA contrast, revealed no significant CBF 

differences at the whole brain level. The INS < PLA contrast, however, revealed a 

large (1848 voxels) significant cluster of significant CBF change ((t14) = 6.00, p = 

0.017, FWE-corrected, paired t-test). The spatial extent of the cluster was large and 

comprised three peaks within the left temporal lobe, corresponding to the left 

hippocampus, posterior insula/putamen and para-hippocampal gyrus (MNI co-

ordinates and t-values are presented in Table 6.4.2,  thresholded T-maps are 

presented in Figure 6.4.5).  
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Figure 6.4.5 T maps overlaid onto structural images, illustrating insulin related perfusion decreases 
in overweight individuals. A) Coronal and axial sections displaying the left hippocampal region t-map 
cluster associated with an insulin induced decrease in CBF. B) Sagittal sections displaying both the 
left hippocampal and insula related decreases in CBF. C) Coronal sections showing insulin induced 
perfusion decreases localised to the left insula and putamen regions.  D) Axial sections highlighting 
left putamen and posterior insula decreases in CBF in response to insulin compared to placebo. 

 

Table 6.4.2 Significant cluster found from whole brain paired t-test analysis in the OW group (INS < 
PLA) which comprised of three peak regions.  
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For the contrast, INS < PLA, SVC  revealed CBF differences within all five ROI regions 

(see Table 6.4.3). From these five regional differences in CBF only two were 

statistically significant when corrected for multiple comparisons, these were the 

hippocampus and posterior insula, p = 0.008 and p = 0.007, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

6.4.4 Regional CBF assessment 

SVC takes into account the model used at the second level and the regressors of no 

interest added (for example mean GM CBF and HOMA-IR). As an additive analysis 

method median CBF values were extracted from the five previously defined 

anatomical ROIs. These values (one value per subject) were compared across 

different drug conditions and also across groups to examine regional perfusion 

differences through creation of individual ROI repeated measure ANOVA models.  

 

 

 

 

 

 

 

Table 6.4.3 Table showing the results from small volume correction analysis in the overweight group 
only. P values in bold correspond to ROIs that survived multiple comparison correction (p < 0.01). 
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6.4.4.1 Insulin effects 

No interaction effects were reported from any of the five ROIs tested and no drug 

effects were reported from any of the ROIs tested either.  

 

6.4.4.2 Group Effects 

Significant main group effects in CBF were seen within the insula cortex for both 

anterior (F(1,26) = 12.53, p = 0.001, ANOVA) and posterior regions (F(1,26) = 8.96, p = 

0.004, ANOVA).  

 

For the anterior insula CBF significant differences were reported from planned 

comparison t-tests following placebo (t(25) = 2.45, p = 0.0022, unpaired t-test) and 

insulin administration (t(25) = 2.48, p = 0.023, unpaired t-test). In both cases median 

anterior insula CBF was lower in the lean group in comparison to the overweight 

group (see Figure 6.4.6).  

 

For the posterior insula, planned comparison t-tests reported significantly greater 

CBF in the overweight group compared to the lean group following placebo 

administration only (t(25) = 2.78, p = 0.0023, paired t-test) but not following 

intranasal insulin administration (see Figure 6.4.6). 

 

Figure 6.4.6  Regional CBF measures extracted from the insula A) Under placebo conditions both the 
anterior and posterior insula show increased rCBF in the OW group compared to the lean group. B) 
Under insulin conditions the anterior insula rCBF is significantly greater in the OW group compared to 
the lean group. * p < 0.025, ** p < 0.01, average median rCBF values plotted, error bars = SD, lean n=12, 
OW n=15.  
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6.4.5 CBF correlations with dietary measures 

An assessment of the association between regional changes in CBF in response to INS 

vs PLA and self-reported saturated fat and sugar intakes were assessed as part of an 

exploratory correlational analysis. 

 

Within the lean group, % regional CBF changes in response to insulin did not report 

any associations between any of the intake scores for any of the ROIs. 

 

Within the OW group, the % change in hippocampal and putamen CBF had a strong 

negative linear correlation with saturated fat score (r = -0.58, p = 0.025 and r = -0.59, 

p = 0.020, Pearson’s correlation coefficient, respectively) (see Figure 6.4.7). 

Additionally, % CBF changes in response to insulin measured from the hippocampus 

and putamen showed strong negative correlations with self-reported sugar intake 

scores (r = -0.58, p = 0.022 and r = -0.57, p = 0.026, Pearson’s correlation coefficient, 

respectively).  

 

No other ROI % change in CBF correlated with fat or sugar intake that survived the 

correlational coefficient thresholds set.   
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Figure 6.4.7 Association between % change in CBF and saturated fat and sugar scores within the OW 
group. A) % change in CBF in the hippocampus negatively correlates with saturated fat score 
(arbitrary units) 𝑦 = 	−0.94𝑥 + 59.71. B) % change in CBF in the putamen is also modulated by 
saturated fat intake levels, 𝑦 = 	−0.92𝑥 + 58.80. C) % change in CBF within the hippocampus 
negatively correlates with sugar intake (arbitrary units) 𝑦 = 	−3.07𝑥 + 38.84, D) % change in CBF 
within the putamen negatively correlates with sugar intake 𝑦 = 	−2.85𝑥 + 36.93, Significance was 
set to p< 0.05 and rho > 0.4 or < -0.4, n=15 (OW).  
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6.5  Discussion 

The aim of this component of the study was to look at the effects of intranasal insulin 

administration on resting cerebral perfusion using arterial spin labelling. A 3D pCASL 

technique was used to acquire quantitative cerebral perfusion maps in a cohort of 

healthy males who had a range of BMI scores and were stratified into normal weight 

(lean) and overweight groups. The pCASL sequence implemented in this study 

adopted a long label duration (3.5s), to increase signal to noise ratio within the 

perfusion weighted images. To this end the voxel size of the acquired images was 

decreased to make use of this increase in signal from the larger labelled bolus. All 

other parameters used were in line with those recommended by the recent ASL 

consensus paper (Alsop et al. 2014). The sequence was successfully implemented and 

characterised for use in this pharmacological investigation. This study was able to 

provide observations of insulin induced decreases in CBF within the hippocampus, 

which has not been reported previously; as well as decreases in the insula and 

putamen, in contrast to regional CBF increases within these regions as previously 

reported (Schilling et al. 2014). Furthermore, this study showed that hippocampal 

and putamen CBF responses to nasal insulin are associated with self-reported dietary 

saturated fat intake and sugar intake in overweight subjects. 

 

This study showed that long label pCASL provides sufficient sensitivity to detect 

changes in cerebral perfusion following intranasal insulin administration. Changes in 

perfusion were most apparent in the overweight group of individuals examined in 

this study, in comparison to the lean group who did not display a statistically 

significant or detectable change in response to intranasal insulin, at the whole brain 

level, but did show a reduction in the amygdala from small volume correction 

analysis, albeit did not survive statistical threshold applied for multiple comparisons. 

In this overweight group intranasal insulin also reduced CBF within the left 

hippocampus, left posterior insula, left putamen and also the left para-hippocampal 

gyrus, observed in the voxel-wise whole brain analysis. Post hoc analysis through the 

use of small volume correction also showed insulin induced CBF reductions within 

the amygdala and anterior insula, albeit these did not survive more stringent 
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statistical threshold (Bonferroni multiple comparison correction for the number of 

ROIs).  

 

As detailed in previous chapters, cerebral perfusion is a surrogate marker for 

neuronal activity, due to the dynamic relationship between neuronal activity and 

neuronal vascular supply, known as neuronal coupling (Attwell and Iadecola 2002). 

Changes in CBF can be observed after administration of compounds that elicit direct 

effects on the vasculature. For example, caffeine an adenosine receptor (A2A) 

antagonist, elicits vaso-constrictive actions within the cerebral vasculature, reducing 

global CBF (Perthen et al. 2008; Liau, Perthen, and Liu 2008; Grichisch et al. 2012). 

There is compelling evidence to suggest that insulin has little direct vasoactive effect 

within the CNS (Grichisch et al. 2012) and therefore any perfusion differences seen 

from this reported experiment can be interpreted as very likely to be driven by 

changes in regional neuronal activity.   

 

From an anatomical perspective the changes in perfusion presented are relatable to 

both previous literature from investigations of the effects of centrally acting insulin 

and also insulin receptor distribution in the brain. The decreases in CBF presented 

here are in contrast to the limited number of studies reported that have examined 

the effects of intranasal insulin on cerebral perfusion. These have reported both 

insulin induced decreases and increases which will be used in reference to the 

findings reported here (Grichisch et al. 2012; Schilling et al. 2014; Akintola et al. 2017; 

Kullmann et al. 2013; Kullmann, Heni, Veit, Scheffler, Machann, Haring, et al. 2015; 

Kullmann et al. 2018).  

6.5.1 Hippocampus 

The hippocampus is an area with a high density of insulin receptors (Plum, Schubert, 

and Brüning 2005). Subjects with conditions such as Alzheimer’s disease (AD) and 

type 2 diabetes (T2DM) display central insulin resistance which is associated with 

cognitive and memory impairments, highlighting the role of central insulin in these 

cognitive functions and in hippocampal physiology (Ott et al. 2012; Benedict et al. 

2004; Craft et al. 2012; Craft et al. 1998). 
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Whole brain statistical parametric maps in the overweight group displayed a large 

cluster of insulin induced CBF decreases with a peak in the left hippocampus. 

Visualisation of these maps shows that the cluster extends beyond the boundaries of 

the left hippocampus and encompasses regions of the para-hippocampal gyrus. 

These temporal lobe features are particularly important in memory related activity 

and formation (Braak et al. 1996). This is the first study that has examined CBF 

changes within the hippocampal formation following intranasal insulin 

administration. At the neuron receptor level, understanding how insulin exerts its 

central effects is becoming better understood. Electrophysiology studies in cultivated 

rat hippocampal slices and CA1 neurons show that an acute increase in insulin 

concentration induces recruitment of GABAergic receptors (GABAAR) to these CA1 

synaptic formations (Wan et al. 1997). In addition, insulin’s effects on hippocampal 

neurons have previously shown an overall reduction in neuronal excitability through 

opening GABAA channels and thus establishes a state similar to tonic inhibition (Jin 

et al. 2011) within these cells. Furthermore, insulin action within the hippocampus 

has been shown to hyperpolarise neurons, reducing neuronal firing rate through 

interaction with potassium channels (O'Malley and Harvey 2007; O’Malley, Shanley, 

and Harvey 2003). An increase in GABA related activity and reduced firing rate within 

the hippocampus would arguably be sufficient to produce regional decreases in CBF 

as shown using pCASL in this report, and hence provide a mechanism for the results 

presented in the current study.  

 

To complement these cerebral effects, this study also identified a relationship 

between insulin induced CBF changes within the hippocampus; and both dietary 

saturated fat and sugar intake, separately, in the overweight group. Saturated fat and 

sugar intake measured using the ‘dietary fat and sugar subscale’ questionnaire 

correlated with insulin related decreases in CBF. The relationship was negatively 

correlated implying that lower levels of saturated fat and sugar intake are related to 

greater insulin responses (decreases in CBF) within this overweight group. The 

modern western diet, characterised by high levels of saturated fats and refined 

carbohydrates, contributes significantly to weight gain and metabolic disease 

prevalence (Kanoski et al. 2010; Hu, van Dam, and Liu 2001). Overconsumption of 
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saturated fat in comparison to poly-unsaturated fat results in higher visceral adipose 

tissue deposition (Rosqvist et al. 2014). A previous cerebral perfusion imaging study 

which examined intranasal insulin responses showed that after insulin application a 

stronger decrease in hypothalamic CBF was witnessed in those individuals with lower 

levels of visceral adipose tissue (Kullmann, Heni, Veit, Scheffler, Machann, Häring, et 

al. 2015). High dietary saturated fat intake is associated with impairments in 

hippocampal memory related functioning (Pasinetti and Eberstein 2008) and an 

increase in metabolic disorders and incidence of Alzheimer’s Disease (Pasinetti and 

Eberstein 2008). Some reports suggest that the modern western diet impacts blood 

brain barrier (BBB) integrity and that these memory related impairments are 

consequential to this process (Persidsky et al. 2006). From this collection of findings 

and the results reported in this study there is evidence to suggest an association 

between dietary fat intake and central insulin sensitivity within the hippocampus. 

Within this overweight cohort the sensitivity to insulin signalling in the hippocampus 

is decreased in those who consume higher amounts of saturated fat. Decreased 

hippocampal responsiveness to insulin signalling could be a marker of central insulin 

resistance that precedes peripheral insulin resistance, although more extensive 

research would need to be conducted to further explore this finding.  

 

Furthermore, from studies looking at high sugar based diets, an accumulation of 

evidence has shown that peripheral insulin sensitivity is reduced in response to diets 

high in refined sugar (Macdonald 2016). A cross sectional study showed that a high 

fat and high sugar ‘western diet’ exhibited poor hippocampal-dependent memory 

function coupled with a reduction in sensitivity to interoceptive signals in humans 

(Francis and Stevenson 2011). Mice fed on a high fat and high sugar ‘western diet’ 

displayed BBB leakages in the hippocampus and dorsal striatum which was 

associated with poor performance in a learning task compared to chow fed mice 

(Hargrave et al. 2016). Findings like this support the correlation between increased 

sugar intake and reduced insulin responsiveness seen within the hippocampus and 

shed light on the effects of diet composition on the brain prior to severe metabolic 

dysfunction.  
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6.5.2 Insula  

In the overweight group there was a large cluster of significant CBF change at the 

boundary between the left putamen and the left posterior insula cortex. A study of 

intranasal insulin in lean individuals showed a CBF increase in both the bilateral insula 

and the bilateral putamen (Schilling et al. 2014). The insula is known for its role as a 

hub for integration of visceral stimuli such as taste and odour, and commonly 

referred to as the primary gustatory cortex (Rolls 2006). Previous cerebral perfusion 

studies using 15O-labelled water positron emission tomography (PET) have shown a 

relationship between hunger state and regional CBF within the insula, hippocampus, 

para-hippocampal gyrus and putamen (Tataranni et al. 1999). More specifically they 

showed regional perfusion increases in these areas following long fasting periods 

(36hrs), much longer than those implemented in this study (Tataranni et al. 1999). 

The data being reported here show decreases in these areas in response to increased 

central insulin concentrations. Centrally increased insulin concentrations in the brain 

has been shown to have anorexigenic effects, reducing food intake acutely and 

subsequent weight gain over time in mice (Air et al. 2002). Intranasal administration 

of insulin in humans has been shown to reduce appetite acutely (Jauch-Chara et al. 

2012; Benedict et al. 2008). If cerebral blood flow in these limbic regions is closely 

linked to hunger states then the decreases seen from this ASL imaging study under 

an intranasal insulin challenge could be as a result of a mild change in appetite or 

hunger. A trend for an insulin associated change in hunger was seen from hunger 

questionnaires recorded prior to and after scanning in the overweight group. As 

described in chapter 4, subjective hunger ratings significantly increased during 

placebo sessions but there was no difference in hunger ratings pre and post scanning 

following intranasal insulin administration, suggestive of an appetite blunting 

response of insulin. To this end, Tataranni et al., also showed that induction of satiety 

following a calorie dense liquid meal was associated with a selective reduction in 

perfusion within the insula, hippocampus, para-hippocampal gyrus and putamen 

(Tataranni et al. 1999). Although the results from the pCASL study being reported 

here did not show a satiation effect of intranasal insulin there is evidence of a hunger 

blunting effect seen from the intranasal insulin visits (reported in chapter 5 (see 



 207 

section 5.1.7). Furthermore, Tataranni et al showed that decreases in CBF during 

satiety correlated with both plasma levels of insulin and plasma free fatty acid levels, 

which were increased and decreased following liquid meal ingestion, respectively  

(Tataranni et al. 1999). This is suggestive of modulatory metabolic mechanisms on 

neuronal activity within the insula region. It can therefore be proposed that insulin 

acts as a satiety signal, and that following meal consumption pancreatic increases in 

insulin reach the CNS where they impart an inhibitory effect on further food 

consumption. Insulin may have a direct effect on the hypothalamus or an indirect 

effect through its interactions with other hubs within the limbic system and 

prefrontal cortex and thus intranasal administration of insulin would mimic this 

effect.  

 

It is also important to discuss the pharmacodynamics of insulin within the insula 

region, similar to the hippocampal mechanisms mentioned above. The insula boasts 

a high density of insulin receptors (Werther et al. 1987) and receives neuronal  input 

from both the hypothalamus and amygdala (Allen et al. 1991). Electrophysiology 

studies have shown that acute insulin application to rat insula pyramidal neurons 

leads to an increase in repetitive spike firing rate (Takei et al. 2010) in comparison to 

control neurons. This increase was not however an increase in spontaneous firing but 

rather insulin had a neuromodulatory effect on neuronal firing. The authors propose 

that insulin increases neuronal excitability within the insula via sodium channel 

sensitivity changes and postulate that during times of increased insulin CSF 

concentrations, such as after eating, this increased firing rate is in response to 

increased interoception (Takei et al. 2010). Intranasal insulin related increases in the 

insula have been previously reported using a continuous ASL sequence (Schilling et 

al. 2014) in lean individuals. That study references Takei et al., in support of the 

regional perfusion increase seen in the insula. Although the continuous ASL study 

mentioned and the present study used a similar imaging technique and analysis 

approach, there are several differences between experimental protocols which may 

explain the contrasting results. In the current study, a dose of 160IU was used in 

comparison to the 40IU used by Schilling et al. A dose dependent intranasal insulin 

effect has been identified previously from a multi-modal MR imaging investigation in 
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humans (Kullmann et al. 2018). CBF decreases within the hypothalamus showed a 

strong dose dependent effect on CBF with decreases being most prominent following 

160IU administration vs placebo (Kullmann et al. 2018). Interestingly, following 40IU 

administration no significant changes in any of the imaging related measures (CBF or 

fractional amplitude of low frequency fluctuation) were  identified in comparison to 

placebo. However, highly significant and opposing changes were seen between 40IU 

and 160IU, suggestive of intranasal insulin not only having a dose dependent effect 

but a differential dose dependent effect which may explain the opposing effects seen 

in this current study in comparison to Schilling et al., (Schilling et al. 2014). These 

differential effects were most prominent in the caudate, a region most commonly 

involved in dopamine signalling and closely connected to the putamen, often 

referenced together as the dorsal striatum (Kullmann et al. 2018).  

 

6.5.3 Putamen 

Putamen perfusion decreases were seen both at the whole brain level and also when 

assessed with small volume correction in the overweight group exclusively. Insulin 

plays a key role in reward behaviour and particularly food related reward (Figlewicz 

and Benoit 2009). As mentioned previously, the putamen has been shown to exhibit 

increases in CBF following nasal administration of insulin in humans (Schilling et al. 

2014). As mentioned earlier, the results reported here differ in the direction of the 

perfusion change and could be as a result of the higher dose used in this study (160 

IU) (Kullmann et al. 2018). The putamen, similar to the hippocampus, revealed a 

similar relationship between insulin induced changes in CBF and saturated fat and 

sugar intake. The association was negatively correlated, such that putamen 

decreases in CBF in response to insulin were higher in those who consumed less 

saturated fat and less sugar composed foods. In the absence of a rewarding stimulus, 

it is hard to make assumptions about how this change in putamen activity would be 

associated with reward. However, pre-clinical rodent work has shown reduced BBB 

integrity, more susceptible to leakage, at the level of the striatum in response to a 

high fat and sugar western diet (Hargrave et al. 2016). Furthermore, given that a high 

fat diet induces central insulin resistance (Arnold et al. 2014) it is perhaps intuitive 
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that this correlation between fat intake and IN-INS response exists. One can possibly 

suggest that the putamen and likewise the hippocampus are particularly susceptible 

to this high fat induction of central insulin resistance.  

 

6.5.4 Amygdala 

From whole brain paired t-tests, both lean and overweight groups showed a trend 

towards insulin related decreases in amygdala CBF from small volume correction. In 

both cases the difference was not sufficient to survive multiple comparison 

correction, but with a larger sample size this insulin associated effect on CBF within 

the amygdala may become apparent. The amygdala is an insulin receptor dense 

region and is a major component of the limbic system, commonly involved in fear 

and anxiety processing (Ohman 2005; Ressler 2010). However, there are several lines 

of research that support the notion for amygdala involvement with food intake and 

appetite control (Figlewicz, MacDonald Naleid, and Sipols 2007). Administration of 

insulin via injection to the amygdala in rats shows an acute decrease in food intake 

couple with a reduction in appetite (Boghossian et al. 2009). Insulin receptors in the 

central nucleus of the amygdala (CeA) are abundantly expressed and insulin binding 

within the CeA selectively increases both the amplitude and frequency of 

spontaneous inhibitory postsynaptic currents (sIPSCs) (Korol et al. 2018).  It could be 

through this insulin-mediated mechanism in which the decrease in CBF seen in this 

study was realised. The amygdala is known to be responsive to visual food cues. 

Several studies have shown that in response to satiation the amygdala shows a 

decrease in responsiveness to food cue paradigms (Morris and Dolan 2001; Gottfried, 

O'Doherty, and Dolan 2003). Given that these decreases were seen during sensory 

manipulation, they might not be directly relatable to this study but highlight an 

involvement of the amygdala in appetite control and food intake.  
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6.5.5 Lean vs overweight 

From the results reported in this study it is evident that there is a response within 

the overweight group to IN-INS which is not replicated within the lean/normal weight 

group. There was very little effect on CBF following intranasal insulin administration 

in the lean group, and to that extent there was no significant results to report from 

any of the whole brain analyses performed in the lean group. The failure to see an 

insulin induced response could be as result of the variability in baseline insulin levels 

witnessed in this weight group between sessions. Given this, pre-dose HOMA-IR 

measurements helped to account for some of this variability and highlighted a trend 

towards an insulin related reduction in CBF within the amygdala from small volume 

correction analysis.  

 

Pharmacological decreases in CBF during rest are not entirely intuitive in comparison 

to increases in CBF which can be somewhat explained by an increase in neuronal 

activity, as a result of the neurovascular coupling phenomena, in the absence of 

direct effects on cerebral vasculature. Given the CBF differences in this study were 

selectively observed in the overweight group, it could be argued that this group 

showed an aberrant or increased CBF in the left hippocampus, insula, putamen and 

para-hippocampal gyrus. And that in response to insulin this aberrant activity was 

reduced. Given this study was placebo controlled it offered an opportunity to 

examine some differences between these two groups under both insulin and placebo 

conditions. To this extent the ROI extracted values were utilised to evaluate inter-

group differences. There were no differences in global grey matter perfusion 

between groups from either placebo or insulin sessions. At a regional level, resting 

perfusion data showed CBF differences within both the bilateral posterior and 

anterior insula within the placebo condition. In both these insula regions, rCBF was 

higher in the overweight group in comparison to the lean group. Furthermore, 

following insulin administration the group differences in CBF within the anterior 

insula remained but were no longer observable in the posterior insula. Food cue tasks 

have highlighted the insula as a region involved in processing of high calorie visual 

food cues, and have also illustrated increases in insula BOLD activity in obese 
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individuals compared to normal weight (Rothemund et al. 2007). Furthermore, pre-

meal resting state fMRI-BOLD data also supports an overactive insula in obese 

individuals vs normal weight individuals (Hogenkamp et al. 2016). The insula, as well 

as a region involved in gustation is also heavily involved in interoception. Perhaps not 

surprising is the finding that interoception sensitivity is reduced in overweight and 

obese individuals compared to normal weight individuals (Herbert and Pollatos 

2014). The lack of an observable group difference within the posterior insula 

following intranasal insulin administration suggest that insulin may act to inhibit the 

overactivity of the insula in the overweight group. More work will need to be 

conducted to make more informative inferences from these results.  

 

The results gathered from this interrogation of intranasal insulin’s effects on cerebral 

perfusion has shown that insulin is centrally active in this group of overweight 

individuals eliciting regional decreases in perfusion. A lack of observable effects 

within the lean group was surprising given the profound effects seen within the 

overweight group. We cannot exclude that the lack of effect is possibly due to the 

variability seen within the baseline blood concentration measures and inclusion of 

these into the statistical model did help to reveal some insulin related effects but the 

alternative explanation, that in lean subjects these regions are already optimally 

active/inactive, remains attractive. These findings pose the question as to whether 

the regional perfusion observed in the lean group is fully (in)activated during fasting 

conditions, so the insulin challenge makes no difference, whereas in the overweight 

group the pathway is active and capable of being deactivated by intranasal insulin, 

and that this effect is impaired by poor dietary indiscretion.  

 

This is the first time that insulin related changes in CBF have been reported in the 

hippocampus. The long label sequence implemented in this study was sensitive to 

demonstrate insulin induced changes within key regions of the brain involved in 

gustation, memory and reward.  
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Chapter 7 Taste task paradigm  
 

This chapter will present the results from the taste paradigm that was employed 

within the SNIFAR protocol. The taste paradigm is a complex functional task that was 

conducted following the food pictures functional task. Participants were given clear 

instructions during the screening visit and also again on each scanning morning 

regarding the paradigm. In an effort to aid the reader the results for this paradigm 

have been divided into four separate sub-chapters. This first sub-chapter will provide 

the reader with detailed functional data acquisition parameters and overall paradigm 

details. The following sub-chapters will reference the specific analytical methods 

used firstly to, assess these functional data in an effort to best describe the main 

whole brain effects of the paradigm within each group and treatment, respectively; 

secondly, to examine whole brain treatment effects and group effects for each 

component of the paradigm and finally, to assess treatment effects through a 

thorough interrogation of the data with region of interest analysis and accounting for 

subjective changes in taste over time. I hypothesise that IN-INS will reduce the 

rewarding effects of each of the sweet taste stimuli and that these reductions will be 

greatest in lean individuals in comparison to the overweight group.  Furthermore, in 

response to viewing the cue, I hypothesise that, the overweight will display a hyper-

responsivity to these cues in comparison to the lean group, which will be reduced 

upon IN-INS administration. 
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7.1 Introduction  

Intranasal insulin administration in humans has shown appetite reducing effects. In 

imaging studies using acute administration, significant reductions in food cue (food 

image viewing) responsiveness have also been observed  (Guthoff et al. 2010). It is 

well established that there are three systems that interact to modulate energy 

intake: the homeostatic, hedonic and cognitive pathways (Volkow, Wang, Fowler, et 

al. 2008; Volkow, Wang, and Baler 2011; Berridge 2009; Berridge and Kringelbach 

2008; Higgs 2016; Higgs and Spetter 2018; Higgs et al. 2017). Dysregulation of these 

systems is thought to be key to the development of obesity, insulin resistance and 

type 2 diabetes and therefore understanding this dysregulation is of great 

importance. 

 

The homeostatic system controls energy intake and energy balance in response to 

metabolic demands and energy store levels in the body (see section 1.7.1). This 

pathway is regulated largely by peripheral hormones such as leptin, ghrelin, insulin 

and intestinal peptide YY 3-36 (PYY) that relay metabolic information from the 

periphery to the hypothalamus which processes and acts on these signals (Lutter and 

Nestler 2009; Karra, Chandarana, and Batterham 2009). Overproduction or 

underproduction of appetite inducing and appetite reducing hormones, respectively, 

has been associated with the weight gain seen in obesity (Goldstone 2006).  

 

Additionally, there is a large body of empirical evidence suggesting that aberrant 

hedonic responses (supported by its corresponding functional networks) also 

contribute greatly to the dysregulation of energy intake associated with obesity 

(Volkow, Wang, and Baler 2011). ‘Hedonic feeding’, also known as ‘non-homeostatic 

feeding’, is characterised by the consumption of palatable food for its potent 

rewarding effects, as opposed to satisfying the metabolic demands of the body (see 

section 1.7.2). The hedonic system incorporates regions of the meso-limbic system 

(amygdala, hippocampus, nucleus accumbens (NAcc)) involved in learning and 

reward processing, as well as cortical regions (anterior cingulate cortex, orbital 
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frontal cortex, and insula) involved in motivation, decision making and gustatory 

processing, respectively (Volkow, Wang, and Baler 2011).  

 

Finally, the cognitive systems involved in appetite control and top down modulation 

of inhibitory and valuation of food choices is an important and often neglected aspect 

in this discipline (Higgs 2016) (see section 1.7.3). Particularly, as a large amount of 

evidence regarding food consumption and the mechanisms that govern this action 

have been observed in pre-clinical animal models.  

 

Insulin has been shown to be centrally active and a large amount of evidence shows 

that insulin has effects on both ‘homeostatic feeding’ and ‘hedonic feeding’ 

(Figlewicz and Benoit 2009), with much of this support coming from animal model 

literature. This investigation  therefore seeks to examine the effects of increased 

central insulin concentrations on hedonic and cognitive brain responsivity to 

food/liquid stimuli administration in a cohort of normal weight and overweight 

individuals. This experiment will also probe the anticipatory effects, described as the 

time immediately before receiving a primary food stimulus, as well as the 

consummatory response, defined as the response to actual receipt of a primary food 

stimulus. Anticipation responses to receiving food reward stimuli have been shown 

to be increased in obese compared to lean individuals (hyper-responsivity) (Burger 

and Stice 2011b). In contrast, BOLD effects seen from the consummation response 

to food stimuli are decreased in obese compared to lean (hypo-responsivity) (Stice 

et al. 2008). Given these observations, some have hypothesised that these 

differential effects seen in lean and obese individuals are key features of obesity and 

may contribute to the development of this metabolic disease.   

 

This experiment looks at two discrete responses, anticipation and consummation, for 

two sweet solutions, one of which contains calories (in the form of sucrose) and the 

other a non-nutritive artificial sweetener, (‘stevia’). The use of non-nutritive 

sweeteners as replacements for calorie dense sweeteners such as sucrose has 

increased over the last decade (Anton et al. 2010). Many suggest non-nutritive 

sweeteners can provide a sweet palatable taste whilst negating the sugar load and 
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postprandial increase in insulin associated with many energy dense sweeteners. 

Some suggest that non-nutritive sweeteners may be useful for promotion of weight 

loss or weight gain prevention (Mattes and Popkin 2009), although this remains 

largely debated, with limited long term empirical evidence to support the former. 

Stevia (previously described in section 3.4.7.2), a relatively recent addition to the 

non-nutritive sweetener market, is thought to have beneficial effects on insulin 

sensitivity (Chang et al. 2005) and postprandial glucose and insulin levels in 

comparison to other popular sweeteners and sucrose (Anton et al. 2010). The 

hedonic effects of stevia however, have yet to be reported and this study sets out to 

examine the brain response to this non-nutritive sweetener. 
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7.2 Methods  

7.2.1 Participants 

Thirty one participants took part in this study. As mentioned in chapter 4, three of 

these were excluded due to evidence of non-compliance with the fasting protocol. 

Furthermore, two of the normal weight participants (lean, as stratified by BMI 

(kg/m2)), were excluded from this analysis due to technical problems encountered 

with the scanner and taste dispenser apparatus. As a result, the sample size for this 

analysis has been reduced to 10 normal weight (BMI = 22.01 ± 1.81 kg/m2, mean 

± SD) and 15 overweight individuals (BMI = 27.76 ± 1.92 kg/m2).  

 

7.2.2 Taste dispenser setup  

The researcher had to enter the scanner room for the setup of this paradigm. The 

participant was informed to remain as still as possible whilst the researcher 

positioned the MR compatible taste dispenser for the task. The taste outlet head was 

positioned into the right hand-side of the participant’s mouth between the teeth and 

cheeks.  

 

The taste paradigm has been described in detail in chapter 3 (see section 3.4.7). The 

participants were reminded of the details of the paradigm prior to the paradigm 

commencing by the researcher. The details of the paradigm and the three different 

trials are shown in Figure 7.2.2 and the fractal cues used for both visits are shown in 

Figure 7.2.1. 

 

 

 

 

 

 



 217 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.1 The fractal cue images that 
were used for the taste paradigm. 

Figure 7.2.2 A diagram to show the three different trial types of the taste paradigm. Black boxes 
represent the events that are modelled as events of interest (cue, delivery and withheld delivery, 
respectively). Grey boxes represent events that are modelled in the first level model but are not of 
interest or taken through to the second level analysis (swallow and VAS scoring periods). A paired 
trial is the most common trial type and involves the delivery of a 0.5ml bolus/stimulus following 
visual cue presentation. An unpaired trial does not deliver the 0.5ml bolus as expected, instead 
nothing is delivered. A VAS trial is when the delivery of the bolus is followed by two VAS questions, 
this happens for each taste at the very beginning of the first run and at the very end of the second 
run. 
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7.2.3 Image acquisition  

Whole brain functional images were acquired using a single-shot 2D T2* weighted 

gradient echo echo-planar imaging (EPI) sequence using parallel imaging (Array coil 

Spatial Sensitivity Encoding, ASSET). Slices were acquired in a sequential top down 

direction in the near- axial plane parallel to the anterior-posterior commissure (AC-

PC) line (approximately 30°) with the following parameters: TR = 2000 ms, TE = 30 

ms, flip angle = 75°, matrix size = 64 x 64, FOV = 211 x 211, slice thickness = 3 mm, 

slice gap = 0.3 mm, no. of slices = 41, in-plane voxel size = 3.3 x 3.3 mm2. Four dummy 

acquisitions were acquired to achieve steady state magnetisation which were 

discarded, prior to analysis. The total number of imaging volumes was 324 acquired 

in 10:56 mins for each run. This experiment was conducted, as mentioned earlier, 

using two consecutive runs. 

 

7.2.4 Image processing  

Image processing was performed using a combination of neuroimaging software 

packages. Firstly, outliers were removed from the time series using 3dDespike 

(Analysis of Functional Neuroimages (AFNI) (Cox 1996)). To correct for subject motion 

images were realigned to a base volume using 3dVolreg (AFNI) and all volumes were 

subsequently corrected for slice timing differences using 3dTshift (AFNI). The base 

volume was co-registered to the subject specific T1 anatomical image using epi_reg 

(FSL, FMRIB, version 3.20, University of Oxford, UK, http://www.fmrib.ox.ac.uk/fsl). 

Normalisation warping parameters for the anatomical to standard MNI template 

were then applied using Advanced Normalisation Tools (ANTs)(Avants et al. 2011; 

Avants et al. 2014). Finally, spatial filtering of the images was applied using a full 

width half maximum (FWHM) gaussian kernel of 8 x 8 x 8 mm using the Statistical 

Parametric Mapping smoothing function (SPM-12, Wellcome Trust Centre for 

Neuroimaging, University College London, UK, http://www.fil.ion.ucl.ac.uk/spm). 

Furthermore, a high-pass temporal filter (filter width of 128s) was also applied as part 

of the first level model design.  
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7.2.5 Image analysis 

Several different analyses were performed on this dataset. For ease of interpretation 

and to allow the reader to follow the results found from this task more clearly, this 

chapter has been broken into the following three sections. 

 

A. Interrogating the functional effects of the taste paradigm 

Within this section the reader will be guided through the BOLD response profiles to 

this complex paradigm for each taste and each event (cue and receipt of taste), 

respectively. This section will explore these responses through whole brain voxel 

wise analysis and also small-volume correction (SVC) from a priori selected regions 

of interest (ROIs). Within this section it is also appropriate to look at any group 

related differences using two sample t-tests at the whole brain level and also to 

further interrogate these through SVC analysis.   

 

B. Formal comparisons between intranasal insulin and intranasal placebo 

Within this section the main effects of intranasal insulin on brain modulation within 

this paradigm will be assessed. The analysis was conducted using both whole brain 

analysis and ROI analysis (not small volume correction) using extracted beta 

estimates. In addition to drug related effects, ROI analysis permitted the exploration 

of group related (BMI) differences in BOLD response for each taste and condition.  

 

C. Time dependent effects of intranasal insulin: separate analysis of each 

functional series 

Functional data for this paradigm was acquired over two runs. The temporal 

dynamics associated with this paradigm attributed through learning conditioned 

stimuli and due to sensitisation effects over time, were acknowledged and therefore 

analysis was conducted to evaluate any differences between runs. This analysis was 

conducted entirely through the extraction of ROI data (extracted contrast image 

estimates).  
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Each section will have a short introduction followed by the specific data analysis and 

statistical techniques implemented. This multiple analysis strategy was conducted in 

an effort to fully interrogate the vast amount of functional data that can be examined 

using this paradigm. 

 

 
Figure 7.2.3 Diagram to show the structure of the three sections within this chapter 
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7.3 SECTION A. Interrogating the Functional Effects of the 

Taste Paradigm 

 
 

Within this subchapter the analysis methods and results used to explore the main 

task effects within each treatment will be described. Furthermore, with this 

methodology, the differences between BMI stratified groups within treatment were 

also interrogated from whole brain analysis.  

 

In addition, the VAS rating analysis and results will be reported.  

7.3.1 Analysis of VAS ratings 

VAS ratings were collected at the beginning of run 1 and at the end of run 2.  

Average run likeness VAS ratings for each taste were entered into a repeated 

measures ANOVA, with two factors drug (insulin vs saline) and substance (water, 

sucrose, stevia) for the whole group (n=25), to assess differences in ratings between 

substances and any drug related effects. Similarly, to assess the effect of drug or 

substance on sweetness, average run sweetness VAS ratings for each taste were 

entered a repeated measures ANOVA, with two factors drug and substance for the 

whole group (n=25). For each ANOVA model there were three taste stimuli, so 

statistically significant main effects and interaction effects were inspected using a 

Tukey post hoc test to look for significant comparisons. 

 

Two further repeated measures ANOVA models were created that included just the 

two substances, sucrose and stevia, to examine drug and substance effects, for 

likeness and sweetness, which may have been missed from including water in the 

repeated measures ANOVA model described above. Following a statistically 

significant interaction effect a post-hoc Tukey test was implemented and following a 
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main effect of either drug or substance two paired t-tests, within substance and 

within drug, were conducted, as respective planned comparison tests. All ANOVA 

main effects and interaction effects were assessed at p < 0.05 significance. Tukey 

tests adjust for multiple comparisons and so were assessed to p < 0.05. Planned 

comparisons were assessed to p < 0.025 for multiple planned comparisons (0.05/2).  

7.3.2 1st level model designs  

For statistical analysis of whole brain data, SPM-12 software was used. A random 

effects analysis was implemented through creation of 1st level contrast images from 

a standard general linear model analysis. These contrast images were taken through 

to the 2nd level to interrogate group level effects.  

For this paradigm each trial was modelled as having three conditions of interest: 

• Cue presentation 

• Stimulus (taste) delivery  

• Stimulus delivery withheld 

The paradigm was modelled as an event-related task with condition onsets and 

durations defined from the task. The duration of the cue presentation was set to 2s 

and both the stimulus delivery and withheld conditions were set to 3s, respectively. 

Each condition was modelled separately for each of the three taste stimuli, water, 

sucrose and stevia (see Figure 7.3.1). In addition, the swallowing periods were 

implicitly modelled with onsets defined when the swallow cue was presented, 2s 

duration. The swallow cue was modelled as a single condition as opposed to a taste 

specific swallow condition. Each condition was convolved with SPM’s canonical 

haemodynamic response function (Worsley and Friston 1995). Furthermore, the six 

‘scan-to-scan’ affine head motion parameters produced during motion correction 

were included as nuisance regressors in the model to account for subject head 

motion (see Figure 7.3.1.A).  

 

This paradigm was acquired through two functional runs, with identical scanning 

parameters. Both run 1 and run 2 were combined at the first level (see Figure 

7.3.1.B). 
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Figure 7.3.1 Diagram showing the first level model design matrix setup and an 
example output from this general linear model design. A) displays the three events 
of interest for each taste (water, sucrose and stevia) that were entered into the 
model along with the swallow, VAS and the six motion regressors included in this 
model. B) Both runs are combined into the design matrix. An example linear 
contrast vector applied to both runs is shown at the top of the design matrix. C) 
From the general linear 1st level model a single contrast image for each of the 
contrasts is created. An example of a single contrast image is displayed for the 
contrast vector applied to this model. 
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Linear contrasts were generated to examine the differences in BOLD response 

between each taste for the cue presentation. These linear contrasts were replicated 

for run 1 and run 2 so that a single contrast statistical parametric map was created 

for each contrast (Figure 7.3.1.C).  

7.3.2.1 Cue presentation contrasts:  

Contrast images were created by comparing the BOLD response to presentation of 

the cue assigned to one taste against the cue assigned to another. To be clear, the 

taste cues refer to the fractal images that are presented prior to the taste being 

delivered, or withheld, depending on trial type. In all cases the cue is 100% predictive 

of the taste that will be delivered, but is not predictive of whether the taste will be 

delivered or withheld. All cue presentation contrasts are shown in Figure 7.3.2.  

 

 

Figure 7.3.2 Cue presentation contrasts created from the 1st level statistical general linear model.  
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7.3.2.2 Stimulus Receipt contrasts: 

Statistical contrast images were generated for the BOLD response to stimulus receipt 

for each taste, respectively. These images were created by contrasting the delivery 

event against the delivery withheld event. Contrasts were created independently for 

each taste and thus three taste dependent contrasts were created from 1st level 

statistical modelling: 

 

• Water delivery > Water delivery withheld  

• Sucrose delivery > Sucrose delivery withheld 

• Stevia delivery > Stevia delivery withheld 

 

7.3.3 Group level inferences 

Random effects second level models were created to examine: 

• Task related effects within each group and treatment; using one sample t-

tests.  

AND 

• Group effects within treatment; using two sample t-tests.  

 

Contrast estimate images for each contrast of interest created at the 1st level were 

entered into these group level models (lean (n=10) and OW (n=15). 

 

7.3.4 Whole brain analysis 

For both the one sample and two sample t-test models, whole brain analysis was 

carried out using a cluster defining threshold of p < 0.001 uncorrected. Significant 

clusters were deemed significant if p < 0.05 following a family wise error (FWE) 

correction for multiple voxel comparisons, using what SPM defines as the cluster 

extent threshold.   
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7.3.5 Small Volume Correction (SVC) 

SVC was also employed for this analysis using a priori regions of interest (ROIs).  For 

the cue event, four ROIs were used. These were the anterior cingulate cortex (ACC), 

the ventro-medial prefrontal cortex (vmPFC), nucleus accumbens (NAcc), and medial 

orbitofrontal cortex (mOFC). These regions were selected according to previous work 

which had examined the response to cues associated with conditioned primary 

rewards (O'Doherty et al. 2002) and have been also linked with insulin-related 

reward signals (Tiedemann et al. 2017). Bilateral ACC and mOFC masks were designed 

in SPM-12 using the Functional MRI tool of the Wake Forest University School of 

Medicine (http://www.ansir.wfubmc.edu) known as ‘WFU pick atlas’, implemented 

with automated anatomical labelling. The bilateral NAcc was defined from the 

Harvard probabilistic brain atlas in FSL (Desikan et al. 2006). The vmPFC was defined 

from Manning et al., (Manning et al. 2015) as two 10mm radius spheres centred at 

MNI coordinates, x = 6, y = 30, z= -9 and x = -6, y = 24, z =  -21. A multiple comparison 

correction was used to assess significance from SVC results. For the four 

comparisons/ROIs tested for BOLD responses during the cue presentation, a p value 

of 0.0125 was used (0.05/4 = 0.0125).  

 

For the delivery phase, four bilateral anatomical regions of interest were used: the 

caudate + putamen (CPu), NAcc, anterior insula and the amygdala. Both the NAcc and 

CPu are part of the striatum and are involved in reward processing through 

dopaminergic neurotransmission (Schultz 2001). The amygdala is a region of the 

limbic system also involved in response to taste and heavily involved in the gustatory 

response (Breslin 2013). Finally, the anterior insula is heavily involved in taste 

processing, commonly referred as the gustatory cortex (Frank, Kullmann, and Veit 

2013). The CPu structures and amygdala were defined using the WFU pick atlas tool. 

The CPu was created by combining the caudate head and body mask with the 

putamen mask. The anterior insula mask was defined using publicly available 

cytoarchitecture segmentations (Kurth, Eickhoff, et al. 2010). For four 

comparisons/ROIs assessed for BOLD responses during the stimulus delivery, a p 

value of 0.0125 was used (0.05/4 = 0.0125) to correct for multiple comparisons. 
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Table 7.3.1 Table of regions of interest used for the cue and delivery contrasts. 
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7.3.6 Correlation analysis with BMI 

The effect of BMI on BOLD response for both cue and delivery conditions was 

assessed using a linear regression correlational analysis. Each ROI, defined above, 

was used as a mask to extract mean BOLD contrast estimates (from 1st level contrast 

maps) for each treatment condition (3dmaskave function, AFNI) for every 

participant. These mean values were regressed against BMI as part of a 

supplementary exploratory analysis.  

 

Contrast estimates extracted from the ACC, vmPFC, mOFC and NAcc ROIs for the 

sucrose > water and stevia > water contrasts were correlated against BMI. 

 

For the delivery > delivery withheld contrasts, only the two sweet delivery tastes 

were interrogated. Extracted values from the insula, amygdala, CPu and  NAcc, under 

insulin and placebo conditions were regressed against BMI and correlations were 

estimated. 

 

Correlations were estimated using Pearson’s correlation coefficient. Correlation 

coefficients (r) greater than 0.4 or less than -0.4, with an associated p value < 0.05 

were reported. Correlation coefficient thresholds were set to only look for ‘moderate 

to very strong’ correlations (i.e. 0.4 to 1.0) based on Evans’ guide to correlational 

analysis (Evans 1995). However, within this exploratory analysis a total of 32 

correlations were tested. Therefore, an adjusted statistical threshold of p < 0.00156 

(0.05/32) was used to correct for multiple comparison testing and therefore 

correlations that fulfilled both the coefficient threshold and the p value significance 

will be reported as significant. 
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7.4 SECTION A. Results  

7.4.1 VAS ratings 

7.4.1.1 Likeness ratings 

VAS ratings used to assess how much the participants liked each flavour revealed 

highly significant main effect of substance (F2,24 = 45.85, p < 0.001, ANOVA). Post hoc 

Tukey test showed that following both placebo and insulin administration there was 

a significant difference between sucrose and water as well as stevia and water 

(p<0.001, adjusted for multiple comparisons Tukey test) for all within drug sweet 

taste vs water comparisons (see Figure 7.4.1). In all cases water was the least 

palatable substance. There were no differences between sucrose and stevia from this 

ANOVA analysis or drug related effects.  

 

Furthermore, excluding the water scores from the ANOVA model did not reveal any 

significant differences between sucrose and stevia likeness or any treatment related 

effects on palatability.  

 

 

Figure 7.4.1 VAS likeness ratings averaged across runs for each taste and condition. A) VAS ratings 
recorded during the placebo session show that both sucrose and stevia solutions were ‘liked’ more in 
comparison to water. B) similarly, sucrose and stevia solution were liked more than water under 
insulin conditions. Mean ± SD  *** p < 0.001, Tukey test for multiple comparisons, n =25 (whole group).  
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7.4.1.2 Sweetness ratings 

With water included in the ANOVA model there was a significant substance effect 

(F2,24 = 176.01, p < 0.001, ANOVA). Post-hoc analysis showed that across drug 

conditions both sucrose and stevia were rated sweeter than water (p<0.001, 

adjusted for multiple comparisons, Tukey test) for all within drug sweet taste vs 

water comparisons (see Figure 7.4.2).  

 

Exclusion of water related sweetness scores from the ANOVA model provided a 

significant main effect of substance (F1,24 = 4.47, p = 0.037, ANOVA). Within drug 

paired t-tests showed that sucrose (77.46 ± 10.42) was rated as sweeter than stevia 

(71.1 ± 13.75) under insulin conditions only (t(24) = 2.42, p = 0.023, paired t-test) 

(Figure 7.4.3). 

 

 

 

 

 

 

 

Figure 7.4.2 VAS sweetness ratings averaged across runs for each taste and condition. A) VAS 
ratings recorded during the placebo session show that both sucrose and stevia solutions were 
perceived to be sweeter in comparison to water. B) similarly, sucrose and stevia solution were 
reported as sweeter vs water under insulin conditions. Mean ± SD *** p < 0.001, Tukey test for 
multiple comparisons, n =25 (whole group). 
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7.4.2 Cue presentation contrasts 

Both ‘sucrose < water’ and ‘stevia < water’ contrasts revealed no significant clusters 

following both one sample and two sample t-tests.  

7.4.2.1 Sucrose cue > water cue 

Within the placebo session, both lean and OW groups showed activation within the 

visual cortex in response to the sucrose cue compared to the water (control) cue, see 

Figure 7.4.4 and Table 7.4.1. 

 

There were no further significant regions after applying small volume correction with 

each bilateral ROI. 

 

Within the insulin session, both groups showed areas of BOLD response within the 

visual cortex from whole brain analysis (see Figure 7.4.4 and Table 7.4.2). After 

applying small volume correction (SVC) to the lean group one sample t-test statistic 

maps there were significant areas of activation within the ACC, NAcc and mOFC. Only 

the NAcc and mOFC survived correction for multiple ROI comparisons (p = 

0.0125)(results are shown in Table 7.4.3).  

Figure 7.4.3 VAS sweetness ratings show an increase in sweetness for sucrose vs stevia under 
insulin conditions only. Mean ± SD , * p < 0.025 (multiple test correction), paired t-test,  n=25 
(whole group). 
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Furthermore, contrasting lean vs OW revealed no significant differences at the whole 

brain level or following small volume correction within the placebo session. Likewise 

the insulin session did not provide any whole brain differences between lean and 

OW groups. However, from SVC performed for the ‘lean > OW’ contrast there was a 

significant difference within the ACC, which did not survive multiple comparison 

correction (p = 0.042, t = 4.02). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4.4 Statistical T-maps overlaid onto structural MNI images of one sample t-test statistical 
clusters for the sucrose > water cue contrast, following placebo administration for both lean (n=10) 
and OW (n=15) individuals. Both groups show statistically significant areas of activation within the 
occipital cortex, primary visual and visual association areas. 
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Table 7.4.1 Whole brain statistics from one sample t-tests performed in lean (n=10) and OW 
groups (n=15) following intranasal placebo administration. All p values presented have been 
corrected for multiple voxel comparisons using a family wise error Bonferroni correction.  
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Table 7.4.2 Whole brain statistics from one sample t-tests performed in lean (n=10) 
and OW groups (n=15) following intranasal insulin administration. All p values 
presented have been corrected for multiple voxel comparisons.  

Figure 7.4.5 Statistical T-maps overlaid onto structural MNI images of one sample t-test statistical 
clusters following insulin administration for both lean (n=10) and OW (n=15) individuals. Both 
groups show statistically significant areas of activation within the primary visual cortex. OW maps 
display slightly more widespread activation into the occipital cortex. 
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7.4.2.2 Stevia cue > water cue 

 

For placebo, the stevia cue > water cue contrast provided significant increases in the 

BOLD response compared to water within the visual cortex and Crus I region of the 

cerebellum both within lean and OW groups (see Figure 7.4.6 and Table 7.4.4). 

Furthermore, the lean group also showed areas of significant activation within the 

right anterior pre-frontal cortex/lateral OFC.  

 

SVC revealed significant effects which survived multiple comparison correction 

within all tested ROIs for the lean group. In the OW group the ACC and NAcc survived 

multiple correction significance but the mOFC did not (Table 7.4.5)  

 

Under placebo conditions, there were no significant group differences from whole 

brain or SVC analysis.  

 

 

 

 

 

Table 7.4.3 Statistical results from small volume correction (SVC) analysis 
performed on one sample t-test parametric maps in the lean group. p values in 
bold indicate regions that survived correction for multiple ROI comparison. NA 
signifies that there were no results for that given region. 
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Figure 7.4.6 Statistical T-maps overlaid onto structural MNI images of one sample t-test statistical 
clusters following placebo administration for both lean (n=10) and OW (n=15) individuals for the stevia 
cue > water cue contrast. Both groups show regional BOLD related activity within the occipital cortex. 
The lean group further displayed cluster activation towards the right lateral OFC and left middle 
temporal gyrus. The OW showed increased BOLD activity within the right middle temporal gyrus in 
addition to the occipital regions.     

Table 7.4.4 Whole brain statistics from one sample t-tests performed in lean (n=10) and OW groups 
(n=15) following intranasal placebo administration for the stevia cue > water cue. All p values 
presented have been corrected for multiple voxel comparisons using a family wise error Bonferroni 
correction. 
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Under insulin conditions, whole brain analysis revealed significant activation in 

response to the stevia cue vs water cue presentation within the visual cortex, 

anterior cingulate cortex and precuneus regions in the lean group (see Figure 7.4.7 

and Table 7.4.6). In the OW group, BOLD responses seen from this cue presentation 

contrast were found within the bilateral visual cortex.  

 

For both groups, the ACC showed significant recruitment for the stevia cue but only 

survived small volume correction in the lean group (p =0.008, t = 4.20) and not in the 

OW group (p = 0.020, t = 4.35) following insulin administration. None of the 

remaining ROIs tested with SVC showed any statistical effects (data not tabulated). 

Furthermore, there were no significant group differences seen in the insulin 

condition for this contrast.   

Table 7.4.5 Statistical results from SVC analysis performed on one 
sample t-test parametric maps in the lean and OW group in response 
to presentation of the stevia cue > water cue. p values in bold indicate 
regions that survived correction for multiple ROI comparison.  
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Table 7.4.6 Whole brain statistics from one sample t-tests performed in lean (n=10) 
and OW groups (n=15) following intranasal insulin administration for the stevia cue > 
water cue. All p values presented have been corrected for multiple voxel comparisons 
using a family wise error Bonferroni correction. 

Figure 7.4.7 Statistical T-maps overlaid onto structural MNI images of one sample t-test 
statistical clusters following insulin administration for both lean (n=10) and OW (n=15) 
individuals for the stevia cue > water cue contrast. Both groups show regional BOLD related 
activity within the occipital cortex. The lean group further displayed cluster activation within 
the ACC. 
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7.4.2.3 Sucrose vs stevia cue 

There were no significant changes in BOLD response when contrasting the cue for 

sucrose vs stevia under both placebo and insulin conditions for either sucrose > 

stevia or stevia < sucrose. Furthermore, there were no group effects for either 

placebo or insulin contrasts assessed at the whole brain level or through SVC.  

7.4.3 Stimulus delivery contrasts 

7.4.3.1 Water delivery vs water withheld  

Under placebo conditions delivery of water stimulus contrasted with when the water 

bolus was withheld showed increases in the BOLD response within the 

somatosensory cortex, supplementary motor area and the cerebellum in the lean 

group (see Figure 7.4.8 and Table 7.4.7). In the OW group significant clusters were 

produced within somatosensory cortex, frontal operculum as well as in the VI region 

of the cerebellum (see Figure 7.4.9 and Table 7.4.7) 

Figure 7.4.8 Whole brain statistical t-map overlaid onto a structural MNI image for the water 
delivery > water withheld contrast in the lean group (n=10). A) Sagittal sections display 
significant clusters within left middle insula cortex. B) Coronal sections illustrate significant BOLD 
related activity within bilateral somatosensory cortical regions, extending to the insula region. 
C) Axial images highlighting the bilateral insula and somatosensory BOLD increases for this 
contrast.  
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SVC analysis was performed and revealed significant BOLD responses contained 

within the anterior insula, CPu and amygdala for both groups (Table 7.4.8). No group 

differences were reported in the placebo session.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.4.7 Whole brain statistical results from one sample t-tests performed in lean and OW 
groups for the water delivery contrast. Cluster size = no. of voxels within the significant cluster. 

Figure 7.4.9 Whole brain statistical t-map clusters overlaid onto an MNI structural image for the OW 
group (n=15) from water delivery contrast. A) Sagittal sections and B) coronal sections show insula 
BOLD related activity. C) Axial images display bilateral insula clusters as well as clusters within the 
cerebellum.  
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Under insulin conditions, the delivery of water yielded significant increases in the 

BOLD response within the left and right somatosensory cortex for both lean and 

overweight groups. In the overweight group these large clusters centred around the 

somatosensory cortex and also span to cover the operculum cortex on the left side 

in the OW group (see Figure 7.4.10 and Table 7.4.9).  

 

From lean group statistics, only the anterior insula survived SVC (p = 0.001, t = 5.58). 

In the OW group, the anterior insula (p < 0.000, t = 8.53), CPu (p = 0.003, t = 5.88) and 

amygdala (p = 0.010, t = 3.86) survived SVC (see Table 7.4.10).   

No group differences were observed within the insulin session. 

 

 

 

Table 7.4.8 SVC statistical results in the lean and OW group for the water delivery contrast 
following placebo administration. BOLD p values represent regions that survived multiple 
ROI correction.  
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Figure 7.4.10 Lean and OW whole brain t-maps overlaid onto structural images following insulin 
administration. A) and D) display insula activity. B) and E)coronal sections highlighting bilateral 
somatosensory and insula significant clustering. C) and F) highlight similar patterns of insula 
activity in both lean and OW groups for this contrast. 

Table 7.4.9 Whole brain statistical results from one sample t-tests performed in lean and OW 
groups for the water delivery contrast following insulin administration.  
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7.4.3.2 Sucrose delivery vs sucrose withheld  

Under placebo conditions, the effect of sucrose solution delivery against withheld 

showed increases in BOLD response within the left somatosensory cortex in lean 

individuals. In the OW group there were significant responses in the left and right 

somatosensory cortex, as well as in the left operculum cortex (see Figure 7.4.11 and 

Table 7.4.11) .  

 

Within the lean group the anterior insula survived SVC (p = 0.001, t=4.56). Within the 

OW group the anterior insula (p = 0.001, t = 6.05) and amygdala (p = 0.003, t=4.50) 

survived SVC analysis (Table 7.4.12).  

 

There were no group differences found within the placebo session.  

 

 

Table 7.4.10 SVC results from the water delivery contrast 
following intranasal insulin administration, for both lean 
and OW. BOLD p values represent those regions that 
survived multiple ROI comparison Bonferroni correction.  
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Figure 7.4.11 Statistical t-maps created from one sample t-test overlaid onto structural MNI 
images for the lean and OW groups following placebo administration for the sucrose delivery > 
withheld contrast. A) and D) sagittal sections for lean and OW respectively display large BOLD 
activation clusters within the left insula region for the OW group, with this observation being 
absent in the lean group. B) and E) coronal sections showing bilateral somatosensory and insula 
BOLD cluster recruitment in the OW group which is much reduced and lateralised to the left 
somatosensory cortex in the lean group. C) and F) show axial activation within the insula and 
regions of the left putamen in the OW group (F) but a lack of BOLD effects seen in the lean 
group. 
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Table 7.4.11 Whole brain statistics produced from one sample t-tests in both the 
lean and OW groups. 

 

Table 7.4.12 SVC results for lean and OW groups following placebo administration 
for the sucrose delivery > withheld contrast. BOLD indicates regions where the p 
value calculated was less than the threshold for multiple ROI comparison.  
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Following insulin administration, the effect of sucrose solution delivery against 

withheld delivery, showed increases in BOLD response within the left and right 

somatosensory cortex in lean individuals. In the OW group there were significant 

responses in the left and right somatosensory cortex, right anterior insula cortex and 

also in the left and right cerebellum VI region (see Figure 7.4.12 and Table 7.4.13).   

Within the lean group the anterior insula (p < 0.001, t = 6.51) and CPu (p = 0.002, t = 

5.53) showed significant changes. Within the OW group the anterior insula (p = 0.001, 

t = 4.61), CPu (p < 0.000, t = 6.51) and amygdala (p = 0.007, t = 4.01) survived SVC 

analysis (Table 7.4.14).  

 

Figure 7.4.12 Whole brain statistical t-maps overlaid onto structural MNI images from one sample 
t-tests performed in lean and OW groups following insulin administration for the sucrose delivery 
> withheld contrast. A) and D) show sagittal sections with BOLD clusters within the insula region 
for lean and OW, respectively. B) and E) are coronal sections that display on both lean and OW 
groups somatosensory BOLD activity from this contrast. The OW group (E) display greater BOLD 
responses within subcortical regions around the putamen and caudate region. C) and F) axial slices 
that illustrate increased BOLD activity within the insula for the lean and OW groups, as well as 
BOLD responses in the putamen and cerebellum within the OW group. 
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There were no group differences seen following insulin administration.  

Table 7.4.13 Whole brain statistics from one sample t-tests performed in lean and 
OW groups following insulin administration. 

Table 7.4.14 SVC results for lean and OW groups following 
insulin administration for the sucrose delivery > withheld 
delivery contrast. 
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7.4.3.3 Stevia delivery vs stevia withheld  

Under placebo conditions, the effect of receiving stevia solution was contrasted 

against not receiving it.  This gave rise to increased BOLD response within the left and 

right somatosensory cortex in lean individuals. In the OW group there were 

significant responses in the left and right somatosensory cortex, as well as in the left 

operculum cortex and left and right cerebellum VI (Figure 7.4.13 and Table 7.4.15). 

 

Figure 7.4.13 Whole brain statistical t-maps overlaid onto structural MNI images from one 
sample t-tests performed in lean and OW groups following placebo administration for the 
stevia delivery > withheld contrast. A) and D) show sagittal sections for lean and OW, 
respectively. The OW group show a large degree of BOLD related activity within the insula 
region which is absent in the lean group. B) and E) are coronal sections that display on both 
lean and OW groups somatosensory BOLD activity from this contrast. The OW group (E) display 
greater BOLD responses within subcortical regions around the putamen and caudate region 
also. C) and F) axial slices that illustrate a reduced response in the right insula of the lean group 
in comparison to the OW group who show bilateral increased BOLD activity within the insula, 
as well as BOLD responses in the putamen and cerebellum. 
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None of the ROIs tested survived SVC in the lean group. Within the OW group the 

anterior insula (p < 0.001, t = 6.32), CPu (p = 0.002, t = 65.60) and amygdala (p = 0.002, 

t = 4.48) survived SVC analysis.  

 

There were no group differences within the placebo session for this contrast.   

 

 

Table 7.4.15 Whole brain results for the stevia delivery condition under placebo 
conditions for both lean and OW groups.  

Table 7.4.16 SVC results from the OW group under placebo 
conditions for the stevia delivery > withheld contrast. 
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Under insulin conditions (Figure 7.4.14 and Table 7.4.17) the effect of stevia solution 

delivery against withheld delivery, showed increases in BOLD response within the left 

and right somatosensory cortex, left and right cerebellum VI, left and right lingual 

gyrus as well as the supplementary motor area in lean individuals. In the OW group 

there were significant responses in the left and right somatosensory cortex, right 

operculum cortex, the left and right cerebellum VI region, left and right lingual gyrus 

and also the right putamen.   

 

Figure 7.4.14 Whole brain statistical t-maps overlaid onto structural MNI images from one sample t-
tests performed in lean and OW groups following insulin administration for the stevia delivery > 
withheld contrast. A) and D) show sagittal sections for lean and OW, respectively. Both groups show 
a large degree of BOLD related activity within the insula region and somatosensory cortex. B) and E) 
are coronal sections that display both lean and OW groups somatosensory BOLD activity from this 
contrast. The lean group (B) also shows increased BOLD related activity within the supplementary 
motor cortex. C) and F) axial slices that illustrate a reduced response in the right insula in comparison 
to the left in both lean and OW groups. Both groups display BOLD related increases in the 
cerebellum, and the OW (F) group show left and right putamen activity also.  
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Within the lean group the anterior insula (p = 0.002, t = 5.56), CPu (p = 0.003, t = 5.50) 

and amygdala (p = 0.10, t = 3.95) showed statistically significant changes. Within the 

OW group the anterior insula (p = 0.002, t = 5.56), CPu (p = 0.001, t = 5.97) and 

amygdala (p = 0.001, t = 4.96) survived SVC analysis (Table 7.4.18).  

 

There were no group differences seen following insulin administration.  

 

 

 

 

Table 7.4.17 Whole brain statistic results from one sample t-tests performed in lean 
and OW groups under insulin conditions for the stevia delivery > withheld contrast.  
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7.4.3.4 Correlation analysis with BMI 

An exploratory correlational analysis was performed to examine the relationship 

between regional BOLD contrast estimates for cue presentation and stimulus 

delivery contrasts for both insulin and placebo sessions. From this analysis very few 

regional extractions correlated with BMI. However, a strong negative correlation 

between BMI and BOLD contrast estimates from the vmPFC during the stevia cue > 

water cue for the placebo session was observed (t = -4.1, p = 0.0005; r=-0.65, 

Pearson’s) (see Figure 7.4.15). This correlation suggests that as BMI increases, BOLD 

related activity within the vmPFC upon presentation of the stevia cue decreases. For 

the same contrast (stevia cue > water cue), but following insulin administration the 

vmPFC extracted values regressed against BMI provided a negative correlation but 

did not fulfil the statistical threshold criteria for this analysis (t = -2.0, p = 0.055, r = -

0.39, Pearson’s, Figure 7.4.16). Finally vmPFC extracted contrast estimate values for 

Table 7.4.18 SVC results for both lean and OW groups 
under insulin conditions for the stevia delivery > 
withheld contrast.  
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the sucrose > water cue presentation event provided a moderate negative 

correlation with BMI (t = -2.57, p = 0.017, r = -0.47, Pearson’s). This negative 

correlation, however, did not satisfy the multiple comparison statistical threshold set 

for this analysis. No other correlations were observed that survived the threshold of 

significance set for this exploratory correlation analysis.  

 

Figure 7.4.16 Plot of BMI vs vmPFC extracted contrast estimates for the stevia > 
water cue following insulin administration for comparison against. The plot shows 
an insignificant negative correlation between vmPFC BOLD estimation from this 
contrast vs BMI. 

Figure 7.4.15 Plot of BMI vs vmPFC extracted contrast estimates for the stevia > 
water cue following placebo administration. Each black dot is a single participant 
(n=25) and the black line is the line of best fit. The plot shows a strong negative 
correlation and that vmPFC BOLD estimation from this contrast decreases as BMI 
increases.  
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7.5 SECTION B. Formal Comparisons Between Intranasal 

Insulin and Intranasal Placebo  

 
Within this section the analytical methods used to assess the effects on intranasal 

insulin compared to intranasal placebo will be detailed along with the results. To 

explore these drug-related effects a whole brain analysis method and also a ROI 

based analysis method have been employed.  

7.5.1 Whole brain analysis 

A random effects repeated measures factorial model was constructed at the second 

level for each contrast to explore both the main effect of drug and the interaction 

between drug and group. Following the task related effects the analysis was focused 

on three cue contrasts of interest: sucrose > water, stevia > water and sucrose > 

stevia. Furthermore, only the two sweet taste delivery contrasts were assessed: 

sucrose delivery > sucrose withheld and stevia delivery > stevia withheld. Subject-

specific contrast images created from the 1st level model for each condition were 

entered into a repeated measures factorial model with three factors; subject, drug 

and group using SPM-12 software. Four t-test comparisons (contrasts) were created 

from this 2nd level model; two drug effects and two interactions (see below).  

 

1. Insulin > Placebo (Main effect of drug) 

2. Insulin < Placebo (Main effect of drug) 

3. Lean Insulin > Placebo, OW Insulin < Placebo (Interaction 1) 

4. Lean Insulin < Placebo, OW Insulin > Placebo (interaction 2) 
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The resulting statistical parametric t-maps created from this second level model were 

set to a cluster forming voxel threshold of p < 0.001. Clusters which survived a FWE-

correction for multiple comparisons (p < 0.05 FWE-corrected) were reported as 

significant. Following the detection of significant clusters in the interaction contrast 

a post hoc analysis was performed using two, whole brain, within group paired t-

tests. Single linear contrasts within these paired t-tests were created depending on 

the directionality of the interaction contrast (interaction 1 or 2). Following significant 

cluster formations seen from main drug effect contrasts, within group whole brain 

paired t-tests were performed. Cluster forming thresholds and significant cluster 

thresholds were implemented as described above for all of the post hoc whole brain 

tests.  

7.5.2 ROI analysis 

ROI analysis was performed separately to look at regional effects of drug, group and 

also drug by group interactions. Mean parameter estimates  for each contrast were 

extracted at the subject level within each ROI mask using 3dmaskave (AFNI). ROI 

mean BOLD estimates for each contrast were entered into a repeated measures 

Analysis of Variance (ANOVA) factorial model with two factors, drug and group. 

Significance, for either main effects of drug or group and also drug*group interaction 

effects was set to p < 0.05 from the ANOVA. Following a drug*group interaction a 

post-hoc Tukey test was used to assess which comparisons were driving the 

interaction effect. The Tukey post hoc analysis tests every possible comparison and 

adjusts the outcome accordingly for the number of comparisons. For significant main 

effects of drug and group, planned comparisons to explore this effect were 

conducted as post hoc tests. Therefore, a significant main effect of drug or group was 

interrogated through the use of two t-tests within group (paired) or within drug 

(unpaired), respectively. Significance for t-tests was set to p < 0.025, to correct for 

the two planned comparisons. 

 

 



 256 

Bilateral ACC, vmPFC, mOFC and NAcc ROI masks, which have been defined and 

selected a priori, were used to assess drug and group differences during cue 

presentation conditions. Furthermore, for delivery contrasts, the anterior insula, 

CPu, NAcc and amygdala ROI masks were used to assess both drug and group 

differences, again previously defined. 

 

7.5.3 Statistical analysis  

All statistical analysis was conducted using R (Rstudio). Mean and standard deviation 

values are used as summary statistics unless stated otherwise.  
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7.6 SECTION B. Results 

In a similar structure to the previous results section (section A), the whole brain and 

ROI analysis results will be considered for each contrast separately.  

7.6.1 Sucrose cue > water cue 

No significant drug related BOLD changes were seen assessed at the whole brain 

level. Furthermore, there were no differential drug related responses from either of 

the interaction contrasts.  

 

ROI analysis revealed a significant group effect within the ACC (F1,24 = 5.07, p = 0.029). 

Un-paired t-tests showed a greater contrast estimate in the lean group (0.73 ± 0.49 

arbitrary units) compared to the OW group (-0.16 ± 0.87) following insulin 

administration (t(23) = -3.28, p = 0.003) but not in the placebo session (t(23) = -0.44, 

p = 0.67) (presented in Figure 7.6.1). Furthermore, ANOVA results from the vmPFC 

revealed a significant drug by group interaction effect (F1,24 = 4.64, p = 0.037). Tukey 

test post-hoc analysis did not produce any significant comparisons, adjusted for 

multiple comparisons.  

 

Figure 7.6.1 Plot showing extracted contrast estimates from the ACC in both groups and 
under both pharmacological conditions for the sugar > water cue contrast. Estimates are 
from contrast images. Unpaired t-test revealed a significant difference between lean and 
OW group contrast estimates in this region, exclusively under insulin conditions. Values 
are mean ± SEM, * p < 0.025, corrected for multiple comparisons.   
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7.6.2 Stevia cue > water cue 

Whole brain voxel wise analysis produced no significant insulin effects or interaction 

effects.  

 

ROI analysis showed a significant group effect within the ACC (F1,24 = 5.62, p = 0.022). 

Unpaired t-test post-hoc analysis showed that this group effect was evident within 

the insulin session. Lean individuals showed significantly greater ACC BOLD 

responsiveness (0.88 ± 0.82) compared to OW individuals (0.15 ± 0.24) (t(23) = -2.27, 

p = 0.036)(Figure 7.6.2.A). Group effects were also seen in the NAcc (F1,24 = 4.90, p = 

0.032, ANOVA) which was significant within the insulin condition (t(23) = -2.66, p = 

0.014, unpaired t-test) as a result of greater contrast estimates in lean individuals vs 

OW (0.29 ± 0.19 vs 0.06 ± 0.24, respectively) (Figure 7.6.2.C). Furthermore, significant 

group effects were seen within the vmPFC (F1,24 = 12.02,  p = 0.0012, ANOVA). Within 

the vmPFC these group effects (lean > OW) were significant in the placebo condition 

(lean: 0.23 ± 0.25, OW: 0.02 ± 0.21, t(23) = -2.63, p = 0.018 , unpaired t-test) but did 

not survive multiple correction for the insulin condition (lean: 0.29 ± 0.24, OW: 0.04 

± 0.31, t(23) = -2.63, p = 0.027, unpaired t-test) (Figure 7.6.2.B).  

 

 

 

Figure 7.6.2 Plots showing contrast estimates and group differences for the stevia > water cue 
contrast for the ACC, vmPFC and NAcc. A) ACC - unpaired t-tests show a significant increase in the 
lean group vs the OW group under insulin conditions. B) vmPFC - unpaired t-tests show differences 
under both placebo and insulin conditions, and in both cases lean estimates are greater. C) NAcc - 
under insulin conditions the lean group display greater estimates under insulin conditions compared 
to the OW group. Values are mean ± SEM, * p < 0.025, corrected for multiple comparisons. 
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7.6.3 Sucrose cue  > stevia cue   

No whole brain effects of drug were seen from this contrast. ROI analysis showed a 

significant group effect within the vmPFC (F1,24 = 6.38, p = 0.015), which was only 

significant within the placebo condition (t(23) = 3.30 , p = 0.005, unpaired t-test), with 

the OW group displaying a greater response in comparison to the lean group (lean: -

0.23 ± 0.29, OW: 0.12 ± 0.19). 

7.6.4 Sucrose delivery > sucrose withheld 

No drug related effects were produced at the whole brain level or from ROI analysis 

from the delivery of sucrose solution.  

7.6.5 Stevia delivery > stevia withheld  

Receipt of stevia solution contrasted with when stevia was withheld, resulted in a 

significant interaction effect from the whole brain analysis (interaction 1). A single 

significant cluster was formed over Brodmann area 11 and Brodmann area 32, which 

covers parts of the mOFC, rostral ACC (rACC) and vmPFC anatomy (see Table 7.6.1 

and Figure 7.6.3). To explore this interaction whole brain paired t-tests in lean (Insulin 

> Placebo) and OW (Insulin < Placebo) groups were computed. Neither of these 

whole brain comparison revealed any significant clusters that survived FWE 

correction for multiple comparisons.  

 

ROI analysis did not reveal any other significant drug or group related effects, for any 

of the ROIs tested.  
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Table 7.6.1 Whole brain statistic results from the interaction effect observed from the repeated 
measures ANOVA analysis conducted for the stevia delivery > withheld contrast. A significant cluster 
was identified following Bonferroni correction for multiple comparisons. Cluster size refers to the 
number of voxels within this significant cluster. Lean (n=10), OW (n=15).   

Figure 7.6.3 Whole brain statistical t-map overlaid onto an MNI structural template showing the 
statistical interaction effect cluster that was observed from a repeated measure whole brain ANOVA 
model for the stevia delivery > withheld condition. The significant cluster as seen from sagittal and 
axial slices is located within the region of the rACC and mOFC. This T-map has been cluster corrected 
using FWE threshold of p < 0.05. 
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To aid the interpretation of this result, the significant cluster seen in Figure 7.6.3 was 

used as a mask to extract contrast estimates from all participants under both placebo 

and insulin conditions for the stevia delivery contrast. The contrast estimates for 

each group (plotted as the mean) under both pharmacological conditions were 

plotted in Figure 7.6.4. These values are only used for observational purposes and no 

further statistical analysis was made on these extracted values. The plot in Figure 

7.6.4 does display this interaction effect very clearly as the lean activity, measured 

via contrast image estimates, increases in response to insulin, whereas the OW group 

show a decrease in response to insulin.   

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6.4 Sagittal view from a 3D rendered image showing the location of a cluster that 
survived the statistical significance threshold for the stevia delivery contrast. Plotted are the 
contrast estimates extracted from this cluster for both lean and OW groups for each treatment.  
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7.7 SECTION C. Time Dependent Effects of Intranasal Insulin: 

Separate Analysis of Each Functional Run 

 

 
 

The functional data collected for this paradigm were acquired over two runs. The 

previous analysis of this dataset has been conducted using both of these runs 

combined into a single 1st level model. The effects seen from the previous analysis 

are valid, however, it is necessary to address and explore the effects that might be 

seen across runs or from the individual executions of the paradigm. This paradigm 

was designed in a way that required the participant to learn the relationship between 

a visual cue and presentation of a taste stimulus. Previous work using predictive 

learning and temporal difference paradigms have shown that dopaminergic 

responsiveness shifts from the presentation of the reward stimulus to the cue 

presentation, once learnt (Gottfried, O'Doherty, and Dolan 2003; O'Doherty et al. 

2003; O'Doherty et al. 2002). This shift has also been shown from fMRI studies, which 

demonstrate the BOLD response shifts from the stimulus presentation to stimulus 

cue, once learnt (O'Doherty et al. 2003), although not as clearly as that from single 

cell recordings in primates (Schultz 1998). Furthermore, the participants are 

presented with repeated taste stimuli which will likely to lead to either habituation 

and desensitisation effects within the primary taste receptors of the tongue (Li et al. 

2002). Under these considerations, analysing the effect of each run is appropriate 

and permits a more thorough exploration of this functional data set.  
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7.7.1 VAS ratings 

Subjective ratings of likeness and sweetness for sucrose and stevia were evaluated 

separately for differences between runs using paired t-tests within drug for the 

whole cohort (n=25). These paired comparisons were conducted within treatment.  

Within group comparisons were made to explore differences between the sweetness 

and likeness of sucrose and stevia across runs. A 2 x 2 within drug ANOVA was created 

to look at the effects of substance and run for ratings of likeness and sweetness. Main 

effects of run or substance were explored further with planned comparison t-tests 

and interactions using Tukey tests, respectively. Planned comparisons for main effect 

of run employed two within substance paired t-tests, for example sucrose likeness 

run 1 vs run 2, whereas planned comparisons for main effect of substance employed 

two within run paired t-tests, for example sucrose likeness run 1 vs stevia likeness 

run 1.  

 

All planned comparisons were deemed significant if p < 0.025, adjusted for two 

comparison tests. Tukey tests were judged to p < 0.05 statistical threshold as this test 

automatically adjusts for multiple comparisons.  

7.7.2 1st level model design 

To assess BOLD related effects of both run and drug, two separate 1st level models 

were created in SPM-12; one for the first run and one for the second run. As before 

1st level models were modelled with nine regressors of interest (cue, taste delivery 

and taste withheld for each taste), a swallow cue regressor (participant visually 

instructed to swallow) and also a VAS regressor. Six additional head motion 

regressors, saved following motion correction during pre-processing, were entered 

into the model Figure 7.7.1. For each run, there were 324 whole brain EPI images. 

Linear contrast images were created at the first level . Three contrasts were created 

for the cue presentation event: sucrose > water, stevia > water and sucrose > stevia. 

Two contrasts were created for the delivery minus withheld event for each sucrose 

and stevia (sucrose delivery > withheld and stevia delivery > withheld).  
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Figure 7.7.1 A) the 1st level model design matrix included all events of interest 
(cue, delivery and withheld) for each taste, as well as swallow, VAS periods and 
head motion parameters. B) in this analysis each run was modelled separately 
with the general linear model and therefore individual contrast images for each 
run are generated.  
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7.7.3 Whole brain group level analysis 

A second level factorial model was constructed to examine the main effect of run 

within treatment. To answer this question a paired t-test was created for the whole 

cohort (n=25) to look for differences between runs for each contrast of interest 

individually.  

 

Furthermore, for each contrast, 1st level contrast images for each run were entered 

into a repeated measures factorial model (SPM-12, ‘flexible factorial model’) with 

three factors; subject, drug and group, to look for main effects of drug as well as 

interaction effects. For both of the whole brain analyses the cluster forming 

threshold was set to p < 0.001 uncorrected. As before, clusters with p < 0.05 following 

FWE - Bonferroni correction for multiple comparisons (using the cluster extent 

criterion), were reported as significant.  

7.7.4 ROI analysis 

The main interest of this study is to interrogate the effects of insulin on this complex 

paradigm. An ROI analysis was performed within each BMI group to look at main drug 

effects, main run effects and also interaction effects. Mean values were extracted 

from subject contrast images created at the 1st level using 3dmaskave (AFNI) for each 

contrast, drug session and run. The ROIs used in this analysis of drug and run were 

identical to the ROIs previously defined. Similarly, the bilateral ACC, vmPFC, mOFC 

and NAcc ROI masks were used to assess dug and run differences during cue 

presentation conditions. For delivery contrasts the amygdala, anterior insula ,CPu 

and NAcc ROI masks were used to assess both drug and run differences. 

 

The main aim of this analysis is to explore drug effects within these ROIs from 

individual runs that may have been missed or unable to be teased apart in the 

previous analysis in which the runs were combined. To increase the power to detect 

these drug effects, a within group analysis was conducted in OW and lean groups 

separately to look at the main effects of drug and run as well as the associated 
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interaction effects. This was done by constructing a factorial repeated measures 

ANOVA model for each contrast with the factors drug and run. Main effects of drug, 

main effects of run and interaction effects were assessed for significance using a p 

value of 0.05 from the ANOVA. Following significant main drug effects, planned 

comparison paired t-tests were conducted within run and similarly, following main 

run effects, paired t-tests were conducted within drug, as a post-hoc analysis judged 

to p < 0.025 significance to correct for multiple planned comparisons. Significant 

Interaction effects were interrogated using a Tukey post-hoc test, judged to p < 0.05 

significance.   
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7.8 SECTION C. Results 

7.8.1 VAS ratings 

Effects of likeness over time for the whole cohort for sucrose and stevia are 

presented in Figure 7.8.1. 

7.8.1.1 Whole Group – likeness ratings 

Under placebo conditions, no differences in likeness ratings for stevia or sucrose 

between runs were identified following placebo administration (Figure 7.8.1.A).  

 

Following insulin administration subjective VAS ratings showed significant 

differences between runs for likeness ratings of the stevia solution. Ratings of how 

much stevia was liked, decreased over time (run 1: 73.28 ± 11.99, run 2: 67.28 ± 

13.55, p = 0.015, paired t-test) (Figure 7.8.1.B). 

 

  

 

 

Figure 7.8.1 Whole group VAS likeness ratings for sucrose and stevia recorded during run and 
run 2 for placebo and insulin conditions. A) No difference between how much these two 
tastes are liked for either run under placebo, however, note the greater variability in the 
sucrose ratings as seen by the larger error bars compared to stevia scores. B) under insulin 
conditions there was a significant difference between likeness ratings over time for stevia. 
Stevia likeness ratings decreased over time (paired t-test). Data is showing mean ± SD, * p < 
0.025, paired t-test, n=25 (whole group).  
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7.8.1.2 Whole Group – sweetness ratings 

Whole group analysis (n=25) of subjective VAS scores showed that under placebo 

conditions the VAS sweetness ratings for stevia significantly decreased from run 1 to 

run 2 (run 1: 74.96 ± 10.59, run 2: 69.32 ± 15.74, p = 0.021, paired t-test) (Figure 

7.8.2). Sucrose sweetness ratings on the other hand did not change over time.  

 

Under insulin conditions, ratings of sweetness, were different between runs for both 

sucrose and stevia solutions but only stevia differences survived multiple testing 

correction. Sucrose solution increased in sweetness over time, but was not significant 

(run 1: 74.60 ± 13.09, run 2: 80.32 ± 10.74, p = 0.031, paired t-test), whereas the 

stevia solution decreased in sweetness over time (run 1: 76.28 ± 11.99, run 2: 65.92 

± 14.69, p < 0.001, paired t-test) (Figure 7.8.2). 

 

 

 

 

Figure 7.8.2 Sweetness VAS ratings for the whole group illustrating the effects of run over time for 
sucrose and stevia solution. A) Under placebo conditions stevia solution sweetness decreased over 
time. B) Under insulin conditions stevia solution sweetness decreased over time between runs. Data 
shown in mean ± SD, * p < 0.025, *** p < 0.001, using paired t-tests (n=25). 
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7.8.1.3 Lean Group – likeness and sweetness ratings 

Within group and within drug comparisons of likeness and sweetness ratings were 

conducted to look for effects between substance’s (i.e. sucrose or stevia) and also 

runs using repeated measure ANOVA models.  

 

Within the lean group likeness and sweetness ratings for either sucrose or stevia did 

not change between run 1 ratings and run 2 ratings under placebo conditions.   

 

Within the lean group, there were no effects on likeness for either of the two 

substances (sucrose and stevia) under insulin conditions. In terms of sweetness 

there was a significant main substance effect for sweetness (F1,39 = 4.32,  p = 0.045, 

ANOVA). This effect was driven by the sweetness of sucrose solution being rated 

greater than stevia in the second run. This comparison however did not the survive 

multiple comparison correction threshold (sucrose: 75.00 ± 8.01, stevia: 60.70 ± 

17.22, t(9) = 2.50,  p = 0.034, paired t-test). 

7.8.1.4 OW Group – likeness and sweetness ratings 

For the OW group, there were no differences between any of the likeness ratings 

under placebo conditions. However, there was a significant main effect of substance 

sweetness (F1,59 = 5.10, p = 0.028, ANOVA), driven by a significantly higher rating of 

sweetness for sucrose compared to stevia solution only in the second run (sucrose: 

81.2 ± 13.28, stevia: 71.33 ± 14.55, t(14) = 4.48, p < 0.001, paired t-test) under 

placebo conditions (Figure 7.8.3.A).  

 

Within the OW, there were no effects on likeness ratings following insulin 

administration. For sweetness ratings an interaction effect was seen (run*substance 

F1,39 = 11.12,  p = 0.0015, ANOVA). Tukey test post-hoc analysis showed that this 

interaction effect was driven by a significant difference in sweetness between 

sucrose and stevia solution in the second run (sucrose: 83.87 ± 11.08, stevia: 69.4 ± 

12.13, p = 0.008, Tukey test)(Figure 7.8.3.B). 
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A summary table of all the significant results highlighted from the VAS analysis are 

presented in Table 7.8.1 below. 

 

Figure 7.8.3 VAS sweetness ratings in the OW group. A) Under placebo there was a significant 
difference between sweetness ratings for stevia and sucrose solutions, which was also seen under 
insulin conditions (B). ** p < 0.01, *** p < 0.001, paired t-tests, data shown is mean ± SD, n=15 
(OW). 

Table 7.8.1 Summary of significant results from the VAS score analysis.  
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7.8.2 Whole brain analysis 

Second level within treatment paired t-tests showed no differences in BOLD 

responsivity for either placebo or insulin conditions for any of the contrast 

comparisons tested.  

 

Furthermore, within run repeated measure ANOVA models that were designed to 

look for main drug effects and interaction effects within each run separately did not 

show any significant changes for any of the contrasts tested.  

 

7.8.3 ROI analysis 

The ROI analysis looked for drug related effects across runs for each contrast 

separately. This analysis was constrained to within group comparisons. 

 

7.8.3.1 Sucrose > water cue 

Within the lean group a main drug effect was seen within the ACC (F1,39 = 5.50,  p = 

0.025, ANOVA) and vmPFC (F1,39 = 4.27, p = 0.046, ANOVA). Planned comparison 

paired t-tests however did not reveal any drug related differences from either run 1 

or run 2 BOLD estimates. The OW group did not show any significant effects for any 

of the ROIs tested for from this contrast.  

 

7.8.3.2 Stevia > water cue 

For both lean and OW groups, there were no significant effects seen for the stevia 

cue > water cue for any of the ROIs tested. 
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7.8.3.3 Sucrose > stevia cue 

For the sucrose cue > stevia cue contrast a significant main effect of run was seen 

from beta estimates extracted from the NAcc (F1,39 = 5.20, p = 0.029, ANOVA) in the 

lean group. Planned comparison analysis did not reveal any further drug related 

differences in the NAcc. No significant effects from any of the ROIs were seen from 

analysis performed in the OW group for this contrast.  

7.8.3.4 Sucrose delivery > withheld delivery 

Sucrose delivery > withheld delivery contrast did not provide any significant drug or 

run effects from any of the ROIs tested in either the lean or the OW group.  

7.8.3.5 Stevia delivery > withheld delivery 

Finally, ROI extracted parameter estimates from the stevia delivery > withheld 

delivery contrast showed a significant main effect of drug within the NAcc (F1,39 =  

4.58, p = 0.039, ANOVA) in the lean group. Planned comparison paired t-tests showed 

that NAcc BOLD estimates extracted from the second run contrast were significantly 

greater following insulin administration compared to placebo (placebo: -0.08 ± 0.21, 

insulin: 0.23 ± 0.27, t(9) = 5.32, p < 0.001, paired t-test) (Figure 7.8.4). This was the 

only ROI that produced any significant effects within the lean group.  

 

In the OW group, significant main effects of drug were seen from the estimates 

extracted from the CPu (t(14) = 10.52, p = 0.002, ANOVA. This main effect of drug  

was driven by a decrease in response to insulin administration within the first run 

(placebo: 0.57 ± 0.31, insulin: 0.07 ± 0.43, t(14) = -2.76, p = 0.015, paired t-test) 

(Figure 7.8.4). No other ROIs tested produced any significant drug related or run 

effects.  
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A summary table of significant differences seen from the ROI analysis is not provided 

as the significant results are presented in Figure 7.8.4 below. 

 

 

 

 

 

 

 

Figure 7.8.4 Contrast estimates extracted from the NAcc and the CPu regions from lean and OW 
groups for the stevia delivery contrast. A) ROI analysis within the lean group produced a significant 
increase for this contrast compared to placebo in the bilateral NAcc, which was observed in the second 
run only. NAcc contrast estimates were very similar for both conditions during the first run. B) The 
OW group displayed a reduced response in the CPu following insulin compared to placebo 
administration which showed a high contrast estimate. This difference was exclusive to the first run 
only. C) and D) illustrate contrast estimates for the OW and lean group for NAcc and CPu regions for 
reference. Differences were found from planned comparison paired t-tests. Data shown is mean ± 
SEM. * p < 0.025, *** p < 0.001, lean n=10, OW n=15.  
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7.9 Taste Paradigm Discussion 

 

This study explored the neural mechanisms involved in primary reward processing 

from conditioned taste stimuli and how these systems are modulated by intranasal 

insulin administration. This study showed that the effects of insulin administration 

were (in general) most prominent upon receipt of stevia solution and that intranasal 

insulin displayed differential effects in the lean group compared with the overweight 

group. Insulin related effects were seen from regions of the prefrontal cortex and 

mesolimbic dopaminergic regions associated with reward evaluation (Fuster 2001) 

and reward processing (O'Doherty et al. 2004; Pagnoni et al. 2002), respectively, 

suggestive of an insulin related role on dopaminergic transmission. Additionally, this 

analysis has provided evidence for group effects upon cue presentation which are 

influenced by intranasal administration of insulin suggesting differential sensitivity to 

central insulin action, associated with BMI in prefrontal, cognitive functioning brain 

regions.  

 

This is the first time that the primary effects of food (solution) taste and ingestion 

have been explored as part of a pharmacological investigation with intranasal insulin. 

Previous fMRI reports exploring the associations between elevated insulin and food 

related processing have largely focused on brain responsiveness to food 

cues/pictures (Guthoff et al. 2010; Kroemer et al. 2013) as a surrogate marker for 

food related neural processing. Food picture responsiveness fMRI experiments are 

useful for inferring the attractiveness or palatability of food under different 

homeostatic conditions (Goldstone et al. 2009) and in metabolic disease (Karra et al. 

2013). However, these paradigms have limited scope for determining consummatory 

effects of food as the participant is not presented with a food stimulus to consume. 

This study, on the other hand, has made use of a primary reward paradigm that 

explored the effects of intranasal insulin on the anticipation and receipt of sweet 

tasting stimuli.  
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Furthermore, this is the first time that a BOLD functional imaging protocol has been 

implemented to explore brain responsiveness to the receipt of a non-nutritive 

sweetener, Stevia. The function of non-nutritive, zero calorie, sweeteners as an 

alternative to energy dense sweeteners such as sugar for weight loss and promotion 

of health is any area of considerable debate (Mattes and Popkin 2009). This work 

does not directly add knowledge to the literature regarding weight loss and health 

promotion but does help to address the acute effects that a popular non-nutritive 

sweetener has on brain responsiveness in comparison to sucrose.  

 

On a primal level, all animal systems will ensure to attain key primary biological goals 

such as adequate nourishment and reproduction. Achieving these goals is facilitated 

through highly complex mechanisms (Goldstone 2006). Food intake is driven by three 

integrative systems, the homeostatic, hedonic and cognitive pathways, respectively.  

Homeostatic eating is largely controlled by the hypothalamus in response to 

peripheral signals regarding hunger, satiety and adiposity. Hedonic eating, on the 

other hand, is governed by the palatability and pleasure associated with eating 

certain foods and flavours. While the homeostatic system governs the body’s 

metabolic needs, the pleasure that is coupled with eating makes energy intake 

worthwhile (Kringelbach 2015) and this pleasure has been proposed to be a key 

driver in the evolution of large primate brains (Kringelbach 2004). Hedonic eating and 

the pleasure associated from eating is a multi-faceted function that incorporates 

several distinct concepts involved in processing the pleasure induced by food 

administration. These are liking (palatability of food), wanting (motivation/drive for 

food) and learning (Berridge and Kringelbach 2008). Examinations of these 

components both individually and in combination has been one of the research goals 

of investigating food-related pleasure and consumption.   

 

From the large body of relevant research, a number of models and theories relating 

to overconsumption of food in obesity and dysregulation of reward responsivity, 

have been suggested. One theory is the hypo-responsivity theory which suggests 

obese individuals show decreased activity within reward circuitry upon consumption, 

which in turn leads to repeated overeating to compensate for this deficit (Wang, 
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Volkow, and Fowler 2002; Blum et al. 1996). Alternatively, others have suggested 

that overeating associated with obesity stems from a hyper-responsivity to food 

stimuli leading to overall greater food intake (Stice et al. 2008; Davis, Strachan, and 

Berkson 2004). Both theories rely heavily on the effects of dopamine and its role in 

reward processing, specifically the pleasure aspect encoded within the striatum. 

More recently, an alternative interpretation of the literature has suggested that 

obese individuals display a reduction in reward-related cognitive inhibition rather 

than reward hypo or hyper-responsivity (Kroemer and Small 2016). Using links 

between obesity and drug addiction, Volkow et al., proposed a model of obesity that 

reflects an imbalance between circuits that drive pleasure seeking behaviour and 

circuits that regulate inhibitory control (Volkow, Wang, Fowler, et al. 2008). This 

discussion will address the circuits that contribute to reward motivated behaviours: 

reward saliency and learning, and how these circuits are affected in response to 

insulin administration and differ with regards to body weight (BMI). The cohort in 

this study are not obese, however this discussion intends to reference the relevant 

literature surrounding obesity related reward theory in support of the findings from 

this neuroimaging investigation. Furthermore, the effects of taste and 

consummatory responses to primary rewards with regards to natural and artificial 

sweeteners will also be discussed. The term ‘reward’ will be used throughout, which 

refers to the positive value assigned to a certain object, act or state (Schultz, Dayan, 

and Montague 1997). In this context, the term reward will be used to describe the 

value of the primary solution stimuli used in this task, unless stated otherwise.  

 

The analysis for this task was separated into three sub-sections. This discussion will 

aim to bring the results of these sections together in an effort to harmonise the 

findings and complement the interpretation of this functional dataset. To aid the 

reader, the findings regarding the cue phase and delivery phase will be reported 

separately and then integrated for completion and to support or oppose reward and 

obesity based models and theories mentioned. The effects of intranasal insulin will 

be discussed thoroughly with reference to relevant literature first, followed by the 

interpretation of the effects seen as a consequence of BMI.  
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7.9.1 Anticipatory response 

Experimental studies of reward processing often use conditioning paradigms to 

explore both the anticipatory phase as well as the consummatory phase. The 

presented cues used within this task were fractal images, not seen previously until 

the morning of each scan, and did not contain any patterns or characteristics that 

were predictive of the taste stimuli.  

 

From whole brain maps that combined both functional scanning runs, there were no 

significant BOLD response increases seen when the water cue event was contrasted 

against either of the sweet solution presentation cues, in any group or treatment 

session. The lack of BOLD reactivity seen from this contrast suggest that the cue for 

water was less salient given its association with the water taste stimulus. VAS ratings 

averaged across the two runs show that the palatability of water stimulus, as 

measured by how much the water taste was liked, was significantly less than both 

the sweet stimuli.  

 

These data showed significant increases in BOLD response activity common to both 

groups and treatment sessions upon presentation of both the sweet stimuli cues in 

comparison to the water stimulus cue. For all sweet > water cue contrasts and drug 

conditions regional BOLD activity was increased within both the left and right primary 

visual cortex. Previous work has shown that predictive cues coupled with higher 

value reward stimuli show greater activation within the primary visual and secondary 

(extrastriate) cortices (Anderson, Laurent, and Yantis 2014). The increased salience 

of greater reward-value cues, once learned, is thought to be augmented by 

dopaminergic activity, thus priming the brain to seek or find these learned rewards 

(Hickey, Chelazzi, and Theeuwes 2010). As mentioned previously, palatability scores 

were greater for sucrose and stevia over water stimuli so the increases in BOLD 

response in these visual regions for sweet > water cue contrasts is not surprising. The 

extrastriate cortex, makes up part of the secondary visual cortex, receiving inputs 

directly from the primary visual cortex and is involved with encoding shapes and 

edges (Okusa, Kakigi, and Osaka 2000; Vinberg and Grill-Spector 2008). The 
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complexity of shapes and patterns were similar for all the cues but with sufficient 

differences to permit visual differentiation. Cue and stimulus coupling were 

randomised amongst subjects to avoid any confounding effects of repeated cue and 

flavour across sessions thus the increased extrastriate response from these sweet 

cues is likely due to the increased likeness for sweet-tasting stimuli coupled with 

increased salience for those sweet cues.  

 

BOLD response increases originating from the dorsal region of the cerebellum in the 

overweight group were seen following placebo administration when presented with 

the stevia paired cue vs water. Recent research in rodent models have shown 

neuronal responses from populations of granular cells within the VI region of the 

cerebellum during the anticipation of sucrose solution delivery (Wagner et al. 2017). 

Regions of the middle temporal gyrus showed increased BOLD responsiveness 

following cue presentation of stevia in comparison to water within lean and 

overweight groups following placebo administration. Although not directly related to 

food reward, fMRI results from a monetary reward paradigm (Manelis et al. 2016) 

highlighted the middle temporal gyrus as an area involved in the anticipation of 

winning in comparison to losing. Although, winning money is conceptually different 

to receiving a primary food reward, some similarities in neural organisation do exist 

(Simon et al. 2015) and so these responses in the temporal gyrus seen here could be 

common to both the anticipation of food stimuli and monetary reward.   

 

Combining runs of functional data was conducted in an effort to increase statistical 

power in the first instance. Given that this paradigm examined the effects of three 

tastes: water, sucrose and stevia, it was important to collect sufficient functional data 

for each event for parametric general linear model based voxel wise analysis. Across 

both runs each participant was presented with 30 cue images for each taste and 

received the taste bolus following cue presentation 18 times, with 12 withheld 

delivery events. Whole brain, SVC and ROI analysis of combined run contrasts did not 

reveal any significant drug related effects for either sweet > water cue contrasts from 

combined run data. Observations of within treatment whole brain maps and SVC 
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analysis did, however, suggest that there were some subtle effects of both drug and 

BMI that were not detected from a whole brain voxel wise statistical comparison.  

For all taste stimuli and drug sessions, the association between fractal cues and taste 

stimuli were learnt successfully during the course of the paradigm for each 

participant, tested by asking each participant out of the scanner. Thus presentation 

of the cue elicited an ‘anticipatory’ brain response, recruiting regions not just 

involved in visual processing, but those involved in higher level reward processing 

such as the vmPFC, ACC and mOFC, all commonly associated with evaluation and 

decision making in response to rewarding stimuli (Wallis and Kennerley 2011).  

 

During the placebo session, SVC analysis did not show BOLD related increases from 

regions tested (ACC, vmPFC, NAcc, mOFC) for the sucrose > water cue presentation, 

in either BMI group. This was surprising given how much the sucrose solution was 

liked from VAS ratings and is in contrast to the results from O’Doherty et al., who 

showed that during non-pharmacological challenges the mOFC is active during 

anticipation  (O'Doherty et al. 2002). The likeness ratings for the whole group as seen 

from Figure 7.4.1.A following placebo administration showed that there was some 

variability in the VAS scores for sucrose solution, which may be reflected in the 

imaging data. More relevant perhaps is how this event was modelled. The cue 

presentation event modelled in the current taste paradigm was short (2s) and 

corresponded only to the period when the visual cue was present. Therefore, a 

limitation of this model approach could be the lack of imaging volumes used to 

capture the anticipatory phase fully, which may, arguably, begin post cue 

presentation. Despite this potential limitation, whole brain t-maps following insulin 

administration did show recruitment of regions commonly involved in anticipation 

(O'Doherty et al. 2002). These regions were highlighted by SVC results that showed 

BOLD responses for sucrose > water cues within the NAcc and the mOFC in the lean 

group suggestive of an anticipation effect, as well as an insulin related increase in 

anticipation recruitment. Stouffer et al. has shown in mice that increased central 

insulin concentrations act to enhance dopamine pre-synaptic neurotransmitter 

release in the NAcc and putamen (Stouffer et al. 2015) thereby acting as a reward 

signal. The mOFC is a region situated on the ventral surface of the prefrontal cortex. 
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The mOFC plays a role in reward evaluation, as well as the magnitude and probability 

of the related reward (Wallis and Miller 2003). As mentioned, O’Doherty et al. 

showed in humans that during the anticipation phase for sucrose solution stimulus 

there was an increased BOLD response in the mOFC when compared to the 

anticipation of a tasteless solution (O'Doherty et al. 2002). The mOFC acts as an 

integrative hub for many sensory inputs and is seen here in response to the cue 

presentation for sucrose stimulus in the lean group under insulin conditions but not 

placebo.   

  

Activation due to the presentation of the stevia cue with respect to that for water,  

revealed BOLD related increases in pre-frontal regions (ACC, vmPFC and mOFC) as 

well as the NAcc region in the lean group, following placebo administration but were 

absent under insulin conditions. Despite these observable differences from within 

treatment analyses there was not any significant differences seen from whole brain 

or ROI analysis comparisons, but suggest a trend for a ‘reward-reducing’ effect of 

insulin. Experiments in mice have shown reduced anticipatory behaviour for sweet 

solutions following insulin injection into the VTA (Labouebe et al. 2013). In addition, 

central insulin injections to the VTA in mice are coupled with suppression of food cue 

salience via decreased dopamine release in the NAcc (Mebel et al. 2012). The 

opposing insulin response trend seen between ‘sucrose > water’ and ‘stevia > water’ 

cues is interesting. Particularly as there were no effects in either the placebo 

condition or insulin condition when comparing these two flavour-cue contrasts 

(sucrose > stevia) from whole brain analysis. Averaged sweetness ratings (run 1 and 

2) for the whole group did show that, under insulin conditions only, sucrose was 

significantly sweeter than stevia but this did not affect how much these tastes were 

liked. It is worth stressing that ratings of sweetness are better related to the delivery 

or receipt of taste stimuli presentation as opposed to cue presentation.  
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7.9.2 Group differences in cue reactivity 

There were differences between groups which were only identified in the cue 

condition and were for observed upon presentation of both the sucrose and stevia 

cues vs water. The treatment dependent group differences were exclusively seen in 

response to insulin administration within the ACC and NAcc regions. The vmPFC also 

showed group wide BOLD signal differences under placebo conditions as well as 

following insulin administration. These group differences are highlighted in Summary 

Box 1.  

 

These results suggest that the ACC and NAcc are both insulin sensitive and that BMI 

has an effect on regional insulin sensitivity. The NAcc BOLD increase seen in the lean 

group but not in overweight group in response to insulin administration follows a 

similar trend seen in pre-clinical work that shows insulin’s lack of effectiveness as a 

reward signal in obese mice vs wild type littermates (Stouffer et al. 2015). Insulin 

receptors have been found within the NAcc (Schulingkamp et al. 2000; Werther et al. 
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1987) and exogenous insulin administration has been shown to modulate 

dopaminergic concentrations within this region (Jones et al. 2017; Stouffer et al. 

2015). Stouffer et al. has shown in mice that increased central insulin concentrations 

enhanced dopamine synaptic neurotransmitter release in the NAcc and caudate-

putamen (Stouffer et al. 2015) thereby acting as a reward signal, in support of the 

insulin induced increase in activity within the NAcc. Interestingly, from Stouffer et al., 

the sensitivity of insulin related dopamine release from striatal neurons (NAcc, 

caudate-putamen) is diet dependent with obese rats displaying diminished insulin 

related dopamine synaptic concentrations (Stouffer et al. 2015). Although the 

participants involved in the current study are overweight and not obese, this result 

is in support of the notion that insulin may have a differential response in those with 

an increased BMI. 

 

For both sucrose and stevia solution cue > water cue contrasts the ACC provided a 

distinguishable difference between the lean and OW groups in an insulin dependent 

manner. The fractal cue used in this paradigm informs the participant which taste 

may be delivered, but the cue does not inform the participant whether the taste will 

be delivered or not. Thus the cue itself is not predictive of whether the trial will be 

paired or unpaired. Therefore this raises a possibility that upon cue presentation the 

participant will observe the cue but also try and predict the probability of receiving 

the reward (taste bolus). The ACC has been previously shown to be involved in the 

prediction of rewarding outcomes (Silvetti, Seurinck, and Verguts 2013) and also has 

been recruited during assessing the probability of receiving primary rewards 

(Vassena et al. 2014). This study however limited in interpretation power given it is 

hard to know based on the data collected what the participant is actually thinking 

during these events. It is worth highlighting though that the process being carried out 

in the ACC is not taste dependent and is also modulated by insulin within the lean 

group, suggestive of a modulatory effect of insulin in the lean group that may lead 

these individuals to think and predict the probability of receiving the reward or not, 

which may be different in the OW group.  
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BOLD activity within the vmPFC was greater in lean individuals in response to the 

stevia cue for both the placebo and insulin sessions. The exploratory correlational 

analysis illustrated a relationship between placebo vmPFC activity in response to the 

stevia cue and BMI. This relationship showed that lower BMI is associated with 

greater BOLD activity in the vmPFC following placebo administration. A similar 

relationship was seen between vmPFC BOLD estimates and BMI following insulin 

administration but did not survive the statistical threshold. The vmPFC is associated 

with valuation of stimuli, both food and non-food related (Tiedemann et al. 2017) as 

well as decision making. Halfmann et al., showed that in older adults vmPFC activity 

was associated with gambling task performance and that greater activity within the 

vmPFC correlated well with better performance from the task, i.e. greater money 

won (Halfmann et al. 2016). This increase in vmPFC activity was predictive of better 

decision making and Halfmann et al., further suggested that the vmPFC could be 

important with regards to long term decision making and that this leads to effects on 

both wealth and health (Halfmann et al. 2016). As the task implemented in the 

SNIFAR study was passive, in that participants had no choice, the effects seen are 

hard to decipher and a decision making element introduced to this paradigm would 

be helpful to explore these effects seen and if these regions of interest translate to a 

more cognitively demanding reward paradigm.  

 

These group differences do not fully support either the reward hyper-responsivity 

dopamine theory of obesity that has been suggested previously (Volkow, Wang, and 

Baler 2011; Burger and Stice 2011a). This is largely because of the lack of group 

differences seen following placebo administration within the NAcc. Furthermore, as 

the differences in cue responsivity within the NAcc were limited to stevia cue 

presentation the conclusions drawn are therefore not conclusive or applicable to all 

primary rewarding stimuli.  

 

In light of this, these results suggest a hypo-responsivity of the NAcc, a key 

dopaminergic region, to centrally increased insulin in overweight compared to 

normal weight individuals in response to a predictive cue. Furthermore, prefrontal 

regions involved in cognitive processing, reward valuation and prediction were 
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unresponsive in the presence of central insulin in the OW group in comparison to the 

lean group who provided insulin related increases within these regions. Suggesting a 

BMI related differential sensitivity to central insulin which may be key to valuation 

and prediction prior to consumption of sweet foods.  

7.9.3 Consummatory response  

Whole brain functional images that corresponded to stimulus delivery events were 

contrasted against those that corresponded to the ‘stimulus withheld’ events for 

each taste. In both BMI groups the water taste revealed significant activations within 

the bilateral somatosensory cortex and anterior insula region for the both placebo 

and insulin conditions, using combined run data. It is well known that water is not 

‘tasteless’ (Zald and Pardo 2000) and as these results show the taste of bottled 

mineral water elicits a reliable BOLD response irrespective of insulin or placebo 

challenge. Previous fMRI studies that investigated ‘taste’ often use either a tasteless 

artificial solution (Stice et al. 2008; O'Doherty et al. 2003) that mimics the ionic 

complexity saliva or distilled water (Szalay et al. 2012; Haase, Cerf-Ducastel, and 

Murphy 2009) as a control taste. In retrospect, incorporating water as a control 

solution has perhaps limited the functional contrasts that can be explored in the 

consummatory phase of the paradigm. For example, whole brain contrasts for the 

taste of sucrose vs water did not reveal any differences and likewise for stevia vs 

water, this data was not reported. Hence, for this investigation the taste responses 

were modelled as delivery minus withheld delivery for each taste. It has been 

possible to make  inferences at both the whole brain level as well as from ROI analysis 

from these modelled events. In regards to the taste of water, formal drug related 

differences or group differences were not tested in this instance.  

 

7.9.4 Sucrose and stevia delivery 

Under placebo conditions, regions of common activation elicited in response to 

delivery of both sweeteners were the left and right somatosensory and motor 

cortical regions. The spatial location of this cortical activation along the lateral 
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surface coincides with areas functionally related to the lips, tongue and jaw 

(Miyamoto et al. 2006) and would be expected to be recruited by this paradigm for 

both these contrasts. By contrasting the delivery against the withheld event, these 

regions appear quite prominently from whole brain one sample t-tests. No 

statistically significant differences between whole brain t-maps for lean and OW 

groups for both sucrose delivery and stevia delivery under placebo conditions were 

observed. It is nevertheless instructive to review some of these differences.  For 

example, under placebo conditions, the lean group showed a relatively reduced 

response in the somatosensory cortex in comparison to the overweight group for 

both the sucrose and stevia taste. So much so, that small volume correction did not 

result in any significant clusters within the lean group for the stevia delivery contrast 

and only provided a significant effect within the anterior insula from sucrose delivery. 

In contrast the OW group showed significant BOLD responses within the insula, 

amygdala, striatum and also cerebellum for stevia and sucrose delivery from small 

volume correction and whole brain interrogation, respectively.  

 

The Insula has been well documented in its role of gustatory perception and 

processing (Frank, Kullmann, and Veit 2013) within the brain and is commonly 

referred also as part of the primary gustatory cortex. The dorsal surface of the tongue 

is scattered with raised projections known as papillae which are lined with taste buds. 

Each taste bud hosts a large number of taste receptor cells with afferent axons that 

carry information along cranial nerves to the brainstem and thalamus where relay 

neurons connect with the insula cortex, amygdala and hypothalamus (Breslin 2013). 

From the insula, projections to the striatum, OFC and ACC carry the oral sensory 

information where properties regarding reward valence and other cognitive 

processes are encoded (Breslin 2013). BOLD response increases were seen within the 

cerebellum from presentation of the stevia stimulus under placebo conditions. 

Activity within the cerebellum has been observed from previous fMRI studies looking 

at taste (Zald and Pardo 2000; Small et al. 2003). Small et al., reported cerebellar 

activity associated with intensity of substances and suggested a role of the 

cerebellum to respond to taste intensity information and guide oral movements 
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(Small et al. 2003). The cerebellum was also involved following insulin administration 

for both sucrose and stevia delivery.  

 

Following insulin administration whole brain t-maps were visually similar for the OW 

group in response to both sucrose and stevia delivery contrasts. Interestingly, BOLD 

increases were seen in the right putamen from stevia solution delivery which was 

absent following placebo conditions. Lean group whole brain maps for both sucrose 

and stevia delivery contrasts presented a more widespread spatial BOLD response, 

incorporating similar regions seen in the OW group, following insulin administration 

in comparison to placebo. In response to stevia administration, the lean group 

displayed activation within the supplementary motor area (SMA) under insulin 

conditions. The SMA is well known for its role in controlling movement actions 

(Nachev et al. 2007) and therefore this response seen could be due to preparation 

for swallowing. Why this region was only seen upon stevia delivery and not sucrose 

delivery, and why was limited to both the lean group and following insulin 

administration is hard to comprehend.  
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7.9.5 Insulin effects 

 

 

Whole brain parametric analysis provided a significant interaction effect between 

treatment and group in response to stevia delivery vs withheld delivery. Insulin 

administration vs placebo displayed a differential response in lean and overweight 

groups within the prefrontal cortex, localised to the rostral ACC and mOFC. The lean 

group showed an insulin-related BOLD increase within this region in contrast to the 

OW group who demonstrated an insulin-related BOLD decrease within this prefrontal 

region compared to placebo. Whole brain paired t-tests, conducted as post hoc 

analyses were not sensitive to detect significant insulin-induced changes for either 

group.  

 

The interaction effect seen is anatomically interesting as the prefrontal cortex is 

heavily involved in cognitive functioning and decision making, as mentioned 

previously. In addition to the hedonic aspects associated with food consumption, the 

response to food taste and sight is highly dependent on higher level cognitive 
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processing. Cognitive control, via the prefrontal cortex, is key to both the 

enhancement and suppression of appetite and motivation to consume food (Dagher 

2012). The prefrontal cortex is a region with known responses to changes in insulin 

concentration. For example, increases in endogenous insulin concentrations 

following glucose ingestion have been shown to induce reductions in prefrontal 

cortex activity upon food picture presentation (Heni, Kullmann, et al. 2014) 

suggesting that this cognitive hub is an insulin sensitive brain region. In relation to 

the current study, Kullmann et al., showed an opposing interaction effect between 

intranasal insulin and group (lean and obese) for resting state cerebral blood flow 

(CBF) in the prefrontal cortex (Kullmann, Heni, Veit, Scheffler, Machann, Haring, et 

al. 2015). They showed that prefrontal cortex CBF was reduced in lean, insulin 

sensitive, individuals but was increased in obese, insulin resistant (HOMA-IR > 2.0), 

individuals in response to intranasal insulin administration compared to placebo 

(Kullmann, Heni, Veit, Scheffler, Machann, Häring, et al. 2015). The insulin induced 

reduction in the lean individuals correlated well with disinhibition measurements and 

thus the authors suggest a modulatory role for insulin within the prefrontal cortex 

(Kullmann, Heni, Veit, Scheffler, Machann, Häring, et al. 2015). On closer inspection, 

however,  the origin of the CBF interaction effect observed by these authors was 

lateralised and more superior to that observed from this taste paradigm. The region 

reported in Kullmann et al. corresponded to the middle frontal gyrus (Kullmann, 

Heni, Veit, Scheffler, Machann, Häring, et al. 2015) as opposed to the more medial 

regions of the prefrontal cortex (rostral ACC and mOFC) seen from this current 

analysis and therefore similarities between these studies should not hold significant 

weight in support or opposition of these findings. Furthermore, the taste paradigm 

employed is a complex functional task that engages reward and learning circuitry as 

well as areas involved in taste anticipation and consumption rather than a resting 

state perfusion interrogation.   

 

More relevant are studies that report activity within these regions in response to task 

based manipulation. For example, fMRI studies have shown the involvement of the 

vmPFC and rostral ACC (rACC) during encoding and predicting value of future 

rewards, particularly during decision making paradigms (Gläscher, Hampton, and 
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O'Doherty 2009). The ACC is a large anatomical structure, with the more 

frontal/rostral regions being closely linked to the cognitive evaluation of reward 

(Toda et al. 2012). The rACC in particular is known to be responsive upon receipt of 

hedonically relevant stimuli, whether the stimulus be oral or olfactory (de Araujo and 

Rolls 2004; de Araujo et al. 2005). The taste response to both fat and sucrose produce 

increases in the BOLD response within the rACC, irrespective of viscosity (de Araujo 

and Rolls 2004). Similarly, BOLD response magnitude in response to odour stimuli has 

been shown to be greater for stimuli labelled as ‘appealing’ (e.g. cheddar cheese) in 

comparison to the same odour labelled as ‘unappealing’ (e.g. body odour) (de Araujo 

et al. 2005). In the same vain, the rACC region has been shown to elicit a greater 

magnitude BOLD response to an umami  taste stimulus labelled as appealing vs the 

same umami stimulus with a less appealing label (de Araujo et al. 2003). Thus the 

rACC has a cognitive modulatory effect on appealing and unappealing stimuli. In light 

of this involvement of the rACC in taste modulation and response, the participants 

were instructed to learn the association between cue and taste. Knowledge of each 

taste was not provided until completion of the entire study and so the response in 

this region could be attributed to or associated with trying to encode the taste.  

 

The prefrontal cortex is an integrative hub with many roles and functions. The 

interaction effect observed from whole brain statistical maps for the stevia delivery 

contrast spans across multiple anatomical regions and slightly limits the 

interpretation power of this interesting result. As mentioned, whole paired t-tests 

within both groups did not reveal any significant drug related effects and thus power 

to speculate on this interaction effect is limited. Group related effects seen from the 

stevia cue, as mentioned previously, are seen within the same regions and also 

display lean related insulin increases in BOLD activity. Given the timing of events used 

in this paradigm and implemented within the 1st level model it could be argued that 

there is a carryover BOLD effect originating from the cue presentation to the bolus 

delivery.  

 

Significant drug related effects of insulin were seen from the stevia delivery vs 

withheld contrast from ROI analyses that interrogated insulin related changes from 
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functional data acquired during the first and second run separately. Combining both 

runs was important for an initial analysis however the learning and sensitisation 

elements of this task may introduce temporal characteristics that warrants analyses 

of each run separately.  

 

Ancillary VAS measures of how much each taste was liked and how sweet the 

participant found the taste bolus help to support the notion of temporal effects from 

this task. Following placebo administration, stevia solution was rated as significantly 

less sweet at the end of the second run compared to sweetness ratings made at the 

start of the first run but was not coupled with a change in likeness ratings. Under 

insulin conditions ratings of stevia sweetness also showed a strong decrease over 

time which was also coupled with a decrease in subjective liking. These results 

suggest that, firstly, there are dynamic changes in sweet taste sensitisation for stevia 

solution and secondly, that these changes are more prominent following insulin 

administration which also changed the how much stevia solution was liked. Stevia, 

as well as other non-nutritive sweeteners, activates sweet taste receptors and bitter 

taste receptors on the tongue simultaneously, in a concentration dependent manner 

(Hellfritsch et al. 2012). The decrease in stevia sweetness over time could be from an 

increase in bitterness following repeated exposure, however the bitterness of stevia 

was not assessed and therefore this cannot be confirmed. The decrease in subjective 

stevia sweetness was more pronounced following insulin administration compared 

to placebo. This pronounced decrease in sweetness was coupled by a decrease in 

likeness suggesting a decrease in the hedonic value over time, associated with central 

insulin concentrations.  

 

ROI analysis employed to interrogate the data acquired during different independent 

runs for each BMI group separately, revealed interesting findings. No effects of drug 

or run were seen for any of the cue contrasts and no effects of drug or run were seen 

either for the sucrose delivery contrast. Effects were seen, however, within 

dopaminergic regions of the mesolimbic system for the stevia delivery contrast. 

Within lean individuals a significant increase in NAcc BOLD activity was seen in 

response to insulin compared to placebo, which was only apparent in the second run 
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(SUMMARY BOX 2). In contrast, in the overweight group insulin produced decreases 

in BOLD activity within the striatum (caudate and putamen) compared to placebo 

during the first run.   

 

Work on reward processing has focused on the concept of reinforcement learning 

(classical conditioning) (Schultz 2001; Rescorla and Wagner 1972) and the 

involvement of the dopaminergic system in facilitating and reinforcing reward 

seeking and approach behaviours. Midbrain dopaminergic projections from the VTA 

and substantia nigra (SN) nuclei to the striatum and pre-frontal cortex are highly 

implicated in reward processing (Schultz 2001; Rolls 2004). Particular focus has been 

on the NAcc, a region commonly known for its role in pleasure and addiction (Adinoff 

2004). With reference to cue conditioned reward paradigms the dopaminergic 

neuronal firing responses within the NAcc shift from the reward presentation 

stimulus (e.g. 0.5ml sweet bolus) to the cue presentation (e.g. fractal cue) during 

conditioning, known as temporal difference learning (Sutton 1988). A pattern similar 

to a temporal shift can be seen following placebo administration from the lean group 

NAcc plots in response to stevia delivery (Figure 7.8.4). The plot shows that over time 

(from run 1 to run 2) the NAcc activity decreases, as would be seen in the case of a 

temporal dopamine shift from reward stimulus to cue presentation, once the 

association had been learnt (Schultz 1998). Interestingly in response to increased 

central insulin concentrations in the lean group this pattern is reversed; NAcc activity 

increases over time. Insulin plays a dual role in the local mesolimbic regions. Firstly, 

insulin binds to insulin receptors on pre-synaptic striatal (NAcc and CPu) neurons and 

acts to increase pre-synaptic dopamine uptake via upregulated dopamine 

transporter activity (DAT) (Stouffer et al. 2015). Secondly, excitatory cholinergic 

interneurons that synapse onto striatal neurons display pre-synaptic insulin 

receptors. Successful binding of insulin upon these cholinergic interneurons 

increases excitability and action potential frequency thus increasing downstream 

dopaminergic release from striatal dopamine neurons (Stouffer et al. 2015). The 

latter effect is most prominent upon increased insulin concentrations and is sufficient 

to overcome the increased DAT uptake activity in response to increased striatal 

insulin concentrations. The increase in BOLD response seen from the NAcc from the 
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lean group may be explained by the excitatory effects of insulin on cholinergic 

interneurons associated with subsequent dopamine release. Cholinergic 

interneurons receive input from the thalamus and this mechanism is involved in 

directing attention, reinforcement and also learning (Smith et al. 2011). It could be 

suggested that the insulin related BOLD increase in this region is reflective of an 

informative signal, potentially due to a change in hedonic properties or valence. 

Perhaps the change in palatability and sweetness seen from VAS scores would be 

significant to elicit this attention signal.  

 

One thing that has not been explored that would supplement this data is looking at 

the negative prediction error response that would occur during omission of the taste 

bolus. As the delivery event has been contrasted with the withheld delivery event 

the contrast images produced will have contributions from both beta estimates. This 

needs further exploration to help decipher the insulin related increases witnessed 

from the NAcc in the lean group.  

 

In contrast, the OW group displayed an insulin related striatal (caudate and putamen) 

BOLD decrease in response to stevia presentation. Interestingly, from Stouffer et al., 

the sensitivity of insulin related dopamine release from striatal neurons (NAcc, 

caudate-putamen) is diet dependent with obese rats displaying diminished insulin 

related dopamine synaptic concentrations (Stouffer et al. 2015). Although the 

participants involved in the current study are overweight and not obese, this result 

is in support of the notion that insulin may have a differential response in those with 

an increased BMI. Stouffer et al., and Jones et al., both showed that under chronic 

low basal insulin concentrations the caudate-putamen showed reduced  insulin 

dependent DAT expression and activity, thus displaying an increase in net caudate-

putamen dopamine release (Stouffer et al. 2015; Jones et al. 2017). Given that central 

insulin concentrations are decreased in those with a greater fat mass (i.e. BMI) (Kern 

et al. 2006) the greater BOLD response in the caudate-putamen seen in the OW group 

under placebo conditions vs insulin would be supported (see Summary Box 2). In 

turn, the presence of increased central insulin following intranasal insulin 

administration may reinstate DAT activity thus reducing caudate-putamen 
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dopaminergic activity as seen from the data. The lean group showed no insulin 

related changes in caudate-putamen activity which may suggest that the caudate-

putamen is more sensitive to weight and fat induced changes in insulin related DAT 

sensitivity.  

 

In conclusion this task has highlighted several interesting effects that intranasal 

insulin has on primary reward. The effects of centrally acting insulin are noticeably 

differently between lean and overweight groups for some of the contrasts 

interrogated in this task. In general, insulin acts to drive different neural responses 

between lean and overweight individuals. Interestingly, the effects of intranasal 

insulin were limited to the receipt of stevia, a non-nutritive sweetener. The reasoning 

behind this could be that stevia is novel to the taste buds and that this added novelty 

is sufficient to recruit and affect areas of the brain involved in higher level cognitive 

functions akin to the reward learning process. Insulin affects were seen within the 

striatum (NAcc, caudate-putamen) and this finding helps to support central insulin’s 

role in dopaminergic signalling. Understanding the effects that this may have on 

energy related decision making and reward related deficiencies in obesity or insulin 

resistance is of great importance and continued research in this area is needed to 

support the findings reported here.  
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Chapter 8  Evaluation of the effects of 
intranasal insulin on resting functional 
connectivity  
 

This chapter covers the resting state Blood Oxygen Level Dependent (BOLD) 

functional MRI component of the SNIFAR study that was employed to interrogate the 

effects of intranasal insulin administration on functional connectivity measures as 

well as effects of body mass index (BMI). Specific details regarding the acquisition 

parameters, pre-processing and analysis techniques employed for this component of 

the SNIFAR imaging study will be reported. For the analysis of these data, only ‘seed 

based connectivity’ inferences were made . The findings and results from this 

component are discussed with reference to previous fMRI based intranasal insulin 

pharmacological studies and also non-pharmacological resting state network 

literature.  
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8.1 Introduction  

Centrally acting insulin has been shown to have an effect on a number of centrally 

controlled functions including memory, cognition, mood modulation, reward and 

appetite control (Kullmann, Heni, Fritsche, et al. 2015; Ott et al. 2012; Tiedemann et 

al. 2017; Stouffer et al. 2015). Key to understanding these modulatory effects has 

been the implementation of intranasal insulin administration coupled with a 

combination of multi-modal fMRI techniques (Kullmann, Heni, Fritsche, et al. 2015). 

Among these techniques, a body work has been conducted to investigate the effects 

of intranasal insulin on resting state functional activity (Kullmann et al. 2013; 

Kullmann, Heni, et al. 2017; Kullmann et al. 2018). The majority of this work has 

examined changes in BOLD signal dynamics using techniques known as Amplitude of 

Low-Frequency Fluctuations (ALFF) and Fractional Amplitude of Low-Frequency 

fluctuations (fALFF) (Zuo et al. 2010).  Measures of ALFF and fALFF provide a view on 

resting, regional neuronal activity through quantifying the fraction of the total power 

of the BOLD signal that corresponds to the low frequency range (0.01 – 0.1 Hz) (Lv et 

al. 2018). Comparatively little work has been conducted to investigate the effects of 

intranasal insulin on network dynamics and functional connectivity through a seed-

based model-driven approach, which was the main aim of this component of the 

SNIFAR protocol.  

 

In this work, resting state BOLD data were acquired using a multi-echo (ME) EPI 

acquisition protocol combined with an image pre-processing and denoising 

methodology called multi-echo independent component analysis (ME-ICA). As 

described in Chapter 2 (section 2.3.4), a multi-echo EPI acquisition acquires multiple 

whole brain EPI images (in this case three) at multiple TEs following spin excitation, 

in contrast to conventional EPI BOLD acquisitions which acquire a single EPI image 

(Howseman and Bowtell 1999). The benefits of the multi-echo acquisition approach 

are two-fold. Firstly, multiple EPI images can be combined using an optimally 

weighted summation approach to increase BOLD sensitivity throughout the entire 

brain (Posse et al. 1999). And secondly, the richness of the data per excitation (TR) 

permits the implementation of a denoising technique, ME-ICA (Kundu et al. 2012), 
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which was employed in this component of the SNIFAR investigation. The details of 

the ME-ICA methodology have been explained in detail in Chapter 2 (section 2.3.4). 

 

Prior to SNIFAR study initiation, a study was conducted in a small number of healthy 

volunteers (n=8, 6M, 2F) to compare multi-echo denoising against a conventional 

single echo EPI acquisition (Wingrove et al. 2016). This work supported the use of 

ME-ICA for denoising functional timeseries compared to conventional single echo 

data, producing results that were similar to those obtained by Kundu et al., (Kundu 

et al. 2013; Kundu et al. 2012). Furthermore, using the multi-echo EPI methodology, 

data were collected to investigate two important issues: a) the optimum number of 

echo time-series to be used for denoising (3 echoes vs 4) (Wingrove, O’Daly, and 

Zelaya 2017b) and b) the differences between performing analysis on multi-echo 

data spatially normalised to standardised space (e.g. MNI), or in native subject space 

(Wingrove, O’Daly, and Zelaya 2017a). From this work, the use of three-echo data 

proved to be preferable to four-echo data with superior discrimination of BOLD and 

non-BOLD components. More specifically, four echo data in some occasions failed to 

identify non-BOLD components and therefore did not ‘denoise’ the dataset as 

efficiently as the three echo data. The data suggested that the fourth echo images, 

acquired with a long echo time (TE = 48ms) and with low signal to noise ratio (SNR), 

reduced the sensitivity of the denoising algorithm and thus three echoes turned out 

to be better in comparison (Wingrove, O’Daly, and Zelaya 2017b). Finally, analysis in 

subject space or MNI space did not show large amounts of differences as both 

performed comparatively well in terms of denoising. However, analysis conducted in 

native space is quicker and less computationally intensive due to a smaller number 

of voxels per image in the native space domain. 

 

As a result of the above, the SNIFAR study was acquired using a three echo multi-

echo sequence and analysed in native space, prior to normalisation of the final 

subject-level output.  
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8.2 Methods 

In this resting state BOLD investigation, data from all subjects (n=27) were included. 

In total there were 12 lean participants (BMI = 22.40 ± 1.89 (mean ± standard 

deviation)) and 15 OW participants (BMI = 27.76 ± 1.92), (mean difference in BMI = 

5.36, p < 0.001, two-tailed unpaired t-test). Groups did not differ significantly in age, 

as described in Chapter 5 (section 5.1.1) 

8.2.1 Image acquisition 

The resting state BOLD data were collected following the final anatomical image 

acquisition and were the first of the functional image series. This acquisition was 

approximately 25-30 minutes following intranasal insulin/placebo administration at 

a time when central insulin levels were close to their peak (Born et al. 2002).  

 

Whole brain functional images were acquired using a custom-built, T2* weighted 

gradient echo multi-echo echo-planar imaging (ME-EPI) pulse sequence.  A 32-

channel receive only coil and ‘array coil spatial sensitivity encoding slices’ (ASSET) 

was employed for parallel imaging. Slices were acquired in a sequential top down 

direction in the near-axial plane parallel to the anterior-posterior commissure line 

(approximately 30° from the ‘true axial’ orientation) with the following parameters: 

TR = 2000 ms, TE = 12,28 and 44 ms, flip angle = 80°, acquisition matrix size = 64 x 64, 

FOV = 211 x 211, slice thickness = 3 mm, slice gap = 0.3 mm, no. of slices = 32, in plane 

voxel size = 3.30 x 3.30 mm2. Four dummy acquisitions were used to achieve steady 

state magnetisation, which were discarded. The total number of imaging volumes 

was 192 acquired in 6:32 mins.  

8.2.2 Image Processing  

All resting state data pre-processing and seed based functional connectivity analyses 

was performed using AFNI, FSL and SPM functional imaging software packages. All 

data denoising processes were performed in subject specific space. Only for group 
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level seed-based connectivity analysis were images normalised and co-registered to 

MNI space.  

 

Multi-echo EPI data was first split into individual echo times series (using the FSL 

function ‘fslsplit’).  In each echo time series, signal outliers were removed using the 

‘3dDespike’ routine found in the ‘Analysis of Functional Neuroimages’ (AFNI) 

software suite (Cox 1996). To correct for subject motion, the first echo (TE=12ms) 

timeseries were realigned to a base volume using ‘3dVolreg’ (AFNI). Motion 

correction parameters were saved and applied to the second and third echo 

timeseries using ‘3Drotate’ (AFNI). Individual echo time series were subsequently 

corrected for slice timing acquisition differences using ‘3dTshift’ (AFNI). Brain 

extraction was performed to remove extra-cerebral signal from the first echo (using 

the ‘BET’ routine found in FSL). This ‘skull-stripped’ first echo image was then 

binarized and used as a mask to remove extra-cerebral signal from the other echo 

time series. All three ‘skull-stripped’ echo time series were concatenated along the 

z-axis for input into the ME-ICA denoising program (tedana.py, AFNI). 

8.2.3 ME-ICA denoising 

The ME-ICA denoising protocol has been previously described in Chapter 2 (section 

2.3.4). Output images from the ME-ICA processing consist of an optimally combined 

echo timeseries and a de-noised optimally combined echo timeseries. The latter de-

noised timeseries was used for the functional connectivity analysis.  

8.2.4 Spatial and temporal filtering 

Prior to seed based connectivity analysis, additional filtering was applied; deep white 

matter and CSF signal regression, bandpass filtering and spatial smoothing.  

 

Subject structural T1 images were segmented into grey matter (GM), white matter 

(WM) and cerebrospinal fluid (CSF) (FMRIB’s Automated Segmentation Tool, FAST, 

FSL, (Zhang, Brady, and Smith 2001)). WM and CSF segmentations were eroded 

(fslmaths, FSL), for extraction of deep WM and CSF time series and to avoid 
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contamination of grey matter partial volume signal, and co-registered to the 

functional time series using the inverse registration affine parameters saved 

previously. WM and CSF signal timeseries were extracted from the denoised 

optimally combined dataset and combined with the six affine motion correction 

regressors which were then regressed from the denoised timeseries (fsl_glm, FSL)(a 

total of eight regressors; WM, CSF and 6 x head motion).  

 

A temporal bandpass filter (0.01hz – 0.1hz) was applied (fslmaths, FSL) and images 

were spatially smoothed using a full width half maximum gaussian kernel of 8 x 8 x 8 

mm3. 

 

Finally, denoised and filtered timeseries were normalised to MNI space by applying 

the saved transformation steps using Advanced Normalisation Tools (ANTs)(Avants 

et al. 2011; Avants et al. 2014). 

8.2.5 Seed based connectivity analysis 

Based on several previous publications, analysis of the resting state -BOLD (rs-BOLD) 

multi-echo data was conducted to examine insulin related functional connectivity 

changes using a seed based connectivity approach using two anatomical regions; the 

insula cortex and the hippocampus. 

 

Mean signal time series data from denoised and filtered datasets were extracted for 

each subject from the defined seeds independently (3dROIstats, AFNI). A whole brain 

voxel-wise correlation was performed between the processed timeseries and the 

seed extracted time series (3dTcorr1D, AFNI) to produce a whole brain correlation 

maps (R values) for each subject. R values from these correlational maps were 

converted into z-scores using the Fisher Z-transformation (3dcalc, AFNI), to produce 

a seed specific Z-map for each subject in preparation for group level analysis.  
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8.2.5.1 Insula seeds 

The insula has been shown to be responsive to intranasal insulin administration 

(Schilling et al. 2014) but little is known about the modulatory effects insulin may 

have on the regional functional connections of this substrate with other parts of the 

brain. Spherical seeds with a 5mm radius were created for both left and right anterior 

and posterior divisions of the insula, based on co-ordinates from Taylor et al., (Taylor, 

Seminowicz, and Davis 2009)(displayed in Figure 8.2.1, coordinates in Table 8.2.1). 

The insula cortex is particularly large in volume and with known anatomical and 

functional segregations (Kurth, Zilles, et al. 2010; Stephani et al. 2011). This was taken 

into consideration in the design stage of the analysis and the seeds were created 

based on functional parcellations of the insula.  

 

 

 

Figure 8.2.1 An image showing the locations of the four insula seeds used 
in this resting state analysis overlaid onto  structural MNI image. The 

seeds in the images are smaller in volume  than the 5mm spherical seeds 
employed in the analysis. The seeds correspond to the left and right 

anterior and posterior insula, respectively.  
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8.2.5.2 Hippocampus Seeds 

The hippocampus has an abundance of insulin receptors and is thought to be crucial 

in several memory related processes (Ott et al. 2012). Hippocampal seeds were 

defined by the creation of 5mm radius spheres within the left and right anterior and 

posterior regions of the hippocampus as defined by Kahn et al., (Kahn et al. 

2008)(displayed in Figure 8.2.2).  

 

Table 8.2.1 Insula seed coordinates used in 
the resting state analysis.  

Figure 8.2.2 A table of hippocampus seed coordinates and the posterior and anterior 
hippocampus seed locations displayed onto a structural MNI image. 
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8.2.6 Group level analysis  

A random effects group level analysis was conducted to explore insulin related 

functional connectivity effects and also within treatment group effects. For each 

seed, subject specific z-maps were entered into a second level repeated measures 

factorial model (SPM-12) with three factors; subject, drug (insulin, placebo) and 

group (lean, OW). Four linear contrasts of interest were created to explore for the 

main effects of drug and any drug by group interactions:  

 

1. Insulin > Placebo (Main effect of insulin) 

2. Insulin < Placebo (Main effect of placebo) 

3. Lean Insulin > Placebo, OW Insulin < Placebo (Interaction 1) 

4. Lean Insulin < Placebo, OW Insulin > Placebo (interaction 2) 

 

The resulting statistical parametric t-maps created from this second level model were 

set to a cluster forming voxel threshold of p < 0.001 uncorrected. This seed based 

connectivity analysis was performed using a total of the eight seeds described earlier. 

The statistical threshold of the FWE correction for multiple comparisons was 

adjusted for multiple seeds and tests (0.05/8). The statistical cluster extent threshold 

was set to FWE p < 0.0063 to address the multiple seed/testing issue. Therefore, only 

clusters that survived the statistical threshold of p < 0.0063 (FWE-corrected) will be 

reported as significant. 

 

The repeated measures ANOVA model employed at the second level (known in SPM 

as a flexible factorial model) is limited to interrogate treatment related effects and 

group by treatment interactions, but not main group effects. Significant clusters 

observed from either of the interaction contrasts tested were interrogated further in 

two ways. 

 

Firstly, group effects were tested within treatment using whole brain unpaired (two-

sample) t-tests. Linear contrasts for lean vs OW were created and tested. This whole 
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brain parametric analysis used a cluster forming voxel threshold of p < 0.001 and 

significant clusters were reported based on a p < 0.05, FWE-corrected statistical 

threshold. Furthermore, one sample t-tests within group for each treatment were 

conducted and presented to visualise the network structure generated from those 

seeds that were taken through to post-hoc analysis.  

 

Secondly, treatment effects were tested within groups by creation of whole brain 

paired t-tests. Linear treatment contrasts (i.e. IN-INS > IN-PLA) within these paired t-

tests were created and tested. Whole brain paired t-tests conducted in the lean 

group were performed both with and without the addition of the HOMA-IR score 

(calculated in Chapter 5, section 5.1.5) as an additional regressor of no interest 

(nuisance covariate) within the model. This regressor was added to help account for 

some of the physiological variance witnessed at baseline in the lean group (as 

detailed in Chapter 5, section 5.1.6). This methodological addition was only 

implemented in the lean group and not the OW group. In the OW group, one of the 

participants did not provide a full blood profile and therefore baseline HOMA-IR 

scores could not be used as a nuisance regressor in this OW group analysis. 

 

For illustration purposes, all statistical t-maps are overlaid onto a T1 weighted MNI 

oriented image using MRIcroGL. Anatomical assignment of statistically significant 

clusters was done with the built-in probabilistic atlases within FSL (FMRIB Software 

Library version 4.1.9 www.fmrib.ox.ac.uk/fsl).  
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8.3 Results  

8.3.1 Group level analysis 

8.3.1.1 Anterior insula – left and right 

Results from random effects group level repeated measures factorial model analysis 

did not reveal any main treatment effects or interaction effects of functional 

connectivity for either the left or right anterior insula seed correlations.   

8.3.1.2 Posterior insula seed – left and right  

For the right posterior insula, whole brain repeated measures analysis did not reveal 

any significant main treatment or interaction effects on functional connectivity.  

Whole brain results from random effects group level analysis for the left posterior 

insula produced three large clusters from the interaction 1 contrast (Lean IN-INS > 

IN-PLA, OW IN-INS < IN-PLA) (see Figure 8.3.1 and Table 8.3.1). These clusters, were 

situated around the left dorsal medial prefrontal cortex (dmPFC), left lateral occipital 

cortex and left middle temporal gyrus with the left dmPFC cluster surviving multiple 

seed correction (p < 0.05, FWE – corrected).  

Figure 8.3.1 An image showing the left posterior insula seed interaction (1) effect t-map overlaid 
onto a structural MNI image. Maps contain only clusters that survived p < 0.05, FWE – corrected 
cluster extent statistical threshold. A) Sagittal slices show statistically significant cluster 
formations in the dmPFC region, which survived multiple seed correction. B) An axial slice 
illustrating the dmPFC significant cluster. C)  Coronal and axial slices illustrating the middle 
temporal gyrus cluster which did not survive the multiple seed correction threshold. 
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8.3.1.3 Left posterior insula seed -  group effects 

Following this interaction effect whole brain unpaired t-tests were conducted to look 

for functional connectivity group differences, within treatment. This analysis did not 

reveal any significant between group effects for either the IN-PLA session or the IN-

INS session.  

8.3.1.4 Left posterior insula seed - treatment effects 

Post hoc analysis whole brain paired t-tests were conducted for the left posterior 

insula seed correlation Z-maps to explore this interaction effect.  

Paired t-tests performed in the OW group did not reveal any significant treatment 

effects.  

 

The paired t-test conducted without the addition of the HOMA-IR regressor in the 

lean group (IN-INS > IN-PLA) revealed a large significant cluster (823 voxels, p < 0.001, 

FWE-corrected) situated over the left and right precuneus/posterior cingulate cortex 

(PCC) (see Figure 8.3.2 and Table 8.3.2). 

Table 8.3.1 Whole brain statistic results from the interaction (1) effect observed from the repeated 
measures ANOVA analysis conducted for the left posterior insula seed. Cluster size refers to the 
number of voxels within the significant cluster. p values in BOLD correspond to those clusters that 
survived multiple seed correction threshold. Lean (n=12), OW (n=15).   
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Similarly, the paired t-test conducted with HOMA-IR regressors (lean: IN-INS > IN-

PLA) revealed two large significant clusters, that both survived the multiple seed 

correction threshold (see Figure 8.3.3 and Table 8.3.3),situated over the left and right 

precuneus/PCC and the dmPFC, respectively. These whole brain post hoc analyses 

IN-INS show an increase in functional connectivity between the left posterior insula 

seed and regions of the PCC and dmPFC when compared to IN-PLA.  

Figure 8.3.2 Whole brain paired t-test, t-map for the left posterior insula seed 
(IN-INS > IN-PLA) in the lean group overlaid onto a structural MNI template. A) 
sagittal and B) axials sections show increased functional connectivity between 
the left posterior insula seed and the PCC following IN-INS vs IN-PLA. 

Table 8.3.2 Whole brain statistics for the lean group left posterior insula seed connectivity paired t-
test.  
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Figure 8.3.3 Whole brain paired t-test, t-map for the left posterior insula seed (IN-INS 
> IN-PLA) in the lean group, with the addition of HOMA-IR scores as a regressor of no 
interest overlaid onto a structural MNI template. A) sagittal and B) axials sections 
show increased functional connectivity between the left posterior insula seed with 
the PCC and dmPFC following IN-INS vs IN-PLA. 

Table 8.3.3 Whole brain statistics for the lean group left posterior insula seed connectivity paired t-
test, with additional HOMA-IR score regressor.  
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8.3.1.5 Anterior hippocampus – left and right 

No significant effects were seen from whole brain analysis for either the left or the 

right anterior hippocampal seed correlations.  

8.3.1.6 Posterior hippocampus – left and right 

Using the right posterior hippocampus as a seed region, group level whole brain 

repeated measures analysis did not reveal any main treatment effects. From the 

interaction 1 contrast (Lean IN-INS > IN-PLA, OW IN-INS < IN-PLA), a cluster was 

identified in the right somatosensory cortex but did not survive multiple seed 

correction (335 voxels, p = 0.043). Therefore, post hoc analysis was not conducted 

for this seed.  

 

Using the left posterior hippocampal seed, whole brain group level analysis showed 

that for the interaction 1 contrast (Lean IN-INS > IN-PLA, OW IN-INS < IN-PLA) 

revealed two large clusters (significant at p < 0.05, FWE) (see Figure 8.3.4 and Table 

8.3.4), one of which survived multiple seed correction and one which did not. The 

significant cluster which survived multiple comparison correction (608 voxels) was 

situated around the right somatosensory cortex and the other (406 voxels) was 

situated around the left middle frontal gyrus.  
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Figure 8.3.4 An image showing the left posterior hippocampus seed interaction (1) effect t-map 
overlaid onto a structural MNI image. Maps contain only clusters that survived p < 0.05, FWE – 
corrected cluster extent statistical threshold. A) Coronal slices show statistically significant 
clusters  in the left middle frontal gyrus  region, which did not survive multiple seed correction. 
B) Axial slices illustrating the left middle frontal gyrus cluster as well as the right somatosensory 
cortex significant cluster 

Table 8.3.4 Whole brain statistic results from the interaction (1) effect observed from the 
repeated measures ANOVA analysis conducted for the left posterior hippocampus seed. 
Cluster size refers to the number of voxels within the cluster. p values in BOLD correspond to 
those clusters that survived multiple seed correction threshold. Lean (n=12), OW (n=15).   
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8.3.1.7 Left posterior hippocampus seed -  group effects 

Whole brain one sample t-tests are presented in Figure 8.3.5 for each group showing 

the spatial extent of the left posterior hippocampus functional connectivity maps, for 

display purposes.  

 

Following IN-PLA there was a significant increase in functional connectivity seen 

between the left posterior hippocampus seed region and a region in the right primary 

sensory cortex in the OW group vs the lean group (see Figure 8.3.6 and Table 8.3.5). 

There were no significant increases in functional connectivity in the lean group when 

compared against the OW group for this seed following IN-PLA administration.  

 

 

 

 

 

 

Figure 8.3.5 Whole brain one sample t-tests for each group for the left posterior hippocampus seed. 
A) lean and B) OW group functional connectivity maps, thresholded to p < 0.05, FWE-corrected level 
following IN-PLA administration 
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Figure 8.3.6 T-map overlaid onto a structural MNI showing group differences (OW > lean) for 
the left posterior hippocampus seed, following IN-PLA administration. A) axial, B) coronal and 
C) sagittal sections showing the right somatosensory cortex cluster.  

Table 8.3.5 Statistics from the left posterior hippocampus seed group differences OW > lean, IN-
PLA.  
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Whole brain one sample t-test maps for both groups following IN-INS are presented 

in Figure 8.3.7. Following IN-INS there was a significant increase in functional 

connectivity seen between the hippocampus seed and a region corresponding to the 

right middle/superior frontal gyrus (Figure 8.3.7 and Table 8.3.6) in the lean group 

compared to the OW group. There were no other statistical group related differences 

seen for the IN-INS condition.  

Figure 8.3.7 t-map overlaid onto a structural MNI showing group differences (Lean > OW) for the left 
posterior hippocampus seed, following IN-INS administration. A) Sagittal and B) axial sections showing 
the right middle frontal gyrus cluster. 

Whole brain one sample t-tests for each group for the left posterior hippocampus seed. A) lean and 
B) OW group functional connectivity maps, thresholded to p < 0.05, FWE-corrected level following IN-
INS administration 

Figure 8.3.8 Whole brain one sample t-tests for each group for the left posterior 
hippocampus seed. A) lean and B) OW group functional connectivity maps, thresholded 
to p < 0.05, FWE-corrected level following IN-INS administration 

t-map overlaid onto a structural MNI showing group differences (Lean > OW) for the left 
posterior hippocampus seed, following IN-INS administration. A) Sagittal and B) axial 
sections showing the right middle frontal gyrus cluster. 
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8.3.1.8 Left posterior hippocampus seed - treatment effects 

Following the significant interaction effect seen from the whole group ANOVA model 

post hoc whole brain paired t-tests were then performed in the lean and OW group 

to look for within group treatment effects. Post hoc whole brain paired t-tests within 

the OW group did not reveal any significant treatment effects.  
 

Post hoc whole brain paired t-tests within the lean group (IN-INS > IN-PLA) with no 

additional regressors provided a large significant cluster (526 voxels, p = 0.001, FWE-

corrected) around the left fusiform gyrus (Figure 8.3.9 and Table 8.3.7).  

Table 8.3.6 Statistics from the left posterior hippocampus seed group differences Lean > OW, IN-
INS. 

Figure 8.3.9 t-map overlaid onto structural MNI image from lean group IN-INS > IN-PLA (paired 
t-test). A) Sagittal and B) Axial and coronal sections showing IN-INS related increase in functional 
connectivity within the fusiform gyrus.  
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With the addition of the HOMA-IR regressor into the paired t-test model, a significant 

cluster was obtained in the left fusiform gyrus (451 voxels, p = 0.002, FWE-corrected) 

(see Figure 8.3.10 and Table 8.3.8 ).  

 

 

 

 

 

Table 8.3.7 Whole brain statistics for the lean group left posterior hippocampus seed connectivity 
paired t-test (IN-INS > IN-PLA).    

Figure 8.3.10 t-map overlaid onto structural MNI image from lean group IN-INS > IN-
PLA (paired t-test) with the inclusion of HOMA-IR regressor into the model. A) 
Sagittal and B) Axial and coronal sections showing IN-INS related increase in 
functional connectivity within the fusiform gyrus. 
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8.3.2 Additional procedures to aid interpretation of treatment effects 

Following formation of significant clusters from treatment effect contrasts within the 

post-hoc paired t-test analyses (with HOMA-IR regressors), there were additional 

steps taken to aid interpretation of these results for both the left posterior insula and 

hippocampus seeds.  

 

Firstly, the significant clusters found from whole brain paired t-test models were used 

as masks to extract mean correlational values (Z-scores) from subject specific z-maps 

and plotted to evaluate the magnitude of the correlations. These values were plotted 

only and not used within any statistical tests to ‘supplement’ the whole brain 

statistics observed from the paired t-test analysis.  

 

Secondly, a potential drawback of seed-based correlational analysis is that an 

increase in functional connectivity between two brain regions does not inform 

underlying BOLD activity, rather an increase in correlation. To aid interpretation of 

these functional connectivity changes seen, measures of low frequency fluctuations 

(ALFF), which are useful for detecting the regional intensity of spontaneous 

fluctuations in BOLD signal (Zou et al. 2008), were obtained from significant clusters 

(from paired t-tests) and seed ROIs. With these cluster and seed measures the effects 

of insulin on ALFF can be observed, providing a better and clearer understanding of 

the mechanisms underlying the insulin related functional connectivity increases 

witnessed. 

Table 8.3.8 Whole brain statistics for the lean group left posterior hippocampus seed connectivity 
paired t-test (IN-INS > IN-PLA) with the addition of HOMA-IR scores as a regressor of no interest. 
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This was done by, firstly creating whole brain ALFF maps for each lean participant 

and each session using AFNI’s 3D resting state functional connectivity program 

(3DRSFC, AFNI). Denoised, filtered and smoothed timeseries (the final output from 

image pre-processing) were used to create a voxel-wise ALFF map (for an example 

ALFF map see Figure 8.3.11). The signal intensity from each voxel within these maps 

is equal to the total power of the BOLD signal within the range 0.01 and 0.1Hz 

measured from that voxel timeseries. Mean ALFF values were extracted from the 

significant clusters and respective seeds (using 3Dmaskave, AFNI) and the mean 

group value was plotted for each condition.  

 

Similarly to the extracted z-values as mentioned above, no formal statistical testing 

was conducted on any of the mean values extracted. All values were calculated from 

a mask of significant change and therefore any statistical analysis conducted using 

these would be biased. Therefore, only summary statistics such as the group mean 

will be presented and plotted.  

 

 

 

 

 

 

Figure 8.3.11 Axial sections of an example ALFF map made by averaging across the lean group 
IN-PLA session (n=12). ALFF is higher in cortical areas in comparison to sub-cortical and white 
matter regions.  
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8.3.3 Additional procedure analysis 

8.3.3.1 Left posterior insula – extracted correlation values 

Mean Z-scores were extracted from the significant bilateral PCC and dmPFC clusters 

obtained from the lean group post hoc paired t-test analysis with HOMA-IR covariate 

and plotted in Figure 8.3.12. From this plot it can be seen that following IN-PLA 

functional connectivity between these regions is negative, but in response to IN-INS, 

functional connectivity, as measured via correlation (Z-scores), increases from a 

negative value to a small positive value (mean z score IN-INS PCC = 0.04, mean z score 

IN-INS dmPFC = 0.09, respectively). This implies that under IN-PLA conditions the PCC 

and dmPFC are anti-correlated (negative z-score) with the left posterior insula seed 

but under IN-PLA the degree of anti-correlation changes and these regions become 

very slightly correlated (small positive z-score).  

 

Figure 8.3.12 Line plot showing the mean Z-values from the PCC and dmPFC clusters 
extracted from the left posterior insula z-maps for the lean group.  
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Mean ALFF values extracted from the PCC, dmPFC and left posterior insula seed are 

plotted in Figure 8.3.13.These plots show that firstly under IN-PLA conditions that the 

ALFF measures between all regions are quite different, with the seed displaying the 

lowest ALFF measures and the dmPFC showing the greatest ALFF score. And 

secondly, these plots show that there is very little change between ALFF for any of 

these regions in response to IN-INS compared to IN-PLA. 

   

 

 

 

 

 

 

 

Figure 8.3.13 ALFF values extracted from the left posterior insula seed, PCC and dmPFC 
clusters from both IN-PLA and IN-INS ALFF maps.  
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For illustration and interpretation purposes, mean Z-scores were extracted from the 

left fusiform gyrus cluster (created from the lean paired t-test IN-INS > IN-PLA, with 

HOMA-IR covariate) from both IN-PLA and IN-INS sessions from the lean group only 

and plotted in Figure 8.3.14. From this plots it can be seen that there is an IN-INS 

related increase in functional connectivity between the left posterior hippocampus 

and the left fusiform gyrus cluster (mean z-score IN-PLA = 0.16, mean z-score IN-INS 

= 0.46).  

 

 

 

 

 

 

 

Figure 8.3.14 Line plot showing the mean Z-values from the fusiform gyrus  cluster 
extracted from the left posterior hippocampus z-maps for the lean group. 
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Furthermore, mean ALFF scores were extracted from the same cluster and also from 

the left posterior hippocampus seed sphere for each treatment session and plotted 

in Figure 8.3.15. Furthermore, ALFF measurements were increased in the fusiform 

gyrus following IN-INS compared IN-PLA (mean ALFF IN-PLA = 401.71, mean ALFF IN-

INS = 475.83). ALFF measures from the left posterior hippocampus seed were much 

smaller and a small increase in ALFF in response to IN-INS compared to placebo 

(mean ALFF IN-PLA = 127.62, mean ALFF IN-INS = 132.47) was observed. From these 

data, the IN-INS increase in functional connectivity between the left posterior 

hippocampus and a region of the left fusiform gyrus in the lean group can be clearly 

seen and that coupled with this increase in functional connectivity is an increase in 

ALFF within the fusiform gyrus region but not the posterior hippocampus seed. 

 

 

 

Figure 8.3.15 ALFF values extracted from the left posterior hippocampus seed, fusiform gyrus 
cluster from both IN-PLA and IN-INS ALFF maps. 
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8.4 Discussion  

Seed-based connectivity analysis performed on multi-echo denoised BOLD data 

displayed intranasal insulin associated increases in functional connectivity between 

the left posterior hippocampus and the left fusiform gyrus, which was exclusive to 

the lean/normal weight individuals. Correlational measures between the left 

posterior insula and the precuneus and dmPFC were significantly modified by IN-INS, 

again exclusively in the lean group. Resting state neuronal information is carried by 

low frequency (<0.1Hz) oscillations from the time series frequency spectrum. An 

index of these fluctuations, in addition to the synchronicity measured as functional 

connectivity, is ALFF. Regional ALFF values extracted from regions significantly 

modulated by IN-INS were used as a supplementary information to describe the IN-

INS results seen from this whole brain functional connectivity analysis.  

 

Furthermore, group differences in the left posterior hippocampus functional 

connectivity was also observed. OW individuals displayed increased functional 

connectivity between the left posterior hippocampus seed and the right sensory 

cortex following IN-PLA, whereas the lean group displayed greater functional 

connectivity between the left posterior hippocampus and the middle frontal gyrus 

following IN-INS administration. 

8.4.1 Relationships with insulin resistance as measured by HOMA-IR 

For lean group treatment analyses, a ‘default’ whole brain paired t-test model was 

constructed as well as a paired t-test model that included the HOMA-IR score for 

each session as a regressor/covariate of no interest. These scores were added to the 

model in an attempt to explain some of the between session variability. For the left 

posterior hippocampus seed based analyses the addition of HOMA-IR scores had no 

effect on the parametric maps created when compared to the model without the 

added regressor. However, the addition of HOMA-IR regressor to the left posterior 

insula seed based analyses (lean paired t-test) provided the observation of a 

significant cluster formation in the region of the dmPFC, which was not observed in 
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the ‘default’ paired t-test model. From this observation the use of additional 

measures such as HOMA-IR proved beneficial in model fitting for this posterior insula 

seed analyses. The lack of effect seen from the posterior hippocampus seed may 

suggest that the effects seen in the fusiform gyrus were modelled well in the 

standard t-test and that the added attempt to explain any subject variability with 

HOMA-IR did not aid the model fitting.  

 

This discussion will focus on interpreting each of the aforementioned results with 

reference to resting state as well as task based fMRI literature. 

8.4.2 Insula  

The insula is an anatomical substrate situated within the fold of the lateral sulcus 

within each hemisphere. The insula exhibits several features of functional 

specialisation and plays an important role in key actions such as gustatory processing 

(Frank, Kullmann, and Veit 2013), interoception, awareness and pain processing, 

providing a necessary link between sensory processing and affective system 

engagement (Craig 2009). The insula can be divided anatomically and functionally 

into the anterior and posterior sub-regions, which are bisected by the middle 

cerebral artery and are involved in functionally discrete processes (Flynn 1999). 

Furthermore, the anterior and posterior insula belong to distinct functional networks 

as described from seed based connectivity of resting state BOLD analysis with the 

anterior insula being connected with regions involved in emotional awareness and 

interoceptive functioning (Cauda et al. 2011). In comparison, the posterior insula is 

situated within a network involving sensorimotor hubs and has been thought to be 

involved in environmental monitoring and skeletal orientation (Cauda et al. 2011). 

The results from this present study showed a large effect of IN-INS on posterior insula 

connectivity and therefore the focus will be on this region and its associated 

connectivity profile.  
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From this multi-echo denoising data analysis it shows that, at the whole brain level,  

IN-INS increases functional connectivity between the posterior insula and two main 

hubs of the default mode network (DMN), the PCC and dmPFC, respectively (Buckner, 

Andrews-Hanna, and Schacter 2008). However, extracting Z-scores from the PCC and 

dmPFC from both sessions reveals anti-correlation (negative Z score) with the 

posterior insula seed timeseries following IN-PLA, but following IN-INS the degree of 

anti-correlation is decreased (Z score goes from negative to positive).  Therefore, the 

effect observed at the whole brain level is not necessarily an IN-INS related increase 

in functional connectivity between the posterior insula seed and the PCC and dmPFC, 

but in fact a reduction in anti-correlation between the posterior insula and the PCC 

and dmPFC. The posterior insula is typically connected with the sensorimotor 

network (Deen, Pitskel, and Pelphrey 2011) and a large amount of task based 

research has also shown the posterior insula to be involved in pain related neural 

circuitry (Segerdahl et al. 2015). The sensorimotor network which typically involves 

the middle cingulate gyrus/supplementary motor area is known to be anti-correlated 

with the DMN at rest (Deen, Pitskel, and Pelphrey 2011). ALFF measures extracted 

from each of these regions do not suggest that there is any change in neural activity 

in either the PCC, dmPFC or posterior insula, implying that there are network level 

changes within the DMN and posterior insula-related sensorimotor connectivity that 

are causing this effect. From the analysis conducted, speculations as to why this 

affect is seen can be difficult and further analysis of DMN connectivity may have to 

be conducted to better understand this result.  

8.4.3 Hippocampus 

Using the posterior hippocampus as a seed region for this functional connectivity 

analysis permitted the observation that in response to IN-INS there was an increase 

in functional connectivity between this left posterior hippocampus and a region 

within the left fusiform gyrus. The fusiform gyrus forms part of the higher level visual 

cortex, residing within the ventral temporal cortex, and is well known for its 

involvement object recognition, face perception and processing  (Downing et al. 

2005). Task based fMRI studies involving the viewing of food pictures have shown the 
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involvement of both the fusiform gyrus and the hippocampus (Pelchat et al. 2004). 

Increased BOLD activity in both the fusiform gyrus and hippocampus are related to 

viewing of high and low calorie food pictures (Wallner-Liebmann et al. 2010) and 

have been associated with liking and craving for foods even from imagining and 

mental visualisation of different foods (Pelchat et al. 2004). In addition, the fusiform 

gyrus along with the hippocampus have previously been found to be modulated 

following IN-INS administration, within a task based food picture paradigm (Guthoff 

et al. 2010). Guthoff et al., showed that regions of both the hippocampus and 

fusiform gyrus displayed IN-INS related decreases in response to viewing food 

pictures compared to IN-PLA (Guthoff et al. 2010). They further speculate that the 

fusiform gyrus and hippocampus may form a circuitry that specialises in detection of 

food-related objects as there was no IN-INS related effects in these regions when 

viewing non-food pictures (Guthoff et al. 2010). Furthermore, increased central and 

peripheral insulin concentrations, via a hyperinsulinemic-euglycemic clamp 

technique, also showed bilateral fusiform gyrus decreases in BOLD activity in 

response to food pictures (Kroemer et al. 2013).  

 

The fusiform gyrus has been termed an ‘insulin sensitive’ brain region from several 

reviews (Heni et al. 2015; Häring 2016; Kullmann et al. 2016). Within the current 

study it can be seen that there is an IN-INS related increase in connectivity between 

the left posterior hippocampus and fusiform gyrus, however whether this increase is 

driven by an overall increase or decrease in BOLD activity or neither is beyond seed 

based correlation analysis. From the seed based results alone one can speculate that 

in lean individuals, IN-INS increases connectivity between higher visual regions and 

memory related areas important for visual recognition or visual memory processing. 

Perhaps this increase in functional connectivity between these regions, seen in this 

analysis, is key to some of the reported cognitive and memory related benefits of IN-

INS administration (Ott et al. 2012). As these data were collected during the resting 

state, or put another way, not during a cognitive engaging task, it is harder to 

interpret these findings and make fully supported claims on memory and cognitive 

effects in a direct manner. But the changes observed may underpin some of the 
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effects reported by other studies.  Therefore, the interpretations of these results may 

be considered conjectural in the absence of data from cognitively-engaging periods.  

Whole brain ALFF maps were created in order to provide another perspective for the 

interpretation of the results from the seed based connectivity analyses. Mean ALFF 

values extracted from the fusiform gyrus cluster show an increase in response to IN-

INS compared to IN-PLA (approximately 20%). However, for the left posterior 

hippocampus seed region the change in ALFF was not as pronounced as that of the 

fusiform, which would suggest that this increase in connectivity is driven by an insulin 

related increase in oscillatory BOLD signal in the fusiform gyrus as opposed to a 

dynamic change BOLD activity in the posterior hippocampus. Rotte et al., showed 

that participants presented increased bilateral fusiform gyrus BOLD activity in 

response to viewing unscrambled vs scrambled images during a hyperinsulinemic-

euglycemic clamp, suggesting a role for insulin in modulating fusiform gyrus activity 

for imagery in general and not just food related pictures (Rotte et al. 2005). The 

increased connectivity seen here between these regions could be suggestive of fine 

tuning the visual system for object recognition. 

  

Another speculation could be that insulin may act as a modulator to consolidate 

memories, particularly visual memories. Active learning of word pairs and also 

visualising those word pairs during memory recall increases BOLD activation within 

the fusiform gyrus and regions of the extra-striate visual network (Gais et al. 2007). 

Chronic IN-INS administration, over eight weeks showed that IN-INS treatment 

significantly improved word recall performance (Benedict et al. 2004). In light of this 

report, and coupled with fusiform gyrus involvement in memory recall paradigms, a 

suggestion that central insulin action within the fusiform gyrus coupled with an 

increased connection to the hippocampus may be key to these beneficial memory-

associated effects. More research into both these regions would need to be 

conducted in order to supplement this suggestion. As mentioned previously, 

mentally visualising images of food also shows an increase in activation within the 

fusiform gyrus (Pelchat et al. 2004). An alternative, and final suggestion could be that 

during the resting state acquisition participants engaged in more imaginary and 

mental visualisation and perhaps this could be key to memory consolidation.  
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From observing the IN-PLA functional connectivity maps created using the left 

posterior hippocampus seed (Figure 8.3.5) the OW group display a widespread 

network that extends from the temporal lobe and covers a large region of the 

occipital lobe (visual association areas) and also prefrontal and frontal cortex regions. 

On the other hand, the lean group (following IN-PLA) display a much more 

constrained coverage comparatively to the OW group. The lean group seed based 

functional connectivity maps display much less cortical network connectivity. Formal 

whole brain comparisons revealed a statistically significant increase in connectivity 

between the posterior hippocampus and the right primary sensory cortex in the OW 

group vs the lean group.  

 

Formal whole brain comparisons did reveal that following IN-INS administration 

there was a significant increase in connectivity seen between the left posterior 

hippocampus and the right superior medial frontal cortex/middle frontal gyrus in the 

lean group vs the OW group. This region has previously been shown to be insulin 

responsive in studies of cerebral blood flow (CBF) that have used IN-INS 

administration. Kullmann et al., previously showed that the right middle frontal gyrus 

CBF was decreased in insulin sensitive individuals (measured by HOMA-IR) but 

increased in insulin resistant individuals in response to IN-INS (Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015). The CBF result mentioned above suggests 

that the right superior medial frontal cortex is an insulin sensitive region in both 

individuals with peripheral insulin sensitivity and resistance.  

 

The results reported from this resting state analysis suggest a differential response 

within the superior medial frontal cortex and middle frontal gyrus to IN-INS 

administration which is in line with that seen previously (Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015). However, clearly understanding the degree 

to which these effects share similarities, will require further interrogation. Given the 

anatomical location of this difference, however, one could speculate that this 

difference in connectivity could reflect a difference in attention as the superior 

medial frontal cortex is a key hub within the central executive network (Fang et al. 
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2016). The superior frontal cortex is recruited during working memory tasks with 

shapes (Yee, Roe, and Courtney 2010). A speculation could be that IN-INS increases 

general attention and focus that could be required for cognitive engagement, an 

effect which is more pronounced in the lean group, but not supported by any direct 

behavioural data.  

 

As mentioned previously, the left posterior hippocampus functional connectivity 

maps for the lean and OW groups were visually different during IN-PLA but visually 

more similar following IN-INS. An observation such as this could demonstrate that 

under IN-PLA conditions the OW group show a high degree of functional connectivity 

within this network, which even when stimulated by IN-INS does not have capacity 

to change. On the other hand, the lean group showed a recruitment of a greater 

number of regions during IN-INS suggesting a potential for increased connectivity and 

potentially cognitive benefits. In keeping with this, the lean group may potentially 

have a more efficient resting state posterior hippocampal network capable of 

modulation, whereas the OW do not have this additional capability.  

 

In a less speculative manner the absence of drug related effect in the OW group, 

could simply suggest the functional brain networks tested were not sensitive to the 

modulatory effects of central insulin. In a more pragmatic and critical approach it is 

necessary to remind the reader that this analyses was conducted exclusively at the 

whole brain level. In light of this simplistic approach, a more thorough region of 

interest based analysis approach would perhaps be more sensitive and appropriate 

to tease apart subtle insulin related changes in the OW group, and also additional 

effects in the lean group, if they exist.  
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Chapter 9 Discussion and Concluding 
Remarks 
 

The goal of this thesis was to perform a thorough investigation into the acute 

functional effects of intra-nasally administered insulin in the brain. To this end, the 

study probed the central functional effects of insulin both at rest and during a 

paradigm designed to assess primary food related reward.  The investigations at rest 

included resting state physiology (cerebral blood flow) and functional connectivity. 

The project was carried out in lean and overweight healthy male volunteers. 

Following a detailed analysis of these data, this thesis has provided new insights into 

the central role of insulin, which will hopefully contribute to an already extensive 

wealth of published data. The SNIFAR study has benefited from a range of newly 

developed functional imaging approaches, which have contributed to provide a 

collection of novel and interesting results. In this discussion, I will summarise the 

most pertinent findings presented in the thesis, their most relevant interpretations; 

and I will also present some limitations of the study and make recommendations for 

future research.  
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9.1 Analysis of Blood Samples and the Nasal Spray Device 

Employed 

The results from the demography data were illuminating, particularly the blood 

analysis results. Mean fasting HOMA-IR did not differ between groups and for the 

lean group the HOMA-IR scores did not vary with BMI suggesting a homogeneity 

within the group, characteristic of an insulin sensitive phenotype. The overweight 

group did, on the other hand, display a positive relationship between HOMA-IR and 

BMI, suggestive of a relationship between markers of peripheral metabolism and 

body weight. In the OW data, a separation between individuals with a higher HOMA-

IR and a low HOMA-IR (same range as the lean) at a BMI of 28 kg/m2  was observed.  

These HOMA-IR score correlations suggest that stratification of these two groups 

could be made at a BMI of 28 m/kg2. But given the small number of participants with 

a BMI > 28 m/kg2  it was not possible to pursue this within the present dataset. 

Furthermore, HOMA-IR in this case, assessed fasting insulin resistance which is 

considered to be largely driven by insulin’s suppressive effects on hepatic glucose 

release (Singh and Saxena 2010) and therefore does not reflect peripheral insulin-

stimulated insulin resistance or skeletal muscle insulin resistance.  

 

The study reported in this thesis utilised a commercial nasal spray device that was 

selected based after an analytical evaluation of nasal spray characteristics for nose 

to brain delivery of insulin. Characterisation of the pump was performed prior to the 

study initiation in an effort to optimise the study protocol. This is the first time that 

this type of characterisation and selection process has been conducted with insulin 

prior to a human pharmacological study. This characterisation and selection step 

should not be considered as just a complementary step, but rather, a critical 

consideration that should be encouraged for future research experiments using a less 

conventional administration procedure.  

 

The use of intranasal administration to study the central effects of insulin was 

decided based on previous reports highlighting a short transport time into the brain 
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tissue (30-40 minutes (Born et al. 2002)), the limited effect this route has on 

peripheral blood glucose concentrations (Schmid et al. 2018; Heni et al. 2012; Heni, 

Wagner, et al. 2014; Kullmann et al. 2013; Kullmann et al. 2016; Kullmann, Heni, Veit, 

Scheffler, Machann, Häring, et al. 2015) coupled with a positive safety profile using 

high dose administration (i.e. 160 IU) (Schmid et al. 2018).  

 

In this study the metabolic effects of intranasal insulin on peripheral blood measures 

were comparable to those previously reported (Guthoff et al. 2010), showing small 

decreases in plasma glucose concentration. Intranasal insulin did result in  an 

increase in serum insulin concentrations that were significant in the overweight 

group, coupled with a decrease in C-peptide concentration, strongly suggesting an 

overspill effect of insulin into the peripheral circulation, coupled with an early 

counterregulatory suppression of endogenous insulin secretion. The small decrease 

in plasma glucose associated with the absorbed insulin was not significant in the 

overweight group and therefore illustrates a degree of peripheral insulin resistance 

within this overweight group. This reduced sensitivity to peripheral insulin was 

reflected in some of the imaging data, detailed below in the following sections. In the 

lean group, there was an increase in serum insulin associated with intranasal insulin 

administration, which was not significant. Surprisingly, there was a significant 

difference between pre-scan (fasting) serum insulin concentrations between visits 

which was unexpected and biologically difficult to disentangle, as serum C-peptide 

concentrations were comparable between visits. A potential drawback of using 

serum insulin levels for determining peripheral insulin resistance is that there is no 

standardised insulin assay but as the assay used was the same for all measures it 

seems odd that this group and this visit showed a high degree of serum insulin 

variability. Comparable to the significant trend seen in the overweight group there 

was a significant reduction in serum C-peptide over time which was more 

pronounced following intranasal insulin coupled with a small but insignificant 

decrease plasma glucose.  
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9.2 Taste Task  

A major element of the SNIFAR study and a considerable component of this thesis 

was the acquisition of functional data during a task that delivered small amounts of 

liquid to the participant whilst in the scanner. The ‘taste task’ used in this study is a 

complex functional paradigm which combines elements of learning, memory, 

anticipation, consummation of primary rewards (liquid bolus) and also evaluation of 

these rewards, all within a single trial of the paradigm. Anticipating the oral delivery 

of sweet stimuli engaged cognitive prefrontal regions of the brain, as well as 

dopaminergic regions. This was the case for both lean and overweight groups. 

Pharmacologically challenging the central nervous system with insulin enhanced the 

responses to the task within these regions, but only in the lean group. In contrast, 

the responses to the task in the overweight group were either absent or in the 

opposite direction (decreases), which uncovered another potentially important 

functional difference between lean and overweight individuals. The prefrontal and 

dopaminergic regions consisted of the anterior cingulate cortex, ventromedial 

prefrontal cortex and the nucleus accumbens. The results presented suggest that 

these regions are insulin sensitive in lean individuals but show impaired insulin 

sensitivity with increased body weight. The ventromedial prefrontal cortex is known 

to be involved in encoding and performing valuations of upcoming stimuli (Hare, 

Camerer, and Rangel 2009); this region was also more active in the lean group under 

both insulin and placebo conditions. The anterior cingulate cortex, an anatomical 

neighbour of the ventromedial prefrontal cortex, is involved in decision making and 

assigning value to the outcome of decisions made (Vassena et al. 2014). Although 

this task did not involve subjective decision making, these insulin related 

modulations, as well as the ventromedial PFC activity, suggest that those with a lower 

BMI might be more cognitively engaged in this task, particularly during presentation 

of cues that occur prior to delivery of sweet stimuli. The group differences in the 

anterior cingulate cortex were witnessed in anticipation to both sucrose and stevia 

based sweet solutions, whereas the ventromedial prefrontal cortex and nucleus 

accumbens differences were observed only in anticipation to receiving the stevia 

solution.  
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According to classical conditioning literature, phasic dopaminergic neuron firing in 

the ventral tegmental area and the nucleus accumbens initially occurs in response to 

receipt of a primary sensory stimulus (Schultz 1998; Schultz, Dayan, and Montague 

1997; Rescorla and Wagner 1972). If this stimulus is preceded by a cue, then this 

response is learnt (conditioned); and this phasic dopamine response shifts from being 

triggered by the stimulus to being triggered by cue presentation.  This phenomenon 

is known as ‘temporal difference learning’ (O'Doherty et al. 2002; Schultz 2001). In 

lean individuals the BOLD response observed upon stevia cue presentation is greater 

compared to that from overweight subjects, following insulin administration. 

Coupled with increased prefrontal BOLD activity in the lean group, this finding would 

also provide support to the suggestion made on the previous page, that the lean 

group are more cognitively active and also more aware or alert to the stevia cue and 

its association with stevia taste over the combined runs (as seen from the increase in 

nucleus accumbens activity). In reference to reward deficiency theories of obesity 

(Stice et al. 2008; Burger and Stice 2011b), it could be argued that a central insulin 

challenge evokes a hypo-responsivity to food cues in overweight individuals, which 

is in contrary to classical dopamine obesity-reward theories which posit hyper-

responsivity to food cues in obese individuals (Burger and Stice 2011b). Although not 

observed under placebo conditions, but only when challenged with central insulin, it 

could be argued that healthy overweight individuals respond as a ‘reward deficient 

phenotype’ when presented with predictive food related cues. Since both peripheral 

and central insulin levels normally rise endogenously after feeding, this finding could 

point to an aberrant postprandial response in the overweight but otherwise healthy 

population.  Since this overweight group were not peripherally insulin resistant as 

measured by HOMA-IR, these results could be an example of an early stage 

dysregulation in appetite control and an early sign of prefrontal and dopaminergic 

central insulin resistance.  

 

Investigation of  the effect of the cerebral response to taste following intranasal 

insulin administration, has not been reported to date and therefore the results 

presented in this thesis have provided novel findings. Furthermore, the 
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implementation of oral stevia administration has not formed part of any functional 

taste investigations. Its inclusion in the SNIFAR study proved to be beneficial to 

further understand insulin-related and group related effects. Whole brain analysis 

revealed a significant drug by group interaction effect for the stevia delivery contrast 

within the ventromedial prefrontal cortex and rostral anterior cingulate cortex. The 

findings of this interaction consisted of insulin related increases and decreases in 

BOLD activity for lean and overweight groups, respectively. These regions have been 

shown to be more active to taste if the taste has been assigned a greater value (i.e. 

labelled as more appealing) (de Araujo et al. 2005). As previously mentioned, there 

was an insulin related increase in nucleus accumbens BOLD response upon the stevia 

cue presentation in the lean group. In keeping with this finding one could argue that 

the valence of this taste had been modulated under insulin conditions and therefore 

the taste carries increased appeal, coupled with increased BOLD responses in these 

regions. However, average (across run) palatability data (likeness score) did not show 

any changes between insulin or placebo and therefore, there is strictly no significant 

evidence to support this interpretation.  

 

A set of interesting results from this taste task were discovered through region of 

interest analysis and given the complexity of the paradigm design, this dataset was 

analysed in several ways. This proved to be a worthwhile avenue that aided the 

understanding and interpretability of the results as a whole. Analysis of drug related 

effects was first performed with the two functional runs combined and secondly, for 

each individual run, to try and address the effects of conditioning, habituation to the 

taste stimuli and temporal changes in the BOLD response. This proved fruitful and 

revealed an insulin related increase in BOLD responsiveness within the nucleus 

accumbens upon receiving stevia solution during the second half of the paradigm in 

the lean group. This result was very interesting and opposed the effect of placebo, to 

which the observed nucleus accumbens BOLD response decreased over time 

(although not significantly). Under placebo conditions the reduced response over 

time would be expected, reflecting the temporal difference in the learning element 

of the paradigm (dopamine shift from stimulus delivery to cue presentation) 

(O'Doherty et al. 2004; O'Doherty et al. 2002). The nucleus accumbens responds to 
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salience, in the process of drawing attention to a stimulus and as a consequence, this 

additional attention contributes to learning. The palatability of stevia decreased over 

time in both groups for placebo conditions. However, following IN-INS, both the 

palatability (likeness) and sweetness of stevia decreased over time for both groups. 

This significant change in sweetness and palatability is perhaps salient and therefore 

the increase in BOLD activity is a reflection of encoding this salience. The change in 

palatability and sweetness could be of significance but how this change occurs in 

response to increased central insulin conditions is unknown.  

 

Contrasts from both the stevia solution predictive cues and from the delivery of the  

bolus, were common to many of the statistically significant results observed. Stevia 

solution was employed as an alternative, low energy, but sweet tasting stimulus. 

Stevia is a non-nutritive sweetener that shows beneficial postprandial blood glucose 

effects in comparison to sucrose and other popular non-nutritive sweetener brands 

(Anton et al. 2010). The results reported have shown that the subjective sweetness 

of stevia solution decreases over time, an effect which was more pronounced 

following insulin administration and was coupled with a decrease in how much the 

stevia solution was liked over time also. This finding suggests a role for insulin in taste 

perception or perhaps a top down modulatory response on taste sweetness and an 

avenue of research that would be worthwhile pursuing. To date, only one study has 

looked at the effects of intranasal insulin on sensory perception. It focused on 

olfactory sensitivity and discrimination, highlighting an insulin related decrease in 

sensitivity to a non-food odorant (Brunner, Benedict, and Freiherr 2013). It would be 

interesting to explore olfaction and oral taste and the possible modulatory effects of 

insulin in a more thorough investigation with particular food odours and cues.  

 

As the full title of the SNIFAR study suggests, one of the main aims of the investigation 

was to assess the modulatory effects of intranasal insulin on appetite control and 

reward. However, incorporating functional imaging data acquisition during periods 

of rest, permitted context-independent evaluation of the pharmacological effects. 

Additionally, interpretation on behaviour and function must however be restricted, 
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as the neurophysiological system being perturbed by the pharmacological agent 

during rest cannot, by itself, reflect behaviour.  

9.3 Cerebral Blood Flow 

A useful addition to the assessment of centrally acting agents are measures of 

regional cerebral perfusion, or blood flow (CBF) (Jenkins 2012; Mehta and O'Daly 

2011; Zelaya et al. 2016). In this study, a pseudo-continuous arterial spin labelling 

(pCASL) sequence incorporating a long label duration, was employed to identify 

intranasal insulin related changes in CBF. From the unbiased, voxel-wise whole brain 

analysis, an intranasal insulin related decrease in CBF was witnessed within the left 

posterior insula, left hippocampus, left putamen and also left parahippocampal 

gyrus, which were all limited to the overweight group only. Another interesting 

observation from this assessment of CBF was that the insulin related change in 

hippocampal and putamen CBF showed a strong correlation with saturated fat intake 

and sugar intake scores assessed with questionnaires at screening. This work showed 

that diet composition is related to regional neuronal insulin sensitivity and supports 

the suggested relationship between high fat, high carbohydrate diets and reduced 

neuronal insulin sensitivity (von Frankenberg et al. 2017). Despite this illustrated 

relationship, the information gathered to make these observations is from 

overweight individuals who are by all accounts healthy (disease free) and this must 

be borne in mind when interpretating the data in a clinical context.  With that caveat, 

these correlations do suggest that having an overweight BMI in combination with a 

diet high in saturated fat and sugar may lead to reduced insulin sensitivity within the 

hippocampus and putamen.  

 

These are the first results to demonstrate evidence of changes in hippocampal 

resting activity in response to intranasal insulin. This result provides evidence that 

this agent affects the neuronal profile within this region, which, coupled with the 

reported beneficial effects of intranasal insulin on memory and cognition in 

Alzheimer’s Disease, makes this a relevant and significant result  (Craft et al. 2012; 

Benedict et al. 2004). 
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Furthermore, another important possible interpretation of these data relies on the 

assumption that brain insulin levels rise when peripheral insulin levels rise (Banks, 

Owen, and Erickson 2012; Gray, Meijer, and Barrett 2014).  Hence, normal insulin 

sensitivity of these brain regions may be important to form memory of tastes and 

hence contribute to the control of feeding (Higgs 2005). For example, based on the 

framework set out by Higgs et al., the hippocampus works to form memories of food 

consumption and meals, to aid future decisions about what to eat, as well as when 

to next eat (Higgs et al. 2017). This was elegantly shown in amnesic individuals with 

impaired hippocampal-dependent memory formation function who consumed 

multiple meals in succession as a consequence of not remembering when they last 

ate (Higgs et al. 2008). These important results suggest that dysregulation of 

hippocampal insulin sensitivity serve as a precursor to dysregulated cognitive input 

to appetite control.  

 

It is important to note that from the intranasal insulin literature, only one study has 

shown a significant effect of intranasal insulin on weight loss, predominantly fat 

tissue loss (Hallschmid et al. 2004). This study was part of an 8-week ‘long term 

administration’ study whereby intranasal insulin (160 IU) was administered daily. The 

acute intranasal insulin administration studies that have evaluated appetite and 

reward have not reported any significant changes in total food intake; or interrogated 

these variables using ad libitum food intake. Hallschmid et al., showed that intranasal 

insulin decreased postprandial snack intake for a certain palatable snack, but that 

overall calorie intake was not affected, but they consumed more of the other snacks 

(Hallschmid et al. 2012). This lack of empirical evidence highlights two things; firstly, 

studying intranasal insulin and ad libitum food intake is necessary for future work, 

and secondly, perhaps the weight loss effects of food intake are as a result of the 

delayed effects of insulin on possible cognitive mechanisms and top down control of 

food intake (Higgs and Spetter 2018; Higgs et al. 2017).  
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9.4 Resting State Connectivity 

The resting state BOLD component of the SNIFAR study interrogated the effects of 

intranasal insulin on whole brain functional connectivity using a seed based 

connectivity approach and a newly developed denoising acquisition and processing 

methodology (multi-echo independent component analysis). The hippocampal 

region featured within this analysis, implemented as a seed region, divided into 

anterior and posterior subdivisions. Results from this analysis showed an insulin 

related increase in functional connectivity between the left posterior hippocampus 

and the left fusiform gyrus, which was limited to the lean group only. The fusiform 

gyrus is a component of the temporal visual system, typically involved in evaluating 

food pictures and tracking energy dense foods (van der Laan et al. 2011). The increase 

in connectivity between the posterior hippocampus and fusiform gyrus, observed 

following insulin administration, may underlie some of the memory associated 

benefits that were mentioned earlier in this discussion (Ott et al. 2012; Benedict et 

al. 2004). Furthermore, the lean group showed an increase in functional connectivity 

between the left posterior hippocampus and the right superior frontal gyrus in 

comparison to the overweight group under insulin conditions. The lean group 

presented with a connectivity network, (when using the left posterior hippocampus 

as a seed), which responded to insulin related modulation. The overweight group on 

the other hand presented with a similar network, under both placebo and insulin 

conditions, demonstrating a lack of modulation with increased central insulin. As the 

network seen in response to insulin in the lean group was similar to the overweight 

group under both conditions, it could be considered that this network is already 

upregulated in overweight individuals and therefore may explain the lack of insulin 

modulatory effect. This is of course an interesting ‘observation’ that requires greater 

interrogation.  
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9.5 Generalised Observations  

 

From all of the experimental imaging chapters a common theme was observed. In 

most cases the analysis was kept uniform between the imaging studies employing a 

whole brain repeated measures factorial model to explore intranasal insulin vs 

placebo effects and interaction effects between group responsiveness. Not all of 

these models provided significant observations, however some did. In these cases, 

interaction effects were observed that showed intranasal insulin related increases in 

CBF and BOLD contrast in the lean group compared to placebo but displayed insulin 

related decreases in the overweight group. These observations were common 

occurrences throughout the results and highlight intrinsic differences between these 

two groups in central insulin responsiveness. This is suggestive of differential 

responding to intranasal insulin dependent on body mass index (BMI) alone and 

provides some evidence to support this basic measure as a useful tool to assess 

metabolic, hedonic and cognitive effects of appetite control.   

 

9.6 Methodological Considerations and Future Work 

In this multi-modal MRI study, two groups of healthy male individuals were studied. 

These groups were stratified based on a crude anthropometric measure (WHO 1995), 

BMI, and split into one group of normal weight (lean) and one group of overweight 

individuals (which also contained one individual who was classified as obese). BMI, 

essentially a ratio between mass and the square of a subject’s height, was used as a 

recruitment and screening tool (Nuttall 2015). These individuals were stratified into 

two groups (lean and overweight) based on these BMI measures. It could be argued 

that those individuals at the BMI threshold between normal weight and overweight 

could be differentiated at all. This may explain why some of the group effects 

reported are not substantial, and this must be considered when interpreting the 

data. Upon reflection, splitting the two groups into BMI using a larger separation may 

have been a more suitable approach.  Furthermore, a more comprehensive set of 
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measurements such as hip-waist ratio or adiposity measures such as plasma leptin 

concentration, may have provided additional information on body composition that 

may have enhanced the observed differences and aided the interpretation of the 

study results. Other than BMI the two groups were well matched for age and did not 

significantly differ on any of the screening questionnaires or measures of peripheral 

insulin resistance, assessed with the homeostatic model assessment of insulin 

resistance (Matthews, Hosker, et al. 1985; Wallace, Levy, and Matthews 2004).  

 

This functional MRI study was conducted on a relatively small sample size. 

Unfortunately, there was additional exclusion of individuals from the analysis which 

made the sample size even more reduced. Given this, the results and data reported 

here must be largely considered exploratory rather than definitive. These results 

however, are very interesting and will inform future work and investigations into the 

effects of insulin administered via the nasal cavity on brain function. 

 

The blood analysis results highlight a methodological limitation regarding the 

efficiency of nasal administration to selectively increase central concentrations with 

limited effect on peripheral blood glucose and insulin concentrations (Reger and 

Craft 2006). More recent options have been devised further to limit the systemic 

effects of insulin, such as bespoke devices and insulin formulations designed for nose 

to brain delivery such as those reviewed in (Warnken et al. 2016).  

 

Regarding the nasal administration methodology used, a few considerations must be 

acknowledged. Firstly, the placebo treatment used in this study was a saline solution, 

and although appropriate in this instance, a better placebo treatment would have 

been a formulation derived from the vehicle constituents of the insulin solution, 

which has been previously reported (Schilling et al. 2014). Secondly, the study was 

conducted from September through to April. One concern is that during the winter 

period (November, December, January, February) the cold weather may have bought 

about extra congestion within the nasal cavity associated with the common cold 

(Sanu and Eccles 2008). Efforts to only scan when the participants were healthy and 

attempts to decongest prior to commencing the nasal administration protocol were 
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made; but ridding all congestion effects is perhaps unattainable. On the other hand, 

nasal congestion resulting from allergic rhinitis (hay fever) during the spring and 

summer seasons may have had a similar effect on nasal flow, which was avoided 

entirely by not scanning during the high pollen seasons.  

 

In line with seasonal effects are the effects of food and alcohol consumption during 

the holiday periods. Several studies have shown significant weight gain and increases 

in fat mass over the winter holiday period (e.g. Christmas and New Year) (Hull, 

Hester, and Fields 2006; Diaz-Zavala et al. 2017). This is something worth considering 

as this may lead to some additional inter-subject variability, and perhaps a temporal 

physiological change reflective of a deviation from the normal baseline of certain 

participants. In reality avoiding these issues is difficult and one must hope that 

implementing short inter-scan intervals into the protocol would help prevent any 

major intra-subject variability.   

 

From an acquisition and interpretation perspective (of functional imaging data), one 

must be aware that the changes or effects witnessed are made based on surrogate 

markers of neuronal activity, i.e. neuro-vascular changes that give rise to changes in 

CBF and BOLD contrast. Inferences based on these changes must therefore be 

restricted or limited as it is not possible to interpret these data in terms of direct 

changes in neuronal activity, neurotransmission or receptor-substrate activity. In 

terms of vasoactive effects of insulin, Grichisch et al., reported no effects of 

intranasal insulin (160 IU) vs placebo on visual cortex CBF during rest and also during 

visual stimulation (checkerboard task) (Grichisch et al. 2012). This study was limited 

to a single occipital region and so cannot confirm vasoactive effects on other regions 

where insulin receptors are more dense, or present.  

 

The central effects of intranasal insulin reported in this thesis are made upon an 

assumption that exogenous insulin substrate is active within the brain tissue and it is 

these interactions that are driving the effects seen from imaging data analysis. This 

assumption is present, although not explicitly mentioned, within the published 

human intranasal insulin literature (Kullmann et al. 2016; Reger and Craft 2006), and 
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is based on work published by Born and colleagues in 2002 that showed increased 

concentration in cerebrospinal fluid (CSF) following intranasal insulin administration 

(Born et al. 2002). This work shows that CSF concentrations are increased following 

nasal administration. There is no denying that this description of nose to brain 

delivery of insulin has changed the landscape of insulin research in the brain. 

However, during the recent surge in intranasal insulin use as a research tool there 

has been very little focus on the effects of intranasal insulin on insulin receptor 

transmission within the olfactory bulb. This is an area of research that requires some 

consideration in the future.  

 

The cohort recruited for this study were healthy male volunteers who had a range of 

different weights and associated BMI scores. Those individuals stratified into the 

overweight group did not however show a peripheral insulin resistance phenotype 

as measured from HOMA-IR scores. This overweight group of volunteers were 

healthy as attained from the screening protocol, did not smoke excessively or drink 

excessively (as per the exclusion criteria) and were relatively young. As insulin 

resistance develops over time it could be suggested that it is for these reasons that 

this cohort did not display signs of peripheral insulin resistance as measured by the 

HOMA-IR model. For future work, it would be important to investigate a group of 

overweight individuals who display peripheral insulin resistance, thus using insulin 

resistance as an inclusion criteria for recruitment. Understanding the transition 

phase or identifying neural correlates associated with a phenotype of non-obese but 

insulin resistant group of individuals would be paramount to understanding what 

neural responses might pre-dispose certain individuals to weight gain or 

development of metabolic disease.   

 

Simulating real-life situations in a laboratory environment is a major limitation for 

research, especially in the investigation of food-driven reward. From the point of 

view of brain function, during food consumption in the ‘real world’ is no trivial action. 

Rather, it is a complex decision making process that takes into account an number of 

factors such as meal cost, predicted reward, logistics, convenience, mood, arousal, 

alcohol intake and appetite suppressant intake (nicotine, caffeine), to name but a 
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few (Guyenet and Schwartz 2012). This study may have benefitted from a decision 

making element in combination with anticipation, to better try and replicate the 

processes that govern food consumption (Gluck, Viswanath, and Stinson 2017) and 

explore in more detail the cognitive effects central insulin may potentially have.  

 

From a methodological standpoint the ‘taste task’ posed some challenges. 

Incorporating three taste stimuli into the design of this paradigm required a balance 

between overall scan duration, number of events/epochs for each taste stimuli, 

having an appropriate inter-trial interval and time between cue and delivery events 

whilst taking into account taste habituation effects, participant compliance and 

performance. In spite of having implemented a design that balanced all those factors, 

a retrospective examination of this paradigm showed that there are features that 

could be changed or optimised in future investigations. Firstly, the use of just two 

tastes, one control and one rewarding, would be better suited to this style of design 

as it would permit both a greater number of trials for each taste and also allow for 

greater separation of events in time. For example, a long anticipation period, (5-7s), 

prior to stimulus delivery would be advantageous and would permit adequate 

sampling of the BOLD response associated with this anticipatory phase.  This was not 

the case in the current work. Although an apparatus was developed and used to 

minimise the need for movement during the reception of the taste solutions, 

participant head movements occurred during swallowing periods which were 

modelled in the first level analysis. Standard motion correction and regression at the 

first level was implemented and the whole brain results generated were in line with 

previous literature (O'Doherty et al. 2004; O'Doherty et al. 2002; van Bloemendaal et 

al. 2015) and as expected. Previous research using a similar study design made use 

of an EEG-like cap with a single copper node attached to the neck as a fiducial marker 

(O'Doherty et al. 2004). Swallowing-related movements were detected and a 

timeseries for this fiducial marker was regressed from the time series. This seems like 

an easily implementable addition. Finally, this paradigm only probes taste initiated 

by activation of taste receptors on the tongue and does not assess the response 

associated with the ‘flavour’ experience of the stimulus. To better understand the 

effect of ‘flavour’, which is a multi-modal perception requiring the combination of 
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taste, aroma and also other sensory systems, the paradigm should be modified to 

fully model the BOLD response that follows swallowing, i.e. the post ingestion phase. 

This could be achieved by incorporating an ‘immediate swallow’, whereby the 

participant swallows the delivered bolus as soon as it is delivered, much like how you 

would drink normally (Eldeghaidy et al. 2011) This event would be followed by a 

sufficient consummatory phase, well after the swallow event, which incorporates the 

retro-nasal aroma that is produced following swallowing thus integrating taste and 

aroma to help create flavour perception (Eldeghaidy et al. 2011). By using this 

approach the movement from receiving the stimulus delivery plus swallowing would 

be combined into a single event thus reducing the number of motion provoking 

events in the design.  

 

Finally, the external environmental factors that interact and contribute to food 

processing and appetite are hard to simulate and also hard to control. Overnight 

fasting perturbs the homeostatic system and has been shown to alter the salience of 

food pictures (Dagher 2012) and also increases the preference for energy dense 

foods over low energy food pictures (Goldstone et al. 2009). The future of functional 

imaging for metabolic research will require a better understanding of the 

environmental factors that contribute to overeating and overconsumption of energy 

dense, ‘rewarding’ foods, coupled with an understanding of the decisions made to 

seek out these food types as opposed to the response upon consumption. The 

anticipation of food is a driver of hedonic reward and one which is largely controlled 

by cognitive top down modulators. How does the interplay of circulating hormones 

such as insulin, environmental factors, and past experiences converge and how does 

this multi-faceted system become dysregulated or vulnerable to dysregulation in 

certain individuals? 

9.7 Final Concluding Statements  

This thesis presented work that employed a commercial nasal pump to increase 

central insulin concentrations via the nose to brain delivery route. The 

manifestations of these increased insulin concentrations were observed through the 
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use of both resting and task based functional imaging techniques. This work has 

added knowledge to the field of intranasal insulin and presented some thought 

provoking results. It is clear from these findings alongside the previously reported 

literature that the role of insulin in appetite control and subsequent food intake is 

multi-factorial and has implications for the homeostatic, hedonic and cognitive 

systems that ultimately govern food intake. 
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