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On Model Coding for Distributed Inference and
Transmission in Mobile Edge Computing Systems

Jingjing Zhang and Osvaldo Simeone

Abstract—Consider a mobile edge computing system in which
users wish to obtain the result of a linear inference operation
on locally measured input data. Unlike the offloaded input
data, the model weight matrix is distributed across wireless
Edge Nodes (ENs). ENs have non-deterministic computing times,
and they can transmit any shared computed output back to
the users cooperatively. This letter investigates the potential
advantages obtained by coding model information prior to ENs’
storage. Through an information-theoretic analysis, it is con-
cluded that, while generally limiting cooperation opportunities,
coding is instrumental in reducing the overall computation-plus-
communication latency.

I. INTRODUCTION

Introduced by the European Telecommunications Standards
Institute (ETSI), the concept of mobile edge computing is by
now established as a pillar of the 5G network architecture as
an enabler of computation-intensive applications on mobile de-
vices [1]. As illustrated in Fig. 1, with mobile edge computing,
users offload local data to edge servers connected to wireless
Edge Nodes (ENs). These in turn carry out the necessary
computations and return the desired output to the users on
the wireless downlink. Most academic work on mobile edge
computing has focused on the complex resource allocation
problem of orchestrating computing and communication re-
sources at the mobiles and at the ENs (see, e.g., [2] and
references therein).

Papers in the line of work introduced above either as-
sume generic applications characterized by given input-output
rate requirements (e.g., [2]) or optimize the partition of the
computing graph of the applications between local and edge
computing. Moreover, this body of research has shown the
importance of jointly designing the physical-layer transmission
strategy and the computing schedule. Importantly, computing
the same output at multiple ENs, while generally increasing
the computation time, enables cooperation opportunities in the
downlink transmission from the ENs to the users [2].

More recently, in a parallel development in the information-
theoretic literature, it has been demonstrated that, if the
computation of interest has specific properties, coding of
either inputs or outputs can help decrease the overall latency.
In particular, reference [3] demonstrated the advantages of
Maximum Distance Separable (MDS) coding of input ma-
trices in reducing the latency for distributed matrix-vector
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Fig. 1. Illustration of the distributed edge computing system under study.

multiplication in master-worker systems. The impact of coding
computational outputs was instead investigated in [4] for Map-
Reduce computing tasks.

In this letter, we investigate the role of coding in the mobile
edge computing system illustrated in Fig. 1. In the system,
each user wishes to compute a linear inference Wx on a
local data vector x given a network-side model matrix W
via offloading. The matrix W is generally large and hence it
requires splitting across the servers of multiple ENs. Linear op-
erations are practically important, e.g., for the implementation
of recommendation systems based on collaborative filtering [5]
or similarity search based on the cosine distance [6]. In both
cases, the user-side data is a vector x that embeds the user
profile [5] or a query [6], and the goal is to search through
the matrix of all items on the basis of the inner products
between the corresponding row of matrix W and the user-
data x. This letter presents an information-theoretic framework
that enables the potential advantages of model coding and
associated performance trade-offs to be quantified.

II. SYSTEM MODEL AND PERFORMANCE CRITERIA

A. System Model
We consider the distributed edge computing model illus-

trated in Fig. 1, where N users are connected to K ENs
through a shared wireless channel. For a given input vector
x ∈ Fr×1

2L
of rL bits provided by a user, the system aims at

computing the linear inference operation y = Wx, where the
weight, or model, matrix W ∈ Fm×r

2L
is static for a sufficiently

long period of time. Each EN k can store a number of bits
equivalent to a fraction µ ∈ [1/K, 1] of rows of matrix W,
i.e., mµrL bits. Storage of information from matrix W takes
place offline given the static nature of the model.

Each user n, with n ∈ [N ], has its own personal data
xn, with xn ∈ Fr×1

2L
of rL bits, which is collected online
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by the user, and it wishes to obtain the result of the linear
operation yn = Wxn. The task is offloaded to the ENs as
shown in Fig. 1. To this end, the ENs acquire the user data
X = [x1, · · · ,xN ] through uplink transmission. Second, the
ENs carry out computations on the received users’ data and
on the stored data about W. Finally, via downlink communi-
cation, the ENs deliver the results of the computations to the
users, so that each user n can recover the required output yn.

In this letter, we make the simplifying assumption that the
time needed to upload X to all ENs is fixed and each EN gets
the entire matrix X. This allows us to focus on the challenging
problem of jointly designing offline model coding and storage
at the ENs, as well as online edge computing and downlink
transmission phases. The problem is formulated as follows.

Model Coding and Storage: In an offline phase, the model
matrix W is linearly encoded [7] as [cT1 , · · · , cTm′ ]T = GW,

where we have defined the coding matrix G ∈ Fm
′×m

2L
, with

integer m′ ≥ m. Each EN k stores the subset Ck, with Ck ⊆ C
of |Ck| ≤ mµ coded rows.

Edge Computing: In the online phase, each EN k computes
inner products between all users’ data received in the uplink
and the available coded model rows in set Ck. As in [8], the
order in which such computations are carried out is specified
by vector sTk = [s1,k, · · · , smµ,k], where each element si,k ∈
F1×r
2L

, with i ∈ [mµ], is selected from the set Ck of coded
rows available at EN k. In particular, each EN k starts to
compute the inner product s1,kX and continues computing
si,kX ∈ F1×N

2L
, for i = 2, 3, · · · ,mµ. As in the literature on

distributed computing, we refer to each computation si,kX
as an Intermediate Value (IV) [9]. A computation policy is
hence defined by the coding matrix G, scheduling matrix S ∈
Fmµ×K
2rL

, with the kth column vector given as sk, as well as by
a stopping criterion, which is used by the ENs to decide when
to stop the computing phase and start downlink transmission.

To formulate the stopping criterion, we define m(t) =
[m1(t), · · · ,mK(t)] as the vector that indicates how many
IVs have been computed by the ENs by time t, with t = 0
indicating the start of the computing phase and mk(t) denoting
the number of computations at each EN k. Note that we have
the inequalities 0 ≤ mk(t) ≤ mµ due to the storage constraint.
We also define as

Ik(mk, sk) = {si,kX : i ∈ [mk]}, (1)

the set of first mk IVs computed by EN k for a given choice of
the scheduling vector sk. A computation vector m is said to be
feasible if the union

⋃
k∈[K] Ik(mk, sk) of all computed IVs

across all K ENs contains enough information to enable the
recovery of all the outputs {yn}Nn=1, i.e., if the conditional
entropy H

(
{yn}Nn=1|

⋃
k∈[K] Ik(mk, sk)

)
equals zero. Note

that, if m is feasible, then any m′ ≥ m, where inequality is
element-wise, is also feasible.

A stopping criterion for a given computation policy is
defined by a set M of feasible computation vectors in the
sense that the ENs stop computing at the first time TC such
that m(TC) is in set M , i.e.,

TC = min{t : m(t) ∈M}. (2)

As a result, the computed IVs at EN k by the end of the
edge computing phase are given as Ik = Ik(mk(TC), sk).
As a simple example, a computation policy may require
that all ENs complete all local computations, i.e., M =
{[mµ,mµ, · · · ,mµ]}.

Downlink Communication: In this phase, the ENs send the
computed IVs to the users on the downlink so that each
user n can recover the desired output yn. To this end, the
ENs apply conventional one-shot linear precoding as in [10],
[11]. Accordingly, in each downlink transmission block, the
transmitted signal at each EN k ∈ [K] is given as uk = aksk,
where sk is a symbol that encodes a subset of IVs in set
Ik, and ak is the corresponding beamforming coefficients. All
the ENs that have computed the same IVs can transmit them
cooperatively via joint beamforming [10], [11]. We impose
the per-EN power constraint E

[
|uk|2

]
≤ P . In each downlink

block, the signal received by each user n is given as

vn =

K∑
k=1

hnkuk + zn, (3)

where hnk ∈ C is the channel coefficient from EN k to user n;
uk ∈ C is the defined signal transmitted by EN k; zn is unit-
power additive complex Gaussian noise. The fading channels
are drawn from a continuous distribution, constant in each
block, and known to all ENs.

B. Performance Analysis

As in [12], we assume that the computing time needed by
each EN k to perform mk computations is given as

tk = λk + τmk, (4)

where λk ∼ exp(η), independent across ENs, is an exponential
random variable with average 1/η that models the time needed
for setup at each EN k; and τ is the (deterministic) time
required for each computation. Under model (4), given a stop-
ping setM, the random duration TC in (2) of the computation
phase can be written as the optimization

TC = max
k∈[K]

(
λk + τm∗k(λλλ)

)
, (5)

where we have defined the stopping vector m∗(λλλ) =
[m∗1(λλλ), · · · ,m∗K(λλλ)] for a given vector λλλ = [λ1, · · · , λK ] as

m∗(λλλ) = arg min
m∈M

max
k∈[K]

(λk + τmk). (6)

This follows since the time needed to realize a computation
vector m is given by maxk∈[K](λk + τmk).

In the high-SNR regime of interest, we evaluate the
downlink phase duration TD by normalizing for the time
NL/ log(P ) needed to deliver one IV, of size NL bits, to
all N users, in the absence of mutual interference. Hence, the
normalized communication delay δD is given as

δD = lim
P→∞

TD
NL/ log(P )

. (7)

For comparison, we also normalize the computation time TC
by the time τ to compute one IV for all users, obtaining
the normalized computation delay δC = TC/τ . Finally, the



average total normalized latency δ of the edge computing
system is given as

δ = E[δC ] + γE[δD], (8)

where parameter γ is the ratio between the average time
(in seconds) needed to compute one IV at an EN and the
average time needed to transmit one IV on an interference-
free channel.

III. UNCODED VS. CODED COMPUTING

A. Uncoded Storage and Computing (UC)

Consider first a standard uncoded strategy whereby each EN
stores mµ rows directly from the model matrix rows {wi}mi=1.
Following, e.g., [8], the scheduling matrix S is designed in a
cyclic manner, so that each vector wi is repeated Kµ times
across all ENs. As an example, if m = 6, µ = 1/2 and
K = 3, then the scheduling vector are s1 = [w1,w4,w5],
s2 = [w2,w5,w6], and s3 = [w3,w6,w4]. The stopping set
M is defined as the set of all feasible computation vectors,
so that every vector m ∈ M ensures that each IV wiX has
been computed by some EN.

For each IV wiX and a given feasible vector m ∈ M,
we define as ri(m) the number of times that the IV has
been computed across the ENs, i.e., the number of ENs
whose set Ik contains the IV. We hence have the constraint∑m
i=1 ri(m) =

∑K
k=1mk. To deliver a single IV computed at

ri(m) ENs, cooperative Zero-Forcing (ZF) precoding allows
min{ri(m), N} users to be served at the same time at the
maximum high-SNR rate log(P ), where min{a, b} represents
the minimum between the two arguments a and b. This is done
by choosing the precoding matrix across the min{ri(m), N}
transmitting ENs to equal the inverse of the (square) channel
matrix, upon appropriate power scaling. Hence, the normalized
downlink latency (7) for this IV is given as 1/min{ri(m), N}
[10], [11]. As a result, the total latency can be characterized
as follows.

Proposition 1: With the described uncoded strategy, the
average total normalized latency (8) is given as

δUC=E

[
maxk∈[K]

(
λk+τm

∗
k(λλλ)

)
τ

+
∑
i∈[m]

γ

min{ri(m∗(λλλ)), N}

]
,

(9)

where the stopping vector m∗(λλλ) is given in (6), and the
expectation is taken over the distribution of the random vector
λλλ.

B. MDS coded Storage and Computing (MC)

We proceed to consider an MDS-coded scheme that aims
at enhancing robustness to straggling ENs [7], [9], [12]. In
this scheme, the coding matrix G is selected as the generator
matrix of an (Kµm,m) MDS code; each EN k stores mµ
distinct coded rows; and the computing order at each EN is
arbitrary. Furthermore, the stopping set M is defined such
that, given the fractional cache size µ, the system waits for
the fastest d1/µe ENs to finish all their computations. By

definition of an (Kµm,m) MDS code, this guarantees that all
the m required output elements in {yn}Nn=1 can be obtained
from the m IVs computed at the [1/µ] ENs by treating the
missing IVs from the slower K − d1/µe ENs as erasures.

With this scheme, there is no redundancy in the set of IVs
computed at the ENs and hence no cooperation opportunities
are available for downlink transmission. It follows that the m
IVs need to be sent sequentially to each user in the downlink
using orthogonal transmission, and thus the communication
latency is given as δD = m.

Proposition 2: With the described MDS coded scheme, the
average total latency (8) is given as

δMC =
(HK −HK−d1/µe)

ητ
+m(µ+ γ). (10)

Proof: Since only the fastest d1/µe ENs are required
to execute their full computations, the average computation
time is given as E[TC ] = E[λd1/µe:K ] + τmµ = (HK −
HK−d1/µe)/η + τmµ, where λd1/µe:K is the d1/µeth or-
der statistics of exponential random variables {λk}Kk=1, and
HK =

∑K
k=1 1/k is the Kth harmonic number (see [12]).

C. Hybrid Scheme (HS)

We now propose a hybrid scheme whose aim is to com-
bine the robustness to stragglers afforded by the MDS-coded
scheme and the cooperative downlink transmission advantages
of the uncoded scheme. The proposed hybrid scheme allows
the reduction in computing time via MDS coding to be traded
off for savings in communication time via EN cooperation.
To this end, we concatenate an (ρ1m,m) MDS code for some
ρ1 ≥ 1 with a repetition code that replicates each coded vector
to ρ2 ENs. Controlling the design parameters (ρ1, ρ2), the
scheme ranges from uncoded storage (ρ1 = 1) to MDS coding
(ρ2 = 1).

More precisely, following [7], in order to ensure an even
distribution of coded rows, the ρ1m coded rows {ci}ρ1mi=1 are
split into

(
K
ρ2

)
disjoint subsets. Each subset CK consists of b =

(ρ1m)/
(
K
ρ2

)
coded rows, and is indexed by a subset K ⊆ [K]

of size ρ2, i.e., |K| = ρ2. Each EN k stores all the rows in the
set
⋃
K:k∈K CK, with cardinality b

(
K−1
ρ2−1

)
= ρ1ρ2m/K. Due to

the storage constraint mµ at each EN, we have the constraint

ρ1ρ2 ≤ Kµ. (11)

We select the stopping set in a manner similar to the MDS
coded strategy, so that the computing phase is completed as
soon as q ENs complete all their computations, where q is
a design parameter. Following [7, Proposition 1], the three
design parameters (q, ρ1, ρ2) need to satisfy the constraint(

K

ρ2

)
−
(
K − q
ρ2

)
≥ 1

ρ1

(
K

ρ2

)
(12)

in order to ensure that m distinct coded IVs are computed
across the ENs and hence all desired outputs can be recovered.
It can be observed that the choice of parameters (ρ1, ρ2)
depends on system parameters K,µ and γ, which are constant,
and design parameter q. These parameters are expected to
be constant for long periods of time and hence frequent re-
encoding is not necessary.
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At the end of the computing phase, each computed IV ciX
is available at ri ENs, where ri can be shown to lie in the
interval [rmin, rmax], with rmin = max{ρ2− (K− q), 1} and
rmax = min{q, ρ2} in a manner similar to [7]. Moreover, for
any ri ∈ [rmin, rmax], the number of computed IVs is Bi =(
q
ri

)(
K−q
ρ2−ri

)
b since there are

(
q
ri

)(
K−q
ρ2−ri

)
subsets of ENs that

have computed the same IVs. For downlink transmission, in
order to maximizing cooperative opportunities, the computed
IVs are sent in descending order of redundancy ri by using
cooperative ZF precoding to serve ri users simultaneously.

Proposition 3: With the described hybrid scheme, the aver-
age total latency (8) is given as

δHS = min
q

[
(HK −HK−q)

ητ
+mµ

+ γ min
(ρ1,ρ2)

( rmax∑
ri=rq

Bi
ri

+
m−

∑rmax

ri=rq
Bi

rq − 1

)]
, (13)

where we have defined rq = inf
{
r :
∑rmax

ri=r
Bi ≤ m

}
; and

the optimization over parameters q ∈ [d1/µe,K], ρ1 ∈ [1, (q+
1)/q, · · · ,K/q], and ρ2 ∈ [bqµc : bKµc] is constrained by
Condition (11) and (12).

Proof: Given any design parameter q ∈ [d1/µe,K], the
average computation time is evaluated as in Proposition 2, with
the computing latency given as (HK −HK−q)/(ητ)+mµ in
(10). Using downlink transmission, the Bi IVs with redun-
dancy ri require a communication latency Bi/ri using coop-
erative ZF as explained in Section III-A. In order to deliver
m IVs, the IVs with redundancy ri ∈ [rq, rmax] are sent in
full, while only m −

∑rmax

i=rq
Bi IVs with redundancy rq − 1

need to be delivered. The corresponding total communication
latency is optimized over all design parameters (q, ρ1, ρ2) that
satisfy Condition (11) and (12).

IV. EXAMPLE AND DISCUSSION

In this section, we present a numerical example for a system
with K = N = 6 ENs and users, m = 60 row vectors in
model matrix W, and fractional cache size µ = 0.5. We also
set the per-IV computation time to τ = 0.005 and the average
set-up time to different values of 1/η. In Fig. 2, we plot the
overall average latency δ as a function of the ratio γ between
normalized computation and communication times.

As seen in Fig. 2, as γ increases, the total latencies of both
UC in (9) and MC in (10) grow linearly, and the relative per-

formance depends on the values of γ and η. When η is small,
i.e., η = 0.8, the variability in the computing times of the ENs
is high, and MDS coding for the most part outperforms the
UC scheme due to its robustness to stragglers. This is unless
γ is large enough, in which downlink transmission latency
becomes dominant and the UC scheme can benefit from
redundant computations via cooperative EN communication.
In contrast, for larger values of η, the computing times have
low variability and MDS coding is uniformly outperformed by
the UC scheme.

We also observe that the proposed hybrid coding strategy
is effective in trading off computation and communication
latencies by controlling the balance between robustness to
stragglers and cooperative opportunities via the design of
parameters (q, ρ1, ρ2). In fact, by increasing q and ρ2, this
approach can decrease the communication latency at the cost
of a larger computing latency. Apart from very small values
of γ for large η, the scheme is seem to outperform both MDS
and UC strategies.

An interesting open problem is to design a hybrid strategy
that generalizes both the proposed MDS and UC schemes by
properly optimizing the scheduling matrix in a manner akin
to UC. Other aspects that are left for future work include
the investigation of coding schemes that enable the use of
ENs’ partial computations [12]; of transmission strategies
that carry out simultaneous edge computing and downlink
communications; of the impact of partial uplink connectivity;
and of protocols able to accommodate an arbitrary number of
computing tasks.
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