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Genome-wide Association Study Identifies Eight Risk Loci and Implicates 335 

Metabo-Psychiatric Origins for Anorexia Nervosa 336 

 337 

Characterized primarily by low BMI, anorexia nervosa is a complex and serious illness1, 338 

affecting 0.9-4% of women and 0.3% of men2-4, with twin-based heritability estimates of 339 

50-60%5. Mortality rates are higher than other psychiatric disorders6, and outcomes are 340 

unacceptably poor7. Combining data from the Anorexia Nervosa Genetics Initiative 341 

(ANGI)8,9 and the Eating Disorders Working Group of the Psychiatric Genomics 342 

Consortium (PGC-ED), we conducted a genome-wide association study (GWAS) of 16,992 343 

anorexia nervosa cases and 55,525 controls, identifying eight significant loci. The genetic 344 

architecture of anorexia nervosa mirrors its clinical presentation showing significant 345 

genetic correlations with psychiatric disorders, physical activity, metabolic (including 346 

glycemic), lipid, and anthropometric traits, independent of the effects of common variants 347 

associated with BMI. Results further encourage a reconceptualization of anorexia nervosa 348 

as a metabo-psychiatric disorder. Explicating the metabolic component is a critical 349 

direction, and attention to both psychiatric and metabolic components may be key to 350 

improving outcomes. 351 

The first PGC-ED GWAS (3,495 cases, 10,982 controls) estimated the common genetic 352 

variant-based heritability of anorexia nervosa as ~20%, identified the first genome-wide 353 

significant locus, and reported significant genetic correlations (rg) between anorexia nervosa and 354 

psychiatric and metabolic/anthropometric phenotypes10. These rg pointed toward metabolic 355 

etiological factors, as they are robust to reverse causation although they could be mediated 356 

associations11 or reflect confounding processes12. To advance genomic discovery in anorexia 357 
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nervosa and further explore genetic correlations, we combined samples from ANGI8,9, the 358 

Genetic Consortium for Anorexia Nervosa (GCAN)/Wellcome Trust Case Control Consortium-3 359 

(WTCCC-3)13, and the UK Biobank14, quadrupling our sample size. 360 

Our GWAS meta-analysis included 33 datasets comprising 16,992 cases and 55,525 361 

controls of European ancestry from 17 countries (Supplementary Tables 1-4). We had 80% 362 

power to detect an odds ratio (OR) of 1.09-1.19 (additive model, 0.9% lifetime risk, α = 5 × 10-8, 363 

MAF 0.05–0.5). Typical of complex trait GWAS, we observed test statistic inflation (λ = 1.22) 364 

consistent with polygenicity, with no evidence of significant population stratification according 365 

to the LD intercept and attenuation ratio (Supplementary Results; Supplementary Fig. 1). 366 

Meta-analysis results were completed for autosomes and the X chromosome. We identified eight 367 

loci exceeding genome-wide significance (P < 5 × 10-8; Table 1 for loci; Fig. 1 for the 368 

Manhattan plot; Supplementary Figs. 2a-h and 3a-h for the forest and region plots). Many were 369 

near the threshold for significance, and no significant heterogeneity of SNP associations across 370 

cohorts was detected (P = 0.15-0.64; Supplementary Figs 2a-h). Conditional and joint analysis 371 

(GCTA-COJO)15 confirmed independence of the lead SNPs within the significant loci 372 

(Supplementary Table 5). The eight loci were annotated to identify known protein-coding 373 

genes (Supplementary Table 6; Supplementary Table 7 reports a gene look-up restricted to 374 

the single-gene loci). The previously reported PGC-ED genome-wide significant variant 375 

(rs4622308)10 on 12q13.2 did not reach genome-wide significance (P = 7.02 × 10-5); however, 376 

between-cohort heterogeneity was apparent (I2 = 53.7; Supplementary Fig. 4 and 377 

Supplementary Results). The OR was in the same direction in 22 (67%) of the cohorts (z = 378 

2.00, P = 0.05, 2-tailed). 379 
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Although GWAS findings are informative genome-wide, identifying strong hypotheses 380 

about their connections to specific genes is not straightforward. We evaluated three ways to 381 

“connect” anorexia nervosa GWAS loci to genes: regulatory chromatin interactions; relationship 382 

to brain expression QTLs (eQTLs; using a superset of CommonMind16 and GTEx17) and the 383 

standard approach of gene location within a GWAS locus. The significant anorexia nervosa loci 384 

implicated 121 brain-expressed genes, 74% by location, 55% by adult brain eQTL, 93% by 385 

regulatory chromatin interaction, and 58 genes by all three methods. Supplementary Figs. 5a-h 386 

show the eight GWAS loci, GENCODE gene models, adult brain regulatory chromatin 387 

interactions, brain eQTLs, and functional genomic annotations. 388 

Four single-gene loci were confirmed by eQTL, chromatin interaction, or both. These 389 

were the locus-intersecting genes CADM1 (locus 2 chr11:114.9-115.4 Mb, Supplementary Fig. 390 

5b), MGMT (locus 4, chr10:131.2-131.4 Mb, Supplementary Fig. 5d), FOXP1 (locus 5, 391 

chr3:70.6-71.0 Mb, Supplementary Fig. 5e) and PTBP2 (locus 6, chr1:96.6-97.2 Mb, 392 

Supplementary Fig. 5f). For locus 5, eQTL data implicated a distal gene, GPR27. One 393 

intergenic locus (locus 7, chr5:24.9-25.3 Mb, Supplementary Fig. 5g) had no eQTL or 394 

chromatin interactions whereas the other intergenic locus (locus 8, chr3:93.9-95.0 Mb, 395 

Supplementary Fig. 5h) had eQTL connections to PROS1 and ARL13B. Two complex 396 

multigenic loci had many brain-expressed genes and dense chromatin and eQTL interactions that 397 

precluded identification of any single gene (locus 1, chr3:47.5-51.3 Mb; locus 3, chr2:53.8-54.3 398 

Mb, Supplementary Figs. 5a and 5c). The clearest evidence and connections were for the 399 

single-gene loci intersecting CADM1, MGMT, FOXP1, and PTBP2 and we conclude these genes 400 

may play a role in anorexia nervosa etiology (Supplementary Results). 401 
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Supplementary Table 8 presents multi-trait analysis (GCTA-mtCOJO18 conditioning 402 

our genome-wide significant SNPs on associated variants in GWAS of BMI, type 2 diabetes, 403 

education years, HDL cholesterol, neuroticism, and schizophrenia. Seven loci appear to be 404 

independent. Locus 2 on chr11 may not be unique to anorexia nervosa and may be driven by 405 

genetic variation also associated with type 2 diabetes. 406 

Liability-scale SNP heritability (SNP-h2) was estimated with LD score regression 407 

(LDSC)19,20. Assuming a lifetime prevalence of 0.9-4%2-4, SNP-h2 was 11-17% (s.e. = 1%), 408 

supporting the polygenic nature of anorexia nervosa. Polygenic risk score (PRS) analyses using a 409 

leave-one-out approach indicated that the PRS captures ~1.7% of the phenotypic variance on the 410 

liability scale for discovery P = 0.5. We did not observe differences in polygenic architecture 411 

between anorexia nervosa subtypes with binge eating (2,381 cases, 10,249 controls) or without 412 

(2,262 cases, 10,254 controls) or between males (447 cases, 20,347 controls) and females 413 

(14,898 cases, 27,545 controls) (Methods, Supplementary Results, Supplementary Fig. 6, 414 

Supplementary Table 9). Similar to females, males in the highest PRS decile had 4.13 (95% CI: 415 

2.58-6.62) times the odds of anorexia nervosa than those in the lowest decile. Confirmation of 416 

these results requires larger samples. 417 

We tested SNP-based genetic correlations (SNP-rg) with external traits using bivariate 418 

LDSC19,20. Bonferroni-significant SNP-rg assorted into five trait categories: psychiatric and 419 

personality; physical activity; anthropometric; metabolic; and educational attainment 420 

(Supplementary Table 10). Fig. 2 presents Bonferroni-corrected positive SNP-rg with OCD 421 

(SNP-rg ± s.e. = 0.45 ± 0.08; P = 4.97 × 10-9), MDD (0.28 ± 0.07; P = 8.95 × 10-5), anxiety 422 

disorders (0.25 ± 0.05; P = 8.90 × 10-8), and schizophrenia (0.25 ± 0.03; P = 4.61 × 10-18). This 423 

pattern reflects observed comorbidities in clinical and epidemiological studies21,22. The newly-424 
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identified positive SNP-rg with physical activity (0.17 ± 0.05; P = 1.00 × 10-4) encourages 425 

further exploration of the refractory symptom of pathologically elevated activity in anorexia 426 

nervosa23. We note that the significant SNP-rg of anorexia nervosa with educational attainment 427 

(0.25 ± 0.03; P = 1.69 × 10-15) and related constructs was not seen for IQ24.  428 

Expanding our previous observations10, we present a palette of metabolic and 429 

anthropometric rg with anorexia nervosa more pronounced than in other psychiatric disorders. 430 

We observed significant negative SNP-rg with fat mass (-0.33 ± 0.03; P = 7.23 × 10-25), fat-free 431 

mass (-0.12 ± 0.03; P = 4.65 × 10-5), BMI (-0.32 ± 0.03; P = 8.93 × 10-25), obesity (-0.22 ± 0.03; 432 

P = 2.96 × 10-11), type 2 diabetes (-0.22 ± 0.05; P = 3.82 × 10-5), fasting insulin (-0.24 ± 0.06; P 433 

= 2.31 × 10-5), insulin resistance (-0.29 ± 0.07; P = 2.83 × 10-5), and leptin (-0.26 ± 0.06; P = 434 

4.98 × 10-5), and a significant positive SNP-rg with HDL cholesterol (0.21 ± 0.04; P = 3.08 × 10-435 

7). 436 

Systems biology analyses of our results revealed preliminarily interesting results 437 

(Methods, Supplementary Tables 11-13, Supplementary Figs. 7-15). Gene-wise analysis with 438 

MAGMA prioritized 79 Bonferroni-significant genes, most within the multigenic locus on chr3 439 

(Supplementary Table 11). MAGMA indicated an association with NCAM1  (Supplementary 440 

Table 11) the expression of which increases in response to food restriction in a rodent activity-441 

based anorexia nervosa model25. Partitioned heritability analysis showed, as with other GWAS26, 442 

considerable enrichment of SNP-h2 in conserved regions (fold enrichment = 24.97, s.e. = 3.29, P 443 

= 3.32 × 10-11; Supplementary Fig. 7)27. Cell type group-specific annotations revealed that the 444 

overall SNP-h2 is significantly enriched for CNS tissue (Supplementary Fig. 8). One biological 445 

pathway was significant: GO:positive_regulation_of_embryonic_development (32 genes, P = 446 

1.39 × 10-7; Supplementary Table 12), which contains two Bonferroni-significant genes on 447 
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chr3, CTNNB1 and DAG1. CTNNB1 encodes catenin beta-1, which is part of adherens junctions, 448 

and DAG1 encodes dystroglycan, a receptor which binds extracellular matrix proteins28. DAG1 449 

falls within locus 1 (47.5-51.3 Mb). This pathway points to a potential role of developmental 450 

processes in the etiology of this complex phenotype (although this is currently speculative). 451 

Genes associated with anorexia nervosa were enriched for expression in most brain tissues, 452 

particularly the cerebellum, which has a notably high proportion of neurons29 (Supplementary 453 

Fig. 9). Among 24 brain cell types from mouse brain, significant enrichment was found for 454 

medium spiny neurons and pyramidal neurons from hippocampal CA1 (Supplementary Fig. 455 

10). Both medium spiny and pyramidal neurons are linked to feeding behaviors including food 456 

motivation and reward30,31 (Supplementary Results). Using PrediXcan (Supplementary 457 

Methods), 36 genes were predicted to be differentially expressed in GTEx tissues or blood 458 

(Supplementary Table 13) with the expression of MGMT predicted to be downregulated in the 459 

caudate. We cautiously note that these results represent the first indications of specific pathways, 460 

tissues, and cell types that may mediate genetic risk for anorexia nervosa. 461 

Because low BMI is pathognomonic of anorexia nervosa, we investigated the extent to 462 

which genetic variants associated with BMI accounted for genetic correlations with metabolic 463 

and anthropometric traits. First, covarying for the genetic associations of BMI (Methods) led to 464 

a mild but statistically non-significant attenuation of the SNP-rg between anorexia nervosa and 465 

fasting insulin, leptin, insulin resistance, type 2 diabetes, and HDL cholesterol (Supplementary 466 

Tables 14-15), suggesting that anorexia nervosa shares genetic variation with these metabolic 467 

phenotypes that may be independent of BMI. Second, we investigated bidirectional causality 468 

using generalized summary data-based Mendelian randomization18. GSMR analyses indicate a 469 

significant bidirectional causal relationship such that anorexia nervosa risk-increasing alleles 470 
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may increase risk for low BMI and BMI-lowering alleles may increase the risk of anorexia 471 

nervosa (Supplementary Table 16). It is important to note that having only eight genome-wide 472 

significant loci for anorexia nervosa render this analysis marginally powered in the direction of 473 

anorexia nervosa to BMI, although this analysis is well powered in the direction of BMI to 474 

anorexia nervosa. 475 

Replication is challenging with GWAS of low prevalence conditions like anorexia 476 

nervosa, as replication samples must be sufficiently powered to detect the initial findings. We 477 

included all available samples in our analysis to maximize chances of reaching the GWAS 478 

inflection point, after which there might be a linear increase in “hits”32. The PRS leave-one-out 479 

analyses provide evidence of replication by demonstrating a higher burden of anorexia nervosa 480 

common risk variants in cases, compared with controls, across all the cohorts (Supplementary 481 

Fig. 16). 482 

 In conclusion, we report multiple genetic loci alongside promising clinical and functional 483 

analyses and enrichments. The increased sample size in the present GWAS has allowed us to 484 

characterize more fully the metabolic contribution to anorexia nervosa than our previous report10 485 

by revealing significant rg with metabolism related phenotypes including glycemic and 486 

anthropometric traits and by demonstrating that the effect is robust to correction for the effects of 487 

common variants significantly associated with BMI. Low BMI has traditionally been viewed as a 488 

consequence of the psychological features of anorexia nervosa (i.e., drive for thinness and body 489 

dissatisfaction). This perspective has failed to yield interventions that reliably lead to sustained 490 

weight gain and psychological recovery7. Fundamental metabolic dysregulation may contribute 491 

to the exceptional difficulty that individuals with anorexia nervosa have in maintaining a healthy 492 

BMI (even after therapeutic renourishment). Our results encourage consideration of both 493 
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metabolic and psychological drivers of anorexia nervosa when exploring new avenues for 494 

treating this frequently lethal illness.  495 

URLs. GCTA, http://cnsgenomics.com/software/gcta; GSMR, 496 

http://cnsgenomics.com/software/gsmr; LDSC, https://github.com/bulik/ldsc; MAGMA, 497 

http://ctg.cncr.nl/software/magma. 498 
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 667 

Figure Titles and Captions 668 

 669 

Figure 1. The Manhattan plot for the primary genome-wide association meta-analysis of 670 

anorexia nervosa with 33 case-control samples (16,992 cases and 55,525 controls of 671 

European descent). The -log10(P) values for the association tests (two-tailed) are shown on the 672 

y-axis and the chromosomes are ordered on the x-axis. Eight genetic loci surpassed genome-wide 673 

significance (-log10(P) > 7.3). The lead variant is indicated by a diamond and green circles show 674 

the variants in linkage-disequilibrium. The blue and red colors differentiate adjacent 675 

chromosomes. 676 

 677 

Figure. 2. Bonferroni-significant genetic correlations (SNP-rgs) and standard errors (error 678 

bars) between anorexia nervosa and other phenotypes as estimated by LD score regression. 679 

Only traits with significant P values following Bonferroni correction are shown. Correlations 680 

with 447 phenotypes were tested (Bonferroni-corrected significance threshold P > 1.11 x 10-4).  681 

Complete results are shown in Table S10. PGC = Psychiatric Genomics Consortium, UKB = UK 682 

Biobank, HOMA-IR = Homeostatic model assessment - insulin resistance. 683 
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Table 1. Newly associated genome-wide significant loci for anorexia nervosa 

Locus Chr Basepair region Lead SNP BP P A1/A2 OR s.e. Freq Type Number 

of genes 

Nearest gene 

range left range right 

1 3 47588253 51368253 rs9821797 48718253 6.99E-15 A/T 1.17 0.02 0.12 multigenic 111 NCKIPSD 

2 11 114997256 115424956 rs6589488 115096956 6.31E-11 A/T 1.14 0.02 0.13 single-gene 1 CADM1 

3 2 53881813 54362813 rs2287348 54039813 5.62E-09 T/C 1.11 0.02 0.16 multigenic 13 ASB3, ERLEC1 

4 10 131269764 131463964 rs2008387 131448764 1.73E-08 A/G 1.08 0.01 0.33 single-gene 2 MGMT 

5 3 70670750 71074150 rs9874207 71019750 2.05E-08 C/T 1.08 0.01 0.49 single-gene 2 FOXP1 

6 1 96699455 97284455 rs10747478 96901455 3.13E-08 T/G 1.08 0.01 0.41 single-gene 2 PTBP2 

7 5 24945845 25372845 rs370838138 25081845 3.17E-08 G/C 1.08 0.01 0.56 intergenic 0 CDH10 

8 3 93968107 95059107 rs13100344 94605107 4.21E-08 T/A 1.08 0.01 0.54 intergenic 2 NSUN3 

Note. Shown are the results of the GWAS meta-analysis of anorexia nervosa (16,992 cases and 55,552 controls) which detected eight genome-wide significant 

loci. All of the eight loci are novel. Chr (chromosome) and Region (hg19) are shown for SNPs with P < 1e-05 and linkage-disequilibrium (LD) r2 > 0.1 with the 

most associated "lead" SNP, the location of which is given in BP (basepair). A1/A2 refers to Allele 1/Allele 2 and OR and s.e. are the odds ratio and standard 

error for the association between A1 and the phenotype. Freq is the frequency of A1 in controls. Number of genes was determined by genomic location, adult 

brain eQTL, regulatory chromatin interactions, and MAGMA gene-wise analysis (see Methods). Nearest gene is the nearest gene within the region of LD 

"friends" of the lead variant (LD-r2 > 0.6 +/- 500 Kb). The meta-analysis was restricted to variants with minor allele frequency (MAF) ≥ 0.01 and information 

quality (INFO) score ≥ 0.70. All loci were confirmed via forest plots based on consistent direction of effect in the majority of cohorts and via region plots 

whereby neighboring LD "friends" were required to show a similar effect. Chromosome X was analyzed but had no loci that reached genome-wide significance. 

Note that although lead variants are annotated to the nearest gene, this does not mean that the gene listed is a causal gene. 
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Methods 684 

Samples and study design. Thirty-three datasets with 16,992 anorexia nervosa cases and 55,525 685 

controls were included in the primary GWAS. We included individuals from the Eating 686 

Disorders Working Group of the Psychiatric Genomics Consortium (PGC-ED) Freeze 110; newly 687 

collected samples from the Anorexia Nervosa Genetics Initiative (ANGI)8,9; archived samples 688 

from the Genetic Consortium for Anorexia Nervosa (GCAN)/Wellcome Trust Case Control 689 

Consortium-3 (WTCCC3)13; anorexia nervosa samples from UK Biobank14; and additional 690 

controls from Poland. Case definitions established a lifetime diagnosis of anorexia nervosa via 691 

hospital or register records, structured clinical interviews, or on-line questionnaires based on 692 

standardized criteria (DSM-III-R, DSM-IV, ICD-8, ICD-9, or ICD-10), whereas in the UK 693 

Biobank cases self-reported a diagnosis of anorexia nervosa. Controls were carefully matched for 694 

ancestry, and some, but not all control cohorts were screened for lifetime eating and/or some or 695 

all psychiatric disorders. Given the relative rarity of anorexia nervosa, large unscreened control 696 

cohorts were deemed appropriate for inclusion33.  697 

The cohorts are detailed in the Supplement. Ethical approvals and consent forms were 698 

reviewed and archived for all participating cohorts (see Supplementary Methods ANGI-DK for 699 

Danish methods). Summary details about ascertainment (Supplementary Table 2), the 700 

genotyping platforms used (Supplementary Table 3), and genotype availability (Supplementary 701 

Table 4) can be accessed in the Supplement.  702 

 703 

Statistical analysis. Data processing and analysis were done on the Lisa Compute Cluster hosted 704 

by SURFsara (http://www.surfsara.nl) and the GenomeDK high-performance computing cluster 705 

(http://genome.au.dk).  706 
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Meta-analysis of genome-wide association data. Quality control (QC), imputation, GWAS, and 707 

meta-analysis followed the standardized pipeline of the PGC, Ricopili (Rapid Imputation 708 

Consortium Pipeline). Ricopili versions used were 2017_Oct_11.002 and 2017_Nov_30.003. QC 709 

included SNP and sample QC, population stratification and ancestry outliers, and familial and 710 

cryptic relatedness. Further information about the Ricopili pipeline is available from the website 711 

(https://sites.google.com/a/broadinstitute.org/ricopili) and GitHub repository 712 

(https://github.com/Nealelab/ricopili/tree/master/rp_bin). Further details of the QC procedures 713 

can be found in the Supplementary Methods.  714 

 715 

Imputation. Imputation of SNPs and insertions-deletions was based on the 1000 Genomes Phase 716 

3 (http://www.internationalgenome.org) data34.  717 

 718 

GWAS. GWASs were conducted separately for each cohort using imputed variant dosages and an 719 

additive model. Covariates nominally associated with the phenotype in univariate analysis (P < 720 

0.05) and five ancestry PCs were included in GWAS (Supplementary Table 18). These analyses 721 

used the tests and methods programmed in the Ricopili pipeline. Genomic inflation factors (λ) of 722 

the final datasets indicated no evidence of inflation of the test statistics due to population 723 

stratification or other sources (Supplementary Table 1). The 33 cohorts were meta-analyzed with 724 

the Ricopili pipeline which uses an inverse-variance weighted fixed-effect model. We filtered 725 

our GWAS results with minor allele frequency (MAF) ≥ 0.01 and INFO score ≥ 0.70 (indicating 726 

“high-quality”).  727 

 728 



3 

Analysis of chrX. Several cohorts in the primary GWAS did not have X chromosome variant 729 

data, specifically, some GCAN-based cohorts (fre1, ukd1, usa1, gns2) and were excluded. 730 

Imputation was performed separately from the autosome35. ChrX variants in the 731 

pseudoautosomal regions were excluded prior to imputation. SNPs exceeding MAF and INFO 732 

score thresholds of 0.01 and 0.70 were retained and analysis was performed with PLINK v1.9 733 

(https://www.cog-genomics.org/plink2) and Ricopili.  734 

 735 

Female-only GWAS. A supplementary GWAS analysis was conducted on females only to 736 

determine the similarity of the results to the primary GWAS analysis which included both 737 

females and males. The cohorts that did not have chrX variants to verify sex could not be 738 

included (fre1, ukd1, usa1, gns2). 739 

 740 

Distance- and LD-based clumping. The GWAS results implicate genomic regions (“loci”). To 741 

define a locus, (1) SNPs that met the genome-wide significant threshold of P < 5 × 10-8 were 742 

identified; (2) clumping was used to convert significant SNPs to regions. The SNP with the 743 

smallest P value in a genomic window was kept as the index SNP and SNPs in high linkage 744 

disequilibrium (LD) with the index SNP defined the left and right end of the region (SNPs with 745 

P < 0.0001 and r 2 > 0.1 within 3 Mb windows); (3) partially or wholly overlapping clumps 746 

within 50 Kb were identified and merged into one region; (4) only loci with additional evidence 747 

of association from variants in high LD as depicted by regional plots were retained; further, 748 

forest plots needed to confirm the associations based on the majority of cohorts; and (5) 749 

conditional analyses were conducted to identify SNPs with associations independent of the top 750 

SNP within the genomic chunk of interest.  751 
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 752 

Annotation. Genome-wide significant loci were annotated with RegionAnnotator 753 

(https://github.com/ivankosmos/RegionAnnotator) to identify known protein-coding genes 754 

within loci (Supplementary Table 6).  755 

 756 

Conditional and joint analysis. Conditional and joint analysis was conducted using GCTA-757 

COJO15. GCTA-COJO investigates every locus with a joint combination of independent markers 758 

via a genome-wide SNP selection procedure. It takes into account the LD correlations between 759 

SNPs and runs a conditional and joint analysis on the basis of conditional P values. After a 760 

model optimizing process, the joint effects of all selected SNPs are calculated. The largest 761 

subsample from our GWAS (sedk) was used to approximate the underlying LD structure of the 762 

investigated lead SNPs. The conditional regression was performed in a stepwise manner using 763 

the GCTA software36. We analyzed SNPs that had a P < 5 × 10-8 (Supplementary Table 5).  764 

 765 

Multi-trait-based conditional and joint analysis. To separate marginal effects from conditional 766 

effects (i.e., the effect of a risk factor on an outcome controlling for the effect of another risk 767 

factor), we performed a multi-trait-based conditional and joint analysis (GCTA-mtCOJO)18 using 768 

an extension of the GCTA software36 (Supplementary Table 8). This method uses summary-level 769 

data to perform the conditional analysis. We conditioned the results of our anorexia nervosa 770 

GWAS on GWAS results for education years37, type 2 diabetes38, HDL cholesterol39, BMI 771 

(Hübel, Gaspar, Coleman, Hanscombe, Purves…Breen, unpublished report), schizophrenia40, 772 

and neuroticism41. We again used the individual-level genotype data from our largest cohort 773 

(sedk) to approximate the underlying LD structure. As a first step, the method performs a 774 
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generalized summary data-based Mendelian randomization (GSMR) analysis to test for causal 775 

association between the outcome (i.e., anorexia nervosa) and the risk factor (e.g., schizophrenia). 776 

We removed potentially pleiotropic SNPs from this analysis by the heterogeneity in dependent 777 

instruments (HEIDI) outlier method18. Pleiotropy is the phenomenon when a single locus directly 778 

affects several phenotypes. The power of the HEIDI-outlier method is dependent on sample size 779 

of the GWAS. Pleiotropic SNPs are defined as the SNPs that show an effect on the outcome that 780 

significantly diverges from that expected under a causal model. Second, the GCTA-mtCOJO 781 

method calculates the genetic correlation between the exposure and the outcome using linkage 782 

disequilibrium score regression (LDSC) to adjust for genetic overlap19,20. It also uses the 783 

intercept of the bivariate LDSC to account for potential sample overlap19,20. As a result, GCTA-784 

mtCOJO calculates conditional betas, conditional standard errors, and conditional P values. 785 

Subsequently, we clumped the conditional GWAS results using the standard PLINK v1.942 786 

algorithm (SNPs with P < 0.0001 and r2 > 0.1 within 3 Mb windows) to investigate if any of the 787 

genome-wide significant loci showed dependency on genetic variation associated with other 788 

phenotypes. As stated in Zhu et al.18, the GCTA-mtCOJO analysis requires the estimates of bxy 789 

of the covariate risk factors on the target risk factor and disease, rg of the covariate risk factors, 790 

heritability (h2
snp) for the covariate risk factors, and the sampling covariance between SNP 791 

effects estimated from potentially overlapping samples.  792 

 793 

eQTL and Hi-C interactions. Although GWAS findings are informative genome-wide, 794 

identifying strong hypotheses about their connections to specific genes is not straightforward. 795 

The lack of direct connections to genes constrains subsequent experimental modeling and efforts 796 

to develop improved therapeutics. Genomic location is often used to connect significant SNPs to 797 
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genes, but this is problematic because GWAS loci usually contain many correlated and highly 798 

significant SNP associations over hundreds of Kb. Moreover, the three-dimensional (3D) 799 

arrangement of chromosomes in cell nuclei enables regulatory interactions between genomic 800 

regions located far apart43. Chromosome conformation capture methods like Hi-C enable 801 

identification of 3D interactions in vivo44,45 and can clarify GWAS findings. For example, an 802 

intergenic region associated with multiple cancers was shown to be an enhancer for MYC via a 803 

long-range chromatin loop46,47, and intronic FTO variants are robustly associated with body mass 804 

but influence expression of distal genes via long-range interactions48. The Nature paper of Won 805 

et al.49 used Hi-C to assess the 3D chromatin interactome in fetal brain, and asserted connections 806 

of some schizophrenia associations to specific genes.  807 

To gain further understanding of 3D chromatin organization of the brain and to evaluate 808 

disease relevance, we applied “easy Hi-C”50 to postmortem samples (N = 3 adult temporal 809 

cortex). Library quality and yield from eHi-C are comparable to conventional Hi-C but requires 810 

much less starting material. Please refer to the following pre-print for details on methodology, 811 

data processing, quality control and statistical models used for these analyses51. We generated 812 

sufficient reads to enable a kilobase resolution map of the chromatin interactome from adult 813 

human brain. To our knowledge, these are the deepest Hi-C data on any human tissue (excluding 814 

cell lines) as they generated 22.5X as many cis-contacts as for the next largest datasets (DLPFC 815 

and hippocampus). We generated tissue RNA-seq, total-stranded RNA-seq, ChIP-seq (H3K27ac, 816 

H3K4me3, and CTCF), and open chromatin data (ATAC-seq) for adult brain to help interpret the 817 

eHi-C results. We also integrated brain expression and eQTL data from GTEx to aid these 818 

analyses. The Hi-C analysis is unbiased in that all chromatin interactions that pass a confidence 819 
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threshold are considered when evaluating the associations between SNPs and genes (i.e., it is not 820 

a capture experiment where only “candidate” SNP-to-gene associations are evaluated). 821 

Similar to the work by Won et al.49, we used Hi-C data generated from human adult brain 822 

to identify genes implicated by three-dimensional functional interactomics (Supplementary Figs. 823 

5 a-h). These Hi-C data (N = 3, anterior temporal cortex) contain more than 103K high-824 

confidence, regulatory chromatin interactions51. These interactions capture the physical 825 

proximity of two regions of the genome in brain nuclei (“anchors”, 10 Kb resolution) although 826 

they are separated by 20 Kb to 2 Mb in genomic distance. We focused on the regulatory subset 827 

of E-P or P-P (E = enhancer, P = promoter) chromatin interactions (with P defined by location of 828 

an open chromatin anchor near the transcription start site of an adult brain-expressed transcript 829 

and E defined by overlap with open chromatin in adult brain plus either H3K27ac or H3K4me3 830 

histone marks). The presence of a regulatory chromatin interaction from a GWAS locus to a gene 831 

provides a strong hypothesis about SNP-to-gene regulatory functional interactions. 832 

 833 

SNP-based heritability estimation. LDSC software (https://github.com/bulik/ldsc) and method 834 

were used to estimate SNP-based heritabilities for each cohort and overall19,20. We used 835 

precomputed LD scores based on the 1000 Genomes Project European ancestry samples34 836 

directly downloaded from https://github.com/bulik/ldsc. The liability scale estimate assumed a 837 

population prevalence of 0.9%-4% for anorexia nervosa2,3.  838 

 839 

Within-trait prediction: polygenic risk scoring. Polygenic leave-one-dataset-out analysis, using 840 

PRSice v2.1.352, was conducted in the first instance to identify any extreme outlying datasets. In 841 

addition, it enabled the evaluation of the association between anorexia nervosa polygenic risk 842 
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score (PRS) and anorexia nervosa risk in an independent cohort as a means of replication of the 843 

GWAS results. We derived a PRS for anorexia nervosa from the meta-analysis of all datasets 844 

except for the target cohort, then applied the PRS to the target cohort to predict affected status 845 

(Supplementary Fig. 16). Logistic regression was performed, including as covariates the first five 846 

ancestry components and any other PCs significantly associated with the phenotype in the target 847 

cohort, and the target cohort was split into deciles based on anorexia nervosa PRS, with decile 1 848 

comprised of those with the lowest anorexia nervosa PRS serving as the referent.  849 

 850 

Anorexia nervosa subtype analysis. PRS analyses were conducted with anorexia nervosa 851 

subgroups to investigate prediction of case status across the subtypes. For this, we split the 852 

anorexia nervosa cases to two groups based on whether binge eating was present. First, GWAS 853 

meta-analyses were conducted for (a) anorexia nervosa with binge eating vs controls (2,381 854 

cases and 10,249 controls; k = 3 datasets: aunz, chop, usa2) and (b) anorexia nervosa with no 855 

binge eating vs controls (2,262 cases and 10,254 controls; k = 3 datasets: aunz, chop, usa2). 856 

Controls were randomly split between analyses to maintain independence (Supplementary Fig. 857 

6). Genetic correlation analysis using LDSC19,20 was conducted to examine the potential genetic 858 

overlap of the two anorexia nervosa subtypes (Supplementary Table 9). Second, using PRSice52, 859 

we calculated PRS for each anorexia nervosa subtype separately in the three target cohorts for 860 

which anorexia nervosa subtype data were available. Finally, mean PRS scores were estimated 861 

for each subtype by cohort after accounting for covariates in R. Subtype phenotyping is 862 

described in the Supplementary Methods.  863 

 864 
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Males. In order to assess whether sex-specific differences in anorexia nervosa genetic risk load 865 

exist, we calculated PRS, using PRSice52, from a GWAS meta-analysis performed on females 866 

only (14,898 cases and 27,545 controls) and applied it to a male-only target cohort (447 cases 867 

and 20,347 controls) to predict affected status.  868 

 869 

Cross-trait analysis: genetic correlations. Common variant-based genetic correlation (SNP-rg) 870 

measures the extent to which two traits or disorders share common genetic variation. SNP-rg 871 

between anorexia nervosa and 447 traits (422 from an internally curated dataset and 25 from 872 

LDHub53) were tested using GWAS summary statistics via an analytical extension of LDSC19,20. 873 

The sources of the summary statistics files (PMID, DOI, or unpublished results) used in the 874 

LDSC are provided in Supplementary Table 10. When there were multiple summary statistics 875 

files available for a trait, significant SNP-rg reported in the main text were chosen based on the 876 

largest sample size and/or matching ancestry with our sample (i.e., European ancestry). 877 

Genetic correlations with anorexia nervosa corrected for BMI were carried out to 878 

investigate whether the observed genetic correlations between anorexia nervosa and metabolic 879 

phenotypes were attributable to BMI or partially independent. We used GCTA-mtCOJO18 to 880 

perform a GWAS analysis for anorexia nervosa conditioning on BMI using BMI summary data 881 

from our UK Biobank analysis (described in the next section) to derive anorexia nervosa GWAS 882 

summary statistics corrected for  the common variants genetic component of BMI 883 

(Supplementary Tables 14 and 15).  884 

 885 

GWAS of related traits in UK Biobank. Several GWAS analyses were carried out for traits in UK 886 

Biobank to allow us to investigate body composition genetics in healthy individuals without a 887 
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psychiatric disorder, a weight-altering disorder, or who were taking weight-altering medication. 888 

We also used UK Biobank to carry out GWAS of physical activity level, anxiety, and 889 

neuroticism. For details see the Supplementary Methods. 890 

 891 

Generalized summary data-based Mendelian randomization (GSMR). We performed two 892 

bidirectional GSMR analyses18 to test for the causal association between first, BMI and anorexia 893 

nervosa, and second, Type 2 diabetes and anorexia nervosa, using an extension of the GCTA 894 

software36 (Supplementary Table 16). We used the individual-level genotype data from our 895 

largest cohort (sedk) to approximate the underlying LD structure. We removed potentially 896 

pleiotropic SNPs from this analysis by the HEIDI outlier method18. Pleiotropic SNPs are defined 897 

as the SNPs which show an effect on the outcome that significantly diverges from the one 898 

expected under a causal model. The method uses the intercept of the bivariate LD score 899 

regression to account for potential sample overlap19,20. As a rule of thumb GSMR requires 900 

GWAS to have at least ten genome-wide significant hits. We lowered the threshold for this 901 

requirement to eight SNPs in our analyses of anorexia nervosa as an exposure and BMI or Type 902 

2 diabetes as an outcome. Results, therefore, should be interpreted cautiously. We, furthermore, 903 

investigated bidirectional conditional effects between BMI or Type 2 diabetes and anorexia 904 

nervosa. We used GCTA-mtCOJO to perform a GWAS analysis for anorexia nervosa 905 

conditioning on (1) BMI using summary data from our UK Biobank analysis and (2) Type 2 906 

diabetes using summary data38. Our anorexia nervosa GWAS and the BMI and Type 2 diabetes 907 

GWASs are based on independent samples. For BMI, we also re-ran the GSMR analysis using 908 

the BMI-adjusted anorexia nervosa GWAS summary data from the GCTA-mtCOJO analysis.  909 

 910 
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Gene-wise analysis. MAGMA v1.0654 was used to perform a gene-wise test of association with 911 

anorexia nervosa based on GWAS summary statistics. MAGMA generates gene-based P values 912 

by combining SNP-based P values within a gene while accounting for LD. In order to include 913 

regulatory regions, SNPs are mapped to genes within a 35 kb upstream and 10 kb downstream 914 

window, and the gene P value is obtained using the “multi=snp-wise” model, which aggregates 915 

mean and top SNP association models. We tested 19,846 ENSEMBL genes, including the X 916 

chromosome (Supplementary Table 11). As reference panel for the underlying LD structure we 917 

used 1000 Genomes European data phase 334.  918 

 919 

Pathway analysis. MAGMA v1.0654 was used to perform a competitive pathway analysis, testing 920 

whether genes associated with anorexia nervosa were more enriched in a given pathway than all 921 

other pathways. The analysis included chrX. Biological pathways were defined using gene 922 

ontology pathways and canonical pathways from MSigDB v6.155, and psychiatric pathways 923 

mined from the literature. A total 7,268 pathways were tested (Supplementary Table 12).  924 

 925 

Partitioned heritability. Partitioned heritability was investigated using stratified LDSC26 which 926 

estimates the per-SNP contribution to overall SNP-heritability (SNP-h2) across various 927 

functional annotation categories of the genome (Supplementary Fig. 7). It accounts for linked 928 

markers and uses a ‘full baseline model’ of 24 annotations that are not specific to any cell type. 929 

We excluded the MHC region in our analysis. SNP-h2 can be partitioned in two different ways: a 930 

non-cell type-specific and a cell type-specific manner. Partitioned heritability analysis was used 931 

to test for cell type-specific enrichment in the GWAS of anorexia nervosa among 10 cell type 932 

groups; adrenal and pancreas, cardiovascular, central nervous system (CNS), connective and 933 
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bone, gastrointestinal, immune and hematopoietic, kidney, liver, skeletal muscle, and other 934 

tissue, which includes adipose tissue (Supplementary Fig. 8).  935 

 936 

Gene expression. We conducted a series of gene expression analyses as detailed in the 937 

Supplementary Methods.  938 

 939 

Reporting summary 940 

 941 

Further information on research design is available in the Life Science Reporting Summary 942 

linked to this article. 943 

 944 

Data availability 945 

 946 

The Psychiatric Genomics Consortium’s (PGC) policy is to make genome-wide summary results 947 

public. Genome-wide summary statistics for the meta-analysis are freely downloadable from 948 

PGCs download website (http://www.med.unc.edu/pgc/results-and-downloads). Individual-level 949 

data are deposited in dbGaP (http://www.ncbi.nlm.nih.gov/gap) for ANGI-ANZ/SE/US 950 

(accession number phs001541.v1.p1) and CHOP/PFCG (accession number phs000679.v1.p1). 951 

ANGI-DK individual-level data are not available in dbGaP owing to Danish laws, but are 952 

available via collaboration with PIs. GCAN/WTCCC3 individual-level data are deposited in 953 

EGA (https://www.ebi.ac.uk/ega) (accession number EGAS00001000913) with the exception of 954 

Netherlands and US/Canada, which are available via collaboration with PIs. UK Biobank 955 
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individual-level data can be applied for on the UK Biobank website 956 

(http://www.ukbiobank.ac.uk/register-apply). 957 

  958 
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