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ABSTRACT 

Myocardial infarction (MI) and associated morbidity and mortality is one of 

the major health care problems in western societies. Magnetic resonance 

imaging (MRI) has great potential for quantification of key biological processes 

post MI, such as inflammatory cell recruitment and extracellular matrix (elastin 

and collagen deposition) remodelling with the use of novel target specific contrast 

agents. During the acute phase following MI, the degree and duration of the 

inflammatory response critically affects myocardial remodelling and cardiac 

function. 19F perfluorocarbons (PFCs) uptaken by inflammatory cells allow direct 

detection and quantification of the temporal and spatial evolution of the 

inflammatory response in the injured myocardium. During the maturation phase, 

the synthesis of elastin and collagen, important ECM proteins, is upregulated. De 

novo elastin synthesis can be imaged by MRI using an elastin-specific contrast 

agent (Gd-ESMA). In this study, we explored the merits of multinuclear 1H/19F 

MRI for the simultaneous assessment and quantification of cardiac inflammation 

and elastin deposition in a murine model of MI in wild-type and knockout animals. 

19F containing particles, uptaken by macrophages, were used to investigate 

inflammatory cell recruitment into injured myocardium and Gd-ESMA was used 

to evaluate changes in elastin content in the ECM post-MI. 
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Chapter 1 

Introduction 

This PhD project was undertaken from April 2014 until September 2017 in 

the Division of Imaging Sciences and Biomedical Engineering Department at 

King’s College London, UK. This thesis is a collection of contributions that have 

been, or will be, published in international scientific journals.  

1.1 - Thesis overview  

Cardiovascular diseases (CVDs) remain the leading cause of death in 

western counties. Among CVDs, myocardial infarction (MI) diagnosis and 

treatment has benefitted from several improvements in therapeutic strategies that 

led to significant improvements in survival rates. However, patients surviving MI, 

are at high risk of developing heart failure (HF) due to impaired left ventricular 

remodelling. Currently, it is difficult to predict which patients will develop HF 

making risk stratification and selection of optimal treatment options challenging 

often leading to overtreatment causing unwanted side effects and further 

increasing healthcare costs. For these reasons, there is an urgent need for 
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improved diagnosis to identify patients at high risk of HF and to spare those with 

low risk from unnecessary treatment and associated side effects.  

Clinical decisions for the management of post-MI patients are based on 

anatomical, functional or tissue specific imaging techniques including magnetic 

resonance imaging (MRI) and echocardiography. With the development of cell 

and protein specific imaging probes the visualization of the underlying biological 

processes has become feasible and may facilitate risk stratification and treatment 

planning. It also might allow the identification and imaging based monitoring of 

novel therapeutic targets that augment healing and attenuate adverse 

remodelling. 

The remodelling process after MI can be divided in three phases: the 

inflammatory phase where neutrophils and monocytes are recruited from the 

blood stream to the site of injury where they clean the area from dead cells and 

extracellular matrix (ECM) debris; the proliferative phase during which fibroblast 

proliferation and angiogenesis leads to the formation of granulation tissue and 

finally the maturation phase with the deposition of ECM proteins (e.g. collagen, 

elastin and proteoglycans) which form the fibrous scar. The ability of the heart to 

undergo tissue repair after MI is closely dependent upon the timing and extent of 

these phases.  

In this thesis, two novel MR contrast agents were used for the 

simultaneous assessment of inflammatory cell recruitment and ECM deposition 

in the heart post-MI. MI was induced by the permanent occlusion of the left-

anterior descending coronary artery (LAD) in wild-type (WT) and monocyte 

chemoattractant protein-1 knockout mice (MCP-1-/-). 19F labelled nanoparticles 

(19F PFCs) were used for the selective imaging of inflammatory cells and a 
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gadolinium-based elastin-specific magnetic resonance agent (Gd-ESMA) was 

used for visualisation and quantification of ECM remodelling. To facilitate clinical 

translational, all MR scanning was performed on a clinical 3T MRI system. The 

organization of this thesis is described below. 

 

Chapter 2 describes the incidence of CVDs, with a focus on MI. It describes the 

remodelling processes after MI, including the biological and physical changes of 

the heart, with special attention to inflammatory cell types and ECM proteins, 

which play an important role during the healing process.  

 

Chapter 3 introduces the concept of molecular imaging and its application in 

assessing MI. It describes the state of the art of imaging post-MI remodelling. 

Examples of different imaging techniques and contrast agents for the assessment 

of the different phases during MI healing are described. 

 

Chapter 4 summarizes the background knowledge related to MRI. The first part 

of the chapter focuses on the physical properties of MRI and the primary contrast 

mechanisms. The second part describes the mostly used pulse sequences used 

in cardiac MRI and the challenges of preclinical MRI. 

 

Chapter 5 describes the optimization of the methodology used in this PhD 

project: (1) surgery optimization and reproducibility; (2) development of a MR 

compatible heating system for the 3T MRI and; (3) 19F acquisition protocol 

optimization. (1) For the optimization of the surgery, a lung intubation system was 

designed to allow an easier and faster assessment of the trachea; it is highly 
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reproducible and permits faster recovery of the animals. A description of the MI 

induction by permanent LAD occlusion is also described. (2) A MR heating 

system was developed for the 3T MRI to improve the wellbeing of the animals 

and the reproducibility of the scans. (3) This chapter introduces the 19F contrast 

agents. Two agents were compared and their biophysical properties were studied 

in phantoms using 3T MRI/MR-Spectroscopy and 9.4T nuclear magnetic 

resonance (NMR) spectroscopy. Based on this study, one of the two 19F contrast 

agent was chosen and was used for the in vivo experiments investigating 

inflammatory cell recruitment after MI. 

 

Chapter 6 investigates the feasibility of multinuclear 19F/1H MRI imaging for the 

simultaneous assessment of inflammation and ECM remodelling following MI 

non-invasively in WT mice. Inflammation was assessed after the intravenous 

injection of 19F PFCs (which are avidly taken up by inflammatory cells), showing 

a peak at day 7 post-MI. 19F quantification was performed with NMR 

spectroscopy, and was in agreement with in vivo MR data. In vivo 19F MRI 

correlated linearly with macrophage immunohistochemistry. ECM remodelling 

post-MI was evaluated using Gd-ESMA, a specific contrast agent that binds to 

both cross-linked elastin and immature, tropoelastin, which are highly expressed 

after MI. Increasing Gd-ESMA uptake was observed from early to later stages of 

post-MI remodelling, corroborating with the deposition of tropoelastin in the 

infarcted tissue (tropoelastin immunohistochemistry). Furthermore, the interplay 

of both contrast agents and their predictive value was evaluated in a longitudinal 

proof-of-concept study. Fifteen animals were scanned consecutively at day 7 and 

21 post-MI. 19F MRI was performed at 7 days (48 hours after 400 µL 19F PFCs) 
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to assess the peak in the inflammatory process and an elastin scan (1 hour post 

Gd-ESMA injection) was performed at day 7 and 21. End-diastolic volume was 

used as a measure of cardiac outcome. 

 

Chapter 7 similar to the previous chapters, 19F PFCs and Gd-ESMA were used 

to investigate inflammatory cell recruitment and ECM deposition in a MCP-1-/- 

mouse model. MCP-1 is a chemokine protein highly expressed after MI and is 

responsible for the recruitment of inflammatory cells into the myocardium. The 

objective of this study was to investigate the potential of multinuclear 19F/1H in 

assessing inflammatory cell influx and its impact on myocardial remodelling. The 

same animal model was used under similar experimental conditions for the in 

vivo experiments in chapter 6 and therefore direct comparison could be made 

between WT and MCP-1-/- animals. Inflammatory cell profiles were evaluated with 

Fluorescent Activated Cell Sorting (FACS).  

 

Chapter 8 summarises the findings made in this work and provides an outlook 

on future projects.   

 

 

 

 



 

 30 

  

Cardiovascular diseases: Myocardial Infarction 

Cardiovascular disease (CVD) is the leading cause of death worldwide, 

causing approximately one-third of deaths in 2011. It is estimated that until 2030 

these rates will increase and cause 23.6 million deaths annually [1]. Despite the 

clinical efforts in improving survival rate by early reperfusion strategies, a large 

pool of patients having survived an acute myocardial infarction (MI) are at risk of 

developing heart failure (HF) [2]. The development of HF after MI is closely 

associated with severe changes in cardiac geometry, function and structure, also 

referred to (ventricular) remodelling. 

Myocardial infarction is mainly caused by coronary artery occlusion due to 

either a rupture or an erosion of an atherosclerotic lesion and the formation of a 

thrombus, which obstructs blood flow to the myocardium [3]. This restriction of 

blood flow to the downstream tissue triggers a series of events that culminate in 

the death of affected cardiomyocytes. The human left ventricle (LV) has 2–4 

billion cardiomyocytes, 25% of which can become necrotic in a few hours post-

MI [4]. 
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After MI, the ability of the heart to repair depends on a complex 

immune/inflammatory response. For those who survive MI, the heart undergoes 

a remodelling process within the next few weeks with progressive ventricular 

dilatation and fibrosis where the necrotic myocardium is replaced by collagen-

rich scar tissue [5, 6]. A schematic figure of this process is shown in Figure 2.1. 

 

Figure 2.1. Differentiation between (A) normal and (B) infarcted myocardium. Myocardial infarcts 
(MI) often result from rupture of a coronary plaque, with subsequent formation of a thrombus, and 
consequently impaired blood flow to the downstream tissue. The process after MI, known as 
“ventricular remodelling” leads to death of cardiomyocytes, triggers an immune inflammatory 
response and at later stages leads to left-ventricle thinning as well as scar formation. Schematic 
short-axis views and Haematoxylin and Eosin staining at 7 and 21 days show the changes in the 
left-ventricle occurring between the acute event and the chronic stage.  

In this chapter, an overview of the different biological processes that occur 

after MI will be discussed. The cellular and molecular events during MI 

remodelling will be considered with special focus on the time scale during which 

the different processes occur. In this context, the role of different cell types and 

of some extracellular matrix (ECM) proteins important for the understanding of 
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this PhD project will be discussed. This chapter is based on a number of review 

papers [7-21]. 

2.1 -  Molecular and cellular processes  

Coronary artery occlusion and the associated reduction of blood supply to 

the myocardium (ischemia) causes a decline in the availability of oxygen and 

glucose to an extremely metabolic active tissue, triggering a series of molecular 

events called ischemic cascade. Briefly, the unavailability of oxygen and glucose 

to the myocardium during ischemia causes depletion of ATP levels in the tissue 

and an immediate loss of contractility. Failure of ATP-dependent ion pumps 

located in the cells’ membranes causes disruption of ionic homeostasis and 

subsequent cell swelling (oedema phase) and intracellular Ca2+ overload, which 

contributes to the production of free radical species. After MI, the tissue 

undergoes a remodelling process, marked by necrotic and apoptotic cell death 

and inflammation, where the myocardium experiences high cell and ECM 

turnover. Evidence suggests that although necrosis is the major form of cell 

death, apoptosis seems to play a crucial role during infarct healing [22-25]. The 

healing processes following an MI can be divided into three successive and 

overlapping phases: inflammatory phase, proliferative phase/resolution of 

inflammation, and maturation phase [26], in which a balance between those 

phases is required for an optimal healing. These different phases are active 

processes characterized by different cellular and molecular markers as 

schematically illustrated in Figure 2.2. 

Cardiomyocyte necrotic death triggers an inflammatory response, 

resulting in the recruitment of leukocytes into the infarcted area to clear the debris 
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consisting mainly on dead cells and matrix. Once the infarcted area is cleared 

and inflammatory mediators are repressed, reparative cell influx commences. 

These cells produce ECM proteins that will help to maintain the structure and 

function of the LV. This phase is followed by the maturation of the scar tissue and 

accompanied by apoptosis of the no longer needed reparative cells. 

 

Figure 2.2. The healing process after myocardial infarction in mice can be divided in three 
successive and overlapping phases: acute inflammation, resolution of inflammation and 
maturation of the scar. The curves illustrate the time course of the different inflammatory cells 
involved in the healing process over time. During the inflammatory phase (3-72 hours) pro-
inflammatory monocytes Ly6Chigh and M1 macrophages and neutrophils are recruited from the 
blood stream to the injured area, and are responsible to clean debris and dead cardiomyocytes. 
Resolution of inflammation phase (72 hours-7 days) is characterized by the presence of anti-
inflammatory monocytes Ly6Clow and M2 macrophages. These cells produce matrix 
metalloproteinases (MMPs) which degrade damaged extracellular matrix (ECM). This phase is 
also marked by an extensive formation of a vascular network. The maturation phase follows (7 
days – onwards), characterized by the differentiation of myofibroblasts from fibroblasts; new ECM 
is formed, a scar is formed rich in collagen type I, III and elastin. 

2.1.1 - Inflammatory phase 

After MI, tissue necrosis is occurring in the subendothelium expanding to 

the epicardium during the first hours. It is during this initial phase that the most 

significant changes occur, affecting cells and tissues, and becoming increasingly 

irreversible after 12 hours. This period of time is therefore crucial and provides a 
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treatment window for reperfusion to occur and preserve part of the myocardium 

[3]. 

In the early hours after MI, leukocytes (neutrophils and mononuclear cells) 

rapidly infiltrate the infarct to remove cell debris intervened by inflammatory 

mediators. 

2.1.1.1 - Inflammatory mediators 

Ischemic myocardium produces CC chemokine ligands, complement 

factors and other mediators which attract neutrophils and monocytes to the site 

of injury. These inflammatory mediators may play an important role in the 

remodelling of the myocardium by promoting the removal of death cells and 

degradation products of the ECM by activated matrix metalloproteinases (MMP) 

[27, 28]. 

Soluble mediators such as monocyte chemotactic protein-1 (CCL2/MCP-

1) and interleukin-8 (IL-8) are expressed and responsible to attract 

monocytes/macrophages and neutrophil populations, respectively [7, 28]. 

Complement activation (e.g. C5 component of complement), L-selectin 

and integrins (e.g. CD11/CD18) have been shown to play important roles in the 

recruitment of neutrophils [29, 30]. Also, TNFα and IL-1β are mediators capable 

of prolonged neutrophil activity during the inflammatory phase [26, 31]. 

MCP-1 protein is a powerful attractant for monocytes, especially during 

the inflammatory phase. In the absence of this protein, murine models of MI have 

shown a decreased and delayed infiltration of monocytes/macrophages. These 

animals also show an attenuation of adverse remodelling by delaying the 

formation of granulation tissue [32]. Monocytes/macrophages accumulate first 

during the inflammatory phase promoting inflammation and removal of cell debris 
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by producing TNFα and MMPs. Later, monocytes/macrophages produce other 

cytokines and growth factors, such as interleukin-10 (IL-10) and transforming 

growth factor β (TGFβ), which repress inflammatory signals and regulate 

granulation tissue formation during the proliferative/resolution of inflammation 

phase. 

Approaches targeting molecules involved in the activation of inflammatory 

cells have been successful in attenuating ischaemic injury in animal studies, 

however the translation to patient therapy was unsuccessful [8, 9]. There is 

nevertheless an ongoing interest in the involvement of inflammatory mediators in 

repair and remodelling of the infarcted heart, but focus has turned to the 

understanding of functional, structural and geometrical alterations of the heart 

during LV remodelling. 

 

2.1.1.2 - Neutrophils 

Circulating neutrophils are recruited from the blood stream and are the first 

to arrive at the site of injury, through vasodilation and activation of both 

chemokine-dependent and chemokine-independent pathways. During the 

inflammatory phase, endothelial cells upregulate adhesion molecules (e.g. 

selectin, integrin) that trigger neutrophil adhesion and extravasation (Fig.2.3). 

Rapid accumulation leads to an early neutrophil peak after injury [10, 11]. In the 

ischemic tissue, neutrophils phagocyte dead cells and produce MMPs that 

degrade ECM. Neutrophils eventually undergo apoptosis and are removed by 

macrophages later on [11]. Neutrophils therefore play an important role in the 

resolution of inflammation and can influence the proliferative phase as well. 

Neutrophils however, when in abundance, can produce too much MMPs and 
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degrade excessively the ECM, compromising tissue stability and integrity. In 

patients, higher numbers of neutrophils in the heart were associated with worse 

prognosis [33]. The same outcome was found in mice with induced MI. 

Neutrophil-depleted mice have shown impaired recruitment of pro-inflammatory 

monocytes/macrophages (Ly6Chigh and M1 macrophages), but not of M2 

reparative macrophages, leading to increased fibrosis [34]. 

 

Figure 2.3. In the early hours after myocardial infarction (within 24 hours) necrotic cardiomyocyte 
release pro-inflammatory cytokines and chemokines into the circulation blood activating both 
endothelial cells and systemic neutrophils. Activated neutrophils adhere to activated endothelium 
and transmigrate into the cardiac tissue following a chemokine gradient. Neutrophils secrete 
proteases that digest tissue (and activate chemoattractants, such as complement component 
C5a), which further potentiates leukocyte recruitment. Neutrophils may then phagocytose dying 
cells, but they can also induce apoptosis in healthy cardiomyocytes themselves through the 
release of reactive oxygen species. Adapted from [12]. 

 

2.1.1.3 - Monocytes/Macrophages 

Monocyte subpopulations infiltrate and accumulate in the myocardium 

sequentially (after approximately 24 hours), with pro-inflammatory monocytes 

arriving first, being rapidly mobilized from the bone marrow and the splenic 

reservoir [3, 35]. On days 1 to 4 post-MI, inflammatory Ly6Chigh monocytes are 

recruited to digest the injured cells of the myocardium. During the following 5 to 

10 days, a second subset of monocytes dominate, the reparative Ly6Clow 
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monocytes, supporting angiogenesis and scar synthesis, while the number of 

Li6Chigh declines [10, 36]. 

When monocytes infiltrate from the blood stream into the tissue they 

mature into macrophages [11, 37, 38]. M1 macrophage subsets with pro-

inflammatory properties infiltrate the infarct and might sustain a pro-inflammatory 

environment. M1 macrophages play a similar role as neutrophils. They clean the 

infarcted tissue from dead cells and debris, promote matrix breakdown and 

phagocytose apoptotic neutrophils. On the contrary to neutrophils, which die after 

phagocyting debris, macrophages survive for longer periods. M1 macrophages 

remove cellular debris, foreign substrates including lipids, and microbes [11]. In 

the final phase of the process, as the granulation tissue migrates inwards toward 

the core of the infarct, the remaining necrotic tissue is engulfed and digested by 

the M2 macrophages. M2 macrophages repress inflammation and stimulate 

fibroblasts growth and angiogenesis, and they also participate in the regulation 

of ECM deposition by the production of both MMPs and their inhibitors [20]. At 

this stage, the inflammation phase is repressed and the infarct is prepared for the 

proliferative phase. This process is schematically illustrated in Figure 2.4. 
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Figure 2.4. Tissue injury activates innate immune signalling and secretes chemokines (e.g. 
CCR2) thereby triggering leukocyte infiltration into the injured myocardium. Until day 3, Ly6Chigh 
monocytes are recruited from the blood into the ischemic cardiac tissue, mobilized from the bone 
marrow and the splenic reservoirs. Recruited monocytes secrete pro-inflammatory cytokines and 
chemokines, and they further amplify inflammatory processes. A proportion of recruited 
monocytes ingest apoptotic cells, including neutrophils, which increases the secretion of anti-
inflammatory cytokines, such as transforming growth factor-β (TGFβ) and interleukin-10 (IL-10), 
thereby decreasing leukocyte recruitment. Adapted from [12]. 

 

Summarizing, macrophages have several roles: they remove necrotic 

debris, regulate ECM turnover producing proteolytic enzymes that degrade 

collagen and elastin, and promote angiogenesis [13, 39, 40]. 

 

2.1.1.4 - Other cell types: B, T cells 

Other cell types including B cells [41], CD4+ T cells [42] and dendritic cells 

[43] have been shown to be involved in a balanced recruitment of monocytes 

populations. Experiments in mouse models of permanent coronary artery ligation 

suggested that the depletion of B cells leads to a decrease in the Ly6Chigh 

monocyte population, thus improving heart function [41]. Conversely, CD4+ T cell-

deficient mouse strains show a negative delay in the transition from Ly6Chigh to 

Ly6Clow monocytes, thereby impairing healing of the heart [42]. In line with this 

observation, a recent paper showed that CD4+ regulatory T cells can positively 

contribute to cardiac healing, promoting monocyte/macrophage differentiation 
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[44]. Finally, when dendritic cells were depleted the resolution of inflammation 

was interrupted, the recruitment of pro-inflammatory monocytes Ly6Chigh/M1 

macrophage populations was enhanced whereas the recruitment of anti-

inflammatory monocytes Ly6Clow/M2 macrophage was decreased, impairing 

cardiac healing [43]. 

2.1.2 - Proliferative phase 

The proliferative phase is characterized by an extensive neovascularization 

and ECM formation, regulated by reparative cells (myofibroblasts and vascular 

cells) some weeks after MI. The heart contains an abundant population of 

interstitial and perivascular fibroblasts. Bone marrow-derived fibroblast 

progenitors, endothelial cells, smooth muscle cells and pericytes might contribute 

to the myofibroblast population as well [9, 45]. A schematic of this post-

inflammatory phase is shown in Figure 2.5. 

 

2.1.2.1 - Fibroblasts/Myofibroblasts 

Fibroblasts are, after cardiomyocytes, the most predominant cells in the 

heart. Fibroblasts are found throughout the cardiac tissue and surrounding 

myocytes, forming a complex 3D network within the connective tissue [14]. 

Cardiac fibroblasts in healthy tissue are not contractile and produce small 

amounts of ECM. However, in the presence of a pathology like MI, fibroblasts are 

activated and differentiate into myofibroblasts, and synthetize large amounts of 

ECM proteins (e.g. collagen type I, III, IV and V) [15]. 

Myofibroblasts are mainly differentiated fibroblasts [16, 17]. This process 

can be mediated by different factors such as the activation of TGFβ, deposition 

of matrix proteins, mechanical stress and/or pro-inflammatory mediators [9, 18]. 
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Myofibroblasts express contractile proteins like α-smooth muscle actin and 

secrete large amounts of proteins important for myocardial integrity [46, 47]. They 

can contribute either to beneficial or adverse myocardial remodelling after MI 

depending on the regulation of collagen deposition [17]. Myofibroblasts have 

been reported to appear in the infarct as early as 3 days after MI (stimulated by 

macrophages and TGFβ) and remain there for months [48]. Myofibroblasts 

undergo apoptosis at the end of the proliferative phase, as the collagen-based 

scar is formed. Their persistence can be predictive of progressive fibrosis and/or 

organ failure. 

 

Figure 2.5. Post-inflammatory phase is marked by the production of MMPs which degrade the 
ECM allowing cell migration into the injured area. Neutrophils and monocytes are recruited from 
the blood stream, and on arrival at the injured myocardium clean dead cells and ECM fragments 
allowing repopulation of immune reparative cells such as fibroblasts and myofibroblasts. 
Pathways of repressing inflammation are activated; the number of inflammatory cells decrease 
and fibroblasts and myofibroblasts secrete ECM proteins. The newly synthetized ECM matrix is 
crucial to preserve the structure and integrity of the left ventricle. Furthermore, angiogenic 
signalling stimulates the proliferation and infiltration of endothelial cells and leads to the 
establishment of a microvascular network in the infarct area. ECM, extracellular matrix; MMPs, 
Matrix metalloproteinases.  
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2.1.3 -  Maturation phase 

MI is frequently associated with LV remodelling leading to progressive 

heart failure. The underlying mechanism of LV remodelling is multifactorial, 

involving changes in the chamber dimensions and geometry, namely the 

progressive dilation initially through infarct zone expansion, thinning of the 

ventricular wall and increase of the chamber [49]. A major component of adverse 

LV remodelling and dilatation is a profound alteration in the composition of the 

ECM. Other alterations are also observed, such as hemodynamic alterations 

resulting in overall decreased cardiac pump performance [50]. 

Subsequent dilation and shape change occur through myocyte 

hypertrophy within noninfarcted zones and are associated with increased fibrosis 

and cell death [50]. Infarct expansion, stretching and thinning of the infarcted wall, 

may occur early after MI. Over the course of several months, there is progressive 

dilatation, not only of the infarct zone, but also of the healthy myocardium [49]. 

 

2.1.3.1 - Role of extracellular matrix: Collagen & Elastin 

The ECM is an integral component of the myocardium, and the factors that 

influence the integrity of the ECM have also an impact on cardiac structure and 

function. In vertebrates, ECM provides not only the physical and mechanical 

support, but it also serves as a reservoir of many biomolecules that interact and 

influence the cellular response after injury [51]. 

Remodelling of the ECM is a key component of cardiac remodelling after 

MI. Disruption of the ECM network structure interrupts the connection between 

the myocardial cells and blood vessels, thereby compromising the structural 

integrity and function of the heart. Conversely, excess production and 

accumulation of ECM structural proteins, or fibrosis, results in enhanced stiffness 
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of the myocardium and hinders ventricular contraction and relaxation, leading to 

distorted architecture and cardiac function. Excess collagen deposition and 

fibrosis have been clearly linked to myocardial stiffness and diastolic and systolic 

dysfunction [52]. 

During wound healing and subsequent formation of the fibrotic scar 

synthesis of ECM proteins is upregulated. This phase has been characterized by 

positive vascular remodelling with enlargement of the vessel wall [53, 54] and it 

has been associated with an excess production of collagen, proteoglycans and 

elastin [39]. 

 

Collagen: Collagen is present in all tissues and provides a structural 

framework and strength. In the heart collagen is synthesized and secreted by 

myofibroblasts., Collagen types I, III, IV, V and VI can be found in the 

myocardium, with structural collagen type I being the most predominant (>70%) 

[17, 55]. Collagen type I has been found to be a major constituent of scar 

formation and stabilization. In mature scar, collagen type III can be also found, 

however it is nonelastic and can cause LV stiffness [56]. During cardiac 

remodelling the balance between the synthesis and degradation of collagen of 

great importance. 

 

Elastin: Elastin has been identified as a key ECM protein decisive for 

infarct stabilization and preservation of ventricular function [57-59] by promoting 

elasticity and strength of the tissues. Elastin is an insoluble and hydrophobic 

protein with a very low turnover rate. Elastin deposition begins with the synthesis 

and secretion of the 72 kDa soluble precursor molecule tropoelastin (produced 
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by fibroblasts) that becomes cross-linked into insoluble elastin by enzymatic 

reactions (lysyl oxidase) [19, 60]. Secreted tropoelastin is “chaperoned” to the 

extracellular space by the elastin-binding protein [61] where tropoelastin is 

stabilized and aligned along microfibrils [60], that contain glycoproteins (e.g., 

fibrillins) and microfibril-associated glycoproteins (e.g. MAGP-1) prior to 

enzymatic cross-linking [61].  

The myocardium has normally negligible amounts of elastic/tropoelastin 

fibres. After MI, elastic fibres increase within the scar in the first weeks and 

continue to form a more dense network between the remaining viable myocytes, 

myofibroblasts and smooth muscle cells during maturation of the infarct scar [57]. 

Higher amounts of elastin in the heart might help preserve the elasticity of the 

scar. Mizuno and colleagues [58, 59] have shown that elastin gene injection into 

the infarcted area leads to increased expression of elastin in a rat model of MI. 

This proved to be beneficial, limiting the scar expansion and ventricular dilatation. 

2.1.4 - Future perspectives 

MI remodelling is a complex and dynamic process. While the duration of 

the healing process varies between species and genders, evidence suggests that 

early and aggressive immune responses and high levels of neutrophils and 

monocytes within the infarct may promote adverse remodelling and lead to poor 

prognosis [33, 62, 63]. Substantial infiltration of immune cells in the affected area 

and ECM breakdown can lead to infarct expansion and subsequent ventricular 

dilatation, aneurysm and rupture [20, 33]. 

Taken together, a better understanding of the underlying processes during 

MI remodelling is needed to design novel therapeutic strategies. Biomarker-

based approaches might help with the identification of different pathophysiologic 
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responses. The specific identification of neutrophils or monocytes/macrophages 

populations by non-invasive imaging techniques could help to better understand 

the effect of targeted therapies. Furthermore, elucidation of the cellular and 

molecular mechanisms responsible for the synthesis of ECM proteins is essential 

to design cardioprotective and reparative strategies that could prevent or reverse 

fibrosis, respectively, after infarction [21, 64]. 

2.2 - Animal models of myocardial infarction 

Animal models can closely mimic human disorders with respect to 

structural and functional characteristics. For that purpose, the induced disorder 

needs to resemble the human disease, in this case coronary heart disease. As 

previously mentioned in this chapter, MI occurs after the narrowing of one of the 

main coronary arteries in the LV. 

Various strategies and methods have been developed and applied in 

different laboratory animal species, including mice, rats, rabbits, pigs, dogs, and 

primates [65]. The occurrence of MI can be induced in different ways: 1) It can 

be induced by feeding fat/cholesterol-rich diet, which is a risk factor for 

atherosclerosis and consequently MI. This model is closer to the clinical situation; 

however, time and site of occlusion can be random and unpredictable with this 

approach. 2) MI can also be surgically induced, which has the advantage of a 

tight control on the location, extent and time of the infarction. Controlling these 

parameters allows more reproducible results. 

MI can be surgically induced with different methods, as shown in Figure 

2.6: hydraulic occlusion, usually used in larger animals (e.g. pigs), where the 

constrictor is placed around the left coronary artery; coronary artery occlusion, 

where the proximal left anterior descending coronary artery (LAD) is ligated, 
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inducing MI. It has higher mortality rates (up to 50% in dogs and rodents [66, 67], 

and 20% in pigs [68]) and in the case of mice microsurgical technique and 

equipment is required; myocardial ischemia or infarction followed by reperfusion 

represents a valuable tool to elucidate pathophysiological and molecular 

mechanisms underlying cardiac remodelling, since reperfusion is a standard 

clinical procedure [69]. In comparison to the permanent occlusion model, the MI 

with reperfusion model leads to higher infiltration of inflammatory cells, 

attenuated fibrotic remodelling and enhanced neovascularisation in the infarcted 

area [65, 69, 70]. 

Mice are the preferred species for such studies because of their genetic 

malleability, rapid breeding cycle, and relatively economic husbandry. However, 

their small size is a challenge when the evaluation of an infarct is required, 

especially for imaging modalities. 

 

Figure 2.6. Animal model of myocardial infarction (MI). MI can be induced by (A) hydraulic 
occlusion, where a constrictor is placed around the left coronary artery; (B) permanent coronary 
artery occlusion, where a knot is placed around the left-anterior descending coronary artery 
(LAD); or by (C) reperfusion model, where a knot is placed around the LAD and a plastic tube, 
where the latter is removed usually after 30 minutes after the occlusion and blood flow is restored. 
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Molecular imaging of cardiac remodelling 

Conventional cardiac imaging techniques aim at detecting changes in 

anatomy and function of the heart, such as cardiac function, geometry, blood flow 

or myocardial viability. Molecular imaging in contrast, besides providing 

macroscopic information, allows the visualization of the underlying biological 

processes, at a molecular and cellular level. Molecular imaging differs from 

traditional imaging in that probes known as biomarkers are used to help image 

specific targets or pathways in vivo [71]. Molecular imaging has great potential 

both for the early detection of cardiovascular and other diseases. 

As mentioned in Chapter 2, after myocardial infarction (MI) the 

myocardium undergoes severe alterations that involve several biological 

processes that could potentially be targeted with molecular imaging. Molecular 

imaging may enable the identification of precursors or early stages of cardiac 

remodelling, and allow monitoring and guidance of novel and target-orientated 

cardiovascular therapies. It may also provide a greater understanding of 

previously unknown biological processes occurring within the heart, specifically 

targeting molecular processes underlying the post-MI immune cell response, and 
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subsequent left-ventricular (LV) remodelling [72, 73]. Other clinical problems that 

may also benefit from molecular imaging, include early identification of patients 

with atherosclerotic plaques that are at high risk of causing long-term 

complications or patients with high risk of developing severe ventricular 

remodelling leading to heart failure after MI [71, 74], or even the evaluation of 

effectiveness of some therapies in clinical trials or for monitoring therapy 

response [75, 76].  

In this chapter, a description of the different imaging modalities for 

studying cardiovascular diseases will be provided. Additionally, molecular 

imaging, with passive or active targeting, will be introduced and discussed in the 

context of cardiovascular diseases. Specific focus will be given how molecular 

imaging may be used to broaden our understanding of the mechanisms that 

underlie post MI remodelling by its ability to targeting the different stages of the 

remodelling process (e.g. oedema, inflammation and extracellular matrix (ECM) 

deposition). 

3.1 - Techniques and imaging modalities 

Molecular imaging provides non-invasive visualization of biological 

processes on a cellular and protein level, based on the use of molecular probes 

or biomarkers in very low concentrations and without interfering with the 

undergoing biological processes [71, 77]. The probe is usually composed of a 

signal element (e.g. gadolinium, iron oxide or a radioactive isotope) that can be 

visualized with an imaging modality and a ligand (e.g. antibody, peptide or small 

molecule) that recognizes and binds to a biological target. The probes should be 

non-toxic, exhibit favourable pharmacokinetics and biodistribution, e.g. fast 
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clearance from blood, rapid extravasation, high specificity towards the target, and 

provide a high target-to-background ratio. In magnetic resonance imaging (MRI), 

this can be further improved by a high relaxivity ratio between the bound and free 

probe, also called the receptor induced magnetization enhancement (RIME) 

effect. For efficient target-specific MRI probes this ratio varies between 2 and 5. 

Figure 3.1 summarizes some non-invasive clinical imaging modalities, 

their applications and specifications regarding resolution and sensitivity.  

 

 

Figure 3.1. Overview of non-invasive clinical imaging modalities for anatomical, physiological, 
metabolic and molecular imaging. Nanoparticles can be targeted with different probes, and its 
functionalization can be used to assess specific cell interaction, inflammatory pathways or to 
monitor therapeutic responses. MRI, magnetic resonance imaging; PET, positron emission 
tomography; SPECT, single photon emission computed tomography; CT, computed tomography; 
Gd, gadolinium-based contrasts. Adapted from [78]. 
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3.1.1 - Nuclear imaging 

The most widely used molecular imaging approaches are based on 

nuclear imaging techniques, such as single photon emission computed 

tomography (SPECT) and positron emission tomography (PET) [71]. The main 

advantage of SPECT and PET is their high sensitivity for tracer detection. In 

addition, the large number of tracers together with the possibility of multinuclear 

imaging (SPECT) make them powerful tools for the study of metabolism and 

molecular targets in vivo [76, 79]. However, the use radioactivity may be a 

limitation for screening of asymptomatic patients or follow-up studies. 

SPECT is usually used to assess myocardial perfusion and metabolism 

[80]. This technique combines the injection of a radioisotope tracer (usually 

thallium-201 and technetium-99m) with a gamma camera image acquisition. The 

camera rotates around the patient to create several images that are arranged and 

reconstructed to form 3D images [72]. Compared to MRI, SPECT allows the 

imaging of low-abundance molecules (10-3/-5 mmol/L vs 10-10/-11 mmol/L). 

Consequently, only low concentrations of the probe are needed (nM), and so the 

disruption of the biological processes or toxicity are not a concern. In a meta-

analysis involving 114 studies, SPECT was shown to have a good sensitivity 

(88%) and moderate specificity (61%) for detecting ischaemia in patients with 

known or suspected coronary artery disease (CAD) [81]. A drawback of SPECT 

is the low spatial resolution (~8-10 mm) compared with PET (~3-5 mm) and MRI 

(~1-2 mm). While SPECT is highly accurate in measuring radioisotope uptake for 

the assessment of myocardial perfusion and metabolism, it does not provide true 

anatomical and functional information unlike MRI [79, 82].  
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PET has been the gold-standard for the non-invasive assessment of 

myocardial viability using 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG) until the 

introduction of late gadolinium enhancement (LGE) MRI. PET has been shown 

to be highly specific (81%) and sensitive (84%) for the diagnosis of CAD induced 

ischemia [81]. PET uses rubidium-82 chloride, nitrogen-13 ammonia and oxygen-

15 radioisotopes to assess perfusion. As the radiotracers decay a positron is 

emitted and when it collides with an electron, it produces two gamma quants that 

can be measured by the scanner as a co-incidence signal (512 keV). PET 

provides higher image resolution than SPECT (4-5 vs 10-16 mm), and has a well-

established photon attenuation correction (because of the physical behaviour of 

positron decay), allowing the correct localization and, in combination with 

validated kinetic models, the quantification of biological processes [76]. A key 

advantage of PET is the use of fluorine-18 deoxyglucose (18F-FDG) that enables 

the assessment of metabolism. By combining myocardial perfusion and viability 

data PET can be used to determine whether the myocardium is normal, fibrotic 

(reduced perfusion and metabolism) or potentially salvageable [83]. A 

disadvantage of this modality is the very short half-life of PET tracers and the 

necessity of having access to a cyclotron and radiochemistry resources. In 

addition, PET is not widely available as it is an expensive imaging technique [71]. 

3.1.2 - Computed Tomography 

Computed tomography (CT) combines a series of X-ray images taken from 

different angles to generate cross-sectional images. CT is usually used for 

coronary artery angiography, and to assess LV structure and systolic function. It 

has also been used to assess perfusion and viability. Typically, a CT imaging 

protocol is divided in two stages (two scans). The first scan, involves a 
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conventional CT angiogram for the visualization of the coronary arteries. This 

scan is performed after the injection of contrast agent (usually iodinated contrast), 

and coronary arteries appear bright due to the presence of the contrast agent. In 

addition, areas with reduced myocardial contrast enhancement can be 

associated with areas of reduced perfusion (e.g. coronary stenosis or 

microvascular obstruction). The second scan involves the assessment of viability, 

where areas of fibrous tissues appear hyperenhanced compared with normal 

muscle [84]. CT provides high spatial resolution, and has proven to provide good 

diagnostic accuracy [85]. CT could be used as an alternative to cardiac MR when 

patients have pacemakers or suffer from claustrophobia. Some disadvantages 

include high costs, exposure to ionizing radiation and the need to lower and 

stabilise the heart rate with beta blockers. Cardiac arrhythmias can affect image 

quality [73]. 

3.1.3 - Magnetic resonance imaging 

MRI is a technique that provides excellent soft-tissue contrast with high 

spatial and temporal resolution allowing detailed cardiac anatomy and functional 

information without ionizing radiation and even without contrast agents [86]. In 

MRI, a big magnet is being used to align the spin of water protons in the body 

(H+) parallel or anti-parallel to the magnetic field, creating a “net magnetisation 

vector”. Typically, only a small fraction (1 ppm) of water protons is aligned with 

the external magnetic field and spins are precessing with the Larmor frequency 

about the external magnetic field. By applying radiofrequency pulses, the net 

magnetization vector can be tipped into the transverse plane. The precessing 

transverse magnetization can then be measured in the presence of a magnetic 

gradient field with a receiver coil and the received time signal can be Fourier 
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transformed to generate an image. While the transverse magnetization decays 

with T2, the longitudinal magnetization returns to the equilibrium magnetization 

with the tissue specific time constant T1. More details about MRI physics are 

described in Chapter 4. 

Pre-clinical and clinical studies have shown that T2-weighted (T2W) MRI, 

which is especially sensitive for water, can be used to assess oedematous area-

at-risk (area of the myocardium that is supplied by the affected artery) and 

potentially salvageable myocardium [87-89]. To detect irreversible injured 

myocardium, different contrast agents have been investigated including iron-

oxide nanoparticles, liposomes or emulsions (e.g. gadolinium chelates) [90-92]. 

Gadolinium-based contrast agents have become the gold standard for the 

assessment of myocardium viability, such as gadopentitic acid (Gd-DTPA). 

Gadolinium changes the magnetic properties of water protons and therefore the 

signal intensity of the surrounding tissues. It accumulates in fibrotic areas due to 

the increased extracellular volume and remains longer in these areas compared 

with normal tissue because of the dysfunctional capillary system [86, 93]. Late 

gadolinium enhancement (LGE) images can be used to detect small volumes of 

myocardial injury, which is a strong prognostic predictor of future coronary events 

[94]. In addition, LGE MRI allows to assess infarct extent and is important to guide 

coronary intervention [95, 96]. MRI also allows multimodal imaging, e.g. 19F/1H 

MRI. The 19F signal can be measured directly by MRI because of the lack of 

natural fluorine in the body. 19F based contrast agents, usually nanoparticles, 

have been used to assess hot-spots of inflammation in mouse models of MI. By 

combining the 19F image with a 1H image, exact anatomical co-localization of 

these particles can be achieved [97]. 
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Compared to nuclear imaging techniques, MRI molecular imaging lacks in 

sensitivity. Due to the relatively slow data acquisition of MRI, cardiac and 

respiratory motion can cause image artefacts. To minimize motion artefacts data 

acquisition is synchronized with the electrocardiogram while respiratory motion is 

compensated using navigator techniques. Pacemakers remain challenging, and 

patients with claustrophobia and anxiety may need sedation prior to study, as an 

MRI scan can take between 45 to 90 minutes [86, 98-100].  

3.1.4 - Ultrasound 

Conventional ultrasound imaging (US) uses a transducer to produce 

pulses of sound that propagate into the tissue. US is a non-invasive technique 

usually used to assess the anatomy in real-time and measure blood flow in large 

vessels with very high temporal resolution. US systems are low cost, portable 

and safe for both the user and the patient, because of the lack in ionizing radiation 

and is the most widely used clinical cardiac imaging modality. Molecular targeted 

US is also available, and is based on the use of gas-filled, acoustically active 

microspheres or ‘microbubbles’ engineered to bind to specific endothelial targets. 

Development of more sophisticated ultrasound equipment may increase 

sensitivity and specificity, by enhancing microbubble properties, facilitating their 

cardiovascular molecular imaging applications [101, 102].   

3.1.5 - Optical imaging 

Fluorescence and bioluminescence imaging are optical molecular imaging 

techniques that use light-emitting agents (which generate fluorescence or 

bioluminescence photons) for the visualization and measurement of biological 

processes. Optical imaging allows high-speed and high-sensitivity detection of
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 multiple tracers; it can be used to target several biological events. It is relatively 

easy to perform and inexpensive compared with other molecular imaging 

techniques. The limited penetration depth (light only penetrates a few cm into the 

tissue, limiting a whole-body scan) is still the major limitation when translating this 

technology into patients [71, 103].  

3.1.6 - Multi-modality imaging  

Multi-modality imaging is also available and is often required when 

anatomical/functional information is needed or for quantification and anatomical 

localization of molecular probes. Some hybrid techniques include, SPECT/CT, 

PET/CT or PET/MRI [76, 104, 105]. These hybrid imaging modalities combine 

the advantages of SPECT and PET (high sensitivity for detecting molecular 

processes) with the high resolution morphological images provided by CT and 

MRI. In addition, MRI offers superior soft tissue contrast. These simultaneous 

acquisitions also benefit from intrinsic co-registration allowing the correction for 

motion, attenuation or partial volume effects thereby improving tracer 

quantification [71]. The drawback of these multi-modal techniques are the high 

equipment costs, specialised training and availability of the systems. However, 

the information that these hybrid modalities provide allow more complex studies 

and might help improving our understanding of biological processes and 

therapeutically targets in vivo. 

3.2 - Molecular imaging of myocardial infarction remodelling 

The remodelling process after MI involves the activation and recruitment 

of inflammatory cells, their maturation, the recruitment of reparative cells and 
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deposition of ECM proteins within the scar tissue. Understanding the MI 

remodelling process at a molecular and cellular level in vivo may improve our 

knowledge of post infarct healing and could aid the better selection of patient-

specific treatments that aim at limiting infarct expansion and subsequent LV 

remodelling. In this section, practical applications of in vivo molecular imaging to 

assess MI remodelling will be described.  

3.2.1 - Oedema 

Myocardial oedema can refer to either myocyte swelling or accumulation 

of fluid in the interstitial space, that result in the retention of water in the cardiac 

space. Oedema can be found in many cardiac injuries including severe or acute 

myocardial infarction [88], reperfusion [106], inflammation [89] or cardiac 

transplantation [107].  

T2W MRI have been used to assess and quantify oedema in vivo in the 

heart. Due to the long T2 relaxation time of water-bound protons, an image can 

be generated with higher signal intensity within the oedematous tissue by using 

T2W sequences. In 1983, Higgins and colleagues [108] showed for the first time 

the positive correlation of T2W signal intensity and water-tissue content in a 

canine model of myocardial infarction. Clinically, T2W CMR is currently used to 

determine the extension of the area-at-risk in reperfused and non-reperfused 

myocardium [109, 110] providing prognostic information whether the myocardium 

is salvageable. It is also used to distinguish between acute and chronic coronary 

syndromes [111], which is important for diagnosis and treatment guidance. 

The duration and extent of myocardial oedema depends on the disease 

models. In dogs, myocardial oedema has been observed after 30 minutes of 

ischemia [88]. In patients with MI, oedema was evident after 24 hours, remained 
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unchanged during the first week while a reduction in oedema size was observed 

by week two [93] (Fig.3.2).  

 

 

Figure 3.2. Visualization of oedema with T2-weighted sequences (T2W) and corresponding 
gadolinium enhancement (LGE) images from the scar area. Over time, the oedema area 
decreases significantly the left ventricular (LV) volume. Adapted from [93]. 

 

Gadolinium-based contrast agents used at an early time-point (up to 5/7 

days) after MI have shown to underestimate the salvaged myocardium. On LGE 

images acquired during the acute phase of MI, a significant overestimation of the 

infarct area can be observed, which decreases considerably over time [93]. LGE 

observed during the acute stages not necessary implies irreversible injury, and 

thus may underestimate the amount of salvageable myocardium. Thus, for 

assessment of the area of risk a combination of LGE and T2W imaging should be 

performed. 
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3.2.2 - Apoptosis/necrosis in MI 

Within the first hours after an MI, cardiomyocytes start dying, either via 

apoptosis and/or necrosis. Both processes are highly regulated and their 

detection has been accomplished using molecular imaging approaches [112]. It 

is evident that cells that show early features of an apoptotic program may have 

the potential to be salvaged if detected early. The possibility of identifying these 

events in vivo may have profound implications on therapy and may help clinicians 

salvaging tissue and preventing further damage of the myocardium.  

While the cell membrane remains intact during apoptosis, it ruptures and 

becomes permeable during necrosis; these characteristics have been taken into 

consideration when developing novel imaging agents. Current successful in vivo 

imaging of apoptosis has been accomplished with an Annexin-V based imaging 

probe. Annexin is a cellular protein and binds selectively to phosphatidylserine, a 

phospholipid present on the outer membrane of apoptotic cells and on the inner 

membrane of viable or necrotic cells [113]. Imaging of apoptosis with an Annexin-

V imaging probe has been achieved with 99Tc-SPECT [114, 115], fluorescence 

imaging [116] and MRI [117, 118].  

SPECT imaging using 99Tc/Annexin-V showed accumulation of this probe 

within the infarcted area, but not in the surrounding myocardium, consistent with 

areas of perfusion defect, suggesting the presence of programmed cell death 

[115]. This probe requires a waiting period of 15-20 hours for adequate blood 

clearance before imaging. This is a challenge when targeting apoptosis, as this 

process is considered more prevalent between 4-8 hours after infarct reperfusion. 

The time decay rate thus decreases the sensitivity of this probe [119, 120].  
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Annexin can also be bind to phosphatidylserine on the inner surface of 

necrotic cell membranes. To differentiate between apoptosis and necrosis, 

Sosnovik and colleagues [117, 118] used AnxCLIO-Cy5.5 to assess apoptosis 

and a gadolinium based contrast agent, Gd-DPTA-NBD, to identify necrosis, 

simultaneously in a murine model of ischemia/reperfusion. AnxCLIO-Cy5.5 

nanoparticles have been developed as a multimodal probe that combined an 

Annexin group with a superparamagnetic cross-linked iron oxide (CLIO) 

providing MRI signal and an infrared fluorochrome Cy5.5 for fluorescence 

imaging. Similarly, Gd-DTPA was combined with NBD fluorochrome. The 

evolution of cardiomyocyte death was analysed, and within 4-6h of reperfusion, 

AnxCLIO-Cy5.5 uptake was significantly higher compared to CLIO-Cy5.5 (a 

control inactivated Annexin). Approximately 70% of the myocardium which 

showed AnxCLIO-Cy5.5 uptake did not show Gd-DTPA-NBD uptake 

simultaneously (Fig.3.3A,B). Fluorescence microscopy and 

immunohistochemistry confirmed that most of the cardiomyocytes in these areas 

were morphologically intact and therefore remained potentially salvageable 

within this period. The MR images showed that the signal of apoptotic areas was 

restricted to the mid-myocardium (where the border might have some flow 

restoration) whereas necrosis was confined to the sub-endocardium) 

(Fig.3.3C,D). In areas with both apoptosis and necrosis (with simultaneous 

uptake of AnxCLIO-Cy5.5 and Gd-DTPA-NBD) the percentage of wall thickness 

was significantly reduced between 4-6h of reperfusion compared to segments 

with apoptosis alone (Fig.3.3E,F) [118]. These results indicate the greater the 

extent of cell loss during this phase, the worse the functional outcome. These 

results indicate that the greater the extent of cell loss during this phase, the worse 
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the functional outcome. Overall, these studies have shown the potential of 

cardiomyocyte salvage within 4-6 hours post-MI, and that apoptosis can be 

imaged in vivo.  

 

Figure 3.3. Molecular MRI of cardiomyocyte death in myocardium exposed to mild-moderate 
injury. Cardiomyocyte apoptosis (A) AnxCLIO-Cy5.5 showed mid-myocardial uptake (yellow 
arrows, hypointensity signal) and (B) control, CLIO-Cy5.5 showed no significant uptake. 
Cardiomyocyte necrosis (C) contrast to noise ratio (CNR) indicating uptake of AnxCLIO-Cy5.5 
and the control probe inativatedCLIO-cy5.5 in injured vs non-injured myocardium (D) Percentage 
of AnxCLIO-Cy5.5 accumulated myocardium (anxCLIO+) with or without simultaneous Gd-DTPA-
NBD uptake (DE-/+), (E) Contractile function (measured by percentage wall thickening, PWT in 
%) in AnxCLIO-Cy5.5 accumulated myocardium segments with or without simultaneous Gd-
DTPA-NBD uptake (DE-/+). (F): Contractile function based on the transmural extent of AnxCLIO-
Cy5.5 accumulation (representing infarct extent). Means±SEM **P<0.001, *P<0.01. Adapted from 
[118]. 

3.2.3 - Inflammation (and wound healing in MI) 

In patients and mice, MI triggers the recruitment of leukocytes to the 

injured tissue [11]. The amplitude and duration of the inflammatory response has 

a significant impact on the outcome of infarct healing. Both severe [20, 36, 121] 

and low levels [121, 122] of inflammation lead to impaired myocardial healing. 
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Inflammation can be assessed by targeting specific cell types and/or molecules, 

such as (1) adhesion molecules critical to leukocyte recruitment, (2) 

enzymes released by inflammatory cells or by (3) directly assessing 

monocytes/macrophages. 

 

(1) The activation of the vascular endothelium is crucial for 

neutrophil and monocyte recruitment [123]. Nahrendorf and colleagues have 

shown the feasibility of targeting VCAM-1, expressed on endothelial cells, in a 

mice model of MI by PET-CT in vivo [124]. By using a tetrameric peptide 18F-4V, 

which binds to VCAM-1, expression of this protein could be evaluated. 18F-4V 

preferentially accumulated in the infarcted regions but not in the remote 

myocardium, which was correlated with higher VCAM-1 mRNA expression. One 

limitation of this particle is the potential toxicity due to cellular uptake and the 

waiting period of 48h before imaging.  

Alternatively, iron-oxide particles have been extensively used in MRI for 

tracking inflammatory cells and are FDA approved for clinical use (Ferumoxytol, 

AMAG Pharmaceuticals, USA) [125]. They are non-toxic and allow multimodal 

imaging if labelled with fluorophores. As these particles are superparamagnetic 

they have a strong effect on T2 and T2* relaxation times (higher iron 

concentrations lead to shorter T2 and T2* relaxation times and higher R2 and R2* 

values). Limitations of iron oxide particles include the negative contrast (signal 

loss) that can create “black holes” in the images and prevent anatomical MR 

colocalization and consequently evaluation of the tissue of interest. 
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(2) Matrix metalloproteinases (MMPs) that are secreted by inflammatory 

cells, degrade the ECM proteins and play a significant role in myocardial healing. 

During remodelling, MMPs are upregulated and are actively involved in 

inflammatory cell infiltration, facilitating cellular debris removal, migration of 

cardiomyocytes and myofibroblasts, as well as promoting angiogenesis and 

consequently ECM protein deposition. Excessive MMPs activity can lead to 

increased ECM degradation and consequently lead to wall thinning, dilatation and 

ultimately heart failure [126, 127]. MMPs can be imaged using (1) a large range 

of ligands (e.g. tissue inhibitors of metalloproteinase-like peptides) or (2) 

exploiting their proteolytic activity [128]. 

99mTc-RP805 SPECT tracer has been used to label a broad spectrum of 

MMP inhibitors. In a porcine model of MI, a multimodality SPECT/CT imaging 

system was used to analyse the evolution of MMP (99mTc-RP805) activity, which 

was then correlated with LV deformation by cine MRI at 1, 2, and 4 weeks post-

MI [129]. Within the 1st week post-MI tracer retention was maximum, and 

remained upregulated until 1 month post-MI; 99mTc-RP805 was in good 

agreement with MMP activity and correlated with the increase in LV end-diastolic 

volumes (Fig.3.4) [129].  
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Figure 3.4. (A) In vivo SPECT/CT imaging using a dual-isotope 99m Tc-RP805. (B) Relationship 
between body mass indexed LV end-diastolic volume and MMP activity within the infarcted 
region. Adapted from [129]. 

 

Chen et al [130] developed a near-infrared fluorescent (NIRF) probe that 

is activated by MMP cleavage to study changes in MMP activity after MI. Two 

MMPs were identified; one at the beginning and another at the end of the healing 

process, MMP9 and MMP2, respectively. After induction of MI, the NFIR probe 

was injected into different groups of mice and MMP activity was evaluated ex 

vivo. Areas of infarcted regions showed an increase in NFIR signal compared to 

normal myocardium, with a peak at 1 week, that remained high until 4 weeks after 

MI. Flow cytometry demonstrated that MMPs were leukocyte-derived.  

Leukocyte infiltration and protease activity after MI were further evaluated 

by Nahrendorf et al [131]. The disruption of ECM during remodelling is not just 

affected by proteinases, as MMPs, but also by lysosomal proteases, like 

cathepsins. Cathepsin is upregulated in different animal models after MI [132, 

133] and in patients with dilated cardiomyopathy [134]. Fluoromagnetic iron oxide 

nanoparticles (CLIO-VT750), which are phagocytosed by inflammatory cells, and 

a fluorescent probe (Prosense-680), which is activated by the proteolytic activity 

of cathepsins, were investigated in the healing myocardium of wild-type and 
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(FXIII-/-) mice with impaired would healing. In vivo fluorescent molecular 

tomography (FMT) with Prosense-680 demonstrated a strong signal within the 

infarcted regions. Additionally, after co-registration of FMT and MRI images, 

accumulation of CLIO-VT750 was detected in the hypokinetic infarcted 

myocardium. Using this multichannel FMT protocol, they demonstrated that 

cathepsin activity (shown by Prosense-680) peaked at day 4 after MI, and 

phagocytosis (shown by CLIO-VT750) peaked at day 6. FXIII-/- mice showed 

lower signal for both probes (P<0.05). 

 

(3) Inflammation is characterized by infiltration of the damaged tissue 

by monocytes/macrophages. Monocytes/macrophages phagocytose cell 

debris and pathogens – a property that has been used for the development of 

imaging strategies [97, 135-138]. Monocytes/macrophages populations have 

been targeted using a variety of materials, and have been imaged by PET and 

SPECT (using different ligands), optical imaging (using quantum dots and 

fluorochrome-labelled nanoparticles), CT and MRI (using iron-oxide 

nanoparticles and 19F perfluorocarbons) [139].  

18FDG PET:   18FDG is a marker for tissue uptake of glucose and thus 

18FDG PET imaging is clinically being used to assess myocardial viability as the 

production of glucose is supressed in the ischaemic myocardium [140]. In 

addition, 18F-FDG, can be used to assess inflammatory cell activity (increase in 

glucose activity) in the myocardium post MI or in patients with myocarditis [141, 

142]. Lee et al [142] assessed the post-infarct inflammatory response through 

monocyte uptake of 18FDG with PET/MRI. Infarcted areas showed significantly 

increased 18FDG-PET signal at day 5, compared with control mice (2.7±0.1 vs 
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1.3±0.2; P<0.01), and by day 14 the signal had returned normal values (Fig.3.5). 

Interestingly, the observed signal changes follow the biphasic monocyte 

recruitment, of Ly-6Chigh and Ly6Clow monocytes. The combination of PET with 

MRI provided the precise co-localisation of the PET signal with the infarct and 

analysis of both anatomic and functional parameters. As mentioned before, 

myocytes also metabolize glucose, and so they can show high 18FDG signal. 

Consequently, suppression of this uptake is required prior to inflammatory cell 

imaging. In this study, the authors used ketamine-xylanize anaesthesia to 

supress background signal. Xylanize has shown to impair insulin secretion in 

response to rising glucose levels, in rodents [143]. By decreasing circulating 

insulin, GLUT4 (an insulin-sensitive glucose transporter) is inhibited in the 

cardiomyocyte membrane, consequently decreasing the glucose levels and 18F-

FDG signal. Other strategies of food withdraw, heparin administration, or limiting 

the anaesthesia have been also evaluated to supress cardiomyocyte signal [144]. 

Fasting is the most used in clinical practise; after feeding insulin levels rise, and 

glucose becomes the primary substrate for oxidative metabolism (as the diet 

switches the myocardium from glucose to fat metabolism), and consequently, 

decreased FDG uptake in the myocardium.  
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Figure 3.5. 18FDG-PET detection of metabolically active macrophages in the murine myocardium 
5 and 14 days post-myocardial infarction (MI). Adapted from [142]. 

 

1H/19F MRI   19F perfluorocarbons (PFCs) nanoparticles have been also 

explored to target macrophages in vivo by 1H/19F MRI. 19F PFCs can be imaged 

by 19F MRI separately from the proton anatomical image. Its signal is directly 

proportional to the PFC concentration and background 19F signal is absent 

resulting in high specificity for 19F and consequently macrophages. Some PFC-

containing nanoparticles suitable for MRI purposes are FDA approved as blood 

substitutes [145]. Flögel and colleagues have shown the possibility of tracking 

macrophages using 19F PFCs in vivo in a mouse model of MI [97]. The authors 

showed that 19F signal could be detected within the anterior, lateral and posterior 

wall of the heart, and in areas of surgical incisions, consistent with the presence 

of macrophages assessed by histology (Fig.3.6A,B).  
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Figure 3.6. Infiltration of perfluorocarbons 4 days after induction of myocardial infarction in mice. 
(A) In vivo 19F MRI: anatomically corresponding 1H and 19F images, showing accumulation of 19F 
in areas of infarcted myocardium. (B) Colocalization of rhodamine-labelled PFCs and 
monocytes/macrophages in the heart after immunofluorescence of CD11b. Adapted from [97]. 

 

More recently, 19F MRI has also been used at clinical field strength. Bönner 

et al [135] have shown the possibility of imaging 19F ex vivo in porcine hearts at 

3T. Two fluorine emulsions have been studied, perfluoro-15-crown-5-ether 

(PFCE) and an already clinically applied perfluorooctylbromide (PFOB) together 

with gadolinium enhancement. Four days after MI induction, the hearts were 

excised and ex vivo MRI showed accumulation of PFCE in the infarcted region. 

Detection of a low number of macrophages using the fluorine approach may 

remain challenging because of sensitivity issues. To allow for human application, 

improvements to the pharmacokinetics of the PFCs are currently researched to 

allow faster clearance [97, 136].  
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FMT/MRI   Another approach to track monocytes/macrophages is by the 

combination of fluorescence molecular tomography (FMT-CT) and MRI. Panizzi 

and colleagues [36] used this hybrid technique to specifically image Ly6Chigh 

monocytes and study their role in infarct healing. The authors have shown that 

the presence of the monocyte sub-populations was linked to high protease 

activity. The increment in blood circulating monocytes has been associated with 

disturbed resolution of inflammation and consequently poor prognosis. 

SPIONs MRI   Iron oxide particles have been used to detect inflammation 

in the heart. Similarly to 19F-PFCs, iron-oxide particles have been used to track 

monocytes/macrophages after being injected intravenously [90, 138, 146-148]. 

Sosnovik and colleagues [146] have shown the potential of combining MRI and 

fluorescence imaging to track macrophage/monocyte populations in vivo after 

induction of MI in mice using a magnetofluorescent nanoparticle CLIO-Cy5.5. 

MRI and fluorescence microscopy imaging was performed 48 hours after 

administration, showing an increase in CNR in areas of infarcted myocardium, 

but not in SHAM-operated animals. Areas of accumulation of CLIO-Cy5.5 by MRI 

were correlated with fluorescence tomography and associated with macrophage 

infiltration (Fig.3.7). 
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Figure 3.7. Fluorescent molecular tomography (FMT) and magnetic resonance imaging (MRI) of 
myocardial macrophage infiltration in the heart in a murine model of myocardial infarction. (A) 
Correlation of myocardial contrast-to-noise by MRI and cardiac fluorescence intensity by FMT 
48h after administration of CLIO-Cy5.5 in different doses ranging from 3 to 20mg iron/kg. (B) 
Fluorescence microscopy colocalized well with positive signal from immunohistochemistry for 
MAC-3 macrophages. Adapted from [146]. 

 

Clinically, ultrasmall superparamagnetic iron oxide particles (USPIO) have 

been administered in patients with acute myocardial infarction. Areas of infarct 

showed higher R2* relaxivity values, whereas remote areas showed less uptake. 

The authors suggested that the signal at the remote areas can be associated with 

the influx of inflammatory cells to the area of infarct. However, no histological 

analysis has been performed to corroborate their hypothesis [90].  

Additionally, and more interesting, some studies have shown the 

possibility of cell tracking by in vivo pre-loading of monocytes/macrophages and 

monitor their evolution using iron-oxide particles [137, 149]. Montet-Abou and 

colleagues [147] showed that before induction of MI, the prior administration of 

fluorescent superparamagnetic iron oxide particles (SPION) can be used to track 

the infiltration journey of monocytes/macrophages in rats by MRI. Areas of 

hypointense signal could be detected in infarcted areas of MI animals but not in 
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the control or SHAM group. More interesting, the SPIO-MI-anti-inflammatory 

CCL5 group showed a significant reduction in signal in the infarct region 

compared with SPIO-MI rats. Immunohistochemistry against CD68+ cells showed 

a correlation between the MRI signal and tissue macrophages. In addition, the 

degree of macrophage infiltration was related to the extent of myocardial fibrosis 

(Fig.3.8).  

 

Figure 3.8. Monocytes/macrophage infiltration after myocardial infarction (MI): (A) Comparison of 
all groups at day 3. SPION_MI showed a hypointense signal by MRI (in vivo and ex vivo) in the 
MI. Fluorescent-loaded cells in the myocardial infarction corresponding to CD68 positive cells. 
Animals with MI but no iron injection (Æ_MI) did not show hypointense signal by MRI or iron-
loaded cells by histology. The SPION_SHAM group did not show an inflammatory infiltrate or 
myocardial infarction. The SPION_MI_AntiCCL5 showed a hypointense signal by MRI, small 
fibrosis and less iron-loaded CD68-poositive cells in the MI. (B) Correlation of histological data 
and quantification of 1/T2 values of monocytes/macrophage population 3 days after MI. SPION, 
fluorescent superparamagnetic iron oxide particles; MRI, magnetic resonance imaging. Adapted 
from [147]. 
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Overall, this data supported the idea of monocytes/macrophages as a 

therapeutically target to regulate inflammatory response, promoting the healing 

process and consequently attenuating LV remodelling.  

3.2.4 - Resolution of inflammation 

Angiogenesis is an important part of myocardial repair following MI. The 

formation of new capillaries can affect the prognosis of infarct healing and 

therefore in vivo visualisation may help predict the remodelling outcome and 

stratify patient risk. Currently imaging approaches include probes that target the 

αvß3 integrin or the up-regulation of vascular endothelial growth factor (VEGF) 

receptors.  

αvß3 integrin, expressed on the cell surface of proliferating endothelial 

cells, is a key signalling regulator in angiogenesis. Meoli et al [150] showed up to 

a four-fold increase in the retention of the probe in hypoperfused regions of 

canine myocardium where angiogenesis was stimulated using a SPECT imaging 

probe, 111In-labeled αvß3-targeted agent. This was in agreement with the 

histological findings, where evidence of angiogenesis and increased expression 

of αvß3 was identified within the infarcted areas. A novel compound, 99mTc 

labelled regioselectively addressable functionalized template-RGD (99mTc-RAFT-

RGD) has been used in vivo in a rat model of re-perfused MI by SPECT [151]. 

The probe has improved affinity to αvß3 integrin. 99mTc-RAFT-RGD was visible in 

the infarcted area but not with the negative control 99mTc-RAFT-RAD, reflecting 

the induction of angiogenesis in the infarct zone after reperfusion of an MI.  

The time-course of angiogenesis post-MI was further studied by Higuchi 

et al. [152]. The 18F-Galakto-RGD PET probe, which specifically binds to αvß3 

integrin, was deposited at the border of the infarct by day 3, peaked between 1 
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and 3 weeks while expanding into the centre of the infarct, and decreased to 

baseline at 6 months after reperfusion. In vivo signal uptake was corroborated 

with vascular density accessed by immunohistochemistry. The translation to the 

clinical setting has been successfully demonstrated in one patient with recent MI, 

where an increase signal uptake was identified in the areas of infarction in 

patients 2 weeks after MI [153]. 

VEFG is a protein produced by cells that stimulate angiogenesis, and has 

also been a target for molecular imaging of angiogenesis. Rodriguez-Porcel and 

colleagues [154] showed the feasibility of detecting VEGF upregulation in vivo 

after MI in a rat model using 64Cu-DOTA-VEGF121 by PET. 64Cu-DOTA-VEGF121 

signal increased significantly from baseline to day 3 when it peaked, and 

remained high for 2 weeks post-MI compared to no uptake in control animals 

(Fig.3.9).  
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Figure 3.9. Imaging VEGF in a rat model of myocardial infarction (MI) by PET. Top representative 
images at baseline, animal after MI and SHAM-operated animals. Representative images of time-
dependent effect on uptake of 64Cu-DOTA-VEGF121 is shown at the middle. Red arrow shows the 
myocardial uptake of the tracer, white shows the chest wall muscle layer uptake. At the bottom 
image, the quantification of 64Cu-DOTA-VEGF121 after MI over time is shown (%ID/g of tissue). 
*P<0.05 compared with baseline; ¥P<0.05 compared with SHAM and 64Cu-DOTA-VEGF121; 
¶P<0.05 compared with VEGF mutant and 64Cu-DOTA-VEGF121. Adapted from [154]. 

 

Angiogenesis has also been analysed by MRI, using cyclic Asn-Gly-Arg 

(cNGR)-labelled paramagnetic quantum-dots (pQDs) [155]. The tripeptide cNGR 

homes specifically to CD13, an aminopeptidase that is strongly upregulated 

during myocardial angiogenesis. After seven post-operative days and after 2 

hours of cNGR-pQDs injection, mice were scanned with MRI. cNGR-pQDs 

uptake within the infarcted area resulted in a strong negative contrast, which was 

significantly reduced in SHAM-operated animals and in mice which received 

unlabelled control contrast agent. A strong colocalization of the cNGR-pQDs with 

endothelial cells was confirmed ex vivo by 3D 2-photon laser scanning 

microscopy.  
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3.2.5 - Maturation of the scar 

The ECM is a fundamental cell and tissue support component. For several 

years, the ECM was thought to be just a structural and static part of the heart, 

however its importance has been further explored, and it seems that the ECM is 

a dynamic and complex structure with several important biological roles such as 

its participation in cell signalling [51, 128, 156, 157]. The replacement of injured 

myocardium by fibrotic scar tissue is a compensatory mechanism that occurs in 

many cardiac diseases. 

MRI has become the gold-standard imaging technique to assess cardiac 

structure and function. MRI is clinically widely used to visualize fibrosis using late-

gadolinium enhancement (LGE). By shortening the T1 of water, gadolinium 

accumulation within fibrotic areas makes them appear brighter on T1W images. 

T1 mapping has been used for risk stratification in patients. A study with 100 

patients with heart failure and preserved ejection fraction has shown that T1 

values below median were associated with an increased risk of cardiac events 

compared with those above the median [158].  

MRI can also be used to access differences in the extracellular volume 

(ECV) of the heart. This can be achieved by measuring a T1 map before contrast 

injection (also known as native T1) and after injection. Normal ECV varies 

between 24-28%, and changes in ECM content have been associated with 

disease progression, mainly as collagen deposition [128, 159]. Zeng and 

colleagues [160] have recently validated the use of T1 mapping for the 

assessment of ECV by correlation with collagen deposition (fibrosis assessed by 

histology) within the myocardium in rabbits. ECV was calculated from pre and 

post contrast T1 values and showed a strong correlation with pathological 
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collagen content (P<0.001; collagen volume fraction, CVF), and was better than 

post contrast T1 mapping alone (P<0.004). In contrast, no correlation was found 

between pre-contrast T1 mapping and CVF and thus this parameter cannot be 

used to assess diffuse myocardial fibrosis. Thus, ECV measured by MRI may 

provide accurate diagnostic information on the current state of the myocardium. 

ECM is formed by a dense network of proteins, mostly collagen type I and 

III and elastin. Collagen is present in relatively high concentrations in many 

organs, and during fibrosis collagen concentrations further increase in response 

to injury. When upregulated it can be harmful by delaying diastolic function or 

cause arrhythmias. Different imaging techniques have been used to measure 

overexpression of collagen in vivo [161].  

Helm et al [162] has shown the feasibility of imaging collagen using a 

gadolinium-based collagen-targeting contrast agent (EP-3533) in a mouse model 

of MI. EP-3533 retention time was longer compared with control gadolinium in 

the infarct zone (194.8±116.8 vs 25.5±4.2 minutes) as compared with normal 

myocardium (45.4±16.7 vs 25.1±9.7 minutes), revealing its specificity and higher 

affinity for collagen (confirmed by histology) (Fig.3.10).  
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Figure 3.10. Imaging fibrosis and scar after myocardial induction in murine model using a 
collagen-specific contrast agent. Anatomical short-axis views (a,d), inversion-recovery (IR) MRI 
with scar enhancement (b,e) and corresponding histology by picrosirius red-staining of the left 
ventricle (c,f). Adapted from [162].  

 

Another collagen specific peptide (collagenin) has been also reported 

[163]. This contrast agent is based on the glycoprotein VI platelet receptor on 

collagen I and III and has been used for SPECT imaging in a rat model of MI. 

Following injection of 99mTc-labeled-collagenin, high uptake was demonstrated in 

infarcted zones of MI animals but not in control animals. Tracer uptake was 

confirmed in regions with collagen deposition by autoradiography; the suitability 

and specificity of this new probe for imaging MI fibrosis has been also confirmed. 

This probe also benefits from fast blood clearance and lower liver uptake making 

it promising for clinical translation [163].  

The content in elastin also increases during post-MI remodelling [58]. 

Using an elastin-specific MR contrast agent, Wildgruber et al [164] have shown 

the feasibility of monitoring scar elastin maturation using an elastin-specific 

gadolinium-based contrast agent. This contrast agent showed longer retention in 
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scar compared to non-targeted conventional gadolinium-based contrast agents 

(Fig.3.11). 

 

Figure 3.11. Imaging myocardial infarction remodelling using an elastin-specific MR contrast 
agent (Gd-ESMA) in a murine model of permanent LAD occlusion. (A) 7 days after MI induction, 
Gd-ESMA deposition is shown in the scar area confirmed by triphenyltetrazolium chloride (TTC) 
staining. (B) Prolonged enhancement of the left ventricular scar measured by contrast-to-noise 
(CNR) ratios [164].  

 

Another promising contrast agent to assess and modulate ECM 

remodelling have been shown by Nahrendorf and colleagues [165]. 

Transglutaminase clotting factor XIII (FXIII) is involved in ECM turnover and in 

inflammatory response regulation, and consequently might play a role in infarct 

healing [166]. The authors have shown that FXIII tissue levels are diminished in 

patients with acute infarct rupture when compared with MI patients without 

rupture (P<0.0045) [165].  
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In a mice model of coronary ligation, the activity of FXIII was assessed 

using an 111indium-labeled affinity peptide (111In-DOTA-FXIII), allowing direct 

assess of the activity of this enzyme in would healing in vivo. Wild-type animals 

treated with FXIII showed attenuated LV remodelling when compared with control 

WT and animals treated with dalteparin (DP; an anticoagulant which inhibits FXIII 

activation) (Fig.3.12A-L). Additionally, FXIII-treated animals showed faster 

resolution of neutrophil response, enhanced macrophage recruitment, increased 

collagen content and augmented angiogenesis in the healing infarct (Fig.3.13A-

F).  
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Figure 3.12. In vivo SPECT imaging of transglutaminase activity using an 111indium-labeled 
affinity peptide (111In-DOTA-FXIII). (A–I) Longitudinal imaging study (MRI day 2, SPECT-CT day 
3, second MRI day 21); (A,D,G) similar infarct size at early time-point. (E,H,K) Increased SPECT 
signal in FXIII-treated animals compared with the dalteparin-treated (DP) mice. Attenuated left 
ventricular (LV) dilation was showed on the MRI (C,I,L) in FXIII-treated mice. *P<0.05, **P<0.001. 
SPECT, single photon emission computed tomography; MRI, magnetic resonance imaging; CT, 
computed tomography. Adapted from [165]. 
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Figure 3.13. Immunoreactive staining for (A) neutrophils, (B) macrophages recruitment, (C) 
capillary density and (D) VEGF expression during angiogenesis, (E) collagen mRNA levels and 
(D) collagen content in polarized light microscopy. High power field (HPF), positive % area of high 
power field. *P<0.0001. Adapted from [165]. 

3.3 -  Conclusion 

Molecular imaging is likely to provide a new understanding of the different 

biological processes underlying post-MI remodelling. The demands in developing 

new therapeutically targets that can modulate the infarct healing process, 

preventing or attenuating, have been extensively studied in both preclinical and 

clinical settings using different imaging modalities (Fig.3.14). Development of 

novel targeted imaging agents or the improvement of the existing contrast agents 

is a topic of great research interest. Identifying new targets which are 

overexpressed during disease, or the improvement of the current imaging agents 



3.3. Conclusion 
_____________________________________________________________________________ 

 

80 

by increasing its specificity, sensitivity, blood-clearance, safety and cost, may 

help not only to better understand the underlying healing process but also help 

the translation into the clinical setting. Additional efforts to improve image 

processing and acquisition protocols are also desired. 

Molecular imaging is a unique area of research, where inputs from 

different disciplines converge to develop new strategies to detect disease at early 

stages, noninvasively, and quantitatively by imaging biological processes at 

cellular and molecular levels.  

 

Figure 3.14. Different imaging modalities and targets for myocardial infarction (MI). Different 
stages of disease progression would be potentially detected: (1) Oedema by T2W MRI, in a 
subject 3 days after reperfused MI; (2) Necrosis, gadolinium-contrast enhanced MRI using Gd-
DTPA detects irreversible myocardial ischemic injury due to increased extracellular space; (3) 
Apoptosis, MRI detection of myocyte apoptosis; (4) Inflammation, imaging of endothelial cells by 
PET/CT or macrophages with 1H/19F-MRI; (5) Enzymatic activity, MRI of MPO activity 2 days after 
MI in mice; (6) Neovascularization, SPECT imaging of myocardial angiogenesis; (7) Extracellular 
matrix, either using a collagen-specific contrast-agent by MRI or using X by SPECT/CT for the 
detection of myocardial scarring. For detailed information [167]. MPO: myeloperoxidase; MRI: 
Magnetic Resonance Imaging; PET/CT: positron emission tomography/computed tomography; 
SPECT: Single Photon Emission Computed Tomography. 
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Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) is a routinely used diagnostic tool to 

obtain high quality tomographical images with excellent soft tissue contrast. MRI 

is a flexible imaging technique and allows manipulating image contrast based on 

tissue specific properties such as the T1 and T2 relaxation time. However, its 

application extend beyond diagnostic use and MRI has become increasingly 

important in basic research. Preclinical MR imaging has emerged as a new tool 

to better understand the biological mechanisms underlying certain pathologies. 

Especially with the advent of experimental and clinically approved molecular 

contrast agents there is great potential to elucidating pathology on a molecular 

level. These advantageous properties of MRI can have a tremendous impact on 

drug screening, treatment and prognosis.  

This chapter is partly based on the content from the books in references 

[168, 169]. In this chapter, the basic concepts of MR physics, cardiac MR 

sequences and the principle of MR contrast generation will be introduced. In the 

last section, the technical challenges of cardiac MRI in small animals using a 

clinical MRI system will be discussed. 
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4.1 - MRI signal 

Magnetic resonance imaging is based on the principles of nuclear 

magnetic resonance (NMR), a spectroscopic technique used to obtain 

microscopic chemical and physical information of molecules. MRI is based on the 

absorption and emission of energy in the radiofrequency (RF) range of the 

electromagnetic spectrum. RF pulses are used to excite the spins of protons in 

tissue and the resulting emitted signal is detected by receiver coils and is the 

basis of this imaging technique. The main source of the MRI signal is hydrogen, 

primarily in fat and water, which constitutes about 63% of the hydrogen-based 

source in the human body. Hydrogen nuclei have a physical property, known as 

spin, that results in a magnetic moment, µ. 

Without an external magnetic field the magnetic dipole moments (µ) of the 

protons are randomly orientated, so that the net magnetization is zero; but when 

placed in a strong magnetic field (B0), a small fraction of the hydrogen nuclei 

orientates themselves in two possible positions: lower-energy state (parallel to 

the magnetic field) or higher-energy state (anti-parallel to the magnetic field), as 

shown in Figure 4.1. Not all protons contribute equally to these states, however 

a small excess in this direction produces a ‘net magnetic moment’ (or net 

magnetization vector, NMV) that can be measured as the difference between the 

high and low energy state. 
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Figure 4.1. Net magnetization. When an object in placed in an external magnetic field, their 
nuclear spins (magnetic moments, µ) tend to orientate themselves either along (low-energy state, 
arrows up) or against (high-energy state, arrows down) the magnetic field (B0). Adapted from 
[168]. 

 

The dipoles are not perfectly parallel or anti-parallel, but they are 

precessing at the Larmor frequency (w0, at an angle of 54 degrees), around the 

B0 direction, that is determined by the equation: 

 

w𝟎 = g		𝑩𝟎 (1) 

 

where w0 represents the frequency (in megahertz, MHz), B0 represents the 

strength of the magnetic field (in tesla, T) and g is the gyromagnetic ratio, which 

expresses the relationship between the spin and the magnetic moment of a 

specific nucleus (ghydrogen= 42.57 MHz/T) and represents the sensitivity of a 

certain nucleus. 

The signal is generated by the application of short RF pulses, with a 

frequency equal to the Larmor frequency, where the protons from the lower 

energy state are excited to the higher energy state. After excitation, the 

longitudinal magnetization vector will relax back to level of the equilibrium 

magnetization. The amount of nutation that the longitudinal magnetization vector 

experiences after the application of the RF pulse is determined by the flip angle, 



4.2. Contrast characteristics from Spin relaxation: T1, T2 and proton density 
_____________________________________________________________________________ 

 

84 

which corresponds to the strength and the duration of the RF pulse. The rate of 

this relaxation is described by two time constants: longitudinal or spin-lattice (T1) 

and transversal or spin-spin (T2) relaxation time that are characteristic for every 

tissue [170, 171]. 

4.2 - Contrast characteristics from Spin relaxation: T1, T2 and proton 

density 

The MRI signal generated by a tissue is determined by a combination of 

factors, including RF pulse timing, flip angle and the density of protons and their 

relaxation rates.  

An MRI pulse sequence describes a series of RF pulses with varying 

duration and strength, which allows to tip the Mz magnetization (longitudinal) into 

the xy plane (transverse magnetization) where the MR signal can be measured. 

During and after the RF pulse, two types of relaxations take place: longitudinal, 

spin-lattice or T1 relaxation (Mz magnetization), and transverse, spin-spin, or T2 

relaxation (Mxy magnetization). Relaxation characteristics of different tissues can 

be expressed in terms of relaxation times T1 and T2 or relaxation rates R1 and R2 

with R1=1/T1 and R2=1/T2. 
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Figure 4.2. The direction of the main magnetic field and longitudinal magnetization. Adapted from 
[168]. 

4.2.1 - Longitudinal relaxation (Spin-Lattice relaxation, T1) and image 
contrast 

At equilibrium, the NMV aligns with the direction of the applied magnetic 

field B0 and is called the equilibrium magnetization, M0. If enough energy is put 

into the system, it is possible to saturate the spin system and make Mz=0. The 

time constant that describes how Mz returns to its equilibrium value is called the 

spin lattice relaxation time (T1).  

T1 characterizes the recovery of the Mz magnetization to its equilibrium 

value, and is defined by: 

 

𝑴𝒛 = 𝑴𝟎 𝟏 − 𝒆 + 𝒕
𝑻𝟏  (2) 

 

Where Mz is the magnetization at time (t), after the 90o pulse, M0 is the equilibrium 

magnetisation at full recovery. T1 is the time it takes Mz to recover to 

approximately 63% of M0 (Fig.4.3). 
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Figure 4.3. T1 recovery curve. T1 relaxation constant defines the time to regain 63% of longitudinal 
magnetization following a 90º excitation pulse. Adapted from [168]. 

 

T1 recovery accounts for the interaction between excited spins and the 

surrounding lattice. T1 values of fluids are relatively long, while fat tissues have 

shorter T1 values. Thus, in a pulse sequence designed to generate image 

contrast sensitive to T1 (i.e. T1-weighted image), tissues with shorter T1 will have 

higher signal than tissues with longer T1 on T1-weighted images (T1W). 

4.2.2 - Transverse relaxation (Spin-Spin relaxation, T2) and image 
contrast 

The time constant which describes the decay of the transverse 

magnetization (or MR signal), MXY, is called the spin-spin relaxation time, T2. The 

rate by which the transverse magnetization decays is given by:  

 

𝑴𝒙𝒚 = 𝑴𝟎𝒆
+ 𝒕
𝑻𝟐 (3) 

 

where T2 is the magnetization at which time the Mxy magnetisation reaches 

approximately 37% of its initial value after the RF pulse is turned off (Fig.4.4). 

Signal decay is often significantly shortened by local field inhomogeneity and the 

associated relaxation time is then referred to as T2*.



4.2. Contrast characteristics from Spin relaxation: T1, T2 and proton density 
_____________________________________________________________________________ 

 

87 

 

Figure 4.4. T2 decay curve. T2 relaxation constant defines the time for transverse magnetization 
to decay to 37% of its original value following a radiofrequency excitation pulse. Adapted from 
[168]. 

 

T2 relaxation describes the decay of the signal due to interactions between 

spins, which occurs because the magnetic field created by a nucleus interacts 

with nearby nuclei and exchanges energy with each other. T2 values of fluids are 

relatively long due to fewer spin-spin interactions, while fat tissues have shorter 

T2 values. In a T2-weighted image (T2W), tissues with longer T2 will appear 

brighter than tissues with shorter T2. 

4.2.3 - Proton density 

Proton density contrast is indicative of the number of protons per volume 

of tissue. The higher the number of protons in a given volume of tissue, the 

greater is the magnetization available to provide signal. Imaging pulse sequences 

can be designed to provide “proton density weighting” by reducing the influence 

of T1 and T2 relaxation differences within the sample.
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4.3 - Spatial localization of the signal 

Spatial localization of an image is achieved by applying linear magnetic 

gradients. Gradients generate a linear field variation that either increases or 

decreases the strength of the magnetic field along a defined axis. Depending on 

these variations, the protons resonate either faster or slower depending on their 

position along this axis, i.e. their resonance frequencies vary linearly with the 

distance along the direction of the gradient: 

 

w 𝒓, 𝒕 = w𝟎 + g𝑮 𝒕 . 𝒓 (4) 

 

where w(r,t) represents the resonance frequency at a distance along the gradient 

at a time (t), w0 is the Larmor frequency, G is the gradient strength, and r is the 

distance along the gradient. 

These frequencies can be used to distinguish between MR signals at 

different positions in space. In the MR system, 3-dimensional spatial localisation 

is achieved by three sets of gradient coils along orthogonal axis. There are three 

types of spatial gradients: slice selection gradient (Gss, or Gz), a phase encoding 

gradient (GPE, or Gy) and a frequency encoding gradient (GFE, or Gx). The 

relationship between them can be represented in a pulse sequence diagram 

(Fig.4.5). 
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Figure 4.5. Pulse sequence diagram. A 90º radiofrequency (RF) pulse is applied in conjunction 
with a slice selection gradient (Gz). Subsequently, A frequency encoding gradient (Gx) and phase 
encoding (Gy) are turned on once the slice selection pulse is turned off. In this case, the frequency 
encoding gradient is composed of a Gx and Gy gradient resulting in radial k-space sampling. 

 

For a 2D plane, the slice selection gradient (Gss=Gz) is applied orthogonal 

to the imaging plane during the application of the RF excitation pulse. The 

bandwidth of the excitation pulse and the gradient strength of Gss determines the 

slice thickness. All protons outside the slice resonate at (w≠w0) that is not excited 

by the RF pulse. 

Next, the excited 2D slice will experience a phase encoding gradient 

(GPE=Gy) applied in a direction orthogonal to the slice direction, allowing the 

localization of the signal intensity along the y-axis. The phase encoding gradient 

is applied between the RF excitation and the signal readout. During the 

application of the phase encoding gradient, protons will precess faster or slower 

according to their position along the y-axis. This will cause the spins to dephase 

for as long as the phase encoding gradient is applied. Once the gradient is turned 

off, the proton will precess at the Larmor frequency at their original frequency, 
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however, the phase shift created by the gradient (the phase angles) remains until 

the next gradient is applied. The whole sequence pattern has to be repeated for 

every line in k-space, corresponding to a different value of the phase-encode 

gradient until the k-space is filled.  

Finally, the frequency encoding gradient (or readout gradient) is applied 

during the sampling of the echo, so that the echo will now comprise of a range of 

frequencies depending on the location of each proton along the x-axis. Once all 

the data is acquired, a two-dimensional Fourier transform is applied. This 

converts the data, already encoded as spatial frequencies (2D array called k-

space) into an image (Fig.4.6).  

 

Figure 4.6. Data is collected using RF receiver coils. By using time varying gradients, the data 
are acquired in Fourier space (also known as k-space). Each point on the k-space contains 
specific frequency, phase (x,y coordinates) and signal intensity information (brightness). A Fourier 
transform (FT) is required to generate the final image that displays the signal distribution in spatial 
coordinates. Adapted from [168]. 

4.4 - NMR spectroscopy  

Nuclear magnetic resonance spectroscopy (NMR spectroscopy) exploits 

the magnetic properties of certain atomic nuclei, providing detailed information 

about the structure, dynamics and chemical environment of molecules. The 

electron density around each nucleus in a molecule varies according to the types 

of nuclei and bonds in the molecule, causing changes in the resonance 

frequency, distinguishable in an NMR spectra. Therefore, different atoms 
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experience differently the magnetic field; and equation (1) can be re-written for a 

specific atom within its local chemical environment as: 

 

𝑤7 = 𝛾𝐵7 1	– 	𝜎  (5) 

 

where 𝜎 is the shielding constant. 

Consequently, molecules with a particular nuclei in different chemical 

environments may exhibit multiple resonance frequencies. This effect is called 

the chemical shift and will give rise to multiple peaks when measured by magnetic 

resonance spectroscopy (MRS). Instead of applying a linear magnetic field 

gradient on top of B0, as in MRI, in spectroscopy the chemical shift experienced 

from the nuclei while exposed to B0 is resolved. NMR spectra are unique, well-

resolved, analytically tractable and often highly predictable for small molecules. 

Thus, NMR analysis is used to confirm the identity of a substance, and to identify 

different functional groups. 

In a clinical setting, NMR can be used to study the specific resonance 

frequencies of a sample or tissue and can therefore be used to assess pathology, 

for example by detecting changes in macromolecular content. The chemical shift 

of a nucleus is the difference between the resonance frequency of the nucleus 

and a standard, relative to the standard. This quantity is reported in parts per 

million (ppm) and given the symbol delta, δ. 

 

δ	=	(ν	-	νREF)	x106	/	νREF  (6) 
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where ν is the absolute resonance frequency of the sample and νREF is the 

absolute resonance frequency of a standard reference compound, in Hertz, 

measured in the same applied magnetic field B0.  

 

In vivo NMR spectroscopy usually used tetramethylsilane (TMS) as a 

reference. In the human body there is no TMS, but there are two primary 

hydrogen containing substances, water and fat. The chemical shift difference 

between these two types of hydrogens is approximately 3.5 ppm. In vitro, or in 

phantoms studies, trifluoroacetic acid (TFA) can be also used instead as it has a 

simple and single NMR peak. 

4.5 - Contrast agents 

The inherent different in T1 and T2 relaxation times between biological 

tissues, or between normal and pathologic tissue is not always large enough to 

obtain a detectable contrast in the MR image (more details in section 4.8 about 

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)). Sufficient contrast 

is of particular importance in differentiating pathological from normal tissue.  

MR contrast agents are usually not detectable themselves but they modify 

the relaxation properties of surrounding water protons, usually by shortening T1 

and T2 relaxation times.  

4.5.1 - Classification of MR contrast agents 

Gadolinium based contrast agents are by far the most commonly used MR 

contrast agents [92, 168, 172, 173]; however, many other types of agents exist, 

such as iron-oxide particles [92, 137, 174, 175] and more recently 19F 
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perfluorocarbons (PFCs) [176-179]. Contrast agents can be classified according 

to 1) the magnetic property of the agent, 2) the dominant effect of the agent on 

the signal intensity and 3) the biodistribution of the agent (Table 4.1). 

Table 4.1. Classification of contrast agents based on the magnetic properties, biodistribution and 
image enhancement. 

MAGNETIC PROPERTIES BIODISTRIBUTION IMAGE ENHANCEMENT 

Paramagnetic Extracellular fluid Positive (predominant T1-shortening) 

Superparamagnetic 

Intravascular  

Tissue specific 

Negative (predominant T2-shortening) 

 

Proton density 

 

Magnetic properties and image enhancement:  

Paramagnetic contrast agents: Most MR contrast agents are based on 

paramagnetic metal ions, such as (Mn+2) [180], iron (Fe+3) [181], or gadolinium 

(Gd+3) [172]. Paramagnetic materials are metals with unpaired electrons giving 

rise to magnetic dipoles when exposed to a magnetic field. Gd+3 is the most 

commonly used metal ion as a paramagnetic contrast agents. Is ideally suited for 

MRI because it has an electron spin of 7/2 and hence seven unpaired electrons. 

The symmetry of its electronic states produces an electron spin relaxation time 

slow enough to interact significantly with neighbouring water protons [172]. The 

relaxivity (r1 or r2) of a contrast agent in water is defined as the change in 

relaxation rate R1 or R2 of water per concentration of contrast agent. The 

relationship between R1, r1, and the concentration of the paramagnetic material 

is given by the following equation. 

 

R1	(Measured)	=	R1	(Water)	+	r1	[Gd] (7) 
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The relaxivity is dependent on the magnetic field and temperature, so it is 

usually reported along with a Bo and temperature.  

The increase in relaxation rate R1 and R2 is found to be directly 

proportional to the contrast agent concentration [c]. Therefore, [c] can be 

calculated by measuring the intrinsic relaxation rate before (R1pre or R2pre) and 

after (R1post or R2post) the contrast agent injection with  

 

[𝑐] = UVWXYZ+UVW[\
]V

  or	[𝑐] = U^WXYZ+U^W[\
]^

     (8,9) 

 

where r1 is the longitudinal relaxivity and r2 is the transverse relaxivity of the 

contrast agent with the units of (mM x s)-1. 

These equations show that the observed effect of Gd based contrast 

agents depends on the intrinsic relaxation times R1pre and R2pre. Since 

R2pre>R1pre, a given increase in [c] leads to a shortening of T1 (∆R1>∆R2). 

Consequently, Gd-based contrast agents usually have a slightly stronger T1 

lowering effect compared to T2 (r2/r1 ≈1-2). These contrast agents therefore lead 

to a positive contrast effect (detected as an increase in signal intensity or 

brightness) using a T1-weighted pulse sequence. Typical r1 and r2 values of 

currently approved Gd-based contrast agents are in the range of r1 =3-5 mM x s-

1 and r2=5-6 mM x s-1.  

 

Superparamagnetic contrast agents: Superparamagnetic contrast agents 

are based on magnetite (Fe3O4) or maghemine (γ-Fe2O3) water insoluble iron 

oxide crystals. These crystals contain several paramagnetic Fe ions (Fe2+ and 

Fe3+), which when magnetically ordered create a large net magnetic moment, 
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being referred to as superparamagnetic. Superparamagnetic agents can induce 

a strong T1-relaxation rate enhancement, but their dominant effect is on T2/T2* 

relaxation due to the large magnetic moment and the strong effect on transverse 

relaxation [175]. This strong effect in decreasing T2 causes a negative contrast 

effect detected as a decrease in signal intensity or darkness (r2/r1>10) using a T2-

weighted or T2*-weighted pulse sequence [181]. Apart from their effect in 

decreasing T2, iron oxide particles also decrease T2* due to their effect on the 

local magnetic field B0, thus causing focal field inhomogeneities ∆B0. This 

additional effect leads to an even more severe signal decay (1/T2*=1/T2 + γ ∆B0). 

Iron oxide contrast agents are often images using T2* weighted imaging 

sequences. The relaxivities of iron based contrast agents are significantly higher 

compared to Gd-based agents with r1=20-25 (mM x s)-1 and r2=100-200 (mM x 

s)-1. 

 

Other contrast agents: Fluorinated compounds have recently gain interest. 

The 19F isotope is a spin ½ nucleus with a 100% natural abundance. Its 

gyromagnetic ratio is very close to hydrogen (40.08 vs 42.58 MHz/T of 1H) and 

its MR sensitivity is therefore 83% of proton ((dF/dH)3). Assuming linearity of 

increasing noise with frequency, the SNR of 19F is therefore about 89% of 1H per 

nucleus ((dF/dH)2) (19F properties are summarized in Table 4.2). Fluorinated 

compounds have several advantages over conventionally used gadolinium or 

iron-based contrast agents. Conventional contrast-agents are detected indirectly 

by the changes that they induce in the relaxation behaviour of nearby water 

protons, while 19F contrast agents are detected directly by 19F MRI. Since there 

is a low intrinsic concentration of fluorine in soft tissues of the body, 19F MRI 
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results in no background signal and therefore works as “hot spot” imaging, 

directly visualising and spatially localising only the injected agent whilst adding 

independent functional and molecular information to the anatomical 1H image.  

Table 4.2. Nuclear properties of 1H and 19F. I is the spin quantum number and 𝛅 is the 
gyromagnetic ratio. 

Isotope I 
δ/2π 

[182] 

Natural 

Abundance 

Relative 

Sensitivity [%] 

𝑆𝑁𝑅	 𝐹Vd

𝑆𝑁𝑅	 𝐻V
 

1H 1/2 42.58 99.99 1.00 (δ 𝐹Vd )^

(δ 𝐻V )^
≈ 0.89 19F 1/2 40.05 100.00 0.83 

 

The most commonly used fluorine contrast agents for 19F MRI applications 

are perfluorocarbons (PFCs). These compounds have been the focus of much 

interest since the 1960s, first as blood substitutes [183, 184] and afterwards as 

potential MRI active agents [178, 185]. PFCs are organic compounds in which all 

hydrogen atoms are replaced with fluorine. They are mostly biologically and 

chemically inert (because of the high stability of carbon-fluorine bonds) and tend 

to be non-toxic in vivo (even when high doses are administered) making them 

very attractive for medical applications 

 

Biodistribution: Current contrast agents are administered intravenously (i.v.), 

except for the imaging of the digestive system. After the injection of a contrast 

agent, the circulatory system carries it throughout the body. At this point, contrast 

agent take a different course depending on their intended functionality: 

intravascular (IV), extracellular (EC), or intracellular (IC). 

An intravascular contrast agent by design stays in the circulatory system 

until it is removed by the kidneys. All iron oxide particles are IV agents, with a 

half-life in blood ranging from a few minutes to several hours. Iron oxide particles 
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have been used as intravascular agents because of its usually slow clearance 

and been used for magnetic resonance angiography due to its T1-shortening 

effect. Gadolinium based contrast agents are another example of IV contrast 

agents, usually when coupled to macromolecules or plasma proteins and thus 

forming macromolecules in blood, thereby increasing the blood half life time.  

Extracellular contrast agents travel through the circulatory system and 

pass into the extracellular fluid, but do not enter the cells. Usually, tissues with 

denser vasculature or diseased tissue with slower contrast agent clearance 

receive or retain more contrast agent than healthy tissues (T1disease<T1healthy, 

Fig.4.7). EC contrast agents can also be functionalised by adding targeted 

ligands. These ligands can facilitate accumulation of the contrast agent in a 

specific tissue, due to increased affinity to a certain cell type or protein. Several 

gadolinium contrast agents have been chemically modified allowing specific 

imaging of proteins that are upregulated in several diseases.  

 

Figure 4.7. Distribution of gadolinium (Gd) based contrast agents in normal, diseased and scar 
tissue. With the increase in the extracellular space, a higher accumulation of Gd is observed in 
diseased tissues, especially myocardial infarction. Adapted from [186]. 
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Intracellular contrast agents go one step further as they can enter a cell. 

Iron oxide particles as well as 19F PFCs have been used to target in vivo 

inflammatory cells through phagocytosis. 

4.6 - Pulse sequences  

Pulse sequences used in MRI can be subdivided into spin-echo (SE) and 

gradient-echo (GRE) sequences. Several types of SE and GRE imaging 

sequences are used for optimal contrast depending on the type of clinical 

application, contrast agent, tissue of interest, etc. 

4.6.1 - Spin-Echo sequence 

SE sequences utilise a 90° excitation pulse to flip the magnetisation into 

the transverse plane, and a 180° refocussing pulse to refocus the magnetisation 

to compensate for field inhomogeneities (Fig.4.8). After the initial 90° pulse the 

individual magnetic moments dephase due to spin-spin interactions (T2) and due 

to B0 inhomogeneities (T2*). At exactly half the echo time (TE/2) the refocusing 

pulse is applied, flipping the spins and changing the sign of the relative phase (a 

large positive phase change becoming a large negative phase e.g.). The spins 

continue gaining or losing phase because of the magnetic field inhomogeneities 

until the echo time (TE) where all the spins come back into phase again, 

generating an echo.  



4.6. Pulse sequences 
_____________________________________________________________________________ 

 

99 

 

Figure 4.8. Spin-echo sequence diagram. RF, radiofrequency pulse; TE, echo time; Gz(SS), slice 
selective gradient; Gy(PE), phase encoding gradient; Gx(FE), frequency encoding gradient. 

 

An advantage of using a SE sequence is that it can be used to introduce 

strong T2 dependence to the signal. Since some tissues and pathologies have 

similar T1 values but different T2 values it is advantageous to have an imaging 

sequence which produces images with strong T2 weighting. These sequences 

are usually used for the assessment of morphology or tissue-water content (e.g. 

oedema; T2 water=2000ms, T2 muscle=50ms, T2 fat=70ms) [187]. T2W SE sequences 

uses a relatively long TE, which has the effect of strongly reducing (or eliminating) 

blood signal due to the rapid decay (no refocusing) of moving transverse 

magnetisation.  

4.6.2 - Gradient-echo sequence 

GRE sequence utilises an RF excitation pulse that is typically less than 

90°. As a result of the RF excitation, transverse magnetisation is created, the 
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magnitude of which is less than in SE, and the echo is generated using 

refocussing gradients. In GRE sequences the RF pulse only tips a fraction of the 

Mz magnetisation into the Mxy direction; a significant component of magnetisation 

remains in the Mz direction, which enables the use of much shorter TR 

(consequently reducing scan time). To read the signal an initial gradient in the 

frequency encoding direction is applied. As the spins precess at different 

frequencies along this gradient the transverse magnetisation will dephase. A 

second gradient is then applied which typically has the same amplitude as the 

first one but opposite direction (Fig.4.9).  

GRE sequences typically have lower soft-tissue contrast compared with 

SE sequences (T1 water=4000msec, T1 muscle=900msec, T1 fat=250msec) [187], and 

provide T2* contrast (in addition to T2 decay because of field inhomogeneity) due 

to the absence of refocussing RF pulses. To minimise signal loss due to T2*, the 

shortest possible TE is typically used. Compared to SE sequences, GRE are 

more likely to be T1 weighted and exhibit a linear relationship between contrast 

agent concentration (e.g. gadolinium) and MR signal intensity [172]. GRE have 

usually short scan times (5-60s) making it very effective for cardiac MR and has 

been used to assess ventricular function and wall-motion characteristics [86, 

171].
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Figure 4.9. Gradient echo pulse sequence diagram. RF, radiofrequency pulse; TE, echo time; 
Gz(SS), slice selective gradient; Gy(PE), phase encoding gradient; Gx(FE), frequency encoding 
gradient.  

4.7 - Imaging techniques 

Cardiovascular MR in the clinics and in research includes the assessment 

of cardiac anatomy, myocardial viability and cardiac function among others. 

Depending on the information desired several sequences/scans are available. 

Here the most relevant sequences applied in this PhD project are described: (1) 

cine for the assessment of cardiac function; (2) T2W for the assessment of 

oedema; after the administration of contrast agents (usually administered 

intravenously) (3) inversion recovery and late-gadolinium enhancement for the 

assessment of scar; and (4) T1 mapping for the evaluation of changes in 

relaxation rates and for contrast agent quantification.  

4.7.1 - Cardiac cine imaging 

Dynamic imaging of the heart for the assessment of cardiac morphology, 
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myocardial contractile function and wall motion can be achieved with cine 

imaging techniques. Full coverage of the cardiac cycle and high temporal 

resolution allow the visualization of the heart in a movie-like scan. Cine imaging 

relies on very short repetition times, TR, and uses GRE approaches. SE imaging 

is rarely used for cine cardiac imaging due to the longer TR and flow artefacts.  

Cine sequences use electrocardiogram (ECG) triggering to synchronise 

the MRI acquisition with the motion of the heart. Using prospective ECG 

triggering data acquisition starts immediately after the R wave, and until the end 

of the cardiac cycle (Fig.4.10). Usually during the last 10% of the cardiac cycle 

no data acquisition occurs and the system waits for the next R-wave. Multiple 

phases of the cardiac cycle can be acquired during every heartbeat, resulting in 

multiple cine frame. The number of cine frames depends on the number of k-

space lines collected per cardiac phase and the subject’s heart rate, which 

determines the total acquisition window. Alternatively, ECG gating can be 

performed retrospectively by saving the trace of the ECG and reordering the data 

into cardiac phases. This allows maintaining the steady state signal thus avoiding 

flickering artefacts and also allows to acquire the entire cardiac cycle. 

 

Figure 4.10. Electrocardiogram triggering cine gradient echo images. Single slices are acquired 
at multiple time points during the cardiac cycle and the resulting image are viewed as a movie to 
allow the visualization of cardiac motion and estimate different functional parameters.  
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4.7.2 - T2/T2*-weighted 

Infarcted myocardium is characterized by an increase in tissue water and 

lipid content. Oedematous areas and area-at-risk (AAR) in reperfused and non-

reperfused myocardial infarction can be highlighted by higher signal intensity on 

T2W images [87, 110, 182, 188]. T2W sequences are used to enhance the 

differences within the myocardium that emerge from localized changes in free-

water content (oedema) but also blood oxygenation or intra- myocardial 

haemorrhage, among others.  

T2W images are acquired by using long TE and TR times. The longer the 

T2, the greater is the contrast between regions of oedematous and normal 

myocardium. For very long TE, only tissues with very long T2/T2* relaxation times 

will retain signal. T2W imaging uses a pulse sequence that produce high signal 

intensity in areas of oedematous tissue because of the long T2 relaxation times 

that water-bound protons generate (Fig.4.11). T2W sequences produce images 

with high SNR, however they can be time consuming due to the long TR. T2* 

weighted imaging is faster, however produce less SNR and are more prone to 

susceptibility artefacts. Compartments filled with water appear bright and tissues 

with high fat appear dark. 

 

Figure 4.11. After myocardial infarction oedema is increased in the injured tissue and can be 
highlight with T2-weighted sequences.  
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4.7.3 - Viability imaging 

The application of a contrast agent (e.g. gadolinium chelates) selectively 

alters the native tissue relaxation times in proportion to local tissue concentration. 

Late gadolinium enhancement (LGE) has been used to improve the visualization 

of scar both in humans [189] and mice [190, 191]. Contrast agents accumulate in 

tissues in different ways, depending on the disease stage: viable tissue retains 

little amounts of contrast agent, whereas nonviable tissue retains it for longer time 

due to the increased extracellular space and delayed washout, resulting in 

shortened the T1 values.  

The most common LGE sequence used in cardiac MR is a T1W GRE 

sequence employing an inversion recovery (IR) prepulse. The IR sequences 

provides excellent background suppression and its insensitivity to flow has shown 

to be particularly useful for the visualization of small amounts of contrast agent. 

IR techniques can be easily combined with ECG triggering and respiratory gating 

thereby allowing for high-resolution cardiac imaging. 

IR imaging applies a 180° pulse, inverting the longitudinal magnetisation. 

The IR signal recovers exponentially given by: 

 

𝑺 = 𝒂𝒃𝒔(𝑴𝟎(𝟏 − 𝟐𝒆
+𝑻𝑰𝑻𝟏)) (10) 

 

The inversion time, TI, between the inversion pulse and the start of the 

imaging sequence is chosen, from a Look-locker sequence, to approximately null 

the signal from the healthy myocardium at the time of data collection (≈250ms). 

This provides the best contrast between nonviable (e.g. infarcted) and normal 

tissue (Fig.4.12).  
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Figure 4.12. Signal intensity varies according to the chosen inversion time (TI). The time where 
the signals are more disperse, allowing the distinction between tissues, is the time chosen for the 
Inversion Recovery (IR) sequence. Adapted from [173].  

4.7.4 - T1 mapping 

T1 mapping is a technique that allows the quantification of the T1 relaxation 

time using pixel-wise parametric maps. As mentioned before, T1 varies across 

different tissues, allowing the differentiation between organs or, even in the same 

organ, altered tissues. In some diseases, T1 values are altered depending on the 

local molecular environment or increased water content. In the heart, healthy and 

injured myocardium can be differentiated by their T1 values, enabling the 

detection of different cardiomyopathies.  

When contrast agents are administered, it can help investigating some 

pathologies on a cellular and molecular level. It has been shown that contrast 

agent concentration and R1 values have a linear relationship [92, 192]. This 

motivates the application of T1 mapping, which allows the quantification of 
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contrast agents by measuring T1 changes between pre and post contrast MRI 

[193]. 

T1 mapping protocols can be based on inversion or saturation recovery 

sequences. MOdified Look-Locker Inversion recovery (MOLLI) sequence is 

nowadays the most commonly used imaging method to perform T1 mapping in 

cardiac MR [194]. Figure 4.13 illustrates the T1-mapping scheme for the MOLLI.  

 

Figure 4.13. MOdified Look-Locker Inversion Recovery (MOLLI) scheme for T1-mapping in the 
heart. Adapted from [194]. 

After the perturbation of the longitudinal magnetization using an inversion 

pulse, the relaxation curve is sampled at multiple time points from the inversion 

pulse. Pixel-wise T1 mapping is achieved by fitting the sampled data to a model 

for the longitudinal signal, which is given by: 

 

𝑆 = 𝑎𝑏𝑠(𝑀7(1 − 2𝑒
+tutv))      (11) 

 

In between TI, recovery periods are needed to ensure full recovery of the 

longitudinal magnetisation. The conventional MOLLI sequence follows a 

3(3)3(3)5 protocol, meaning: 3 images are acquired, followed by a waiting period 
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of 3 RR intervals, then another 3 images are acquired followed by another 3 RR 

intervals waiting period, and finally a third inversion after which 5 images are 

acquired. The MOLLI sequence can be affected by high heart rates mainly 

because of the shortened time in between inversions and incomplete recovery of 

the magnetisation. To overcome this problem, the number of pauses cycles can 

be increased in between inversions. Despite its drawbacks, the MOLLI method is 

widely used, as it provides precise T1 values and is highly reproducible. 

The saturation recovery single-shot acquisition (SASHA) sequence is an 

alternative T1 mapping sequence. It has the advantage that the T1 values do not 

need correction (as the saturation curve recovers as T1). However, although the 

T1 quantification accuracy is higher for SASHA compared to MOLLI, the precision 

(reproducibility) is lower [195, 196] due to the limited dynamic range. SASHA is 

particularly useful for segmented acquisitions as it erases the history of the 

magnetisation making it heart rate independent.  

T1 mapping methods are increasingly used for diagnostic scans, and also 

can also be applied for more basic research questions (e.g. preclinical work) with 

some parameter adjustments. The size of a mouse heart is approximately 100 

times smaller than that of a human heart, and the heart rate is approximately 10 

times higher than in humans which creates several challenges and imposes 

limitations for cardiac MR. The challenges of preclinical imaging will be 

addressed at the end of this chapter in section 4.9. 

4.7.5 - 19F MRI  

Fluorine magnetic resonance imaging using PFCs has emerged as a 

promising technique for molecular imaging [176, 197]. PFCs are detected using 

multinuclear coils, by tuning the frequency of acquisition from proton to fluorine. 
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19F MRI is often performed using a SE sequence, with short TE and long 

TR to generate contrast dominated by the 19F spin density and is not affected 

either by T1 or T2. 

A drawback to 19F MRI is the low sensitivity (reflected in low SNR). SNR 

increases linearly with concentration [198], however due to the large difference 

in tissue 19F concentration that can be achieved compared to tissue water 

concentration, the MR signal of 19F MRI is much smaller than that of conventional 

1H MRI. Therefore, the imaging of small areas of accumulation can be challenging 

(an increment in the voxel size can be an option). Although increasing the amount 

of injected compound will improve the SNR, high doses (more than 1-5 g/kg of 

PFCs) may be limited in humans because of safety concerns [199]. Several 

efforts have been made to improve the SNR of 19F MRI, for example by increasing 

the magnetic field strength, improving pulse sequences or by increasing the 

number of equivalent fluorine atoms available [176, 179, 197, 200, 201].  

4.8 - Image analysis 

The analysis of the MRI images can be separated in signal intensity 

measurements or quantitative analysis. Examples of signal intensity 

measurements are SNR or CNR measurements. Quantitative analysis include 

relaxation mapping that estimate T1 relaxation times. 

4.8.1 - Signal-to-noise ratio (SNR) 

SNR is the ration between the average signal intensity of the area of 

interest and the standard deviation of the noise (usually chosen from the 

background, or surroundings of the area of interest), given by:  
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𝑆𝑁𝑅 = wxyz	{|	}~x	���zy�
�}yz�y]�	�x��y}�{z	{|	}~x	z{��x

	     (12) 

 

Higher field strength MRI usually benefits from higher SNR (from 1.5T to 

9.4T) due to the increase in net magnetisation resulting from an increase in 

protons aligning with the lower energy state. 

4.8.2 - Contrast-to-noise ratio (CNR) 

CNR is the ratio of intensity differences between two regions and the 

standard deviation of the image noise, given by: 

 

𝑪𝑵𝑹 =	 𝑺𝒊𝒈𝒏𝒂𝒍	𝑨+𝑺𝒊𝒈𝒏𝒂𝒍	𝑩
𝑺𝒕𝒂𝒏𝒅𝒂𝒓𝒅	𝒅𝒆𝒗𝒊𝒂𝒕𝒊𝒐𝒏	𝒐𝒇	𝒕𝒉𝒆	𝒏𝒐𝒊𝒔𝒆

	     (13) 

 

where, where Signal A and Signal B are signal intensities for signal producing 

structures A and B in the region of interest. 

4.8.3 - Generation of the T1 Map 

MOLLI T1 estimation is affected by the imaging readout, which itself 

perturbs the longitudinal recovery, reaching an equilibrium M0* that is lower than 

the equilibrium magnetization M0. Therefore the T1 values from MOLLI sequence 

are usually underestimated and less accurate [195]. T1* is the apparent recovery 

that is measured with the MOLLI T1 map; here, the IR curve follows a 3-parameter 

exponential signal model: 

 

𝑺 𝒕 = 𝑨 − 𝑩	𝒆𝒙𝒑 + 𝒕
𝑻𝟏∗ 					(14) 
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where, t represents the inversion time and T1* the apparent T1. To estimate T1, a 

Look-Locker correction factor (B/A-1) is used: T1 » T1* (B/A-1). Nowadays, the 

three parameter fit model is implemented directly in the MR reconstruction 

software.  

4.9 - Challenges of small animal MRI imaging  

Preclinical imaging has become a prerequisite for imaging studies of 

cardiovascular diseases. From small to large animal scales, different animal 

models of cardiovascular diseases have been investigated. Small rodents are of 

huge interest because of their suitability and are relatively inexpensive. 

Transgenic and knock-out animals are experimental models allowing the 

investigation of specific genes or groups of genes associated with disease 

pathogenesis, permitting the study of drug efficacy and contrast agents 

specificity. The adequate characterization of the animal models is crucial for 

appropriate biological conclusions, therefore there is a need for non-invasive in 

vivo imaging which provides high spatial and temporal resolution for 

cardiovascular research, high reproducibility and which is suitable for longitudinal 

studies.  

4.9.1 - Cardiac imaging in small animals in the clinical setting 

Despite the availability of dedicated MR scanners for small animals, there 

is a strong interest in using clinical MR scanners for small animal imaging for 

several reasons: 1) clinical scanners may be available at lower cost during the 

night and weekends; 2) experimental research may be more convincing if 

performed with clinical imaging equipment thereby facilitating translation; 3) it is 
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easier to manipulate the animals because of the larger bore diameter of the 

clinical scanners; and, (4) many imaging sequences are readily available and 

imaging protocols are already implemented and can be manipulated for small 

animal cardiac imaging [202-205]. The main limitation of using clinical scanners 

is the lower gradient performance (longer TR’s) and the lower strength limiting 

spatial resolution.  

4.9.2 - Methodology for cardiac imaging 

Murine MRI is extremely challenging and different aspects need to be 

taken into consideration. While dedicated small animal scanners or high field MR 

scanners have magnetic field strengths ranging from 4.7T to 17.6T, clinical 

scanners have typically lower magnetic field strengths, between 1.5T or 3T. As a 

result, high field MR have been primarily used for murine cardiac magnetic 

resonance because they provide high SNR and spatial resolution [206]. However, 

for contrast detection, lower magnetic field might be advantageous as the 

longitudinal relaxivity r1 of Gd-based targeted contrast agents decreases with 

increasing field strength.  

A mouse heart is approximately 7mm along the long axis and vascular 

dimensions can range between 1-2mm for the luminal diameter and 50-100µm 

for vessel wall thickness (for the thoracic aorta). Therefore, murine MRI requires 

sufficient SNR to allow for a high spatial resolution, which often requires multiple 

averages, lowering the bandwidth, at a price of a longer acquisition time or going 

from 2D to 3D acquisitions. SNR can also be improved with the use of small coils 

as SNR depends on the diameter of the coil. A careful selection of coils is 

necessary (e.g. wrist, carotid or microscopy coils) where commercially available 
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or even dedicated small animal coils that are adapted to the distance and size of 

the animal can be used. 

Due to the large diameter bore of the clinical MR system, the resulting 

gradients strength is lower compared with dedicated small animal MR systems, 

which may affect the shortest available repetition time and thus temporal 

resolution. High temporal resolution is essential for cardiac murine imaging, 

which is particularly demanding because of the constant motion of the heart. In 

mice heart rates typically vary between 400-600 beats per minute. As such, 

optimal image quality requires synchronization of data acquisition with the cardiac 

cycle. Custom ECG is usually designed for small animals and will be described 

later in this chapter.  

T1 mapping techniques can be affected by high heart rates. Some T1 

mapping methods have been applied to mouse cardiac imaging on higher 

magnetic field scanners and more recently in our group at the 3T clinical scanner 

(data not published). In our group, T1 mapping has been successfully applied 

using a MOLLI-based sequence on a 3T clinical MR scanner. An ECG triggered, 

segmented k-space 2D MOLLI based sequence was implemented with 8 sets of 

T1W images and 12 pause cardiac cycles to adapt to the high heart rates in mice. 

To minimize cardiac motion, data acquisition was limited to the end diastolic 

phase. This sequence has shown to allow fast cardiac T1 mapping in mice at 

clinical field strength [207].  

Preclinical high field scanners are often equipped with stronger gradient 

systems, however clinical scanners can still achieve sufficient temporal and 

spatial resolution [204]. Previous studies shown that a resolution of 300μm can 

be obtained for cine MRI in rats at 1.5T [208] and in mice at 3T [209].  
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4.9.3 - Animal preparation and experimental setup 

In small animal imaging, there are various animal-handling issues to be 

considered: strain and sex, animal wellbeing, anaesthesia, temperature and 

motion.  

For comparative studies, the use of identical strains of rodents are 

mandatory. Studies have shown that parameters such as the time under 

anaesthesia, stress or the development of disease vary between different mice 

strains [210-212]. Also gender has shown to have significant effects on 

pharmacokinetics, metabolism and physiological parameters as well as disease 

progression [213], which might be due to differences in hormones or protein 

expression. Basic physiological functions, as heart rate, blood pressure and 

tissue oxygen levels can be monitored with small animal equipment commercially 

available, allowing the examination of the animal wellbeing and reproducible 

imaging conditions. Anaesthesia has shown to significantly influence results of 

imaging studies, especially physiologic parameters such as cardiac ejection 

fraction and volumes. The most used inhaled anaesthetic is isoflurane as it 

produces the most reliable and reproducible results [214]. Anaesthesia usually 

results in a reduction of core temperature (which consequently affects the heart 

rate), and thus it is extremely important to maintain the animals’ temperature at 

around 37°C which can be achieved using a feed-back system which can include 

an MR-compatible rectal probe and a water based heating system. Despite mice 

being imaged under anaesthesia, respiratory and cardiac motion can create 

artefacts and degrade image quality in the MRI. To compensate for cardiac 

motion, image acquisition is usually synchronized with the R-wave of the ECG. 

Typical ECG systems for small rodents are based on paediatric or subcutaneous 
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electrodes. Signal averaging is used to compensate for respiratory artefacts in 

small animal imaging, since breath-holding cannot be used. For more accurate 

respiratory motion compensation, dedicated pneumatic pillows can be also 

applied.  

The study design is of high importance, and control groups are necessary 

to compensate for these effects. The planning needs to clearly layout the strain 

of the animal, gender, lengths, type and dose of anaesthesia and the number of 

imaging sessions per animal to ensure reproducible experimental conditions. 

These factors should be consistent as possible within the same study. 
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Methodology Set-up 

5.1 - Personal Contribution 

This chapter describes the optimization of the methodology used in this 

PhD thesis (and is the basis for all the experiments). It is divided in three sections: 

(1) development of a lung intubation system for the induction of myocardial 

infarction (MI) in mice and the reproducibility of the surgeries; (2) the set-up of a 

heating system for in vivo imaging on a clinical 3T magnetic resonance imaging 

(MRI); and (3) evaluation of the feasibility of 19F MRI for the imaging of MI in a 

murine model. 

For this project, René Botnar and Isabel Ramos (IR) conceived the main 

idea of the study. IR designed the mouse bed and lung intubation systems, the 

heating system for the 3T MRI experiments, and Pierre Gebhardt helped with the 

design and manufacturing of the technical equipment. IR performed all 

experiments including the measurements, data collection and analysis. Markus 

Henningsson and Torben Schneider helped with pulse sequence optimization. 

Thomas R. Eykyn helped with the nuclear magnetic resonance (NMR) 

spectroscopy acquisition.  
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5.2 - Lung intubation system 

5.2.1 - Introduction 

A method for the intubation of the mouse lung has previously been 

described [215, 216]. It is an important requirement when performing repeated 

measurements, and when open chest surgery is performed. Lung intubation can 

be achieved invasively by exposing the trachea with a small incision in the neck 

or less invasively by accessing the trachea from the vocal cords. Lung intubation 

protocols require training and in some cases, can be considerably expensive 

given the small materials required for mice. One of the main problems of 

performing the less invasive exposure of the trachea is that when the intubation 

cannula approaches the trachea it blocks the light itself, making visualization 

challenging. A lung intubation protocol with a self-incorporating fibre optic has 

been previously described [216], and has been implemented and adapted in our 

lab. Here, we developed an intubation bed and a portable intubation/light system 

for mice. It does not require expensive materials and, after some training, it is a 

simple technique to implement. 

5.2.2 - Material and Methods 

Intubation bed: A 3D model was designed with SolidWorks (Dassault 

Systèmes SOLIDWORKS, Massachusetts, USA) and then built in PVC (RS 

component, Northants, UK), providing stability with the additional advantage of 

being easy to clean. The intubation bed allows 90º rotation, which facilitates the 

mouse to be transferred from a vertical position while the intubation is being 

performed, to a horizontal position for the later connection to the ventilator. It had 
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a support for the correct placement of the animal with a rubber band positioned 

around the front incisors to suspend the mouse vertically (Fig.5.1A&C). 

 

Portable light source: For intubation of 18-22 g mice, we used an 

intravenous catheter adapted with a specially designed connector to allow the 

assembly of the ventilator. For the light source, we used a fibre optic cable 

(0.5 mm diameter) connected to a mini LED illuminator (20000 millicandela). The 

illuminator was then connected to a 9V battery. Because the device should be 

portable, a switch on/off button has been implemented (Fig.5.1B). 

 

Performing the intubation: After checking the pedal reflexes and shaving, 

animals were placed in the bed on a straight position. After placing the 

anaesthetised animal in the vertical position, the tong was gently pulled out and 

held with the forefinger (Fig.5.1D). Then the fibre optic together with the cannula 

were used to visualize the vocal cords, and the cannula was left inside the trachea 

while the fibre optic cable was removed. The correct positioning of the tracheal 

tube was confirmed by judging the symmetrical chest breathing expansion. 
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A 

 

B 

 

C 

 

D 

 

Figure 5.1. Lung intubation system. (A) PVC bed, (B) fibre optic cable with the intubation cannula, 
(C) mice placed in the bed with the rubber placed around the upper front tooth, (D) intubation 
approach, where the animal is placed vertically. 

5.2.3 - Discussion 

Lung intubation is a required procedure for the induction of MI. The current 

way of performing it implies that the trachea is directly exposed, adding an extra 

incision and consequently extra post-operative stress to an animal which will be 

subject to a severe surgery [216, 217]. The procedure is highly difficult to perform, 

painful and it can lead to animal death. Simpler procedures are highly 

recommended and preferable when several surgeries have to be done and when 

injectable anaesthesia is being used (40 minutes time window). 

In this thesis a simple, portable and minimally invasive method for lung 

intubation has been adapted from previous work [216]. This technique is easy to 
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implement after some training and the set-up is relatively inexpensive, making it 

attractive for laboratory routine. It is portable, making handling easier, and does 

not require a microscope for the visualization of the vocal cords like other 

approaches [218]. Similar optical probes, with battery powered light source and 

optical fibre, are available from a commercial vendor (Braintree Scientific, 

Braintree, MA). 

So far, we have used this procedure for the preparation of mice for MI 

induction only. However, this technique can be applied for other procedures. It 

can be implemented for several other surgeries that require open-chest, or when 

repeated measurements need to be performed (e.g. lung mechanics, imaging 

procedures) with minimal stress and damage to the animal. In summary, this 

intubation procedure is inexpensive, simple to use, and easy to implement in a 

lab routine, enabling investigators with relatively little experience to quickly and 

successfully intubate mice and perform surgeries. 
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5.3 - Induction of Myocardial Infarction 

5.3.1 - Introduction 

As previously mentioned in sub-chapter 2.1.2, the availability of animal 

models for the study of basic biology and development of new therapeutic 

strategies for the understanding of cardiovascular diseases are crucial. Basic 

research has been limited due to the complexity and difficulty to reproduce the 

pathophysiology of cardiovascular diseases in the laboratory. Consequently, it is 

extremely important to validate animal models. Myocardial infarction is often 

performed in murine models, as they are more suitable, efficient and less 

expensive than in larger animals [65]. 

In this project, MI was induced in mice by permanent occlusion of the left-

anterior descending coronary artery (LAD). It is a well-established model for the 

study of acute MI pathophysiology. Following intubation, the LAD is occluded and 

MI is induced. In mice, given their small size, high manipulation precision during 

surgery is needed when performing the complex LAD ligation. Mortality rate of 

this procedure can be up to 50% in mice [65, 67]. Here we described how MI was 

induced, its reproducibility, survival rates and how infarct size was assessed. 

5.3.2 - Material and Methods: validation experiments 

Animal studies were performed according to UK Research Councils' and 

Medical Research Charities' guidelines on Responsibility in the Use of Animals 

in Bioscience Research, under a UK Home Office License (PPL 70/7097). MI was 

induced in 8-10 weeks old, female C57BI/6 wild-type mice (N=9, 18-22 g, Charles 

River) by permanent occlusion of the left anterior descending coronary artery 
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(LAD). Mice were weighted and anaesthetised by intraperitoneal injection of 75 

mg/Kg ketamine (VetalarTMV, Vetmedica, USA) and 1 mg/Kg medetomidine 

hydrochloride (Domitor®, Orion Corporation, Finland). Thirty minutes prior to 

recover, 0.15 mg/kg Buprenorphine (Vetergesic®, Alstoe, UK) was administered 

by intramuscular injection for analgesia. From these 9 animals, 1 died during 

procedure (mortality rate of 12.5%). 

 

5.3.2.1 – Induction of myocardial infarction 

After intubation (small ventilator, Hugo Sacks Electronic, Germany) 

described in subchapter 5.1.1.), animals body temperature was maintained at 

36±1°C during all surgical procedures using a heating pad equipped with a rectal 

probe (CWE, Biomedical Electronics, USA), in order to prevent hypothermia that 

may result from the anaesthesia. After disinfecting the chest, an oblique skin 

incision was performed from the left of the midline of the ribcage towards the left 

armpit (Fig.5.2B). The muscle layers were separated, and the top layer was 

retracted with a bulldog clip. The 4th intercostal space was exposed and a 

thoracotomy was performed (Fig.5.2C). With a curved forceps, the muscle layer 

was penetrated and then dissected with the aid of microforceps (Fig.5.2D&E). 

Retracting hooks were used to expose the heart, and the pericardium was 

carefully pulled apart to visualize the heart vessels (Fig.5.2F). An 8-0 nylon 

suture (Direct Medical Supplies, Alton, UK) was passed underneath the LAD ~2-

3 mm below the tip of the left atria (Fig.5.2G). The effectiveness of the ligation 

was confirmed by the colour change on the left ventricle (LV) below the knot 

(Fig.5.2H). The retractor was then removed and a 5-0 Vicryl was used to suture 

the thoracotomy, muscle layers and the skin of the chest (Fig.5.2 I&J). At the end 
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of the procedure an antidote to reverse anaesthesia was administered. Animals 

were finally weaned from the ventilator and closely monitored while kept in a 

heating chamber at 30°C for at least 6 hours. 

 

 

Figure 5.2. Myocardial infarction induction by permanent occlusion of the left anterior descending 
coronary artery (LAD) in mice. (A) Schematic representation of the location of the knot. (B) After 
checking pedal reflexes and disinfecting the skin, a small incision is made on the chest, (C) the 
muscle layers are separated (D) the ribs are localized and (E) with curved forceps the muscle 
layer is penetrated and (F) the heart exposed. (G) An 8-0 nylon suture is passed around the left-
ventricle 2-3 mm below the atrium and (H) a knot is performed in order to induce an infarct. (I) 
Muscle layers and (J) skin are sutured and the animal is left to recover. RV, right ventricle; LV, 
left ventricle; M, muscle; R, ribs; A, atrium; S, suture. 

 

5.3.2.2 - Analysis of infarct size  

The extent of the infarct size was evaluated in vivo non-invasively by MRI, 

and ex vivo after tissue harvesting with 2,3,5-Triphenyltetrazolium chloride 

staining (TTC) or trichrome staining. After MRI imaging session, animals were 

culled by cervical dislocation under general anaesthesia to allow for ex vivo 

analysis. The hearts were excised, atriums were removed and the tissues were 

washed with PBS to remove residual blood. From the 8 animals scanned, four 
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tissues were frozen and processed for TTC staining, and the others were 

embedded in paraffin for Trichrome staining.  

 

Magnetic resonance imaging: late gadolinium enhancement 

After i.v. administration of 0.5mmol/kg of an elastin-specific MR contrast agent 

(Gd-ESMA, Lantheus Medical Imaging, North Billerica, USA), a 3D late 

gadolinium enhancement (LGE) inversion recovery (IR) sequences with 12 slices 

was performed. The inversion time was determined with a Look-Locker (LL) 

sequence to maximize the contrast between healthy and infarcted myocardium 

(250±30 ms). The imaging parameters included TR/TE=6.8/2.8ms, flip 

angle=25°, in-plane resolution=0.3×0.3 mm2, number of slices=12, slice 

thickness=1 mm, TFE factor=3, scan time = 5:22 minutes. The IR pulse was 

performed every 5th heartbeat. 

 

2,3,5-Triphenyltetrazolium chloride (TTC) staining 

For TTC staining, heart tissues were frozen at -20°C for 30 minutes and cut in 1 

mm slice thickness (short-axis orientation) using a specialized mouse heart slicer 

(Zivic Instruments, Pittsburgh, PA). The slices were then incubated with 1.5% 

TTC solution for 15 minutes followed by formalin fixation (4% paraformaldehyde 

over night at room temperature). 

 

Trichrome staining 

Trichrome staining was performed using a Trichrome stains (Masson) kit 

(Sigma&Aldrich, Dorset, UK). After deparaffinising and rehydrating, sections 

were immersed in Bouin’s Solution for 15 minutes at 56°C. Sections were then 
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washed in water. Then samples were incubated for 5 minutes in Working 

Weigert’s Iron Haematoxylin Solution to stain the nuclei. Sections were then 

immersed for 5 minutes in Biebrich Scarlet&Acid Fucshin to identify cell 

cytoplasm and muscle fibres. Subsequently, slices were placed in Working 

Phosphotungstic/Phosphomolybdic Acid Solution for 5 minutes. Samples were 

then incubated for 5 minutes in Aniline Blue Solution to stain collagen fibres. 

Finally, samples were washed in 1% acetic acid for 2 minutes, dehydrated and 

mounted on slides. 

 

Infarct Area Analysis 

TTC stained sections were digitalized using a flatbed scanner (CanoScan LiDe 

200, Canon). TTC sections were scanned on both sides, and the mean of the two 

measurements was used to calculate the total infarct area. Infarct area measured 

by Trichrome was quantified using ImageJ for each histology slice after manually 

segmenting the purple/blue area and normalizing it to the LV area. From LGE-

MRI, the infarcted area was calculated by summing all areas of infarction for all 

slices, and dividing it by the total LV area.  

5.3.3 - Representative results 

When the LAD is ligated with a single stitch, an ischemic area is produced 

closely below the knot. The ligature is made 1-2 mm below the left atrium and, 

depending on the animal, it can cause a large size infarction. After permanent 

LAD ligation, the entire myocardial area below the knot becomes necrotic. Here 

we evaluated the infarct size in vivo by MRI and ex vivo using histology (Fig.5.3). 
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Figure 5.3. Analysis of the infarct size. Representative short-axis view of the heart (left) after 
gadolinium injection using late gadolinium enhancement (LGE) MRI, where area of infarct is 
enhanced. Representative transversal histology sections of the heart stained with (centre) 2,3,5-
Triphenyltetrazolium chloride (TTC), where viable (red) and non-viable (white) areas are shown, 
and (right) Trichrome staining, where areas of infarct are shown in purple/blue, corresponding to 
the deposition of collagen. RV, right ventricle; LV, left ventricle. 

 

MRI provides the possibility of analysing infarct size after the injection of 

gadolinium–based small molecular weight contrast agent non-invasively in vivo. 

After i.v. injection, the contrast agent is accumulated in the infarct region, and the 

damaged area appears brighter than normal myocardium. The heart is then 

excised and histology can be used to confirm the in vivo findings, either by TTC 

or by Trichrome staining. On fresh heart TTC-stained sections, areas of injured 

myocardium appear white, whereas healthy myocardium is shown in red. 

Trichrome staining, is commonly used for collagen fibre detection (and 

consequently infarct areas, where collagen deposits) which are stained in blue, 

nuclei are stained in black and the background is red. Quantification is shown in 

Figure 5.4. No significant differences were observed between the infarct size 

measurements using LGE-MRI, Trichrome or TTC (IS[%]=LGE: 50.74 [IQR, 

47.75-54.26] vs Trichrome: 58.84 [IQR, 50.32-62.64] vs TTC: 47.21 [IQR, 43.20-

53.91]). 
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Figure 5.4. Infarct size analysis using in vivo LGE-MRI, and ex vivo Trichrome and TTC. No 
significant differences were seen between the different infarct size analysis methods. LGE-MRI, 
late-gadolinium enhancement magnetic resonance imaging; TTC, 2,3,5-Triphenyltetrazolium 
chloride. Data is presented as means ± S.E.M. P=ns, ANOVA, Bonferroni’s Multiple comparison 
test pos hoc.  

5.3.4 - Discussion 

Similar to clinical myocardial infarctions, permanent occlusion of the LAD 

in mice induces an infarct by restricting the blood flow to the left ventricle [217, 

219]. This is an increasingly important animal model of human disease, but 

remains technically challenging, due to both induction and data analysis 

reproducibility issues. 

Here, myocardial infarction was induced by permanent ligation of the LAD 

in mice, a procedure known to be associated with an acute inflammatory 

response. Comprehensive evaluation of the extension of the infarct as well as its 

reproducibility are important considerations when validating the model. During 

these procedures, some critical aspects need to be taken in consideration: the 

intubation (as mentioned in subchapter 5.1.1), LAD ligation, and animal wellbeing 

mainly during the first 24 hours. The LAD ligation is the most critical step. It is 

susceptible to variations depending on the surgeon and animal strain. Small 

infarcts can show limited inflammatory response, whereas bigger infarcts can 
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lead to worst prognosis and ultimately lead to animal death. The LAD is difficult 

to visualize, and occlusion often needs to be performed blind, using some 

anatomical reference point. Usually the ligature is placed in the middle of the 

ventral side of the heart, 2-3 mm below the left atrium, and the efficiency is 

controlled by visualization of a grey colour in the affected areas. If the infarct 

appears on the anterior but does not include the posterior wall, a second suture 

can be placed but needs to be handled carefully to avoid bleeding or wall rupture. 

In vivo MRI is the gold standard for the assessment of infarct size, however 

it involves high costs and expertise. Other techniques can be used instead, such 

as echocardiography or nuclear imaging techniques, however they do not provide 

the excellent reproducibility and accuracy of MRI, with the additional advantage 

that the latter does not involve radioactivity. Ex vivo histology can also be used 

to corroborate the in vivo analysis. TTC staining is the gold standard staining 

technique for infarct visualisation, allowing the distinction between viable and 

nonviable myocardium [220]. It does not require any special tissue processing, 

and the infarct area can be analysed on the same day of tissue collection. 

Trichrome staining, is used to analyse fibrotic tissue and gives not only 

morphological information, but also allows the quantification of collagen 

deposition in the heart. Here we demonstrated the feasibility of producing 

reproducible infarcts in mice and to quantify them using three different 

techniques. 
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5.4 - Development of an MR compatible heating system for in vivo 

imaging at 3T 

5.4.1 - Introduction 

Small animal experiments are usually performed under anaesthesia (e.g. 

isoflurane) which typically results in a decrease in body temperature [221]. This 

is due to their high body surface-to-mass ratio that makes mice susceptible to 

hypothermia, as their body temperature decreases several degrees within a few 

minutes of anaesthesia [222, 223]. Such a decrease in the body temperature 

might have severe effects on the physiological examination of the animal and 

may affect the pharmacokinetics and biodistribution of the contrast agent [224]. 

Thus, it is very important to control body temperature in small animals’ 

experiments. Three methods of active warming are commercial available and are 

based on: hot air heating system, infra-red heat emitter and circulating-water 

blanket. The first, is usually implemented in high field MR scanners, as the MRI 

scanner bore is small and thus limits heat loss from the lateral walls of the MRI 

scanner. The infra-red system can be susceptible to the MR magnetic field, and 

it is usually expensive. The circulating-water blanket may have some electronics 

that, similarly to the infra-red systems, and thus can cause image artefacts or 

safety problems.  

Here, we designed a simple and inexpensive heating system for 

controlling the body temperature in mice during the all imaging session in a 3T 

clinical MR scanner. The heating system is based on a circulating hot-water 

device and the temperature of the animals is controlled by a ECG/Temperature 

feedback module equipped with a rectal probe. 
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5.4.2 - Material and Methods: validation experiments 

5.4.2.1 - Body temperature control system 

The MR-compatible heating/monitoring system maintained the mouse 

body temperature to 36±1ºC by looping thermo-resistant tubes connected to a 

chiller unit with the objective to pump the water, into a closed loop tubing system 

(HAAKE SC100 and HAAKE A10 Thermo Fischer Scientific, US), which run warm 

water, next to the mouse (Fig.5.5A). The water temperature was regulated by the 

feedback received from a temperature-control unit. This unit included a rectal 

temperature probe, a temperature module (based on optical fibres) and a 

control/gating module and a computer to set the temperature (Fig.5.5B) (SA 

Instruments inc, US).  

ECG needles (SA Instruments inc, US) used for pre-clinical imaging were 

connected to the Philips VCG device to monitor the heart rate and to synchronize 

the acquisition with the ECG. The two metallic needles were placed 

subcutaneously into the front paws (Fig.5.6). 
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A 

 

B 

 

Figure 5.5. Experimental set-up of the heating system at the 3T MRI. (A) The animal was placed 
in prone position on top of the coil, surrounded by the plastic warm water tubes (“heating”). (B) 
MR compatible temperature-control unit for mice. Animal temperature is measured with a fibre 
optic rectal temperature probe, connected to a temperature unit which was connected outside the 
MRI room with a control/gating module and a computer. Adapted from [225]. 
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A B 

 
 

Figure 5.6 (A) MR-compatible heating system consists in a thermo-resistant tube connected to a 
chiller unit. (B) ECG control system used for pre-clinical (top left) and for human (down right) 
imaging. 
 

5.4.2.2 - Animals 

Surgical procedures were performed as described in section 5.3.2.1. 

 

5.4.2.3 - MRI methods 

Ten animals were imaged using the clinical 3T MR scanner. Animals were 

scanned using a 1H/19F surface coil (Rapid Biomedical, Würzburg, Germany; 

diameter=33 mm and 23 mm). Anaesthesia was maintained with 1-2% isoflurane 

in medical oxygen. ECG was monitored with two metallic needles placed 

subcutaneously into the front paws. Following a 3D-GRE scout scan, 2D cine 

short-axis images were acquired covering the entire left ventricle (LV). 12 frames 

were acquired per cardiac cycle. Imaging parameters of the sequence included 

TR/TE=7.8/16.0 ms, field-of-view (FOV)=35×35 mm2, flip angle=20°, in-plane 

resolution=0.3×0.3x1 mm3 and TFE factor=1. 
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5.4.2.4 - Data analysis 

Ejection fraction (EF) measurements were derived from the cine images 

using the ClinicalVolumes segmentation software (King’s College London, 

www.clinicalvolumes.com).  

5.4.3 - Results and Discussion 

As reported in previous studies, when animals are anaesthetised for 

experimental purposes their temperature decreases and it can affect 

physiological measurements [221, 223]. Here, we designed a water-based 

heating system using a feedback loop and evaluated its effects on heart rate and 

ejection fraction. Without the heating system, the ECG signal was unstable; 

consequently, no reliable triggering could be performed affecting MR image 

quality or in the worst-case MR sequences could not be performed.  

SHAM-operated and 3 days post-MI animals were imaged, and the effect 

of a small temperature increment and its effects on cardiac output (measured as 

EF) has been analysed. In non-diseased animals, EF usually ranges from 45-

60% [212], while after MI this value tends to decrease as a consequence of a 

diminished cardiac function. Figure 5.7 shows the EF measurement of the 

SHAM-operated and 3 days post-MI animals. At 37ºC, SHAM animals shown an 

EF of 47.63% [interquartile range, IQR, 46.00-53.16], while EF significantly 

decreased (EF[%]=3 days: 21.29 [IQR, 15.55-32.30]) in MI animals. No 

significant changes in EF were detected in animals 3 post-operative days after 

MI between when the temperature was varied between 36 and 37ºC. 
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Figure 5.7. Comparison of ejection fraction (%) between SHAM-operated animals (N=6) and 3 
post-operative days MI animals (N=4). Data is presented as Mean ± SEM, nonparametric Krustal-
Wallis test, Dunn’s Multiple Comparison test pos hoc, P<0.008. 

 

A small increment of 1ºC did not lead to a significant change in the heart 

rate in animals with MI (Heart rate [bpm]: 36ºC=518.0 [IQR, 459.0-553.8] vs 

37ºC=532.5 [IQR, 465.5-576.3]) (Fig.5.7).  

 

Figure 5.8. Effect of an increment of 1 degree Celsius on heart rate in animals 3 days after LAD 
ligation. Nonparametric, Wilcoxon rank paired test, P=ns.  

 

Based on these experiments, during all the MRI imaging sessions the body 

temperature was maintained at 36±1ºC. In pilot experiments the temperature 

fluctuated between 37ºC and 33ºC and caused changes in the heart rate which 

has a negative impact on the ECG synchronization and image quality. This set-
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up has been implemented in all my experiments, making the imaging results more 

consistent. Besides the normal arrhythmias that animals with disease can have, 

the heart rate using this setup is constant and consistent throughout the all scans, 

making sequences as MOLLI T1 mapping (highly affected by changes in heart 

rate) easy to implement. In this project both infarcted and non-infarcted animals 

were analysed.  
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5.5 - Imaging protocol optimization of 19F MRI contrast agents 

19F MRI has emerged as a new platform for the investigation of some 

biological processes, especially inflammatory cells, in vivo. Its advantages and 

applications have been described previously in Chapters 3.2 and 4.5, and here 

a comparison between different fluorinated nanoparticles were investigated.  

5.5.1 - Introduction 

Several fluorine probes are available and the specific choice depends on 

the application. Fluorine has a high electronegativity and low polarizability; and 

in general, PFCs are biochemically inert molecules, highly stable even at 

elevated temperature, or in oxidative environments, and have weak 

intermolecular interactions. They are also highly hydrophobic and significantly 

lipophobic and therefore exhibit a tendency to segregate from the surrounding 

environment independently of its chemical nature. Because they are insoluble in 

water, they are commonly administered in vivo in the form of lipid emulsions or 

encapsulated in polymer shells [226].  

Molecules used as 19F markers usually have multiple fluorine atoms and 

they often experience different chemical and magnetic environments (as 

described in Chapter 3, section 4.1). 19F containing molecules have a chemical 

shift which covers a range of ≈ 300 ppm (compared to ≈ 12 ppm for 1H) [178, 

227], making 19F MRI challenging for molecules with chemically different atoms 

[228, 229]. Ideal 19F tracers should have a high fluorine content (multiple 19F 

atoms), simple protocol, be biologically and chemically stable, exhibit no toxicity 

in vitro and in vivo, and yet yield a simple 19F NMR spectrum with a single, sharp 

and intense peak with short T1 and long T2 relaxation times [201]. 
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The main PFC molecular tracers used for 19F MRI are 

perfluorooctylbromide (PFOB; a linear PFC), perfluoro-15-crown-5-ether 

(PF15C; a macrocyclic compound) and perfluoropolyether (PFPE; a linear PFC) 

(Fig.5.9).  

 

A 

 

B 

 

C 

 

Figure 5.9. Chemical structures of (A) perfluorooctylbromide, PFOB, (B) perfluoro-15-crown-5-
ether, PFCE and (C) perfluoropolyether, PFPE. 

 

Perfluorooctylbromide (PFOB) is a commercially available PFC (also 

known as Fluosol). Interest in this compound for MRI started in the early 1990s 

[230] having been FDA approved for bowel MR imaging. However it was removed 

from the market because, although it did not show any toxicity, it was difficult to 

store the particles at -20ºC and even one year after administration it was found 

in lung tissue [231]. Blood-substitutes based on PFOB were considered safe, 

although some PFCs demonstrate long-term retention in the reticuloendothelial 

system (RES) [232]. However, PFOB remains a compound of interest and has 

been further explored in 19F MRI research [228, 233].  

Perfluoro-15-crown-5-ether (PF15C) shows better NMR performance than 

PFOB. Besides the chemical properties of the two PFCs being similar, PF15C 

has a higher number of equivalent fluorine atoms (Fig.5.9B). This eliminates the 

risk of chemical shift artefacts, unambiguous identification of the PFCs, and 

importantly, provides a single sharp resonance peak thereby maximising the 
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achievable SNR [176, 234]. However, except for PF15C, their behaviour is 

incompatible with biomedical applications. Other perfluoro-crown ethers have 

been shown to be unstable in blood, with a tendency to aggregate (e.g. perfluoro-

12-crown-4-ether), and other PFC nanoparticles have a high molecular weight 

making them potentially toxic (e.g. perfluoro-18-crown-6-ether) [177]. Thus, the 

interest in PF15C increased and several applications have been investigated 

such as cell tracking, targeted drug delivery [235, 236] or cell labelling in vivo [97, 

136, 237, 238] using 19F MRI. Both strategies take advantage of the phagocytic 

capacity of inflammatory cells. PFCs have been investigated in several 

inflammatory disease models [97, 237, 238] since phagocytosis will result in 

accumulation of 19F in the RES and in inflammatory areas.  

Perfluoropolyether (PFPE), like PF15C, has a relative simple spectrum 

with one main resonance peak due to similar chemical groups. However, small 

additional peaks can be observed since the end groups are not chemically 

equivalent. These end groups can be replaced by fluorescence entities, thus 

making PFPE interesting compounds. Using fluorescence, histological 

correlation of in vivo imaging, or multi-modality imaging (e.g. MRI and 

fluorescence imaging) can be achieved and has been reported previously [174, 

236, 239]. More information on 19F MRI can be found in several review papers 

[174, 176, 197, 201, 240].  

In this thesis, two PFC compounds were compared spectroscopically by 

NMR: PFPE-VSense (commercially known as V-Sense-1000H) and PF15C. 

Based on the pilot studies, PF15C was chosen to be used for all in vivo 19F/1H 

multinuclear imaging in wild type mice after MI induction on a 3T MR scanner. 
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5.5.2 - Materials and Methods 

5.5.2.1 - Perfluorocarbons emulsion 

Two PFC solutions were used for preliminary studies to establish the NMR 

characteristics of the agents. (A) PFPE-VSense nanoparticles (10% v/v of 

perfluoro-15-crown-ether, VS-1000H) were commercially available from 

Celsense Inc., Pittsburgh, PA, USA. (B) PF15C emulsions were prepared as 

reported [97], and kindly provided by Professor Flögels group (Institut für Herz 

und Kreislaufphysiologie, Heinrich-Heine-Universität, Düsseldorf, Germany).  

 

5.5.2.2 - Phantom measurements 

Nuclear magnetic resonance (NMR) experiments at 9.4T 

NMR spectroscopic experiments were performed to determine the chemical shift 

of PFPE-VSense and PF15C required for the optimization of the MRI 

experiments. NMR spectra of the 19F-PFCs were recorded at room temperature 

using a Bruker Avance III 9.4T scanner (1H 400 MHz; 19F 375.8 MHz) and a 15 

mm diameter double-tuned (31P/1H) volumetric microimaging coil. The water 

resonance was used to shim the sample and the 1H coil was then re-tuned to the 

19F frequency. 

Two different vials (500 μL each) with the corresponding PFPE-VSense or 

PF15C PFCs were placed in NMR tubes (WILMAD NMR, Sigma) with a silicone 

support to position the sample within the isocentre of the coil. In addition, different 

dilutions of 10% and 20% PF15C PFCs were analysed. A sealed external 

reference capillary of 100% TFA solution was used as a reference (δTFA= -76.6 

ppm as identified in the literature, and reported relative to CFCl3). TFA exhibits a 

single resonance peak due to its three chemical equivalent fluorine atoms and is 

a convenient reference sample since its chemical shift is close to the resonances 
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of several PFC compounds. Spectra were acquired with a 90o hard 

radiofrequency (RF) pulse (30 µs) and acquisition parameters included: number 

of averages= 64, total experiment duration= 4.78 minutes, time domain size= 131 

K data points, pre-scan delay = 1 s, acquisition time= 3.5 s resulting in a total 

repetition time of TR= 4.5 s per scan and spectral bandwidth= 18797 Hz. Data 

were processed with an exponential line broadening factor (20 Hz), followed by 

Fourier transformation, zero and first order phase correction and automatic 

baseline correction. Peaks corresponding to the TFA reference and the PFC were 

integrated using Topspin 2.1 software (Bruker, Germany). NMR spectra were 

acquired without a deuterium lock signal. Thus, the derived NMR chemical shifts 

acquired at 9.4T were not referenced to the absolute frequency, which is subject 

to changes in shimming and field sweep of the spectrometer. However, this was 

used as a guide for subsequent calibration of the frequency required on the 3T 

MR scanner. 

 

5.5.2.3 - 3T Magnetic resonance spectroscopy (MRS) and imaging (MRI) 

Phantoms and animal scans were performed using a Philips Achieva MR 

scanner (Philips Healthcare, Best, The Netherlands) equipped with a clinical 

gradient system (30 mT m-1, 200 mT m-1), using a 19F/1H surface coil (Rapid 

Biomedical, Würzburg, Germany; diameter=23 mm and 33 mm, respectively). 

Imaging parameters were maintained between phantom and in vivo scans.  

 

19F PF15C phantom studies. The optimal off resonance frequency was studied 

by varying the off-resonance frequency between 9900 Hz and 10300 Hz. Signal-

to-noise ratio (SNR) and chemical shift artefacts were studied. For localization of 
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the phantoms, a 3-dimensional gradient echo scout scan was performed followed 

by 19F scans acquired perpendicular to the vials using a 3D turbo-spin echo 

sequence. Imaging parameters included FOV= 35x35x12 mm3, in plane 

resolution= 1x1x2 mm3, slices= 3, TSE factor = 5, offset frequency= [9800-10300] 

Hz (BW= 6103 Hz), 3 dynamic scans. 

For signal-to-noise ratio (SNR) measurements, a region of interest was 

drawn on the second slice, and noise was measured on a dedicated noise scan 

with the RF pulses turned off (given by equation 10). 

The calculation of the theoretical displacement followed,  

 

∆𝒙	 𝒎𝒎 = 𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚		𝒔𝒉𝒊𝒇𝒕	 𝑯𝒛

𝒓𝒆𝒄𝒆𝒊𝒗𝒆𝒓	𝑩𝑾	 𝑯𝒛
𝒑𝒊𝒙𝒆𝒍

×𝑨𝒄𝒒	𝒗𝒐𝒙𝒆𝒍	𝒔𝒊𝒛𝒆 𝒎𝒎 			 (15) 

 

where, ∆x is the displacement in mm; frequency shift is the difference between 

the expected and the studied frequency; receiver BW on the 3T was 177.7 

Hz/pixel, and acquisition voxel size was 0.97 mm.  

 

19F in vivo studies. Surgical procedures were performed as described in section 

5.3.2.1. Pilot studies were performed to optimise the imaging protocols prior to 

the studies described in Chapters 6&7. Mice were imaged 3 days after LAD 

ligation using a 3T MR scanner. 400 µL of 19F-PF15C was injected i.v. 48 hours 

before scanning. In addition, mice were injected i.v. with 0.5mmol/kg of Gd-ESMA 

1 hour prior to scanning. Anaesthesia was induced with 5% isoflurane and 

maintained with 1.5-2% isoflurane during MR experiments. Body temperature 

was maintained using a retrospective heating system and a rectal temperature 

probe. ECG was monitored with two metallic needles placed subcutaneously into 
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the front paws. 1H and 19F cardiac ECG-triggered images were acquired as 

follows. After a 3-dimensional gradient echo scout scan, a 2-dimensional Look-

Locker sequence planned perpendicular to the left-ventricle was used to 

determine the optimal inversion time (TI) for nulling of the healthy myocardium. 

3D LGE images were acquired in the short-axis for visualization of contrast agent 

uptake with the following parameters: FOV=35x35x12 mm3, in-plane resolution = 

0.3x0.3x1 mm3, slices=12, TR/TE= 6.4/2.6 ms, 5 heart beats between 

subsequent IR pulses, and flip angle=25°. For the visualization of inflammatory 

cell uptake, 19F scans were acquired in short-axis views using a 3D turbo-spin 

echo sequence. Imaging parameters included FOV=35x35x12 mm3, in-plane 

resolution=1x1x2 mm3, slices = 12, TR/TE = 4beats/8.9ms, TSE factor=5, offset 

frequency=10200 Hz (BW = 6103 Hz).  

5.5.3 - Results 

5.5.3.1 - Phantom measurements 

9.4T NMR spectroscopic studies 

The objective of the NMR study was to compare the magnetic properties of 

PFPE-VSense and PF15C stock solutions. The results of the NMR spectroscopic 

studies are shown in Figure 5.10. Both PFPE-VSense and PF15C spectra where 

acquired using TFA as an external reference.  

PF15C contains 20 equivalent 19F nuclei and showed a single peak at -

90.66 ppm (-34077.52 Hz), -12.5 ppm relative to the reference TFA capillary. 

PFPE-VSense, a mixture of polymers with 28-36 fluorine atoms per molecule 

showed three main peaks: a quintuplet centred at -57.09 ppm (-21460.07 Hz); a 

doublet between -89.74 ppm and -89.78 ppm (-33729.88 Hz and –33745.34 Hz 

respectively) and a singlet at -91.81 ppm (-34507.18 Hz). 
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Figure 5.10 Structure and 19F Nuclear Magnetic Resonance (NMR) spectra of PF15C and PFPE-
VSense. (A) Structure and NMR spectra at 9.4T; PF15C PFC compound has 20 equivalent 19F 
atoms showing a single peak at -90.66ppm. (B) PFPE-VSense PFCs (R = CF2CF3 or CF3); it has 
about 28-36 19F atoms with three major chemical shifts at -57.09, -89.74 and -91.81 ppm.  

 

The stability of the PF15C emulsion was further evaluated by diluting the 

samples in saline. The stability of the PFCs needed to be verified before in vivo 

experiments. An unstable solution would result in different spectroscopic peaks, 

corresponding to the different phases. Same peak was observed when different 

dilutions were studied (Fig.5.11). 

A 

B 
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Figure 5.11. 9.4T Nuclear magnetic resonance spectroscopy studies for PF15C solution: (A) 
Stock solution, 100%; (B) 10% and (C) 20% dilution in saline.  

 

Magnetic resonance spectroscopy (MRS) at the 3T 

The identification of the offset frequency of PF15C was studied using 3T MRS. 

When the offset frequency is zero, and with a spectral bandwidth of 30000 Hz, 

PF15C shows a single peak centred at 10000 Hz (Fig.5.12).  
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Figure 5.12. 3T Magnetic resonance spectroscopy of PF15C. With an offset frequency in 0 Hz 
and spectral bandwidth of 30000 Hz, a single peak was observed, centred at -10000 Hz (-
10100.8065, 95.1923 Hz).  

 

This offset frequency of 10000Hz was used for the next experiment. Using 

this value, the relative frequency between TFA (control) and PF15C was 

analysed. Figure 5.13 shows a single peak of PF15C centred at zero (on 

resonance), and -12.5 ppm relative to the reference TFA capillary solution, as 

expected.  
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Figure 5.13. 3T Magnetic resonance spectroscopy of PF15C and TFA (reference). With an offset 
frequency of 10000 Hz, PF15C shows a single peak centred at 0 (on resonance), and TFA shows 
a peak centred at -12 ppm.  

 

By changing the offset frequency to values different from 10000 Hz, a 

chemical shift artefact was observed, which results in a change of the position of 

the phantom in the frequency encoding direction (Fig.5.14A). When the 

transmitter frequency and therefore receiver frequency was off-resonance, a 

displacement (chemical shift artefact) in the foot-head direction was observed. 

With an offset of 10000 Hz the image of the phantom is located in the centre of 

the field of view, while at lower frequencies there is an “upwards” shift of the 

phantom in the field of view and at higher frequencies lead to a “downward” shift 

was observed. A displacement of 1 mm in the foot-head direction (i.e. frequency 

encoding direction) was observed when the offset frequency was different from 
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the on-resonance frequency (e.g. 10000 to 10200 Hz; measured by Osirix 

software) (Fig.5.14B).  

The effects of the offset frequencies on SNR measurements were also 

analysed (Fig.5.14C); high SNR was observed between 10100-10200 Hz, a 10% 

difference was observed for the other frequencies studied.  

 

Figure 5.14. Chemical shift artefact of PF15C PFC. (A) Different frequency offsets were studied 
and chemical shift artefacts can be visually identified. (B) Calculated theoretical (y=0.0054x-
54.30) and measured (y=0.0055x-55.05) displacement from the MRI images (C) Signal-to-noise 
ratio (SNR) was measured using Osirix.  

 

Quantification of the 19F signal intensity from serial dilution of the PF15C 

stock solution (Fig.5.15) showed a linear correlation between the fluorine signal 

intensity and 19F-concentration. This suggests that the 19F signal intensity can be 

used to quantify the concentration of 19F in solutions and tissues although for in 

vivo imaging a phantom of known concentration (reference standard) would be 

required for absolute quantification.  
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Figure 5.15. Detection threshold for 19F MRI using PF15C. Emulsions were diluted 
(0,10,20,50,100%) and measured by 1H/19F MRI using a spin-echo sequence with the following 
parameters: TR=500 ms, TE=8.7 ms, Offset frequency 10330 Hz, BW= 8000 Hz.  

In vivo 3T MRI  

Mice received a 400 µL injection of PF15C 48 hours prior to MRI imaging. 

Animals were maintained under anaesthesia during the MRI scans using 

isoflurane. No fluorine signal was observed in control animals without injection of 

PF15C (data not shown). 1H and 19F images are shown in Figure 5.16. Quasi 

simultaneous acquisition of morphologically matching proton (1H) and fluorine 

(19F) images enabled the exact anatomical localization of PFCs. 19F signal co-

localised with the infarcted area, but was also seen at the site of the surgical 

incision, adjacent lymph nodes and liver. 
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Figure 5.16. In vivo imaging results of 19F/1H MRI in a mouse model of myocardial infarction 48 
hours after intravenous injection of PF15C PFCs. Three days after LAD occlusion the infarcted 
area was enhanced on 1H, late-gadolinium enhancement scans (LGE scans, left column); 19F 
scans showed enhanced areas of PFCs uptake; 1H/19F overlay images showed the co-localization 
of the 19F signal within the infarcted myocardium, healing tissue, liver and lymph nodes; both at 
short-axis view (upper row) and coronal view (lower row).  

5.5.4 - Discussion 

In this study two goals were pursued: (1) to compare two PFCs, PFPE-

VSense and PF15C emulsions by NMR spectroscopy; and (2) to investigate the 

feasibility of 1H/19F MRI for the in vivo imaging of inflammation in a mouse model 

of MI.  

In phantom experiments, PFPE-VSense exhibited multiple resonance 

frequencies compared with the single and sharp peak of PF15C as observed 

using 9.4T NMR spectroscopy, making the latter the preferred agent for phantom 

and in vivo experiments using the 3T clinical MR scanner. PFPE-VSense 

emulsion have 28-36 fluorine atoms, which are not chemically equivalent and 

therefore displays several resonance peaks (-57.09 ppm, -89.74 ppm, -89.78 

ppm and -91.81 ppm) [241]; this can create ghost artefacts when imaging is 
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performed in contrast to spectroscopy and can result in lower SNR as previously 

reported [234]. Due to its chemical structure and associated challenges, 19F-

PFPE was not chosen for further in vivo imaging experiments. 

On the other hand, PF15C is a perfluoro-15-crown-ether which has 20 

chemically equivalent fluorine atoms, which contribute to a single peak measured 

by spectroscopy [234]. PF15C has been shown to be chemically stable when 

different dilutions have been studied (single peak), and no adverse effects were 

observed in vivo.  

In the 9.4T NMR study, a single peak at -90.66 ppm was observed for 

PF15C. Similarly, with 3T MRS a single peak was observed at 10000 Hz (82.87 

ppm). These initial results suggest that there is approximately 7 ppm difference 

between the 9.4T and 3T. Since the 19F frequency on the 3T is referenced to the 

H2O signal acquired during a preparation scout scan it is likely that this disparity 

arose due to the lack of reference lock signal used for the 9.4T acquisition as well 

as differences in field homogeneity. TFA was used as a control reference in both 

fields, where similar offset frequency difference was observed.  

When different offset frequencies were studied (on and off resonance) a 

chemical shift artefact was observed in the images. When the excitation 

frequency is not on-resonance, the images suffer a chemical shift artefact leading 

to a displacement of up to 1 mm (between 10000-10200 Hz), corresponding to 

the theoretical value. This means that image registration may be required to fuse 

1H and 19F images. This misregistration occurs because of the difference in 

resonance frequency, which creates artefacts in the frequency encoding direction 

only. However, based on our results an off-resonance frequency of 10200 Hz 

showed the highest SNR and was therefore used for all in vivo experiments. Our 
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phantom study further demonstrated high signal linearity with 19F concentration 

(R2>0.99).  

The visualization of scar tissue with the 1H/19F dual coil was feasible at 3T. 

The results showed that it was possible to visualize PF15C PFCs at 3T with no 

signal background. Previous studies in different experimental mouse models of 

inflammation including the early stage of MI demonstrated the feasibility of using 

19F PFC for the detection of inflammatory cells with high field MRI [97, 235, 238, 

239, 242]. The emulsion was injected i.v. 48 hours before the scan to allow 

efficient phagocytosis of the PFC nanoparticles, infiltration of the labelled-

immune cells into the injured myocardium [237] and sufficient blood clearance. 

The imaging studies demonstrated the feasibility of visualizing the infarcted 

regions as hot spots (fluorine (19F) image) on simultaneously acquired 

morphologically matching proton (1H) MR images. 19F signal has also been 

observed outside the heart as LAD surgery may inflict injury to other tissues 

including muscle and skin that subsequently undergo an inflammatory healing 

process and thus take up PFC nanoparticles. In addition, liver and lymph nodes 

also showed fluorine signal. No signal was detected in the lungs, blood or in any 

SHAM-operated animals (data not shown).  

A disadvantage of the direct detection of 19F PFCs is the relatively high 

local contrast agent dose required for signal MR generation. Here a total volume 

of 500 µL was injected. It has been shown previously that lower volumes could 

be also detected in mice (50 µL of a 10% PFC-containing emulsion) using a 9.4T 

MR scanner [238]. However, no toxic effects were detected in the animals 

investigated in those studies. Furthermore, these studies have not shown any 

adverse effect on the proliferation, function or maturation of immune cells after 
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19F-PFC administration [97, 235]. The PFCs used in these studies exhibit ideal 

MR properties but having long retention times in the body [97], making clinical 

translation challenging. To overcome this problem, other PFCs could be used. 

However, from the MRI perspective, these compounds have the disadvantage of 

chemical shift artefacts due to the magnetically different 19F nuclei. Van Heeswijk 

et al [243] calculated the required dose for humans studies based on the contrast 

medium dose that was administered for animal 19F MR angiography, assuming 

the same experimental conditions. Base on their calculations a dose of 38 mM 

PFC are required for human angiography studies, which has been administered 

previously in humans as blood substitutes [244].  

Here we have shown that 1H/19F MRI to assess inflammatory responses 

in WT mice after induction of MI is feasible using a 3T clinical MRI scanner. 

PF15C have been shown to be ideal for these experiments because of their 

chemical behaviour. This methodology thus has a great potential for studying 

inflammatory processes in different experimental animal disease models of 

cardiovascular disease. 
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Molecular imaging of inflammation and extracellular matrix 

remodelling in a murine model of myocardial infarction 

6.1 - Personal Contribution 

René Botnar, Ajay Shah and Isabel Ramos (IR) conceived the main idea 

of the study. IR performed the surgeries, MRI and NMR scans, histology and 

data analysis described in the following chapter. Maryam Nezafat, René Botnar 

and Markus Henningsson (MH) designed the MOLLI T1 map sequence. MH, 

Begoña Lavin, Silvia Lorrio, Thomas R. Eykyn, Andrea Protti and Alkystis 

Phinikaridou helped with data collection. Pierre Gebhardt helped with the set-up 

of the heating and physiological monitoring system and Marcelo E. Andia with 

statistical analysis. Prof. Ulrich Flögel provided the 19F nanoparticles. A 

manuscript has been written and reviewed by all co-authors and is ready for 

submission.  

Part of this study was presented as an abstract at the 1st Divisional 

Symposium at King’s College London in 2015, the 24th Scientific Meeting of the 

International Society of Magnetic Resonance in Medicine (ISMRM) in Singapore 

2016, the King’s BHF Annual Symposium in London in 2017, and at the 25th 
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ISMRM conference meeting in Hawaii in 2017 as an oral and poster 

presentations. At ISMRM 2016 and 2017 the oral presentations were awarded 

with Magna Cum Laude and Summa Cum Laude Merit awards, respectively. 
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6.2 - Introduction 

Myocardial infarction (MI) is one of the major health care problems in 

western societies [245]. Optimal post-MI healing relies on a suitable degree of 

inflammation and its timely resolution, and a well-orchestrated deposition and 

degradation of extracellular matrix (ECM) proteins [9, 121, 246]. Cardiac injury 

activates innate immunity that triggers an inflammatory response where 

neutrophils and monocytes/macrophages are recruited to the myocardium [9]. 
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Quickly after MI, neutrophils are recruited to the injured site, followed by 

monocytes/macrophages to remove dead cells and debris by phagocytosis [9, 

26]. Studies have shown that an early and aggressive immune response and high 

levels of neutrophils and monocytes within the infarct may also promote adverse 

remodelling and lead to a poor prognosis [56, 247]. In addition to their phagocytic 

properties, inflammatory cells activate reparative pathways that trigger the 

formation and deposition of scar tissue, mainly composed of collagen and 

elastin/tropoelastin [26, 57, 248]. Elastin has been shown to be essential for the 

stabilization of the scar after MI and improving cardiac function by preserving its 

elasticity [58, 59]. While the remote myocardium contains elastin only to a 

negligible degree within the interstitium and coronary vasculature, elastic fibres 

increase within the myocardial scar in the first weeks following ischemic injury 

and continue the formation of a dense network between the remaining viable 

myocytes, myofibroblasts and smooth muscle cells during maturation of the 

infarct [57]. Tropoelastin, the soluble precursor of elastin, has been identified in 

increasing amounts within the remodelled myocardium and particularly towards 

the later stages of the healing process [249].  

Magnetic resonance imaging (MRI) is a non-invasive imaging modality that 

provides both functional and anatomical information with high spatial resolution. 

Cardiac magnetic resonance imaging (CMRI) after administration of contrast 

agents has been used to characterize myocardial viability, perfusion, infarct size 

and diffuse fibrosis [148, 192, 250]. Previous studies have shown that 

inflammatory cells can be imaged using 19F perfluorocarbons (PFCs) [97, 238]. 

As 19F is present in extremely low concentrations in the body, the 19F signal 

measured after administration of 19F-PFCs corresponds to that phagocytosed by 
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inflammatory cells. Studies using a gadolinium-based elastin-specific MR 

contrast agent (Gd-ESMA) have allowed investigation of elastin deposition and 

quantification of elastin remodelling within the infarcted areas in a murine model. 

Additionally, Gd-ESMA enhancement allowed quantification of scar size, with 

higher contrast-to-noise ratio and longer retention time compared with non-

specific gadolinium-based contrast agents [164, 251].  

The presence of inflammatory cells and the abundance of 

elastin/tropoelastin within the myocardial scar makes both promising imaging 

biomarkers for molecular MRI. Both measurements offer a unique opportunity to 

detect both the temporal and spatial evolution of the inflammatory response and 

associated ECM remodelling (elastin) post-MI, and to correlate these biological 

processes with their effects on cardiac function. This approach may potentially 

allow a more accurate association between early or persistent inflammation and 

diffuse myocardial remodelling at the molecular level. It may also serve as a new 

biomarker for predicting outcome, monitoring treatment response or evaluation 

of novel cardioprotective therapies. In this study, we sought to explore the merits 

of multinuclear 1H/19F MRI in concert with a 19F nanoparticles and Gd-ESMA for 

the sequential assessment and quantification of cardiac inflammation and elastin 

remodelling in a murine model of MI. 

6.3 - Aims 

Optimal healing of the myocardium following MI requires a suitable degree 

of inflammation and its timely resolution, together with a dynamic deposition and 

degradation and of ECM proteins. In this study, we explored the merits of 
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multinuclear 1H/19F MRI for the simultaneous assessment of cardiac 

inflammation and elastin remodelling in a mouse model of MI.  

6.4 - Methods 

6.4.1 - Animal model 

MI was induced in 10 weeks old, C57BL/6J female mice (N=71) (Charles 

River, United Kingdom) by permanent occlusion of the left anterior descending 

coronary artery (LAD). SHAM-operated animals underwent the same surgical 

procedure apart from occlusion of the LAD. Surgery details have been described 

in Chapter 5, section 1.3.2. 

6.4.2 - 3T Magnetic resonance imaging and spectroscopy 

In vivo cardiac scans were performed using a 3T Philips Achieva MR 

scanner (Philips Healthcare, Best, The Netherlands) equipped with a clinical 

gradient system (30 mT m-1, 200 mT m-1). Mice (N=8 per time point) were imaged 

at 3, 7, 14 and 21 days post-MI. SHAM-operated mice (N=6 animals per time 

point) were imaged at the same time points and were used as controls 

(Fig.6.1A). Fifteen mice were imaged longitudinally at 7 and 21 days post-MI 

(Fig.6.1B). Animals were placed in a prone position on a 19F/1H surface coil 

(Rapid Biomedical, Würzburg, Germany; diameter=23 mm and 33 mm). 

Anaesthesia was induced with 5% and maintained with 1.5-2% isoflurane in 

medical oxygen during the MRI scan, and the body temperature was measured 

with a rectal temperature probe and maintained at 36±1ºC using a water-based 

heating system. The ECG was monitored with two metallic needles placed 

subcutaneously in the region of the chest. 1H and 19F cardiac ECG-triggered MR 
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images were acquired 48 hours after intravenous (i.v.) injection of 400 µL of 19F-

PFCs (as previously described [97]) and 0.5 mmol/kg of a gadolinium-based MRI 

contrast agent that targets elastin and tropoelastin, Gd-ESMA (Lantheus Medical 

Imaging, North Billerica, MA) administered 1h prior to the MRI scan. At the end 

of the scans, the mice were culled and the heart was excised for histological and 

NMR studies.  

After a 3-dimensional (3D) gradient echo scout scan, 2-dimensional (2D) 

cine short-axis images, covering the entire left-ventricle (LV), were acquired to 

analyse functional and volumetric parameters. Imaging parameters included 

field-of-view (FOV)=35x35x12 mm3, acquired in-plane resolution=0.3x0.3x1 

mm3, slices=12, repetition time (TR) / echo time (TE)=7.8/16.0 ms, flip 

angle=20°. Subsequently, a 2D Look-Locker scan planned perpendicular to the 

long-axis of the LV was used to determine the optimal inversion time (TI) for 

nulling of the healthy myocardium. 3D late-gadolinium-enhancement (LGE) 

gradient echo (GRE) images were acquired in the short-axis view 60-80 minutes 

after Gd-ESMA injection for the visualization of contrast uptake within the 

infarcted region. Imaging parameters included FOV=35x35x12mm3, acquired in-

plane resolution=0.3x0.3x1 mm3, slices=12, TR/TE=6.4/2.6 ms, 5 heart beats 

between subsequent IR pulses, and flip angle=25°. T1-mapping was performed 

using a 2D Modified Look-Locker inversion recovery (MOLLI) sequence. The 

inversion pulse was followed by eight segmented readouts, each spaced one 

RR-interval apart, for eight individual images resulting in TI’s ranging from 10 ms 

to 2000 ms. To allow full magnetization recovery, 12 pauses/heart beats were 

performed before the next inversion pulse. Acquisition parameters included 

FOV=35x35x1.5 mm3, acquired in-plane resolution=0.3x0.3 mm2, slices=1, 



6.4. Methods  
_________________________________________________________________________________ 

 

158 

TR/TE=7.5/3.1 ms, flip angle=16°. For the visualization of inflammatory cells, a 

3D turbo-spin echo 19F scan was acquired with a FOV=35x35x12 mm3, acquired 

in plane resolution=1x1x2 mm3, slices=12, TR/TE=4beats/8.9ms, TSE factor=5, 

offset frequency=10200 Hz (BW=6103 Hz). A saturation slice was used to 

suppress the liver signal. To enable SNR calculation, a noise-scan was acquired 

with the same imaging parameters but without any RF pulses performed. A T2-

weighted (T2W) sequence was used to analyse oedema within the heart at 3 and 

7 days post-MI, with the following parameters: FOV=35x35x1.5 mm3, acquired 

in-plane resolution=0.3x0.3 mm2, slices=3, TR/TE=126/18, flip angle=30°. To 

verify the 19F in vivo results, ex vivo imaging experiments on the excised heart 

were also performed. 

 

Figure 6.1. Experimental study design. Myocardial infarction was induced in C57Bl6 female mice 
after permanent occlusion of the left anterior descending coronary artery (LAD). 3T MRI scans 
were performed after intravenous injection of 19F-PFCs and Gd-ESMA, 48 and 1 hour before 
imaging sessions, respectively. (A) Mice (N=8 per group/ time point) were imaged at 3, 7, 14 and 
21 days post-MI. SHAM-operated mice (N=6 per group/ time point) were imaged at the same 
time points and were used as controls. At the end of the scans, mice were culled and the heart 
was extracted for histology and NMR (N=4/group and 3 SHAM-operated animals / time point for 
each technique) (B) 15 mice were imaged longitudinally at 7 and 21 days post-MI. MRI: magnetic 
resonance imaging; 19F PFC: 19F perfluoro-15-crown-ether emulsions; Gd-ESMA: 
elastin/tropoelastin specific MR contrast agent. 
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6.4.3 - Magnetic resonance image analysis 

Ejection fraction (EF, %), left ventricular end-diastolic volume (LVEDV, μl) 

and left-ventricular mass (LV, mg) were calculated from the cine images, using 

an automated segmentation software (ClinicalVolumes, King’s College London, 

www.clinicalvolumes.com) [250]. Total infarct size was calculated by adding the 

LGE measured on consecutive slices after the administration of Gd-ESMA. The 

sum of total infarcted area was multiplied by the slice thickness to generate a 

volume (mm3) and was then divided by the total LV myocardium volume and 

expressed as a percentage. T1 relaxation times (R1) were calculated by manually 

segmenting T1 map regions corresponding to the LGE using OsiriX (Osirix 

Foundation, Geneva, Switzerland). For 19F measurements, regions of interest 

were defined as areas of enhancement seen on the 19F images, which co-

localized with areas of infarct as seen on the LGE images. For these areas, 19F 

signal was calculated using the following equation: 𝐹	𝑠𝑖𝑔𝑛𝑎𝑙Vd = �¡U
�¢y]	�{�£¤x

, 

where SNR is the sum of the signal of the infarcted area divided by the standard 

deviation of the noise in each slice, and scar volume was calculated from the 

sum of the LGE area of each slice multiplied by the MRI slice thickness [238].  

6.4.4 - 19F Nuclear Magnetic Resonance Spectroscopy at 9.4T 

Nuclear magnetic resonance (NMR) spectroscopy was used to quantify 

the uptake of 19F PFC in the remote and infarcted myocardium, separately, at 

different time points following LAD ligation. A subgroup of mice injected with PFC 

and scanned at 3T were culled and the hearts were collected (MI: N=4 and 

SHAM: N=3; each per time point). Remote and infarcted regions were separated, 

weighed and frozen at -20ºC prior to NMR analysis. NMR spectra of the 19F PFCs 
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were recorded at room temperature using a Bruker Avance III 9.4T scanner (1H 

400 MHz; 19F 375.8 MHz) and a 15 mm diameter double-tuned (31P/1H) 

volumetric micro-imaging coil. The water resonance was used to shim the 

sample and the 1H coil was then re-tuned to the 19F frequency. Both remote and 

infarcted areas were placed in NMR tubes (Fisher Scientific, Leicestershire, UK) 

with a silicone support to position the sample within the isocentre of the coil. A 

sealed external reference capillary of 100% TFA solution (δTFA=-76.6 ppm as 

identified in the literature, and reported relative to CFCl3) was placed adjacent to 

the heart. The 19F NMR chemical shift of the PFC peak was -12.5 ppm relative 

to the reference capillary. A 90o pulse (30 µs hard pulse) was used together with 

64 signal averages, total experiment duration=4.78 minutes, time domain 

size=131k data points, pre-scan delay=1s, acquisition time=3.5s resulting in a 

total repetition time of TR=4.5s per scan and spectral bandwidth=18797 Hz. Data 

were processed with an exponential line broadening factor (20 Hz), followed by 

Fourier transformation, zero and first order phase correction and automatic 

baseline correction. Peaks corresponding to the TFA reference and the PFC 

were integrated using Topspin 2.1 software (Bruker Biospin GmbH, Rheinstetten 

Germany) and normalized to the reference capillary. The number of moles of 19F 

were calculated using the equation: 𝑃𝐹𝐶 = ¡t§¨×©ª§«×[¬­®]
¡ª§«×©t§¨×�Z¯YY°\

	where [PFC] is the 

concentration/g tissue (wet weight)), NTFA is the number of 19F nuclei giving rise 

to the TFA signal, NPFC is the number of 19F nuclei giving rise to the PFC signal, 

IPFC is the peak integral of the PFC peak, ITFA is the peak integral of the TFA peak 

(ITFA = 1, normalised), [TFA] is the number of moles of TFA. 
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6.4.5 - Histology 

Following the MRI scans, anesthetized mice were culled by neck 

dislocation and hearts were collected for ex vivo analysis (N=4 MI mice per time 

point, and N=3 SHAM-operated animals per time point). Hearts were harvested, 

the atriums were removed and the ventricles were washed in saline solution 

followed by immersion in 10% formaldehyde solution for 24 hours at room 

temperature. Hearts were then dehydrated, paraffin-embedded and transversely 

sectioned (5 µm thick). Masson’s trichrome (Sigma-Aldrich, Dorset, United 

Kingdom) staining was performed to assess cardiac morphology and collagen 

content, respectively.  

Immunohistochemistry (IHC) was used to quantify the amount of 

tropoelastin and macrophages in the myocardium. Tropoelastin was detected 

with an anti-mouse rabbit polyclonal antibody (21600, Abcam; dilution 1:100) 

using an avidin-biotin-peroxidase method (Vector® SG Peroxidase substrate; 

Vector Laboratories, Burlingame, CA). A monoclonal rat anti-mouse antibody 

(550292, BD Pharmingen) (CD107b; MAC-3; dilution 1:100) was used for 

macrophage detection. The antibody was revealed with streptavidin-peroxidase 

(Dako, Ely, UK) (ABC kit, 1:100). Digital images were analysed using ImageJ 

(National Institute of Health, Bethesda, MD). Tropoelastin and MAC-3 were 

quantified and expressed as percentage of the infarcted myocardium using 

ImageJ, and were manually segmented and compared with the total area of 

infarction for each histology slice calculated from Masson’s trichrome staining.

6.4.6 - Statistical analysis  

GraphPad Prism 5.00 (GraphPad Software, Inc., La Jolla, California, 

USA) was used for statistical analysis. Normality was assessed by histogram, Q-
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Q plots, and the Shapiro-Wilk test, and equal variances was assessed with the 

Bartlet’s test and Levene’s test. For normally distributed variables with equal 

variances, an ANOVA test followed by Bonferroni post hoc analysis for multiple 

group comparisons (e.g. R1 of infarct) was performed. For normally distributed 

variables with unequal variances a Welch test followed by a Games-Howell post 

hoc test was used for multiple group comparisons (e.g. LVEDV, LV mass, 19F 

MRI, R1 of SHAM). For non- normally distributed variables, a Kruskal-Wallis test 

was used for multiple group comparisons (e.g. data from a specific time-point 

and/or data obtained at mouse termination) following by Dunn’s post-hoc test 

(e.g. EF, 19F NMR, IHC, R1 remote). Correlations were assessed using Pearson 

correlation. Receiver operating characteristic (ROC) curve analysis was 

performed to identify the cut-off point of imaging biomarkers to predict the 

evolution of functional cardiac parameters. P<0.05 was considered statistically 

significant. Data are presented as median ± interquartile range.  

6.5 - Results 

6.5.1 - Assessment of Cardiac Function by 3T MRI 

Representative cardiac short-axis cine images acquired at different time 

points post-MI are shown in Figure 6.2A. Visual enlargement of the left ventricle 

and thinning of the ventricular wall, at the site of the infarction, was observed 

post-MI and became more evident at day 21. The left-ventricular end-diastolic 

volume (LVEDV) increased significantly at 14 and 21 days post MI compared to 

SHAM-operated animals (LVEDV[µL]=14 days: 96.59 [IQR, 71.34-109.9] 

P<0.01; LVEDV[µL]=21 days: 96.27 [IQR, 81.88-130.90], P<0.01 vs 

LVEDV[µL]=SHAM: 46.73 [IQR, 43.26-57.56]). LVEDV was also significantly 
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increased at 14 and 21 days compared with 3 days post-MI (LVEDV[µL]=3 days: 

65.02 [IQR, 53.18-69.11], P<0.05) (Fig.6.2B)]. Ejection fraction (EF) was 

significantly reduced at 7 and 21 days after MI compared to SHAM-operated 

animals (EF[%]=7 days: 22.64 [IQR, 17.70-43.30], P<0.05; EF[%]=21 days: 

21.79 [IQR, 14.69-28.84], P<0.01, EF[%]=SHAM: 53.64 [IQR, 53.26-59.80]) 

(Fig.6.2C). Left-ventricular (LV) mass increased significantly over time after MI 

compared with SHAM-operated animals (LV[mg]=3 days: 84.02 [IQR, 77.87-

90.50], P<0.05; LV[mg]=7 days: 85.72 [IQR, 76.29-123.9], P<0.05; LV[mg]=14 

days: 106.20 [IQR, 88.34-123.90], P<0.05; LV[mg]=21 days: 111.4 [IQR, 106.0-

124.0], P<0.001; LV[mg]=SHAM: 63.77 [IQR, 51.24-68.21]), and from 3 to 21 

days post-MI (P<0.01) (Fig.6.2D). These results are consistent with previous 

studies in this animal model.  

 

 

Figure 6.2. Functional and volumetric parameters of MI animals at 3,7,14 and 21 days and SHAM 
operated mice. (A) Representative anatomical short-axis images of the heart. (B) The left 
ventricle dilates from acute to late stages of MI. (C) An increment in Left ventricular mass and 
(D) a decrease in Ejection fraction were observed over time. N=8 MI animals per time-point, N=4 
SHAM-operated animals per time-point. MI: myocardial infarction. *P<0.05, **P<0.01, 
***P<0.001.  
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6.5.2 - Assessment of the inflammatory response with 19F PFCs: imaging 

during post-MI remodelling and histological findings 

Myocardial remodelling post-MI is associated with an acute inflammatory 

response. Acquisition of morphologically matching proton (1H) and fluorine (19F) 

images enables anatomical localisation of the PFCs. Merged images confirmed 

the co-localization of the 19F PFC within the infarcted area at both 3 and 7 days, 

in agreement with the inflammatory response described for this animal model [9] 

(Fig.6.3A).  

Quantitative in vivo 19F MRI signal intensity measurements are shown in 

Figure 6.3B. A significant increase of 19F signal within the infarcted area was 

detected at 3, 7 and 14 days post-MI compared with SHAM-operated animals 

(19F MRI=SHAM: 0.19 [IQR, 0.13-0.20] vs 3 days: 0.44 [IQR, 0.39-0.67], P<0.05; 

SHAM vs 7 days: 1.27 [IQR, 0.84-1.58], P<0.01; SHAM vs 14 days: 0.30 [IQR, 

0.23-0.34], P<0.05). A peak was observed at day 7 post-MI which was 

statistically significant compared with all other time-points (19F MRI=7 days: vs 3 

days, P<0.05; vs 14 days, P<0.01; vs 21 days: 0.18 [IQR, 0.15-0.28], P<0.01). 

At 21 days post-MI the 19F signal was negligible and significantly lower compared 

with 3 and 7 days post-MI consistent with the resolution of the inflammatory 

response (19F MRI: 3 vs 21 days, P<0.05; 7 vs 21 days, P<0.01). 19F signal was 

also detected at the site where surgical thoracotomy was performed, in the liver 

and lymph nodes, as these are major sites of macrophage clearance. No 

background signal from other tissues was observed.  
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Figure 6.3. Assessment of inflammatory response after induced myocardial infarction in mice 
using 3T MRI and 19F perfluorocarbon nanoparticles. (A) Representative short-axis views of 1H 
images (top), 19F images (middle)and with the matching 1H+19F images (bottom) from the heart 
3,7,14 and 21 days after MI; (B) In vivo 19F MRI signal quantification. N=8 per time-point, N=6 
SHAM-operated animals.  

 

To verify the in vivo results, ex vivo 1H/19F MRI experiments of the excised 

hearts were performed. 1H/19F overlay images confirmed that PFC accumulation 

was restricted to the infarcted region and that no signal was detected in the 

remote myocardium (Fig.6.4A). To further quantitate the evolution of the 19F 
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signal, infarcted and remote areas were separated for ex vivo NMR 

spectroscopy. The NMR spectra corroborated the in vivo MRI findings, where 

infarcted regions showed high 19F PFC signal that was absent in the remote 

myocardium (Fig.6.4B&C). NMR spectra quantification showed a peak of 19F 

concentration in the infarcted regions at 7 days that was statistically higher 

compared with day 21 (19F NMR[159]=7 days: 0.12 [IQR, 0.075-0.18] vs 21 

days= 0.0063 [IQR, 0.0042-0.020], P<0.05). At 7 days post-MI, infarcted and 

remote myocardium from operated animals and healthy hearts from SHAM-

operated animals could be distinguished based on the 19F signal (19F 

NMR[159]=infarct: 0.12 [IQR, 0.075-0.18] vs remote: 0.026 [IQR, 0.015-0.057] 

vs SHAM: 0.012 [IQR, 0.0042-0.044], P<0.05). At 21 days post-MI, the signal in 

the remote myocardium from MI-operated animals and myocardium from SHAM-

operated animals was statistically different. In SHAM-operated animals injected 

with PFCE, no 19F signal was detected in the heart. Furthermore, a correlation 

was observed between in vivo MRI measurements and ex vivo NMR 19F signal 

measurements (Figure 6.5). 
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Figure 6.4. Analysis of 19F PFC uptake in the heart. (A) Ex vivo MRI of the heart and water tube 
(as reference). 19F signal is detected in a specific region within the heart. (B) Ex vivo NMR 
spectroscopy of the heart after separating in infarcted and remote, showed that a peak is detected 
in the infarcted myocardium but not in the remote tissue. (C) Ex vivo 19F NMR signal 
quantification. N=4 per time-point, N=3 SHAM-operated animals.  
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Figure 6.5. Correlation between in vivo 19F MRI signal and ex vivo NMR 19F signal quantification. 
Pearson correlation (N=16, r=0.61, P<0.05). 
 

MAC-3 IHC for identification of myocardial tissue macrophages is shown 

in Figure 6.6A. IHC showed recruitment of macrophages during the early stages 

following MI. Macrophages were present within the infarcted area, at 3 and 7 

days post-MI, but were absent in the remote myocardium as seen with the 19F 

PFC imaging findings. The amount of MAC-3 positive macrophages was 

significantly higher at 3 and 7 days compared with SHAM-operated animals (IHC 

MAC-3[%]=SHAM: 0.003 [IQR, 0.002-0.004] vs 3 days: 2.12 [IQR, 1.88-2.63], 

P<0.05; and SHAM vs 7 days: 3.65 [IQR, 2.74-4.09], P<0.01) and macrophage 

content was significantly higher at 7 days compared to 21 days post-MI (IHC 

MAC-3=21 days: 0.13 [IQR, 0.041-0.23], P<0.05) (Fig.6.6B). There was a 

significant correlation between the in vivo 19F MRI signal and macrophage 

content as evaluated by IHC (r= 0.84, P<0.001, Fig.6.7). 
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Figure 6.6. Macrophage immunohistochemistry (IHC) of the hearts sections at day 3, 7, 14 and 
21 days after MI. (A) Macrophages were identified as MAC-3 positive (brown). (B) IHC 
quantification shown a significantly decrease between 7 and 21 days after infarct. N=4 per time-
point. Scale bar, 50 µm. 
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Figure 6.7. Correlation between ex vivo macrophage immunohistochemistry (IHC) and in vivo 19F 
MRI signal. Pearson correlation (N=16, r= 0.84, P<0.0001). 

6.5.3 - Optimization of Gd-ESMA protocol  

The kinetics of Gd-ESMA has been studied by Wildgruber and colleagues 

at 1.5T [164]. The authors showed that the SNR reached its maximum value 1 

hour after Gd-ESMA i.v. injection, allowing the distinction between scar, normal 

myocardium and blood pool in a mouse model of MI [164]. Moreover, Protti and 

colleagues [251] have shown that 2 hours after Gd-ESMA injection, the contrast 

is confined to the scar area, without any visible signal in neither remote nor blood 

pool at 7T.  

Here, the effect of i.v. injection of Gd-ESMA was studied using 3T MRI. 

Two hours after i.v. injection the contrast agent was detected within the scar area, 

however, it was also observed in the blood pool, making the distinction and 

segmentation of the scar challenging (Fig.6.8A). For this reason, after i.v. 

injection of Gd-ESMA, the animals were allowed to recover for 45 minutes (to 

facilitate blood clearance) and LGE images were acquired between 60 and 90 

minutes after contrast administration. Figure 6.8B shows the effect of this 

protocol on the LGE images; scar and remote myocardium can be distinguished, 

and no contrast was seen on the blood pool.  
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Figure 6.8. Effect of Gd-ESMA intravenous injection on the late-gadolinium enhancement images 
at 3T MRI. (A) Protocol 1: Immediately after injection of the contrast, the imaging session 
commenced. Higher amounts of contrast remained in the blood pool and remote myocardium, 
making the segmentation of the scar challenging. (B) Protocol 2: Allowing the animal to recover 
for 45 minutes after intravenous injection of Gd-ESMA facilitated delineation of the infarcted 
myocardium from the blood pool and remote myocardium. a.i. after injection.  

6.5.4 - Oedema after myocardial infarction 

Early after MI, fluid accumulation can be detected in the interstitial space. 

Here, oedema was assessed using T2W sequences at 3 and 7 days post-MI. 

Myocardial oedema was evident at day 3, and absent at day 7 (Fig.6.9 top). To 

confirm the presence of infarct in this animal, Gd-ESMA was injected and scar 

tissue appeared enhanced at both 3 and 7 days post-MI (Fig.6.9 middle and 

bottom images). 
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Figure 6.9. Assessment of myocardial oedema in mice with myocardial infarction. T2-weighted 
images showing high signal intensity in the lateral wall (top row images); Contrast-enhanced 
images (late gadolinium enhancement) showing high signal intensity in the infarcted areas 
(middle row images); and T2-weighted images after intravenous injection of contrast (lower row 
images).  

6.5.5 - Scar assessment 

One hour post-Gd-ESMA injection, infarcted areas showed enhancement 

at all time-points (3-21 days), allowing quantification of infarct size (Fig. 6.10A). 

Trichrome staining was also performed and used to quantify infarct size ex vivo. 

There was a strong linear correlation between infarct size measured by in vivo 

MRI and histology (r=0.90, P<0.001) (Fig.6.10B).  
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Figure 6.10. Assessment of infarct size in vivo by LGE-MRI and ex vivo histology using Trichrome 
staining. (A) In vivo delayed-enhancement magnetic resonance imaging (LGE) after intravenous 
injection of Gd-ESMA (top) and ex vivo Trichrome staining (bottom) showing delineation of scar 
area at 3,7,14 and 21 days post-MI. (B) Good correlation between in vivo and ex vivo assessment 
of scar size was observed between MRI and histology. Pearson correlation (N=16, r=0.90, 
P<0.0001).  

 

The high signal intensity on LGE images at 3 days post-MI has been 

associated with oedema; not reflecting deposition of elastin/tropoelastin but 

reflecting instead increase of the extracellular volume due to cardiomyocyte 

death and cell swelling. For this reason, the 3 days time point has not been 

considered for the R1 map and histology analysis.  



6.5. Results  
_________________________________________________________________________________ 

 

174 

6.5.6 - Assessment of extracellular matrix (ECM) remodelling post-MI 
using Gd-ESMA  

ECM remodelling post-MI was evaluated using Gd-ESMA, a contrast 

agent that binds specifically to both cross-linked mature elastin and its precursor 

tropoelastin (immature non-crosslinked elastin). In vivo quantification of Gd-

ESMA uptake was performed with T1 mapping. Figure 6.11A shows the 

relaxation rate (R1) maps after Gd-ESMA administration in animals with MI at 7, 

14 and 21 days. R1 maps showed uptake of Gd-ESMA in the infarcted area at all 

time points while no enhancement was observed in the remote myocardium. 

Quantification of R1 demonstrated that the infarcted myocardium exhibited 

significantly higher R1 values compared to remote myocardium at 7, 14, and 21 

days and also when compared to SHAM-operated animals (infarct-remote 

P<0.01, infarct-SHAM P<0.001, Fig.6.11B). R1 values were also significantly 

higher within the infarct area between 7 and 21 days (R1[s-1]=7 days: 2.3 [IQR, 

2.12-2.5] vs 21 days: 2.83 [IQR, 2.69-3.30], P<0.01). 
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Figure 6.11. In vivo imaging of extracellular matrix (ECM) remodelling after myocardial infarction 
(MI) with a gadolinium-based elastin/tropoelastin-specific contrast agent. (A) Representative 
short-axis images of relaxation rate (R1) maps at 7,14 and 21 days post-MI using 3T MRI. (B) 
Quantification of R1 values in the infarct, remote myocardium (N=8 per time-point) and on the 
SHAM-operated animals (N=6 per time-point). R1 values increased significantly from 7 to 21 days 
post-MI suggesting ECM remodelling. 
 

In order to analyse the deposition of elastin fibres in the heart after MI, 

Elastica van Gieson staining was performed. Mature fibres could be visualized; 

however, quantification was challenging (Fig.6.12).  
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Figure 6.12. Elastica van Gieson staining of infarct and remote myocardium at 3,7,14 and 21 
days post-MI. Elastin fibres were identified as black fibre network, specially at 14 and 21 days. 
Scale bar, 50 µm.  
 

For that reason, quantification of tropoelastin was performed with IHC 

(Fig.6.13A). Tropoelastin IHC revealed a dense fibre network within the infarcted 

myocardium at 14 and 21 days post-MI but not in the remote myocardium. 

Tropoelastin deposition was significantly higher at 21 days compared to 7 days 

post-MI (IHCTropoelastin[%]= 21 days: 3.25 [IQR, 2.87-3.45] vs 7 days: 1.92 [IQR, 

1.62-2.31, P<0.01). There was a statistically significant correlation between the 

myocardial R1 values measured in vivo after administration of Gd-ESMA and 

tropoelastin IHC (r= 0.76, P<0.01, Fig.6.13B). 
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Figure 6.13. Tropoelastin immunohistochemistry (IHC) of heart sections at day 7, 14 and 21 days 
after MI. (A) Tropoelastin fibres were identified as black fine fibre network (arrow). (B) IHC 
quantification, showing a significantly increment in tropoelastin fibres between 7 and 21 days 
post-MI. N=4 per time-point. Scale bar, 50 µm. 
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There was also statistically significant correlation between the myocardial 

R1 values measured in vivo after administration of Gd-ESMA and tropoelastin 

IHC (r=0.90, P<0.001, Fig.14). 

 

 

Figure 6.14. Correlation between ex vivo measurements of tropoelastin immunohistochemistry 
(IHC) and R1 values of the scar. Pearson correlation (N=12, r=0.90, P<0.001). 

6.5.7 - 19F vs R1 can be used to predict cardiac output: longitudinal study  

Remodelling post-MI is a dynamic and complex process where several 

factors can influence cardiac outcome (e.g. degree and duration of inflammation, 

infarct size, and ECM deposition). To understand the potential prognostic value 

of the in vivo 19F and Gd-ESMA MRI measurements, a longitudinal proof-of-

principle study was performed. Fifteen animals were scanned twice at days 7 

and 21 post-MI. 19F MRI was performed at 7 days (48 hours after 400 µL 19F 

PFCs were injected at day 5) to quantify the severity of inflammation. Day 7 was 

chosen as it the inflammatory response was strongest at this time as shown in 

the pilot studies described above. An elastin scan (1 hour post Gd-ESMA 

injection) was performed at day 7 and 21 post-MI. No correlation was found 

between 19F at day 7 post-MI and Gd-ESMA uptake at day 7 (Fig.6.15A) and at 
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day 21 post-MI (Fig.6.15B), suggesting that these biological processes are 

independent/ decoupled from each other. 

A 

 

B 

 

Figure 6.15. There is no correlation between 19F signal at day 7 and (A) Gd-ESMA uptake 7 days 
after MI and (B) Gd-ESMA uptake in the infarcted myocardium at day 21 post-MI.  

 

In order to analyse the predictive value of each contrast agent the EDV at 

day 21 was used as an outcome measure of cardiac function post-MI (higher 

EDV reflects worse cardiac outcome). The presence of elastin at day 7 

(measured as R1 within the infarcted myocardium after Gd-ESMA administration) 

showed a linear correlation with the EDV measured at day 21, suggesting that 

early accumulation of elastin/tropoelastin (larger Gd-ESMA uptake at day 7) 

might not be beneficial for the healing of the myocardium at day 21 (Fig.6.16A). 

Interestingly, the inflammatory process measure at day 7 showed a more 

complex behaviour with respect to the outcome of EDV at day 21, and was best 

described with a quadratic regression. 19F PFCs data suggests that an optimal 

inflammatory response is observed when the 19F signal ranged between [0.55-

1.85] (Fig.6.16B). Both an excessive (19F>>1.85) or weak (19F<<0.55) 

inflammatory response at early stages post-MI result in large EDV (EDV>100 μl) 

at day 21 suggestive of adverse cardiac outcome. Similar results were found 

when total area MI at day 21 post-MI was used as a cardiac outcome and 
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compared with 19F signal and R1 at day 7, however with lower significance as 

compared with EDV (data not shown). 

A 

 

B 

 

Figure 6.16. (A) Linear correlation between EDV measured at day 21 and R1 values (Gd-ESMA 
uptake) at day 7, (B) Quadratic regression between EDV measured at day 21 and 19F SNR at 
day 7. 

 

The value of 19F signal (19F SNR) and quantitative assessment of 

elastin/tropoelastin deposition (R1) in predicting impaired left-ventricular 

remodelling after MI was also investigated with receiver-operator analysis 

(Fig.6.17). R1 and 19F MRI showed high sensitivity and specificity for predicting 

cardiac outcome as summarized in Table 6.1. Both measurements carry some 

predictive value but the combination of the two improves the overall performance 

of the test in detecting which animals may undergo favourable myocardial 

remodelling post-MI.
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A 

 

B 

 

C 

 

Figure 6.17. (A) R1 of Gd-ESMA contrast uptake at day 7 (AUC:0.727; 95% CI=0.47-0.98) and 
(B) 19F uptake at day 7 (AUC:0.705; 95% CI=0.43-0.97) as predictors for beneficial myocardial 
remodelling (EDV>100μl). (C) Double cut-of-points analysis. 1- good EDV progression; 0- 
detrimental EDV progression. The “window” of beneficial remodelling is defined by a R1 value 
lower than 2.34 s-1 and a normalised 19F signal between 0.55 and 1.85. EDV: end-diastolic 
volume. 
 

Table 6.1. Ability of MRI measurements in predicting beneficial left-ventricular remodelling 
defined as R1£2.34 and 0.55£19F£1.85 after MI. When using the information provided by both 
contrast agents at day 7, the sensitivity and specificity for predicting beneficial LV remodelling at 
day 21 was 75% and 91%, respectively. 

 R1≤2.34 0.55≤19F≤1.85 
R1≤2.34 

0.55≤19F≤1.85 

Sensitivity (%) 54.5 50 75 

Specificity (%) 100 82 91 

6.6 - Discussion 

Despite great efforts in preventing MI, its incidence and the subsequent 

heart failure remain a worldwide health problem. Ongoing research aims at 

identifying patients with increased risk of adverse left ventricular remodelling in 

order to more aggressively treat those patients while minimizing usage of drugs 

and associated side effects in patients deemed to be at lower risk. The outcome 

of adverse remodelling can be assessed by conventional functional imaging; 

however, there is a lack of imaging techniques that can detect early adverse 
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remodelling due to a lack of molecular imaging biomarkers, thus limiting the 

opportunity for prevention. Molecular imaging of the immune system is an 

important area of research as it can influence the healing myocardium, where 

deficient or exacerbated immune responses may adversely contribute to 

remodelling. Assessing the extent and duration of the inflammatory process in 

vivo post-MI might be a strategy to detect, predict and treat post-MI remodelling. 

When inflammation dissipates, the infarcted tissue is replaced by scar, which is 

composed of different proteins which can be visualised and quantified non-

invasively using novel imaging targeting e.g. collagen or elastin. As mentioned 

before, the deposition of these proteins needs to be controlled, as otherwise it 

can contribute to excessive cardiac remodelling and may lead to heart failure. In 

this study, we investigated the feasibility of a non-invasive multinuclear 1H/19F for 

the simultaneous assessment of the temporal and spatial course of the 

inflammatory response and ECM deposition in post-MI remodelling and its 

predictive values.   

In this cross-sectional study, we showed that (1) 19F PFCs MRI can be 

used to assess and monitor inflammatory cell recruitment in vivo into the injured 

myocardium at clinical field strength, as confirmed by ex vivo NMR and 

histological studies; and (2) Gd-ESMA MRI allows quantification and visualization 

of scar size, visualization and quantification of elastin/tropoelastin deposition in 

the myocardium during the scar maturation phase. (3) In a longitudinal proof-of-

concept study, we further investigated the merits of both biomarkers in predicting 

cardiac outcome (measured as end-diastolic volume). We found that at early 

stages of the healing process an excessive or weak inflammatory response might 

induce inadequate MI healing, and that excessive tropoelastin deposition within 
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the scar tissue is not beneficial for cardiac outcome. Our results suggest that 

multinuclear 19F/1H MRI may provide a better understanding of the biological 

processes underlying post-MI remodelling in vivo and that 19F PFCs and Gd-

ESMA may serve as new imaging biomarkers for monitoring the progression of 

cardiac disease and predicting outcome.  

Within the first week after MI inflammatory cells are recruited to the site of 

injury. They are characterized by their phagocytic capacity and thus avidly take 

up 19F PFCs, which can be imaged by MRI with excellent contrast and without 

any unwanted background signal. Several studies have shown that 19F MRI 

allows the in situ visualization and quantification of the inflammatory process both 

in vivo and ex vivo in the heart post-MI, by targeting monocytes/macrophages 

[97, 136, 238, 242]. However, no study has described the temporal evolution of 

19F signal in vivo at clinical field strength and related with the presence of immune 

cells. Here, we successfully demonstrated the non-invasive visualization and 

quantification of 19F signal in the infarcted region after LAD ligation by in vivo MRI 

and ex vivo validation by NMR. MRI signal intensity measurements demonstrate 

that 19F is detectable within the first week post-MI, with a peak at 7 days post-MI. 

Similarly, quantitative ex vivo NMR spectroscopy showed higher 19F signal at 

early stages of MI healing, confirming the same peak at 7 days, and more 

importantly, PFC accumulation was restricted to the infarcted region with no 

signal was detected in the remote myocardium. Consistent with these findings, 

histological analysis showed that monocytes/macrophage populations are 

significantly increased in the infarct up to 7 days after LAD occlusion as detected 

by immune positive MAC-3 staining. Furthermore, we found a strong correlation 

between MAC-3 and 19F MRI signal. Our results are in good agreement with the 
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resolution of inflammatory cells at later time points (14-21 days) as described in 

animal models of myocardial infarction [26, 252, 253].  

Non-invasive imaging of inflammatory cells has been also achieved using 

magnetic nanoparticles (MNP) (e.g. iron oxide particles) as shown in models of 

atherosclerosis [254] and infarct healing [255]. Despite their excellent sensitivity, 

unlike 19F PFCs which generates a positive signal, iron oxide particles generate 

negative signal due to the shortening of the T2/T2* relaxation time of nearby 

water protons. The local deposition of these particles creates hyperintense 

regions in affected tissues making the differentiation between MNP accumulation 

and tissue interfaces challenging as both create signal voids. The interest in 19F 

particles thus increased as they allow avoiding these challenges. Their 

applications for cell tracking, targeted drug purposes and cell labelling in vivo 

have been extensively explored. 19F PFCs have the advantage of being 

chemically stable and have the potential for functionalization. Adding 

fluorochromes to their chemical structure offers the opportunity to multimodal 

imaging (e.g. combined MRI and fluorescence imaging) while adding cell-specific 

ligands, could possibly aid the distinction between different cell types (e.g. M1 

and M2 macrophages). In this work, we did not differentiate the 

monocyte/macrophage sub-populations, but for further investigation it would be 

of great interest to distinguish between Ly6Chigh and Ly6Clow and study their role 

in post-MI remodelling in vivo. 19F MRI may provide an in vivo readout for 

monitoring of treatment-related changes in inflammatory cell infiltration. 

As the inflammatory process dissipates, granulation tissue accumulates in 

the infarcted regions and is then replaced by extracellular matrix proteins. For a 

long time the ECM was thought to be an inert tissue, however its importance and 
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role in the remodelling process post-MI has become more evident both in terms 

of both cell signalling and tissue structure [157, 256]. Scar tissue formation 

commences as early as 1 week following MI, and is mainly composed of collagen 

type I but also elastin. Elastin is an insoluble protein and its role in scar formation 

and stabilization has received more attention recently as it may provide elasticity 

and help limit scar expansion after infarction [59, 257, 258]. Mature elastin is 

formed by cross-linking of its soluble precursor, tropoelastin. Here, we 

investigated the merits of Gd-ESMA contrast agent as an imaging biomarker for 

the assessment of ECM remodelling. Elastin/tropoelastin was quantified using T1 

mapping to measure the relaxation rate (R1) after Gd-ESMA injection with 3T 

MRI. R1 values significantly increased from 7 to 21 days post-MI, which was in 

good agreement with the deposition of tropoelastin in the infarcted area 

measured by immunohistochemistry. No differences were found between remote 

myocardium and SHAM-operated animals. At 3 days post-MI, T1 mapping 

showed a significant increase in R1 in the infarcted area, however histology 

showed lack of elastin/tropoelastin at this time point. We hypothesised that Gd-

ESMA behaves similarly to other gadolinium-based contrast agents due to its 

small size [164, 259], and immediately after MI its retention within the infarcted 

region may be unspecific and attributed to formation of oedema, cellular swelling 

and rupture, and subsequent increase in extracellular volume, as previously 

shown in dogs and humans [88, 93, 260]. Consistent with this hypothesis, we 

observed a high signal intensity on native T2-weighted images at day 3 (high 

water content) in the infarcted area, which decreased at day 7 post-MI. 

Additionally, it has been reported that Gd-ESMA binds not only to tropoelastin 

and elastin (41%, KD=9.2±0.7 µM and 40%, KD=1.0±0.5 µM, respectively) but 
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also to other proteins including BSA (15%, KD=ns) and chondroitin sulfates (5%, 

KD=ns) [261], collagen type I and III (22%, KD=7.3±1.3 µM and 13%, KD=6.8±1.2 

µM, respectively) [262] that may be present in small quantities at day 3, thus 

increasing its retention and tissue relaxation. Elastin fibres were detected by van 

Gieson staining, however due to their thin shape, segmentation and quantification 

was challenging. Staining with an anti-tropoelastin antibody demonstrated that 

tropoelastin molecules significantly increased from 7 to 21 days within the infarct 

area. 

Gd-ESMA has already been used successfully for molecular imaging of 

vessel wall elastin in atherosclerosis [259, 261, 263], and also generated 

persistent enhancement of myocardial scar due to binding to elastin/tropoelastin 

fibres [251]. Whole heart cardiac MRI in concert with Gd-ESMA could provide 

both scar and coronary plaque burden assessment in a single scan, thereby 

allowing to risk stratify patients and monitor treatment effects. In addition, it may 

enable the evaluation of novel cardioprotective therapies. Here, we evaluated 

ECM remodelling with Gd-ESMA, but alternative contrast agents could be used 

to monitor collagen deposition [162] another important ECM protein in myocardial 

remodelling.  

We thought to investigate the prognostic value of the inflammatory 

response and of elastin remodelling on cardiac function in a proof-of-principle 

longitudinal study. The impact of the inflammatory response on cardiac output 

was evaluated with 19F PFCs MRI. Excessive or week inflammation (high and low 

19F signal) at 3 days post-MI, was associated with a poor cardiac output (at day 

21). Conversely, a more balanced inflammatory response at day 3 (intermediate 

19F signal) resulted in more beneficial remodelling and better cardiac function at 
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day 21. Our results are in agreement with other studies that showed that the first 

hours after MI are crucial and represent a time-window during which restoring 

blood flow could minimize cardiomyocyte death and drastically attenuate LV 

remodelling [3]. The healing process is affected by the exposure to and duration 

of acute inflammation. Prolonged and exacerbated inflammation has been 

related to worse prognosis and similarly, the lack of inflammation has been 

associated with thinner infarcts, where the myocardium is more likely to rupture 

[56, 247]. A certain degree of inflammation and a controlled recruitment of 

monocyte/macrophages populations seems to be desired for an optimal MI 

healing. 

We have further investigated the prognostic value of Gd-ESMA on cardiac 

function. In our study, higher R1 values at 7 days (high elastin/tropoelastin 

deposition) were associated with an unfavourable prognosis at 21 days as 

measured by high EDV at day 21 post-MI. In previous work, Gd-ESMA has also 

been used to assess elastin deposition in the heart in a mouse model of MI [164]. 

In this cross-sectional study, Wildgruber et al [164] found that a higher contrast-

to-noise ratio (CNR) between scar and myocardium at day 21 correlated with a 

higher ejection fraction at the same time-point, while the CNR at day 7 did not 

predict outcome at day 21. In contrast, we performed a longitudinal study, using 

T1 mapping instead of CNR measurements and EDV as an endpoint for cardiac 

function and found that a high R1 signal at day 7 was associated with a poor 

cardiac outcome at day 21. Other studies showed that modifying the composition 

of myocardial scar by exogenously increasing elastin content resulted in 

improvement cardiac function [58, 59, 249] in a rat model of LAD ligation. In 

addition, increased expression of elastin via cell-based gene therapy improved 
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cardiac function and survival of ischemic hearts in a rat model of MI [59, 264]. 

Further studies are now warranted to investigate the role of elastin 

turnover/metabolism and cross-linking following MI at later time points.  

Molecular MRI has great potential for the quantification of inflammatory 

cell recruitment and extracellular matrix (elastin and collagen) remodelling; two 

key biological processes underlying the healing of the myocardium post-MI. 

Multinuclear 19F/1H MRI may improve our knowledge of cardiac remodelling in 

vivo by targeting two key biological processes that are responsible for post-MI 

remodelling. In this work, we studied the feasibility of simultaneously assessing 

inflammation and extracellular matrix remodelling using 19F PFC nanoparticles 

and Gd-ESMA contrast agents. Our findings suggest that a weak or exacerbated 

inflammatory response, and increased deposition of elastin at day 7 in the 

infarcted myocardium may hamper the healing process. This imaging protocol 

may be useful for risk stratification or to facilitate the in vivo study of the effects 

of novel therapeutic procedures in disease progression and potentially 

personalization of therapy. 

6.7 - Limitations 

This study has shown the feasibility of multinuclear imaging in a murine 

model of post-MI remodelling via LAD ligation. 19F imaging was performed in a 

small animal model using a clinical 3T MR scanner, and high amounts of 19F 

PFCs are required to generate enough signal. The high dosage enabled 

visualization of 19F PFCs in small structures such as the murine heart. Direct 

quantification of 19F PFCs from the MRI could not be performed, as a surface coil 

was used. However, with the use of NMR experiments at 9.4T we were able to 
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quantify 19F PFCs content both in the remote and infarcted myocardium ex vivo. 

19F PFCs injection did not show any adverse effects in the animals throughout 

the period of time animals were monitored. However, PFCs have a long retention 

time in the body, making it challenge to obtain approval for clinical application. 

Improvement of PFC clearance while maintaining their specificity for 

macrophages could facilitate future use in humans. In addition, we used a 2.5 to 

5-folder high dose of Gd-ESMA (0.5 mmol/Kg) than usually used in a clinical 

setting. Future experiments will require dose optimization prior to use humans; 

however, no toxic effects have been observed in the animals at any time-point. 

Finally, we utilised a permanent LAD occlusion model to induce a strong acute 

inflammatory response for proof-of-concept 19F/1H MRI. In future studies, we aim 

to investigate a reperfusion model, which is clinically more relevant. 

6.8 - Conclusions 

We successfully demonstrated the feasibility of multinuclear 1H/19F MRI to 

non-invasively assess and quantify the inflammatory response and elastin 

turnover following post-MI remodelling in a murine model in vivo. We further 

studied the interplay between these biological processes, and our findings 

suggest that a balanced inflammatory response may be beneficial for myocardial 

remodelling, while high amounts of tropoelastin/elastin at day 7 post MI resulted 

in impaired cardiac function. This novel approach may have potential for 

monitoring treatments that aim at modulating the inflammatory response or the 

deposition of ECM proteins in vivo. It may also aid the prognosis in patients with 

myocardial infarction. 
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In vivo imaging of monocyte chemoattractant protein-1 role in 

myocardial remodelling after myocardial infarction 
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7.2 - Introduction 

Adverse ventricular remodelling after myocardial infarction (MI) and 

subsequent chronic heart failure is a major healthcare problem worldwide [265, 

266]. After MI, there is recruitment of inflammatory cells, followed by the formation 

of granulation tissue and the deposition of extracellular matrix (ECM) [9, 246]. 

The severity and duration of this healing response may have an important impact 

on the outcome. A controlled initial immune response is crucial to provide a time 

window for treatment in order to limit cardiac remodelling [9, 26, 267, 268]. 

However, several studies have provided evidence that early and persistent 

inflammation within the infarcted area may promote adverse remodelling and lead 

to poor prognosis. An extensive inflammatory response within the infarcted 

myocardium has been related to an increased death of cardiomyocytes and 

ischemic myocardial injury [269-271]. 
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After MI, the inflammatory response is characterized by an increased 

expression of chemokines and cytokines, which contributes to immune cell 

recruitment into the injured area [22, 270]. Monocyte Chemoattractant Protein 1 

(MCP-1) is a chemokine which levels are increased in blood after MI in both 

animal models and patients [62, 272-274]. MCP-1 plays an important role in the 

recruitment of leukocytes and its lack has been associated with defective 

recruitment of macrophages into the healing infarct and subsequent replacement 

of injured myocytes by granulation tissue [32]. In addition, MCP-1 seems to 

actively participate in the regulation of the maturation phase, by modulating 

fibroblast phenotype, stimulating extracellular matrix production and metabolism 

[32, 275, 276]. MCP-1 knockout mice showed an attenuation in left-ventricle (LV) 

remodelling as a consequence of delay recruitment of leukocytes and delayed 

replacement of injured cardiomyocytes with granulation tissue [32]. In mice, anti-

MCP-1 gene therapy resulted in an attenuation in LV dysfunction, and reduced 

interstitial fibrosis as measured by collagen staining [277].  

In vivo imaging of the remodelling process after MI is important for the 

understanding of the pathophysiology of myocardial repair. Magnetic resonance 

imaging (MRI) is a non-invasive imaging technique, with high temporal and 

spatial resolution that allows to visualise and quantify biological processes by the 

use of cell or protein specific imaging probes. The purpose of this study was to 

investigate the role of MCP-1 in myocardial healing in vivo in a murine model of 

MI using a 3T clinical MR scanner. 19F perfluorocarbons (PFCs) that are avidly 

taken up by macrophages [278] were used to investigate inflammatory cell 

recruitment into the injured myocardium. To evaluate LV remodelling post-MI, we 

used a small molecular weight gadolinium-based elastin-specific MR contrast 
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agent (Gd-ESMA) that enables to non-invasively assess ECM remodelling [164, 

251]. In vivo imaging of the biological changes in this model may contribute to a 

better understanding of the role of MCP-1 in post-MI remodelling and may 

contribute to the development of new therapeutic approaches.  

7.3 - Aims 

We sought to explore differences in myocardial inflammation and 

extracellular matrix remodelling in a MCP-1 knockout and wild type murine model 

of MI in-vivo using 19F perfluorocarbon nanoparticles and an elastin specific MR 

contrast agent, Gd-ESMA.  

7.4 - Methods 

All animal procedures were performed in accordance with institutional 

guidelines, following the European Communities Council Directive 2010/ 63/EU 

on the protection of animals used for scientific purposes, and UK Home Office 

legislation (The Animals [Scientific Procedures] Act 1986).  

7.4.1 - Animal model 

Wild-type (WT) C57/BL6 mice (obtained from Charles River Laboratories, 

United Kingdom) and B6.129S4-Ccl2tm1Rol/J knock-down (MCP-1−/−) mice 

(obtained from Jackson laboratories, USA) were used for these experiments. 

MCP-1−/− animals were genotyped using the polymerase chain reaction protocol 

advised by Jackson laboratories (section 7.4.2). MI was induced in WT and MCP-

1-/- female mice aged between 10-12 weeks by permanent occlusion of the left 

anterior descending coronary artery (LAD). Detail description can be found in 
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Chapter 6, section 5.3.2. Survival rates after surgery were similar for both strains 

(WT 13% vs MCP-1-/- 12% mortality rate).  

7.4.2 - Genotyping of MCP-1 animals: sampling, DNA extraction and 
quantification 

Ear samples were taken from the mice after weaning and stored at -20°C 

until analysis. Ear notches were incubated at 55°C in a lysis buffer containing 

10mg/mL proteinase K during 2-3 hours. The supernatant was transferred to a 

tube containing cold isopropanol and was mixed carefully to precipitate the DNA. 

After centrifugation at 14,000 rpm for 10 minutes at room temperature, 

supernatant was discarded and cold 70% ethanol was added to wash the DNA 

pellets. Then, samples were again centrifuged, supernatant discarded and the 

sample was left at room temperature until complete evaporation of ethanol. 

Finally, ultra-pure distilled water was added and samples were stored at -20°C 

until further analysis.  

For genotyping the following primers were used:  

- Mutant primer: ‘5’GCCAGAGGCCACTTGTGTAG-3’ 

- Wild-type forward: 5’TGACAGTCCCCAGAGTCACA-3’  

- Common primer: 5’TCATTGGGATCATCTTGCTG-3’ 

Polymerase chain reaction (PCR) was performed using Illustra Hot Start 

Master Mix (Ge Healthcare). The reaction mixture for PCR, with a total volume of 

12 μL, contained 2 μL of DNA, plus 0.6μL of each primer (20 μM), 1 μL of MgCl2 

(25 mM), 1 μL ultrapure deoxynucleotides (dNTPs, 0.2 mM), 1.20 μL of 10X AB 

PCR Buffer II (1.00X), 2 μL of DNA, 0.09 μL Taq DNA polymerase (5 U/μL) and 

3.33 μL of ddH2O. Initial denaturation at 94°C for 3 minutes was followed by 

denaturation at 94°C for 30sec, annealing at 61°C for 1 minutes, and extension 
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at 72°C for 1 minutes, with final extension at 72°C for 10 minutes. Temperature 

cycling was repeated for 35 cycles, with additionally 2 minutes at 72°C and 

holding 10°C.  

DNA loading buffer (blue) was added into the PCR products and run in a 

1.5% agarose gel (Pronadisa) that contained 25ng of gelRed in TBE 1x buffer. 

Samples were run together with a 1Kb plus DNA ladder (Invitrogen) to determine 

the size of the PCR products. An example of the genotyping results in shown in 

Figure 7.1. 

 

Figure 7.1. Photographs of agarose gels showing the results of amplification by PCR obtained 
from seven adult MCP-1-/- (animal 15, 17, 23, 25, 29, 31, 32) mice and one wild-type (WT, control) 
mice ear samples. MCP-1-/-=179pb, Wild type (WT control) = 287pb.  

7.4.3 - Magnetic Resonance Imaging (MRI) at 3T 

In vivo MRI and image analysis were performed as described in Chapter 

6, section 6.4.2. and Chapter 6, section 6.4.3, respectively. 

7.4.4 - Nuclear Magnetic Resonance (NMR) spectroscopy at 9.4T 

Ex vivo NMR 19F signal quantification was performed as described in 

Chapter 6, section 6.4.4.  



7.4. Methods 
_________________________________________________________________________________ 

 

196 

7.4.5 - Histology 

Trichrome staining was performed as described previously in Chapter 6, 

section 6.4.5 to measure area of infarct and collagen deposition post-MI. MAC-

3 immunohistochemistry (IHC) was performed for detection of macrophages 

within the infarcted area as described in Chapter 6, section 6.4.5. 

Immunohistochemistry for detection and quantification of fibroblasts was 

performed using a rabbit monoclonal antibody (anti-vimentin ab92547, Abcam; 

dilution 1:100) using an avidin-biotin-peroxidase method (Vector® SG 

Peroxidase substrate; Vector Laboratories, Burlingame, CA). Vimentin can be 

also found in non-epithelial cells (e.g. mesenchymal cells), however because it is 

highly expressed in fibroblasts, for simplification positive-vimentin-IHC will be 

referred as fibroblast expression. Digital images were analysed using ImageJ 

(National Institute of Health, Bethesda, MD). Fibroblast quantification was 

expressed as percentage of the infarcted myocardium measured by histology 

using Trichrome staining.  

7.4.6 - Fluorescent Activated Cell Sorting (FACS) analysis 

For ex vivo evaluation of the inflammatory response, animals were 

sacrificed at 3, 7, 14 and 21 days and blood and hearts were collected. Blood 

was collected by cardiac puncture using sodium citrate 0.1% as anticoagulant. 

Hearts were extensively flushed with PBS and then excised. Remote myocardium 

was separated from infarct and border zone using a dissection microscope. Then, 

tissues were cut into small pieces to facilitate enzyme digestion and placed in a 

Dissociation Enzyme Stock solution containing: 0.5% BSA (Sigma Aldrich), 

collagenase IV (1 mg/mL, C5138, Sigma Aldrich), 1 mM EDTA, DNase I (100 

units/mL, D7291, Sigma Aldrich), hyaluronidase IV-S (500 units/mL, C5138, 
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Sigma Aldrich) at 37ºC for 30 minutes. Hearts were subsequently filtered through 

a 40 µm nylon mesh (352054, Fisher Scientific). Samples were then stained for 

20 minutes with following antibodies: CD3 (Biolegend, clone 100325), B220 

(Biolegend, clone 103233), NK1.1 (Biolegend, clone 108725), Ly6C (Biolegend, 

clone 128007), F4/80 (Biolegend, 123115), CD11b (Biolegend, clone 101225), 

CD115 (Biolegend, clone 135517), Ly6G (Biolegend, clone 127617), CD45 

(Biolegend, 103125). Then, a red blood cell lysis buffer (BD, New Jersey, U.S.) 

was used to lyse red blood cells and samples were then wash with PBS+2%BSA, 

fixed with 1% PFA for 15 minutes, and maintained in PBS and 4°C until data 

acquisition.  

Data was acquired on a BD SORP Fortessa™ and analysed with FlowJo 

(Tree Star, Ashland, OR, USA). Monocytes were identified as CD45+, CD3-, 

B220-, NK1.1-, F4/80+, CD115+, Ly6C+, Ly6G-, CD11b+. Monocytes subsets were 

identified as CD115+, F4/80+ and Ly6Chigh or Ly6Clow.  

7.4.7 - Statistical analysis  

A total of 123 mice were used in this study: 64 animals were subjected to 

MRI imaging at 3,7,14 and 21 days after MI (32 WT and 32 MCP-1-/-, N=8/time-

point); 59 were used for FACS analysis, 32 were used for histological validation 

and 32 mice were used for NMR 19F quantification experiments.  

GraphPad Prism 5.00 (GraphPad Software, Inc., La Jolla, California, USA) 

was used for statistical analysis. Normality was assessed by histogram, Q-Q 

plots, and the Shapiro-Wilk test, and equal variances was assessed with the 

Bartlet’s test and Levene’s test. For normally distributed variables with equal 

variances, an ANOVA test followed by Bonferroni post hoc analysis for multiple 

group comparisons (e.g. infarct size) was performed. For normally distributed 
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variables with unequal variances a Welch test followed by a Games-Howell post 

hoc test for multiple group comparisons (e.g. LV mass, left-ventricle end-diastolic 

volume (LVEDV), 19F MRI, R1) was performed. For non- normally distributed 

variables, a Kruskal-Wallis test was used for multiple group comparisons (e.g. 

Ejection fraction (EF), NMR, FACS, IHC MAC-3, IHC Tropoelastin, IHC Vimentin, 

collagen quantifications) following by Dunn’s post-hoc test. P<0.05 was 

considered statistically significant. Data are presented as mean ± SEM.  

7.5 - Results 

7.5.1 - WT mice showed LV expansion during post-MI remodelling, while 
no significant changes were observed in MCP-1-/- mice.  

In order to investigate the role of MCP-1 in cardiac remodelling, several 

functional and volumetric parameters were compared between MCP-1-/- and WT 

animals at 3 and 21 days after LAD occlusion. Representative short-axis images 

of late-gadolinium enhancement (LGE) for assessment of infarct and cine images 

for estimation of cardiac parameters are shown in Figure 7.2A. Infarct sizes were 

similar in both strains at both time-points (Fig.7.2B) and similar EF was observed 

in both groups (Fig.7.2C). No differences were detected between WT and MCP-

1-/- at 3 and 21 days time-point for left-ventricular mass and left-ventricle end-

diastolic volume. WT mice showed LV expansion during post-MI remodelling 

(assessed by left ventricular mass) (P<0.05, Fig.7.2D). LVEDV increased in both 

WT and MCP-1-/- animals from 3 to 21 days post-MI, however, more significantly 

in WT mice (LVEDV WT3-21days [µL]: 62.69±3.14 vs 106.0±9.16, P<0.01; LVEDV 

MCP-1-/- 3-21days [µL]: 67.34±5.96 vs 94.62±13.03, P<0.05) (Fig.7.2E).  
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Figure 7.2. Comparison of functional and volumetric cardiac parameters between WT and MCP-
1-/- animals 3 and 21 days after LAD occlusion. (A) Representative short-axis views of LGE and 
end-diastolic cine images. (B) Infarct size (%), (C) Ejection fraction (%), (D) Left-ventricular mass 
(mg) and (E) Left-ventricular end-diastolic volume (µL). N=8 per time-point. LGE: late-gadolinium 
enhancement; LAD: left-anterior descending coronary artery; WT: wild-type. 
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7.5.2 - MPC-1-/- mice exhibited an early 19F signal during post-MI 
remodelling 

To explore the differences in inflammatory cell recruitment in MCP-1-/- and 

WT non-invasively, animals received a bolus injection of 19F PFCs intravenously 

48 hours before the imaging session (to allow phagocytosis of the PFCs and 

blood clearance). 19F MRI signal was evaluated at 3, 7 and 21 days after LAD 

occlusion in vivo.  

Morphologically matching 1H and 19F images enabled the anatomical 

localization of PFCs (Fig.7.3A). Figure 7.3B shows 19F MRI signal quantification 

in WT and MCP-1-/- animals. MCP-1-/- animals high 19F signal at 3 and 7 days, 

which decreased significantly at 21 days post-MI (19F7-21days=0.53±0.09 vs 

0.24±0.01, P<0.05). An increasing 19F signal was observed at 3 and 7 days post-

MI in WT animals (19F3-7days=0.48±0.05 vs 1.23±0.16, P<0.01), which significantly 

decreased at 21 days (19F21days=0.2±0.02; 19F3-21days=P<0.001; 19F7-

21days=P<0.001). In contrast, 19F signal was highest at day 3 in MCP-1-/- animals 

and then steadily decreased. At day 7, 19F signal higher in WT compared to MCP-

1-/- more suggesting a reduced recruitment of inflammatory cells (P<0.01) at this 

time-point. 19F signal was also detected in the adjacent chest tissue (where the 

thoracotomy for the LAD ligation was performed), liver and lymph nodes. No 

background signal from other tissues was detectable (data not shown).  
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Figure 7.3. Evaluation of 19F MRI uptake at 3, 7 and 21 days post-MI in MCP-1-/- and WT animals. 
(A) Representative images of anatomically matched and super-imposed 1H and 19F short-axis 
view images. (B) Quantification of 19F MRI signal at the different time points post-MI. N=8 per 
time-point. 

 

To validate our in vivo findings hearts were collected at the end of imaging 

session. Infarct and remote areas were then separated and NMR spectroscopy 

was performed. In agreement with in vivo MRI, ex vivo NMR showed a peak at 7 

days in WT animals, with the 19F signal decreasing significantly at 21 days (19F 

NMR [159] 7-21days: WT= 0.12±0.03 vs 0.01±0.005, P<0.05) (Fig.7.4A). MCP-1-/- 

animals showed a similar signal behaviour as in vivo with the highest signal at 

day 3 and then steadily decreasing towards day 21. The signal changes were 

however non-significant; no 19F signal was observed in the remote areas 

throughout the remodelling period (Fig.7.4B). 
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Figure 7.4. 19F signal quantification by NMR spectroscopy at 3, 7 and 21 days post-MI. mmol 19F 
PFC uptake per gram of A) infarcted tissues and (B) remote areas. N=4 per time-point. WT: wild-
type. 

7.5.3 - Uptake of 19F PFCs by inflammatory cells: FACS and histological 
validation 

In the absence of injury, both WT and MCP-1-/- SHAM-operated animals 

showed similar monocyte/macrophage content. However, it is well established 

that in early stages after MI there is a significant extravasation of monocytes 

where dead cardiomyocytes and resident macrophages are replaced by 

monocyte-derived macrophages [7]. The first phase after MI is characterized by 

the recruitment of inflammatory monocytes Ly6Chigh to the infarct from the spleen 

and bone marrow, followed by a second phase dominated by anti-inflammatory 

Ly6Clow monocytes [10]. To examine the role of MCP-1 in the monocyte 

recruitment into the injured area FACS analysis was performed (Fig.7.5).  

As a result of MI, blood levels of inflammatory Ly6Chigh monocytes 

increase resulting in an increased and prolonged presence of these cells in the 

healing infarct during the first week after MI. Blood Ly6Chigh and Ly6Clow were 

comparable between animal strains at all time-points. A significant increase in 

Ly6Chigh was observed in WT animals between SHAM and 3 days post-MI 

(Ly6Chigh WT [104/mL]: SHAM=0.005±0.002 vs 3 days=1.27±0.36, P<0.05). In 

SHAM-operated WT animals higher amounts of Ly6Clow where observed than in 
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SHAM MCP-1-/- (Ly6Clow [104/mL]: SHAMWT=2.55±0.59 vs SHAMMCP-1-/-

=0.59±0.25, P<0.05). A significant decrease of Ly6Clow was observed between 

SHAM and 21 days in WT animals (Ly6Clow WT [104/mL]: SHAM=2.55±0.59 vs 

21 days=0.56±0.15, P<0.05). In tissue, 3 days after MI, monocyte infiltration was 

higher in MCP-1-/- compared with WT (Monocytes [103/mg] 3 days: 

WT=31.03±3.08 vs MCP-1-/-=57.82±8.44, P<0.05). Also, a significant increase in 

monocytes was observed in MCP1-/- animals compared to SHAM and 3 days time 

point (Monocytes [103/mg] MCP-1-/-: SHAM= 2.42±0.60 vs 3 days=57.82±8.44, 

P<0.01). After 7 days, monocytes in MCP-1-/- infarcts were not significantly 

different than WT and in both strains and had a trend to decrease up to 21 days 

(P=ns). A monocyte subset analysis showed that inflammatory monocytes are 

present within the infarct tissue during the first days after MI, and after the first 

week, the tissue is invaded by reparative monocytes. A significant increase of 

Ly6Chigh was observed in both WT and MCP1-/- at 3 days post-MI compared with 

SHAM animals (Ly6Chigh WT [103/mg]: SHAM=1.63±0.49 vs 3 days=29.38±3.83, 

P<0.05; Ly6Chigh MCP-1-/- [103/mg]: SHAM=1.43±0.47 vs 3 days=45.58±6.45, 

P<0.01) and decreased significantly from 3 to 21 days post-MI (Ly6Chigh WT 

[103/mg]: 3 days=29.38±3.83 vs 21 days=2.53±0.62, P<0.05; Ly6Chigh MCP-1-/- 

[103/mg]: 3 days=45.58±6.45 vs 21 days=3.35±0.56, P<0.05). Ly6Clow population 

also behave similarly between animal strains at all time-points post-MI. WT 

animals shown a significant increase between SHAM and 21days post-MI 

(Ly6Clow WT [103/mg]: SHAM=0.96±0.31 vs 21 days=12.69±2.69, P<0.01). In 

MCP-1-/- mice a significant increase was observed in SHAM and 3 days 

compared with 7 days post-MI (Ly6Clow MCP-1-/- [103/mg]: SHAM=1.56±0.44 vs 

7 days=17.05±1.95, P<0.01; 3 days=2.80±1.78 vs 7 days=17.05±1.95, P<0.01).  
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Figure 7.5. FACS analysis of blood and tissue after MI in WT and MCP-1-/- animals. (A) 
Representative gating strategy for the identification of monocyte sub-populations. (B) Quantitative 
analysis of blood Ly6Chigh and Ly6Clow monocytes. (C) Quantitative analysis of total monocyte 
population and sub-monocyte population in WT and MCP-1-/- mice. N=4-6 per group. 
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Tissue macrophages were analysed by MAC-3 IHC (Fig.7.6&7.7). 

Macrophages were present in infarcted areas but not in remote areas post-MI 

(Fig.7.6).  

A B 
Infarct 

 

Remote 

 

Figure 7.6. Macrophage immunohistochemistry of the heart after MI. Sections of (A) infarcted 
tissue (MAC-3 positive stained in brown) and (B) remote myocardium. 

 
Figure 7.7 shows MAC-3 quantification. A peak in macrophages content 

was observed at early stages during acute inflammation. At 3 days, macrophage 

density was significantly higher in WT compared to MCP-1-/- mice (MAC-3 IHC 

3days: WT= 2.21±0.20 vs MCP-1-/-: 1.17± 0.07, P<0.05). At day 7 both strains 

showed an increase in macrophages, consistent with the inflammatory phase, 

followed by a decrease at day 21 consistent with the resolution of inflammation 

(MAC-3 IHC 7-21 days [%]: WT=3.49±0.36 vs 0.13±0.05, P<0.01; MCP-1-/-= 

1.99±0.35 vs 0.55±0.19, P<0.01). Overall, macrophage response in MCP-1-/- 

mice was less pronounced compared with WT. 
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Figure 7.7. Immunohistochemistry analysis of macrophage content in the heart at 3,7 and 21 days 
after LAD occlusion. (A) Representative sections of infarcted areas in the heart were stained with 
anti-MAC-3. (B) Quantification of macrophage IHC demonstrating significantly higher 
macrophage deposition in WT compared to MCP-1-/- mice at day 3 (P<0.05). Macrophage content 
was highest at 7 days in both strains and thereafter decreasing significantly over time (day 21). 
N=4 per time-point. WT: wild-type; IHC: immunohistochemistry. 

7.5.4 - MCP-1-/- mice show attenuated extracellular matrix deposition 
post-MI 

The potential effect of MCP-1 protein on ECM deposition was assessed 

with Gd-ESMA, a contrast agent that binds to elastin/tropoelastin proteins, by 

MRI. Figure 7.8A reports relaxation rate (R1) maps at days 7 and 21 and the in 

situ quantification of Gd-ESMA, 60 minutes after injection. Both WT and MCP-1-

/- mice showed similar uptake of Gd-ESMA at day 7 (P=ns); however, at day 21, 

MCP-1-/- animals showed significantly lower R1 values (R1[s-1]: WT=3.30±0.15 vs 
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MCP-1-/-=2.32±0.09, P<0.05), suggesting reduced elastin deposition (Fig.7.8B). 

A significant increase in R1 between 7 to 21 days was observed in WT animals 

(R1[s-1] WT: 7 days=2.33±0.09 vs 21 days=3.30±0.15, P<0.001). 

 

 

Figure 7.8. Uptake of Gd-ESMA in the heart after 7 and 21 days post LAD occlusion. (A) 
Relaxation rate (R1) maps show increased Gd-ESMA uptake in the infarct at day 21 in WT mice. 
Intense red signal indicates increased Gd-ESMA concentration. (B) Quantitative R1 values 
demonstrating an increase at day 21 in WT mice. N=8 per time-point. WT: wild-type. 

 

To examine elastin deposition within the heart, Elastic van Gieson staining 

was performed. As shown in Figure 7.9, elastin quantification was challenging 

due to its thin shape of the fibres. For this reason, tropoelastin, an elastin 

precursor was studied with IHC.  
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Figure 7.9. Elastica van Gieson staining. Representative images of infarct tissue at 7 and 21 days 
after ligation of the left-anterior descending coronary artery in MCP-1-/- and wild-type (WT) 
animals. Elastin is identified as the black fibre deposition. 

 

Tropoelastin IHC revealed a dense fibre network at 21 days post-MI in the 

infarcted areas in both WT and MCP-1-/- mice. At 7 days, MCP-1-/- and WT mice 

showed comparable tropoelastin deposition. In agreement with the MRI in vivo 

analysis, tropoelastin IHC showed a significantly lower tropoelastin deposition in 

the infarcted myocardium of MCP-1-/- mice at 21 days compared to WT mice 

(Tropoelastin IHC 21 days [%]: WT=3.19±0.16 vs MCP-1-/-= 1.31±0.25, P<0.05) 

(Fig.7.10). A significant increase of tropoelastin deposition was observed in WT 

animals overtime at 21 days (Tropoelastin IHC WT: 7 days=1.95±0.18 vs 21 

days, P<0.05), which was in good agreement with the imaging results. 
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Figure 7.10. Immunohistochemistry analysis of tropoelastin deposition in the heart at 7 and 21 
days post-MI. (A) Ex vivo tropoelastin IHC revealed deposition of tropoelastin in the infarcted 
region at 21 days. (B) Quantification of tropoelastin. In MCP-1-/- tropoelastin deposition was 
significantly lower at both 7 and 21 days when compared to WT animals. N=4 per time-point. WT: 
wild-type. 

7.5.5 - MCP-1−/− Mice Showed Decreased collagen content 

To further study ECM composition, collagen content was also evaluated. 

Trichrome staining was used to analyse infarct size (as shown before) and to 

evaluate the deposition of collagen-rich proteins that became more evident in the 

at latter stages post-MI (Fig.7.11). 

During the acute stage, WT and MCP-1-/- mice showed similar collagen 

content. At 21 days, WT mice showed significantly higher collagen deposition that 

at day 7 (collagen[%] WT: 7 days=0.47±0.18 vs 21 days=2.71±0.54, P<0.05) and 

higher collagen content at 21 days compared to MCP-1-/- mice (collagen[%] WT 

vs MCP-1-/-
21days=2.71±0.54 vs 1.34±0.15, P<0.05). These results suggest less 

collagen formation in MCP-1-/- mice, as a result of the altered inflammatory 

response. 
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Figure 7.11. Ex vivo trichrome staining allowed the differentiation between infarcted and remote 
areas in the heart. (A) Representative sections of infarct area from MCP-1-/- and WT animals. 
Blue reveals the deposition of collagen-like proteins in the heart that becomes more evident at 
later stages post-MI. (B) Collagen quantification. In MCP-1-/- collagen was significantly lower at 
21 days compared with WT animals. N=4 per time-point. WT: wild-type. 

7.5.6 - Fibroblast infiltration in MCP-1-/- mice  

During the inflammatory phase, removal of debris is orchestrated by 

inflammatory cells followed by the deposition of fibrous tissue. During the 

phagocytic phase which promotes tissue repair and scar formation, reparative 

cells are recruited (e.g. fibroblasts and myofibroblasts) to the injury site. 

Macrophages regulate fibroblast proliferation through the production of 

cytokines and growth factors [7]. Fibroblasts then differentiate in myofibroblasts 

are the predominant source of collagen in MI healing [279-282]. 

Fibroblasts/myofibroblasts are responsible for the synthesis of the ECM needed 

to support cell ingrowth and the newly formed blood vessels supplying oxygen 

and nutrients necessary to sustain cell metabolism. These reparative cells, 

transiently appear during granulation tissue formation and become apoptotic 

when scar matures [283, 284]. 

Early after MI, fibroblasts are predominantly localized in the border-zone 

area (Fig.7.12A). Three days after MI, MCP-1-/- mice showed decreased 
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fibroblast infiltration compared with WT animals (Vimentin IHC [%] 3days: 

WT=3.39±0.16 vs MCP-1-/-=1.58±0.16, P<0.05) (Fig.7.12B). At 7 days post-MI 

both exhibited similar fibroblasts content (P=ns). At later stages, fibroblasts 

remained in the infarct zone in MCP-1-/-, but their content was significantly lower 

in WT animals (Vimentin IHC [%] 21days: WT=0.65±0.19 vs MCP-1-/-= 2.10±0.14, 

P<0.05). This might suggest a delayed and/or prolonged maturation phase in 

MCP-1-/- animals.  

 

Figure 7.12. Immunohistochemistry analysis of fibroblasts infiltration in the heart after 3,7 and 21 
days post-MI in WT and MCP-1-/- mice. Representative sections of the heart stained with anti-
vimentin are shown in (A). (A) Both MCP-1-/- and WT fibroblasts expression was predominantly 
in the border-zone. From acute to later stages of MI fibroblasts migrate from the border-zone to 
the injured. (B) IHC for vimentin quantification demonstrating that fibroblasts infiltration is 
significantly higher in WT compared to MCP-1-/- (P<0.05) at day 3. Fibroblasts expression in WT 
mice significantly decreased from 3 to 21 days post-MI (P<0.05), while remained elevated in 
MCP-1-/- mice until 21 days (P<0.05). N=4 per time-point. WT: wild-type. 

7.6 - Discussion 

The MCP-1 protein is overexpressed after MI and is responsible for the 

recruitment of inflammatory cells into the injured myocardium [9, 22]. After MI, 

inflammatory cells are recruited from the blood stream to the injured tissue. These 

cells roll along the lumen, because of the presence of the CCR2 receptor on the 

membrane of leukocytes, and bind to MCP-1 (also known as CCL2) of the 
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endothelial cells [285]. The interaction of CCR2 and MCP-1 leads to the 

diapedesis of monocytes and therefore its extravasation into the myocardium, 

where monocytes differentiate in macrophages. Macrophages clean the infarct 

from debris and dead cells, and are also involved in the production of MMPs 

which degrade the damaged ECM and promote the recruitment of reparative cells 

[20]. Fibroblasts and myofibroblasts when recruited to the site of injury produce 

new ECM which will then form the fibrotic tissue [14].  

Several studies investigated the role of the MCP-1 protein during wound 

healing; specifically anti-inflammatory strategies have been implicated with the 

reduction of infarct size and improved cardiac outcome in preclinical work; 

however its translation into the clinics has failed [286]. For this reason, new 

imaging techniques are required to better unravel the molecular and cellular 

mechanisms that depend on the MCP-1 protein. In this work, we sought to 

investigate the potential effect of the MCP-1 protein on myocardial remodelling in 

vivo in a murine model of MI. To achieve this objective, we used a 19F/1H multi 

nuclear MRI. 19F MRI has emerged as a new platform to study inflammation, 

taking advantage of the phagocytic capacity of inflammatory cells in uptaking 19F 

PFC. To study the effect of MCP-1 in scar formation, an elastin-specific MR 

contrast agent has been used. Elastin, along with collagen, is upregulated after 

MI and is one of the main ECM constituent, making it suitable for the study of LV 

remodelling in vivo.  

Our study demonstrates that in the absence of the MCP-1 protein, 

inflammatory cell infiltration is highest at day 3 compared with WT mice, which is 

in agreement with the presence of high amounts of inflammatory monocytes. 

However, no significant differences in monocyte population were observed, while 



7.5. Discussion 
_________________________________________________________________________________ 

 

213 

macrophages infiltration was reduced. MCP-1-/- animals also showed a delayed 

deposition of ECM proteins as assessed both with in vivo MRI and ex vivo 

histology, which was associated with the presence of fibroblasts.  

 

Cardiac function 

Here we assessed the effect of the MCP-1 protein in cardiac output in vivo 

MRI. While no differences were observed in infarct size and EF between strains, 

WT animals showed a more evident increase in LV mass and LVEDV, while a 

moderate increase was observed in MCP-1-/- mice. High levels of MCP-1 protein 

have been associated with an elevated risk of MI in humans [285]. In CD-1 mice 

(used for genetic studies instead of WT), anti-MCP-1 gene therapy was shown to 

attenuate ventricular dilatation and preserved cardiac function after MI [277] and 

in MCP-1-/- mice of reperfused MI [32].  

 

Assessment of Leukocyte recruitment with 19F MRI  

CCL2/MCP-1 has shown to be a potent chemoattractant chemokine for 

monocytes in vitro and critically regulates the recruitment of this cells in vivo as 

shown in different animal models of inflammation [287, 288]. In mice, after 

reperfused MI, MCP-1 is upregulated followed by prolonged induction of its 

receptor CCR2 [32]. 19F MRI allows the study of the recruitment of inflammatory 

cells in vivo [97, 135, 238]. To our knowledge, no study has described the 

temporal evolution of inflammatory cells in MCP-1 deficient mice. Here, we 

examine the effect of MCP-1 protein in immune cell infiltration in vivo after MI, 

after the injection of 19F PFCs in both WT and MCP-1-/- animals.  
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We found that permanent occlusion of the LAD resulted in an earlier peak 

of the 19F signal in MCP-1-/- at 3 days, compared to a peak at day 7 in WT animals. 

At day 7 MCP-1-/- mice showed a significantly decrease in 19F signal compared 

with WT. Furthermore, at 21 days post-MI, a more evident decrease in 19F signal 

was observed in WT (P<0.001) compared with MCP-1-/- mice (P<0.05). Ex vivo 

19F signal quantification by NMR showed similar results. 

To understand the source of the 19F signal, monocyte populations were 

analysed by FACS and macrophages with IHC. MI triggers the recruitment of 

neutrophils and monocytes. Although neutrophils do not express CCR2 and 

therefore do not respond to MCP-1, some studies reported that MCP-1 might play 

a role in neutrophil recruitment by an interdependence between monocyte and 

neutrophil recruitment in pulmonary inflammation. In MI, the disruption of MCP-1 

did not affect the time course or density of neutrophils [32]. Similarly, no 

difference was observed in our study (data not shown). Monocyte recruitment 

after an acute injury is characterized by a biphasic response where, first an early 

peak of circulating inflammatory monocytes (Ly6Chigh) is observed followed by an 

increase in reparative monocytes (Ly6Clow) [10]. Here no differences were 

observed in blood monocytes between WT and MCP-1-/- mice. In agreement with 

the in vivo MRI findings, MCP-1-/- animals showed an early peak of monocytes in 

infarcted tissue at day 3, while in WT mice, monocytes were elevated at day 7. 

Both monocytes subtypes showed a similar recruitment pattern in both strains, 

with an early recruitment of inflammatory monocytes followed by reparative 

monocytes. Because of this similarity, it can be speculated that a compensatory 

process occurs, especially because CCR2 ligands bind not only to MCP-1 but 

also to MCP-3 and MCP-5. Besides the role of MCP1 in the recruitment of 
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monocytes, CCL7 also has been shown to be involved in this process [289, 290]. 

In another study, it was shown that the vasoconstrictive hormone angiotensin II 

promotes the release of Ly6Chigh monocytes from the spleen, independently of 

CCR2 signalling [35] . This compensatory mechanism is not fully understood, and 

more investigations needs to be performed to better understand the recruitment 

of monocytes to the site of injury. 

The recruitment of macrophages was studied by IHC. We found that MCP-

1-/- mice recruited overall less macrophages to the site of injury than WT animals. 

At day 3 a significant difference was observed in the recruitment of these cells, 

with WT mice showing higher recruitment than MCP-1-/- mice. However, when 

comparing 7 and 21 days, despite the lower number of macrophages in MCP-1-

/- mice no significant differences were detected compared with WT at each time 

point. Dewald et al [32], in a reperfused model of MI showed that MCP-1 null mice 

had a decreased and delayed recruitment of macrophages to the infarct area, 

compared with WT mice. In their study, macrophages peaked at day 24 after 

reperfusion in WT animals, and after 72 hours in MCP-1-/- mice.  

From our findings, although monocyte response seems to be comparable 

in both strains, macrophage recruitment behaved differently. In fact, we 

hypothesized that the MCP-1 protein may influence monocyte differentiation. 

MCP-1 has been associated with modulating monocyte phenotype and activity in 

vitro [291] and in vivo [32]. In the reperfused model of MI, Dewald and colleagues 

observed that MCP-1-/- mice showed a decreased expression of OPN-1 

compared with WT [32]. OPN-1 is a marker of monocyte-to-macrophage 

differentiation [292], highly expressed in mature macrophages of the healing 

infarct [293]. However, in this study FACS was not performed, and no 
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quantification was performed to assess the monocyte populations. Therefore, it 

is not clear if the decrease in macrophage population is due to the decrease in 

OPN expression or due to fewer monocytes. In rats, the neutralization of MCP-1 

has been also associated with a decrease in adhesion molecule expression and 

macrophage infiltration [273]. The analysis of macrophage activity would be 

interesting to assess, e.g. by comparing plasma levels of TNFa and IL-6 between 

MCP-1-/- and WT. 

 

Effect of MCP-1 in protein deposition assessed with MRI 

The effect on the MCP-1 protein in scar formation was assessed with MRI 

one hour after the injection of Gd-ESMA. Gd-ESMA allows the direct 

quantification of elastin and tropoelastin proteins in vivo. A significant increase of 

Gd-ESMA uptake was observed between 7 and 21 days post-MI in WT, but not 

in MCP-1-/- animals. Furthermore, at day 21, MCP-1-/- animals showed a 

significant lower R1 value compared with WT mice, suggesting less post-infarct 

myocardial remodelling. The presence of elastin and tropoelastin proteins was 

analysed by histology. Due to the thinner shape, elastin quantification with Elastic 

Van Gieson was challenging. Therefore, tropoelastin (elastin precursor) was 

studied by IHC and used to quantify the presence of this protein within the 

infarcted areas. In good agreement with the in vivo findings, ex vivo IHC showed 

a significant increase in tropoelastin in the WT animals between 7 and 21days, 

but not in the MCP-1-/- mice. A significant difference in tropoelastin was observed 

at day 21 post-MI, where WT mice showed a greater amount of tropoelastin 

compared with MCP-1-/- mice. Apart from tropoelastin also collagen was 
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downregulated in MCP-1-/- mice. Trichrome staining showed that collagen is 

significantly reduced in MCP-1-/- animals compared with WT mice.  

The production of ECM proteins is regulated by fibroblasts. These cells 

differentiate in myofibroblasts, and transiently appear during granulation tissue 

formation and warrants further exploitation.  

7.7 - Limitations 

As described in section 6.7. 

7.8 - Conclusions 

We demonstrate the feasibility of simultaneous assessment of 

inflammation and remodelling in a mouse model of MI using 19F PFCs and Gd-

ESMA in concert with a 1H/19F multi nuclear coil at 3T. Our results show that 

MCP-1-/- mice have a prolonged but attenuated inflammatory phase and lower 

tropoelastin production within the healing myocardium compared to WT mice. 

Future studies are now warranted to investigate the effects of these differences 

on cardiac function. 
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General discussion & Future directions 

Myocardial infarction (MI), and subsequent heart failure, remains a major 

healthcare problem in the western and developing world and leads to substantial 

morbidity and mortality worldwide. Diagnosis is currently being performed with 

conventional diagnostic exams such as the electrocardiograms or blood tests, 

however often additional information is required not provided by these tests. 

Imaging techniques such as X-ray angiography, echocardiography or cardiac MR 

are the mainstay in cardiology and allow the assessment of anatomy, perfusion, 

function and viability, but do not provide insights into specific biological processes 

occurring within the heart after MI. 

The process of infarct healing after MI consists of three phases: the 

inflammatory phase where neutrophils and macrophages remove dead cells and 

extracellular matrix debris, the proliferative phase during which fibroblast 

proliferation and angiogenesis forms granulation tissue and finally collagen 

synthesis and cross-linking to form a fibrous scar during the maturation phase 

(Chapter 2). Prognostic outcome is closely dependent upon a balance of the 
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duration and severity of these phases, resulting in either a stable scar or adverse 

myocardial remodelling leading to rupture or subsequent heart failure.  

Novel non-invasive imaging methods, based on target specific imaging 

agents, may allow the imaging of the molecular processes underlying the post-

MI immune cell response, and subsequent myocardial remodelling (Chapter 3). 

Molecular MRI has proven to be a particularly promising for the assessment of 

post MI remodelling. It provides high resolution images with intrinsic soft-tissue 

contrast, in concert with cellular and molecular information (Chapter 4). 

Compared to molecular MRI, other imaging modalities such as PET and SPECT 

have the advantage of requiring very small doses of the imaging probes, making 

their clinical translational more straight forward; however, these modalities are 

associated with ionising radiation and do not provide high spatial resolution, 

which is important for the evaluation of the cardiovascular system.  

For the development and validation of these novel contrast agents, 

preclinical research plays a very important role. Several animal models, including 

genetically modified mice (also known as knockout), are available for the study 

of the different mechanisms underlying cardiac diseases Experimental mouse 

models provide well controlled experimental conditions and this lend themselves 

ideally to test the potential of novel imaging probes to visualise and quantify the 

cellular and molecular events altered during disease onset, progression or 

complication. One of the challenges of the MI model is the difficulty of 

reproducibility and the high mortality rate. Reproducibility is highly dependent on 

the surgeon’s skills. Highly experienced surgeons might help maintaining 

consistency between surgeries however some aspects cannot be controlled such 

as the physiology of the animal. The induction of infarct requires the intubation of 
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the animal. A reproducible and robust method for mouse intubation as well as the 

protocol for the induction of MI in mice by permanent occlusion of the left-anterior 

descending coronary artery (LAD) has been described in this project in Chapter 

5.  

Molecular imaging often lacks standardization and reliable approaches for 

obtaining quantitative measurements of disease activity. Chapter 5 further 

discusses the development of a MR compatible heating system for the 

assessment of animal temperature during the imaging sessions. The importance 

of the heating system, besides allowing the monitoring of the animals throughout 

the scanning period, is the ability of maintaining a reliable ECG signal (constant 

body temperature=constant heart rate), which is very important for the all MRI 

sequence protocols (e.g. T1 MOLLI with images acquired over several cardiac 

cycles) as the sequences have to be synchronised with the ECG. 

Inflammation plays a central role in MI. Higher amounts of inflammatory 

cells are observed following MI, making them an excellent biomarker for early 

and late disease detection and guidance of treatment. Macrophages 

phagocytose foreign bodies and this behaviour is exploited in the study design 

that involves the intravenous injection of nanoparticle based contrast agents. 

These particles can be either phagocytosed by blood-monocytes or by resident 

macrophages in the infarcted tissue. Non-invasive imaging of inflammatory cells 

using magnetic nanoparticles (MNPs) during infarct healing has been shown 

previously. The most widely used magnetic nanoparticles are the ultra-small 

super-paramagnetic iron oxide (USPIO) particles, which are known as potent 

T2/T2* MRI contrast agents. In addition to preclinical research, USPIO 

nanoparticles have been also evaluated in small-scale patient studies and clinical 
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trials. A drawback of MNP detection, however, is the difficulty in differentiating 

between MNP accumulation and focal tissue interfaces due to local susceptibility 

gradients as well as areas of low proton density. An alternative approach is the 

use of 19F perfluorocarbons (PFCs). 19F MRI has been used in multiple 

inflammatory disease models in preclinical research, including MI, allowing the 

selective imaging of inflammatory cells in vivo without any contamination from 

background signal and may also allow for more accurate signal quantification. 

Different PFCs have been described and its characteristics have been discussed 

in Chapter 5.  

In Chapter 6 the potential of a multinuclear 19F/1H MRI for the selective 

imaging of inflammatory cells after MI was investigated in wild-type (WT) animals. 

MI was induced after permanent occlusion of the LAD and animals were imaged 

at 3,7, 14 and 21 days post-MI. 19F PFCs signal was increased in areas of 

infarction, and absent in remote tissue. This was in agreement with the presence 

of inflammatory cells in the infarct zone, as confirmed by histology (positive MAC-

3 immunohistochemistry (IHC)). Absolute quantification of 19F signal was 

performed after excision of the heart, and after separating remote and infarcted 

tissues, with 9.4T NMR spectroscopy. A linear relationship was found between in 

vivo MRI measurements and ex vivo NMR signal quantification. The predictive 

prognostic power of 19F PFCs was also investigated in a longitudinal proof-of-

principle study, confirming that a balanced inflammatory response results in a 

better recovery of the heart.  

Fluorine PFCs have shown promising results in cell labelling and in 

molecular imaging. Some fluorine-based compounds are FDA approved such as 

blood substitutes and cell tracking applications. More recently, the first 19F MRI 
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agent has been FDA approved for in vivo cell tracking (Celsense Inc., Pittsburgh, 

USA). Because of the detection limit and SNR challenges, the clinical 

implementation of 1H/19F MRI might be challenging as it requires dedicated MR 

equipment, such as broadband radiofrequency amplifiers and coils. To improve 

SNR, usually multiple injections are required for in vivo 19F MRI. PFCs 

accumulate in the liver and spleen for many days to weeks which represents a 

challenge for clinical translational. Efforts in changing the chemical structure and 

coating of 19F PFCs might help increasing SNR and decreasing retention time in 

the body.  

During wound healing and subsequent formation of the fibrotic scar the 

synthesis of extracellular matrix (ECM) proteins is upregulated. Of the specific 

ECM proteins, collagen type I has been found to be a major constituent of scar 

formation and stabilization. Besides collagen, elastin has been identified as a key 

ECM protein decisive for infarct stabilization and preservation of ventricular 

function. Elastic fibres deposition increases within the myocardial scar in the first 

weeks following ischemic injury and continues to form a dense network between 

remaining viable myocytes, myofibroblasts and smooth muscle cells during 

maturation of the infarct scar. The abundance of elastin within the myocardial 

scar makes this ECM protein a promising imaging biomarker for molecular MRI. 

Here, we explore the merits of an elastin-specific MR contrast agent (Gd-ESMA) 

for the assessment of elastin deposition during left-ventricular (LV) remodelling 

which is presented in Chapters 6. Late-gadolinium enhancement sequence was 

employed one hour after intravenous administration of Gd-ESMA at 7,14 and 21 

days post-MI animals. In the infarcted tissue, Gd-ESMA uptake (measured as R1 

relaxation rate) increased significantly from day 7 to day 21 because of the 
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synthesis of elastin/tropoelastin. Validation of tropoelastin deposition was 

confirmed with IHC ex vivo. At 3 days post-MI, Gd-ESMA behaved similarly to a 

conventional gadolinium contrast agent, with non-specific retention being the 

main mechanisms for accumulation in the infarcted tissue. Its retention in the 

infarct areas might be attributed to oedema, cellular swelling and rupture and 

subsequent increase in extracellular volume, as shown in other animal models. 

Consistent with this, we observed high signal intensity on native T2-weighted 

images at day 3 post-MI, which was absent at day 7. We further investigated the 

prognostic value of Gd-ESMA in a longitudinal proof-of-principle study. The 

results of this study suggested that deposition of tropoelastin at early stages of 

MI (day 7) lead to a worse cardiac output (measured as end-diastolic volume) at 

day 21. 

Gd-ESMA has also been used for molecular imaging of vessel wall elastin 

in atherosclerosis, and was shown to generates persistent enhancement of 

myocardial scar due to the specific binding to elastin/tropoelastin fibres. Whole 

heart MRI could potentially provide scar and coronary plaque burden 

measurement in a single scan. This could potentially enable the early detection 

of atherosclerosis and the evaluation of novel cardio-protective therapies. 

A similar study was performed in Monocyte Chemoattractant Protein 1 

knockout (MCP-1-/-) animals and is described in Chapter 7. The same animal 

model was used under similar experimental conditions for the in vivo experiments 

of Chapter 6 and therefore direct comparison can be made between WT and 

MCP-1-/- animals. MCP-1 levels increased after MI, and is responsible for the 

recruitment of inflammatory cells into the myocardium. In MCP-1-/- animals, 

deficient recruitment of macrophages into the healing infarct has been observed, 
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and its influence in ECM production has also been reported. Here we aimed to 

evaluate the potential of multinuclear 19F/1H MRI to explore the effect of MCP-1 

protein during myocardial healing in vivo. Monocyte/macrophage recruitment 

usually occurs during the first weeks after MI; therefore, MRI scans were 

performed at 3 and 7 days post-MI. A later time-point of 21 days was also 

investigated in order to study the impact of MCP-1 on ECM protein deposition. 

Early and strong uptake of 19F-PFCs was observed in the MCP-1-/- hearts at day 

3, while 19F signal peaked at day 7 in WT animals. Flow cytometry analysis 

showed similar recruitment patterns of monocytes in the blood and infarcted 

tissue in WT and MCP-1-/- mice. Macrophage infiltration was analysed by IHC, 

and was lower in MCP-1-/- than in WT mice. The 19F signal is a result from the 

uptake by both monocytes and macrophages, possible justifying the difference in 

signal from both animal strains. The deposition of elastin/tropoelastin was 

analysed by T1 mapping at day 7 and 21 post-MI, and was lower in MCP-1-/- than 

in WT mice. This finding was confirmed by tropoelastin IHC. Scar formation 

requires the proliferation of fibroblasts, which have the ability to synthesize ECM 

proteins. Fibroblasts were identified by vimentin positive by IHC. MCP-1-/- 

animals showed delayed infiltration of fibroblasts at 3 days post-MI compared 

with WT, while at 7 days no difference was observed between both animal 

strains. In contrast, a significant reduction of fibroblasts was observed in WT 

animals compared to MCP-1-/- mice at day 21, which was consistent with the 

resolution of the maturation phase. Cine scans allowed the study of LV function. 

WT showed a significant expansion of the LV, while a more moderate expansion 

was observed in MCP-1-/- 21 days post-MI. Overall, our results suggests that 

MCP-1-/- might attenuate LV remodelling by affecting inflammatory cell 
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recruitment and ECM production, and be beneficial myocardial remodelling. 

However, more investigations need to be performed to better understand the 

biology underlying these processes.  

In this PhD project, two novel contrast agents, 19F PFCs and Gd-ESMA, 

were investigated and evaluated for the simultaneous assessment of 

inflammation and ECM remodelling in a murine model of myocardial infarction. 

19F MRI was established as a new platform technology at KCL for imaging 

inflammation in mouse models of MI. I demonstrated that Gd-ESMA has potential 

for the quantification of myocardial remodelling at 3T. Further research will focus 

on how these agents could be used for risk stratification and treatment monitoring 

in patients post-MI. 
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