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Abstract
The constituent particles of soft matter systems typically exhibit variation in terms of
some attribute such as their size, charge, etc. Examples of these so-called “polydisperse”
systems are everywhere, including colloids, liquid crystals, and polymers. Understanding
the physical consequences of polydispersity, however, is a considerable challenge.

We explore qualitative aspects of polydisperse phase behaviour on two fronts. We �rst
study the dynamics of phase separation in polydisperse colloidal systems by developing,
analysing, and simulating a dynamical mean-�eld theory for the Polydisperse Lattice-Gas
(PLG) model. In particular we test e�ects of fractionation, where mixture components
are distributed unevenly across coexisting phases. Our results provide strong theoretical
evidence that, due to slow fractionation, (i) dense colloidal mixtures phase-separate in two
stages and (ii) the denser phase contains long-lived composition heterogeneities. We also
provide a practical method to determine whether such heterogeneities are indeed present
in a given phase-separating mixture.

Moreover, we study colloidal mixtures phase separating after a secondary temperature
quench into the two- and three-phase coexistence regions. We found several interest-
ing e�ects (mostly associated with the extent to which crowding e�ects can slow down
composition changes), including long-lived regular arrangements of secondary domains;
interrupted coarsening of primary domains; wetting of fractionated interfaces by oppo-
sitely fractionated layers; ‘surface’-directed spinodal ‘waves’ propagating from primary
domain interfaces; and �lamentous morphologies arising out of secondary domains.

Secondly, we analyse the critical gas-liquid phase equilibrium behaviour of arbitrary
�uid mixtures in the coexistence region, focussing on settings which are relevant for poly-
disperse colloids. Our analysis uses Fisher’s complete scaling formalism and thus includes
‘pressure mixing’ e�ects in the mapping from the �uid’s thermodynamic �elds to the 3D
Ising e�ective �elds. Because of fractionation, the behaviour is remarkably rich. We give
scaling laws for a number of new and conventional important loci in the phase diagram. In
particular we identify new suitable observables for detecting pressure mixing e�ects. Our
predictions are checked against numerics by using mapping parameters �tted to Lennard-
Jones simulation data, allowing us to highlight crossovers where pressure mixing becomes
relevant close to the critical point.
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4.7 Temperature di�erence between cloud curve and equal volume diameter.

Log-log plots of numerical data for |δ t0| vs. |ň| at fpm = 0.015 (empty cir-
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cal parent (ň= 0). Log-log plots of numerical data for |∆| vs. |δ t|; ∆ changes

sign at larger δ t . Data with pressure mixing ( fpm = 1, empty circles) and

without ( fpm = 0, empty squares) agree well with the theoretically pre-

dicted power laws with exponents β̃ ' 0.37 and 1− β̃ ' 0.63, respectively. 131

4.11 Midpoint diameter. Log-log plots of numerical data for |n̄| vs. |δ t| for �xed
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5.1 Time evolution of transient patterns with a propagated trigger from the

centre. (a) Time evolution of the random droplet pattern. (b) Time evo-

lution of the concentric circles pattern when the trigger speed is lower

than in (a). (c) Time evolution of the dendritic pattern when the trigger

speed is even lower. All images correspond to times after the trigger has

reached the end of the simulation box. Figure by Rei Kurita. Source: Sci-

enti�c Reports, volume 7, Article number: 6912 (2017). Link to material:

https://www.nature.com/articles/s41598-017-07352-z. Under a Creative Commons

Attribution 4.0 International License. Link to license: http://creativecommons.

org/licenses/by/4.0/. The caption has been adapted but the �gure has been

taken from the original publication PDF without changes. . . . . . . . . . . 150
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Chapter 1

Introduction

1.1 Polydisperse phase behaviour

Traditionally, thermodynamics and statistical mechanics deal with systems composed of

identical particles, also called monodisperse systems. However, nature is often more com-

plex: many soft matter systems, such as biological and industrial �uids (in the form of col-

loidal dispersions, liquid crystals, polymer solutions, etc.), are polydisperse in the sense that

their constituent particles exhibit variation in terms of one (or several) attribute(s) [1–15].

This polydisperse attribute, denoted here by σ , can be particle size, shape, charge, molecular

weight, chemical nature, etc. [16]. In the thermodynamic limit, these systems are usually

regarded as having e�ectively an in�nite number of components (although the theory that

will be presented here applies to systems with an arbitrary number of components) [17,18].

Everyday and not-so-everyday examples include blood, paint, milk, clay, photonic crys-

tals, shampoo, viruses, globular proteins, pharmaceuticals, and even sewage, among many

others [19–28]. Therefore, understanding the impact of polydispersity on the phase be-

haviour of many-body systems is of fundamental, commercial, and practical interest [29].

For instance, knowing under what conditions (and how) a multicomponent �uid will demix

may be essential in determining the shelf life of a product [30, 31]. On the fundamental

end of the range, it is believed that (symmetry-breaking) phase transitions have occurred

in the early universe via nucleation of vacuum-�eld bubbles, thus generating the di�erent

fundamental forces of nature; despite having a di�erent sort of �uid dynamics and not

being in the scope of the present work, it is interesting that the early-universe hot plasma

can also be seen as a multicomponent �uid [32, 33]. Our focus here is on colloidal �uids,
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Chapter 1. Introduction

for which the �uid particles are in�uenced by the thermal agitation from the solvent in

which they are suspended, and quantum e�ects can be neglected. (See Ref. [34] for an

introduction to polydisperse colloidal systems and their phase behaviour.)

The state of a polydisperse system (or any of its phases) is described by a density dis-

tribution ρ(σ), de�ned such that ρ(σ)dσ is the number density of particles with σ -values

in the range [σ ,σ +dσ ]. One can also consider a multicomponent system, composed of a

�nite number M of particle species (each one labelled by its own value of σ ). Each compo-

nent has concentration pα , with α = 1,2, . . . ,M. (Note that the α here is a superscript, not

an exponent.) The continuous approach can be thought of as the limit M→ ∞, leading to

pα → ρ(σα)dσ , where σα is the value of σ associated with species α . In either case, the

system has an overall composition, which speci�es the ratios of the densities of di�erent

species. The simplest example is the one of a binary system, i.e. M = 2: its composition

could then be speci�ed by the ratio pA/pB, for instance. We will often specialize to this

binary case for ease of explanation.

Similarly to monodisperse �uids, polydisperse �uids can phase-separate into regions

with higher and lower concentrations of particles. The typical experiment is to decrease

the temperature of a homogeneous system to a value within the coexistence region, setting

o� a dynamical evolution towards separation into two (or more) equilibrium phases. (See

Fig. 1.1 and the animation provided in the ESI—Electronic Supplementary Information—for

our work in Ref. [35].) In polydisperse phase separation, however, these phases will not just

di�er in density but generally also in composition. This process is called fractionation (or

partitioning) [17] because it implies that particles of di�erent species distribute themselves

unevenly into the new phases. Fractionation is responsible for much of the complexity in

the phase behaviour of polydisperse systems [17, 36–38]; for instance, its e�ect on phase-

separation kinetics will be one of our main focuses.

Let us explain fractionation in more detail using the M = 2 example. Fig. 1.2 shows a

schematic example of a phase diagram of a binary �uid at a �xed temperature. The pur-

ple (middle) point indicates the species densities (pA, pB) of the parent phase, i.e. of the

initial homogeneous system. Any other phase of the same composition would lie on the

dashed line through the parent and the origin. This is called the dilution line because in a
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Figure 1.1: Phase separation snapshots (from top left to bottom right) for a binary mix-
ture (generated with our equations)—see text for details, particularly Section 2.5.1.

colloidal �uid such phases can be prepared by adding or removing solvent.1 Phase separa-

tion can occur into pairs of coexisting phases – identi�ed from the requirements of equal

pressure and species chemical potentials – that are shown as end points of tielines. Due

to particle conservation, the overall system composition must remain unchanged during

phase separation, so the actual daughter phases generated must lie on the tieline passing

through the parent. In the generic case these daughter phases both lie o� the dilution line

so have a composition that is di�erent from the parent (and from each other). This is the

phenomenon of fractionation.
1Notice that M = 2 gives a binary mixture in the sense that there are two colloidal species, but it could

also be thought as a ‘ternary’ system if one counts the solvent as a component. Nonetheless, we will keep the
nomenclature based on the number of colloidal components only.
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In the case of general M similar considerations apply. Here the parent is speci�ed by a

density distribution ρ(0)(σ). This can be decomposed as ρ(0)(σ) = ρ
(0)
0 f (0)(σ), where

ρ
(0)
0 = N/V is the overall particle number density and f (0)(σ), the normalized parent

shape function, speci�es the composition. As ρ
(0)
0 is varied, ρ(0)(σ) traces out the di-

lution line in density distribution space. To obtain phase diagrams one needs to project

from this M-dimensional space. Often only the density of coexisting phases is recorded, to

recover the polydisperse analogue of a monodisperse density–temperature phase diagram

(see Fig. 2.1).

Figure 1.2: Sketch of a binary �uid phase diagram at �xed temperature. The purple
(centre) point represents the parent phase. The points to the right and to the left (high-
and low-density phases, respectively) are the two daughter phases. A tieline connects
the daughter phases, de�ning the equilibrium fractionation direction; it passes through
the parent phase. A number of other example tielines are shown. The end points of all

tielines, taken together, form the boundary of the coexistence region.

Fractionation causes the equilibrium phase behaviour of polydisperse systems to be
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much richer than that of their monodisperse counterparts [17]. To see why, note that

for large M, the classical tangent plane procedure used to �nd phase coexistence from a

given free energy becomes awkward both conceptually and computationally. Also, the

number of coexisting phases allowed by Gibbs’ phase rule grows with M, and becomes

arbitrary in the limit M→ ∞. These challenges have been tackled using a number of the-

oretical methods, uncovering many qualitatively novel e�ects of polydispersity on phase

behaviour. [17,39–41]. For instance, Evans has developed a perturbative approach for nar-

row distributions of the polydisperse attribute [16,37,42–44]. This predicts that the di�er-

ence in mean particle size between the two daughter phases is proportional to the variance

of the parent distribution. It can also predict speci�c trends, e.g. that in the �uid-solid co-

existence of size-disperse colloidal hard spheres, the solid (crystalline) phase contains on

average larger particles than the �uid [37]. Going beyond perturbative approaches, the

full equilibrium phase diagram for polydisperse hard spheres has been found via accurate

free energy expressions for the �uid and solid phases, showing very di�erent equilibrium

properties already for moderate particle size spreads [45]. The physical intuition behind

this is the fact that particles of di�erent sizes cannot easily �t into a regular crystal lat-

tice. These results were derived using a moment projection method [17, 46–48]. This

exploits a mapping of the full density distribution space onto moment densities, de�ned

as ρn ≡
∫

σnρ(σ)dσ , where one integrates over all possible values of σ . Note that the

zeroth moment density ρ0 is just the overall density N/V . Another important parameter,

the standard deviation of the polydisperse attribute σ normalized by its mean, can be ex-

pressed in terms of moment densities as [(ρ2ρ0/ρ2
1 )−1]1/2. It is often referred to as degree

of polydispersity or simply polydispersity.

Having set out some of the basis issues in the physics of polydisperse �uids, we shall

defer to the following thesis chapters a review of further literature and a discussion of more

advanced concepts, including the notions of ‘cloud’ and ‘shadow’ curves, fractionation

dynamics, and ‘annealed’ and ‘quenched’ spinodals.
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1.2 Aim

The main aim of the present work is to explore the e�ects of polydispersity in the liquid-gas

separation of �uid systems, particularly those in soft matter. In the context of nonequilib-

rium phenomena, this is done by using a simpli�ed model of compressible colloidal �uids.

Time-evolving properties such as the density for each component are determined in our

analytical studies (early stages) and given by computational ‘experiments’ (early and late

stages) performed to simulate the �uid’s behaviour. When studying critical equilibrium

properties that exist only in polydisperse systems, we analytically derive expansions near

the critical point by mapping from known critical behaviour in the same universality class.

Expansion coe�cients can then be �tted to polydisperse equilibrium simulation data in the

existing literature, allowing us to solve our equations numerically in order to verify our

results.

Therefore my goal is to theoretically investigate how polydisperse systems progress

towards equilibrium (predicting the importance of some nonequilibrium features to the

equilibrium phase behaviour of real systems) and how their equilibrium properties are

a�ected by the approach to a critical point.

The natural existence of model and time limitations implies that only a subset of all

features of polydisperse phase behaviour that have previously been discussed in the liter-

ature can be further investigated in this thesis, but we will generally try to focus on the

most important ones. This will be pointed out whenever appropriate.

1.3 Structure of the thesis

The remainder of this thesis is laid out as follows. In Chapter 2 we develop a dynamical

theory for phase-separating polydisperse colloids; in particular we look at Warren’s two-

stage scenario proposal (see Section 2.1). To do so we use the Polydisperse Lattice-Gas

model (Section 2.2), �nding initially its mean-�eld phase diagram. This models gives a

simpli�ed description of polydisperse colloids (with either an arbitrary �nite number of

species or continuous polydispersity) by incorporating a hard-core repulsion combined

with polydispersity in the strength of the attraction between neighbouring particles. We
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provide general moment-based expressions for spinodals of two types (one that prohibits

fractionation and one without this restriction) and the critical point. Numerical results

for the ‘cloud’ and ‘shadow’ curves are shown. In Section 2.3 we develop our theory

by setting up a kinetic model that includes two elementary processes: particle-solvent

and particle-particle exchanges. We derive di�erential equations for the local evolution

of species densities. Section 2.4 brings an analysis of the early-time spinodal dynamics

and general moment-based expressions for the largest growth rates. We exemplify these

for the case of bell-shaped polydisperse continuous distributions. In Section 2.5 we show

our simulation results for the late-time dynamics obtained by numerical integration of the

theory. We �rst look at the binary case and obtain new insights into phase separation

dynamics of mixtures, in particular into the role of fractionation. Then we provide evi-

dence that the features found are generic for arbitrary polydisperse systems, by obtaining

qualitatively identical numerical results for three- and four-component systems, with the

support of our general early-time analytical results. Section 2.6 summarizes the conclu-

sions from this part of our work; Appendices 2.A and 2.B provide detailed derivations of

some mathematical results.

In Chapter 3 we use the framework developed in Chapter 2 to investigate certain ki-

netic e�ects associated with slow composition changes. Going beyond the observations

in Chapter 2, we turn the focus to more complicated situations, as explained in detail in

Section 3.1. We start by showing how nonequilibrium features manifest themselves, and

what their consequences are, in the context of phase separation via two-step temperature

quenches (see Section 3.2). These insights are then connected to the similar behaviour of

slab-like liquid domains surrounded by vapour (Section 3.3), where additional phenomena

can be seen clearly. Finally, in Section 3.4 we show and discuss our simulations of phase

separation with a second quench into the three-phase region. The chapter concludes with

a summary and outlook in Section 3.5.

In Chapter 4 we move to the critical gas-liquid phase equilibrium behaviour of arbi-

trary �uid mixtures in the coexistence region, focussing on settings that are relevant for

polydisperse colloids. Section 4.1 gives an overview of the relevant critical scaling results

by reviewing the literature. In Section 4.2 we introduce the ‘complete scaling’ approach
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used. This relates Ising 3D criticality to �uid criticality using expansions around the criti-

cal point in terms of the thermodynamic �elds. Our results for the coexistence conditions

and coexisting density distributions, in the context of the Ising-�uid mapping, are derived

in Section 4.3. Then we present in Section 4.4 results for phase diagram lines with arbitrary

constant fractional volume. These are less conventional but not less relevant, as we show.

Section 4.5 brings a discussion of why the monodisperse case is di�erent. The more con-

ventional coexistence curves are discussed in Section 4.6, where new results are presented.

In Section 4.7 we verify our results using expansion coe�cients �tted to Lennard-Jones

data. Conclusions and a thorough summary of the various new scaling laws are given in

Section 4.8. Appendices 4.A–4.D contain mathematical derivations and numerical details,

including a novel method that ‘maps’ systems with di�erent numbers of species onto one

another.

Finally, Chapter 5 draws conclusions based on the research carried out within the the-

sis, generally reviews the contributions that this thesis has made and discusses how this

work can be extended in the future.

1.4 Previously published work

1. de Castro, P. & Sollich, P. (2017). “Phase separation dynamics of polydisperse col-

loids: a mean-�eld lattice-gas theory”. Physical Chemistry Chemical Physics, 19,

22509-22527. Royal Society of Chemistry.

2. de Castro, P. & Sollich, P. (2018). “Critical phase behaviour in multi-component �uid

mixtures: complete scaling analysis”. The Journal of Chemical Physics, 149, 204902.

American Institute of Physics.

Author contributions: PdC and PS conceived the studies. PdC and PS carried out the

research, PdC developed the simulations, carried out the analytical calculations and pre-

pared the �gures. PdC and PS interpreted the data and shaped the study. All authors wrote

and reviewed the manuscripts.

Published papers 1 and 2 cover the contents of Chapters 2 and 4.
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Chapter 2

Phase separation dynamics of

polydisperse colloids

2.1 Introduction

The present chapter focuses on the dynamics towards equilibrium. Warren proposed that

the phase-separation kinetics in polydisperse systems should proceed in two stages [49].

To understand this two-stage scenario, he starts by considering an initially homogeneous

system suddenly placed within a two-phase region. The classical picture predicts two types

of phase-separation kinetics. If placed not too far from the phase boundary encompassing

the two-phase region in the phase diagram, the system would phase-separate via nucle-

ation and growth. However, if placed further away from the boundary phase separation

would proceed via spinodal decomposition. Lying entirely below the coexistence curve, the

classical spinodal curve separates the two types of kinetics. In the case of phase separa-

tion via spinodal decomposition, arbitrarily small �uctuations in the homogeneous system

decrease the free energy, and thus grow exponentially before eventually being limited by

nonlinear e�ects. Warren highlights the fact that, although the spinodal curve is a con-

vention that does not rigorously survive in a correct statistical mechanical treatment, it

is a rough guide to the transition region between the two types of kinetic behaviour. He

proceeds by asking what the e�ect of polydispersity is on this classical picture. Assum-

ing that in dense systems, fractionation is potentially a very slow process, he suggests

that two stages of kinetics might be expected. In a �rst stage, the system might phase-

separate by relaxing the overall density to a phase equilibrium dictated by ‘quenching’ (i.e.
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‘�xing’) the polydisperse distribution in any phase to the one in the parent phase. Over

longer timescales, the system might then gradually redistribute particles between coexist-

ing phases to re�ect the possibility of further lowering the free energy by fractionating.

Therefore, a second stage would begin when the system started to signi�cantly fraction-

ate. Referring to the polydisperse density distribution as the size distribution, Warren says:

‘During this slow process, the particle number density would be able to adjust itself con-

tinually to follow the current stage of the size partitioning process. The argument for this

[two-stage] scenario is based on the observation that, in a dense system, the overall density

can be much more easily relaxed by collective particle motion (collective di�usion), than

can the size distribution be adjusted by individual particle rearrangements (self di�usion)’

(p. 2199). Experimental measurements of self- and collective di�usion constants support

this picture [50].

Warren’s two-stage scenario is certainly physically reasonable: density �uctuations

can be created by moving groups of particles ‘in sync’ to form regions of higher density.

Fractionation, on the other hand, requires particles from di�erent species to ‘push past

each other’ in opposite directions. The scenario also makes an interesting connection to

moment densities: the zeroth moment ρ0, which gives the total number density of all

species, should relax much more rapidly at a local level than the higher moments, whose

equilibration requires interdi�usion of di�erent particle species. This suggests that mo-

ment densities can remain useful in understanding the kinetics of phase separation, and

our results in this chapter provide some support for this.

Existing theoretical approaches to polydisperse phase-separation dynamics have fo-

cussed primarily on polymeric systems. One can make some progress by binning the range

of σ , which reduces the problem to the dynamics of a �nite mixture. This approach of

course becomes numerically challenging as the number of bins grows. Clarke has shown

that the method is nonetheless useful for investigating the early-time phase-separation

dynamics of polydisperse polymers [17, 51]. Again in the context of polymeric materials,

Pagonabarraga and Cates developed an analysis of the dynamics based on time evolution

equations for polymer densities driven by chemical potential gradients. The form of these

equations had been proposed phenomenologically in Clarke’s work, but the approach of
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Ref. [52] allowed the associated mobility coe�cients to be derived explicitly. Apart from

the case of length polydispersity, where the results were more subtle, Pagonabarraga and

Cates studied the case of chemical polydispersity, where di�erent polymer chains have dif-

ferent monomer compositions and hence di�erent interaction strengths. For this scenario

the coupled dynamical equations could be fully solved in certain cases. Pagonabarraga and

Cates [52] also studied the mode spectrum of the various density �uctuations in a system

undergoing spinodal decomposition; from this analysis, they concluded that depending on

where in the phase diagram the system is placed the kinetics will proceed in accordance

with Warren’s two-stage scenario.

Compared to the polymeric case, there is a lack of theoretical work designed to model

fractionation e�ects in the phase-separation dynamics of spherical colloids (but see Ref. [42]

discussed below). The present work is designed to �ll this gap. The approach we use to

investigate the phase-separation dynamics of mixtures is the theory described in Refs. [53]

and [54] by Plapp and Gouyet. These studies were, however, concerned with binary metal-

lic alloys. In this context they addressed rather di�erent questions from ours, based on

assumptions about the dynamics and the particle interactions that are quite distinct from

the colloidal case. Nonetheless, our development of the mean-�eld dynamical equations

has close similarities with the methods of Refs. [53] and [54].

There are a few other theoretical investigations of polydisperse colloidal dynamics

in the literature, where simulations are implemented and some aspects of fractionation

investigated [43,55,56]. As a result, the dynamics of phase separation in polydisperse col-

loids remains a challenging (and mostly unsolved) problem. One of the di�culties is that

the kinetics of phase separation could be so slow as to make the actual equilibrium phase

compositions unobservable in experiments [17]. It has been argued that this is the case for

polydisperse hard-sphere crystals: once particles join to a crystal nucleus growing from

the hard-sphere �uid, they essentially no longer di�use on experimental timescales [42].

The size distribution of particles in the crystal will thus ‘freeze in’, and will be determined

by the mechanism of crystal growth rather than the conditions of thermodynamic equi-

librium. Although recent advances have been made [57], such non-equilibrium e�ects on

the experimentally observed phase behaviour of colloidal systems are de�nitely not fully
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understood.

In this chapter we present a mean-�eld theory for the Polydisperse Lattice-Gas (PLG)

model, which has been proposed as a simple description of polydisperse colloids [36].

In Section 2.2 we present the model and its mean-�eld phase diagram. In Section 2.3 we

endow the model with an appropriate dynamics and derive the mean-�eld evolution equa-

tions for this. Section 2.4 gives an early-time regime analysis of our equations. Then, in

Section 2.5, we go beyond the spinodal regime and study the full late-time dynamics of

our model. Section 2.6 summarizes our results and outlines some directions for future

research.

2.2 PLG mean-�eld phase diagram

2.2.1 PLG model

Hereafter we use the PLG model to investigate the phase-separation dynamics in polydis-

perse colloidal systems [36]. The model is described by the Hamiltonian

H =−∑
〈i, j〉

∑
α,β

σασβ nα
i nβ

j (2.1)

where i runs over the sites of a periodic lattice i = 1, . . . ,LD, assumed simple cubic and

D-dimensional in this work, with lattice spacing a = 1, unless otherwise stated; the sum

runs over all pairs 〈i, j〉 of nearest-neighbour sites; σα is the value of the polydisperse

attribute associated with particle species α , which controls the strength of interparticle

interactions; it is a positive number for attractive interactions as considered here. We

consider a mixture with M species, with the summations over α and β therefore running

from 1 to M. The (occupation) variable nα
i simply counts the number of particles of species

α at site i, for which a hard-core constraint is imposed:

M

∑
γ=0

nγ

i = 1 ∀i (2.2)

where n0
i refers to vacancy, i.e. n0

i = 1 indicates the presence of a vacancy at site i, or,

equivalently, a solvent particle. Note that the solvent particles are ‘passive’ [52] in this
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framework, in such a way that any non-hydrodynamic e�ect caused by them has already

been e�ectively included in the interaction between the particles as described by the model

Hamiltonian. We also neglect the fact that colloidal particles may interact with one another

via hydrodynamic interactions mediated by the solvent. We therefore use the term vacancy

in the following, rather than solvent particle. Observe that n0
i can be expressed in terms

of the other nα
i , from Eq. (2.2). In summary, each lattice site may be either vacant or

occupied by a single colloidal particle of polydisperse attribute σα . The instantaneous

density distribution follows as pα = L−D
∑i nα

i . We will use the letter γ as the species

index for summations running from 0 to M, while for summations running from 1 to M,

we use α (or β ), unless otherwise speci�ed.

Note that in the Hamiltonian (2.1) the interaction strength between any two neigh-

bouring particles is assumed to be σασβ , i.e. the product of their polydisperse attributes,

though to preserve generality we will often write this in the form εαβ = σασβ . Thus the

role of polydispersity in this model is to engender a spread of possible interaction strengths

between particles, a situation which contrasts with the single interaction strength charac-

terizing the simple Ising lattice-gas model. As observed in Ref. [36], this allows the PLG

model to capture the essential qualitative features that distinguish polydisperse �uids from

their monodisperse counterparts. Nonetheless one has to bear in mind that, in real col-

loids, polydispersity often occurs in the size of the particles. This will have additional

consequences, e.g. on the local packing of particles in dense regions, that a lattice model

cannot account for. In principle one could extend the approach by allowing particles to

occupy several contiguous lattice sites, thus explicitly representing their size. This is not

a trivial extension as particle moves would then correspond to simultaneous changes of

potentially many nα
i , but may be an interesting avenue for future work.

2.2.2 Mean-�eld phase diagram

We next present the mean-�eld phase diagram for the PLG model. This will serve as a

useful reference point for our later discussion of the phase-separation dynamics. We �rst

explain how to obtain the relevant curves of the diagram, starting from the spinodals and

then moving on to the cloud (‘binodal’) and shadow curves.
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Free energy and spinodals

Phase separation via spinodal decomposition occurs when the system is placed in a region

of the phase diagram that is unstable to �uctuations; �uctuations of any size will then lead

to phase separation. This contrasts with the case of nucleation and growth, where �nite

�uctuations – corresponding to a nucleus of a critical size – are required for the system to

escape from a metastable state.

For the phase diagram of monodisperse systems, the spinodal curve (i.e. the curve be-

low which spinodal decomposition occurs) can be calculated by joining up the in�ection

points of the free energy curve at each temperature. For the spinodal curve of a poly-

disperse system, one likewise needs to identify points where the free energy develops

negative curvature.

In order to obtain an expression for the Helmholtz (inhomogeneous) free energy of

the polydisperse lattice gas, F = 〈H〉− T S, we use a variational mean-�eld approxima-

tion. This is obtained from the Gibbs–Bogoliubov–Feynman variational bound [58, 59],

using a variational approximation to the equilibrium distribution that is factorized over

lattice sites. The latter is fully characterized by local densities pα
i = 〈nα

i 〉. For the PLG

Hamiltonian (2.1), this leads to

F =−∑
〈i, j〉

∑
α,β

εαβ pα
i pβ

j +T ∑
i

M

∑
γ=0

pγ

i ln pγ

i (2.3)

where the Boltzmann constant has been set equal to 1. Recalling that the volume of the

system is equal to the total number of sites (V = LD) and applying Eq. (2.3) to a homoge-

neous con�guration, the free energy density f = F/V can be written as

f ({pα} ,T ) =− z
2 ∑

α,β

εαβ pα pβ +T
M

∑
γ=0

pγ ln pγ (2.4)

where z is the lattice coordination number [i.e. z = 4 for the square lattice (in D = 2)]

and pα is the overall density of particles of species α . Here the hard-core constraint (2.2)

means that in the second, entropic term, p0 = 1−∑α pα . For a monodisperse system (i.e.

M = 1), the free energy density reduces to a function f = f (ρ,T ), where ρ = N/V ≡ p1

is the overall density of particles. Here and in the following we drop the 0-subscript from
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our previous notation ρ0 where the meaning is clear from the context. (Confusion with the

density distribution ρ(σ) should not arise as this is always written with its polydisperse

attribute argument σ .) In this monodisperse case, the spinodal density at any temperature

T would be found from the equation ∂ 2 f
∂ρ2 = 0. In the more general, polydisperse, case one

needs to consider the Hessian matrix S with elements

Sαβ =
∂ 2 f

∂ pα∂ pβ
(2.5)

and then solve the equation det(S) = 0 (or the equivalent spinodal criterion as written in

Ref. [48]) to obtain the spinodal curve.

For polydisperse systems, one can, in the spirit of Warren’s two-stage scenario, de�ne

two types of spinodals [49]. The �rst is the annealed spinodal curve, which is precisely

the one given by det(S) = 0. For the PLG model, this leads to a simple expression in terms

of the moment densities:

T = z
(
ρ2−ρ

2
1
)
. (2.6)

The quenched spinodal curve, on the other hand, is de�ned as the spinodal curve that is

calculated by assuming that the system is not allowed to fractionate. In other words, one

treats the composition as �xed, and the overall density ρ as the only variable. To calculate

this, note that the free energy given by Eq. (2.4) is a function of all densities pα . At �xed

composition these are proportional to the overall density ρ , e.g. for M = 2 one would have

pA = pB = ρ/2 if the dilution line pA/pB = 1 is considered. Inserting these ρ-dependencies

into the free energy gives the quenched free energy, as a function of ρ ; call this fQ(ρ,T ),

for example. To �nd the quenched spinodal one then only has to solve ∂ 2 fQ
∂ρ2 = 0, which in

our case yields

T = z
(

ρ1

ρ

)2 (
ρ−ρ

2) . (2.7)

One can easily check that this coincides with Eq. (2.6) for monodisperse systems, where

ρ2/ρ = (ρ1/ρ)2.

The above distinction between two types of spinodal will prove useful later because,

if Warren’s two-stage scenario holds, one would expect that the dynamics of phase sep-

aration would proceed, at least initially, as if the system ‘did not know’ it could further
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lower its free energy by fractionating. Therefore, one could expect that the early-stage

dynamics of a system operating in the two-stage scenario should proceed in accordance

with the quenched spinodal instead of the annealed one.

For completeness we note that the critical point lies on the (annealed) spinodal curve

and is identi�ed by an additional condition. This can be obtained using the methods of

Ref. [48] and reads 2ρ3
1 −3ρ1ρ2 +ρ3 = 0.

Cloud and shadow curves

Because of fractionation, the conventional vapour-liquid binodal (or coexistence curve)

of a monodisperse system splits into a cloud curve, marking the onset of (polydisperse)

phase coexistence, and a shadow curve, giving the density of the incipient phase. The

critical point appears at the intersection of these curves, rather than at the maximum of

either [17]. This splitting is seen in experiments on polydisperse �uids (see e.g. Ref. [60]).

Similarly to the spinodal curve, we can de�ne annealed and quenched cloud curves. These

will be distinct because the onset of phase coexistence will be delayed to lower temperature

if the system is not allowed to lower its free energy by fractionation.

Our numerical data for cloud and shadow curves are determined by solving the equa-

tions for two-phase (bulk) phase equilibrium. (Three-phase coexistence can also occur

in the PLG, but at lower temperatures than we consider here. See Section 3.4.) In the

binary case (M = 2), the phase equlibrium conditions at given T are equality of the chem-

ical potentials µA, µB and the pressure between the two phases (pA
I , pB

I ) and (pA
II , pB

II ).

Here the chemical potentials µA and µB are given by the partial derivatives of the free

energy density f (pA, pB,T ) with respect to pA and pB, respectively, and the pressure is

P = − f + µA pA + µB pB. For M > 2, the generalization is straightforward, giving M + 1

coexistence equations to solve.
(
Alternatively, one could use the moment free energy

method, since our free energy density (2.4) is truncatable [48].
)

The cloud temperature for

a given parent density is found by lowering T and checking when phase coexistence with

the parent as one of the coexisting phases �rst occurs. The shadow curve identi�es the

density of the second coexisting phase, which at this point is present only in an in�nites-

imal fraction of the system volume. In a monodisperse system, cloud and shadow curve

35



Chapter 2. Phase separation dynamics of polydisperse colloids

coincide and are then identical to the conventional binodal curve.

Phase diagram

Fig. 2.1 shows our results for the phase diagram of a binary mixture. We chose the dilution

line pA = pB and σ -values given by σA = 1+d and σB = 1−d, where d is a number be-

tween 0 and 1. (Note that the greater the d, the greater the polydispersity in this bidisperse

case.) The plot shows the annealed cloud and shadow curves, with the critical point at their

intersection; the quenched binodal curve; and the annealed and quenched spinodal curves.

Qualitatively these curves look as one would expect them to on general grounds [17].

For our discussion of phase-separation dynamics most relevant are the cloud curve as it

signals the onset of phase coexistence, and the spinodal curve. The annealed and quenched

versions of each of these two curves divide the phase diagram into distinct regions where

Warren’s hypothesis predicts di�erent sequences of phase-separation dynamics. Inside

the quenched spinodal, the system should initially phase-separate by spinodal decomposi-

tion in density only; between the quenched spinodal and quenched binodal the �rst stage

should be nucleation and growth of density �uctuations. The second stage would then in-

volve fractionation, again by spinodal decomposition or nucleation and growth depending

on the position relative to the annealed spinodal.

As an example, Fig. 2.2 shows a zoomed-in portion of the phase diagram. Starting

at ρ = 0.5 and moving towards higher densities at constant temperature T = 0.94, one

visits four distinct regions with respect to the annealed and quenched cloud and spinodal

curves. Labelling these by R1, R2, R3, R4 with increasing density gives the predictions

in Table 2.1, where we have used the term ‘size’ generically to refer to the polydisperse

attribute σ . In this chapter we develop a mean-�eld theory that excludes stochastic �uc-

tuations and therefore does not capture nucleation and growth dynamics. Hence we will

focus on the distinction between di�erent spinodal regions, i.e. region R1 versus R2/R3.

Note that we will use the term ‘early-time dynamics’ throughout to refer to the onset of

phase-separation dynamics, irrespective of the relevant time scale. In particular, in region

R2/R3 the early-time dynamics should be stage 2 spinodal decomposition, which happens

on a slow time scale because it involves fractionation.
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Figure 2.1: Phase diagram of a binary PLG mixture for d = 0.25 and dilution line pA = pB.
(CP stands for Critical Point.) These choices allow all the relevant qualitative features to

be seen clearly.

Region Stage 1 Stage 2
R1 SD in density SD of ‘sizes’
R2 NG of density �uctuations SD of ‘sizes’
R3 SD of ‘sizes’
R4 NG of ‘size’ �uctuations

Table 2.1: Abbreviations: SD = Spinodal Decomposition; NG = Nucleation and Growth.

2.3 Kinetic PLG model

In this section we present the kinetics that we assume for the PLG model with an arbitrary

number of species M, and derive our mean-�eld dynamical equations.

We model the dynamics as resulting from jumps of particles to nearest-neighbour sites.

This can be described in the general form of a master equation

∂P(C, t)
∂ t

= ∑
C′

[
W (C′,C)P(C′, t)−W (C,C′)P(C, t)

]
(2.8)
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Figure 2.2: Zoomed-in portion of the phase diagram in Fig. 2.1. Starting at ρ = 0.5 and
moving towards higher ρ along a reference horizontal dotted line (at T = 0.94), one visits
four distinct phase coexistence regions with respect to the positions of the cloud/binodal
and spinodal curves. According to Table 2.1, each of these regions corresponds to a dis-

tinct dynamical behaviour.

where P(C, t) is the probability of �nding the system in a con�guration

C = {n1
i ,n

2
i , . . . ,n

M
i ; i = 1, . . . ,LD}

at time t , and W (C,C′) is the transition rate from a con�guration C to another one C′. One

can then de�ne a time-dependent average for any observable Q(C) as

〈Q〉(t) = ∑
C

Q(C)P(C, t) (2.9)

In particular we de�ne a time-dependent local density for each species as pα
i (t) = 〈nα

i 〉(t).

From the master equation it can be shown that each species follows a conservation law of

the form
d pα

i
dt

=− ∑
j∈∂ i

Jα
i j (2.10)

where we have introduced the notation j ∈ ∂ i, meaning that the summation has to be

performed over all nearest-neighbour sites j of site i; the current of α-particles across the

link i→ j is given by

Jα
i j =

M

∑
γ=0

〈
nα

i nγ

jw
αγ

i j −nα
j nγ

i wαγ

ji

〉
(2.11)

where wαγ

i j is the jump rate for an α-particle at site i to exchange positions with a γ-particle
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at site j (or with a vacancy, if γ = 0). Observe that, e�ectively, we are considering a ki-

netic model equipped with two elementary processes: (i) the jump of a particle from an

occupied lattice site to an empty one, and also (ii) the direct interchange between two par-

ticles from arbitrary species. In each of these processes, the con�guration of the system

changes, but the overall number of particles of each species remains constant, which is the

physical origin of the conservation law (2.10). It is worth noting that the physical elemen-

tary processes are the jumps to empty sites, i.e. particle-vacancy exchanges (a particle is

not expected to actually cross through the inside of another). However, for the subsequent

analysis it is useful to include also direct particle-particle swaps, so that we develop the

theory initially for generic wαγ

i j .

Note that the prefactors of wαγ

i j in Eq. (2.11) ensure the target site is occupied by a γ-

particle (or empty, if γ = 0) and the start site is occupied by an α-particle. This is similar to

the theory described by Plapp and Gouyet in Ref. [53], but there they did not consider direct

interchange of particles, and the number of species M was set equal to 2 (as previously

mentioned); moreover, they considered Arrhenius law jump rates, which was argued to

be more suitable in their context of phase separation in binary metallic alloys. Here, we

use Glauber-like jump rates:

wαγ

i j = wαγ

 1

1+ exp
(

∆Hαγ

i j /T
)
 (2.12)

where ∆Hαγ

i j = H(C′)−H(C) is the energy di�erence associated with the jump, i.e. it is

the energy di�erence between the con�guration before the jump (C), in which there is

an α-particle at site i and a γ-particle at site j, and after the exchange (C′); note that C

and C′ are identical except for the exchange between α and γ . The prefactor wαγ is an

‘attempt rate’. This gives the actual jump rate wαγ

i j when the energy change ∆Hαγ

i j is large

and negative, while it is reduced exponentially for large positive energy changes.

Let us write the energy of the system for the con�guration before the jump, isolating

only the contributions involving the two particles α and γ that are swapping:

H(C) =−εαγ −∑
β

∑
k∈∂ i\ j

εαβ nβ

k −∑
β

∑
l∈∂ j\i

εγβ nβ

l + . . . (2.13)
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Here the �rst term on the right-hand side is the contribution only from the interaction

between the two particles that are swapping. The second term is the contribution from

the interactions between the α-particle at site i and all of its neighbours except the one at

site j. The third term similarly accounts for the interactions of the γ-particle. Similarly,

we have that

H(C′) =−εαγ −∑
β

∑
k∈∂ i\ j

εγβ nβ

k −∑
β

∑
l∈∂ j\i

εαβ nβ

l + . . . (2.14)

is the energy of the system after the exchange. The energy change is then

∆Hαγ

i j = ∑
β

(
∑

k∈∂ i\ j
εαβ nβ

k − ∑
l∈∂ j\i

εαβ nβ

l

)
−∑

β

(
∑

k∈∂ i\ j
εγβ nβ

k − ∑
l∈∂ j\i

εγβ nβ

l

)
. (2.15)

We now invoke a mean-�eld approximation to evaluate the currents (2.11). In this

we neglect �uctuations of ∆Hαγ

i j , i.e. we replace this quantity by its average. This can be

justi�ed by thinking about a high-dimensional limit, where the number of nearest neigh-

bour sites z of any lattice site is large enough for the local ‘�elds’ appearing in ∆Hαγ

i j to

average out �uctuations. In the same spirit we also drop the restrictions on the sums in

∆Hαγ

i j , which only changes the local �elds by a relative amount 1/z. It then only remains

to perform the average of the kinetic prefactors, which with a mean-�eld decoupling be-

comes 〈nα
i nγ

j〉 ≈ pα
i pγ

j . Inserting the resulting approximation for the currents into (2.10),

we obtain the mean-�eld kinetic equations

d pα
i

dt
=− ∑

j∈∂ i

M

∑
γ=0

 pα
i pγ

jw
αγ

1+ exp
(〈

∆Hαγ

i j

〉
/T
) − pα

j pγ

i wαγ

1+ exp
(〈

∆Hαγ

ji

〉
/T
)
 (2.16)

where – within the mean-�eld approximation –

〈
∆Hαγ

i j

〉
= ∑

β

(
∑

k∈∂ i
εαβ pβ

k − ∑
l∈∂ j

εαβ pβ

l

)
−∑

β

(
∑

k∈∂ i
εγβ pβ

k − ∑
l∈∂ j

εγβ pβ

l

)
. (2.17)

These kinetic equations are – in spite of the rather di�erent method of derivation – con-

sistent with the mean-�eld free energy (2.3) in the sense that they always decrease it over

time, dF/dt ≤ 0.
(
This consistency is what requires the approximation step we have taken

above, of dropping the restrictions on the sums de�ning ∆Hαγ

i j [61].
)

This is as one would
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expect in a closed system, where there are no currents crossing boundaries [54]. We defer

the derivation of the result dF/dt to Appendix 2.A, which generalizes similar derivations

discussed elsewhere in the literature [54] to include the case of direct particle-particle

swapping.

From the fact that dF/dt ≤ 0 it follows that the dynamics leads to a state which min-

imizes the mean-�eld free energy. This �nal state may be the ground state (global mini-

mum) or a metastable state (local minimum). The monotonic decrease of the free energy

also implies that the mean-�eld kinetic equations cannot describe nucleation events. Cap-

turing these would require introducing �uctuations, e.g. by adding Langevin noise to our

deterministic Eqs. (2.16). (This is further discussed in Section 2.6.)

2.4 Early-time spinodal dynamics

In this section, we will present a linearized version of our theory: it describes the growth

of small �uctuations around an initial homogeneous state (via spinodal decomposition),

within the framework of our mean-�eld kinetic equations. It will be shown that the maxi-

mum spinodal growth rates can be expressed in terms of only three moments of the poly-

disperse distribution. More importantly, we will use the result for the spinodal growth

rates to test Warren’s two-stage hypothesis.

We begin by considering a homogeneous system of overall composition described by

a list of densities: {pα | α = 1, . . . ,M}. The system is perturbed by small �uctuations of

the densities:

pα
i = pα +δ

α
i (2.18)

where δ α
i � 1. As shown in Appendix 2.B, linearization of (2.16) leads to the following

equation:
dδ α

i
dt

= ∑
γ=0

Mαγ
∆d

(
µ

α
i −µ

γ

i

)
(2.19)

where we de�ne the homogeneous mobilities as

Mαγ ≡ wαγ

2T
pα pγ (2.20)
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We have also introduced the local chemical potentials µα
i = ∂F/∂ pα

i . These are given

explicitly by

µ
α
i =− ∑

j∈∂ i
∑
β

εαβ pβ

j +T ln
(

pα
i /p0

i
)

(2.21)

for α = 1, . . . ,M, while µ0
i = 0. These expressions are derived from the free energy ex-

pression (2.3) with the explicit substitution p0
i = 1−∑α pα

i . Finally in Eq. (2.19) we use

the discrete Laplacian ∆d, which is de�ned by

∆dgi = ∑
j∈∂ i

(g j−gi) (2.22)

for any site-dependent quantity g.

Note that, so far, the theory applies for completely generic attempt rates wαγ . Fur-

thermore, if these attempt rates are set such that the right-hand side of Eq. (2.19) contains

only the particle-vacancy term (i.e. no direct interchanges of particles are allowed), and

one considers only the M = 2 case, then Eq. (2.19) has the same form as Eq. (27) in Plapp

and Gouyet’s work [54]. The only di�erence is that their expression for the homogeneous

mobility is di�erent from (2.20), as Plapp and Gouyet used Arrhenius jump rates. Their

choice re�ects the physical assumption for alloys that the elementary particle moves have

an energy barrier e�ectively equivalent to removing a particle from the system. For the

colloidal case Glauber rates are rather more plausible.

To solve the linearized mean-�eld equations, one exploits that a homogeneous system

is invariant under translation with respect to the lattice vectors. Solutions are therefore

superpositions of time-dependent Fourier modes

δ
α
j = δ pα exp [ik ·x j +ωt] (2.23)

(as will be clear, the i in the exponents refers to the imaginary unit i ≡
√
−1). Here k

is the �uctuation wave vector and x j is the position vector in real space of lattice site j.

Moreover, ω is the growth rate of the mode and δ pα indicates the amplitude of the �uctu-

ation associated with species α . By inserting Eq. (2.23) into (2.19) one �nds an eigenvalue

equation with eigenvalue ω , with the δ pα being the components of the corresponding
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M-dimensional eigenvector. [See Eq. (2.49) in Appendix 2.B.] Thus we have a stability

spectrum with M branches. A branch can be stable (ω is negative for all wave vectors) or

unstable, with ω being positive in some range of |k|, typically for small |k|. We will be

interested in the maximum growth rate ωmax over all branches and wave vectors, which

identi�es the dominant growing �uctuation mode. Outside of the spinodal region this

maximum growth rate becomes zero because the system is stable to all small �uctuations

there.

To be able to evaluate the maximum growth rate we need to make speci�c assump-

tions about the attempt rates wαγ . We will set wα0 = w0 and wαβ = ws, for any α 6= 0 and

β 6= 0, where w0 and ws are constant attempt rates associated with particle-vacancy and

particle-particle exchanges, respectively. (The ‘0’ subscript is for vacancy, and the ‘s’ is for

swapping.) In principle, one could imagine that wαβ might not be the same for all pairs

α and β , or that it depends on the temperature. However, our simple choice for the val-

ues of wαγ is enough to distinguish between particle-vacancy and particle-particle kinetic

mechanisms. Moreover, we will see later that the dependence on temperature would be

irrelevant for our purposes. Also, Plapp and Gouyet say in Ref. [54] that, in their case with

particle-vacancy dynamics only (where M = 2 and Arrhenius rates are used), numerical

results indicate that qualitative phase-separation behaviour is una�ected by the attempt

rate ratio wA0/wB0 as long as it is not too far from unity.

For the above choice of wαγ we show in Appendix 2.B that the (largest branch of)

growth rates can be expressed as

ω =
A(k)
4T

{
T [(2−ρ)w0 +wsρ]− (A(k)+ z)

[
w0 (1−ρ)ρ2 +ws

(
ρρ2−ρ

2
1
)]}

− A(k)
4T

[
(T (w0−ws)ρ)2 +(A(k)+ z)2 (w0 (1−ρ)ρ2 +ws

(
ρρ2−ρ

2
1
))2

+2T (w0−ws)(A(k)+ z)
(
w0 (1−ρ)

(
ρρ2−2ρ

2
1
)
+wsρ

(
ρρ2−ρ

2
1
))]1/2

(2.24)

where A(k) is essentially the Fourier transform of the Laplacian. Equation (2.24) is valid

for any spatial dimension given the appropriate expression for A(k), with e.g. for a two-

dimensional lattice A(k) = −4sin2 (kxa/2)− 4sin2 (kya/2). The moment densities in the

above expressions are, in the discrete representation, ρn = ∑
α

σn
α pα .
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In the monodisperse limit (M = 1), expression (2.24) does not depend on ws. This of

course should be so as swaps between identical particles do not change the system con-

�guration and hence cannot contribute to the dynamics. To �nd the maximum growth

rate, one needs to maximize ω with respect to k. As in the regime of interest the maxi-

mum occurs for small wavevectors, this can be done by expanding ω as a function of k

around |k|= 0 up to the fourth order in |k|, and then maximising the resulting expression

analytically. One can also carry out numerically the maximization of the full ω(k), with

essentially indistinguishable results (see Figures 2.3a and 2.6a), but we use the expansion

procedure to obtain a closed-form expression for ωmax. (This is nonetheless too long to be

displayed here.)

Because of the moment structure of (2.24), our linear theory can be applied to a fully

polydisperse (i.e. M → ∞) system, using an experimentally-reasonable distribution like

the Schulz-Gamma form [62]

f (0)(σ) =
1
g!

(
g+1

σ̄

)g+1

σ
g exp

[
−
(

g+1
σ̄

)
σ

]
. (2.25)

In the following we set the mean interaction strength σ̄ = 1 as we did in the binary

case. The parameter g controls the polydispersity of the distribution, which is given by

1/
√

g+1. This means that e.g. the choice g = 15 produces a standard deviation of σ that

is 25% of the mean. With these choices, the moments appearing in the growth rates (2.24)

can be expressed in terms of the density as ρ1 = σ̄ρ = ρ , ρ2 = σ̄2ρ[1 + 1/(g + 1)] =

ρ(g + 2)/(g + 1). Note that because only moments up to second order appear in our

mean-�eld spinodal rates, other distributions with the same mean and variance would

give identical results.

Let us now see what our linear theory says about Warren’s scenario as applied to

the spinodal dynamics. Fig. 2.3a shows the maximum growth rate as a function of the

overall density, for reasonably dense systems. Here and in the following we �x the overall

timescale by setting w0 = 1. The vertical lines indicate the upper limits of the annealed and

quenched spinodal regions, respectively. As expected, the maximum growth rate becomes

zero beyond the annealed spinodal, where the system is stable to all density �uctuations.

More remarkable is that the maximum growth rate increases only very slowly as density is
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decreased below this point, and only begins to rise substantially at the quenched spinodal.

This is exactly in line with what would be expected from Warren’s two-stage hypothesis:

inside the quenched spinodal region, the system has fast (stage 1) spinodal dynamics driven

by the instability with respect to density �uctuations. (This corresponds to region R1

in Table 2.1.) Outside the quenched spinodal, on the other hand, there is no spinodal

decomposition in stage 1 (corresponding to regions R2/R3) and the spinodal dynamics is

produced by the much slower growth of composition �uctuations in stage 2. To the extent

that stage 2 dynamics, which involves local fractionation, is slow compared to stage 1,

ωmax should therefore be small between quenched and annealed spinodals, as compared

to its values inside the quenched spinodal region. This is exactly what we �nd.

Graphically, the above reasoning means that ωmax(ρ) should have a kink at the quenched

spinodal, where it crosses over from small (stage 2) to large (stage 1) values. The situation

in Fig. 2.3a is quite close to such an ideal two-stage scenario. The kink can be seen more

clearly by looking at the second derivative of ωmax with respect to ρ , which would be large

around a kink. Fig. 2.3b shows that this second derivative does indeed have a maximum,

and this is positioned close to, if not exactly at, the quenched spinodal density. Note that

this happens even though our calculation of ωmax did at no point involve any restriction to

quenched dynamics, i.e. �xed composition. In other words, the full, unrestricted dynamics

of the system nonetheless ‘feels’ the presence of the quenched spinodal. This provides

strong support for Warren’s two-stage scenario.

Since the physics of Warren’s two-stage scenario requires the system to be dense, we

expect it to break down at lower densities. To check this, we �rst investigate the behaviour

of ωmax (ρ) around the lower end of the spinodal region. In Fig. 2.4, it is clear that the sec-

ond derivative does not have any signatures around the (lower) quenched spinodal den-

sity, instead increasing smoothly towards the annealed spinodal. Secondly, returning to

the kink in ωmax at the upper quenched spinodal density, we can consider its dependence

on temperature. At higher temperatures, the upper spinodal densities become lower, so

that the two-stage scenario should be less pertinent. To check this, we show in Fig. 2.5 the

density where the maximum in the second derivative of ωmax occurs, for a range of tem-

peratures. We can see that the density at the maximum moves away from the quenched
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(a) (b)

Figure 2.3: (a) ωmax as function of ρ for T = 0.3, g = 15 (standard deviation: 25% of
the mean), and ws = 0. The vertical lines indicate the (upper) quenched and annealed
spinodal densities, from left to right. For comparison, we show the points obtained by
numerically maximising ω(k) and the curve obtained analytically from small-|k| expan-
sion; these agree very well. (b) Second density derivative of ωmax as function of ρ . The
vertical lines are the same as in (a). Note that ωmax almost has a kink at the quenched

spinodal density, as indicated by the maximum in the second derivative.

spinodal curve and towards the annealed spinodal as T increases, as expected. More use-

fully, we can read o� from the �gure that the two-stage scenario gives a good account of

the position of the kink for densities above ρ ≈ 0.9, so for the given polydispersity this is

the threshold where the system becomes su�ciently dense to make fractionation slow.

We now perform a second test that detects directly whether the behaviour we are see-

ing – namely the near-kink in ωmax(ρ) – is in fact due to fractionation being slow. We do

this by turning on direct particle swaps, using a nonzero swap attemp rate ws. Fractiona-

tion is then possible even in dense systems, without relying on mediation by rare vacancies.

The signatures of the two-stage scenario that we have found should therefore disappear

as we increase ws. Indeed, Fig. 2.6 shows that for ws = 0.5, ωmax increases smoothly as

density is decreased from the annealed spinodal, rather than remaining small until the

quenched spinodal. Likewise the second derivative of ωmax (ρ) is now featureless around

the quenched spinodal and simply increases gradually towards its value at the annealed

spinodal. Essentially, this is evidence that the two-stage scenario has been destroyed.

So far we have focussed on a system with �xed polydispersity of 25%. As Warren’s ar-

gument does not rely on speci�c features of the σ -distribution, one would however expect

qualitatively similar results also for other polydispersities. To assess this quantitatively
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Figure 2.4: Behaviour of ωmax across the full density range, for the same parameters as
in Fig. 2.3. The inset shows that the second derivative of ωmax shows no special feature
at the lower quenched spinodal density, where fractionation is too fast for Warren’s two-

stage scenario to apply.

one needs to account for the fact that the separation in density between quenched and an-

nealed spinodals grows with polydispersity. This can be done by considering the density

di�erence between the maximum of ω ′′max and the quenched spinodal, normalized by the

di�erence between the annealed and quenched spinodal densities. When this ratio is� 1,

the kink of ωmax is close to the quenched spinodal as the two-stage scenario predicts. Upon

varying temperature, density and polydispsersity we �nd (data not shown) that the ratio is

indeed dependent mostly on density and largely independent of polydispersity, becoming

small at high densities as it should.

Summarizing the discussion in this section thus far, our mean-�eld theory for the spin-

odal dynamics of polydisperse colloids provides strong support for Warren’s two-stage

hypothesis, in the appropriate regime of high densities. It is worth noting that previous

support for the two-stage scenario, both in Warren’s original paper [49] and in the study by

Pagonabarraga and Cates [52], was obtained in the context of polymers, whereas here we

have polydispersity in the interaction strength in a context that is more easily connected
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Figure 2.5: Position of the maximum of the second derivative of ωmax, shown on the
x-axis, versus temperature on the y-axis (points). Other parameters as in Fig. 2.3. The
curves give the quenched (lower curve) and annealed (upper curve) spinodals. Note that
the second derivative maximum agrees closely with the quenched spinodal throughout

the high density (above ρ ≈ 0.9) region.

with the physics of colloids. This indicates that Warren’s scenario may be a general feature

of the non-equilibrium dynamics of dense �uid mixtures.

(a) (b)

Figure 2.6: As Fig. 2.3, but for ws = 0.5. Note that the maximum in the second density
derivative of ωmax is now at the annealed spinodal density.
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We next brie�y discuss the temperature dependence of the maximum growth rates,

returning to the physical value ws = 0. The maximum growth rates are then directly pro-

portional to w0. So far we have taken constant w0 = 1, though the results of Fig. 2.5 would

remain the same for any temperature-dependent w0: this is because we always consider

the second derivative ω ′′max with respect to density, at �xed temperature. With constant w0,

we �nd that the typical maximum growth rates (say, in the middle of the spinodal region)

increase towards low temperatures as ∼ 1/T . This temperature dependence comes from

the use of Glauber rates: linearizing the factors of exp(∆H/T ), with energy changes from

particle moves that are of temperature-independent magnitude, gives a factor of 1/T in

all growth rates. For quantitative modelling of spinodal growth rates one would therefore

want to choose a w0 that goes to zero as T → 0, e.g. w0 ∼ T , which would be consistent

with the picture of an underlying di�usive dynamics causing attempted particle moves.

This would then give constant maximum growth rates for low T .

We conclude this section with a discussion of the amplitudes δ pα of the mode that

grows fastest in the spinodal dynamics, with rate ωmax. These amplitudes de�ne the rel-

ative strength of density �uctuations for each species. As a vector in density space, they

identify the early-time (non-equilibrium) fractionation direction, or simply spinodal direc-

tion. As discussed above, combining Eqs. (2.19) and (2.23) leads to an eigenvalue equation

with eigenvalue ω , and the δ pα are the M components of the eigenvector corresponding

to ωmax. This eigenvector can be calculated by solving the eigenvalue equation numeri-

cally, or one can derive a closed-form expression in terms of ω , ρ , and the attempt rates.

We will denote the angle between the spinodal direction and the dilution line by θmax.

This quantity is of interest because in an ideal two-stage scenario, it should be zero inside

the quenched spinodal region, where the initial dynamics corresponds to stage 1, i.e. pure

density �uctuations; it should then rise as one moves from the quenched spinodal density

to the annealed one, where the spinodal dynamics corresponds to stage 2. Our numerical

data for θmax(ρ) (not shown) follow this scenario fairly closely in dense systems, provid-

ing further support for Warren’s hypothesis. As our system is not ideal in the sense that

fractionation is not in�nitely slow, we �nd inside the quenched spinodal region a θmax that

is constant but not quite zero, indicating that even in stage 1 the dominant spinodal mode
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contains a fractionating component in addition to pure density �uctuations. Likewise the

transition to larger values of θmax is not a sharp kink but a crossover, though importantly

this remains located around the quenched spinodal density. As in the case of ωmax, we have

tested that when direct particle swaps (ws > 0) are introduced, this crossover disappears

and is replaced by a featureless increase of θmax across the entire annealed spinodal region.

This con�rms that the crossover in the physical system (ws = 0) arises from fractionation

being a slow process.

2.5 Beyond the spinodal regime

In order to see what happens after the end of the spinodal regime, and hence investigate the

full phase-separation dynamics, we integrate our mean-�eld kinetic Eqs. (2.16) numerically

using a forward Euler method, with periodic boundary conditions. The method returns

the evolution of the local densities for all species. For ease of visualization and reduction of

computation time, spatial dimension D = 2 was chosen. Firstly, we examine what happens

for binary mixtures (M = 2), and then extend the analysis to M > 2. We set the jump

attempt rates as before, i.e. wα0 = w0 and wαβ = ws, for any α 6= 0 and β 6= 0. More

speci�cally we concentrate on the physical setting ws = 0, unless otherwise stated. To

�nd the evolution of a system whose overall composition is given by a list of densities

{pα | α = 1, . . . ,M}, we �rstly created an initial homogeneous state de�ned by pα
i = pα

for all sites i. To trigger the phase separation, we added small �uctuations to the initial state

of each species by generating LD random numbers, normally distributed, with mean zero

and standard deviation 1%. We then subtracted the average of these random numbers,

to ensure that the overall density of every species remains unchanged. The time step

used was limited by the numerical stability of the algorithm, and typically equal to 0.1; we

checked that this value is small enough to give us e�ectively the solution of the continuous-

time equations by running the numerics for exactly the same initial con�guration with a

time step smaller by a factor of 5 and verifying that the results were virtually the same.

When we used 50× 50 lattice sites and M = 2, for instance, our program (written in C)

performed 8,000 time steps in approximately 100 seconds (running at 2.6 GHz processor

speed), which in many instances was enough time to grow relatively large domains.
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2.5.1 Binary �uids

Fig. 2.7 shows snapshots of the phase-separation dynamics for M = 2, with σA = 1+ d

and σB = 1− d. For these binary case numerics we chose d = 0.25. Thus the �rst and

second moment densities (normalized by ρ), i.e. ρ1/ρ and ρ2/ρ , are the same as in the

continuous distribution analysis presented in Section 2.4, where the Schulz parameter was

g = 15; also, the same temperature T = 0.3 was used. Therefore the spinodal growth rates

are also the same as in the fully polydisperse case and we expect, at a given density ρ , to

see a very similar initial dynamics. We chose ρ = 0.82, which places the system within the

quenched spinodal region. To determine the colour of a site i, we used a colour scheme in

which the colours red, green, and blue are blended together. The intensity of each of these

colours at a given site varies from 0 to 1. In our scheme, red, green, and blue intensities

are given exactly by 1− pA
i , p0

i ,1− pB
i , respectively. (Remember the notation for the local

concentration of vacancies, i.e. p0
i = 1− pA

i − pB
i .) This leads to the colour key shown in

the top-left part of Fig. 2.7. It is plotted in triangular colour space in (pA, pB,1− pA− pB),

dropping the site index i. For example, if the concentration of particles of species A at one

site is high (low), and the concentration of particles of species B at the same site is low

(high), then the site colour will tend towards blue (red); if the concentrations of all species

are all low, then the site colour will tend to white.

The snapshots in Fig. 2.7 show the growth of lighter regions of the system that rep-

resent gas bubbles. These bubbles are surrounded by a B-rich (red) interface separating

them from an A-rich (blue) continuous liquid phase. Walking from the centre of a gas

bubble along an arbitrary direction, one therefore initially sees low concentrations of both

particle types, then a high concentration of the particle species with the smallest σ , i.e.

B-particles, and eventually one reaches the bulk liquid that contains predominantly A-

particles, for which σ is the largest. (Video showing the full-time evolution of the phase

separation process is provided as an animation in the ESI for Ref. [35].)

Of course as we decrease ρ our numerical results show larger vapour fractions. Chang-

ing ρ can also lead to more complicated morphologies such as in Fig. 1.1, which was gen-

erated using T = 0.4, pA = pB = 0.33, d = 0.3, ws = 0, L = 128, with the last snapshot

taken at t = 6000. Because the value of ρ here is closer to the critical density one observes
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bicontinuous domains of gas and liquid. The intuition is the same as in a one-species Ising

lattice-gas system, where because of the particle-hole (vacancy) symmetry, in a system at

the critical density neither gas or liquid can ‘win’ to form bubbles or droplets. Instead,

�nger-like bicontinuous structures are formed. Moving away from the critical point, one

expects these to survive for a certain time until the system ‘notices’ which phase is going

to be the majority phase, and forms bubbles or droplets of the minority phase.
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Figure 2.7: Time snapshots showing the local compositions throughout the system, as
from numerics. The colour scheme is based on the RGB colour model, leading to the
colour key shown in the top-left corner; see text for details. The lighter portions of the
system are gas bubbles, which are surrounded by a B-rich interface separating them from
an A-rich continuous liquid phase. Parameters: pA = pB = 0.41, T = 0.3, d = 0.25, ws = 0,
and L = 150. (Only a 75× 75 region of the system is shown here.) From top centre to

bottom right, the snapshots are taken at t = 8, 16, 316, 4850 and 16200.

In Figs. 2.8 and 2.9 we introduce a di�erent representation of the time evolution that

will prove to be quite revealing. We show two-dimensional density histograms, in species

density space, i.e. in the (pA
i , pB

i )-plane that contains all the possible density combinations

an arbitrary site i can have; the physically accessible region in this plane is a triangle

bounded by pA
i ≥ 0, pB

i ≥ 0 and pA
i + pB

i ≤ 1. What the histogram counts is the number of

lattice sites i that have species densities (pA
i , pB

i ) inside each two-dimensional bin. The re-

sults were normalized by the total number of lattice sites LD. Such a density histogram can
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then be viewed as a dynamic analogue of an equilibrium phase diagram as sketched in Fig.

1.2 above. In a density histogram, the parent phase lies on the dilution line (shown dashed

in Figs. 2.8 and 2.9) as before. The low- and high-density daughter phases calculated from

the equilibrium phase diagram lie o� this dilution line, with the parent on the connecting

tieline; the latter de�nes the equilibrium fractionation direction. At the temperature we

are considering, this equilibrium fractionation direction deviates only slightly from the di-

lution line. From the histograms, we can clearly see di�erent dynamical regimes: initially,

the histogram spreads linearly from the parent along the spinodal direction as expected for

spinodal dynamics. As nonlinear e�ects kick in, a curved path of compositions connecting

a gas and a liquid phase is then formed. This clearly delineated ‘arc’ contains the compo-

sitions of the di�erent parts of the system: as one moves in space from a gas bubble into

the bulk liquid, one passes through a series of compositions within the interface between

these two phases.

Beyond this generic structure, there are several interesting observations we can make

from Figs. 2.8 and 2.9. The density histograms reveal that gas-liquid interfaces are strongly

fractionated, with the arc being well away from the dilution line, in the B-rich part of the

density plane. Physically, the reason is that B-particles have smaller σB and hence interact

more weakly; they therefore pay a smaller energy penalty for sitting at an interface, where

they have fewer neighbouring particles. Interfaces also have a well-de�ned sequence of

density combinations as can be seen from the fact that the gas-liquid arc is quite narrow.

For further analysis it is useful to switch to the two-dimensional density histogram

representation in Fig. 2.10. This shows the same data as in Fig. 2.9 but now seen from

the top, with di�erent heights corresponding to di�erent colours. The peak in the high-

density region of the histogram is also marked; this gives the majority composition of the

bulk liquid at that time instant. It is interesting to observe that this peak, having started

out at the parent composition and ‘walked’ along the spinodal direction initially, does not

subsequently move straight away towards the liquid equilibrium composition. Instead,

the liquid phase composition stays away from its equilibrium optimum for a long time.

In fact, for the dynamics shown in Fig. 2.10 the liquid peak moves away from its equilib-

rium point for a long transient period beyond the initial spinodal decomposition dynamics.
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(a) t = 8

(b) t = 16

Figure 2.8: Time evolution of two-dimensional density histograms, in the (pA
i , pB

i )-plane,
for the data used in Fig. 2.7; see text for details. The bin width along each dimension is
0.005. The parent phase lies on the dilution line (dashed). The red and blue dots o� the
dilution line mark the low- and high-density daughter phases obtained from our equilib-
rium numerics. The connecting tieline contains the parent and de�nes the equilibrium
fractionation direction. The spinodal direction, which was obtained from our early-time

analysis, is shown by the double-headed arrow.
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Figure 2.9: Same as in Fig. 2.8 but for t = 316.

This arises because the gas-liquid interfaces are strongly enriched in B-particles, leaving

an unusually A-rich bulk liquid. Of course at very long times the equilibrium prediction

and the dynamics must eventually agree, and we have veri�ed that the density histogram

peaks then indeed centre on the calculated equilibrium compositions while the arc with

the interface compositions contains only a small (∼W/L, where W is the interfacial width)

fraction of probability. (See also the evolution of two-dimensional density histograms in

the animation in the ESI for Ref. [35].)

A �nal, intriguing feature of the dynamics we observe is the inhomogeneity of the

bulk liquid: in the last two snapshots in Fig. 2.7 one can clearly see well-de�ned liquid

regions that are unusually enriched in B-particles. In the density histograms of Figs. 2.9

and 2.10 and also Fig. 2.11, which shows results at a higher temperature, these regions

manifest themselves as an ‘arm’ at high density that is quite distinct from the arc arising

from gas-liquid interfaces.

Looking at Fig. 2.7 carefully, one notices that the origin of the B-rich liquid regions lies

in the evaporation of gas bubbles. As these shrink, so do their interfaces, eventually form-

ing dense patches. Because the interfaces are strongly fractionated, these dense patches
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Figure 2.10: Same histogram as in Fig. 2.9, but now as seen from the top; di�erent heights
are represented by di�erent colours. Additionally, we show the high-density peak of the

histogram, which gives the majority composition of the bulk liquid.

are strongly enriched in B-particles. While the density of the patches can rapidly equili-

brate to the bulk liquid—as shown by the fact that the arm almost coincides with a line of

constant total number density pA + pB, as seen from Figs. 2.9, 2.10, and 2.11—it requires

inter-di�usion of particles to equilibrate their composition. Hence the composition het-

erogeneities formed by these patches are unusually long-lived. We thus have here, in the

long-time dynamics, another striking manifestation of Warren’s hypothesis, in its general

form which says that equilibration of composition is slow in dense systems. In order to

check this interpretation we turned on ws; as expected, the arm then disappears, and in

the real-space images the liquid is clearly homogeneous (Fig. 2.12).
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Figure 2.11: Density histogram showing a clear ‘arm’, a composition heterogeneity in the
bulk liquid. This feature arises from the evaporation of gas bubbles: the remnants of their
interfaces rapidly equilibrate to the liquid density but only slowly relax their composition,
producing the B-rich patches (red) visible in the inset. Parameters: pA = pB = 0.4175,
T = 0.5, d = 0.25, ws = 0, and L = 75, at t = 1110. The inset shows the corresponding

snapshot in real space.

2.5.2 Multicomponent �uids

Finally, we show now that a similar two-dimensional density histogram analysis can be

performed even when one considers arbitrary M. A full density histogram in (p1
i , . . . , pM

i )-

density space would be M-dimensional, so one needs to project down to a manageable

low-dimensional representation. The obvious choice for the new histogram axes are (the

local versions of) low-order moment densities, which can be used for arbitrary M. We

choose the local analogues of σ̄ρ0−ρ1 and ρ0. The reason for this choice is that in the
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Figure 2.12: Same as Fig. 2.11, but now ws = 0.5.

bidisperse case (M = 2),

σ̄ρ0−ρ1 = (σ̄ −σA)pA +(σ̄ −σB)pB = d(pB− pA) (2.26)

while ρ0 = pA + pB, so that the new histogram axes are just a rotated version (by 45◦) of

the ones we have used so far.

One can now use these quantities to plot two-dimensional density histograms for an

arbitrary polydisperse system. It turns out that all the features that had been previously

observed in the (pA, pB)-plane density histogram (i.e. the clearly delineated curved arc of

interfaces compositions, the ‘arm’, etc.) remain qualitatively identical in this new coor-

dinate system. Fig. 2.13 shows our results for systems with two, three, and four species.

For M = 3, we used σ ∈ {1− d,1,1+ d}, with relative densities (composition) given by

{1/4,1/2,1/4}, whereas for M = 4 we chose σ ∈ {1−d,1−d/2,1+d/2,1+d} with
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composition {1/6,1/3,1/3,1/6}. We then identi�ed values of d for each M that give

the same set of moment densities (ρ0, ρ1, and ρ2) as we had in Section 2.5.1. (Thus the

spinodal growth rates are also all the same and hence results at the same t are compa-

rable—but similar results were found using di�erent parameter sets chosen by the same

method.) Even though these histograms are now projections of M-dimensional histograms

to two dimensions, we still get thin arcs between daughter phases, showing that there is

still a well-de�ned sequence of compositions in the interfaces. We have performed checks

over a larger parameter range, where we �nd that long-lived composition heterogeneities

also appear in situations where one expects a pronounced slowing down of fractionation,

exactly as we saw for M = 2; correspondingly, they disappear (data not shown) when direct

particle swaps are turned on.

The fact that the density histograms for di�erent M in Fig. 2.13 are so similar is quite re-

markable. This similarity is surprising because the mean-�eld dynamical equations (2.16)

do not in general reduce to closed dynamical equations for local moments like ρ0 and ρ1,

due to nonlinear dependences on particle size σ in the Glauber rates. Nonetheless our

numerical results suggest that degrees of freedom not captured by these moments only

in�uence the dynamics weakly, so that they could provide a useful way of thinking about

the dynamics even for M→ ∞.

2.6 Conclusions

In this work we investigated the dynamics of how colloidal polydisperse systems phase-

separate, by introducing new kinetic equations based on the Polydisperse Lattice-Gas

model [36]. As a baseline for our mean-�eld approach to the dynamics we calculated the

mean-�eld equilibrium phase diagram of the model, including cloud and shadow curves

as well as spinodals. To test Warren’s two-stage scenario [49], we obtained both the an-

nealed and quenched versions of the phase diagram, the latter referring to a system that

can only change its density but has �xed composition. We analysed the linearized dynam-

ical equations to understand the dynamics of spinodal decomposition, and found clear

evidence in support of Warren’s proposal. For the late-stage dynamics, we introduced a
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Figure 2.13: Density histogram for di�erent number of species M = 2,3,4. The set of
moment densities ρ0, ρ1, and ρ2 is the same in all three cases. (This was achieved by
appropriate choice of the parameter d, which was set to 0.25, 0.354, and 0.354, respec-
tively; see text for details.) The other parameters are ρ = 0.82, T = 0.5, ws = 0, and
L = 50, at t = 760. The bin widths along the axes ρ0i and ρ0i−ρ1i are 0.005 and 0.0025,

respectively.

two-dimensional density histogram method that allows fractionation e�ects in the phase-

separation dynamics to be clearly visualized. This revealed strongly fractionated interfaces

between gas and liquid. It also helped us to detect the existence of long-lived composition

heterogeneities in the bulk liquid, which are a further manifestation of the fact that frac-

tionation dynamics is slow as suggested by Warren. This prediction may be amenable to

experimental veri�cation in dense colloidal systems. The whole analysis was performed

for an arbitrary number of particle species, although much of it was presented in the binary

mixture context for the sake of simplicity and ease of visualization.

Our main assumptions were that the dynamics can be described by a kinetic lattice

model, and that a mean-�eld approximation is at least qualitatively accurate. One could

ask whether non-mean-�eld e�ects in the equilibrium phase diagram of the PLG might

cause signi�cant changes in the phase-separation dynamics. This could be tested by de-

ploying higher order approximations beyond our dynamical mean-�eld theory (DMFT),

such as the Path Probability Method (PPM) [63]. One might expect that the PPM would

not necessarily lead to new qualitative outcomes for the analysis presented here, since no

di�erences were observed in a previous comparison between PPM and DMFT, though in
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the somewhat di�erent context of relaxation dynamics in porous materials [64]. Direct Ki-

netic Monte Carlo (KMC) simulations could be used to directly probe the dynamics of the

PLG model and so assess the e�ects of our mean-�eld approximation. Such simulations

were performed in Ref. [65] for similar systems consisting of two species plus vacancies,

where pA = pB and the Hamiltonian is given by

H =−∑
〈i, j〉

∑
α,β

εαβ nα
i nβ

j (2.27)

with α = A,B. This setting includes the PLG Hamiltonian (for M = 2) given by Eq. (2.1)

but allows more generic interactions εαβ . Also using a mean-�eld phase diagram as a

reference, the authors of Ref. [65] investigated segregation kinetics with particle-particle

swaps forbidden (corresponding to ws = 0 in our notation) or highly energetically sup-

pressed. They focussed on the existence of di�erent domain growth morphologies in var-

ious parameter regimes. However, their choices for the interaction strengths εαβ were

rather di�erent from ours. Our separable assignment εαβ = σασβ makes liquid-gas phase

separation the dominant physical process, for which we then study the e�ects of polydis-

persity. On the other hand, the authors of Ref. [65] look at much less attractive (and even

repulsive) AB interactions, always with εAA = εBB. This leads to distinct physical e�ects,

including the condensation of vacancies at interfaces between A- and B-rich phases.

KMC simulations could also be used to �t our model parameters to experimental sys-

tems. Ref. [66] explains that one way of obtaining a physically reasonable value for the

particle-vacancy jump attempt rate w0 is by comparing the estimated (D̂) and experimen-

tal (Ds) self-di�usion coe�cients. If D̂ is obtained from KMC simulations in dimensionless

units, the desired correspondence would be Ds = D̂a2w0, where a is the lattice spacing.

Therefore, �xing the value of a, an estimate of w0 can be obtained. (In principle, one could

try to develop a similar scheme to obtain a value for ws.)

Coming to the limitations of the PLG model itself, one obvious shortcoming is the

fact that a lattice model cannot capture gradual increases in density that are possible in

an o�-lattice setting, where even in an already fairly dense system collective motion can

reduce the typical distance between particles. In a lattice model, on the other hand, density

increases have to come from localized �lling in of vacancies, or equivalently vacancies
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di�using away. As we explain below the presence of vacancies also enables fractionation.

Because both relaxation of density and of composition are then tied to the presence of

vacancies, it is clear that the latter cannot become arbitrarily slow compared to the former.

In a continuum model, however, one would expect that large pockets of free volume that

are required for the interchange of particles of di�erent species become rare quickly at

high density while collective motion to relax density still remains possible. Therefore, if

anything, we expect the slowing down of fractionation compared to density relaxation

at high densities to be more pronounced than in our lattice model. Hence the e�ects we

observe should be stronger in more realistic, o�-lattice models, getting closer to an ideal

two-stage scenario for the phase-separation kinetics.

We illustrate how vacancies enable fractionation in Fig. 2.14, which shows a sketch of

a vacancy-mediated interchange between two particles of di�erent species. A sequence of

4 particle moves within the small lattice portion shown (2×2 lattice sites) is su�cient to

interchange the blue and red particle in the lattice row above the initial vacancy. (Note

that in this sequence the two blue particles have also interchanged their positions, but

as they are indistinguishable this is immaterial.) Therefore, as fractionation requires in-

terdi�usion of particles of di�erent species, it will be able to proceed locally as long as

vacancies are present. As a particle swap can be accomplished with a moderate number

of elementary particle moves, fractionation cannot become arbitrarily slow compared to

density relaxation–which locally requires a single particle move–as claimed above. This

is the likely reason why we do not see an ‘ideal’ two-stage scenario, including e.g. the fact

that at early times the spinodal dynamics within the quenched spinodal region already

has a component of fractionation rather than consisting of the growth of pure density

�uctuations.

Of course o�-lattice models at the particle level are di�cult to deal with theoretically,

so before studying phase-separation dynamics one would aim to derive from them approx-

imate representations in terms of a continuum �eld theory such as the so-called Model B or

rather a polydisperse variant thereof [67,68]. For a monodisperse system and with stochas-

tic �uctuations neglected, this would give an equation of the (generalized) Cahn–Hilliard
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(d)(a) (b) (e)(c)

Figure 2.14: Sketch of vacancy-medidated interchange between two particles of di�erent
species. In the �rst con�guration a red particle is on the top-right site of the 2×2-lattice
region, whereas a blue particle sits on the top-left site. In order for the subsystem to reach
a con�guration where one has instead a blue particle top-right and a red one top-left, four
particle moves (particle-vacancy swaps) are required, as shown by the sequence (a)–(e).

type [69]
∂ρ (r, t)

∂ t
= ∇ ·

[
M(ρ (r, t))∇

δF [ρ (r, t)]
δρ (r, t)

]
(2.28)

where F is the free energy functional, ρ (r, t) is the continuous density �eld, andM(ρ (r, t))

is a density-dependent mobility; within a simple approximation scheme [70] one �nds

M(ρ (r, t)) = ρ (r, t).

In the polydisperse case, the analogue of Eq. (2.28) involves a mobility matrix with M×

M entries. (In fact, our kinetic Eq. (2.16) can be cast in the form of a discrete Cahn–Hilliard

equation, generalized to polydisperse �uids and inhomogeneous mobilities; in the linear

version, Eq. (2.19), the generalized Cahn–Hilliard form is clear.) Determining such an en-

tire mobility matrix from an o�-lattice model is a considerable challenge, also because the

results might di�er for size versus interaction polydispersity (similarly to the di�erences

found in the mobility coe�cients between systems with length and chemical polydisper-

sity, in Ref. [52]). One route to deriving such Cahn-Hilliard-like equations would be dy-

namical density functional theory (DDFT); it should be possible to adapt this to a fully

polydisperse scenario and then use it to test Warren’s two-stage scenario [71, 72].

A further theoretical challenge is the incorporation of stochastic e�ects, in order to

be able to describe nucleation and growth dynamics. The simplest way of achieving this

would be to add Langevin noise to either our lattice dynamics (2.16) or a continuum de-

scription like Eq. (2.28). This however requires a consistent, quantitative way of adding
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multiplicative Langevin noise to the deterministic equations. The need for a quantita-

tive accurate stochastic description lies in the fact that one wants to compare equilibration

timescales between systems placed in di�erent regions of the phase diagram, which means

one has to assess the competition between nucleation and growth dynamics on the one

hand and spinodal decomposition on the other. For instance, for systems placed within R2

(see Table 2.1) one would like to compare the timescale for nucleation and growth in stage

1 (which should have a fast intrinsic time scale because it does not require fractionation,

but could be slowed down by large nucleation barriers) to spinodal dynamics in stage 2

(intrinsically slow because it requires fractionation, but not a�ected by activation barri-

ers). A model being able to describe quantitatively both types of phase ordering dynamics

would clearly be valuable here. This could potentially be obtained from the lattice-based

theory presented here via systematic coarse-graining [73]. Alternatively, �uctuating hy-

drodynamics [74–77] is a possible avenue for deriving models incorporating stochasticity,

though whether this can be implemented for polydisperse dynamics and would give a

reasonable quantitative account of the physics remains an open question.

In addition to stochastic e�ects we have also neglected hydrodynamic interactions due

to the solvent. This is commonly done throughout the literature on polydisperse dynamics,

but in the case of dense systems, which are especially pertinent in the context of the two-

stage phase-ordering scenario, they may play an important role [71].

Our work in this chapter could be extended to investigate the relaxation dynamics of

polydisperse �uids in porous materials, generalising previous work done by Peter Mon-

son and others [78–80]. In fact, although the dynamical mean-�eld theory calculations

developed in those papers are restricted to M = 1 and M = 2, they are very similar to the

ones presented here. For application to porous materials, we would mainly need to adapt

our approach to cover given pore geometries. In this scenario, a natural question would

be ‘what is the impact of slow fractionation on the relaxation dynamics in porous mate-

rials?’. This is potentially one of the simplest future research topics to pursue if one uses

our current theory as a starting point.

Finally, we point out that one could use the framework developed here to investigate
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yet other problems, e.g. the dynamics of polydisperse wetting or the phase-separation be-

haviour of polydisperse systems of active particles. It would also be interesting to develop

perturbative or scaling approaches for the dynamics of systems with small polydispersity,

and to consider alternative ways of obtaining mean-�eld approximations, for example by

explicitly taking the limit of high spatial dimension or considering a Kac-like setup with

long-range interactions [37, 81–83].
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Appendices

2.A Monotonic decrease of the free energy

Here we show that in the kinetic PLG model with both particle-vacancy and direct particle

swaps (with Glauber-like rates, arbitrary M, arbitrary overall composition, and arbitrary

attempt rates) the free energy obeys dF/dt ≤ 0. As we will see, the derivation is not as

straightforward as in the case of a binary mixture without direct particle swapping, which

was discussed in Ref. [54]. The beginning is identical, though. As the free energy F is a

function of all dynamical variables pα
i we can write

dF
dt

= ∑
i

∑
α

∂F
∂ pα

i

d pα
i

dt
(2.29)

which, combined with the de�nitions for the chemical potential and for the current, can

be rewritten as

dF
dt

=−∑
α

∑
i

∑
j∈∂ i

µ
α
i Jα

i j = −∑
α

∑
〈i, j〉

(µα
i Jα

i j +µ
α
j Jα

ji). (2.30)

Using the fact that Jα
i j =−Jα

ji we can write

dF
dt

=−∑
α

∑
〈i, j〉

(
µ

α
i −µ

α
j
)

Jα
i j . (2.31)

De�ning a two-species current Jαγ

i j in the obvious way using

Jα
i j = ∑

γ≥0
Jαγ

i j (2.32)
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transforms this further into

dF
dt

=−∑
〈i, j〉

∑
α,γ

Jαγ

i j

(
µ

α
i −µ

α
j
)
. (2.33)

The sum can be extended to α ≥ 0 because µ0
i = 0, ∀i. Also note that Jαγ

i j is antisymmetric

under interchange of α and γ . After adding the same expression with α and γ swapped

and using this antisymmetry, we have

dF
dt

=−1
2 ∑
〈i, j〉

∑
α,γ

Jαγ

i j

[(
µ

α
i −µ

α
j
)
−
(

µ
γ

i −µ
γ

j

)]
(2.34)

However, the term in square brackets can be written as ln(Cα
i Cγ

j )− ln(Cα
j Cγ

i ) (except of a

T ) by de�ning the local chemical activity Cα
i as Cα

i = exp(µα
i /T ). This has the same sign

as Jαγ

i j because the two-species current can be written as a positive quantity multiplied

by Cα
i Cγ

j −Cα
j Cγ

i . [This fact can be seen from the mean-�eld expression for the energy

change, Eq. (2.17), which enters the rates via exp(∆Hαγ

i j /T ) = pα
i pγ

jC
γ

i Cα
j /(pγ

i pα
j Cα

i Cγ

j ).

Remember Eq. (2.21) for the local chemical potential of a species.] Therefore, each link

〈i, j〉 and each pair of (α,γ) makes a negative contribution to dF/dt . One can also phrase

the last step in the other direction, i.e. by writing

Jαγ

i j =−Mαγ

i j

[(
µ

α
j −µ

α
i
)
−
(

µ
γ

j −µ
γ

i

)]
(2.35)

and checking that the site-dependent mobility M
αγ

i j is positive. This makes sense because

a particle swap is driven by how the di�erence in α-chemical potential between sites i and

j compares to the corresponding di�erence in γ-chemical potential. Note that while the

factor 1/2 in Eq. (2.34) may look somewhat unexpected, antisymmetry of the current Jαγ

i j

again shows that (α,γ) and (γ,α) make the same contribution, so one could eliminate the

1/2 again and restrict the summation to ordered pairs of species labels, say α < γ .
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2.B Derivation of growth rates

In this appendix we derive the linearized mean-�eld equations of motion and determine

from them the expressions for the spinodal growth rates. Consider a homogeneous sys-

tem of overall composition de�ned by a list of species densities {pα | α = 1, . . . ,M}. The

system is perturbed by small �uctuations of the densities:

pα
i = pα +δ

α
i ∀α (2.36)

where δ α
i � 1. In a linear expansion we can write Eq. (2.17) as

〈
∆Hαγ

i j

〉
= ∑

β

(
∑

k∈∂ i
εαβ δ

β

k − ∑
l∈∂ j

εαβ δ
β

l

)
−∑

β

(
∑

k∈∂ i
εγβ δ

β

k − ∑
l∈∂ j

εγβ δ
β

l

)
. (2.37)

Now remember our kinetic Eqs. (2.16)

d pα
i

dt
=− ∑

j∈∂ i

M

∑
γ=0

 pα
i pγ

jw
αγ

1+ exp
(〈

∆Hαγ

i j

〉
/T
) − pα

j pγ

i wαγ

1+ exp
(〈

∆Hαγ

ji

〉
/T
)
 .

Using a simpli�ed notation in which we drop the superscripts α and γ , the expression in

the square brackets can be written as

Ai j

1+ exp(∆Ei j/T )
− A ji

1+ exp(∆E ji/T )
(2.38)

where Ai j = wαγ pα
i pγ

j and ∆Ei j =
〈
∆Hαγ

i j

〉
. As a consequence of linearization, the argu-

ments in the exponentials are also small; hence, each sigmoid linearizes as 1/(1+ exp(x))=

(1/2)(1− x/2+ . . .), and then we can write (2.38) in linearized form as

1
4

[
2(Ai j−A ji)−

∆Ei j

T
(Ai j +A ji)

]
(2.39)

where we have used the fact that ∆Ei j =−∆E ji. Now Eq. (2.16) becomes

dδ α
i

dt
=− ∑

j∈∂ i

M

∑
γ=0

wαγ

4

{
2
(

pα
i pγ

j− pα
j pγ

i

)
−
〈
∆Hαγ

i j

〉
T

(
pα

i pγ

j + pα
j pγ

i

)}
. (2.40)
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As
〈
∆Hαγ

i j

〉
is already linear in δ ’s, the last factor can be replaced by 2pα pγ . Linearizing

also the �rst term then gives for the time evolution of the �uctuations

dδ α
i

dt
=− ∑

j∈∂ i

M

∑
γ=0

wαγ

4

{
2
[

pα

(
δ

γ

j −δ
γ

i

)
−pγ

(
δ

α
j −δ

α
i
)]
−
〈
∆Hαγ

i j

〉
T

2pα pγ

}
. (2.41)

The �rst part can be rewritten as

− ∑
j∈∂ i

M

∑
γ=0

wαγ

4

{
2
[

pα

(
δ

γ

j −δ
γ

i

)
− pγ

(
δ

α
j −δ

α
i
)]}

=−∆d

M

∑
γ=0

wαγ

2T
pα pγ

(
T
pγ

δ
γ

i −
T
pα

δ
α
i

)
(2.42)

where ∆d is the discrete Laplacian, de�ned for any site-dependent quantity g as ∆dgi =

∑
j∈∂ i

(g j−gi). For the second part, one can obtain

− ∑
j∈∂ i

M

∑
γ=0

wαγ

4

{
−
〈
∆Hαγ

i j

〉
T

2pα pγ

}
= ∆d

M

∑
γ=0

wαγ

2T
pα pγ

∑
β

(
εγβ − εαβ

)
(∆d + z)δ

β

i (2.43)

where z is the lattice coordination number and we used the fact that

∑
j∈∂ i

(
∑

k∈∂ i
δ

β

k − ∑
l∈∂ j

δ
β

l

)
=−∆d

(
∆dδ

β

i + zδ
β

i

)
(2.44)

which can be easily derived in a few steps. Bearing in mind that summations over β do not

include β = 0 and de�ning a homogeneous mobility Mαγ = wαγ

2T pα pγ , we have altogether

dδ α
i

dt
= ∆d

M

∑
γ=0

Mαγ
∑
β

{
− T

pγ
δγβ +

T
p0 δγ0 +

T
pα

δαβ +
(
εγβ − εαβ

)
(∆d + z)

}
δ

β

i . (2.45)

Note that the second term in the curly braces here comes from the identity δ 0
i =−∑β δ

β

i ,

which is a consequence of the local hard core constraint (2.2).

Alternatively, using the local chemical potential (2.21) linearized about the homoge-

neous state,
dδ α

i
dt

= ∑
γ=0

Mαγ
∆d

(
µ

α
i −µ

γ

i

)
. (2.46)

We can now proceed to solve the linearized dynamical equations of motion. As a

homogeneous system is invariant under translation with respect to the lattice vectors,
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solutions of the linearized equations are superpositions of solutions of this form

δ
α
j = δ pα exp [ik ·x j +ωt] (2.47)

where k is the �uctuation wave vector and x j is the position in real space of a lattice site

j. Moreover, ω is the spinodal decomposition growth rate and δ pα is the amplitude of the

spinodal �uctuation associated with species α . Inserting this form of the solution into our

Eq. (2.46) will give us an equation for ω . In order to have a useful relation, however, the

application of the discrete Laplacian operator ∆d to a δ α
j needs to be translated into some

commutative operation so that we can deal with the exp [ik ·x j +ωt] properly, as follows:

∆dδ
α
j = δ pα exp(ωt) ∑

l∈∂ j
[exp(ik ·xl)− exp(ik ·x j)]

= δ pα exp(ik ·x j +ωt)

[
∑

l∈∂ j
exp(ik ·xl− ik ·x j)− z

]

= δ pα exp(ik ·x j +ωt) [z+A− z] = Aδ
α
j

(2.48)

where (in the case of a 2-dimensional system) we have A = A(k) = −4sin2 (kxa/2)−

4sin2 (kya/2). Then this A(k), or just A, replaces ∆d, and Eq. (2.46) can be written as an

equation that no longer involves site-dependent quantities

ωδ pα =
M

∑
γ=0

Mαγ
∑
β

{
T
(
−δγβ

pγ
+

δγ0

p0 +
δαβ

pα

)
+
(
εγβ − εαβ

)
(A+ z)

}
Aδ pβ . (2.49)

As we did in the main text, let us now set wα0 = w0 and wαβ = ws, for any α 6= 0 and

β 6= 0, where w0 and ws are constant attempt rates associated with particle-vacancy and

particle-particle exchanges, respectively. We next derive two equations involving ω . The

�rst is obtained by summing up Eq. (2.49) over all species α . This gives

ωδρ =
Aw0

2

[
δρ− A+ z

T
(1−ρ)ρ1δρ1

]
(2.50)

where δρ ≡ δρ0 and

ρn = ∑
α

σ
n
α pα (2.51)
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δρn = ∑
α

σ
n
αδ pα (2.52)

are the moment densities (and their �uctuations), and we have used εαβ = σασβ . For the

case with a continuous polydisperse attribute, the summations are integrals. The second

equation is obtained by multiplying Eq. (2.49) by σα and then summing it over all species.

The result is

ωδρ1 =
Aw0

2

[
ρ1δρ +(1−ρ)δρ1−

A+ z
T

(1−ρ)ρ2δρ1

]
+

Aws

2

[
ρδρ1−ρ1δρ +

A+ z
T

(
ρ

2
1 −ρ2ρ

)
δρ1

]
.

(2.53)

By using that δρ and δρ1 should not both be nonzero in the spinodal dynamics and com-

bining the two equations, one can now �nd ω(k). One obtains two non-trivial branches

ω(k); we require the largest one, which is Eq. (2.24). There are a further M−2 eigenval-

ues (and eigenvectors) with δρ = δρ1 = 0, leading to M−2 trivial branches that all have

identical negative eigenvalues. Explicitly, these are given by ω = A
2 [w0(1−ρ)+wsρ] but

as we are looking for the fastest growing modes, they can be ignored.
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Chapter 3

Secondary phase separation in

colloidal mixtures: Composition

heterogeneities

3.1 Introduction

In Section 2.5 we have shown that phase-separating colloidal �uid mixtures can exhibit

long-lived ‘composition heterogeneities’ if they are dense enough. This e�ect is obviously

impossible in one-component �uids because in that case the composition is the same ev-

erywhere (all particles are the same) and only the total local density �uctuates. Firstly

we have observed that bubbles—or more generally domains—can be formed with strongly

‘fractionated’ interfaces. This means in the binary case that the gas-liquid interface is

much richer in one of the two colloidal components. For arbitrary polydisperse systems,

we say that the interface is strongly fractionated if its composition distribution is very

di�erent from that of the initially well-mixed �uid (‘parent phase’) and also from that of

the surrounding liquid. Thus, when a bubble shrinks into non-existence by means of the

Ostwald ripening mechanism, remnants of its interface continue to be visible for a long

time as they struggle—due to crowding—to equilibrate their composition with that of the

surrounding liquid. This is not true for the interfaces in monodisperse systems because

equilibration in this case can take place much more quickly: the newly-formed domains

do not need to enrich in certain species, making the di�usion process easier. We can say
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that in the mixture case there is a slow fractionation e�ect (or one could say slow ‘de-

fractionation’, if we consider a system whose interface is more fractionated than the �nal

equilibrium liquid, in comparison to the original parent composition).

In the present chapter we broadly explore a variety of manifestations of composition

heterogeneities in colloidal mixtures. As in Chapter 2, these e�ects are driven by crowd-

ing but here we will consider more complicated liquid-gas phase separation experiments.

In fact, we have performed simulations of phase separation with a ‘two-step temperature

quench’ (or just ‘double quench’). We speci�cally consider phase separation after a sec-

ond, deeper quench following an initial two-phase separation from a �rst quench. In this

scenario, one would expect that secondary domains are transiently formed within phases,

before eventually being reabsorbed into the larger domains. We will place particular em-

phasis on low-temperature or ‘deep’ second quenches. We have also found interesting

e�ects in the regime where the total local density does not make composition changes too

slow, as we will see.

The study of the nonlinear time evolution of phase-separating structures in double

quench processes can be viewed as part of the larger endeavour of seeking to understand

history dependence in phase separation [84], and accordingly has seen increasing interest

in recent years. One of the motivations is the fact that it can lead to strategies for con-

trolling structure formation [85], in particular with regards to tailoring domain formation

in polymeric materials [86]. Also, the microstructure of food, paint, biological �uids, etc.

not only depends on their constituents but is also an arrested morphology determined by

external conditions, such as temperature, that in�uence the structural evolution [85]. Dou-

ble quenches have been explored numerically [85–90] and experimentally [91–94], but on

the theoretical side only a handful of studies can be applied to colloidal mixtures, none of

them looking at e�ects of the slow composition changes or even at compressible �uids.

In Ref. [89] the double quench is modeled via the Cahn–Hilliard equation for incompress-

ible symmetric binary polymer mixtures, using a Flory–Huggins free energy functional.

After a �rst quench into the unstable region, the mixture phase-separates via spinodal de-

composition into domains that subsequently coarsen; a second quench is then applied to

a point further inside the unstable two-phase region. A new structure factor peak arises
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from this second quench and eventually disappears as the system progresses towards a

single-domain �nal equilibrium state.

Here we consider compressible binary colloidal mixtures undergoing secondary tem-

perature quenches into both two- and three-phase regions. We also revisit single quenches

but now starting the computational experiment from an already-formed slab domain of

well-mixed �uid mixture surrounded by a bath of very dilute vapour. This is similar to

one of the geometries considered in a model of binary alloys in Refs. [53,54], where phase

separation starts �rst at the interface between the vapour and the slab. In our case we will

see that within the slab domain other domains (of gas, i.e. bubbles) are formed transiently

in a way that can be connected to the double quench experiment. This is because both

situations can be viewed as instances of ‘domain-within-domain’ (or ‘secondary’) phase

separation.

The PLG (Polydisperse Lattice-Gas) mean-�eld kinetic theory derived in Chapter 2

will be used again in this chapter, for both analytical and numerical approaches. (We

will also calculate the equilibrium composition as we did in Chapter 2, i.e. by solving the

coexistence conditions.) As we have seen, the theory includes two elementary processes:

particle-solvent and particle-particle exchanges. Their relative rate will be used to tune and

characterise the e�ects of slow composition changes in the form of composition hetero-

geneities. For the sake of simplicity only mixtures of two attractive species plus ‘vacancies’

(or passive solvent particles) will be considered, but we expect the phenomena observed

here to be relatively straightforward to generalise to arbitrary polydisperse systems using

the route that we proposed and explored in Section 2.5.2.

The remainder of this chapter is organised as follows. In Section 3.2 we study slow-

fractionation e�ects after secondary quenches into the two-phase region. In Section 3.3

we consider the slab domain as initial state. In Section 3.4 we discuss our simulations for

secondary quenches into the three-phase region. Section 3.5 concludes the chapter with a

summary, discussion and pointers towards future work.

74



Chapter 3. Secondary phase separation in colloidal mixtures: Composition heterogeneities

3.2 Deep secondary quench

Here we consider two-step temperature quenches where the �nal, second temperature

quench takes us further into the unstable region. We will refer to the structures formed

after the �rst quench as primary domains. These will be allowed to coarsen before we

perform a secondary quench, which in turn may or may not give rise to the formation

of secondary domains within each of the primary phase domains. We will be interested

primarily in investigating the secondary phase separation within the primary liquid phase

rather than in the gas. This is because the liquid is at higher density and so much more

likely to show the e�ects of slow composition changes. Note that in line with this focus,

the secondary quench temperature has to be low enough to make the primary liquid phase

unstable. If we let the primary phase separation run for long enough to have nearly equi-

librated primary phase compositions, we can say that the liquid will be unstable following

the secondary quench if the second quench temperature satis�es

T ≤ z
(
ρ2−ρ

2
1
)

(3.1)

where the right-hand side is the annealed spinodal temperature given by Eq. 2.6 and eval-

uated at the composition of the equilibrium liquid obtained from the primary phase sepa-

ration. The occurrence or not of an instability in the primary gas phase can be calculated

analogously. Moreover, the minimal ‘size’ of the secondary structures must be smaller

than the length scale of the primary domains. We quantify this by the secondary phase

separation spinodal length, i.e. 2π/kmax, where ω(kmax) = ωmax. (See Chapter 2 and Eq.

2.24.)

In order to access clearly distinct behaviours—slow versus fast composition changes—

we will compare simulations performed for ws = 0 and ws = 1 at deep secondary quenches

but remaining for now within the two-phase region. (Recall here that ws is the attempt rate

for particle-particle swaps.) This makes the primary liquid phase both unstable and dense

enough to trigger slow-fractionation e�ects (for ws = 0). As before, we will start from

a parent system with equal amounts of the two species. The normalized polydisperse

distribution, therefore, is (0.5,0.5) and the polydisperse attributes are σA = 1 + d and
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σB = 1− d, where d is chosen between 0 and 1. The colour scheme in the simulation

snapshots throughout the chapter translates essentially as this: dense regions with a high

concentration of A’s are blue, those with predominantly B’s are red and dilute regions

dominated by vacancies are white. In this low-T context the �nal equilibrium liquid has

very little fractionation since the gas is extremely dilute and therefore the vast majority of

the particles are in the liquid. The caveat of using such low temperatures is that we get a

strong slowdown, and consequently computational times increase dramatically; also, we

expect to see ‘square’ interfaces as a consequence of the lattice structure. This happens due

to the system’s di�culty in overcoming energy barriers that could lead to the formation

of more rounded domains. The former of these issues does not pose a signi�cant problem

since simulations accessing the �nal asymptotic coarsening where the secondary domains

have disappeared will be beyond our scope. The latter would not be expected to a�ect

the physics qualitatively, though this is something that would be worth checking in future

work via e.g. o�-lattice simulations.

Fig. 3.1 shows snapshots at times both before and after a secondary quench into the

two-phase region of a binary mixture. (For the simulations shown in this chapter we have

found it useful to implement an adaptive time-stepping method like the one studied in

Ref. [95].) The system’s overall density of colloidal particles is 0.75. The �rst quench, to a

temperature T = T1 = 0.7, is shallow and generates a primary liquid that is only slightly

fractionated and has a high overall density of 0.92. The second, deep quench down to tem-

perature T = T2 = 0.1 was then performed at t = t2 = 40000, a time at which the primary

domains have substantially grown and nearly equilibrated their compositions. After some

time we can see in the snapshots that small secondary domains have formed. Our primary

and secondary domains of interest are the ‘large’ and ‘small’ gas bubbles, respectively,

in the surrounding liquid; tiny liquid droplets also form within the primary gas bubbles

but these equilibrate quickly by being reabsorbed through the interface as a result of the

fast dynamics at the very low density of the gas phase. The initial lengthscale of the sec-

ondary structures formed in the primary liquid is consistent with the spinodal lengthscale

predicted theoretically; note that because of the large value of t2 used, the primary bubbles

have become su�ciently separated from each other to �t a few such spinodal lengths of
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the secondary phase separation in between them. Note that the secondary spinodal dy-

namics manifests initially as ‘waves’ propagating from the primary bubbles interfaces, a

behaviour that we will discuss further below. (See Section 3.3.) This leads to the formation

of the secondary gas bubbles. Once these eventually disappear again by shrinking, their

fractionated interfaces remain visible as strongly long-lived patches of composition het-

erogeneities. This is analogous to what we found in the simulations in Chapter 2 but here

we can see these composition heterogeneities during time intervals at least two orders of

magnitude longer, as a result of the low temperature.

Figure 3.1: Time snapshots showing the local compositions throughout the system, as
from numerics. For the colour scheme see Fig. 2.7 for details. The lighter portions of
the system are gas bubbles, which are surrounded by a B-rich interface separating them
from a liquid phase. Parameters: pA = pB = 0.375, T1 = 0.7, T2 = 0.1, d = 0.15, ws = 0,
and L = 128. From top left to bottom right, the snapshots are taken at t = 4717, 40000,
40009, 50705, 234997, and 3.3757× 106. The secondary quench was performed at t =
t2 = 40000. The symmetries are a consequence of the lattice structure and of the low

�nal temperature.

In Fig. 3.2 we can see the time evolution for the average area of primary domains.

The areas have been calculated via image analysis1 and are given in number of lattice

sites enclosed by the domain’s interface. In order to distinguish between primary and
1The image analysis has been performed using Mathematica’s function ‘ComponentMeasurements’ ap-

plied to a binary image obtained from our data; to construct the binary image we de�ne that total densities
below 0.5 constitute gas bubbles. Therefore the interfaces are mostly considered part of the liquid.
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secondary domains we used the fact that the largest secondary domain remained at all

times smaller than the smallest primary domain at t2.2 According to the Lifshitz-Slyozov

(LS) law [96–98] the average linear domain size for coarsening with a conserved order

parameter as here should increase as l(t) ∼ t1/3 in the asymptotic regime. This power

law can be identi�ed in the upper data in Fig. 3.2. Since we plot the area rather than

linear size the graph shows exponent 2/3. The asymptotic behaviour is reached during

the �nal stages of the primary phase separation for t < t2. Then the deep quench generates

a plateau in the ‘coarsening’ dynamics, so that e�ectively it interrupts the coarsening of

the primary domains. This interruption extends essentially across all of our simulation

time after t2, which is qualitatively consistent with the depth of the quench causing a

drastic slowdown of the dynamics. Within the plateau in the plot that corresponds to the

interrupted coarsening there is in fact a very slow growth because the primary bubbles still

absorb gas from the tiny secondary bubbles as they disappear, but this is quantitatively a

rather weak e�ect. Indeed the number of primary bubbles remains constant for all t ≥ t2

within our simulation time window, showing that primary coarsening is essentially halted

during this period.

Fig. 3.3 shows snapshots for the same parameters, except that now we have ws = 1.

This e�ectively ‘switches on’ direct particle-particle swaps and so facilitates composition

changes, leading to di�erent morphological features. The secondary bubbles merge by col-

lapsing one into the other, with the smallest ones collapsing �rst. (By “collapse” we mean

that one bubble disappears by shrinking, with most of its gas being taken up by a neigh-

bouring bubble.) Initially, the number of secondary bubbles increases very quickly from

zero (domain formation following the spinodal regime) and then we have a long period of

decrease. The rate of decrease slows over a long period (data not shown) as the remaining

bubbles are no longer very close to each other and therefore cannot transfer gas so eas-

ily. In this process the interface material of the secondary bubbles that disappear becomes

partly dispersed into the liquid and partly used to increase the interface lengths of sur-

viving bubbles, rather than becoming trapped as long-lived composition heterogeneities.

For the average area of these secondary domains, shown in Fig. 3.4, we initially have a
2For the ws = 1 data, in order for this to be true we needed to use a slightly smaller region rather than the

entire system.
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Figure 3.2: Log-log plot of the average area (in number of lattice sites) of primary do-
mains, calculated via image analysis, versus time. The red solid line segment is propor-
tional to t2/3. The upper data come from the numerics shown in Fig. 3.1, where T1 = 0.7
and T2 = 0.1. They show a kink at the time of the second quench before a plateau of
virtually constant area. The lower data are for a situation where there is no secondary

temperature quench and we start directly with a quench to T1 = T2 = 0.1.

strong increase; subsequently, since bubbles become increasingly farther apart, we have

that despite the faster dynamics (ws = 1) their average area increases only slowly for a very

long period. The slow rate of increase is partly due to the low temperature. In addition,

the presence of the large primary bubbles with their low Laplace pressure counteracts the

tendency of secondary bubbles to coarsen. Rather than reaching an asymptotic t1/3 coars-

ening regime, the secondary bubbles are then expected to eventually shrink and disappear

before coarsening of the primary bubbles resumes.

By comparison, for ws = 0 we have after a similar long transient where the average area

of secondary bubbles increases—and their number decreases as some of them shrink—a

much longer period of essentially arrested behaviour; this period starts beyond the penul-

timate snapshot in Fig. 3.1 and lasts until the end of our simulation time window. (Data

not shown.) We hypothesize that the slow kinetics of composition changes is again at play

here. For example, it is more di�cult for the system to increase the length of interfaces

of secondary bubbles since interface material from neighbouring shrunk bubbles becomes
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trapped as long-lived heterogeneities. This will favour gas liberated by the disappearance

of secondary bubbles to go into the primary bubbles, where it can be taken up with a

smaller increase in interfacial length.

Figure 3.3: As Fig. 3.1 but for ws = 1. Parameters: pA = pB = 0.375, T1 = 0.7, T2 = 0.1,
d = 0.15, ws = 1, and L = 128. From top left to bottom right, the snapshots are taken at
t = 4256, 40000, 40003, 46220, 179285, and 3.3811× 106. The secondary quench was
performed at t = t2 = 40000. The symmetries are a consequence of the lattice structure

and of the low �nal temperature.

Interestingly, the evolution of the average area of the primary domains for ws = 1 re-

mains qualitatively similar to that for ws = 0 in Fig. 3.2 (data not shown). The implication

is that while secondary bubbles do collapse for ws = 1, the amount of gas that such pro-

cesses transport into primary bubbles – rather than other secondary bubbles – remains

small here.

After the coarsening-interruption plateau, we expect for both ws = 0 and ws = 1 that

at very late times the system will eventually resume coarsening of the primary bubbles,

following a LS-law but with a much reduced prefactor due to the signi�cantly smaller

temperature. By this time all secondary bubbles will have disappeared.

To probe this issue further, we show the lower data in Fig. 3.2, which corresponds to

a situation where we start directly at the low temperature T1 = T2 = 0.1, i.e. we perform
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Figure 3.4: Log-log plot of the average area (in number of lattice sites) of secondary
domains. The data is for the same data used in Fig. 3.3, where T1 = 0.7 and T2 = 0.1.

Inset: linear scale, with points joined into a line to guide the eye.

a single quench. By the end of our simulation window this phase separation has not yet

reached the LS-law coarsening regime as the bubbles are small and grow very slowly. Now,

at su�ciently late times the low-T coarsening dynamics is expected to lose all memory of

having started at higher T . Therefore the single-quench data should connect smoothly

with the �nal coarsening curve of the two-step case. But even if the single-quench case

reached the LS-law regime soon after the end of our simulation window, its prefactor

shows that this would cross the two-step plateau only at a much longer time. This means

that by the end of our double quench simulation window we are still far from the late-time

edge of the coarsening-interruption plateau. This conclusion is valid for both ws = 0 and

ws = 1.

Some other distinctions between the ws = 0 and ws = 1 cases can be seen by examining

the snapshots in Figs. 3.1 and 3.3 closely. First, note that primary bubbles that are very

close together might not leave enough space for a spinodal length to �t in between them.

This e�ective con�nement can prevent the spinodal growth of �uctuations and suppress

secondary phase separation in the relevant regions of the system. Although rather di�cult
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to see in the numerical example for ws = 0 in Fig. 3.1 (slightly easier to see in Fig. 3.5), this

is what appears to happen for instance with the closest pair of primary bubbles in the left-

hand side of the system: notice how the composition of the environment between those

bubbles at t = 234997 is more similar to that of the primary liquid, consequently forming

a very subtle ‘bridge’ that wets the two bubbles. This kinetic e�ect eventually disappears

as composition equilibration progresses; in the fast dynamics for the ws = 1 case it simply

does not exist.

The liquid phase composition evolves in interestingly di�erent ways indeed, depend-

ing on ws. We point out the di�erent morphologies directly after the second quench. For

ws = 1 the spinodal waves quickly lead to the formation of a substantially A-rich liquid

phase and do so in a largely homogeneous manner. The enrichment in A-particles com-

pensates for the existence of a large amount of strongly B-rich interfaces. In fact note that

the formation of interfaces generally depletes B-particles from the liquid next to the inter-

face. For the case ws = 0 the composition changes involved in this depletion process are

too slow to be observable and therefore the spinodal waves lead to a liquid without much

fractionation, as we can see from the top-right snapshot (directly after t = t2) in Fig. 3.1.

At later times (for ws = 0) the secondary bubbles grow slightly, at the expense of

smaller ones, and of course need vacancy input to do so. (In the Sigehuzi-Tanaka ex-

periment [94] the growth of the secondary domains is also extremely slow.) As vacancies

get into the bubbles we temporarily have regions of smaller density surrounding these do-

mains. This allows for composition changes to happen faster than in the bulk liquid. Thus

this contributes to the formation of A-rich regions surrounding the growing secondary

bubbles while the rest of the system remains relatively poorly fractionated. (See Fig. 3.5.

Note that in the regions between secondary bubbles there is depletion of B’s from both

sides.) We expect this composition-heterogeneous liquid to eventually become homoge-

neous again—this stage is beyond our simulation window. If it occurs at a point where

there is still a large amount of strongly B-rich interfaces then we should expect to see a

state similar to the A-rich homogeneous liquid that is formed shortly after the secondary

quench in the case ws = 1. Otherwise, the liquid might never become homogeneously A-

rich: remember that at equilibrium almost all of the B-rich interface material will have
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dispersed (we have only one domain) and the liquid is, again, only slightly fractionated

rather than A-rich.

Figure 3.5: Lower half of bottom-centre snapshot (t = 234997) in Fig. 3.1.

In order to investigate the above and other related phenomena in more detail we will

in the next section switch to a simpler set-up.

3.3 Phase separation from slab geometry

Now we consider a liquid domain in the form of a slab surrounded by vapour, and perform

a single quench from that state. As anticipated in the introduction, this is similar to one of

the geometries considered in a model of binary alloys in Ref. [54], where phase separation

starts �rst at the slab-vapour interface, but the interaction parameters used in Ref. [54]

lead to ‘A-B’ phase separation rather than a fractionated gas-liquid coexistence as in our

case. Note that starting from a slab is equivalent to what one would obtain by taking

t2→ ∞ in a double quench situation: only a single domain would be left at the time of the

second quench, forming either a slab or a single circular domain in a �nite system. (We can

also think of the slab domain as the liquid between two big—and therefore locally �at—

primary bubble interfaces.) Thus in this section we use the slab domain as our initial state

to obtain a geometry that is simpler to analyse. Initially we will imitate the conditions of

the simulations in Figs. 3.1 and 3.3 in order to calibrate and perform further analyses. Then
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we will proceed to cases with higher �nal temperature and d where we will see additional

e�ects.

3.3.1 Deep quench ‘revisited’

Fig. 3.6 shows a deep quench simulation that replicates the physics seen above for ws = 0.

We start from an equilibrated slab-geometry liquid domain surrounded by a vapour phase.

The initial liquid and vapour compositions as well as the other parameters match those at

the time of the second quench in Fig. 3.1. In fact, we have prepared the system by equi-

librating it at the �rst-quench temperature used for Fig. 3.1, and as a result it has quickly

generated smooth slab-vapour interfaces. Then we started our phase separation exper-

iment by quenching to T = 0.1, i.e. the second-quench temperature in Fig. 3.1. We can

clearly see that ‘spinodal waves’ propagate from the slab-vapour interfaces towards the

centre of the liquid. In the terminology used in Ref. [54], this is a consequence of ‘sur-

face’ modes, and this phenomenon can be viewed as a case of ‘surface’-directed spinodal

decomposition [86, 99]. The decomposition fronts are spaced according to our calculated

spinodal length. As long as the central part of the system has not yet been reached by a

front it will remain homogeneous. The newly-formed gas stripes eventually start to break

into bubbles as dictated by the bulk modes.

Note that the set of bubbles creates an ‘ordered’ structure, i.e. the domains are fairly

regularly spaced. The behaviour is similar to that obtained for the two-step quench simu-

lations with polymer blends in Ref. [89]. Here, however, this regularity is also long-lived.

This can be seen from Fig. 3.7. We show on the left a snapshot of the system at a late time.

On the right we show the corresponding average density pro�le along the cross-interface

direction (i.e. normal to the slab-vapour interface); this will be useful for later compari-

son. Notice how spatially ordered the set of domains (plus long-lived patches) remains:

even though the liquid is highly inhomogeneous in composition, the di�erent structures

essentially keep their positions for a long time as inherited from the original spinodal

decomposition fronts.

The initial behaviour for ws = 1 shown in Fig. 3.8 is structurally similar to that for

ws = 0, but with a much more fractionated homogeneous liquid (existing ‘behind’ the
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Figure 3.6: Time snapshots showing the local compositions throughout the system, as
from numerics. For the colour scheme see Fig. 2.7 for details. The lighter portions of
the system are gas bubbles. We start from an equilibrated slab-geometry liquid domain
surrounded by a vapour phase. The initial liquid and vapour compositions as well as the
other parameters match those at the time of the second quench in Fig. 3.1. Parameters:
d = 0.15, L = 128, ws = 0, and T = 0.1. (Composition before initial equilibration at
T = 0.7: pA = 0.470 and pB = 0.451 for the slab liquid domain and pA = 0.0247 and pB =
0.0955 for the vapour. The slab extremes are placed at 18% and 82% of the horizontal
simulation box side.) From top left to bottom right, the snapshots are taken at t = 0,
2.32, 7.10, 17.61, 22.65, and 60.06, counted from the moment of the quench to the �nal

temperature.

decomposition front) as well as interfaces. However, once the smallest bubbles start to

collapse as we have seen in Section 3.2, the regularity is destroyed gradually. This can

been seen from the late-time snapshot and its corresponding average density pro�le in

Fig. 3.9.

The spatial regularity in the set of newly-formed domains is a direct consequence of

the fact that phase separation is triggered via spinodal decomposition fronts propagating

from the slab-vapour interfaces. The ‘spinodal waves’, in turn, occur because the initial

higher-T equilibration of the slab-vapour interfaces has removed all added �uctuations in

the bulk phases—similarly to the double-quench simulations of a hydrodynamical model

for polymeric blends in Ref. [90]—leaving the slab-vapour interfaces as the sole source of
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Figure 3.7: Left: as Fig. 3.6 but at t = 86000. Right: Corresponding average total density
pro�le along cross-interface direction. That is, each horizontal point has associated a

total density obtained by averaging over the vertical direction.

�uctuations. That is, even though noise has been added to the slab-geometry con�gu-

ration, this has been done prior to the initial equilibration, resulting in ‘noiseless’ equi-

librated phases, from which state no spinodal decomposition can occur except if started

at the interface. In order to investigate the e�ects produced by this we have added noise

back in at the moment of the �nal quench, as shown in Fig. 3.10. Notice how the distinct

noise strengths result in the spinodal waves being able to travel di�erent distances before

bulk spinodal modes reach their nonlinear regime. This is similar to what can be seen in

the o�-critical ‘A-B’ vacancy-mediated phase separation simulations of binary alloys in

Ref. [54]. (Like in that study we have also performed simulations starting from a ‘droplet’

geometry, which led to similar results.) It is worth pointing out that, because in their set-

up the interaction energies are such that εAA = εBB, these ‘spinodal waves’ can occur only

in their o�-critical case, where the overall system becomes richer in one of the particle

species; this leads to “µA 6= µB” and consequently to a quick formation of interfaces that

are richer in one component. In our case this happens ‘by default’ as εAA 6= εBB.

The bottom-right snapshot in Fig. 3.10 is for a simulation with a non-equilibrated initial

slab con�guration but with noise added as usual. Notice that, even though we do not start

with previously formed smooth slab-vapour interfaces, the system (at the point where do-

mains start to form) looks essentially the same as its equilibrated counterpart (bottom-left

snapshot). This is because at this noise strength the interface (be it smooth or ‘sharp’) does
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Figure 3.8: Analogue of Fig. 3.6 for ws = 1. From top left to bottom right, the snapshots
are taken at t = 0, 1.89, 6.41, 14.93, 18.49, and 43.67, counted from the moment of the

quench to the �nal temperature.

not play the role of sole �uctuation source, with �uctuations starting to grow ‘everywhere’

simultaneously, instead. We point out that in Ref. [54] it has been analytically derived that

the ‘thickness’ of surface-directed ‘structures’ depends logarithmically on the strength of

the initial noise; this is consistent with what we see in Fig. 3.10.

The above discussion shows the importance of considering noise in double quench

theories, since otherwise the primary phases have no noise and therefore the primary

domains would act as the sole sources of �uctuations. The exact noise strength will change

with time, depending on temperature and composition, and this will dictate whether the

spinodal waves will manifest or not, and consequently what is the structure of the set of

secondary domains. As we have seen above, whether this is structure is then long-lived

will depend on the presence of slow-fractionation e�ects.

3.3.2 Higher temperature

We now turn our attention to ‘secondary’ phase separation at higher temperatures rather

than after deep quenches. Here we will choose a second quench temperature high enough
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Figure 3.9: As Fig. 3.7 but for ws = 1. Taken at t = 86000.

for the ‘primary’ gas phase not to undergo further phase separation while still allowing

the dense ‘primary’ liquid to phase separate. In order to be able to increase the �nal tem-

perature while keeping the liquid well within the spinodal region we will increase the in-

teraction strength ‘polydispersity’ parameter d. Because Fig. 3.10 shows that by increasing

the initial noise strength at the moment of the �nal quench one suppresses the ‘surface’-

directed spinodal waves, we will in this higher temperature context simplify the simula-

tions by ignoring e�ects from a previously formed smooth interface. This will be done

by considering non-equilibrated, ‘sharp’ slab-vapour interfaces rather than equilibrating

them �rst. The two situations should generally be equivalent if the bulk noise strength

is high enough. With these choices we will be able to show the relevant physics in its

simplest setting.

Fig. 3.11 shows a simulation for ws = 0 where both the initial phases, the dense liq-

uid and the dilute vapour, contain equal amounts of A’s and B’s. After the temperature

quench is performed, a smooth interface with the outside vapour is formed quickly and

after some time spinodal decomposition starts in various places simultaneously. Also, a

second layer rich in A’s is quickly formed right next to the smooth interface, from inside

the slab. Consistent with our discussion in Section 3.2, the formation of this A-rich zone

has two contributing causes: (i) generally in our system interfaces have mainly B particles

in it, so the formation of the interface will transiently deplete B’s from the liquid outside
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Figure 3.10: Parameters as Fig. 3.8 but each early-time snapshot here corresponds to a
run with a di�erent strength of the noise added to the initial state, i.e. at the time of the
�nal temperature quench. From top left to bottom right, the zero-mean initial noise has
standard deviations 0.01%, 0.1%, 1%, and 1% again, but in the bottom-right snapshot
the slab-vapour interface has not been previously equilibrated. All snapshots are taken
at the time within the spinodal regime where domains start to form. In the same order,
the snapshot times are t = 7.52, 5.53, 2.93, and 3.32, counted from the moment of the

quench to the �nal temperature.

the interface; (ii) if the new gas phase is signi�cantly enriched in B’s, or conversely de-

pleted in A’s compared to the initial phase, then the surplus A particles will di�use into

the liquid phase and create an excess of A’s there. Notice that overall there is a density

increase in the liquid, making the slab thinner as time passes. Again, we can see B-rich

long-lived patches from the interfaces of ‘dead’ bubbles, but we notice that the A-rich layer

is also long-lived. Over time it gradually becomes thicker but also less fractionated (and
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so less distinguishable from the bulk liquid); ultimately the layer dissolves and so do the

bubbles, with the liquid close to a homogeneous state. We note that for deep quenches

as in Section 3.2 the contribution (ii) to the A-rich layer above is not existent as there are

essentially no particles remaining in the gas phase (even at equilibrium the gas will be

extremely dilute). Also, the di�usive exchange with the surrounding gas has to have time

to form an A-rich zone before spinodal �uctuations grow; this situation arises after per-

forming a shallow quench, in which case the spinodal dynamics is generally slower—for

both ws = 0 and ws = 1 cases—than it is for a deep quench. (This relation between the

spinodal timescales remains even taking into account the di�erent value of d here, as we

have checked by calculating the spinodal rates explicitly.)

Figure 3.11: Time snapshots showing the local compositions throughout the system. We
start from a slab-geometry ‘liquid’ domain surrounded by a vapour. Parameters: d = 0.25,
L = 128, ws = 0, and T = 0.4. Composition before quench: pA = pB = 0.45 for the slab
liquid domain and pA = pB = 0.03 for the vapour. The slab extremes are initially placed
at 18% and 82% of the horizontal simulation box side. From top left to bottom right,
the snapshots are taken at t = 0, 131, 2089, 18445, 41111, and 122065, counted from the

moment of the quench to the �nal temperature.

In the case ws = 1 shown in Fig. 3.12 we can initially see an A-rich layer as well. Its

thickness is related to the spinodal length, which leads to domains being able to grow only

from a certain distance to the slab-vapour interface. (Notice that �uctuations start to grow
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simultaneously everywhere within a region of composition nearly 50–50%.) In this case,

however, the liquid quickly becomes homogeneous. Since there is initially a good amount

of bubble interfaces—which are rich in B′s—the bulk liquid ends up being homogeneously

slightly enriched in A’s for a long period of time (see Fig. 3.12 closely). Eventually the bulk

liquid reaches a less fractionated composition and the bubbles are reabsorbed.

Figure 3.12: As Fig. 3.11 but for ws = 1. From top left to bottom right, the snapshots
are taken at t = 0, 116, 1703, 15791, 36479, and 87289, counted from the moment of the

quench to the �nal temperature.

We notice further an interesting phenomenon that is only possible at high enough

temperatures. In the case ws = 0, by looking at the time where the bubbles are still in their

initial growth regime (see Fig. 3.13), we can observe the existence of a ‘dead zone’, i.e. a

‘stripe’ where no composition �uctuations grow, located next to each A-rich layer. As the

spinodal dynamics is slower for ws = 0, we see that by the time domains start to form a

wider region of liquid is formed near the interface; it has mostly density close to the equi-

librium value and is thus above the density of even the (upper) annealed spinodal. This

region is therefore no longer unstable to small composition �uctuations, so these will be

damped rather than grow into bubbles. In fact, notice the two ‘humps’ in the average total

density curve near the slab boundaries in the right-hand side of Fig. 3.13; they show that
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the region has become su�ciently dense—and if we move towards the centre of the sys-

tem from these humps we still remain (over some length) at total densities that are very

close to the annealed spinodal, therefore making the growth rates very small and lead-

ing e�ectively to a wide ‘dead zone’. This can also be seen from the variance of the total

density: it is zero in a wide region near the boundary. This is another interesting manifes-

tation of Warren’s scenario: the spinodal dynamics is slow because we are mostly outside

at least the quenched spinodal (see right-hand side of Fig. 3.13 again, where we show the

composition-dependent spinodal densities as cross-interface pro�les); therefore in the liq-

uid region near the interface the fast process of density equilibration ‘wins’ and stabilizes

the system before �uctuations can grow. In a one-component system this cannot happen

as the timescale of the spinodal dynamics is directly set by the density equilibration. As

expected, the e�ect is destroyed by making ws = 1 on (see Fig. 3.14 for comparison).

Figure 3.13: Left: as Fig. 3.11 but at t = 172. Right: Several observables pro�les along
cross-interface direction (same time). For each observable, we have that each horizontal
point has associated the observable value obtained by averaging over the vertical direc-
tion. Observables (solid lines)—also listed in Table 3.1—from top to bottom along the y-
axis: composition-dependent average annealed spinodal density (orange), composition-
dependent average quenched spinodal density (darker blue), average total density (pur-
ple), average pB (red), average pA (lighter blue), and variance of total density (black).
Dashed lines, from top to bottom along the y-axis: liquid equilibrium total density (pur-
ple), overall liquid annealed spinodal density (orange), overall liquid quenched spinodal
density (darker blue), liquid equilibrium pA (lighter blue), and liquid equilibrium pB (red).

All spinodal densities are from the high-density branch.
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Observables (solid lines) Colour
Composition-dependent average annealed spin. density Orange
Composition-dependent average quenched spin. density Darker blue
Average total density Purple
Average pB Red
Average pA Lighter blue
Variance of total density Black

Table 3.1: Observables (solid lines) in the right-hand side of Fig. 3.13. From top to bottom
along the y-axis.

Figure 3.14: As Fig. 3.13 but for ws = 1 and at t = 50. Observables (solid lines)—also
listed in Table 3.1—from top to bottom along the y-axis: composition-dependent average
annealed spinodal density (orange), composition-dependent average quenched spinodal
density (darker blue), average total density (purple), average pB (red), average pA (lighter
blue), and variance of total density (black). Dashed lines, from top to bottom along the
y-axis: liquid equilibrium total density (purple), overall liquid annealed spinodal density
(orange), overall liquid quenched spinodal density (darker blue), liquid equilibrium pA

(lighter blue), and liquid equilibrium pB (red). All spinodal densities are from the high-
density branch.

3.4 Secondary quench into three-phase region

We return �nally to the double quench case in bulk geometry. Here we enter the three-

phase region by quenching deep enough. While the kinetics of phase separation after

quenches into a three-phase coexistence region has been studied previously [65], the range

of parameters investigated was relatively limited and to the best of our knowledge the

double quench case has not been considered in the literature. Here we consider a higher d

than in the discussion for the secondary quench into the two-phase region; therefore we

will be able to choose higher �nal temperatures and still be in the three-phase region.
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Fig. 3.15 shows our results for a double quench experiment into the three-phase re-

gion. In this case the fast dynamics (ws = 1) induces an interesting wetting phenomenon

whereby the primary domains eventually become connected via strongly fractionated in-

terfaces that have been formed from the secondary bubbles. This is di�erent from the wet-

ting ‘bridges’ described in Section 3.2 in that here these ‘�laments’ persist (and thicken)

due to a thermodynamic driving force: they eventually turn into the third, B-rich phase.

Figs. 3.16 and 3.17 show simulations for the cases ws = 0 and ws = 1, respectively,

performed for much larger t2 and signi�cantly higher T2, but still low enough for the sec-

ond quench to land in the three-phase region. They indicate that, until the ‘third-phase’

�laments start to form and connect primary bubbles, the morphology evolution proceeds

generally similar to the two-phase cases in Section 3.2 (see Figs. 3.1 and 3.3). In particular,

we expect indeed that for ws = 0 the behaviour for the ‘two-phase’ and ‘three-phase’ cases

should look generally the same until the liquid phase becomes homogeneous enough to

form �laments of the B-rich phase: in the �nal snapshot in Fig. 3.16 we can already see a

clear broadening of the interfaces as the third phase starts to get formed. We can even see

that one of the primary bubbles, which has a ‘protuberance’ in addition to its round shape

(from the merger between two rounded domains), begins to form a broader interface, and

possibly �laments, quicker than the other bubbles. This could be interesting to explore in

future work, by simulating a ‘three-phase’ �nal quench starting from a controlled geome-

try of ‘primary’ domains. At any rate, in this ws = 0 case the formation of �laments will

generally take much longer; therefore it would be interesting to see the �nal morphology

at even longer times in future studies.

3.5 Conclusions

In this chapter we have shown how composition heterogeneities driven by kinetic e�ects

arise in a variety of forms in phase-separating colloidal mixtures. Our results supplement

Chapter 2 and constitute additional theoretical evidence that polydisperse phase separa-

tion can proceed rather di�erently from its monodisperse counterpart due to crowding

e�ects on the kinetics of compositions across the system. Here we have looked at the

phase separation process following a secondary temperature quench into the two- and
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Figure 3.15: As Fig. 3.3 but for parameters which place the �nal system into the three-
phase coexistence region. Parameters: pA = pB = 0.375, T1 = 0.7, T2 = 0.15, d = 0.25,
ws = 1, and L = 128. From top left to bottom right, the snapshots are taken at t = 1500,
1501, 1510, 1597, 1914, and 225702. The secondary quench was performed at t = 1500.
The symmetries are a consequence of the lattice structure and of the low �nal tempera-

ture.

three-phase regions. Secondary domains grow inside the primary phases, but they never

actually get to coarsen: they are eventually reabsorbed through the primary domains in-

terface, as in the incompressible polymeric case of Ref. [89].

Here, however, for a deep second quench, the coarsening of the primary domains gets

interrupted. The morphology of the liquid formed from the secondary phase separation

changes with the kinetics. Also, we investigated the case of a slab surrounded by vapour,

which can be interpreted as equivalent to waiting an in�nite amount of time before per-

forming the second quench into the two-phase region in a two-step quench experiment.

‘Spinodal waves’ form as a surface-directed phenomenon, and the decomposition fronts

eventually break into secondary bubbles. In the case with slow composition changes, this

leads to long-lived regularity in the spatial arrangement of the secondary domains. As

already pointed out in Ref. [89], this can inspire strategies to develop regular morpholo-

gies that may have unusual physical properties. The fact that in our case this regularity is

long-lived generates further opportunities to obtain new structures in soft matter systems.
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Figure 3.16: Parameters: pA = pB = 0.375, T1 = 0.7, T2 = 0.20, d = 0.25, ws = 0, and
L = 128. From top left to bottom right, the snapshots are taken at t = 349, 1992, 20000,
20004, 26177, and 408307. The secondary quench was performed at t = 20000. The
symmetries are a consequence of the lattice structure and of the low �nal temperature.

The formation of spinodal waves from the initially equilibrated slab-vapour interfaces is

a�ected by the amount of noise existent at the time of the �nal quench. At higher temper-

atures we have seen that a zone rich in the strongest-interacting species can form because

the di�usive exchange with the surrounding gas has time to form such a zone before spin-

odal �uctuations grow. This is a result of the depletion of the more weakly-interacting

particles, which �ow into the gas. When we have slow composition changes, this layer

turns into a signi�cantly more long-lived composition heterogeneity. Also, we showed

the existence of a ‘dead zone’ where spinodal decomposition does not occur. This is a fur-

ther manifestation of Warren’s two-stage scenario. Finally we presented our simulations

for the case of a second quench into the three-phase region, where we observed the forma-

tion of �laments out of the primary domains; they wet and connect the primary domains

and eventually turn into the third phase.

In future work on deep secondary quenches we would like to investigate how the

time length of the coarsening-interruption plateau depends on e�ects of slow composi-

tion changes, and how the coarsening is restored as we approach the LS law. For the
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Figure 3.17: As Fig. 3.16, but for ws = 1. Parameters: pA = pB = 0.375, T1 = 0.7, T2 =
0.20, d = 0.25, ws = 1, and L = 128. From top left to bottom right, the snapshots are
taken at t = 326, 1816, 20001, 20005, 24515, and 190388. The secondary quench was
performed at t = 20000. The symmetries are a consequence of the lattice structure and

of the low �nal temperature.

higher-T slab case, one could check how the ‘dead zone’ is a�ected by nucleation and

growth. In this case even though spinodal decomposition of ‘sizes’ is not present in that

region there could still be a situation where nucleation and growth takes over the phase

separation process, e�ectively destroying the ‘dead zone’. The presence of spinodal waves

for low noise strength at the time of a secondary quench also adds to the importance of

incorporating nucleation and growth e�ects. In the three-phase double quench case, we

would like to see further evolution of the morphology for ws = 0 by running even longer

simulations. Also, transporting this three-phase dynamical problem to controlled geome-

tries of the primary interfaces that include e.g. protuberances could constitute an e�ective

method for analysing in a simple way the dynamics of �lament formation, at least for

ws = 1. More speci�cally, it would be interesting to look into the dynamical process by

which two primary liquid domains become connected. Finally, it will also be interesting

to see how some of the e�ects investigated here manifest themselves in o�-lattice models.
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Chapter 4

Critical phase behaviour in

multi-component �uid mixtures

4.1 Introduction and overview

The present chapter investigates how an arbitrary polydisperse �uid in the liquid-gas co-

existence region behaves near its liquid-gas critical point (CP). Our development is valid

for any number of particle species regardless of the nature of interparticle interactions,

and therefore applies to generic multi-component mixtures. We will mostly use the term

‘polydisperse’ for such systems and this should then be read as including both genuinely

polydisperse systems such as colloids, where the number of species is e�ectively in�nite,

and mixtures with a �nite number of components.

To build intuition, we recall �rst the basic fact that liquid-gas phase-separated polydis-

perse �uids typically exhibit fractionation, where the overall number of particles from any

given species is distributed unevenly across coexisting phases (i.e. none of the ‘daughter’

phases has a composition equal to that of the ‘parent’ phase). One therefore expects – as

we will �nd – that the critical behaviour of such polydisperse systems is much richer than

that of their monodisperse counterparts. For example, consider the case of phase separa-

tion starting from a parent phase with a �xed shape of its size distribution. (We will use

the term ‘size’ generically to refer to any polydisperse attribute.) In this scenario a num-

ber of di�erent characteristic loci can be de�ned in the phase diagram. The cloud curve is

the one tracing temperature against the overall (parent) density where phase separation

�rst occurs; similarly, the shadow curve records the density of the corresponding incipient
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phase [17]. The critical point is located at the intersection of these two curves, rather than

at the maximum as in the monodisperse case, where cloud and shadow curves collapse

onto a single curve, the standard binodal. If one �xes a parent density one can alterna-

tively study the evolution of the coexisting densities as temperature is lowered, or that

of the fractional volumes occupied by the coexisting phases. We will discuss further loci

of interest below, in particular ones determined by �xing to arbitrary values the fractions

of system volume occupied by the two coexisting phases. This generalises the notion of

cloud and shadow curve where these fractions are 1 and 0, respectively.

To motivate the relevance of ‘complete scaling’ (see below) to our analysis, we give an

overview of the development of theories for the so-called ‘diameter’ of a �uid. This can be

de�ned, for either monodisperse systems or mixtures, as

n++n−
2

(4.1)

where n± are the total number densities of the two coexisting phases obtained on cooling

below the critical point. The temperature dependence of this quantity de�nes a curve in

the phase diagram that has historically played an important role in the context of �uid crit-

icality. In the nineteenth century this dependence was described by the ‘law of rectilinear

diameter’, i.e.

n̄≡ ň++ ň−
2

∼ |t| (4.2)

This is expressed here in terms of normalised deviations ň ≡ (n− nc)/nc and t ≡ (T −

Tc)/Tc from the critical density (nc) and temperature (Tc). In the case of monodisperse

�uids, such a linear relation between n̄ and t can be obtained theoretically via, for example,

the van der Waals equation of state.

However, even for monodisperse �uids, discrepancies between experimental data and

the rectilinear law were eventually found in some �uid systems [100–102]. A natural hy-

pothesis is that this is due to critical �uctuations, which are treated only approximately in

mean-�eld approaches like van der Waals. To include these, one can construct a scaling

formalism that essentially maps three-dimensional Ising critical behaviour onto its �uid
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counterpart [103–107]. The rationale for such a mapping is the notion of universality

generated by the diverging lengthscale of �uctuations at the critical point. The mapping

expresses Ising thermodynamic variables as functions of �uid thermodynamic variables,

allowing one to obtain the equation of state of a �uid in the vicinity of a CP. In particu-

lar, using the correspondence between the (monodisperse) lattice-gas �uid model and the

Ising model, each independent thermodynamic variable in the Ising model is expressed

in terms of a single �uid counterpart [103–105]. This simplest version of a mapping to

an Ising scaling theory gives a rectilinear diameter in the sense that a plot of t against

n̄ is a straight line, though this line is constrained to be vertical (n̄ = 0) because of the

particle-vacancy symmetry of the lattice gas [103, 108]. In order to devise a more �exible

mapping framework, Rehr and Mermin introduced ‘revised’ scaling [106]. Here each in-

dependent Ising thermodynamic variable (temperature, magnetic �eld) is a function of all

independent �uid thermodynamic variables (temperature, chemical potential): the thermo-

dynamic �elds have been ‘mixed’, producing ‘asymmetric’ �uid criticality. The leading-

order behaviour for the diameter in this case comes out as n̄∼ |t|1−α , where α is the uni-

versal critical exponent of the speci�c heat. This prediction agrees with experimental data

for some �uid systems but still leaves out a number of other situations [109]. It was only

after the beginning of the current century that the formalism known now as ‘complete’

scaling was introduced [107], whereby in the critical region each Ising scaling variable –

temperature, magnetic �eld and (the singular part of the) thermodynamic potential – is

expressed as a combination of all relevant thermodynamic variables of the �uid (tempera-

ture, chemical potential and pressure). This introduces ‘pressure mixing’, in the sense that

the �uid pressure now appears in the expressions for all Ising thermodynamic variables.

For the diameter, the complete scaling approach predicts, in addition to the 1−α term, a

new, more singular contribution, namely n̄∼ |t|2β where β is the critical exponent for the

spontaneous magnetisation. There are experimental data for monodisperse �uid systems

which support this prediction [108].

Since then a number of complete scaling studies have been produced, but only a few

of them have looked at the behaviour of �uid mixtures. This is an important gap for soft

matter, where multi-component systems are much more common than one-component
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ones [1,3,12]. In Refs. [110] and [111] the case of a binary mixture is considered, but there

the �uid pressure is controlled; in Ref. [110] this is done by considering an incompressible

�uid mixture setup, whereas in Ref. [111] pressure e�ects are included only indirectly via

their e�ect on mapping coe�cients, in such a way that the pressure is e�ectively �xed. The

scaling behaviour one then predicts is essentially that of a monodisperse system, though

with quantitative changes in coe�cients that a�ect e.g. in which direction the diameter

curves [111].

Here we develop a complete scaling framework for generic multi-component �uids

(not only binary mixtures) where the overall number density of particles is �xed rather

than allowed to �uctuate at �xed pressure; the overall composition (fraction of particles

belonging to each species) is also �xed. This is the natural setting for colloids and other

soft matter �uids, where density is easily �xed by the amount of dilution using a solvent.

Controlled pressure, which is common for atomic and molecular �uids, would correspond

to the more unusual situation of �xed osmotic pressure for colloids. In addition to obtaining

new results for the ‘diameter’, we look at a comprehensive set of other phase-diagram

curves. In Refs. [112] and [113], Belyakov et al. developed a similar framework for multi-

component systems with �xed composition, but they employed their results to create a

�tting technique for experimental data near the critical point rather than investigating as

we do the scaling exponents of the various characteristic curves in the phase diagram of

a mixture. (Note also that in Ref. [112] the e�ects of complete scaling were not included

explicitly, although as we show below this does not change the qualitative scaling form of

the cloud curve.)

We will consider in this chapter a generalisation of cloud and shadow curves that re-

veals interesting structures inside the coexistence region. To motivate this, note �rst that

in the monodisperse case one can de�ne the diameter in at least two distinct, equivalent

ways. The usual one is to de�ne the diameter as the temperature-dependent midpoint of

the phase coexistence region, i.e. (ň++ ň−)/2. The coexisting densities can be generated

by cooling a system with the critical parent density nc. Alternatively, one can de�ne the

diameter as the parent density that produces, at each temperature, two phases each occu-

pying half the system volume: due to the lever rule, which expresses particle conservation,
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this parent density must then be the average of the two coexisting densities.

In the polydisperse case, we will see below that these two de�nitions are not equiv-

alent, due to fractionation e�ects. We will refer to the �rst construction as ‘midpoint

diameter’, de�ned as the average density of coexisting phases obtained by cooling a criti-

cal parent system. For the second de�nition we will use the term ‘equal volume diameter’.

Experimentally this curve could be obtained by �xing density and decreasing temperature

from outside the coexistence region: in this process one crosses the cloud curve, where the

split of fractional volumes between the coexisting phases is 100–0%, and then has to cool

further until the split becomes 50–50%. Generalising this construction, we will consider

below the ‘�xed fractional volume’ loci in the phase diagram where the parent density

is chosen at each temperature such as to produce a �xed split of fractional volumes, say

80–20%, between the coexisting phases. We will see that the two di�erent de�nitions of

the diameter and the �xed fractional volume lines, which to our knowledge have not been

analysed before, provide useful probes of �uid mixture critical behaviour.

In summary, in this chapter we use a complete scaling theory to relate polydisperse

criticality to standard 3D Ising criticality, and thus to predict the scaling of the various

lines in the phase diagram. We will investigate which nonlinear �eld mixing terms need

to be retained to account properly for fractionation e�ects, and will point out observables,

distinct from the Yang-Yang anomalies used previously [107], that could be useful to detect

potential pressure mixing e�ects.

The remainder of this article is structured as follows. In section 4.2 we set up the com-

plete scaling theory and derive the key relations between the thermodynamic variables.

In section 4.3 we work out the general conditions from which the properties of coexist-

ing phases can be determined. Section 4.4 contains our discussion of constant fractional

volume lines. These include the cloud curve and, via the density of the coexisting phases,

also the shadow curve. In section 4.5 we pause brie�y to discuss in which limit our re-

sults reduce to the monodisperse case and how this leads to qualitatively di�erent scaling

behaviour. Resuming the discussion of characteristic loci in the phase diagram, the scal-

ing behaviour of the (conventional, �xed parent density) coexistence curves is discussed in

section 4.6. Then in Section 4.7 we verify our analytical derivations by numerically solving
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the complete scaling equations, for a set of mapping coe�cients that reproduces cloud and

shadow curve data obtained in Monte Carlo simulations of a polydisperse Lennard-Jones

�uid [114]. A summary, conclusions, and discussion of our results can be found in section

4.8. The appendices contain technical details of the calculations required to extract the

various scaling laws and to establish the correspondence with the monodisperse limit, as

well as information on how we �tted the complete scaling model to simulation data.

4.2 Complete scaling setup

In the critical region the thermodynamic behaviour of Ising-like systems is governed by

two independent Ising-like scaling �elds: a temperature variable (or thermal �eld) denoted

by t̃ and a �eld variable (or ordering �eld) denoted by h̃. These two variables determine the

singular part of an appropriate pressure-like variable (i.e. the Ising thermodynamic poten-

tial) p̃. We assume these three variables are de�ned such that they are zero at criticality.

Asymptotically close to the critical point, p̃ becomes a generalised homogeneous function

of t̃ and h̃ of the form

p̃ = Q|t̃|2−α f±
(

h̃
|t̃|2−α−β

)
(4.3)

where Q is a positive amplitude, f± are two universal scaling functions that encode the

properties of the three-dimensional Ising universality class, with the superscripts ± indi-

cating t̃ ≷ 0.

In Ref. [107], Kim, Fisher, and Orkoulas (hereafter KFO) introduced the complete scal-

ing approach, in the context of one-component �uids. In this formalism each of the Ising-

model variables (p̃, t̃ , and h̃) is expressed as a function of all thermodynamic �uid variables

(pressure, temperature, and chemical potential), and this allows one to use Ising relations

to work out the scaling behaviour of the �uid. (Formally this approach stems from a prin-

ciple of isomorphism [110].) We now extend the approach to the case of a polydisperse

�uid, similarly to Ref. [113]. To do so we proceed by writing second-order expansions

around the critical point for the Ising scaling variables in terms of the �uid variables (now
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pressure, temperature, and species chemical potentials) as

p̃ = p̌− k0t− lT0µ̌− r0t2− µ̌Tq0µ̌− tvT
0µ̌−m0 p̌2−n0 p̌t− p̌nT

3µ̌ (4.4)

t̃ = t− lT1µ̌− j1 p̌− r1t2− µ̌Tq1µ̌− tvT
1µ̌−m1 p̌2−n1 p̌t− p̌nT

4µ̌ (4.5)

h̃ = lT2µ̌− k2t− j2 p̌− r2t2− µ̌Tq2µ̌− tvT
2µ̌−m2 p̌2−n2 p̌t− p̌nT

5µ̌ (4.6)

where the entire set of coe�cients li,ki, ji,ri,qi,vi,mi, etc. appearing in Eqs. (4.4)–(4.6) are

dubbed ‘mixing coe�cients’ and

t ≡ T −Tc

Tc
, p̌≡ p− pc

nckBTc
(4.7)

Here nc and Tc, the critical density and temperature (for a �xed parent composition or

‘dilution line’ [17]) are used to make all quantities dimensionless; the critical pressure is

denoted by pc and kB is Boltzmann’s constant. The vector µ̌ has as many components as

there are species in the �uid, each of them being denoted by

µ̌(σ)≡ µ(σ)−µc(σ)

kBTc
(4.8)

where µ(σ) is the chemical potential of a species labelled by an arbitrary polydisperse

attribute σ and µc(σ) is its critical value. Because µ̌ is a vector, the quadratic expansions

in Eqs. (4.4)–(4.6) require appropriate ‘mixing coe�cients’ vectors and matrices when µ̌

appears (instead of the scalar constants in the other cases); all vectors are taken as column

vectors and . . .T denotes the transpose of a vector. The vector l2 replaces a unit constant in

KFO; leaving this unconstrained means no extra scaling of the argument of f± is needed.

We use the notation k2 instead of the k1 in KFO to ensure that the subscript of each mixing

coe�cient in Eqs. (4.4)–(4.6) speci�es uniquely to which of the Ising scaling variables p̃, t̃ ,

and h̃ it belongs.

Denoting the arbitrary number of species in the �uid by M, we can check that the

above construction gives the right number of equations for a proper equation of state: we

have M+2 �uid thermodynamic variables ( p̌, t , and µ̌), 3 Ising scaling variables ( p̃, t̃ , and

h̃), and 3+1 equations [Eqs. (4.3)–(4.6)]. Specifying M+1 thermodynamic variables (t and
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µ̌) then determines all other variables and so in particular the pressure p̌.

At phase coexistence, t , µ̌ and p̌ are the same in both phases. Hence, from the above

expansions [Eqs. (4.4)–(4.6)], so are t̃ , h̃ and p̃. Thus the relation between these Ising scaling

variables along the phase boundary can be worked out from the universal scaling function.

Conventionally, one would parametrise this dependence by t̃ (< 0); then h̃, p̃, ρ̃ , s̃ are, at

least in principle, known functions of t̃ , where the generalised number density, ρ̃ , and

entropy density, s̃, are the Ising scaling densities, de�ned by the relation d p̃ = ρ̃ dh̃+ s̃ dt̃ .

The results worked out by KFO (omitting prefactors and using the subscripts ± to label

now the two phases) can be written as follows:

p̃ ∼ |t̃|2−α + . . . (4.9)

h̃ ∼ |t̃|2−α−β+θ ′+ . . . (4.10)

ρ̃± ∼ ±
(
|t̃|β + |t̃|β+θ ±|t̃|β+θ ′

)
(4.11)

s̃± ∼ |t̃|1−α + |t̃|1−α+θ ±|t̃|1−α+θ ′ . (4.12)

For the relevant Ising 3D case, KFO quote β ' 0.326, α ' 0.109, θ ≡ θ4 ' 0.52, θ ′ ≡ θ5 '

1.32; the latter two are exponents for the leading (even/odd) corrections to scaling. (KFO

point out that in contrast to the symmetric case, h̃ does not vanish identically along the

phase boundary.)

We will not keep track of terms of order higher than |t̃|1. Therefore, we will neglect p̃

and h̃. In the scaling (4.11) for ρ̃ , one in principle needs the leading correction to scaling (as

β +θ < 1), but one can avoid having to take this into account explicitly by parametrising

everything in terms of ρ̃+ ≡ ρ̃ , which we assume to be positive. In particular, one has

t̃ =−aρ̃
1/β + . . . (4.13)

with an appropriate constant a, and for the entropy density, by eliminating t̃ from the

scalings (4.11) and (4.12),

s̃∼ ρ̃
(1−α)/β + ρ̃

(1−α+θ)/β (4.14)

The �rst exponent is 1/β̃ ' 2.73, the inverse of the ‘Fisher-renormalised’ order parameter

105



Chapter 4. Critical phase behaviour in multi-component �uid mixtures

exponent β̃ = β/(1−α), while the second one, from the corrections to scaling, is greater

than 1/β ' 3.07. Since we are only keeping terms to ρ̃1/β [see Eq. (4.13)], we need only

to retain the �rst term in scaling (4.14) (as 1−α +θ > 1). Thus one can write

s̃ =−bρ̃
1/β̃ + . . . (4.15)

where b is some constant.

As a technical aside, since we will frequently need to invert several series expansions

with non-integer exponents, it is useful to recall that the inverse series of

y =
∞

∑
i=0

aixni (4.16)

(with increasing exponents 0 < n0 < n1 < .. .) has the form

x =
(

y
a0

)1/n0
(

1+∑
i≥1

biyn′i + ∑
i, j≥1

bi jyn′i+n′j + . . .

)
(4.17)

with n′i ≡ (ni−n0)/n0 and this is de�ned only when y and a0 have the same sign, a restric-

tion that we will mostly omit in similar results below. Applied to the scaling (4.11) this

gives

t̃ ∼ ρ̃
1/β

(
1+ ρ̃

θ/β + ρ̃
θ ′/β + . . .

)
(4.18)

and hence the expansion (4.14). Note that in Eq. (4.15) the leading-order term−bρ̃1/β̃ that

we are keeping is identical for the two coexisting phases, and hence we have dropped the

± subscript from s̃. Likewise, ρ̃− =−ρ̃ +O(ρ̃1+θ ′/β )≈−ρ̃ , to the order of our expansion

(notice that β +θ ′ > 1). Overall, we see that deviations from the Ising symmetry would

only make themselves felt at higher orders.

We will need to know, for a given phase of the system, the density distribution vector ρ̌.

Its components are the normalised species densities ρ̌(σ)≡ ρ(σ)/nc. This vector of den-

sities can be found by taking the µ̌-derivative of the pressure p̌; the analogous derivative

with respect to temperature t is the entropy density š = s/nc. The Ising scaling analogues

of these quantities are s̃ = ∂ p̃/∂ t̃ and ρ̃ = ∂ p̃/∂ h̃, respectively. Since d p̃ = s̃ dt̃+ ρ̃ dh̃, one
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can write, by analogy to the derivation in KFO,

d p̃ = s̃
(

∂ t̃
∂ p̌

d p̌+
∂ t̃
∂ t

dt +
∂ t̃
∂ µ̌

dµ̌
)
+ ρ̃

(
∂ h̃
∂ p̌

d p̌+
∂ h̃
∂ t

dt +
∂ h̃
∂ µ̌

dµ̌
)

(4.19)

=
∂ p̃
∂ p̌

d p̌+
∂ p̃
∂ t

dt +
∂ p̃
∂ µ̌

dµ̌. (4.20)

Inserting the Gibbs–Duhem equation d p̌ = šdt + ρ̌Tdµ̌ (and imposing equality of the co-

e�cients of dµ̌) gives

ρ̌=
− ∂ p̃

∂ µ̌ + s̃ ∂ t̃
∂ µ̌ + ρ̃

∂ h̃
∂ µ̌

∂ p̃
∂ p̌ − s̃ ∂ t̃

∂ p̌ − ρ̃
∂ h̃
∂ p̌

. (4.21)

This is the mixture analogue of Eq. (5) in Ref. [113]. Inserting the above expansions [Eqs.

(4.4)–(4.6)] into Eq. (4.21) and re-expanding (in terms of p̌, t , µ̌, ρ̃ , and s̃) leads to

ρ̌± = l0 +(2m0l0 +n3)p̌+(n0l0 +v0)t +(l0n
T
3 +2q0)µ̌+O2 +O3

± ρ̃(l̃2 +O1 +O2)+ ρ̃
2(− j2l̃2 +O1)± ρ̃

3 j2
2 l̃2 + s̃(− j1l0− l1)+ . . . (4.22)

where l̃2≡ l2− j2l0 and we have specialised to the two coexisting phases. In writing down

Eq. (4.22) we have anticipated that p̌, t and µ̌ will be no larger than ∼ ρ̃ and have thrown

away contributions which as a result are smaller than ρ̃1/β , e.g. terms ∼ ρ̃4, ρ̃ s̃, s̃2, and so

on. The O1,2,3 symbols represent terms in (p̌, t, µ̌) of the order indicated and will either not

be crucial below or cannot be written down explicitly without including third or higher

order terms in the mapping expansions Eqs. (4.4)–(4.6).

We notice by inspecting Eq. (4.22) that, if only the linear coe�cients ( ji, ki, and li)

are included, then ρ̌± is a vectorial combination of l0, l1, and l2. Therefore for M > 3 it

becomes impossible to realize a generic size distribution in the coexisting phases. Thus we

conclude that in order to have fractionation properly accounted for one needs to include

nonlinear mixing coe�cients.

The critical scaling between the Ising variables has now been written down and we

have expressed the density distribution vectors of the polydisperse �uid in terms of its

thermodynamic variables and of the Ising scaling densities. It remains to add the particle

conservation condition for each species, which we do in Section 4.3. Putting everything

together one has a system of equations that can be solved either numerically or analytically
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by expansion, allowing one to obtain the critical phase behaviour in terms of the physical

�uid variables only.

4.3 Coexistence conditions

One of our goals is to obtain the critical scaling versions of cloud and shadow curves and,

more generally, information on coexisting phases. The conditions of equal p̌, t and µ̌ will

be satis�ed if we are somewhere on the scaling phase boundary, as parametrised by ρ̃ .

In addition, we need to satisfy particle conservation, i.e. the ‘dilution line’ constraint. Let

us write the parent density distribution as ρ̌(0) = (1+ ň)f , where the ‘(0)’ superscript

indicates the parent phase, f is the normalised parent density distribution vector and ň≡

(n(0)− nc)/nc is the (normalised) deviation of the parent density from its critical value.

We write the fractional phase volumes as 1
2(1±∆) so that ∆ = 0 represents the situation

where both phases occupy equal volumes. Then we need to satisfy

(1+ ň)f =
1
2
(1+∆)ρ̌++

1
2
(1−∆)ρ̌− (4.23)

where ρ̌+ and ρ̌− are given by Eq. (4.21) with ρ̃±=±ρ̃ inserted. For our scaling expansions

we use the expanded form (4.22) instead of Eq. (4.21), leading to

(1+ ň)f =
1
2
(1+∆)[l0 +(2m0l0 +n3)p̌+(n0l0 +v0)t +(l0n

T
3 +2q0)µ̌+O2 +O3

+ ρ̃(l̃2 +O1 +O2)+ ρ̃
2(− j2l̃2 +O1)+ ρ̃

3 j2
2 l̃2 + s̃(− j1l0− l1)]

+
1
2
(1−∆)[l0 +(2m0l0 +n3)p̌+(n0l0 +v0)t +(l0n

T
3 +2q0)µ̌+O2 +O3

− ρ̃(l̃2 +O1 +O2)+ ρ̃
2(− j2l̃2 +O1)− ρ̃

3 j2
2 l̃2 + s̃(− j1l0− l1)]. (4.24)

At the critical point, both density distributions must be equal to the parent one (as just

above it we have only one phase). By setting all thermodynamic variables to zero in Eq.

(4.24), one can see that l0 = f ; Eq. (4.24) can in turn be simpli�ed to

ňf = (2m0f +n3)p̌+(n0f +v0)t +(fnT
3 +2q0)µ̌+ ρ̃

2(− j2l̃2 +O1)+O2 +O3

+ s̃(− j1f − l1)+∆ρ̃(l̃2 +O1 +O2)+∆ρ̃
3 j2

2 l̃2. (4.25)
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We can now write down the set of equations that we need to solve, bearing in mind that

p̃ and h̃ have been neglected to our order of expansion and noting explicitly the omitted

third-order terms in the mapping expansions [Eqs. (4.4)–(4.6)]:

0 = p̌− k0t−fTµ̌+O2 +O3 (4.26)

t̃ = t− lT1µ̌− j1 p̌+O2 +O3 (4.27)

0 = lT2µ̌− k2t− j2 p̌+O2 +O3 (4.28)

and

− ∆ρ̃ l̃2 + j2l̃2ρ̃
2−∆ρ̃

3 j2
2 l̃2 + s̃( j1f + l1) =−ňf +(2m0f +n3)p̌

+ (n0f +v0)t +(fnT
3 +2q0)µ̌+O2 +O3 +∆ρ̃(O1 +O2)+ ρ̃

2 O1. (4.29)

One sees that in this approach, �xed fractional volume lines appear naturally as they cor-

respond to �xed ∆. These lines can then be traced out by considering a series of increasing

ρ̃ (or corresponding t̃) and for each ρ̃ solving the above M + 3 equations for the M + 3

unknowns (ň, p̌, t , µ̌). For the cloud curve one would �x ∆ = 1 for the high density branch

and ∆ =−1 for the low-density branch (where the high density phase is the shadow phase

and occupies a vanishing fraction of the system volume). These cases with constant ∆ are

considered in Section 4.4. For actual coexistence curves (see Section 4.6) one wants to �x

the parent density ň instead and infer ∆. This can be done by treating ∆ρ̃ as a small quan-

tity to expand in, in addition to ρ̃ ; note that ∆ρ̃ can be much smaller than ρ̃ but no larger

since |∆| ≤ 1. We then have to eliminate ∆ρ̃ in the end by using the constraint of �xed ň.

From the structure of the conditions above one sees that ň, p̌, t and µ̌ will be smooth

functions of the ‘inputs’ on the left-hand sides of Eqs. (4.26)–(4.29), i.e. ∆ρ̃ , ρ̃2, s̃=−bρ̃1/β̃ ,

and t̃ =−aρ̃1/β ; the input term ∆ρ̃3 is already covered here as the product of ∆ρ̃ and ρ̃2.

The input variables appearing on the right-hand side in Eq. (4.29) have quantitative e�ects,
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but do not produce new terms in the expansion. Thus we can write

ň = ν1∆ρ̃ +(ν2 +ν
′
2∆

2)ρ̃2 +ν3ρ̃
1/β̃ +(ν4∆+ν

′
4∆

3)ρ̃3 +ν5ρ̃
1/β (4.30)

p̌ = π1∆ρ̃ +(π2 +π
′
2∆

2)ρ̃2 +π3ρ̃
1/β̃ +(π4∆+π

′
4∆

3)ρ̃3 +π5ρ̃
1/β (4.31)

t = τ1∆ρ̃ +(τ2 + τ
′
2∆

2)ρ̃2 + τ3ρ̃
1/β̃ +(τ4∆+ τ

′
4∆

3)ρ̃3 + τ5ρ̃
1/β (4.32)

µ̌ = m1∆ρ̃ +(m2 +m
′
2∆

2)ρ̃2 +m3ρ̃
1/β̃ +(m4∆+m′4∆

3)ρ̃3 +m5ρ̃
1/β (4.33)

where we have introduced appropriate coe�cients νi,ν
′
i ,πi,π

′
i ,τi,τ

′
i ,mi, andm′i, with the

latter two types representing vectors of coe�cients with M components each. Notice that

as throughout, we do not keep track of terms of order higher than ρ̃1/β here.

Pressure mixing coe�cients are de�ned as the coe�cients of the terms where the �uid

pressure variable p̌ appears in the expansions for t̃ and h̃, i.e. Eqs. (4.5) and (4.6). (We

exclude from this de�nition the coe�cients in the expansion (4.4) for the pressure-like

Ising variable p̃.) Without pressure mixing, where the ρ̃2 and ∆ρ̃3 terms on the left-hand

side of Eq. (4.29) are absent ( j2 = 0 in this case), one has an expansion in ∆ρ̃ , s̃ and t̃ only,

so that ν2,π2,τ2,m2 and ν4,π4,τ4,m4 all vanish. One can check that the ρ̃2 O1 term on

the right-hand side of Eq. (4.29) does not a�ect this conclusion.

By inserting Eqs. (4.30)–(4.33) into Eqs. (4.26)–(4.29), and comparing terms order by

order, we obtain sets of equations that involve no thermodynamic variables, i.e. they con-

tain only coe�cients. These can be solved for the coe�cients νi,ν
′
i ,πi,π

′
i ,τi,τ

′
i ,mi, and

m′i, in terms of the ‘mixing coe�cients’. (See Appendix 4.A.)

4.3.1 Coexisting density distributions

As part of the output of the calculation one wants to look at the coexisting density distri-

butions. Comparing Eq. (4.22) with Eq. (4.25) shows that

ρ̌±−f = ňf +(±1−∆)[ρ̃(l̃2 +O1 +O2)+ ρ̃
3 j2

2 l̃2]. (4.34)

Once we insert the expansions of p̌, t , µ̌ [Eqs. (4.31)–(4.33)] into the O1 and O2 terms we

see that they contribute with terms scaling as ∆ρ̃ , ρ̃2 (except if there is no pressure mixing)
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and ∆2ρ̃2, so that

ρ̌±−f = ňf +(±1−∆)[ρ̃ l̃2 +g2∆ρ̃
2 +g4ρ̃

3 +g′4∆
2
ρ̃

3] (4.35)

with some vectors g2, g4 and g′4; g4 vanishes without pressure mixing. Along with l̃2,

these determine the directions in density distribution space along which fractionation

takes place for the given parent composition f ; to linear and quadratic orders in ρ̃ , there

is one such direction each, and two to third order.

For the overall coexisting densities themselves one has, by taking the product with eT

where e is a vector with all components equal to 1, the following expression:

ň± = ň+(±1−∆)
[
l̃2ρ̃ +g2∆ρ̃

2 +g4ρ̃
3 +g′4∆

2
ρ̃

3
]

(4.36)

= ρ̃
[
±l̃2 +∆(ν1− l̃2)

]
+ ρ̃

2
[
ν2±g2∆+(ν ′2−g2)∆

2
]

+ν3ρ̃
1/β̃ + ρ̃

3
[
±g4 +(ν4−g4)∆±g′4∆

2 +(ν ′4−g′4)∆
3
]
+ν5ρ̃

1/β . (4.37)

Here we have abbreviated the element sums (not norms!) of the various vectors as l̃2≡ eTl̃2,

g2 ≡ eTg2 etc. In the second step we have inserted Eq. (4.30). Note that one expects l̃2 > 0

in order to ensure ň+ > ň−; also, for ∆= 1 the (liquid cloud) parent density should increase

with ρ̃ , so that ν1 should likewise come out positive.

4.4 Constant fractional volume lines

We can now look at the various curves in the phase diagram that are obtained for �xed

∆. With ∆ �xed, there is only ρ̃ to eliminate as the curve parameter since ∆ρ̃ is no longer

treated as an additional small quantity to expand in. The elimination process involves

inverting expansions like Eq. (4.30), which leads to

ρ̃ =
ň

ν1∆
− ν2 +ν ′2∆2

ν1∆

(
ň

ν1∆

)2

− ν3

ν1∆

(
ň

ν1∆

)1/β̃

+

[
2
(

ν2 +ν ′2∆2

ν1∆

)2

− ν4 +ν ′4∆2

ν1∆

](
ň

ν1∆

)3

− ν5

ν1∆

(
ň

ν1∆

)1/β

. (4.38)
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As pointed out after Eq. (4.16), our convention here and below is that expansions involving

non-integer powers without modulus signs should be interpreted as applicable only when

the quantity being raised is positive. Eq. (4.38) holds for ∆ 6= 0, while for ∆ = 0 one has

similarly

ρ̃ =

(
ň
ν2

)1/2

− ν3

2ν2

(
ň
ν2

)(1/β̃−1)/2

− ν5

2ν2

(
ň
ν2

)(1/β−1)/2

. (4.39)

In both cases the expansions are given to the order that can be determined reliably from

the original expansions up to ρ̃1/β .

Inserting Eq. (4.38) into Eq. (4.32) yields for the temperature as a function of the parent

density (when ∆ 6= 0):

t =
τ1

ν1
ň− τ̃

′
2

(
ň
ν1

)2

− τ̃3

(
ň

ν1∆

)1/β̃

−
[

τ̃4∆+ τ̃
′
4∆

3−2
(

ν2 +ν ′2∆2

ν1∆

)
τ̃
′
2∆

2
](

ň
ν1∆

)3

− τ̃5

(
ň

ν1∆

)1/β

(4.40)

where

τ̃i ≡ νi
τ1

ν1
− τi, τ̃

′
i ≡ ν

′
i
τ1

ν1
− τ
′
i (4.41)

Note that with this de�nition one has τ̃2 = 0, a fact we have already used above. (This

result comes from a general proportionality between �rst and second order expansion co-

e�cients, ν2 =− j2ν1, τ2 =− j2τ1, etc., which we derive in Appendix 4.A.) The coe�cient

structure makes sense: in the hypothetical degenerate case where the ρ̃-expansion coef-

�cients for t [Eq. (4.32)] and ň [Eq. (4.30)] were all proportional to each other, then t and

ň themselves would be proportional and therefore all terms must vanish (as is ensured by

the de�nition of the τ̃i) except for t = (τ1/ν1)ň.

As indicated, the linear term in Eq. (4.40) is independent of ∆; the only ∆-dependence

arises via the higher order terms, and for the singular contributions it is a simple scaling.

One sees that the expansion remains the same under the change ∆→ −∆, so that such

pairs of curves connect smoothly through the critical point. (As pointed out above, each

curve for a given ∆ is con�ned to one side of the critical point, such that ň/ν1 and hence ň

has the same sign as ∆, re�ecting the constraint ρ̃ > 0.) Note that without pressure mixing
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also the quadratic and third order terms in Eq. (4.40) are ∆-independent because τ̃4 and ν2

also vanish in this case, in addition to τ̃2.

The cloud curve is obtained for ∆ =±1 as

t =
τ1

ν1
ň− τ̃

′
2

(
ň
ν1

)2

− τ̃3

∣∣∣∣ ň
ν1

∣∣∣∣1/β̃

−
[

τ̃4 + τ̃
′
4−2

(
ν2 +ν ′2

ν1

)
τ̃
′
2

](
ň
ν1

)3

− τ̃5

∣∣∣∣ ň
ν1

∣∣∣∣1/β

. (4.42)

and this result now applies for ň of arbitrary sign, i.e. for parent densities either side of nc.

One can check that the structure of the above expansion of the cloud curve is independent

of pressure mixing: even if all pressure mixing mapping coe�cients are set to zero, then

generically none of the prefactors in Eq.(4.42) will vanish. This is consistent with the

result of Ref. [112], where the authors developed a framework for multi-component �uids

with �xed overall composition but without pressure mixing, obtaining essentially the same

cloud curve structure as in Eq. (4.42), except for the third order term. This may have been

omitted by accident in Ref. [112] or dropped out because an intermediate expansion was

truncated too early.

We note that in the case of mean-�eld (α = 0, β = β̃ = 1/2) rather than Ising criticality

the second, third, and �fth terms in Eq. (4.42) degenerate into a term proportional to ň2, and

consequently the cloud curve becomes fully smooth around the critical point, as expected.

Otherwise, the term with the Fisher-renormalised exponent, |ň|1/β̃ , is the �rst singular

contribution. The latter may be challenging to detect in practice as it will be masked by

the smooth variation given by the linear and the quadratic terms. One might then need

to look at derivatives along the cloud curve, e.g. d3t/dň3 to see the singularity clearly as a

divergence, or at least d2t/dň2 to observe a cusp singularity.

In the special case of ∆ = 0, one obtains the following generic form for the 50–50

fractional volume line (ň must now have the same sign as ν2):

t =
τ2

ν2
ň−
(

ν3
τ2

ν2
− τ3

)(
ň
ν2

)1/(2β̃ )

−
(

ν5
τ2

ν2
− τ5

)(
ň
ν2

)1/(2β )

(4.43)

The slope τ2/ν2 of the linear piece in Eq. (4.43) is equal to the slope τ1/ν1 of the linear piece

in the cloud [Eq. (4.42)] because ν2 = − j2ν1 and τ2 = − j2τ1 as mentioned above. Note
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that one cannot interpolate smoothly to ∆ = 0 once ρ̃ has been eliminated: the ∆→ 0 limit

of Eq. (4.40) diverges. (It is important to note here that while all physical quantities vary

smoothly with ∆ away from the CP, this does not have to be the case in expansions around

the CP.) The reason is that the expansion in Eq. (4.40) is, e�ectively, in terms of ň/(ν1∆)

and so is valid in a range of width proportional to ∆ that vanishes for ∆→ 0. Note the

rather unexpected singularity exponent above: the singularity for ∆ = 0 is stronger than

on the constant fractional volume lines ∆ 6= 0, including the cloud curve.

The ∆ = 0 constant fractional volume line is special also in that its shape depends

sensitively on the presence or absence of pressure mixing. In the latter case one has ň =

ν3ρ̃1/β̃ +ν5ρ̃1/β , which yields ρ̃1/β̃ ∼ ň(1+ ňβ̃/β−1 + . . .) and hence (for ň/ν3 > 0)

t =
τ3

ν3
ň−
(

ν5
τ3

ν3
− τ5

)(
ň
ν3

)1/(1−α)

(4.44)

In this form where ρ̃ has been eliminated the fact that pressure mixing changes the lead-

ing singularity exponent from 1/(1−α) to (1−α)/(2β ) may seem a little unexpected;

however, it is quite natural when looked at in terms of the vanishing of a number of contri-

butions in the ρ̃-expansions [Eqs. (4.30) and (4.32)]. Note that the slope of the linear term

in Eq. (4.44) is generically di�erent from the slope of the cloud curve at the critical point:

without pressure mixing the 50–50 fractional volume line departs from the critical point

in a di�erent direction, while in the presence of pressure mixing it starts o� tangentially

to the cloud curve.

To highlight the di�erences discussed above we now consider δ t0 ≡ tcloud− t∆=0 >

0, which is the temperature di�erence between the cloud curve and the ∆ = 0 line at

�xed parent density ň. With pressure mixing this is the di�erence between Eq. (4.42) and

Eq. (4.43), which gives

δ t0 =
(

ν3
τ2

ν2
− τ3

)(
ň
ν2

)1/(2β̃ )

+

(
ν5

τ2

ν2
− τ5

)(
ň
ν2

)1/(2β )

+ . . . (4.45)
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whereas in the case without pressure mixing it is the di�erence between Eq. (4.42) (with

modi�ed prefactors due to pressure mixing being absent) and Eq. (4.44), i.e.

δ t0 =
(

τ1

ν1
− τ3

ν3

)
ň+
(

ν5
τ3

ν3
− τ5

)(
ň
ν3

)1/(1−α)

(4.46)

With pressure mixing [Eq. (4.45)] there is no linear contribution, re�ecting the fact that the

50–50 fractional volume line starts o� tangential to the cloud curve, with the slopes of the

linear pieces in Eqs. (4.42) and (4.43) cancelling. Without pressure mixing this is no longer

the case, leading to the linear piece in Eq. (4.46). This suggests that measurements of δ t0

as a function of ň could be useful probes of pressure mixing e�ects, in particular because

the leading terms have exponents of 1/(2β̃ ) ' 1.37 and 1 respectively that are easy to

distinguish. This is explored further in our numerical analysis in Section 4.7.

Looking next at the behaviour of the coexisting densities, these are easy to determine

since Eq. (4.37) has, for constant ∆, the same structure as the expansion of the parent

density, Eq. (4.30). Therefore one can read o� directly the expression for t vs. ň±, but as

this is rather long we defer it to Appendix 4.B. One useful special case is t vs. ň± for ∆=∓1,

which gives the shadow curve. As can be seen in Appendix 4.B, it has the same structure

as the cloud curve [Eq. (4.42)], but with di�erent coe�cients (obtained via ν1→ ν1−2l̃2,

ν2→ ν2−g2, ν ′2→ ν ′2−g2, ν4→ ν4−g4, ν ′4→ ν ′4−g′4).

For the other interesting special case of ∆ = 0 one obtains the ‘50–50 coexistence

curves’, i.e. the temperature dependence of the coexisting densities obtained from parents

on the 50–50 fractional volume line:

t = τ2

(
ň±
l̃2

)2

+ τ3

∣∣∣∣ ň±l̃2
∣∣∣∣1/β̃

+2
ν2τ2

l̃2

(
ň±
l̃2

)3

+ τ5

∣∣∣∣ ň±l̃2
∣∣∣∣1/β

. (4.47)

The two curves t(ň+) and t(ň−) are symmetric in the �rst two leading terms, but then the

asymmetry appears. Without pressure mixing one has τ2 = 0 and so the leading quadratic

as well as the cubic terms are both absent.

It is useful to convert the above results into expressions of densities versus temperature

to connect with our discussion of the diameter in the introduction. The ∆ = 0 line is the
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equal volume diameter and, by inverting (4.43) and (4.44), respectively, is given by

ň =
ν2

τ2
t +
(

ν3− τ3
ν2

τ2

)(
t
τ2

)1/(2β̃ )

+

(
ν5− τ5

ν2

τ2

)(
t
τ2

)1/(2β )

. (4.48)

with pressure mixing and by

ň =
ν3

τ3
t−
(

τ5
ν3

τ3
−ν5

)(
t
τ3

)1/(1−α)

(4.49)

without. Note that in both cases the leading term is linear, in contrast to the situation in

the monodisperse case discussed in the introduction, and it is only the exponent of the

�rst subleading term that signals the presence or absence of pressure mixing.

Generally, if we consider ∆ being varied from 1 to−1, the curve t(ň) will be deformed

from the high-density to the low-density part of the cloud curve (see Fig. 4.1); similarly

t(ň+) interpolates between the high-density parts of the cloud curve and of the shadow

curve, while t(ň−) interpolates between the low-density parts of the shadow curve and of

the cloud curve.

4.5 The monodisperse case

We have seen above that the complete scaling predictions for the equal volume diameter

are di�erent from those reviewed in the introduction for monodisperse systems, whether

with or without pressure mixing. Ostensibly, however, our analysis is valid for an arbitrary

number of mixture components M. What, then, is di�erent about the monodisperse case

(M = 1)?

One answer is that when there is only a single chemical potential, the conditions in

Eqs. (4.26)–(4.28) are su�cient to determine p̃, t , µ and these must therefore be smooth

functions of t̃ = −aρ̃1/β . (A similar comment can be found in Ref. [113].) In our ρ̃-

expansions, Eqs. (4.31)–(4.33), this means that the only nonzero coe�cients are π5, τ5,

and m5, the latter being a scalar for M = 1. (One can easily check this from the explicit

conditions for the coe�cients; e.g. the �rst order conditions in Eqs. (4.64)–(4.67) have the

obvious solution π1 = τ1 =m1 = 0, ν1 = l̃2 in the monodisperse case.) Since ρ̃ ∼ |t̃|β ∼ |t|β ,
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the coexisting densities then have the standard expansion ň± ∼±ρ̃ + ρ̃2 + ρ̃1/β̃ + ρ̃1/β ∼

±|t|β + |t|2β + |t|1−α + |t| and the �rst term cancels from the diameter.

In the polydisperse case the solution above does not work since e.g. in the �rst order

conditions in Eqs. (4.64)–(4.67) the vectors f and l̃2 will generically not be parallel. Alter-

natively, one can go back to the dilution line constraint in Eq. (4.25): there are singular (in

t̃) terms on the right-hand side, proportional to ρ̃ , ρ̃2 and s̃. If µ̌ and t depended smoothly

on t̃ , these singular terms would always dominate and so push the system o� the required

dilution line. To avoid this, µ̌ and t themselves need to contain terms proportional to ρ̃ ,

ρ̃2 and s̃. In the monodisperse case there is no dilution line constraint and so no such

requirement.

One might argue that the above discussion cannot be taken literally for most colloidal

systems, because of the di�culty of producing the truly identical particles that a descrip-

tion in terms of a single species (M = 1) in principle requires. A more realistic endeav-

our would be to make the distribution of particle sizes (say) narrower and narrower by

improving experimental protocols. In the limit, one would then still expect to retrieve

monodisperse phase behaviour, but this would result from an M-species system where

the di�erences between species have become very small. How is this second route to the

monodisperse limit achieved in our approach?

Taking the true monodisperse limit where one has M species of particles that are physi-

cally identical, one can think of the di�erent species as being identi�ed by di�erent colours

but with this colour having no e�ect on the physical behaviour. We show in Appendix 4.C

that in this description of a physically monodisperse – but ‘colour polydisperse’ – system,

the vectors f and l̃2 will always be parallel. As discussed above, there is then no need

for the additional scaling terms that are required in a physically polydisperse system, and

standard monodisperse scaling behaviour follows. (We note as an aside that similar con-

ceptual issues, related to the physical relevance of polydispersity in the limit when particle

species become very similar, arise in determining the con�gurational entropy of glasses,

see e.g. Ref. [115].)

The derivation in Appendix 4.C is e�ectively a method by which one can map the

mixing coe�cients of a monodisperse �uid onto a new set of mixing coe�cients for a colour
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polydisperse �uid with nominally M > 1 components, in such a way that both systems are

physically equivalent with regards to their critical behaviour. The method is in fact more

general, allowing one to map the mixing coe�cients of a �uid with M′ components onto

a physically identical �uid with nominally M > M′ components.

4.6 Coexistence curves

Next we look at conventional coexistence curves, which are obtained from a parent of

�xed density ň by varying temperature. With ň �xed, ∆ then has to vary appropriately to

maintain particle conservation.

We start by separating ∆ρ̃-terms and ρ̃-terms in Eq. (4.30) for ň:

ň−ν2ρ̃
2−ν3ρ̃

1/β̃ −ν5ρ̃
1/β = ν1∆ρ̃ +ν

′
2(∆ρ̃)2 +ν4(∆ρ̃)ρ̃2 +ν

′
4(∆ρ̃)3 (4.50)

This can be solved perturbatively for ∆ρ̃ :

∆ρ̃ =
ň
ν1
− ν2

ν1
ρ̃

2− ν ′2
ν1

(
ň
ν1

)2

− ν3

ν1
ρ̃

1/β̃ −
(

ν4

ν1
−2

ν2

ν1

ν ′2
ν1

)
ρ̃

2 ň
ν1

−
[

ν ′4
ν1
−2
(

ν ′2
ν1

)2
](

ň
ν1

)3

− ν5

ν1
ρ̃

1/β (4.51)

We have used that since ň = ν1∆ρ̃ to leading order, ň is never larger than ∼ ρ̃ , so that we

are sure to have all relevant terms if we treat ň as proportional to ρ̃ and then expand. Now

one inserts (4.51) into the expansion for t in Eq. (4.32):

t =
τ1

ν1
ň− τ̃

′
2

(
ň
ν1

)2

− τ̃3ρ̃
1/β̃ −

(
τ̃4−2

ν2

ν1
τ̃
′
2

)
ň
ν1

ρ̃
2− τ̃

′
4

(
ň
ν1

)3

− τ̃5ρ̃
1/β (4.52)

The leading linear and quadratic terms can be cancelled by switching from t to the tem-

perature di�erence from the cloud point temperature, δ t ≡ tcloud− t . Here tcloud is given

by Eq. (4.42) and is �xed by the given parent density ň. In terms of δ t , Eq. (4.52) takes the
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simpler form

δ t = τ̃3

[
ρ̃

1/β̃ −
∣∣∣∣ ň
ν1

∣∣∣∣1/β̃
]
+

(
τ̃4−2

ν2

ν1
τ̃
′
2

)
ň
ν1

[
ρ̃

2−
(

ň
ν1

)2
]

+ τ̃5

[
ρ̃

1/β −
∣∣∣∣ ň
ν1

∣∣∣∣1/β
]
. (4.53)

(Note that δ t is positive by de�nition and so needs to increase with ρ̃ ; thus τ̃3 should be

positive.)

Our goal is to �nd the coexisting densities ň±. For these one uses Eq. (4.36) with

Eq. (4.51) inserted, to obtain ň± as a function of ρ̃ for �xed ň. Now ρ̃ needs to be eliminated

between the resulting expression [see (4.84) in Appendix 4.B] and Eq. (4.53). As ρ̃ only

appears at second and higher order in Eq. (4.53), it su�ces to �nd it from (4.84) to linear

order in terms of ň±, resulting in the simple expression

ρ̃ =±
(

ň±
l̃2

+ cň
)

(4.54)

where c≡ 1/ν1−1/l̃2. Inserting into Eq. (4.53) produces �nally

δ t = τ̃3

(∣∣∣∣ ň±l̃2 + cň
∣∣∣∣1/β̃

−
∣∣∣∣ ň
ν1

∣∣∣∣1/β̃
)
+

(
τ̃4−2

ν2

ν1
τ̃
′
2

)
ň
ν1

[(
ň±
l̃2

+ cň
)2

−
(

ň
ν1

)2
]

+ τ̃5

(∣∣∣∣ ň±l̃2 + cň
∣∣∣∣1/β

−
∣∣∣∣ ň
ν1

∣∣∣∣1/β
)
. (4.55)

One sees that at the onset of phase coexistence (δ t = 0), ň±/l̃2 + cň must equal ň/ν1

or −ň/ν1 to leading order. This gives ň+ = ň and ň− = ň(1− 2l̃2/ν1) or vice versa; the

latter prefactor is consistent with the ratio of the slopes of cloud and shadow curves at the

critical point, which can be read o� from Eqs. (4.42) and (4.82).

The above expressions simplify considerably for the case ň = 0. Eq. (4.55) then gives

the critical coexistence curve as

|t|= δ t = τ̃3

∣∣∣∣ ň±l̃2
∣∣∣∣1/β̃

+ τ̃5

∣∣∣∣ ň±l̃2
∣∣∣∣1/β

(4.56)

The leading term shows the expected Fisher-renormalised order parameter exponent β̃ .
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More interestingly, the structure of this conventional coexistence curve has no obvious

signatures of pressure mixing, a situation rather di�erent from the 50–50 (∆ = 0) coexis-

tence curve in Eq. (4.47).

We next consider the temperature variation of the fractional volumes of the coexisting

phases, more speci�cally their di�erence ∆. In Eqs. (4.51) and (4.53) we already have ∆ρ̃

and δ t , both as functions of ρ̃ (for �xed ň). Solving the second of these equations for ρ̃

gives to leading order

ρ̃
1/β̃ =

δ t
τ̃3

+

∣∣∣∣ ň
ν1

∣∣∣∣1/β̃

(4.57)

If we then keep only the leading terms in ∆ρ̃ and ρ̃ and write the ratio between them we

�nd

∆ =
ň−ν2(δ t/τ̃3)

2β̃

ν1

[
δ t/τ̃3 + |ň/ν1|1/β̃

]β̃
(4.58)

For o�-critical parents (ň 6= 0) this starts o� at ±1 as it should at the cloud point and then

decreases (in modulus), scaling for ň1/β̃ � δ t� ň1/(2β̃ ) as ň(δ t)−β̃ . The behaviour changes

when δ t ∼ ň1/(2β̃ ) and crosses over to ∆ ≈ −(ν2/ν1)(δ t/τ̃3)
β̃ for δ t � ň1/(2β̃ ). Only the

latter regime is present for the critical coexistence curve (ň = 0). For ň 6= 0, the crossover

between the di�erent regimes implies that on one side of the critical point ∆ will always

depend non-monotonically on δ t . (To �nd which side will have that behaviour we have

to look at the sign of −(ν2/ν1): if this is positive, ∆ is increasing for large δ t and so the

non-monotonicity occurs on the high-density side of the critical point, where ∆ initially

decreases from 1.)

Without pressure mixing, where ν2 vanishes, the corresponding expression is

∆ =
ň−ν3(δ t/τ̃3)

ν1

[
δ t/τ̃3 + |ň/ν1|1/β̃

]β̃
(4.59)

which scales as ň(δ t)−β̃ for ň1/β̃ � δ t� ň, changing when δ t ∼ |ň|1/β̃ and crossing over

to (δ t)1−β for δ t� ň; similar comments about non-monotonicity apply as above, but now

one has to look at the sign of −(ν3/ν1).

Finally we ask about the behaviour of the midpoint diameter of the coexistence curves,
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as well as about its analogue at o�-critical parent densities. For any �xed ň, we de�ne

n̄≡ 1
2(ň++ ň−) as in the introduction. The steps sketched in Appendix 4.B lead to

n̄ =
ν2 l̃2
ν1

(
δ t
τ̃3

)2β̃

−2β̃
ν2 l̃2
ν1

τ̃5

τ̃3

(
δ t
τ̃3

)2β̃+α/(1−α)

(4.60)

In the case without pressure mixing, we have

n̄ =
l̃2ν3

τ̃3ν1
δ t +

l̃2
ν1

(
ν5−ν3

τ̃5

τ̃3

)(
δ t
τ̃3

)1/(1−α)

(4.61)

Compared to the results quoted in the introduction, one sees that the leading exponents

are Fisher-renormalised because of the presence of polydispersity, giving 2β/(1−α) = 2β̃

with pressure mixing and (1−α)/(1−α) = 1 without.

A comparison with the equal volume diameter results is also instructive: Eq. (4.49)

shows that without pressure mixing both diameters have the same scaling behaviour but

with di�erent prefactors. With pressure mixing, only the midpoint diameter has a leading

singular term, while the equal volume diameter starts o� linearly as shown by Eq. (4.44).

It is worth emphasizing also that the midpoint diameter, which is obtained by cooling a

parent with the critical density, always relates to temperatures below the critical point,

t < 0. The equal volume diameter has no such restriction – it only has to lie within the

coexistence region, i.e. below the cloud curve – as we will see in the numerical illustrations

in Sec. 4.7.

Above we have written the midpoint diameter density as a function of temperature,

to ease comparison with treatments elsewhere in the literature. For consistency with the

way we have expressed our results for other phase diagram loci we give the corresponding

inverted relations here, which read

δ t = τ̃3

(
ν1n̄
ν2 l̃2

)1/(2β̃ )

+ τ̃5

(
ν1n̄
ν2 l̃2

)1/(2β )

(4.62)

with pressure mixing and

δ t = τ̃3

(
ν1n̄
ν3 l̃2

)
+

(
τ̃5− τ̃3

ν5

ν3

)(
ν1n̄
ν3 l̃2

)1/(1−α)

(4.63)
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in the case without. As written, the results in Eqs. (4.60), (4.61), (4.62), and (4.63) are valid

only for ň = 0, but their o�-critical versions can be obtained simply via the replacement

n̄→ n̄− ň
(

1− l̃2
ν1

)
.

4.7 Numerics

In this section we compare the scaling expansions derived above to direct numerical eval-

uation of the complete scaling theory. For a given set of numerical values for the mixing

coe�cients one needs to solve the mapping equations (4.4)–(4.6) and the dilution line (or

particle conservation) constraint (4.23). The relation between the Ising variables is given

by the scaling relation (4.3) together with the coexistence-region condition h̃ = 0. In solv-

ing this full system we will not make any further approximations; in particular we will

retain p̃ rather than neglecting it as subleading, and we will use the general expressions

for ρ̌ from Eq. (4.21) without further expansion. (By setting h̃ = 0 we are neglecting the

asymmetry terms from Eq. (4.10); these are subleading even compared to the e�ect of al-

lowing p̃ to be nonzero.) For the required explicit form of the scaling relation (4.3) we have

used the ‘parametric linear model’ of Ref. [116].

While in the analytical development of the previous sections it was convenient to use

ρ̃ to parameterise the various curves in the phase diagram, for the numerics we prefer

t̃ as this enters directly in the scaling form (4.3). One ends up with a system of M + 3

equations (mapping equations plus dilution line constraint) and M+4 variables, the extra

variable in addition to the M +3 variables ň, p̌, t , and µ̌ being precisely t̃ . For each value

of this variable we solve the full system of equations to generate a point in the space of

the physical �uid variables. With this approach we can check both the exponents and

prefactors of the analytical expansions obtained above. In particular we will discuss the

e�ects of pressure mixing. We will see that these generally become weaker as one moves

away from the critical point, leading to crossovers to behaviour characteristic of a system

without pressure mixing.

We started by �nding �tted values for the mixing coe�cients by comparison with cloud

and shadow data obtained in Ref. [114] from computer simulations of a Lennard-Jones

(LJ) �uid with ‘amplitude’ polydispersity. The results as well as the details of the �tting
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LJ- luid data

Figure 4.1: Cloud and shadow data from polydisperse Lennard-Jones (LJ) �uid simu-
lations in Ref. [114] (triangles) and from our numerical solution (empty circles). From
warmer to cooler colours, we also show data for �ve constant fractional volume lines, for
values of ∆ as shown. (In the convention used in later �gures, the strength of pressure

mixing here is fpm = 1.)

method are described in Appendix 4.D. With these �tted mixing coe�cients the numerical

solution led to the cloud and shadow data in Fig. 4.1; notice the good agreement with the

LJ �uid data. We omitted in the �t and in the comparison in Fig. 4.1 those data points from

Ref. [114] that were too far from the CP to allow a meaningful comparison with a scaling

theory for the critical behaviour. From warmer to cooler colours, we also show data for

the numerically calculated constant fractional volume lines (t vs. ň) for ∆ =−0.66,−0.33,

0, 0.33 and 0.66, respectively. Notice that the ∆ = 0 curve, which is the equal volume

diameter, initially moves left and up from the CP, towards higher temperatures and lower

densities. It shares this behaviour with the constant fractional volume lines for negative

∆ as discussed in detail below.

For further numerical evaluation it is useful to be able to vary the strength of pressure

mixing. We do this by scaling the values of the pressure mixing coe�cients according

to j1→ fpm j1 and j2→ fpm j2, where the factor fpm is then a ‘pressure mixing fraction’.

(With this de�nition, fpm = 1 in Fig. 4.1.) Changing fpm in the range 0 to 4 we obtain

data that are physically reasonable and only slightly o� the LJ data from Ref. [114]. But
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predictions change close to the critical point, as we will explore shortly.

We have selected a number of key features of the scaling formulae obtained above

for which we will present supporting numerical data. Firstly, Figs. 4.2 and 4.3 illustrates

how the behaviour of the constant fractional volume lines (t vs. ň for �xed ∆ = 0,±0.1)

depends on pressure mixing. For strong pressure mixing (Fig. 4.2) we can clearly see that,

although the curve for ∆ = 0 separates from the one with ∆ =−0.1 as it moves away from

the CP (main graph), the two curves become tangential to each other at the CP, i.e. they

have the same slope there (inset). This agrees with the prediction for the prefactors of the

leading linear terms in Eqs. (4.40) and (4.43). The curve with ∆ = 0.1 has the same initial

slope but departs from the CP in the opposite direction, towards lower temperatures and

larger parent densities. Two additional lines in Fig. 4.2 show numerical results for small

|∆|. These clarify that, as noted before, all properties are smooth in ∆ away from the CP,

but cross over to the discontinuous change at ∆ = 0 in the direction of departure from the

CP itself.

Fig. 4.3 contrasts these observations with the case without pressure mixing, obtained

by setting fpm = 0. The curves for ∆ = ±0.1 again show the same slope at the CP and

depart in opposite directions. However, the ∆ = 0 line now has a di�erent slope at the

CP and separates linearly from the other lines, consistent with the di�erent prefactors of

the linear terms in Eqs. (4.43) and (4.44) and the discussion in Sec. 4.4 above. Two further

small |∆| lines again illustrate how these discontinuous changes at the CP connect to the

smooth ∆-dependences away from the CP.

Figs. 4.4, 4.5 and 4.6 illustrate the nonlinear terms in the equal volume diameter (∆ = 0

constant fractional volume curve), by showing this diameter on log scales with the leading

linear ň-dependence predicted from Eq. (4.43) taken o�. For high values of fpm we therefore

see a leading nonlinear term with exponent 1/(2β̃ ), in Fig. 4.4. Note that for fpm = 1 the

sub-sub-leading term in Eq. (4.43), with exponent 1/(2β ), would kick in at a value of |ň|

well inside the range shown. In order to see the �rst sub-leading term with exponent

1/(2β̃ ) clearly we therefore used fpm = 0.05. A small residue of this competition remains,

causing the slight upward shift of the numerical data compared to the theory at low |ň|.

As we decrease fpm (Fig. 4.5), a crossover to the result without pressure mixing, Eq. (4.44),
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Figure 4.2: Constant fractional volume lines. Linear scale plot of numerical data (circles)
and theoretical predictions (lines) for the lines de�ned by ∆ = 0 and ∆ =±0.1. Strong
pressure mixing, fpm = 4. Inset: zoom on the region close to the CP. Additional numerical
data (small �lled symbols and dash-dotted lines) are shown for two small |∆|, with ∆-
values chosen in order to illustrate the smooth ∆-dependence of the curve away from the

CP.

becomes visible inside our |ň|-range. However, this occurs where the dominant term in

Eq. (4.44) is already the one with exponent 1/(1−α). At fpm = 0, �nally, pressure mixing

e�ects disappear and we observe only the term with exponent 1/(1−α) (see Fig. 4.6).

As in Fig. 4.5, there is in principle a linear contribution that arises because we are sub-

tracting the linear prediction with pressure mixing, which has a di�erent prefactor and so

cannot cancel the linear term without pressure mixing. This should dominate at small |ň|

but is quantitatively too small to be visible. We emphasize that in all cases the numerical

data agree with the theoretical predictions agree not just in exponent (slope) but also in

prefactor.

As discussed above in Section 4.4, Eq. (4.45) shows that in the ‘with pressure mixing’

regime the temperature di�erence δ t0 = tcloud−t∆=0 between the cloud curve and the equal

volume diameter should have no linear term in ň; the leading contribution is singular,

with exponent 1/(2β̃ ) from Eq. (4.45). This is exactly what can be observed in Fig. 4.7.

Subsequently, we would expect to see the term with exponent 1/(2β ) as one moves away
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Figure 4.3: (Similar to Fig. 4.2.) No pressure mixing, fpm = 0; notice the distinct slope
of the equal volume diameter (∆ = 0 line). Again, additional numerical data (small �lled
symbols and dash-dotted lines) are shown for two small |∆|, with ∆-values chosen in

order to illustrate the smooth ∆-dependence of the curve away from the CP.

Figure 4.4: Equal volume diameter (∆ = 0). Log-log plots of numerical data for |t− τ1
ν1

ň|
vs. |ň|, i.e. with predicted leading term removed (empty circles). It shows a change of
sign in ň at higher |ň|. Lines are theoretical predictions. Moderate pressure mixing,

fpm = 0.05, shows the leading power law term with exponent 1/(2β̃ )' 1.37.

from CP. However, before this happens, a crossover to the ‘without pressure mixing’ regime

occurs, where there is a leading linear piece from Eq. (4.46). This is however largely masked

by the next term with exponent 1/(1−α). If pressure mixing is switched o� completely
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Figure 4.5: (Similar to Fig. 4.4.) Weak pressure mixing, fpm = 0.006, produces a crossover
between power laws with pressure mixing (solid line) and without (dashed line, exponent

1/(1−α)' 1.12).

Figure 4.6: (Similar to Fig. 4.4.) No pressure mixing, fpm = 0.

( fpm = 0), the linear contribution is clearly visible (see inset of Fig. 4.7) as well as the

crossover to |ň|1/(1−α).

For our last set of numerical results for constant fractional volume we look in Figs. 4.8

and 4.9 at the ∆ = 0 coexistence curves of t vs. ň±, in order to verify Eq. (4.47). Even with

weak pressure mixing ( fpm = 0.025) the leading quadratic term can easily be discerned, as

can a contribution that survives even without pressure mixing, with exponent 1/β . The
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Figure 4.7: Temperature di�erence between cloud curve and equal volume diameter.
Log-log plots of numerical data for |δ t0| vs. |ň| at fpm = 0.015 (empty circles). Solid line:
contribution with exponent 1/(2β̃ ) ' 1.37 from the theoretical prediction. A crossover
to the regime without pressure mixing is seen, where terms with exponents 1 (dotted) and
1/(1−α)' 1.12 (dashed) compete, kick in around the same value of |ň|. Inset: Without

pressure mixing, fpm = 0, the term with exponent 1/(2β̃ ) is absent.

terms with intermediate exponents 3 and 1/β̃ cannot be seen as they are quantitatively

too small. This is also why we do not plot the ň− branch, which would di�er from ň+ only

by the small third order term. The inset shows the case fpm = 0: now only the terms with

exponents 1/β̃ and 1/β can be observed. This is as expected from Eq. (4.47) since without

pressure mixing the terms with exponents 2 and 3 drop out. Fig. 4.9 is similar to Fig. 4.8, but

now for larger fpm = 2. The quadratic term that signals pressure mixing is clearly visible

starting from ň' 10% and extending for several decades towards the CP, suggesting that

it could be amenable to relatively straightforward experimental veri�cation.

Now we move on to the numerical results for �xed parent density ň. At ň = 0 we

�rst consider (see Fig. 4.10) the dependence of the fractional volume parameter ∆ on the

temperature di�erence to the CP, δ t =−t . Data for fpm = 1 and fpm = 0 clearly show the

exponents and prefactors for the cases with and without pressure mixing as predicted by

Eqs. (4.58) and (4.59), respectively. Note that close to the CP the di�erence |∆| between

the fractional volumes of the two coexisting phases is orders of magnitude larger with
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Figure 4.8: Equal fractional volume coexistence curve. Log-log plot of numerical data for
|t| vs. |ň+| for ∆ = 0 at fpm = 0.025 (empty circles), showing a change of sign in t . Solid
and dashed lines: theoretical predictions for the terms with exponent 2 and 1/β ' 3.07,
respectively. Inset: No pressure mixing, fpm = 0. As predicted, only contributions with

exponents 1/β̃ ' 2.73 (solid) and 1/β (dashed) can be observed.

pressure mixing than without, suggesting a potential route for experimental detection of

pressure mixing e�ects that would not require precise exponent measurements.

Keeping our focus on the critical parent (ň= 0) we �nally look at the midpoint diameter

n̄ vs. δ t (Fig. 4.11), for which we have the theoretical prediction Eqs. (4.60) and (4.61) in

the cases with and without pressure mixing. The leading order terms are seen clearly

close to the CP. Notice in particular how without pressure mixing, the singular ∼ δ t1−α

dependence from the monodisperse case conspires with mixture e�ects to reproduce a

rectilinear midpoint diameter, |ň| ∼ δ t .

4.8 Conclusions and discussion

We have used complete scaling theory to relate standard 3D Ising criticality to polydis-

perse criticality, and thus to predict the scaling of a number of important properties of the

phase diagram of polydisperse �uids. These predictions, which we summarise in Table

4.1, were also con�rmed in comparisons with numerical evaluations of the full theory. We
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Figure 4.9: Similar to Fig. 4.8 but now with stronger pressure mixing, fpm = 2. The
characteristic quadratic term is now visible as far as ň' 10% from the CP.

have emphasised the potential e�ects of pressure mixing in the scaling �elds, and have

highlighted a number of new observables that could be used to detect such e�ects.

A number of the potentially useful observables involve the equal volume diameter,

which determines for any �xed overall (parent) density ň at what temperature a phase

split with ∆ = 0, i.e. with equal fractional volumes occupied by the coexisting phases, is

produced. From Table 4.1 we see that this diameter itself has a leading linear variation

independently of pressure mixing. The distance δ t0 to the cloud curve, which is the extra

temperature decrease that is required to get from the onset of phase separation to a 50–50

phase split, shows a clearer signature, with the leading density dependence being linear

without pressure mixing but singular with exponent 1/2β̃ ' 1.37 when pressure mixing is

present. The 50–50 coexistence curve, which records the coexisting densities for parents

on the equal volume diameter, is likewise a potentially useful probe: its leading quadratic

term disappears without pressure mixing.

For measurements at �xed critical parent density, the di�erence ∆ of the fractional

phase volumes also shows clear signatures of pressure mixing, with a smaller exponent

(β̃ rather than 1− β̃ ) leading to signi�cantly larger ∆ near the critical point (CP) when
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Figure 4.10: Di�erence in fractional volumes of coexisting phases produced from critical
parent (ň = 0). Log-log plots of numerical data for |∆| vs. |δ t|; ∆ changes sign at larger
δ t . Data with pressure mixing ( fpm = 1, empty circles) and without ( fpm = 0, empty
squares) agree well with the theoretically predicted power laws with exponents β̃ ' 0.37

and 1− β̃ ' 0.63, respectively.

Figure 4.11: Midpoint diameter. Log-log plots of numerical data for |n̄| vs. |δ t| for �xed
ň = 0. For fpm = 1 (pressure mixing, empty circles), the solid line shows our prediction
for the power law, with exponent 2β̃ ' 0.73. For fpm = 0 (no pressure mixing, empty
squares), the predicted exponent is 1. The numerical data agree well with the predictions

close to the CP.
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Table 4.1: Summary of analytical results (without prefactors). Abbreviations: ‘var.’ =
‘variable’, ‘diam.’ = ‘diameter’, ‘Frac.’ = ‘Fractional’, ‘vol.’ = ‘volume’, and ‘temp’ = ‘tem-

perature’. Remember that δ t0 ≡ tcloud− t∆=0.

Curve Fixed
var. With pressure mixing Without pressure

mixing Figs.

Cloud and
others ∆ 6= 0 t ∼ ň+ ň2 + |ň|1/β̃ +

ň3 + |ň|1/β

t ∼ ň+ ň2 + |ň|1/β̃ +

ň3 + |ň|1/β

4.1, 4.2
& 4.3

Equal
volume
diam.

∆ = 0 t ∼ ň+ ň1/(2β̃ )+ ň1/(2β ) t ∼ ň+ ň1/(1−α)
4.2, 4.3,
4.4, 4.5
& 4.6

tcloud− t∆=0
vs. ň

∆ =±1
∆ = 0 δ t0 ∼ ň1/(2β̃ )+ ň1/(2β ) δ t0 ∼ ň + ň1/(1−α) 4.7

Shadow and
others ∆ 6= 0

t ∼ ň±+ ň2
±+

|ň±|1/β̃ + ň3
±+ |ň±|1/β

t ∼ ň±+ ň2
±+

|ň±|1/β̃ + ň3
±+ |ň±|1/β

4.1

50–50
coexistence ∆ = 0 t ∼ ň2

±+ |ň±|1/β̃ +

ň3
±+ |ň±|1/β t ∼ |ň±|1/β̃ + |ň±|1/β 4.8 &

4.9

Coexistence
curve ň = 0 δ t ∼ |ň±|1/β̃ + |ň±|1/β

δ t ∼ |ň±|1/β̃ + |ň±|1/β N/A

Frac. vol. vs.
temp. ň = 0 ∆∼ δ t β̃ ∆∼ δ t1−β̃ 4.10

Midpoint
diam. ň = 0

δ t ∼ n̄1/(2β̃ )+ n̄1/(2β )

n̄∼ δ t2β̃ +δ t2β̃+α/(1−α)

δ t ∼ n̄+ n̄1/(1−α)

n̄∼ δ t +δ t1/(1−α)
4.11

pressure mixing is present. Finally, the midpoint diameter, de�ned as the average of the

coexisting densities produced by a critical parent, is also sensitive to pressure mixing as

found previously in the literature in analogous studies of monodisperse systems: the mid-

point density n̄ varies linearly with temperature without pressure mixing but singularly

with exponent 2β̃ when pressure mixing is present.

The above predictions are all amenable to experimental veri�cation and as tools to

detect pressure mixing e�ects. How easy this is will of course depend on the speci�c

�uid system and in particular on the accuracy that can be achieved for measurements

close to the CP. While we have found that some crossovers require quite a few orders

of magnitude to see clearly, other properties like those connected to the equal fractional

volume coexistence curve (Section 4.4) should be more easily accessible.

We note that in Ref. [111], where a complete scaling theory for weakly compressible
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binary liquids was developed, the authors used literature data [117] to show that the ef-

fective leading-order exponent of the midpoint diameter is 0.75, whereas the predicted

leading and subleading exponents were respectively 2β ' 0.65 and 1−α ' 0.89. A pos-

sible explanation is that the data falls within a crossover range. Alternatively there could

be impurities in the experimental set-up that would act as a hidden �eld in the calcula-

tions, resulting in the Fisher-renormalisation [118] of the leading exponent that we also

�nd. This would change the exponent from 2β to 2β̃ = 2β/(1−α)' 0.73 (see Ref. [110]),

close to the experimental result. Note that our results do not directly apply to the �xed

pressure situation considered in Ref. [111] since we have kept overall density �xed in-

stead. (Fisher renormalisation of exponents at �xed composition and density was already

found and discussed in Ref. [119] for the simpler revised scaling approach, in the context

of binary mixtures.)

It is interesting to observe that if we were dealing with mean-�eld criticality, where

α = 0 and β = β̃ = 1/2, all terms that we have derived in the expansion of both the

midpoint and equal volume diameters would simply degenerate to linear contributions,

though – as one might expect on general grounds due to fractionation – the prefactors

would di�er between the two diameter de�nitions.

In future work we plan to look at additional properties of polydisperse colloidal �uids

using the same setup presented here, i.e. a framework for polydisperse �uids with complete

scaling, in the experimentally relevant case of controlled overall particle density. Such

properties could include Tolman’s length [120], dielectric constant [121], refractive index

[122], thermal and transport properties [119,123,124], and more generally other properties

that can be obtained from the dependence of the pressure on the other variables [125]. It

will be interesting to see what new physical insights can be gained from the inclusion of

polydispersity and potential pressure mixing e�ects. We also plan to study more closely

the crossover between monodisperse and polydisperse critical behaviour that one expects

to see in weakly polydisperse systems, building on perturbative approaches to polydisperse

critical behaviour [44].
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Appendices

4.A Expansion coe�cients from mixing coe�cients

As explained in the main text, by inserting Eqs. (4.30)–(4.33) into Eqs. (4.26)–(4.29), and

comparing terms order by order, we obtain sets of equations that involve no thermody-

namic variables, i.e. they contain only coe�cients. These can be solved to extract the

expansion coe�cients νi,ν
′
i ,πi,π

′
i ,τi,τ

′
i ,mi and m′i in terms of the mixing coe�cients.

The conditions for the O(∆ρ̃) coe�cients are

0 = π1− k0τ1−fTm1 (4.64)

0 = − j1π1 + τ1− lT1m1 (4.65)

0 = − j2π1− k2τ1 + l
T
2m1 (4.66)

−l̃2 = −fν1 +(2m0f +n3)π1 +(n0f +v0)τ1 +(fnT
3 +2q0)m1 (4.67)

while for O(ρ̃2) one gets

0 = π2− k0τ2−fTm2 (4.68)

0 = − j1π2 + τ2− lT1m2 (4.69)

0 = − j2π2− k2τ2 + l
T
2m2 (4.70)

j2l̃2 = −fν2 +(2m0f +n3)π2 +(n0f +v0)τ2 +(fnT
3 +2q0)m2 (4.71)
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The analogous relations for the coe�cients of the O(ρ̃1/β̃ ) terms read

0 = π3− k0τ3−fTm3 (4.72)

0 = − j1π3 + τ3− lT1m3 (4.73)

0 = − j2π3− k2τ3 + l
T
2m3 (4.74)

−b( j1f + l1) = −fν3 +(2m0f +n3)π3 +(n0f +v0)τ3

+(fnT
3 +2q0)m3 (4.75)

and �nally for O(ρ̃1/β ):

0 = π5− k0τ5−fTm5 (4.76)

−a = − j1π5 + τ5− lT1m5 (4.77)

0 = − j2π5− k2τ5 + l
T
2m5 (4.78)

0 = −fν5 +(2m0f +n3)π5 +(n0f +v0)τ5 +(fnT
3 +2q0)m5. (4.79)

These conditions all take the same form because they relate to terms that are linear in the

‘input variables’ of the expansion described in the main text, i.e. ∆ρ̃ , ρ̃2, bρ̃1/β̃ and ρ̃1/β .

The (∆ρ̃)2 and third order terms in the expansions (4.30)–(4.33) are quadratic or third order

in these input variables; the equations for their coe�cients would therefore involve higher

order mixing coe�cients that we have not written down in Eqs. (4.4)–(4.6), so we do not

state them here.

The conditions above are in principle straightforward to solve, requiring only the in-

version of the (M+3)×(M+3) coe�cient matrix on the right hand side. One expects that

all coe�cients must generically be nonzero, although the monodisperse case is exceptional

(see Section 4.5). Note that one can always proceed by �rst obtainingmi (i = 1,3,5) from

the last equation of each set to reduce the problem to three linear equations for the remain-

ing expansion coe�cients. This �rst step involves the inversion of the matrix fnT
3 +2q0.

Except for M = 1 this requires a nonzero (and in general full-rank, invertible) q0, support-

ing our conclusion in the main text that nonlinear mixing e�ects as speci�ed by q0 need

to be accounted for to obtain a meaningful description of critical mixture behaviour.
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We note �nally that the inhomogeneities on the left hand sides of (4.64)—(4.67) and

(4.68)—(4.71) are directly proportional to each other. Accordingly the expansion coe�-

cients for O(∆ρ̃) and O(ρ̃2) terms that these equations determine are likewise propor-

tional:

ν2 =− j2ν1, τ2 =− j2τ1, π2 =− j2π1, m2 =− j2m1. (4.80)

From these results one deduces, in particular, that τ̃2 = 0 as explained in Section 4.4 in the

main text.

4.B Coexisting densities

In the following we present a number of additional analytical results (and intermediate

steps) for the coexisting densities ň± in both �xed-∆ and �xed-ň contexts. We start by

writing down the result for t vs. ň± for �xed ∆ (see Section 4.4):

t =
τ1∆

±l̃2 +∆(ν1− l̃2)
ň±

−
[
[ν2±g2∆+(ν ′2−g2)∆

2]τ1∆

±l̃2 +∆(ν1− l̃2)
− τ2 + τ

′
2∆

2
](

ň±
±l̃2 +∆(ν1− l̃2)

)2

−
(

ν3τ1∆

±l̃2 +∆(ν1− l̃2)
− τ3

)(
ň±

±l̃2 +∆(ν1− l̃2)

)1/β̃

−
{
[±g4 +(ν4−g4)∆±g′4∆2 +(ν ′4−g′4)∆

3]τ1∆

±l̃2 +∆(ν1− l̃2)
− (τ4∆+ τ

′
4∆

3)

−2
(

ν2±g2∆+(ν ′2−g2)∆
2

±l̃2 +∆(ν1− l̃2)

)[
[ν2±g2∆+(ν ′2−g2)∆

2]τ1∆

±l̃2 +∆(ν1− l̃2)

− (τ2 + τ
′
2∆

2)

]}(
ň±

±l̃2 +∆(ν1− l̃2)

)3

−
(

ν5τ1∆

±l̃2 +∆(ν1− l̃2)
− τ5

)(
ň±

±l̃2 +∆(ν1− l̃2)

)1/β

. (4.81)
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As pointed out in the main text, the shadow curve is obtained by taking ň± for ∆ = ∓1,

giving

t =
τ1

ν1−2l̃2
ň±−

[
(ν2 +ν ′2−2g2)τ1

ν1−2l̃2
− (τ2 + τ

′
2)

](
ň±

ν1−2l̃2

)2

−
(

ν3τ1

ν1−2l̃2
− τ3

)∣∣∣∣ ň±
ν1−2l̃2

∣∣∣∣1/β̃

−
{
[ν4 +ν ′4−2(g4 +g′4)]τ1

ν1−2l̃2
− (τ4 + τ

′
4)

−2
(

ν2 +ν ′2−2g2

ν1−2l̃2

)[
(ν2 +ν ′2−2g2)τ1

ν1−2l̃2
− (τ2 + τ

′
2)

]}(
ň±

ν1−2l̃2

)3

−
(

ν5τ1

ν1−2l̃2
− τ5

)∣∣∣∣ ň±
ν1−2l̃2

∣∣∣∣1/β

. (4.82)

To obtain the coexisting densities at �xed ň (Section 4.6) rather than �xed ∆ as above,

one starts from the general expansion (4.36) and then uses Eq. (4.51) to eliminate ∆ρ̃ , to

obtain an expansion in terms of ρ̃ only:

ň± = ň± l̃2ρ̃− l̃2∆ρ̃±g2ρ̃(∆ρ̃)−g2(∆ρ̃
2)±g4ρ̃

3−g4ρ̃
2(∆ρ̃)

±g′4ρ̃(∆ρ̃)2−g′4(∆ρ̃)3 (4.83)

=

(
1− l̃2

ν1

)
ň± l̃2ρ̃ +

ν2 l̃2
ν1

ρ̃
2±g2ρ̃

ň
ν1

+

(
ν ′2 l̃2
ν1
−g2

)(
ň
ν1

)2

+
ν3 l̃2
ν1

ρ̃
1/β̃

±
(

g4−
ν2g2

ν1

)
ρ̃

3 +

[
−g4 +

ν4 l̃2
ν1

+2
ν2

ν1

(
g2−

ν ′2 l̃2
ν1

)]
ρ̃

2 ň
ν1

±
(

g′4−
ν ′2g2

ν1

)
ρ̃

(
ň
ν1

)2

+

[
−g′4 +

ν ′4 l̃2
ν1

+2
ν ′2
ν1

(
g2−

ν ′2 l̃2
ν1

)](
ň
ν1

)3

+
ν5 l̃2
ν1

ρ̃
1/β . (4.84)

As explained in the main text, one can then determine ρ̃ from this expression to eliminate

it from a similar expansion for the temperature, Eq. (4.53), in order to determine the tem-

perature dependence of the coexisting densities ň± at �xed ň that is stated in Eq. (4.55). For

the diameter, de�ned as n̄ ≡ 1
2(ň++ ň−), one can proceed similarly. Starting again from
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Eq. (4.36) and using (4.50)

n̄ = ň−∆[l̃2ρ̃ +g2∆ρ̃
2 +g4ρ̃

3 +g′4∆
2
ρ̃

3] (4.85)

= (ν1− l̃2)∆ρ̃ +(ν2−g2∆+ν
′
2∆

2)ρ̃2 +ν3ρ̃
1/β̃

+(g4 +ν4∆+g′4∆
2 +ν

′
4∆

3)ρ̃3 +ν5ρ̃
1/β . (4.86)

Once ∆ has been eliminated to �x ň, again using Eq. (4.51), this becomes

n̄ =

(
1− l̃2

ν1

)
ň+
(

ν ′2 l̃2
ν1
−g2

)(
ň
ν1

)2

+
ν2 l̃2
ν1

ρ̃
2

+
ν3 l̃2
ν1

ρ̃
1/β̃ +

ň
ν1

ρ̃
2
[

2 j2 l̃2ν ′2
ν1

+
l̃2ν4

ν1
−2 j2g2−g4

]
+

(
ň
ν1

)3
[

2g2ν ′2
ν1
− 2l̃2ν ′2

2

ν2
1

+
l̃2ν ′4
ν1
−g′4

]
+

ν5 l̃2
ν1

ρ̃
1/β (4.87)

Again one has to eliminate ρ̃ . For the diameter it is convenient to have an expression for

n̄ in terms of δ t rather than vice versa, so here one solves Eq. (4.53) for ρ̃ . Focussing on

the simplest case ň = 0, this yields

ρ̃ =

(
δ t
τ̃3

)β̃

− β̃
τ̃5

τ̃3

(
δ t
τ̃3

)β̃+α/(1−α)

. (4.88)

and after insertion into Eq. (4.87) one �nds (4.60). When pressure mixing is absent, one

can check by going back to Eq. (4.51) that, again for ň = 0, all terms with integer powers

vanish in Eq. (4.87):

n̄ =
l̃2
ν1

(
ν3ρ̃

1/β̃ +ν5ρ̃
1/β

)
. (4.89)

Eliminating ρ̃ again using Eq. (4.88) then leads to Eq. (4.61) in the main text.

4.C Equivalence between mixtures with di�erent numbers

of species

In this appendix we explain how the critical phase behaviour of a �uid mixture with a

certain number of species can be described equivalently in terms of a mixture with an
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‘in�ated’ number of species. As explained in the main text, this is useful in order to under-

stand how the monodisperse limit can be approached starting from a polydisperse system.

Consider a mixture with M′ species and mixing coe�cients j′1, j′2,k
′
0,k
′
2, l
′
0, l
′
1, l
′
2,q
′
0,

etc. We want to map it onto a system with M > M′ and mixing coe�cients j1, j2,k0,k2, l0,

l1, l2,q0, etc. such that both systems are physically equivalent with respect to their phase

behaviour near the critical point. We nominally create new species by ‘painting’ particles,

allowing them to be distinguished by an additional colour label without changing any of

their physical properties. Each original species is thus divided into one or more coloured

subspecies, in such a way that

ρ
′
i = ∑

j∈i
ρ j (4.90)

where ρ ′i is the density of a particle species i in the original labelling and the ρ j are similarly

the densities of the subspecies arising from i by colouring, as indicated symbolically in the

sum by the notation j ∈ i. In terms of the new, M-species description, the free energy

density of the system is (setting kB = 1 here)

f = T
M

∑
j=1

ρ j(lnρ j−1)+ fex({ρ ′i}) (4.91)

where fex is the excess free energy density and can be expressed as a function of the

original composition {ρ ′i} since colouring the particles by de�nition does not a�ect their

physical interactions.

The chemical potentials of the coloured particles are obtained from f by di�erentiation

as

µ j =
∂ f
∂ρ j

= T lnρ j +
∂ fex({ρ ′i})

∂ρ j
(4.92)

Now because of Eq. (4.90), changing ρ j changes only the density ρ ′i of the original species

that subspecies j belongs to, by the same amount. It follows that

µ j−T lnρ j =
∂ fex

∂ρ ′i
for all j ∈ i (4.93)

The intuitive content of this relation is that the excess chemical potential, which encodes

the physical properties of each particle type, is the same for subspecies j as for the original
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species i that was coloured to obtain j.

Now consider a small change dµ j in all subspecies chemical potentials. Eq. (4.93) then

implies

dµ j = T
dρ j

ρ j
+∑

k

∂ 2 fex

∂ρ ′i ∂ρ ′k
dρ
′
k (4.94)

Multiplying by ρ j and summing over j ∈ i gives, using on the r.h.s. again (4.90),

∑
j∈i

ρ j dµ j = T dρ
′
i +∑

k
ρ
′
i

∂ 2 fex

∂ρ ′i ∂ρ ′k
dρ
′
k (4.95)

This can be read as a vector equation for the density changes dρ ′i of the original species as a

function of the weighted chemical potential changes associated with each original species,

∑ j∈i ρ j dµ j, on the l.h.s. In particular, if these weighted changes are all zero, then also the

original species densities remain unchanged, dρ ′i ≡ 0. As we are keeping temperature T

�xed, also pressure must then remain unchanged. In summary, any chemical potential

change that obeys

∑
j∈i

ρ j dµ j = 0 (4.96)

for all i will not change the physical state of the system in any way. (What it will modify is

the physically irrelevant distribution of coloured subspecies within each physical particle

species.) In the mapping equations (4.4)–(4.6), such a chemical potential change must then

leave the Ising scaling variables on the l.h.s. unchanged, as well as the temperature t and

pressure p̌ on the r.h.s.

The above invariance with respect to most changes of the chemical potentials for the

labelled particle species puts signi�cant constraints on the mixing coe�cients for the M-

species system in Eqs. (4.4)–(4.6) as we now show. Consider �rst the simplest case M′ =

1. In vector form, the chemical potential changes we are considering obey ρ̌Tdµ̌ = 0;

we can use the shifted and scaled chemical potentials µ̌ here because their changes are

proportional to those of the conventional chemical potentials. For any such dµ̌ the Ising

scaling pressure must not change, hence d p̃ = (∂ p̃/∂ µ̌)Tdµ̌ = 0. This implies that the

vectors ρ̌ and ∂ p̃/∂ µ̌ are proportional as otherwise one could �nd a dµ̌ that is orthogonal

to ρ̌ but not to ∂ p̃/∂ µ̌. Applying the same logic to the other two scaling variables shows
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that

ρ̌ ∝
∂ p̃
∂ µ̌

∝
∂ t̃
∂ µ̌

∝
∂ h̃
∂ µ̌

(4.97)

In other words, at any state point the gradients of the three mapping equations w.r.t. the

chemical potentials must be proportional to each other. Writing out the gradient for e.g.

p̃ from Eq. (4.4) one has

∂ p̃
∂ µ̌

=−l0−2q0µ̌− tv0− p̌n3 (4.98)

At the critical point this reduces to −l0, and comparing with the analogous gradients for

t̃ and h̃ shows that

l0 ∝ l1 ∝ l2 (4.99)

As l0 = f , also l1 and l2 must then be proportional to f , and it remains to �x their nor-

malisation. This can be done by comparing Eq. (4.21) for the densities ρ̌ in the coloured

(M-species) system with the analogous expression for the density in the original M′ = 1

system. Using the constraint that the labelled densities must add up to the original density,

Eq. (4.90), then shows that we must have eTl1 = l′1 and eTl2 = l′2. Since eTf = 1 by con-

struction, the explicit mapping from M′ = 1 to an equivalent M-species system for these

mixing coe�cients is

l1 = f l′1, l2 = f l′2 (4.100)

By comparing gradients like (4.98) at nonzero t or p̌ one shows easily that also v0 = fv′0,

n3 = fn′3 with analogous results for all other vector mixing coe�cients. For the matrix

q0 one notes that q0µ̌ must also be proportional to f , otherwise one could change the

direction of the gradient (4.98) by moving around state space and do so in a di�erent way

for the di�erent scaling variables, thus destroying the proportionality (4.97). By symmetry
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of q0 and the same normalisation argument as above one then �nds

q0 = fq′0f
T (4.101)

in terms of the mixing coe�cient q′0 of the original M′ = 1 system. Analogous results

apply for the other matrix mixing coe�cients.

The generalisation of the above reasoning to M′> 1 is not di�cult. If we de�ne for each

i the vector ρ̌i as the one collecting the densities of the corresponding labelled subspecies

j ∈ i, with all other entries set to zero, then the chemical potential changes that leave the

physical state of the system invariant obey ρ̌T
i dµ̌ = 0 for all i. The three scaling variable

gradients [(∂ p̃/∂ µ̌), etc.] must then be linear combinations of the vectors ρ̌i at each state

point. At the critical point these vectors are proportional to the vectors fi, de�ned such

that fi collects the nonzero entries of f that correspond to original species i. One thus

has, taking l1 as an example

l1 = ∑
i

Lifi (4.102)

The coe�cients Li can be worked out from the density sum constraints (4.90) again, giving

l1 = ∑
i
fi (l

′
1)i/ f ′i (4.103)

where the parent distribution in the original system, f ′i = e
Tfi =∑ j∈i f j, naturally emerges

as normaliser. If we de�ne a rectangular M×M′ ‘in�ation’ matrix by

S ji = f j/ f ′i for j ∈ i (4.104)

and S ji = 0 otherwise, then the relation (4.102) can be written in the simple matrix form

l1 = S l
′
1 (4.105)
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This then applies to all vector mixing coe�cients. Matrix mixing coe�cients are in�ated

from M′ to M similarly by

q0 = Sq
′
0S

T (4.106)

etc. This transformation would then generalise to tensorial mixing coe�cients in the ob-

vious way, which would arise if one chose to include third or higher order terms in the

mapping equations (4.4)–(4.6). In essence the transformation ensures that the M chem-

ical potentials µ̌ in the larger system enter all physical properties only through the M′

weighted combinations STµ̌, consistent with the invariance condition (4.96).

Beyond conceptual use in understanding the monodisperse limit, the above method

could also be deployed in �tting mixing coe�cients to numerical data for the critical be-

haviour of polydisperse systems. In principle a description with M as large as possible is

preferred as it would capture the most detail; on the other hand, the computational costs

will increase with the number of �tting parameters and hence with M (see Section 4.D).

One could therefore envisage initially �tting parameters for some small M′ and then using

the method above to map these to an equivalent representation with larger M. This should

then constitute a suitable initial point for further parameter optimisation in the larger de-

scription. The process could be repeated in an iterative manner, building up increasingly

re�ned data-driven descriptions of the critical behaviour of a polydisperse system.

4.D Fitted mixing coe�cients

In order to �nd �tted mixing coe�cients, we �rst created a forward routine that, for any

given set of mixing coe�cients, solves the full system of equations (mapping equations

and dilution line constraint) numerically to produce predictions for the cloud and shadow

curves. The root mean squared error between these predictions and those Lennard-Jones

data points from Ref. [114] that were not too far from the CP was then used as the objective

function, to be minimised across all possible assignments of mixing coe�cients. Only l0 is

taken as �xed because as shown in the main text it has to equal to the normalised parent

distribution f .
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Even for the smallest mixture description, M = 2, this still leaves 38 linear and quadratic

mixing coe�cients to be found; for general M this number is
(
26+19M+3M2

)
/2, bear-

ing in mind that each mixing vector contributes M parameters and each (symmetric) mix-

ing matrix M(M+1)/2. Minimisation of the root mean square objective over such a large

parameter space proved di�cult, in particular due to the presence of a large number of

local minima. We therefore chose to simplify the set of mixing coe�cients by keeping all

�rst order coe�cients plus q0, and setting the remaining coe�cients of quadratic terms

to zero. The choice of q0 was driven by the fact that, as explained in Appendix 4.A, the

presence of this term is essential in order to have a consistent theory that can properly de-

scribe fractionation. [Initially we observed that q0 is the only matrix that turns up when

expressing the slope in Eq. (4.42) in terms of the original, mixing coe�cients. This fact led

us to predict that q0 would be important in the polydisperse critical phase behaviour. In

fact if one includes only �rst-order mixing coe�cients then fractionation may be wrongly

taken into account. We know that this occurs for sure when M > 3, as discussed in Sec-

tion 4.2.] Of course we expect that in reality the other quadratic mixing coe�cients will

not be exactly zero but, as shown in Fig. 4.1, setting them to zero as we did is reasonable

given that it still allows us to �t the simulation data well. For the same reason we �xed

the amplitude parameter in the scaling relation (4.3) to Q = 1.

Given the considerations above we limited ourselves to �tting mixing coe�cients for

a mixture description with the smallest non-trivial value, M = 2. One then has to make an

appropriate assignment of the e�ective parent distribution f for this chosen M. The actual

distribution of the polydisperse attributed used in Ref. [114] was roughly bell-shaped, more

speci�cally a Schulz distribution with a standard deviation of 14% of the mean, limited to

the range 0.5 < σ < 1.4 and then renormalised appropriately. To �nd f we formed M bins

evenly spaced across the σ -range and then integrated the probability within each bin. For

M = 2 this led to

fT =

[
0.378 0.622

]
(4.107)

[In the above it became clear that, because of the similarly drawn composition, even the

M = 2 numerics can be a good match to the Lennard-Jones data, even though in Ref. 114
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they considered 120 bins. (One can think of our distribution as a quantitative analogue for

M = 2 of the distribution used in Ref. 114.)] The best mixing coe�cients corresponding to

this choice of f were found using a combination of global optimisation using simulated

annealing and local optimisation near candidate local minima. This produced the following

nonzero coe�cients:

lT1 =

[
−0.836 −0.987

]
(4.108)

lT2 =

[
1.10 1.05

]
(4.109)

q0 =

0.980 0.147

0.147 0.600

 (4.110)

j1 = 0.231, j2 = 0.217 (4.111)

k0 =−0.599,k2 =−0.996 (4.112)

As explained above, all other mixing coe�cients were set to zero. (Note that the numer-

ical procedure used to obtain the �tted mixing coe�cients could in principle pick up the

unphysical sign for the mixing coe�cients in the expansion for h̃. This would lead e.g. to

ν1 < 0 despite our comment in Subsection 4.3.1 saying it should be positive. However, be-

cause all the numerical data generated here is in the coexistence region or on its boundary,

i.e. h̃ = 0, one could �ip the sign of all the coe�cients in the expansion of h̃, i.e. l2, j2, and

k2, without changing any of the numerical data.)

We also considered an alternative route towards �tting mixing coe�cients, where

cloud and shadow curve data are �rst �tted to the form we �nd in our analytical expan-

sions [Eqs. (4.42) and (4.82)], using arbitrary prefactors. Given our theoretical predictions

that express these prefactors in terms of the mixing coe�cients one could then, in a second
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step, �nd a set of coe�cients that reproduces the �tted prefactors. While this approach is

a priori attractive, it proved to be computationally no simpler and also has two conceptual

drawbacks. Firstly, as our analytical expansions are truncated beyond a certain order, there

is a possibility that they would be accidentally used for �tting in a region where the dis-

carded terms would be signi�cant. Secondly, using the theoretically predicted expansions

for cloud and shadow as part of the �tting procedure would have removed the possibility

of testing these predictions in an unbiased manner.

146



Chapter 5

Conclusions

5.1 Summary of results

This thesis is concerned with how polydispersity alters the phase behaviour of �uids. In

particular our theoretical set-ups are relevant for the behaviour of colloids, which are typ-

ically polydisperse in the real world. Here we investigated important phenomena that

would not be present in simpli�ed monodisperse approaches. This was done both in the

context of the phase separation dynamics that proceeds after a temperature quench into

the coexistence region, where we have made use of the Polydisperse Lattice-Gas model,

and at equilibrium in the critical region of the phase diagram, in which case we employed

Fisher’s ‘complete scaling’ mapping approach generalised to multi-component systems.

We highlight the key conclusions from our work here, referring to the conclusion sec-

tions of the individual chapters for further detail. In Chapter 2 we provided strong theoret-

ical evidence that, due to ‘slow fractionation’, (i) dense colloidal mixtures phase-separate

in two stages and (ii) the denser phase contains long-lived composition heterogeneities,

meaning that the actual equilibrium phase compositions may be unobservable in experi-

ments. We have developed a two-dimensional histogram method that allows us to analyse

slow fractionation e�ects in any phase-separating mixture, regardless of the polydisper-

sity or number of species. In Chapter 3 we simulated colloidal mixtures phase separating

after a secondary temperature quench into the two- and three-phase coexistence regions.
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We found several interesting e�ects (mostly associated with the extent to which crowd-

ing e�ects can slow down composition changes), including long-lived regular arrange-

ments of secondary domains; interrupted coarsening of primary domains; wetting of frac-

tionated interfaces by oppositely fractionated layers; ‘surface’-directed spinodal ‘waves’

propagating from primary domain interfaces; and �lamentous morphologies arising out

of secondary domains. Regarding Chapter 4, we draw attention once again to Table 4.1

where we summarise our results for the critical scaling of colloidal-like multicomponent

�uids at liquid-gas equilibrium. We have found new suitable observables for detecting

pressure-mixing e�ects and obtained the critical scaling of both conventional and new

phase-diagram lines. Some of the leading exponents of the scaling formulas that we have

obtained and veri�ed numerically turn out to be Fisher-renormalised, as in Ising systems

with ‘impurities’ or ‘hidden �elds’.

5.2 Future work

We now discuss possible directions for future work, picking up on and extending the ideas

described in Sections 2.6, 3.5, and 4.8. On the dynamics front, there remains considerable

scope for extending the understanding of slow fractionation in phase-separating colloids

that we have developed. As discussed in Section 2.6, we would like to investigate slow

fractionation e�ects in a dense phase-separating polydisperse lattice-gas via Monte Carlo

simulations instead of using a kinetic mean-�eld theory. The reason is that in the Monte

Carlo case we will be able to see both ‘nucleation and growth’ and non-mean-�eld e�ects.

(Ref. [36] would be useful here in providing the relevant equilibrium properties, while Refs.

[65,66] discuss somewhat similar dynamical simulations.) It would be interesting therefore

to revisit the dynamics in the various phase diagram regions de�ned by the quenched and

annealed versions of the spinodal and cloud curves. In particular one could look at the

competition between spinodal decomposition and ‘nucleation and growth’ mechanisms.

In fact, by setting up such a Monte Carlo simulation study, we would have a more general

playground for investigating slow fractionation e�ects. Importantly, we would still be

able to make use of the two-dimensional histograms (which can be meaningfully plotted

even for arbitrary number of particle species, as we showed in Chapter 2) to analyse the
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dynamics. In summary, the initial questions would be: how does ‘nucleation and growth’

alter fractionation e�ects? How close to the actual equilibrium phase compositions does

one get after long waiting times from a quench into the metastable region? What are the

non-mean-�eld e�ects?

One could also study o�-lattice e�ects on slow fractionation in phase-separating mix-

tures, asking similar questions there to those described above for lattice situations. One of

the o�-lattice systems to simulate could be a mixture of polymer and binary colloids [126].

For this system it would be interesting to compare with a dynamical density functional the-

ory in the continuum, including noise [72]. The simulation could use a hard sphere plus

Asakura-Oosawa (AO) potential and simulate a canonical ensemble using Langevin dy-

namics. As the hard sphere part of the potential would require complex adaptive time step

mechanisms to capture all collisions, one might opt instead for a continuous pseudo-hard-

sphere potential based on a cut-and-shifted Mie (generalised Lennard-Jones) potential with

exponents, say, (50,49) as in Ref. [127].

It would also be relevant to investigate how more complex colloidal systems are af-

fected by slow fractionation as they phase separate. Considering e.g. colloids with com-

peting interactions, we might �nd an even greater variety of dynamical scenarios. This

setting could be probed by considering the PLG model plus second nearest neighbour re-

pulsive interactions. On the basis of such competing interactions one would expect to

see a state with undamped periodic density �uctuations, indicating a transition to cluster

or striped phases (microphase separation) [128–130]. Considering instead colloids with

anisotropic interactions, one could work with either a lattice gas of Janus particles [131]

or the PLG model equipped with anisotropic interactions between particles that are char-

acterised by a �nite number of orientations, similarly to the lattice-gas model of solvent

plus binary mixture used in Ref. [132] (even though in this model only diagonally neigh-

bouring particles interact anisotropically).

In a further extension beyond the context of Chapter 2 one could investigate the e�ects

of inhomogeneous cooling. In Ref. [133] it has been shown that pattern formation can

be controlled by using a phase-separation trigger propagating outwards from a point. A

range of transient patterns has been found, including a random droplet pattern (similar
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to what we have in Chapter 2), a concentric pattern and a dendritic pattern. (See e.g. Fig.

5.1 from Ref. [133].) The occurrence of each of these patterns depends on the speed at

which the trigger propagates. One would expect, therefore, that slow-fractionation e�ects

will also play an important role in the pattern formation. In practice we could proceed

from Chapter 2 by simply making the temperature lower (than the spinodal temperature)

within a circular portion of the system; the radius of this region would then be set to

increase linearly in time. The proportionality constant for this increase would provide a

new free parameter to play with, together with the particle-particle exchange frequency

ws.

Figure 5.1: Time evolution of transient patterns with a propagated trigger from the cen-
tre. (a) Time evolution of the random droplet pattern. (b) Time evolution of the con-
centric circles pattern when the trigger speed is lower than in (a). (c) Time evolution
of the dendritic pattern when the trigger speed is even lower. All images correspond
to times after the trigger has reached the end of the simulation box. Figure by Rei Ku-
rita. Source: Scienti�c Reports, volume 7, Article number: 6912 (2017). Link to material:
https://www.nature.com/articles/s41598-017-07352-z. Under a Creative Commons Attribution
4.0 International License. Link to license: http://creativecommons.org/licenses/by/4.0/. The
caption has been adapted but the �gure has been taken from the original publication PDF

without changes.
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As discussed in Chapter 3, in the study of phase separation following a deep secondary

quench we would like to �nd out how the occurrence or not of slow composition changes

a�ects the time length of the coarsening-interruption plateau. Furthermore, it would be in-

teresting to understand quantitatively how primary coarsening is restored as we approach

the asymptotic regime. Also, a consistent incorporation of nucleation and growth could

be even more important for the analysis of secondary quenches: in the high temperature

case, where we have seen the existence of the ‘dead zone’, it is possible that nucleation and

growth could end up destroying that e�ect; moreover, as discussed above the presence of

spinodal waves depends on the bulk noise strength at the time of a secondary quench. As

regards the case of a secondary quench into the three-phase region, we would like to inves-

tigate whether the �lamentous state is also reached for ws = 0 and how this is approached

in comparison to the ws = 1 case. One could then investigate this ‘three-phase’ nonequi-

librium problem by implementing controlled initial geometries of the primary interfaces

that include e.g. protuberances; we would thus be able to trace the �laments’ formation

more easily, and to study how two primary liquid domains become connected through a

�lament. Finally, it might be interesting to see what quantitative or – less likely, quali-

tative – e�ects on the physics presented in Chapter 3 would result from changing to an

o�-lattice setting.

On the equilibrium criticality front, one possible future direction would be the study

of critical �nite-size scaling. As a starting point one could use Ref. [134], where the au-

thor calculates the �nite-size scaling for binary mixtures via a �eld-mixing analysis and

compares with Monte Carlo simulations. This would be aided by the one-component �uid

study in Ref. [135], which incorporates pressure-mixing e�ects. The next step therefore

would be to understand in detail how such an approach might be extended to multi-

component colloids. Because of pressure mixing, the critical density estimator of the

one-component case, nc(L), gains a leading term L−2β/ν (when L→ ∞) that dominates

the previous L−(1−α)/ν term, where L is the linear size of the simulation box and ν is the

correlation length critical exponent. This is analogous to what happens for the diameter

of one-component �uids when pressure mixing is turned on. Therefore one could expect

that in the case of multi-component colloids the result would change further into L−2β̃/ν ,
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similarly to what happens in our calculations in Chapter 4. This could help to quantify

pressure mixing e�ects in simulations of polydisperse colloids. Also, we would expect an

understanding of such �nite-size scaling to be useful when studying the thermodynamic

Casimir e�ect [136–138] in multi-component colloids.

Another possible route would consist in extending Refs. [122, 124], where the critical

behaviour of the refractive index is studied for weakly compressible binary mixtures, to

allow for a generic number of species and arbitrary compressibility, with controlled overall

density, composition and temperature. This would be done by introducing the electric �eld

as a �uid variable into the mapping between the Ising �elds and the other �uid variables,

i.e. temperature, pressure and species chemical potentials. Then a comparison could be

made with the critical behaviour of the refractive index as derived from the Lorentz-Lorenz

equation generalised to multi-component systems. This is an approximate equation that

relates the refractive index to the composition densities [122]. In particular, fractionation

e�ects could be investigated.

Returning to a context without electric �elds, one could look at the Tolman’s length

(δ ) of a droplet of polydisperse colloidal �uid. It measures the extent by which the surface

tension (σ ) of the droplet deviates from its planar value and is de�ned as a curvature-

correction coe�cient in σ [120], that is

σ(R) = σ∞

(
1− 2δ

R
+ . . .

)
(5.1)

where R is the droplet radius, taken equal to the radius of the surface of tension, and σ∞ is

the planar-interface surface tension. The result for the critical behaviour of the Tolman’s

length when pressure mixing is considered [120] becomes δ ∼ tβ−ν + t1−α−β−ν , instead

of the previous δ ∼ t1−α−β−ν Notice that the leading exponent changes from −0.065 to

−0.304, with ν = 0.630. One could expect that in our multi-component colloidal case the

leading exponent would be 2β̃ −β −ν =−0.224, as a result of Fisher renormalisation.

The phase behaviour of a colloid with a small spread of particle sizes is also very inter-

esting, in particular in contexts where careful sample preparation can reduce polydisper-

sity to around 5%, but not eliminate it [50]. Usefully, their phase behaviour can be related
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perturbatively to that of their monodisperse counterparts. It has been shown that this ap-

proach can remain well-behaved near the critical point [44], despite previous approaches

breaking down in the critical region [37]. Therefore one could aim to compare our results

for the critical scaling of arbitrary polydisperse systems in Chapter 4 with their weakly-

polydisperse counterparts, with the aim of better understanding the monodisperse-to-

polydisperse crossover near the CP. To do so, one would replace the Landau-like expansion

of the free energy near criticality used in Ref. [44] by a non-mean-�eld near-critical free

energy obtained from what has been presented in Chapter 4. This would be plugged into

the perturbation theory equations from Ref. [44]; these are suitable for cloud and shadow

curves and so in order to obtain other curves as we did here additional developments would

need to be made, but still along the lines of [44]. In pursuing this route, it could be use-

ful to incorporate the prescriptions for mapping between polydisperse and monodisperse

systems, such as our mixing coe�cients mapping in Appendix 4.C as well as the mapping

in the opposite direction (i.e. from more to fewer species) developed in Ref. [139].
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