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Abstract

Topographic maps, in which neighbour relations between neurons are
conserved over a projection between brain areas, are a recurrent feature of
visual systems. By examining the retinal ganglion cell (RGC) synapses to the
zebrafish tectum at the population level, I have explored hitherto inaccessible
questions regarding development, refinement and alignment of distinct maps
within the same target field. Given that functional types of RGC stratify
into laminae within the tectum, what are the developmental dynamics and
parameters governing these maps and alignment between them? Do they
encode visual space with the same precision?

The parameters governing axonal arbour refinement vary across species,
likely related to differences in nurture and environmental pressures. In the
zebrafish, the situation is complicated by mismatched growth of the tectum
with respect to the retina, necessitating constant remodelling of retinotectal
connectivity. Although topography is maintained during this process, it is
not known how precise this topography is. How does map precision change
in response to experience during development? This question is particularly
interesting given recent theoretical results suggesting that perfect topography
may not be optimal for decoding the visual world. These, and other salient
issues, are explored in greater detail within my introduction (Chapter 1).

Quantifying the precision of topographic mappings is a non-trivial problem,
so metrics require empirical validation. Chapter 2 is a comparative study
of various metrics for topographic precision using in-silico modelled data,
and particularly focusing on quantification of maps derived from multiple
experimental subjects. Metrics were compared on their ability to discriminate
different levels of order, their resistance to global shape distortion, and the
amount of data they required to perform optimally. Having selected one
metric for further development, a statistical framework for testing differences
in order between multiple-subject datasets was derived. Finally, a method for
interpreting sources of topographic disorder in biologically relevant distance
units was developed.

I constructed a novel visual presentation system, maximising visual coverage
and resolution, the details of which are described in Appendix A. Using
simultaneous visual presentation and confocal imaging of a calcium indicator
in RGC axon terminals allowed characterisation of RGC functional selectivity.
InChapter 3 I explored the development of two feature-selective topographic
maps formed by retinal ganglion cells (RGCs) in the tectum. I focused on
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orientation-selective (OS) and direction-selective (DS) RGCs, pooling data
from fish of different ages (3, 7 and 10 days post fertilisation, dpf) into
standardised anatomical spaces. Such experiments revealed nonuniform,
nonmatching coverage of the tectum by OS and DS RGCs, suggestive of
regional specialisation. DS and OS maps also exhibit differing levels of
topographic order, with the DS map more ordered than the OS at all ages.
For both functional types, order changes nonlinearly during development,
with maps at 10dpf less ordered than those at 7dpf, providing empirical
evidence to the notion that a topographic encoding of visual space may be
non-optimal.

Finally, in Chapter 4, fish were reared in altered visual environments in order
to specifically explore the role of visual experience in the development of
topographic maps formed by DS and OS RGCs. Three different conditions
were used: complete darkness, an enriched/naturalistic environment, and
strobe lights. Functional imaging of topographic maps in 10dpf animals
reared in these conditions suggests complex relationships between visual
experience and map properties, including the representation of the cardinal
axes of visual space, and overall map precision. Visual experience affects
feature-selective maps differentially, with a far greater impact on OS maps
than DS.

My thesis offers insight into how feature-selective topographic maps in the
tectum develop. It suggests that, despite a globally uniform density of
RGCs in the retina, regions could be specialised for the detection of specific
features, although specialisation is dependent on the visual environment of
the animal as it develops. This is of great interest to the community, raising
questions about how animals might behaviourally maximise the matching
of retinal biases with the statistics of their environment. Finding that
topographic order does not necessarily increase with age adds evidence for
the hypothesis that topographic maps are not directly used in decoding the
visual scene.
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Chapter 1

Introduction

Topographic maps, in which neighbour relations are conserved in a projection
between two spaces are a recurrent feature of sensory systems, across species
and brain areas. Specifically, if a projection between brain areas is topographically
organised, then neurons which have adjacent dendrites in one brain area will also
have adjacent axons in the other. Understanding the process of map formation and
ultimately the purpose of neuronal maps such as these has been identified as one
of the 23 most important problems in systems neuroscience [1].

When an image is formed on the retina, it is processed and transformed through
several different cell types, arranged in laminae. It is then sent to the brain via retinal
ganglion cells (RGCs), with different types of RGCs encoding different features of
the visual environment. Retinotopy refers to the conservation of neighbour relations
between RGC somata and their axons within the brain. Visuotopy, a related
concept, refers to the conservation of neighbour relations between the positions
of neurons (or axons) in the brain and the locations of their receptive fields in visual
space. This thesis sets out to examine the development of topographic maps
formed by different types of RGCs in the zebrafish visual system, using a functional
approach to classify RGCs and a standardised anatomical space to pool data from
multiple animals. This chapter will give an overview of how the zebrafish visual
system is organised, with particular focus on the retinotectal projection and its
topographic properties, and finally touching on the technical challenges associated
with studying topographic maps.
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Figure 1.1: Structure of the vertebrate retina, showing the different laminae and their
constituent types of neuron. Light falls on the retina from the bottom of this diagram. Image
from Wilkinson-Berka, 2004 [3].

1.1 Structure and function of the retina

The schema for retinal organisation is well-conserved across vertebrates [2]. Light
passes through the cornea and lens, forming an image on the retina. The retina
is composed of three nuclear layers: the outer nuclear layer (ONL), inner layer
(INL) and ganglion cell layer (GCL). Sandwiched between these are two synaptic
layers: the outer plexiform layer (OPL) and inner plexiform layer (IPL). Within these,
structures are the 5 classes of retinal neuron, illustrated in fig. 1.1.

Photoreceptors, lying in the ONL, transduce light into electrical signals via opsins.
Opsins absorb photons of specific wavelengths of light, triggering hyperpolarisation
via coupled intracellular G-proteins [4]. In the zebrafish, there are 5 different types
of photoreceptors, specified by their expression of a specific opsin: rods, with
broad spectral sensitivity and particularly useful at low light levels, and four kinds
of cones, sensitive to UV, short, medium and long wavelengths. Zebrafish vision is
blue-shifted and spectrally broader than humans [5–7].
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Horizontal cells have their cell bodies in the INL, and are GABAergic interneurons
which modulate photoreceptors, maintaining the firing rate of bipolar cells within
their reasonable dynamic range [8], meaning that areas of contrast within especially
bright, or dim, objects can still be distinguished. This gain control has been
implicated in edge detection and the creation of classical centre-surround receptive
fields [9]. Horizontal cells take inputs from photoreceptors, but typically integrate
across a greater retinal area than bipolar cells: as they are connected to each
other via gap junctions, their receptive fields extend beyond their dendrites [10].
Zebrafish have one morphological type connected to rods, and two connected to
cones [11] - the cone-connected varieties can be subdivided according to their
spectral sensitivity, determined by which photoreceptors they take inputs from [12].

Bipolar cells also have their cell bodies in the INL, and take synaptic inputs
from the photoreceptors via their dendrites in the OPL. Broadly, they can be
classified as ON or OFF, depending on whether they respond to light or dark
stimuli. As photoreceptors hyperpolarise with light [13], ON bipolar cells are
sign-inverting, while OFF are sign-conserving. When more finely classified
according to morphology, 17 different types of bipolar cell have been identified in
the zebrafish, however these types have not been explicitly linked to stereotyped
functional identities [14]. They extend their axons into the IPL, wherein the ON and
OFF axons segregate into different laminae. The laminar distributions of their axons
determine which RGCs they synapse with.

Amacrine cells, interneurons with their cell bodies in the INL, have diverse structural
and functional properties, with up to 28 different types so far identified in the
zebrafish [15]. They have historically proved difficult to understand as their structure
is not traditionally polar: they lack axons, and synapse onto bipolar cells, RGCs and
each other, and are largely inhibitory. They refine the information flow from bipolar
cells from RGCs and are vital for the emergence of correct functional selectivity in
RGCs, such as direction selectivity [16] and orientation selectivity [17].

RGCs take their inputs from both bipolar cells and amacrine cells, via their dendrites
in the IPL. RGC dendrites lie in defined IPL sublayers, defining their synaptic
inputs and thus their functional selectivity. In mice, these laminar distributions
arise via initially diffuse projections followed by pruning, although this refinement
approaches completion prior to eye opening [18]. In contrast, no such pruning has
been seen in zebrafish, in which most RGC dendrites grow directly to their final
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lamina [19].

RGC cell bodies, unsurprisingly, lie in the GCL. As the final outputs of the retina,
their axons extend through a “blind spot” known as the optic disc (where no
photoreceptors are found) and project into retinorecipient brain areas. The retinal
circuitry decomposes the image that falls onto the retina into a number of features.
There are two ways to interpret the evolutionary optimisation process of selecting
these features. One view is that the width of the optic nerve limits the number of
axons (and therefore the amount of information) that can be sent to the brain, so it
is advantageous for the retina to compress information prior to sending it on. An
alternative view is that the features sent to the brain must be ethologically relevant
for the animal, and appropriate compression of the information sent to the brain
allows size of the optic disc to be minimised. Thus, much research has focused on
precisely which features are encoded by which RGCs, discussed below.

1.1.1 Classification of Retinal Ganglion cells

The debate about how many types of RGC there are, and the precise features that
they encode, is ongoing. Certain criteria have been suggested as necessary to
specify a type of RGC, and are generally accepted within the field [20, 21]:

• Tiling within the retina

• Stereotyped and unique axo-dendritic morphology

• Stereotyped and unique transcriptional signature

• Stereotyped and unique functional selectivity

The above criteria all require a certain level of qualification: they are not necessarily
as simple as they seem. Due to the limits of experimental techniques, it is
impossible to assess all of these criteria simultaneously in a high-throughput
manner - we must rely on one, or at maximum two, criteria to identify types in any
single experiment. As a result, defining types of RGCs in a completely unambiguous
way is technically difficult.

The criteria that neurons of a single type should be evenly-spaced [20] can be stated
more precisely as that the positions of neurons within a type should be dependent
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on each other, while different types should be independent. The distinction is
illustrated in Bleckert et al., 2014 [22], a study which shows that for two types
of mouse RGC (identified by genetic markers, see below) there are gradients of
density across the retina. More specifically, each type of RGC is expected to tile
the retina, meaning that its dendritic arbours cover the whole retina with a minimum
of overlap between them [23], achieved by local homotypic avoidance rather than
the imposition of top-down lattice-like structures [24]. This tiling ensures that each
point in visual space is covered exactly once by each type of RGC. Given that
there exist differences in density within types (for example, [22]) and that types are
expected to tile the retina, this casts doubt on whether morphology is sufficient to
unambiguously specify RGC types. In a region of low density for a specific type,
a member of that type is expected to have a far larger dendritic arbour than in a
region of high density [23, 25].

That RGCs of a particular type should be uniquely identifiable according to a
molecular signature is widely believed. However, all cells express many genes and
whether a single binarised expression level is sufficient to identify types of RGC is a
hotly debated topic. It was hypothesised that binarised expression of combinations
of ≤ 3 genes should uniquely specify each type of RGC [20]. However, a recent
study performed single-cell RNA-Seq on many mouse RGCs and identified 40
clusters, of which some could not be uniquely specified even by combinations of 5
genes [26]. That said, many functionally-defined types (see below) are specifically
marked by smaller combinations of genes [20, 22, 26–29].

Historically, much research into types of RGC has assumed that dendritic
morphology defines their upstream connectivity, in turn suggesting that dendritic
morphology predicts functional identity to a certain extent. This has not been
directly validated. The recent findings that morphologically and genetically similar
bipolar cells in different parts of the retina may be functionally distinct due to
differing photoreceptor inputs [30] suggest a more complex view, as they imply that
RGCs with identical dendritic morphology might have differing functional identity
depending where they are located in the retina.

In the mouse, 22 types of RGC have been found based on dendritic arbourisations
[31], while clustering according to functional criteria has revealed more than
30 types [32], and transcriptional profiling suggests 40 [26]. In the zebrafish,
11 types have been identified according to dendritic morphology [33], while
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more than 50 types of RGC have been suggested based on combinations of
axo-dendritic morphology [34]. However, as that study relied on expert observation
of sparse-labelled neurons, and no functional or molecular validation, there could
be extra functional diversity, or some redundancy within such a typeification
schema. Currently, there are no studies providing genetic identification criteria for
any zebrafish RGC types; thus, despite the difficulties involved, if we are interested
in how the visual world is represented, functional characterisation must be the gold
standard for identifying types of RGCs.

Classification according to functional criteria is normally performed using simplified
stimulus sets, designed to represent simple visual features that can be easily
parameterised: often monochrome gratings, bars or dots. Assessing and
classifying neurons according to their functional selectivity is limited by the stimulus
set used - for example, one study characterised zebrafish RGCs as responding
to specific contrast changes (ON, OFF or ON-OFF) [35], but the stimuli chosen
did not allow finer-scale categorisation. Broader stimulus sets, such as that used
in Baden et al., 2016 (including a “chirp” stimulus, dense binary noise, moving
bars and full-field coloured flashes) [32] allow clustering techniques to be used
to identify functional types, but very quickly become unwieldy unless very large
numbers of cells are recorded from due to the extra time needed to present more
stimuli, and the complexity of the required analysis. Natural images (and movies)
can provide more insight into the “real world” features being detected by particular
types, but these are problematic. Analysis is complicated due to autocorrelation
within natural images, and many more experimental epochs are required for full
characterisation; one study required more than 8000 images for characterisation of
receptive fields within primate V2 [36]. Such experiments are a practical challenge
in many experimental systems, due to the length of time from which a preparation
can be reliably recorded. Additionally, in retinal explant experiments, compensation
of the presented image for the distortion introduced by the explant procedure would
be extremely problematic for natural images.

Motion-sensitive RGCs, and contrast selectivity

From a functional perspective, the most-characterised functional types of RGCs in
the zebrafish are those selective for oriented or directed motion. Direction-selective
(DS) RGCs encode a specific direction of motion, but not its opposite, while
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orientation-selective (OS) RGCs respond well to two opposite directions, but not
their orthogonals [37, 38]. The selectivity angles for DS RGCs are roughly anterior,
upwards with a posterior component, and downwards with a posterior component;
these are equivalent to those found in the goldfish [39]. The OS RGCs can be
broken down into 4 angular-specific variants, responding approximately to motion
in the cardinal and diagonal axes of visual space [38].

RGCs that respond best to increments or decrements in light levels are described
as being ON or OFF, while those that respond to both are described as ON-OFF.
This aspect of their functional identity is determined by which layer of the IPL their
dendrites sample, with the ON-OFF cells being bistratified. They can be further
characterised into those which respond very quickly to the appropriate change in
light level, but their response ends quickly (transient) and those whose response
decays far slower (sustained). At 5-6 dpf, it appears that there are ON, OFF and
ON-OFF RGCs in the zebrafish retina but ON-OFF cells predominate [35], although
in this study responses were not characterised further than contrast selectivity.
Studies in adult goldfish have revealed 3 populations of DS RGC, of similar angles
to those of zebrafish, and composed only of ON and OFF [39]. However, it is not
known how zebrafish OS and DS RGCs are broken down into contrast selective
variants.

In contrast to the zebrafish, in the mouse cosegregation of responses to contrast
and direction of motion is very well-studied, with precise knowledge about which
contrast changes are represented in RGCs for each direction of motion. Mice
possess four populations of ON-OFF DS RGCs, responsive to movement along
the cardinal axes of visual space [28, 40, 41]. They can each be uniquely specified
by coexpression of CART and one other molecular marker each [20, 29], and have
bistratified dendritic arbours. Mice additionally have three populations of ON DS
RGCs respond to angles roughly equivalent to those of the fish mentioned earlier
[29]. However, these ON DS RGCs do not project to the superior colliculus (SC),
but rather to the accessory optic system, where they are involved in the encoding
and compensation of self-motion [42]. Finally, mice are known to possess a single
class OFF DS RGC, selective for dorsal motion [27]: these are marked additionally
by the expression of a single gene, JAM-B, and the presence of a highly anisotropic
dendritic arbour (extending ventrally from the soma), in contrast to the ON-OFF DS
RGCs. OS RGCs have been identified in the mouse [43, 44], as well as cats [45],
rabbits [46] and primates [47] but genetic and morphological markers are currently
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lacking.

1.2 The zebrafish retinotectal projection and tectal
structure

Each class of RGC (corresponding to a specific extracted feature) sends its
information to the brain as a parallel channel of information [48]. In zebrafish, all
retinotectal projections are contralateral (fig. 1.2). Retinal neurons project to 10
different areas, termed arbourisation fields (AFs). The optic tectum (AF10) is the
largest of these area, receiving input from 97% of RGCs, while the second largest
(AF9, the pretectum) receives around 3%. All remaining AFs receive axon collaterals
from these two largest areas [34, 49].

Figure 1.2: The zebrafish retinotectal projection, showing contralateral projections.
Image adapted from Kita et al., 2014 [50].

1.2.1 Structure of the tectum

The zebrafish tectum, which is generally regarded as the homologue of the
mammalian superior colliculus (SC), is a large bilateral structure within the midbrain.
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It is a site of multisensory integration andmotor control, and is thought to coordinate
many different behaviours such as prey capture, and the avoidance of predators
[51]. It can be coarsely divided into two areas: the stratum periventriculare (SPV),
a deep layer in which most of the tectal cell bodies lie, and the neuropil areas,
found more superficially and where RGC axons, and tectal dendrites, form their
arbours. The neuropil area can be further divided into four zones: from superficial
to deep, the stratum opticum (SO), stratum fibrosum et griseum superficiale (SFGS),
statum griseum centrale (SGC) and the stratum album centrale (SAC). The largest
of these is the SFGS, which receives around 80% of the retinotectal axons. It has
previously been subdivided into sublaminae, although the precise number specified
in the literature varies [33, 51].

Most, but not all, RGC axons form planar axonal arbours with respect to the
topographic surface of the tectum [33]. As previously demonstrated, DS and OS
neurons segregate into partially-overalpping laminae within the tectal neuropil [37,
38], each forming a visuotopic map [52]. Thus, the RGCs within the tectum form
multiple laminae, each representing a different feature of visual space, and stacked
on top of each other (see fig. 1.3), althoughwith a certain degree of overlap between
them.
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Figure 1.3: Schematic representation of the retinotectal projection. Retinal circuitry
transforms the visual field such that different types of RGC encode different features of the
visual field. They then project to the tectum in a topographically-ordered manner, meaning
that tectal laminae represent matched maps of the visual field.
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1.3 Formation of retinotopic maps

Figure 1.4: Visuotopy in the zebrafish: the visual field (grey rectangle) is reciprocated
as topographic maps in the contralateral tectum (outlined in red). Following the inverted
pattern of light on the retina, and inversions during contralateral projection, the tectal map
very closely resembles the visual field.

In the zebrafish, the first RGCs reach the tectal neuropil and arbourise between 2-3
dpf [49, 53, 54]. Their axons enter from the anterior pole of the tectum, and find
their termination zones via a biased branching and stabilisationmodel, in contrast to
other species. Whereas mammals and birds overshoot and prune, and frog RGCs
grow directly to their targets, zebrafish use a biased branching and stabilisation
model for RGC axon growth [55, 56], whereby individual neurites frequently extend
and retract, while maturing synapses nucleate the formation of new branches [57].
Image-forming brain areas, like the tectum, receive RGC axons as topographic
maps. That is, RGCs representing adjacent areas of visual space and having
neighbouring dendritic arbours project to adjacent locations in the tectum. As the
image on the retina is inverted in both axes, and a further inversion occurs between
the retina and tectum, the tectal map in the zebrafish appears approximately the
same as the visual field, as seen in fig. 1.4.

Different classes of RGC segregate into laminae each encoding different features
in parallel: a widely-applicable axiom for projection neurons is that their arbours
should stay out of 3D, i.e. forming planar axonal arbours [58]. Thus, the location
which any individual axon must target is defined in three dimensions: the two
dimensions of a retinotopic lamina, representing the orthogonal axes of visual
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Figure 1.5: Projections between surfaces with different curvature necessitate
distortions. In this example, 2 different 2D maps of the globe are shown. Left: The
Earth, seen from space (source: NASA)Centre: Cylindrical projection which preserves both
latitudinal and longitudinal coordinates, but distorts distances and relative areas. Right:
The Mollweide projection, which retains correct areas and latitude coordinates but distorts
the appearance of longitudinal coordinates. Many other projections are possible, each
retaining some characteristics at the expense of others.

space, and additionally its laminar location, specified by its type; which visual
feature it encodes, determined by its dendritic morphology. Because of the
projection from a hemispherical retina to a roughly-flat surface in the tectum, the
tectal map must be distorted to a certain extent, as exemplified in fig. 1.5, and such
distortions have been observed in vivo [52].

Given that axons from RGCs of the same type occupy the same lamina, and
compete for space within it (see section 1.3.2), it seems logical that they must tile
in a similar way to their dendrites; if not, greater overlap between adjacent axonal
arbours would produce an increased level of oversampling in the tectum relative
to the retina. However, this effect has not been conclusively demonstrated other
than in Drosophila, in which the visual system is rather differently organised [59,
60]. Demonstrating whether axons tile in retinorecipient laminae stems from the
difficulty of labelling all of the axons from a single class of RGC, but still being able
to differentiate individual neurons, in individual animals.

In general, the formation of multiple retinotopicmaps is a two-stage process. Within
each tectal lamina, axonal locations are determined by defined molecular cues,
present in gradients across both RGCs and retinorecipient laminae. Later, maps are
refined according to neuronal activity, either spontaneous or visual-evoked. This fits
within a broader schema of how neural systems form, across species: connectivity
is initially specified by molecular cues, with an increasing contribution of neuronal
activity as animals mature [58].
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1.3.1 Molecular guidance cues

Although not perfectly understood, the best-studied parts of the machinery
required for development of retinotopy are molecular guidance cues: secreted
and membrane-bound molecules which guide the growth and connectivity of both
axons and dendrites, best-studied in the mouse and the chick. If one eye of
a newt is rotated, gross behavioural deficits result, indicating that the central
projections of RGCs maintain their positions [61]. This finding led to Sperry’s
chemoaffinity hypothesis: each RGC axon and tectal dendrite has its final position
encoded in physico-chemical gradients [62]. The molecules expressed in the
tectum are interpreted as attractive or repulsive by the RGC axonal growth cone,
causing extension, retraction or turning [63]. The chemoaffinity hypothesis was
originally confirmed using ex-vivo co-culture of chick RGCs with rearranged slices
of tectal tissue, showing that RGC axons exhibited a preference for growing on the
substrate they would have occupied in vivo [64]. Meanwhile, independent research
demonstrated that the Eph receptors and ephrins exhibited patterns of expression
consistent with Sperry’s ideas [65].

How do such gradients specify the positions of individual axons within the whole
retinotectal projection? Removal of a portion of the goldfish retina leads to initial
correct target finding by retinal axons, but the map subsequently expands to
cover the whole tectal surface [66]. Similarly, if a portion of the tectum is ablated,
the remaining surface contains the whole topographic map, but compressed [66].
Similar results have been obtained in zebrafish [53]. Thus, the interpretation of
chemical gradients by RGCs is ratiometric rather than absolute.

Ephrins are membrane-bound repulsive cues expressed in gradients along the
axes of the tectum. Their cognate Eph receptor is expressed in a complementary
gradient in the RGCs across the retina, leading to graded positioning of each
axon. Mediolateral and anterioposterior axes are specified by different molecules
(see fig. 1.6). However, the gradients presented have been cartoonised, and
the neatness of those gradients has not been quantified. In zebrafish, they
were identified by large-scale random mutagenesis, followed by screening for
phenotypes in which the retinotectal connection was disrupted [67–69]. In mice,
ephrin-As are required for topographic map formation but do not specify laminae
within the SC: RGC axonal arbours of ephrin-A knockout mice still innervate the
correct laminae, but produce disorganised topographic maps within them [70].
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Tectal ephrin gradients come into being before any RGC axons arrive: rostrocaudal
ephrin gradients are induced by the mid-hindbrain boundary (MHB). When the MHB
is removed, RGC axons overgrow and occasionally bypass the tectum entirely [71].
Blocking downstream effectors of ephrin signalling, such as focal adhesion kinase,
leads to similarly overgrown axons [72]. Thus, axons essentially continue growing
until they reach a region where a high enough concentration of the appropriate
ephrin causes them to halt.

Different molecules specify different axes of the retinotectal projection: for example,
one of the molecules specifying the identity of dorsal retina is Radar (Gdf6a).
Mutation of this gene in zebrafish produces a compressed map on the medial
tectum, while the lateral half (normally recieving dorsal RGCs) remains completely
empty [73]. The zebrafish mediolateral axis, in addition to being specified by certain
ephrins/Ephs (see fig. 1.6), is specified by a gradient of Semaphorin 3D, a secreted
protein which repels ventral RGC axons expressing the receptors neuropilin 1A/1D
[74]. Not all of the genes involved in the creation of retinotopic maps have known
mechanisms of action: for example Cyfip2, mutated in nevermind, has unknown
binding partners [69].

Early work in the chick demonstrated that the laminar targeting of RGC axons is
determined by molecular cues different from those guiding retinotopy [75]. In fact,
the gross laminar distribution of zebrafish RGCs within the tectum is thought to
be almost entirely hardwired via genetically encoded signals [76, 77]. Laminae are
defined by a gradient of Slit1, secreted by tectal cells with high-superficial and
low-deep concentration gradient, and Robo2 receptors on the RGC axons [78]:
Astray mutants (lacking the Robo2 receptor) exhibit larger, more complex RGC
axonal arbours [79]. Additionally Nel, an extracellular matrix protein expressed in
the chick tectum, excludes RGC axons from specific laminae, although its axonal
binding partner is currently unknown [80]. However, recent findings suggest that
while laminar distribution of RGC axons in the zebrafish requires intact Slit/Robo
signalling, tectal neurons can eventually acquire their correct functional identities
even when the correct laminar targeting of RGCs is disrupted, albeit later during
development [81].
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Figure 1.6: Gradients of ephrin and Eph expression in the zebrafish retina and tectum,
showing molecules specifying both mediolateral and anterioposterior tectal axes. Image
adapted from [50].
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1.3.2 Activity-dependent refinement

When a third eye is transplanted into frogs, its RGC axons and those of the
original eye interleave within the tectum, forming a striped pattern [82]. Removal of
one tectum in goldfish, leading to aberrant ipsilateral RGC projections, produces
analogous results [83]. These results indicate a role for neuronal activity in
organisation of the map, as if molecular guidance cues were the only determinant
of tectal axonal arbour location, the axons from the two eyes would intermingle
fully.

In many species including mice [84], rats [85], ferrets [86], turtles [87] and chicks
[88], retinal neurons exhibit spontaneous activity during development. It has been
suggested that the function of such activity patterns is to provide patterns of
activation that have similar statistics to visual-evoked activity, but prior to visual
experience [89]. This spontaneous activity takes the form of spreading waves
across the retina, and is important for the development of topographic maps. For
example, when such retinal waves are disrupted by knockout of the β2 subunit of
the nicotinic acetylcholine receptor in mice, RGCs exhibit disorganised retinotopic
mapping in both the SC [90] and the lateral geniculate nucleus of the thalamus [91].
Dark-rearing of turtles leads to more spontaneously-active RGCs. This leads to an
increase in RGC receptive field size. Silencing cholinergic activity using drugs led to
smaller receptive field sizes in the dark-reared condition [87]. Taken together, these
data imply that while molecular cues and spontaneous activity in early development
gives a rough template for RGC dendrite growth, fine refinement requires real visual
experience in these species.

However, in fish (which develop while exposed to external visual input)
intrinsically-generated patterned activity is not thought to be necessary.
Correlations naturally arise within natural visual scenes, giving rise to correlated
activity patterns similar to retinal waves in frogs [92]. Although goldfish retinae
exhibit spontaneous activity during development, this activity does not appear to
be episodic or correlated like retinal waves [93]. In contrast, the zebrafish does
exhibit retinal waves, although they largely cease around 3 dpf [94], and their
functional importance for development of the retinotectal connection has not been
established.

Neuronal activity has large effects on the axonal arbours of zebrafish RGCs in
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the tectum. A live imaging study, which showed that RGC axons arbourise in
a trial-and-error fashion, with more branches emerging from stable synapses,
supports this idea indirectly [57]. Experiments directly manipulating activity levels
have given contrasting results, resulting in an unclear picture of how axons compete
for space within the tectum to produce tiling. Inmachomutants, which misregulate
expression of NaV properly, or animals whose neurons have been silenced using
TTX, nasodorsal axons have expanded arbours which are shifted rostrally (that
is, they prematurely stop growing) [69, 95]. However, sparse overexpression of
K+ channels, reducing activity in individual RGCs, leads to a reduction in arbour
size, while concurrent global silencing of neuronal activity with TTX in this context
appeared to return arbour size to normal, implying a role for competition between
active neurons in determining the domains of their axonal arbours [96]. Such
divergent results have been explained differently, such as the varying strength and
timing of silencing methods and the time at which arbours were observed [50] -
there is clearly a complex interaction between many different factors.

NMDA receptors are particularly important in activity-dependent plasticity,
matching the firing patterns of pre- and post-synaptic neurons via Hebbian
mechanisms. Treatment of frog tecta with NMDA antagonists produces disordered
retinotectal maps, and overgrown RGC arbours [97]. In zebrafish, NMDA
antagonists increase arbour size [98], and NMDA retrograde signalling is thought
to be largely responsible for the extensive pruning [57] observed in vivo. When pre-
and post-synaptic cells fire in synchrony, retrograde signalling via arachidonic acid
stabilises synapses: when this retrograde process is disrupted, axonal arbours are
reduced in size and their branches turn over faster [99], interpreted as a reduction
in branch stability. Other molecules, such as BDNF, have been similarly implicated
in Xenopus [100] and zebrafish [99, 101]. However, most work to date has largely
focussed on how these factors affect single (sparsely-labelled) neurons - how they
affect macroscopic map organisation has been explored far less thoroughly.

Visual experience

One of the key tools for studying the role of visual experience in the development of
neural systems is to rear animals in altered visual environments. In mammals, this
has often been achieved using surgery such as suturing the eyes shut, massively
reducing the amount of light that can reach the eyes [102]. A simpler solution, and
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one particularly easy to implement in the study of zebrafish, is to rear them in the
absence of light (“dark-rearing”). For example, one study found that dark-rearing
did not disrupt the laminar structures of the retinal IPL, or the optic tectum,
concluding that the laminar targeting of RGCs is in fact a hardwired process [76].

Additionally, dark-rearing of goldfish leads to larger multiunit receptive field sizes
during optic nerve regeneration, which has been interpreted as being due to altered
retinotectal connectivity [103], while rearing zebrafish in dim light leads to reduced
survival of tectal neurons, and their integration into existing circuitry [101]. These
findings imply that both the retinotopic map, and downstream tectal circuitry, are
dependent on visual experience to develop properly.

Stroboscopic rearing has, in the past, been used to examine whether visual
experience is instructive or permissive for the development of correct retinotectal
projections. Examination of the RGC axonal arbours of goldfish, defined
by morphology, are affected far more than others by rearing in strobe lights
[104], although in this study, analysis did not differentiate between laminar and
topographic axes. On a more global level, optic nerve regeneration after optic
nerve crush with stroboscopic conditions prevents normal shrinking tectal multiunit
receptive field sizes in the goldfish, to the same extent as dark-rearing [103],
implying that not only the presence, but also the content of visual experience, is
important for topographic precision.

Most work in zebrafish to date has focussed largely on molecular pathways
and neuronal morphology at the level of single-neurons - how these factors
macroscopically affect map organisation is largely unknown, and will be explored
within this thesis. Furthermore, are different classes of RGC more or less
susceptible to alterations in visual drive? Are different classes of RGC differentially
sensitive to enrichment or absence of the features that they encode? Although the
gross laminar targeting of RGCs does not appear to be affected by visual drive when
all RGC types are pooled [76], when classified by function there is some evidence
that OS RGCs are more affected by dark-rearing than the DS [38]. Could there be
analogous differences in phenotype in the topographic plane?
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1.3.3 Development and alignment of multiple maps

RGC inputs to the zebrafish tectal neuropil consists of multiple topographic maps
arranged in laminae, each encoding different visual features, as illustrated in fig. 1.3
- although, as discussed, these laminae are partially overlapping. These maps must
become aligned with each other, such that a single tectal neuron can integrate the
same point in visual space across different laminae. The only investigation of how
maps align in the zebrafish was performed in the PhD thesis of Aenea Hendry [52],
who found that DS and OS maps become misaligned at 7 dpf when animals are
dark-reared.

One of the most widely-studied examples of map alignment is that of binocular
vision, particularly in mammals. Mammals, unlike zebrafish, have both contralateral
and ipsilateral projection patterns of RGC. RGCs from both eyes view similar
regions of visual space; in order for binocular vision to be coherent, topographic
maps formed by ipsilateral and contralateral RGCs must be matched across the
eye-specific laminae of retinorecipient structures, such as the SC and the dLGN.
Sperry predicted that in order for the same molecules to produce two maps of
opposite polarity, there must be a radial gradient of the appropriate molecules in
the retina [62], and this in fact turned out to be the case for EphA receptors in both
ferrets [105] and humans [106].

Mice lacking teneurin-M3 have aberrant ipsilateral projections to the dLGN, but
their contralateral connections are unaffected, resulting in severe visual deficits
as a direct consequence of incoherent ipsilateral and contralateral maps [107].
Interestingly, the same molecule is necessary for the correct development of
orientation selectivity, and correct axonal projections of OS RGCs in the larval
zebrafish tectum [108], while DS RGCs are unaffected by its knockout. Given that
the phenotype of teneurin-M3 knockout zebrafish is in large part due to a failure
in the amacrine cells which underlie the functional identity of OS RGCs and not
the RGCs themselves [17], these findings indicate that the functional identity of OS
RGCs must be correctly specified in order for them to project their axons correctly
- indicating the role of activity-dependent mechanisms in the correct formation
and alignment of multiple maps. Consistent with this work, dark-rearing leads to
misalignment of the maps formed by DS and OS RGCs in the zebrafish tectum at
7 dpf [52].
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Figure 1.7: Maps representing the visual field and the locations of auditory stimuli are
topographically matched in the mammalian SC. Figure from Rees, 1996 [113].

More generally, many maps of visual space must be aligned within the mammalian
SC: for example, maps formed by RGCs and maps derived from V1 afferents
[109]. Matching between maps formed from retinal and V1 inputs is achieved
by activity-dependent plasticity mechanisms: when the retinal map is duplicated
by perturbing molecular guidance mechanisms, the V1 map alters to match it.
In mammals such alignment precedes eye opening and thus must depend on
spontaneous activity. However, the V1 map can still form in a coarsely-ordered
fashion with when the eyes are removed, indicating that molecular cues still play
a role [110]. After eye opening, map alignment is consolidated by expansion of
cortical axonal arbours, in an experience-dependent manner [111]. However, a
model for how precisely activity-matching leads to map alignment is still the subject
of active research [112].

More intriguing still is the matching of maps derived from different sensory
modalities, such as the locations of visual and auditory stimuli (see fig. 1.7). The
locations of auditory stimuli are not directly encoded by input neurons as they
are in the visual system, because they are calculated via comparison of the input
from both ears [114–116]. The auditory map is more coarsely-ordered than that of
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visual space, based on ensembles rather than simple point-to-point mapping [117].
Matching of the auditory map to the visual one is dependent on sensory experience,
mediated specifically via NMDA receptors, in both the owl optic tectum [118] and
the ferret SC [119]. More recent experiments in owls indicate that the visual map
acts as a template for the auditory one [120].

1.3.4 The retinotectal projection in zebrafish is dynamic

The zebrafish visual system grows throughout life, as with other teleosts. In
zebrafish (and goldfish), successive rings of new neurons are added at the outer
edge of the retina, while tectal tissue is added in a crescent-shape, with no growth
at the rostral edge [121–123]. This asymmetry means that new-born neurons in
the temporal retina cannot be matched to new tectal neurons with respect to their
topographic location. Thus, the teleost retinotectal projection is not static as with
themammalian retinocollicular one, and RGCsmust constantly change the partners
with which they make synaptic contacts, moving across the topographic plane of
the tectum [124]. As new RGCs axons project from the temporal retina to the rostral
tectum, their predecessors must alter their connectivity with tectal neurons in order
to move caudally across the tectal surface, as must all neurons.

In order that adult-born RGCs can integrate in the correct topographic locations,
ephrin gradients in the tectum persist into adulthood [125]. For correct targeting
of new-born RGCs, it is particularly important that guidance by ephrin gradients
is ratiometric rather than absolute [53]. In contrast, in the chick and mouse these
gradients disappear after retinotectal/retinocollicular connections are established
[65, 126]. Activity-dependent mechanisms also persist, as patterned visual input
continues.

1.4 Regional specialisation in the retina

The visuotopic cortical representation found in V1, originally discovered in monkeys
[127], revealed that the projections corresponding to the central retina, including
the fovea, occupied a larger cortical area than their peripheral counterparts. The
mammalian fovea, is a specialised retinal region with increased density of both
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cone photoreceptors and RGCs, meaning that the corresponding area of the visual
field is encoded with far greater acuity [128]. The whole retina has a gradient of
neuronal density: the fovea is the centre at which this density is the greatest. In the
retinotopic portions of the mammalian visual cortex, this increased retinal neuronal
density is reciprocated as a magnification factor [129], such that the downstream
representation of each RGC occupies a roughly equivalent area of cortex and that
the areas of visual space in which there are more RGCs occupy more cortical area
[130]. Magnification factors have been observed earlier in the visual pathway, such
as the SC of the cat [131].

Many fish have foveae, which are usually located in the temporal retina, presumably
to facilitate forward/binocular vision [132]. Similarly to the “red” area of the pigeon
[133], many fish also have areas of increased photoreceptor density that are not
marked by characteristic foveal depressions. Generally, these areas of higher
visual acuity tend to match the animal’s preferred angle of approach during prey
capture. For example, in fish which approach their prey from below it is situated
ventrotemporally [134, 135], and dorsotemporally in bottom-feeders [136]. Perhaps
the most striking example of this is in the archerfish, which hunts by shooting jets
of water at insects and knocking them off trees overhanging the water [137], and
has a tenfold difference in photoreceptor and RGC density between the densest
and sparsest areas. The densest region is in the line of sight for Snell’s window,
the area in which objects out of the water can be detected effectively, indicating
the area’s utility for targeting prey [138]. In the tecta of certain teleosts, such areas
of increased retinal cell density are reciprocated according to the same rules as
primate cortical magnification factors, occupying proportionately more tectal area
[139].

The foveae and equivalents are an example of regional specialisation within the
retina - areas with higher visual acuity. However, it is additionally possible that there
are areas specialised for the detection of specific kinds of visual feature, and this
would be evident at the level of differences in density between classes of RGC. For
example, themouse was originally believed, like the zebrafish [140], to have uniform
photoreceptor/RGC density. However, a recent study has indicated that at least
two molecularly-defined classes of RGC have non-uniform, and non-matching,
density across the retina [22]. The bipolar cells presynaptic to these two classes did
not have matching density gradients, implying that RGCs in nasal (sparse) regions
integrate across more bipolar cells. Conversely, in temporal regions visual space
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is sampled with a higher resolution, with RGCs integrating across fewer bipolar
cells. However, whether temporal RGCs occupy proportionally more space in
retinorecipient areas (as with primate magnification factors) has not been assessed.

Most recently, one study found that the visuotopic map in the mouse SC is biased
in terms of the directions of motion encoded, with the region encoding the binocular
region of the visual field having a strong bias for the detection of nasal motion, and
the monocular region having a strong bias for the detection of temporal motion in
the visual field [141]. However, it is not clear how such biases in collicular neurons
arise from RGC inputs. Could similar biases be present in the zebrafish?

Zebrafish have asymmetries in their photoreceptor complement across the retina,
with opsins detecting longer wavelengths more prevalent, at the expense of opsins
detecting shorter wavelengths, in the ventral/temporal retina [142]. Downstream,
there are biases in the distributions of bipolar cells [143]. Retinal asymmetries
in spectral sensitivity could be explained by an evolutionary process maximising
the overlap between the wavelengths of light most likely to fall on a given retinal
region and the sensitivity of the photoreceptors in that region. This predicts that
such asymmetries will be found if there are stereotyped differences between the
spectra of light originating in specific portions of the visual field. Complementarity
between stereotypy in the spectra of animals normal visual environments and the
spectral sensitivity of retinal regions has been identified in archerfish [138], mice
[144] and most recently zebrafish [30]. What might this mean for experimental
zebrafish, which are normally stored in clear petri dishes (allowing light from below
the animals as well as above) in white-lit incubators (containing very little detail)?
Clearly these artificial environments are far less complex and contain none of the
consistent biases of the natural environments for which their visual systems have
evolved [30].

The first zebrafish RGCs to differentiate are in the ventronasal retina, at around 2
dpf, but has been thought to equilibrate across the retina before the emergence of
visual-evoked neuronal responses can be detected at 70 hpf [140]. It is currently not
clear whether there is any particular functional significance of the early-emerging
RGCs. A mismatch between the density of OS & DS RGCs, as compared to those
responsive to looming stimuli, has been observed at 7 dpf [38, 52]. Given that
differences in photoreceptor complement affect the functional identity of otherwise
equivalent bipolar cells [30], these differences are likely to be passed forward,
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affecting functional selectivity in RGCs. This implies that morphologically, and
molecularly, indistinguishable RGCs in different parts of the retina might have
different functional selectivity. How might such differences impact on downstream
topographic maps?

1.5 Importance of topography

As discussed above, neuronal activity during development (either spontaneous
or visual-evoked) acts to refine the axonal arbours of RGCs in their targets. It
has been widely assumed that this refinement, demonstrated for the most part at
the single-neuron level, will additionally refine topographic maps and make them
more precise [145]. However, this has never been conclusively demonstrated
experimentally.

In fact, the precise purpose of neuronal maps has been suggested as one of
the major open questions in systems neuroscience [1]. Recent work seems
to suggest that topographic decoding of the visual field is sub-optimal, and
that other algorithms would be more efficient [146, 147]. Such work suggests
that the topographic map formed by molecular guidance mechanisms might
be an early heuristic for creating circuits capable of decoding the visual field,
later superseded by more sophisticate decoding methods as activity-dependent
refinement becomes relatively more important [58]. Despite the limitations of this
work, performed using data from tectal cell bodies which may not be perfectly
topographic with respect to their dendrites, it does raise interesting questions
regarding the precise function and necessity of retinotopic maps.

1.5.1 Development of topographic precision

The PhD thesis of Aenea Hendry [52] provided the first examples of topographic
mappings formed by two populations of feature-selective RGCs (DS and OS) in
7 dpf zebrafish, by means of functional imaging (discussed below). However, her
work was limited in that it did not examine how maps change over development.
One way to assess the importance of precise topographic mapping is to examine
the development of topographic maps; specifically, how their precision changes
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as the animal moves towards adulthood. How do the activity-dependent plasticity
mechanisms described above actually impact on the precision of the maps of visual
space?

Although the precision of topographic maps during development has not been
specifically examined before, there is some work that might give us hints about how
visual information is organised [148]. The structure of ensembles of tectal neurons,
as measured by their spontaneous activity, changes between 4 and 9 dpf such that
ensembles become more spatially compact over time, but have a transient peak in
size at 5-6 dpf, when ensembles involve more neurons. Dark-reared animals at
6 dpf appear to have less-organised spontaneous activity, as measured by how
coherent their ensembles are [148]. Can these properties be directly linked to the
precision of the input maps formed by RGCs?

1.6 The study of maps

To answer some of the questions raised above, quantitative descriptions
of functionally-selective classes of RGCs forming topographic maps, during
development, are necessary. Creation and analysis of such maps entails a number
of technical challenges. Firstly, how can we obtain data about both the anatomical
locations and functional selectivity of many neurons in single animals? Secondly,
how can wemaximise the usefulness of incomplete data frommultiple experimental
subjects? Finally, how can the properties of a topographic map, including its
precision, be optimally quantified?

1.6.1 Functional imaging and genetically-encoded calcium indicators

In order to characterise cells according to their functional identity, some measure
of their activity in response to presenting stimuli is necessary. This has been widely
accomplished in the past using electrophysiological methods. Electrophysiological
methods have been used in the past to map receptive field properties of zebrafish
tectal neurons [149], and more generally the functional properties of neurons
elsewhere in the brain [150].

However, such methods are limited by the number of electrodes that can be
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used - although there are computer-assisted systems allowing the simultaneous
monitoring of up to 16 neurons [151], this is still a very laborious and unreliable
process. Additionally, targeting of specific neuronal subsets requires the use of
genetic labelling and imaging to guide the experimenter while selecting neurons to
perform experiments on [152]. When attempting to describe topographic maps, it is
particularly useful to record from as many neurons as possible in a single animal - it
is the relationships between the positions of neurons that are particularly important.
Multiple electrode arrays allow for more high-throughput data acquisition, with
some probes capable of recording from 960 electrodes simultaneously [153], but
completely preclude the use of markers for specific genetically or morphologically
defined cell types. They are also constrained to a specific 2/3D arrangement
of these electrodes, and interpreting the recorded signals as arising from
individual neurons is technically challenging. All electrophysiological techniques
are additionally limited by the issues caused by sticking solid objects into soft
tissue: distortion of the tissue and damage to its constituent cells. This is more
of a problem for larval fish than it is for rodents, simply due to their size.

Optical imaging of intrinsic signals relies on the altered scattering, reflective and
absorptive properties of neural tissue in different metabolic states, although the
precise metabolic changes underlying the observed signals were a subject of long
debate [154]. Noninvasive techniques were used to map cortical activity in the
monkey [155] and rat [156]. Retinotopic maps were observed using this technique
in owl V1 [154], while modified versions of the method, with periodic stimuli and
fourier-based analysis techniques, have been used to examine topographic maps
within the mouse SC [90, 157]. However it is limited by spatial and temporal
resolution, the inability to target specific cell types, and its indirect relationship to
neuronal activity.

Chemical calcium indicators represent one way of optically measuring the activity
of many neurons simultaneously, with confocal microscopes allowing the resolution
of individual neurons, or even synapses. Oregon Green BAPTA, and various other
examples, work by undergoing conformational changes when bound to Ca2+ ions,
meaning that their level of fluorescence changes according to the concentration of
Ca2+ ions [158]. As action potentials trigger a large influx of Ca2+ [159], the level
of fluorescence in any cell loaded with such as dye tracks the level of neuronal
activity [160]. Unfortunately, chemical calcium indicators cannot be precisely
targeted to one cell type: if injected, they are absorbed by all cells in the vicinity
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[161]. Additionally, these chemical dyes can sometimes require difficult surgical
preparations, or long incubation times following injection, which can interfere with
normal development unless concentrations are carefully titrated, due to chelation
of Ca2+ ions [162].

Thus, for the study of specific cell types, the use of genetically encoded calcium
indicators (GECIs) is preferred. Given the flexibility of modern genetic tools, they
can be targeted to specific cell types, and even specific subcellular compartments.
The most widely-adopted family of GECIs are the GCaMP proteins, developed by
fusing a circularly-permuted version of GFP to calmodulin and a fragment of myosin
light chain kinase [163]. When the calmodulin binds calcium, this allows the GFP
to undergo conformational change, increasing its level of fluorescence. Since their
inception, the GCaMP family has undergone a number of generations, each made
via edits of the original sequence [164–168] in order to improve dynamic range,
alter affinity for Ca2+, and increase signal-to-noise. For the purposes of imaging in
multiple colours, or to avoid spectral overlap with other fluorophores in the same
experiment, red versions (RCaMP [169] and R-GECO [170]) and a blue version
(B-GECO [170]) have also been developed. The latest generation, the GCaMP6
proteins [168] has three different versions, with fast, medium and slow (suffixed f,
m and s) attack and decay kinetics, with signal-to-noise greatest for the slowest
version (GCaMP6s). The kinetics of these probes do pose a challenge for data
analysis, as the rise and fall times of the probes are rather slower than the timescales
of action potentials, with decay times in the hundreds of milliseconds [168]. It
should be noted that measurement of [Ca2+] is not a perfect proxy for neuronal
activity [168, 171].

As discussed in section 1.1.1, in the zebrafish there are no well-defined genetic
markers for specific types of RGC (in contrast to the mouse), although Isl2b marks
most RGCs [172]. Thus, one approach to characterising the topographic maps
formed by different classes of RGC is to express a GECI in all RGCs, and to classify
them according to their functional selectivity [37, 38, 52, 173]. Fortunately for this
project, a line already exists with pan-RGC expression (driven by the Isl2b promoter)
of Synaptophysin-tagged GCaMP6s, meaning that it is preferentially trafficked from
the cell body to presynaptic terminals [174].
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1.6.2 Standardised anatomical spaces

Standardised spaces allow the analysis and visualisation of data from multiple
experimental subjects in a single, three dimensional anatomical space. The data
used can be from many levels: single synapses, neurons, or anatomical structures.
As often the amount of data that can be extracted from an individual subject is
limited, pooling of data across subjects can reveal distributions that would not be
visible in individuals.

Imaging approaches to functional characterisation are particularly amenable to
such analysis, as imaging almost allows the linkage of functional to anatomical data
with a minimum of extra experimental labour, as imaging approaches necessarily
capture morphological features. There has been a great increase in the use of
standardised spaces, particularly in the zebrafish, over the last few years [175].

One study characterised the axo-dendritic morphology of over 400 RGCs [34],
identifying more that 50 possible types according to morphological criteria. Placing
individually-labelled neurons into a standardised space allowed the identification of
regional biases in the RGC complement innervating AF9: the authors showed that
the dorsal and ventral regions received input from different kinds of RGC. Such
insight, from singly-labelled neurons, could only be obtained by the pooling of data
into a standardised space.

In a series of studies using functional imaging to examine the angle of motion which
different voxels within the tectum preferentially responded to, it was only the use
of a standardised anatomical model of the tectum which made laminar distribution
of the different variants clear, allowing the direct relation of function to anatomical
position, validating the different variants [37, 38]. A similar approach was used
to characterise the transformation from three variants of DS RGC, each encoding
a different direction of motion, to the four directions of motion encoded in tectal
neurons [173]. Additionally, standardised spaces were used in the first functional
characterisation of zebrafish visuotopic maps [52].

The use of standardised spaces must be approached carefully. Individual
experimental subjects often have differences in the size and shape of different
anatomical features, as well as carrying variability in the numbers and distributions
of specific kinds of cells. Perfect correspondence cannot be assured, particularly
between the locations of individual neurons or their neurites. Thus, pooling across
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subjects and examining distributions abstracts from exact locations of objects,
rather giving probability densities for objects within the anatomical space [175].

1.6.3 Quantifying topographic precision

As discussed before, it would be advantageous to be able to quantify the
topographic precision of maps, in order to compare how precise different maps are.
In specific terms, this means asking how “correctly” the visual field is reciprocated
by the positions of RGC axons in the tectum.

There are many different approaches to quantifying topographic order, and these
are non-trivially different in terms of the mappings which they define as optimal:
where qualitatively different mappings are assessed and compared according to
different metrics, metrics do not agree on which mapping is optimal. Furthermore,
when maps are created using different metrics as optimisation objectives, they
take on qualitatively different forms [176, 177]. One of the most widely-used
frameworks used in derivation of metrics for topography takes pairwise distances
in both spaces, and computes a measure of correlation between these pairwise
distances [178]. However, their output, and the properties of the map described
as optimally ordered still depends heavily on both the methods for calculation of
distances, and the precise way that they examine their similarity [176].

Thus, for each application, the metric chosenmust be validated on data that mimics
the use case as closely as possible. Given the technical constraints of the current
project, the metric chosen here should:

• allow comparison of the level of order between multiple maps.

• be suitable for maps derived from multiple experimental subjects.

• be minimally affected by nonlinear mappings.

• require the smallest possible amount of data in order to perform optimally.

The operational parameters of different techniques are difficult to intuit, meaning
that they require empirical validation using modelled data. For example, one study
examining the mapping of a 1D feature space to a space representing a 2D cortical
map revealed that each metric requires a different amount of data in order to

47



detect topographic order greater than that expected from a random mapping [179].
However, additional modelling work is required in order to find the metric that best
satisfies the criteria described above.

1.7 Experimental Aims

Based on the questions raised in this chapter, I performed the following theoretical
and experimental work:

In Chapter 2, given the need for ways to optimally quantify the precision of
topographic maps, I used in-silico modelled data to assess a number of different
metrics for topography. I compared them based on suitability for maps derived
from multiple experimental subjects, the amount of data they required to perform
optimally in this context, how well they detected topography in coarsely-ordered
maps, and how they were affected by nonlinear map distortion. A framework for
statistically testing for differences between multisubject maps, using a Monte Carlo
resampling strategy, is demonstrated. Finally, I examined whether it is possible to
interpret deviations from perfect topographic order as arising from a 2D probability
distribution in biologically-relevant distance units.

The construction and quality control of a novel visual presentation system to allow
functional characterisation of neurons labelled with GECIs in response to visual
stimuli is detailed in Appendix A. I used this system to examine topographic maps
formed by DS and OS RGCs in the zebrafish tectum. These were placed into
standardised spaces representing the tectal neuropil.

In Chapter 3, characterisation of two maps representing different visual features,
at three different developmental timepoints, allowed the exploration of a number
of questions discussed in this chapter. Firstly, examining the distribution of
synapses over the tectal topographic surface, allowed an exploration of regional
specialisation; whether or not specific regions contain more synapses for detection
of specific features. Next, it allowed comparison of map precision over time,
and between maps representing different visual features (using the framework
developed in Chapter 2). Additionally, it allowed the assessment of alignment
between maps, to examine whether multiple laminar maps emerge in alignment
or progressively align as animals age. Within the DS and OS populations of
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synapses I then examined what parameters (such as contrast and the preferred
angle) contribute to segregation of synapses in both laminar and topographic axes:
that is, which features appear to be represented as separate maps in different
laminae, and whether regional specialisation exists for such parameters.

Finally, in Chapter 4, animals were reared in different visual environments:
complete darkness, strobe lights, and an enriched/naturalistic environment. Such
experiments were designed to elucidate the effects of visual experience on map
precision, the requirement of visual experience for the alignment of alignment, and
allowed the examination of whether different types of RGC are differentially affected
by visual experience.
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Chapter 2

Metrics for Topography

2.1 Introduction

Quantifying the existence and precision of topographic maps is a non-trivial
problem. Over the years, many different metrics and methods for quantification
have been developed, all relying on different assumptions and ways of quantifying
neighbour relations. In one sense, any given metric uses a different mathematical
definition of what a perfect topographic mapping would look like [178]. If maps are
nonlinear, there is no known exact mathematical solution for perfect order. Thus,
any method for quantifying topographic order must be validated empirically [179],
particularly as maps in the brain are demonstrably nonlinear (see Chapter 1, [52]).

Collecting datasets representing complete topographic maps in a single
experimental subject is a technical challenge. Anatomical studies have tended
to use sparse or even single-neuron labelling techniques [33, 34], while
electrophysiological studies have been limited in the number of electrodes that
can be simultaneously implanted. A far more efficient method for quantitative
characterisation of maps is to derive incomplete maps in multiple subjects and
to pool data together via standardised spaces [175].

However, such pooling can create additional problems regarding the quantification
of order in the situation where there is inter-subject variance in map position, size
or shape. Intersubject variance could come from a range of sources - it could be
due to real biological differences in the size and shape of the individual brain areas,
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or the way that such areas are mapped into a single reference space (referred to
as the “Lack of Correspondence Problem” [175]). However, it could also be an
artefact of how data are acquired: for example, if a visuotopic map is derived using
a functional approach, in which receptive field centres for neurons are calculated
based on the responses to a defined stimulus [52, 146], receptive field centres are
dependent on the precise location of the eye while the stimulus is presented. If
data are pooled without regard for the adjustment according to where the animal is
looking, topographic order is likely to be underestimated.

Modelled data, incorporating different amounts of topographic disorder, have been
used to explore the behaviour of variousmetrics in both single- andmultiple-subject
context, such that their utility can be compared quantitatively and the best choice
selected. These results facilitate optimisation of both experimental priorities and
statistical analyses.

Whenever data sets are subjected to statistical analysis, the amount of data used
impacts on the reliability of the statistical description. However, increasing the
size of datatsets is subject to diminishing returns. The amount of data required by
each metric to provide an optimally reliable description of the level of topographic
order has been described. From this description, the relative statistical power
for discrimination of different levels of order between different maps has also
been compared. These properties have been generalised to the multiple-subjects
context, taking account of the amount of data within each experimental subject, and
the number of subjects. Work has also performed, using a technique established
for single-subject metrics [179], to look at the relative amounts of data required by
the multiple-subject metrics for reliable detection of order, examining the effects of
both N , the number of subjects, and n , the number of points per subject.

The results of this comparative work have additionally enabled the derivation of a
method for testing for differences in topographic order between multiple-subject
derived maps, based on the analysis of multiple subsamples of the data
obtained. Finally, a framework has been derived which allows the quantification
of topographic disorder in the distance units of the original maps. This allows the
relation of statistics regarding a topographic map back to the sizes of the biological
components that make it up: neurite arbors, or receptive fields.
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2.2 Methods

2.2.1 Metrics for topography

Let two spaces be termed T and V , each containing n matched points. Then let
dV (..., ...) equal the euclidean distance between any two points in spaceV , with
corresponding notation in spaceT .

The topgraphic product is a metric with its roots in graph theory [177]. Neighbour
relations of points in either space are specified as follows: let f V1 (j ) refer to j s
nearest point, according to the euclidean distance in V . Then, let f V

k
(j ) refer to

j s k th nearest point, according to the distance in V . Using the distance notation
defined above, dV (j , f Tk (j )) is the distance, measured inV , between j and j s k th
nearest point according to distance inT . Two sets of distance ratios are defined:

Q1 (j , k ) =
dV

(
j , f Tk

)
dV

(
j , f V

k

) (2.1)

Q2 (j , k ) =
dT

(
j , f Tk

)
dT

(
j , f V

k

) (2.2)

Q1 is the ratio of distances, measured inV , of j and its k th nearest point inT , and
its k th nearest point inV . Q2 is the ratio of distances, measured in T , of j and its
k th nearest point inT , and its k th nearest point inV . These ratios are combined to
produce a value P3, which represents the level of neighbourhood conservation for
each point and neighbourhood size (i.e. up-to-the-k th nearest neighbour of each
point):

P3(j , k ) =

(
k∏

l=1

Q1 (j , l )Q2 (j , l )

) 1
2k

(2.3)

There will be n (n − 1) P3 values. To summarise these numbers, natural logarithms
are taken of P3, and it is made positive to facilitate calculation of p-values [179] and
normalisation (see appendix B). The mean is taken across all neighbourhood sizes
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of all points, to give a final value PT :

PT =
1

n (n − 1)

n∑
j=1

n−1∑
k=1

| ln P3 (j , k ) | (2.4)

Normalisation of PT can be performed via randomly permuting the point-to-point
correspondence between spaces V and T , producing a shuffled map. Not all
random permutations will be equal: thus normally, a large number Nshuf should
be performed. Within this report, Nshuf = 100, but the more general constraint is
that 1 ≤ Nshuf ≤ n!. PT is calculated for the original map (PT (t r ue)), and for all of
the shuffled versions individually. Subtracting the normalised value from 1 means
that 1 represents perfect order, while 0 indicates an absence of order.

normalised PT = 1 − PT (t r ue)

1
Nshuf

(∑Nshuf

shuf=1 PT (shuf )
) (2.5)

The euclidean distance correlation uses the Pearson correlation coefficient
between dV (i , j ) and dT (i , j ) in both spaces:

CEC =

∑n
i=2

∑i−1
j=1

(
dV (i , j ) − d̄V

) (
dT (i , j ) − d̄T

)
√∑n

i=2
∑i−1

j=1

(
dV (i , j ) − d̄V

)2 ∑n
i=2

∑i−1
j=1

(
dT (i , j ) − d̄T

)2 (2.6)

The topological correlation CT C [180] uses Delaunay triangulations [181] of the
points inV andT . The distances used in the euclidean correlation are then replaced
by geodesic distances: gV (i , j ) is the minimum number of edges between i and j

in the Delaunay triangulation ofV . CT C is then the pearson correlation coefficient
of gV (i , j ) and gT (i , j ) for all i , j :

CT C =

∑n
i=2

∑i−1
j=1

(
gV (i , j ) − ḡV

) (
gT (i , j ) − ḡT

)
√∑n

i=2
∑i−1

j=1

(
gV (i , j ) − ḡV

)2 ∑n
i=2

∑i−1
j=1

(
gT (i , j ) − ḡT

)2 (2.7)

Both of these metrics are theoretically bounded between 1 and -1. However, it
seems extremely unlikely that a value much lower than 0 could ever emerge: 0
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represents the absence of any order at all, and it is difficult to envisage a scenario
in which the pairwise distances are anti-correlated.

The scaled cosine similarity, developed by Dr Andrew Lowe, is a rather more
involved process. First, T is transformed into a new space U via a series of affine
and non-affine transformations, in such a way as tominimise the distances between
each point j in U and V , and also minimise the difference in their areas. Then,
pairwise comparisons between all point-to-point vectors are used to calculate a
statistic c representing the similarity of these aligned maps. With α(i , j ) referring
to the angle between the vectors i j inV and i j inU , c(i , j ) is calculated as follows:

cs(i , j ) = min
(
dV (i , j )

dU (i , j )
,
dU (i , j )

dV (i , j )

)
cosα (i , j ) (2.8)

cs is a measure of similarity between each point-to-point vectors inV andU : there
will be n(n − 1) c values. It is bounded between 1 and -1 due to the properties of
the cosine curve, and the minimisation of the ratio of distances. A histogram of the
density of cs(i , j ) for all i , j over this interval can be created, and the distribution
can be usually approximated by a pair of half gaussians. The final value S is the
peak of this distribution, and is bounded between 1 (representing order) and -1. If
the fitted curve does not meet the criteria that R 2 > 0.8, S is undefined.

For themultisubject metrics, let there be N subjects s , each containing ns points.

PT s represents a mean-of-means for single subject calculations:

PT s =
1
N

N∑
s=1

©« 1
ns (ns − 1)

ns∑
j=1

ns−1∑
k=1

| ln P3 (j , k , s) |
ª®¬ (2.9)

PT di st is also a mean of means, but in which P3 values calculated in the individual
subjects (see eq. (2.3)) are pooled according to distance. For Nd linearly spaced
distance bins in spaceT , PT d i st is the mean of means according to d istance. nd
is the number of P3 values placed in the bin d , so the point identifiers j and k are
here replaced by a vector identifier l . For the purposes of this report, Nd = 25.

PT di st =
1
Nd

Nd∑
d=1

(
1
nd

nd∑
l=1

| ln P3 (l ) |
)

(2.10)
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Normalised versions of PT s and PT di st are calculated analogously to normalised
PT . Random point reassignment is performed within each subject, meaning
that constraints on the number of shuffles performed are: 1 ≤ Nshuf ≤∏N

s=1 (ns (ns − 1)). Although PT di st and it’s normalised equivalent were were
developed for use in multiple-subject context, in figs. 2.3 and 2.4, N = 1.

Using the following definition of mean distances,

d̄V =

∑N
s=1

∑ns
i=2

∑i−1
j=1

(
dV (i , j , s)

)∑N
s=1 (ns)

(2.11)

and corresponding definitions for the other space and distance measure,
multisubject correlations are defined as follows:

CEC =

∑N
s=1

∑ns
i=2

∑i−1
j=1

(
dV (i , j , s) − d̄V

) (
dT (i , j , s) − d̄T

)
√∑N

s=1
∑ns

i=2
∑i−1

j=1

(
dV (i , j , s) − d̄V

)2 ∑N
s=1

∑ns
i=2

∑i−1
j=1

(
dT (i , j , s) − d̄T

)2
(2.12)

CT C =

∑N
s=1

∑ns
i=2

∑i−1
j=1

(
gV (i , j , s) − ḡV

) (
gT (i , j , s) − ḡT

)
√∑N

s=1
∑ns

i=2
∑i−1

j=1

(
gV (i , j , s) − ḡV

)2 ∑N
s=1

∑ns
i=2

∑i−1
j=1

(
gT (i , j , s) − ḡT

)2
(2.13)

All modelling and analysis was performed using custom MATLAB scripts,
developed by the author. All modelling was carried out using the Neuroimaging
Analysis Network servers, at the Institute of Psychiatry, Psychology and
Neuroscience https://mri.iop.kcl.ac.uk/index.php/NaN_Servers.

2.2.2 Modelling of map curvature

In order to simulate map curvature, a transformation was created to emulate the
curvature of the tectum, creating “curvy” maps. Based on data from the thesis of
Aenea Hendry [52], a bilinear quadratic transform was derived by Dr Andrew Lowe,

55

https://mri.iop.kcl.ac.uk/index.php/NaN_Servers


mapping points (x , y ) in spaceV to (x ′, y ′) in spaceT as follows:

x ′ = −0.0212y 2 + 0.8157y + 0.2105+ x (2.14)

y ′ = −0.003x 2 − 0.0448x + 3.6028+ y (2.15)

2.2.3 Calculation of redundancy, coefficient of variation, power and
results at redundancy

Single subjects:

For these purposes, maps were generated by selecting random points in a 100 ×
100µm space. n , the number of points in the maps, was stepped between 10 and
1500 in increments of 10. The area of the convex hull in the “tectal” maps were used
to determine the point density. There were 40 maps modelled at each value of n ,
for a total of 6000 metric values for each metric, at each noise level. “Tectal” space
was modelled either by applying gaussian noise (in straight maps), or by applying
a number of affine transformations and a bilinear quadratic transform, followed by
gaussian noise (in curvy maps).

In order to obtain the redundant density, a sliding-window coefficient of variation
(CoV ), with a density window of width 0.004 and step size 0.001 was calculated. A
curve of the formCoV = k /d+c was fitted via a nonlinear least-squares approach,
with d representing the density of points in the tectal space, and constants k and
c. The density at which redundancy was reached, R , was found symbolically:

1
√
2
=

k
2R + c

k
R + c

(2.16)

Which rearranges to:

R =
(2 −

√
2)k

(2
√
2 − 2)c

(2.17)
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Statistical power at redundancy was calculated as an arbitrary value of the power of
a metric to detect a 10% change in it’s value at the redundant density. This is found
as follows, with CoVR representing the coefficient of variation at the redundant
density:

power =
0.1

CoVR

√
R

(2.18)

Multiple subjects:

Data were modelled, varying both point density and N , in both straight and curvy
maps. A 2D sliding window was used to calculate local coefficients of variation. A
surface was then fitted to them, of the following form:

CoV(d ,N ) =
k

d
+

l

N
+

m

dN
+ c (2.19)

For given d , there is a value NR for which:

1√
(2)

=
CoV(d ,2NR )

CoV(d ,NR )
(2.20)

Which, substituting in the full equation for the surface, rearranges to:

NR =
m + l d

√
2 (k + cd )

(2.21)

Statistical power is then calculated as in eq. (2.18).

Modelling of multisubject datasets, for assessing resistance to jitter

Multisubject map pairs were created by taking topographic maps of DS RGC
axon terminals in the zebrafish tectum from the thesis of Aenea Hendry, and
projecting the visual receptive field centres of direction-selective voxels into
an imaginary tectal space using a bilinear quadratic transform, before applying
gaussian intra-subject noise and inter-subject jitter. Thus, while N was fixed at
28 (the number of fish imaged), n was variable (between 5 and 65). For PT di st ,
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distances used for pooling of P3 values were measured in “tectal” space. Each
pixel in the heatmaps fig. 2.2B-D represents one such dataset.

Detection of significant topographic order

For any given metric, testing the null hypothesis that no topographic order involves
comparing the value of a metric with its value calculated frommany (Nshuf ) shuffled
versions of the map, in which point correspondences are randomly permuted. The
probability that the map exhibits order (i.e. reject the null hypothesis) is calculated
from the number of metric values from shuffled maps that exceed the true metric
value (Nbet t er ), adjusted as follows:

p =
Nbet t er + 1
Nshuf + 1

(2.22)

In the multiple-subject context, random point reassignment is performed within
each subject, meaning that constraints on the number of shuffles performed are:
1 ≤ Nshuf ≤ ∏N

s=1 (ns (ns − 1)).

Determination of N80

N80, defined here as the number of subjects required to detect order in 80% of
datasets fig. 2.8, was found as follows:

100 multiple-subject curvy maps were created, with N subjects, and drawing the
number of points in each individual subject from a Rayleigh distribution, with mean
n̄ . For each value of n̄ , N was initially set at 20. The percentage of maps that
were significantly ordered, F , was determined using eq. (2.22). This procedure
was repeated while adjusting N according to bisection search, to find the N for
which F = 80.

This approach is inherently noisy. Thus, after convergence of bisection search to
an integer value, a curve of the form F = a − be−cN was fitted in the least squares
sense. The N80 is then −c ln (a−80)

b .
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Framework for assessing noise in biological units

In order to calculate the amount of noise present in distance units, dV (i , j ) and
dT (i , j ) are calculated for all i , j . These are then normalised separately to have
zero-mean and unit variance, and a best-fit line minimising orthogonal residuals
found using PCA. If topographic order is present, the first principle component will
represent the combined map distance, and the second the residuals.

θ represents the arctangent gradient of the best-fit line derived from PCA, after
undoing normalisation, while r (i , j ) represents the length of an orthogonal residual
of this line. For a given dataset, there will be the same number of r values as the
number of point-to-point distances incorporated i.e. n (n − 1) in single subjects,
or, for multiple subjects,

∑s=N
1 ns (ns − 1).

These residuals can be projected into either one of the spaces, or can be expressed
as a nonlinear combination of the two, as shown in fig. 2.11D. The residuals
projected into a combination of either space can be expressed as a function of
the angle ϕ, where 0 ≤ ϕ ≤ π

2 , where ϕ = 0 represents projection only intoV , and
ϕ = π

2 represents projection only intoT .

rV =
r cos θ sin θ cosϕ
sin (π − θ − ϕ)

(2.23)

rT =
r cos θ sin θ sinϕ
sin (π − θ − ϕ)

(2.24)

Gaussian curves are then fitted to these r , allowing the calculation of noise levels
in biological units.
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2.3 Results

A number of metrics were selected as potentially useful, for varying reasons. The
topographic product PT [177] (eqs. (2.1) to (2.5)) has been previously explored in
the author’s MRes. It has its roots in graph theory, and is based on comparisons
of equally-ranked distances between points in both maps. A novel normalisation,
utilising multiple versions of the map in which point correspondences are randomly
reassigned, was found to improve the metric’s resistance to changes in map
shape (see Appendix B). The euclidean distance correlation [182] (eq. (2.6)) and
topological correlation [180] (eq. (2.7)) are examples of correlation-based metrics.
These are based on the calculation of pairwise point-to-point distance measures
in both maps, and an estimation of a correlation coefficient that represents how
closely these matched distances correspond [178]. Various metrics differ in
their method for calculating point-to-point distances, or how they calculate the
correlation coefficient. The two metrics chosen, the euclidean distance correlation
and the topological correlation, are widely used in the literature [176, 178], and
were found to have relatively high statistical power to detect topography [179].
The scaled cosine similarity has been developed by the author’s supervisor (Dr
Lowe). It requires a pre-processing step in which one map is aligned to the
other using a series of transformations. It then examines the angle between
matched point-to-point vectors in each map, scaled by the minimum ratio of vector
magnitudes (see eq. (2.8)). It was chosen as it assesses the angular displacements
within the maps rather than absolute distances. The metrics are all bounded
between 1 (perfect order) and 0 (complete disorder). While the lattice method [90]
was a tempting choice, it was not included as a formulation allowing pooling across
multiple subjects could not be easily formulated.

In-silico retinotectal maps were generated to examinemetrics for topographic order.
Each map consisted of matched-pair points in a “visual” and a “tectal” space.
Although a complete exploration of the effects of global map distortion on metrics
would be advantageous, it is impossible due to the unbounded space of possible
transformations that could be applied. Two types of maps have been used for
this study: straight maps, defined here as maps in which no curvature or other
global distortion is applied (fig. 2.1A), and curvy maps, in which the curvature of
the tectal map mimicks that found in real tecta (fig. 2.1B-C, section 2.2.2). The
dimensions and shape of these curvy maps are based on summaries of those
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derived experimentally by Dr Hendry [52]. Varying amounts of Gaussian noise were
applied to the points in tectal space to simulate map disorder, although the exact
structure underlying disorder in biological topographic maps is unknown.
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Figure 2.1: Example map pairs, representing visual space and various tectal spaces.
Like-coloured points indicate matched pairs between spaces. Points in visual space were
generated according to a 2D uniform distribution within a 100-by-100 space. A is a a
straight map with gaussian noise (SD = 5) added. B shows a curvy map, in which a bilinear
quadratic transformation is applied to the visual space (see section 2.2.2 for details). C is
a curvy map which additionally has noise (SD = 5) added.

2.3.1 Metrics must be reformulated for use in multi-subject datasets
incorporating jitter

In a real experimental setting, it is not always possible to derive complete
topographic maps from each individual experimental subject. A potential solution
to this issue is to acquire partial maps from many individuals and pool them
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via standardised spaces [175]. However, due to experimental artefacts, or real
biological variability, there is a possibility of inter-subject variance in map position
(see fig. 2.2A), henceforth referred to as jitter.

In order to assess the resistance of a metric to jitter, modelled multisubject datasets
were created based on the visual receptive field centres of DS RGC axon terminals
[52]: the locations of DS RGC receptive field centres from a multisubject dataset
(N = 28, 5 ≤ n ≤ 65) were used, and transformed into a tectal space prior to
the addition of both noise and jitter. Jitter was applied by displacement of all tectal
points in each individual subject according to an amount chosen from a 2D gaussian
with defined SD. The pooling of multisubject datasets in presence of jitter leads to
under-estimations of order due the additive effect of intra- and inter-subject noise
(fig. 2.2B).

It is however possible to formulate alternative pooling strategies by pooling
statistics derived from each subject’s individual map for calculation of the final
summary statistic, rather than pooling points. One approach would be to analyse
each subject separately, and to combine these into a summary statistic. An
example is PT s , a mean-of-means by subject (eq. (2.9)). Note that when there
is only one experimental subject (as in figs. 2.3 and 2.4), this is identical to
PT . Given the formulation of PT , in which a statistic P 3 is determined pairwise
for each combination of points (eq. (2.3)), another alternative presents itself: P 3
values are calculated for each subject individually and then these intermediate
statistics are pooled across subjects to produce a final summary statistic PT di st ,
a mean-of-means according to binned distance between points (eq. (2.10)). Both
approaches have been piloted: both normalised PT s and normalised PT di st

circumvent problems with jitter, as there is no association between the level of jitter
applied and the metric value (fig. 2.2C,D). However, normalised PT di st produces
much less variability in the metric values for comparable datasets (fig. 2.2E).

Metrics other than the topographic product can also be utilised in this way.
For the euclidean and topological correlations, this corresponds to determining
pairwise distances within maps, but determining the correlation coefficients of
these distances, once pooled, across maps (see eqs. (2.12) and (2.13)). For the
scaled cosine similarity, the alignment of the two maps must be performed on
pooled data; however, the pairwise values cs (see eq. (2.8)) are calculated only
between point pairs within the same subject.
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Figure 2.2: Example modification of metrics for use in multisubject datasets
incorporating jitter. A. Illustration of inter-subject variance in topographic map position
- jitter. B. Normalised PT for varying degrees of intra- and inter-subject added disorder.
Color scale as in C. C-D. Two alternative formulations, PT s and PT di st . All normalisations
calculated using 100 shuffled versions of maps. E. Estimated metric coefficient of variance
collapsed across the range of applied inter-subject jitter. Each heatmap pixel represent a
single modelled multisubject dataset, N=28 subjects, and 5 ≤ n ≤ 65 within each subject.

63



2.3.2 Redundancy and statistical power in the single-subject context

In general, increasing the sample size of a dataset improves the reliability of any
summary statistic, although there is a decreasing return with ever larger sample
sizes. There is a point when acquiring more data becomes redundant, with a
diminishing return on the metric’s reliability. An examination of such a point
would reveal how much data each metric requires to reach a given improvement
in its reliable estimate of order. This so called redundancy density has been
defined here as the density at which doubling the density of points (representing
the sampling rate within a single experimental subject) reduces the coefficient of
variation of the metric values by a factor of ≤

√
2. The values of the chosen

metrics were determined for many maps with varying point density and applied
disorder. Although novel datasets were generated for each metric, these used the
same underlying parameters (i.e. point densities, number of subjects and noise
level.Figure 2.3A shows an example of how the variance of the values of a metric
(in this case, the euclidean distance correlation) decreases with increasing density
of points within the maps at constant noise. Deriving a moving CoV (fig. 2.3B),
one can more clearly define the relationship as of the form CoV = k /d +c, where
d is the density of points, and k and c are constants. This fitted curve enables the
redundant density to be determined for each metric (eqs. (2.16) and (2.17)), with
different levels of noise (fig. 2.3C).

The scaled cosine similarity has the lowest redundant densities, but this does not
necessarily indicate that it produces reliable results with very little data - it could
in fact indicate that increases in the amount of data fail to improve highly variable
results. Normalised PT and PT di st exhibit an expected relationship between the
noise level and redundant densities: more data are required to effectively quantify
a higher level of noise. In contrast, the euclidean and topological correlations have
redundant densities that appear to be unrelated with the noise level. This suggests
that regardless of the level of noise being quantified, for these correlation-based
metrics there is a constant amount of data that will provide the optimally consistent
quantification of that noise.

The modelled maps allow an estimation of the relative statistical power to detect
a 10% change in metric value (eq. (2.18)). This is equivalent to comparing the
confidence that two maps have different levels of noise, if their metric values differ
by 10%. Relative power curves are directly comparable betweenmetrics, andwhen
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Figure 2.3: Statistical power of metrics for topography in straight maps. A. Example
dataset. Topographic maps are generated with a given level of added disorder and varying
density of points enable evaluation of metric (such as the euclidean distance correlation
shown here). This highlights decreasing variance with increasing point density. B. A sliding
window estimate of the coefficient of variance of (A) across varying point densities, with
width 0.008. Fitted curve is of the form CoV = k /d + c. For this example, R 2 = 0.988.
C. Estimated redundant densities, evaluated for different levels of topographic disorder. D.
Statistical power to detect a 10% change in metric value, at the redundant density. E.
Values of the metrics at their redundant density. All plots are mean ±SD.
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evaluated at the redundant density, is an estimate of the The inverse relationship
between statistical power and applied noise across all metrics tested suggests
that the more topographic disorder is present, the less reliably different levels of
disorder can be discriminated (fig. 2.3D). Normalised PT and PT di st have very sharp
declines from low to high noise levels, while the topological correlation has a less
sharp decline, meaning that for the higher noise levels the topological correlation
outperforms the PT -based metrics. However, the euclidean distance correlation
clearly has the highest power to detect changes in noise level across the board. The
erratic curve for relative statistical power resulting from the scaled cosine similarity
is likely a result of the extremely low redundancy values, leading to unstable results
in power calculations as the redundant density is used as a denominator.

In addition to the statistical power of metrics to discern differences in topographic
order, it is also important to understand the shape of the relationship between
noise levels and metric values. This allows comparisons of metric dynamic ranges.
These have been examined at the redundant density for each noise level and metric
(fig. 2.3E). The topological and euclidean correlations appear to vary approximately
linearly across the noise levels tested. In contrast, normalised PT and PT di st have
a more limited dynamic range, and begin to flatten out at the higher noise levels
tested. This potentially makes them less useful than the correlation-based metrics,
as if maps are highly-disordered, they are less able to discriminate between different
levels of order (borne out additionally by their lower statistical power).

To understand how metrics behave for the complete topographic maps found
in vivo, models must incorporate global shape distortions, including shearing
and nonlinearities (“curvy” maps, fig. 2.1B,C). When redundancy calculations are
repeated in curvy maps (fig. 2.4A), the redundant density is much higher for all
metrics than in the straight maps (compare fig. 2.3C with fig. 2.4A). This indicates
that more data is required to optimally define levels of topographic disorder in
situation where maps are distorted - metric values are inherently more unstable
in situations of map curvature. Counterintuitively, the redundant density for the
scaled cosine similarity goes down with increasing noise, suggesting the metric is
failing. the low redundant densities in fig. 2.4A are as a result of inherently variable
metric values rather than reliable values with small amounts of data. It is potentially
due to issues with map alignment.

In terms of the statistical power of metric at redundancy in curvy maps, (fig. 2.4B),
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Figure 2.4: Assessment of metric statistical power in modelled maps mimicking tectal
curvature. A. The density of points at which redundancy is reached for different metrics.
B. The relative statistical power of these metrics to detect a 10% change in value, at their
redundant density. C-D Values of the metrics at their redundant density. All plots are mean
±SD. D Ratio of curvy result and straight result at the same density (~0.1)
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the euclidean distance correlation seems to perform the best, while the scaled
cosine similarity performs the worst. This is likely to be due to the problems with the
map alignment step of the metric calculation failing to cope well with distortions of
map shape: it may also be associated with the surprisingly low redundant densities.
The relative power for normalised PT and PT di st , and the correlation metrics echo
those in the straight maps, and have similar shapes, although the topological
correlation seems do better relative to the normalised PT metrics in presence of
map curvature. The scaled cosine similarity has, by a small margin, the lowest
relative power.

Plots of themetric values at redundancy (fig. 2.4C) show that the euclidean distance
correlation and topological correlation seem to have the widest dynamic range. The
scaled cosine similarity gives low and very variable results that are not affected
by the applied noise level. This is consistent with the interpretation that the low
redundant densities in fig. 2.4A are as a result of inherently variable metric values
rather than reliable values with small amounts of data. It is potentially due to issues
with map alignment.

In order to examine how the value of the metric is affected by curvature in the map,
the ratio of metric values for curvy and straight maps was examined (fig. 2.4D). In
presence of map curvature, the metrics all indicate lower levels of order (as the
ratios shown are all below 1). This indicates that for all of the metrics tested, the
ability of the metrics to reveal true order in presence of global distortion is impaired.
The reason that the ratio of metric values for the scaled cosine similarity increases
with noise is that the metric value does not appear to decrease with noise in curvy
maps (fig. 2.4C) - that is, the metric is no longer detecting changes in noise. For the
other metrics, the ratio decreases with noise, meaning that an increased noise in
these curvy maps has a proportionally bigger effect on detected map disorder than
in the straight maps. Although the resulting ratios are very close between metrics
(except for the scaled cosine similarity), the euclidean distance correlation is least
affected by map curvature as the ratios of metric values in curvy and straight maps
are the closest to 1, across all noise levels tested.
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2.3.3 Redundancy and statistical power in the multisubject context

In a real experimental setting, the possibility of jitter cannot be excluded [175],
and removing it is extremely difficult. Thus, only metric formulations which are
invariant to jitter were examined further. Invariance to jitter comes from using only
point-to-point distances/vectors between points within each subjects, and pooling
summary statistics across the multiple subjects used (see fig. 2.2). Using only
metrics invariant to jitter means that jitter does not need to be included in model
data.

In order to explore the concepts of redundancy and statistical power in a
multisubject context, curvy model datasets were generated while varying both the
within-subject point density, and the N umber of subjects. The range of densities
measured were chosen to include the redundant densities found previously
(fig. 2.4). Metrics were evaluated for these datasets, allowing the calculation of a
2D-sliding-window CoV . A surface was then fitted to these values (see eq. (2.19)).

The redundant number of subjects, NR , is here defined as, for given d , the N at
which doublingN reduces the coefficient of variation of themetric values by a factor
of <

√
2, analogously to in the single-subject context (eqs. (2.20) and (2.21)). For

simplicity, this is not constrained to integer values. In all datasets, the R 2 value for
the surface fits to the scaled cosine similarity were < 0.5, meaning that NR and
relative statistical power could not be calculated.

In terms of NR , a main feature is that for all noise levels tested in curvy maps,
statistical redundancy is found below N = 30 for all metrics, densities and noise
levels (fig. 2.5). This gives an upper limit for how many experimental animals are
required to produce optimal comparisons between topographic maps. A surprising
feature is that, apart from normalised PT di st , NR does not appear to be related to
noise level in the same way as the single-subject redundant density. For these
multiple subject metrics, increasing the number of sample points per subject has
far more impact on the accuracy of map order quantification than does the number
of experimental subjects.

It appears that NR is positively correlated with the single-subject point density
with all metrics except, possibly, the euclidean distance correlation, meaning that
the more subjects are required to reach redundancy when there is more data per
subject. This seems counterintuitive until the relative statistical power is considered:
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Figure 2.5: NR derived from surface fits to local coefficient of variation as a function
of d and N . Multisubject datasets per surface fit = 2475, 1 ≤ N ≤ 50 per dataset. Line
colours indicate applied noise level, while pattern indicates goodness-of-fit of the surface
used to derive it.
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with more data per subject, statistical power at redundancy is higher. This implies
that NR is limiting for statistical power rather than providing an optimum tradeoff
point. When looking at the results for both redundancy and statistical power
together, it appears that metrics/noise levels with a higher NR also appear to have
a higher statistical power at that N . This effect means that redundancy should be
thought of as the point at which there is no point adding more data - but not that a
low value indicates increased utility.

All metrics give a higher statistical power for lower noise levels, which is expected
from previous results. The best statistical power is achieved by the euclidean
distance correlation, followed by the topological correlation (fig. 2.6), while
normalised PT s appears to have greater power than PT di st - consistent with the
single-subject results. Additionally, the available statistical power is increased by
a greater amount of data per subject, which is to be expected.

Examining themetric values as a function of the noise applied to themaps, it is clear
that the metric giving the most linear relationship between applied noise and metric
value is the euclidean distance correlation, followed closely by the topological
correlation. Figure 2.7B examines how the gradient of the metric value varies with
the value of the metric itself in the multisubject context. This means that for any
given metric value, the plot shows the change in the metric value that would result
from a noise level increased by 1. The greatest dynamic range is given by the
euclidean distance correlation.

2.3.4 Detecting order in the multisubject context

Results so far have focussed on quantifying different levels of topographic order
between maps, in order to precisely resolve different levels of order/disorder.
However, they tell us little about the power for detecting whether topographic
order is present at all. This is particularly important in cases where maps are
comparatively disordered. Although the utility of metrics for order detection has
been adequately covered in the single-subject context [179], no such work has
been performed before for multiple-subject metrics.

A map is defined as ordered if it’s true metric value indicates a higher level of order
than “shuffled” versions in which point correspondences between spaces have
been randomly permuted. Many of these shuffled maps are used to calculate a
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p-value for whether the observed order is greater than that expected by chance,
given the distributions of point locations in both spaces (eq. (2.22), [179].

Here, I present an assessment of metrics power to detect order in multiple-subject
datasets. This can be achieved by looking at how N80, meaning the number of
subjects required for detection of statistically significant topographic order in 80%
of datasets [179], varies as a function of the mean n in each subject with constant
noise levels. Maps are defined as ordered when the probability that the observed
level of order would be observed by chance, given distributions of constituent
points, is ≤ 0.05 (see eq. (2.22)).

As expected, the number of subjects required for reliable detection of order was
inversely correlated with the number of points in each subject (fig. 2.8). The
metric which reliably detects topographic order with the smallest amount of data is
the euclidean distance correlation, closely followed by the topological correlation,
followed by normalised PT di st , and finally PT s . Using different values of noise gave
similar results with respect to ordering of metrics (data not shown).
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from a Rayleigh distribution with defined mean (n̄ ). For each dataset (i.e. a multiple-subject
map pair), significant order was said to be detected if p ≤ 0.05, as determined by eq. (2.22).
N80 for each n̄ was found using bisection search followed by an exponential decay curve
fit, starting with N = 20, see section 2.2.3 for further details. All R 2 for curve fits ≥ 0.9.
Data shown are mean ± SD from 5 such fits (all R 2 > 0.9 for curve fits). The noise SD used,
18 µm, was selected as being within the dynamic ranges of all metrics tested.
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Figure 2.9: Example maps. Left: “Visual” map Right: Different “tectal” maps, with R 2

values measured by the euclidean distance correlation shown above them.
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2.3.5 Summary: Euclidean distance correlation is the best metric

One of the problems with the scaled cosine similarity is that it often fails to
produce a finite value due to a failure in the map alignment step, particularly
in curvy maps. It should be noted that this failure rate means that for any
given experimental dataset, the metric could either be unusable, or require
manual curation, rendering comparisons between maps difficult if not impossible.
Additionally, it did not function well within the statistical framework used here,
particularly in the multisubject context, making it difficult to evaluate critically.

Overall, in the single subject context, the euclidean distance correlation has the
highest statistical power at low noise levels, and outperforms the topological
correlation and normalised PT and PT di st . It additionally has the widest dynamic
range. In the multisubject context, interpretation is more complicated due to
the extra dimensionality involved. Although normalised PT di st has the steepest
gradient in response to noise for the lower levels of noise, this does not make it
the optimal choice, as it indicates limited dynamic range. The euclidean distance
correlation has high NR , and the highest relative statistical power. The euclidean
distance correlation additionally appears to have NR uncorrelated with noise levels
and density of points - which is advantageous as it means that the number of
subjects can be chosen without preliminary data. Overall, the euclidean distance
correlation has the highest statistical power for distinguishing different noise levels,
requires the least data to detect topography, and has the widest dynamic range.
In fig. 2.9, there are example maps to show qualitatively what maps with different
levels of order look like.

Given these clear results, extensions to the euclidean distance correlation have
been formulated and optimised to enable statistical tests for differences in
topographic order between multiple-subject topographic maps, and also to allow
estimation of levels of disorder in biological distance units:

2.3.6 Statistically testing for differences in order across different
maps in the multisubject context

The relative power calculations shown above give an indication of how powerful
a metric is for testing for different levels of order. However, the values calculated
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are relative, and likely to only be valid for scenarios in which the amount of data
(d or n and N ) are roughly equal between the maps to be compared. Dr Lowe
has derived the following framework for testing for differences in topographic order
between maps using different amounts of data - and for testing the significance of
a difference found:

Each calculation of the euclidean distance correlation produces a single value
of R 2, representing the level of topographic order. However, if maps are
subsampled, many R 2 values may be generated from a single map pair. In order
to utilise standard statistical tests on these values, the subsampling must produce
minimally-dependent submaps. This is illustrated in fig. 2.10: as the number of
points in each submap is increased, the spread of many R 2 values, calculated from
these submaps, decreases according to a characteristic shape on a log-log plot.
Where the curve is approximately linear, this is due to the metric gaining precision,
similar to fig. 2.3A-B. The steep downward curve to the right represents the loss of
independence between maps - as the same sets of points are repeatedly used in
multiple submaps, their R 2 values become more similar. When all points are used,
the spread of R 2 is 0 as all “submaps” are identical. The log-log plot can be used
to select a number of points which gives maximal independence in both maps, but
still keeps their spread small. Where two maps contain different numbers of points,
the minimum selected subsample size should be used for both maps.

This generates two large populations of R 2 values. In order to test for a statistical
difference between them, these must be subsampled further as classical statistics
do not perform well with overly large sample sizes. Performing many t-tests
on small subsamples of the two R 2 populations will produce many p-values. A
false-discovery rate (FDR) adjustment [183] is performed as follows: the p-values
are ranked in ascending order, and given index i . If we define a threshold q as
the fraction of significant p that are allowed to be false, we can then define, for
each p (i ), a value q (i ) =

p(i )N
i . This represents the minimum threshold q at

which we would find p (i ) to be significant. These are then re-ranked so as to be
monotonically increasing, and the final p for the difference between the two maps
is the maximum p (i ) such that q (i ) ≤ q .

Care must be taken with selection of the number of points used for subsampling.
If too large a number is chosen, statistical tests cannot be used properly as the R 2

values generated will not be independent. However, if too few are chosen, their
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Figure 2.10: Effect of subsampling different numbers of points on distribution of
submap R 2. Data derived from all reactive voxels for which receptive fields could be
calculated in the tecta of 32 zebrafish, obtained by Dr Aenea Hendry [52]. Each point
represents the SD of 1000 submaps, each containing the same number of points. As the
number of points in a submap approaches the total number of available points, the spread
approaches zero as submaps progressively have more points in common. The red line
indicates a reasonable choice of subsample size.

spread will be too large and statistical power is lost. Thus, the ideal point on this
curve will be one as far to the right as possible on the linear portion, as indicating
in fig. 2.10.

2.3.7 A framework for deriving noise estimates in biological units of
distance

Finally, using the euclidean distance correlation as a basis, I have developed a
technique to derive estimates of biological noise values in the original biological
units of measurement. This represents an estimate of the distribution of point
displacements from their “ideal” positions in a perfectly-ordered map. Such an
estimate is useful in that it allows us to relate topographic order in the global,
abstract sense back to real biological parameters - for example, the sizes of
receptive fields, or axonal arbours.

First, pairwise distance measurements are calculated as for the euclidean distance
correlation, either in the single- or multiple-subjects sense. A best-fit line is

77



calculated to minimise least-squared orthogonal residuals (fig. 2.11A), achieved
using principle component analysis, following normalisation for zero mean and unit
variance. A binned histogram of residuals is then examined via a fitted gaussian
(fig. 2.11C), from which the standard deviation can be extracted, summarising the
level of noise in both maps. This technique explicitly assumes that the only source
of topographic disorder is gaussian noise.

The orthogonal residuals can be projected back into the units of the original
distance axes. The direction in which this projection occurs represents interpreting
the topographic disorder as originating in one or the other of the two maps
(section 2.2.3). However, the level of disorder can be regarded as interchangeable
between the scale units of the two maps, in which case they can both be presented
as a function of a dummy variable ϕ (see eq. (2.23), fig. 2.11D).

Examining the result of this technique over a range of noise levels, in both straight
and curvy multisubject maps, shows that in general the estimated noise SD closely
matches that used in creating the maps. However, in curvy maps, global map
distortion leads to overestimation of noise levels (see fig. 2.12).
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Figure 2.11: Illustration of procedure for estimating noise in biological distance units,
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Noise can be represented as a nonlinear combination of noise in both maps, with the
angle ϕ determining which space the noise is projected into.
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2.4 Discussion

Overall, this work has introduced two new measures for assessing the utility of
metrics for topographic order - those of redundancy and statistical power. These
measures were designed to assess how much data a metric required to produce
reliable results in multiple datasets with the same underlying parameters, and the
power of a metric to discriminate between different levels of topographic order. In
addition, I have explored the potential of metrics to detect topographic order in
the multisubject context, under noise levels which make maps very disordered.
I have concluded that based on these criteria, a single metric, the euclidean
distance correlation, is superior to the others. Based on this metric, a method for
testing differences in order between maps derived from multiple subjects has been
developed, as well as a way of accounting for topographic disorder in biological
distance units.

2.4.1 Redundancy represents an upper bound on how much data is
useful

Originally, the concept of redundancy was formulated as a method for ascertaining
which metrics require the least amount of data to function efficiently. However,
given that in general, metrics in particular scenarios having a higher redundancy
point (either with respect to point density or number of subjects) also have a higher
statistical power at this amount of data, it should best be interpreted as the point
at which adding data has no further advantage - but that in general, the more data
can be added while still providing gains, the greater the maximum power will be,
although not without penalty. Conversely, if a metric has a very low redundancy
point (such as the scaled cosine similarity in single-subject context), this likely
indicates that it is unreliable no matter how much data is provided, rather than
that it is reliable with very little data. This view is also supported by the fact that
most of the metrics tested have a higher redundant number of subjects at higher,
rather than lower, point density (see fig. 2.6).
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Simpson’s Paradox in testing for differences in order between maps

We know that the variance in euclidean distance correlation result is affected by
sampling density and by the number of experimental subjects. However, it remains
to be seen how this variance is affected by different distributions of sample densities
for comparable maps - although as a result of Simpson’s paradox this is highly likely
[184]. However, it can be easily circumvented by downsampling one (or both) of
the maps such that distributions are matched in real datasets.

2.4.2 Evaluating noise in biological distance units

The technique for estimating the level of noise in biological distance units was
developed following the conclusions that the euclidean distance correlation was
the most reliable metric, on the basis that a method for noise estimation should
be based around a metric which can efficiently quantify overall order. The
method described explicitly assumes that sources of topographic disorder are
gaussian, and additionally requires knowledge of which space the topographic
disorder originates in. Where these assumptions are met, the technique gives good
estimations.

Although the technique presented works well in the context of undistorted maps, if
distortions are present, noise is overestimated. It might, however, be possible to
combine a nonlinear map alignment step in which one map is distorted to match,
as closely as possible, the shape of the other prior to noise quantification. Although
difficult to evaluate at scale (due to the need for manual curation), a nonlinear
alignment approach could well be useful in future. If the goal was to compare
levels of topographic order/disorder between two maps, (such as two populations
of neurons in the same brain area), one strategy could be to perform the nonlinear
alignment step with the two maps pooled (necessitating the assumption that the
nonlinear distortion is shared between them). An additional consideration would be
that noise cannot be evaluated in biological distance units of the space which has
been distorted.
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Chapter 3

Development of topographic
maps formed by motion-selective
RGCs

3.1 Introduction

In this chapter, I set out to characterise the topographic properties of the zebrafish
retinotectal projection during development. Specifically, I set out to chart the
development of maps formed by two functional types of RGCs: those selective for
a specific direction of motion (DS), and those selective for a specific orientation of
motion (OS), exhibiting uni- and bimodal responses to circularly-spaced directions
of motion respectively [37]. While the emergence of the laminar distributions of
DS and OS RGC axons within the tectum over development has been explored
previously [38], and the PhD thesis of Dr Aenea Hendry explored the topographic
maps formed by them at a single age [52], these two areas of research have
not been combined before. Additionally, these previous studies were limited
by the extent of the visual field covered by visual presentation systems: only
approximately 90° by 60°.

Examining maps formed by two functional types of RGC allows the comparison
of map properties: do they develop according to the same rules, and do their
properties change in a way that is matched in time? Although this project’s main
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focus is on topographic maps, the necessary experiments additionally yield a
plethora of other parameters, such as selectivity for specific angles of motion and
contrast changes, allowing finer-scale classification, and the distributions of the
identified functional typess within the tectum.

Three ages were chosen to reflect the development of DS and OS maps. The first
RGC axons enter the tectum around 2-3 days-post-fertilisation (dpf) [49, 54]. This
coincides with the emergence of tectal laminae [185]. Thus, fish aged 3 dpf were
studied in order to characterise maps as early as possible after RGCs enter the
tectum and form their axonal arbours. Larvae begin to hunt between 5-6 dpf [186],
and there is some evidence for visually-driven preference for conspecifics at 7 dpf
[187]. They are capable of responding to objects as small as 1° at 6-8 dpf [188].
Much work has focussed on 7 dpf larvae [37, 38, 52, 173, 188–190], and to allow
the greatest possible comparisons with other research 7 dpf was chosen as an
additional timepoint. A perspective on changes further into adulthoodwas provided
by the study of 10 dpf animals: despite recent advances in genetic techniques for
functional imaging further into adulthood [191], at the time that experiments were
performed this was the latest time-point that promised usable functional data from
the available transgenic fish.

Using a novel visual presentation system, designed to provide maximal coverage
of the visual field at the highest possible resolution (see Appendix A), I
performed confocal functional imaging experiments on larval zebrafish expressing a
synaptophysin-tagged genetically-encoded calcium indicator (which is specifically
trafficked to presynaptic axon terminals) in their RGCs, and lacking melanophores
[174]. Stimuli were designed to allow measurement of motion and contrast
selectivity, and various properties of receptive fields, such as sizes and locations
within the visual field.

Although functional imaging experiments were performed on single (2D) slices
to maximise temporal resolution (with multiple slices scanned per experimental
animal), these were placed into 3D by co-registration with separate structural
scans. I then placed regions of interest (ROIs) meeting DS or OS criteria into
3D standardised spaces generated from multiple experimental subjects [175],
representing a population tectal neuropil for each age-group. These ROIs, which
correspond to punctate areas of high SyGCaMP6s fluorescence (see section 3.2)
are likely to correspond to presynaptic axon terminals of RGCs [57].
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Generating a rich dataset, incorporating both functional properties and anatomical
locations of RGC axon terminals, allowed quantitative descriptions of the
topographic maps formed by DS and OS RGCs. In addition to quantification of
topographic order using the framework developed inChapter 2, the distributions of
the axon terminals formed by DS and OS RGCs within the laminar and topographic
axes of the tectum, changes in contrast selectivity, receptive field size, and the
alignment of the two maps have been explored. Finally, using a wavelet-based
clustering method, I have explored how previously-identified putative variants of
DS and OS RGC [38] might form their own submaps.
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3.2 Methods & Reagents

3.2.1 Experimental animals

Experimental animals were double transgenic Isl2b:Gal4,UAS:SyGCaMP6f,
maintained on a nacre-/- background [174]. Larvae were reared at 28.5°C, in an
incubator with a luminance of ~280 Lux on a 14 hour light/10 hour dark cycle. They
were maintained in mains water, run through a reverse osmosis filter, reconstituted
to a pH of 7.0 with sodium bicarbonate and a conductivity of 535 µS/m using
Tropic Marin salt, with 1.33 mg/l Methylene Blue added. A 50% water change
was performed approximately every 2 days after 3 dpf. Fish aged 5 dpf and older
(capable of independent feeding [186]) were fed on Gemma Micro 75 dry diet
(Skretting) every 24 hours, with a maximum of 20 larvae per petri dish.

Around 60 adults were maintained and bred to produce experimental larvae. They
were divided into 4 sets, so that while random adults were selected on any given
day from within a set (3-5 breeding pairs per day), each adult was bred a maximum
of once every 10 days.

3.2.2 Visual stimuli

Stimuli were presented using a purpose-built system, utilising an array of LCD
screens; see Appendix A for details of design, construction and quality control.
The area viewable by the fish was approximately 180° (azimuth) by 56° (elevation),
with a resolution of ~0.07°/px. Stimulus sets were generated using customMATLAB
software, and presented at 30 frames/second.

Moving bars

Twelve second videos of bars, oriented in different ways, were used to assess
motion selectivity. The bars faded from mean grey for 1 second at the start,
and faded to mean grey for the final second, in a linear fashion to avoid
sudden luminance changes. The mean luminance of the screens, 32 cd/m2, was
maintained at all times. There were 2 different sets of bars: “dark”, composed of
10° bars of 0.25×mean grey separated by 30° bars of 1.25× mean grey, and “light”,
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composed of 10° bars of 1.75×mean grey separated by 30° bars of 0.75× mean
grey. They moved with a speed of 20°/s orthogonal to their edges (see fig. 3.1).
The angles referred to in this thesis always refer to the direction of motion. The
background also changed luminance over the same period, maintaining constant
mean luminance over the whole screen. There were 24 of these movies: Bars
moving in 12 directions at 30° intervals, both dark and light. These were presented
in a random order, generated at the start of each experiment, with a rest period of
10s between movies.

Sparse noise

Additionally, for estimating the receptive fields of neurons, a sparse noise stimulus
was used. Dark (0.25×mean grey luminance) or light (1.75×mean grey luminance)
7.5° squares were presented on a mean grey background to tile visual space
with 50% overlap. The squares appeared and disappeared suddenly in order to
produce impulse responses. The total number of centres was 658 with the centres
distributed 3.25° apart across the screens, and each centre (red dots in right panel
of fig. 3.1) used exactly once by both dark and light squares. Due to the overlap of
squares, screen locations were each covered 9 times, with the exception of edges
which were covered 3 times, and corners, covered once. Each epoch consisted
of 1 second with squares on-screen, and 0.5 seconds with no squares. Complete
coverage of the screens required 400 epochs, with either 3 or 4 squares per epoch.
(see fig. 3.1). These were randomly selected, with constraints set on the minimum
distance between their centres (>20°). Ten different versions of this stimulus were
created (in which squares were shown in different combinations), with one selected
randomly at the start of each experiment.

3.2.3 Imaging

Fish were immobilised in 2.5% agarose, mounted on custom-built slides for use
in the stimulus presentation system (see Appendix A for details). All images were
acquired using a Nikon A1R confocal microscope, using a resonance scanner in
order to record images from single slices at ~15Hz, 512×512 voxels of size 0.39×
0.39 µm. Due to large changes in fluorescence observed at the start of imaging
(data not shown), stimulus epochs began a minimum of 30s after the start of
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imaging. Imaging was performed at roughly the same time each day (between 1pm
and 6pm), in order to minimise effects of circadian rhythms on neuronal activity
patterns [192, 193]. On any given day, between 1 and 3 animals were imaged.

Anatomical Imaging

After placing the fish in the imaging chamber, a single structural scan was taken,
extending from above the dorsal pole of the neuropil for 80-150 µm ventrally. Slices
were 0.725 µm apart, and the final image calculated using the mean of 8 scans per
plane to increase signal-to-noise.

Functional imaging

Care was taken to adjust the laser power and gain to obtain maximal dynamic
range within images without producing clipping artefacts. All experiments were of
a single slice, with a minimum of 3 µm between experimental planes in each subject
to minimise duplication of ROIs across multiple scans. In each subject, between
3 and 7 planes were scanned (although not all were included in the final dataset,
see section 3.2.4). For each plane, the sparse noise stimulus was presented first,
followed by the oriented bars.

3.2.4 Analysis

Functional scan pre-processing

Imageswere converted from the Nikon proprietary .nd2 format to NIfTI format, using
in-house MATLAB scripts. Acquired time-series were temporally downsampled
by a factor of two (to ~7.5Hz) by taking the mean of each voxel in temporally
adjacent frames in a non-overlapping fashion, increasing signal-to-noise. After
downsampling, each set of experiments on a slice was spatially realigned to its
first frame, then its mean image and resampled using SPM8 [194] to remove
motion artefacts in 2D. All alignments were manually checked, and excluded
from subsequent analyses if satisfactory motion-correction could not be achieved
after 3 separate attempts, or if z-drift was observed (indicated by, for example,
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the appearance or disappearance of prominent morphological features or visible
changes in the shape of the neuropil).

Each voxel’s time-series was independently rescaled to have zero mean and unit
variance, taking advantage of the maximum dynamic range available in the NIfTI
int16 format. Each voxel was then Savitsky-Golay filtered [195] across time, using
the MATLAB sgolay function in order to further increase signal-to-noise. In voxels
where the time-series is dominated by high-frequency noise, this reduces the
dynamic range far more than in those voxels whose intensity varies slowly, with
the stimuli.

ROI identification from functional time-series

For each voxel, the entropy of its fluorescence intensity profile over time was
calculated. This provided a simple heuristic of whether voxels were of interest,
in order to to speed analysis, as voxels with high entropy over time tend to be
those fluorescently-labelled within the neuropil. As the tectum typically occupied
less than half of the field of view, only the 50% of voxels with the highest entropy
in each scan were considered for further analysis. Remaining voxels were sorted
by the standard deviation of their intensities over time, meaning that the voxels
with the most variable signal were used as seed points first. Using these most
variable voxels, pairwise euclidean distances dr in a response space for which each
timepoint in a functional scan is considered a dimension were calculated between
the seed and all other voxels. Voxels are binned according to their distance from
the seed in anatomical space, da , and a curve of the form dr = 1

Ae−λda
fitted.

Voxels are assigned to the same ROI as the seed if their 1
dr

exceeds 1.5× full-width
half maximum of this curve. After assignment to an ROI, voxels were excluded
from this assignment procedure, which repeats, taking the most variable voxel as
a seed, until all voxels have been included in an ROI, or excluded due to size
constraints. ROIs had a minimum size of 5 voxels, and a maximum size of 200
voxels, corresponding to an area of between 0.76 and 30.4 µm2 in the imaging
plane. These areas were selected as being biologically plausible given the size
of presynaptic puncta on RGC axons in a previous study, labelled using a similar
transgenic line [57].
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Motion selectivity estimation from bar stimuli, and contrast change selectivity

The moving bar stimuli were used to calculate the selectivity of individual ROIs for
different directions of motion. Unimodal responses to motion are hereafter referred
to as direction-selective (DS), while bimodal are referred to as orientation-selective
(OS).

Epoch starts and ends were calculated as described in Appendix A. Responses
during inter-epoch intervals were assumed to be null. Thus, baseline fluorescence
was removed from epochs via linearly interpolating from the mean fluorescence
during their adjacent inter-epoch intervals and subtracting the result at each
time-point, producing a ΔF value for each ROI at each time-point. The responses
to each angle T were calculated as the integral ΔF to their epoch, producing a
12-element response vector. ΔF/F was not calculated, as comparisons are only
ever made within (rather than between) ROIs, and the division adds noise due to
errors in estimation of baseline fluorescence.

Preferred angles (Θpr ef ) were calculated via a von Mises fit to the response vector
[196], with a unimodal fit used for DS and a bimodal fit for OS responses. TΘpr ef

was the peak height of the von Mises fit. Θnul l refers to the opposite angle (i.e.
shifted by π radians), while Θor th is the orthogonal angle (shifted by π radians).
Direction selectivity index (DSI) and orientation selectivity index (OSI) calculated as
described previously [38, 197]:

DSI =
TΘpr ef −TΘnul l

TΘpr ef +TΘnul l

(3.1)

OSI =
TΘpr ef −TΘor th

TΘpr ef +TΘor th

(3.2)

Voxels were classified as DS if their DSI >0.5, OSI <0.5, and goodness-of-fit for the
von Mises profile, R2>0.8, and as OS if their OSI>0.5, DSI<0.5, and goodness-of-fit
for the von Mises profile, R2>0.8. Thus, OS and DS ROIs were mutually exclusive.
During this analysis, responses to the 10° bright and dark bars were analysed
separately. If an ROI met DS criteria when stimulated with bright bars, but not
with dark, in was considered an ON-DS. If the converse was true, it was considered
OFF-DS. If responses to both bright and dark barsmet DS criteria, it was considered
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Figure 3.1: Stimuli and example responses from functional imaging experiments. A
Example light bars. B Example responses of DS and OS ROIs. C Example epoch from
sparse noise stimulus. Red dots represent centres of all presented squares throughout
the whole experiment. D Representative example receptive field maps from 2 ROIs, after
gaussian smoothing. Black dots indicate calculated receptive field centres.

ON-OFF DS. The procedure was identical with respect to the OS ROIs.

Receptive field estimation from sparse noise stimuli

Receptive fields were calculated for ROIs identified using the bar stimuli, via a
reverse correlation approach similar to Ramdya et al., 2006 [198]. Responses of
each epoch were determined as an integral under the curve of fits to the onset
and end of each epoch, using a function allowing both transient and sustained
responses. This model was designed by Dr Andrew Lowe. The fitted parameters
were as follows:

• t time since epoch start, in seconds

• yt , the change in fluorescence from baseline at a particular time

• yi ni t value of y from previous epoch, evaluated at t = 0. For the first epoch,
yi ni t = 0.

• x1 time from epoch onset to beginning of transient response
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• x2 time from epoch onset to end of sustained response

• x3 time from epoch onset to transient peak

• x4 time from epoch onset to end of sustained response

• A amplitude of the transient response

• B amplitude of the sustained response

• Bs amplitude of held component of sustained response

• τr i se = 0.083s, defined based on the kinetics of the GCaMP6s probe [168].

• τf al l = 0.60s, defined based on the kinetics of the GCaMP6s probe [168].

yt =



yi ni t e
− t

τf al l : t < x1, if yi ni t > 0

yi ni t

(
1 − e

− t
τr i se

)
: t < x1, if yi ni t < 0

yt=x1 + (A − yt=x1)

(
1 − e

− t−x1
τr i se

)
: x1 ≤ t < x2

yt=x2e
− t−x2

τf al l : x2 ≤ t < x3

max
©«
yt=x3 + (B − yt=x3)

(
1 − e

− t−x3
τr i se

)
Bs

ª®®¬ : x3 ≤ t < x4

yt=x4e
− t−x4

τf al l : t ≥ x4

(3.3)

yt =



yi ni t e
− t

τf al l : t < x1, if yi ni t > 0

yi ni t

(
1 − e

− t
τr i se

)
: t < x1, if yi ni t < 0

A − (A + yt=x1) e
− t−x1

τf al l : x1 ≤ t < x2

yt=x2 − yt=x2

(
1 − e

− t−x2
τr i se

)
: x2 ≤ t < x3

min

(
B − (B + yt=x3) e

− t−x3
τf al l

Bs

)
: x3 ≤ t < x4

yt=x4 − yt=x4

(
1 − e

− t−x4
τr i se

)
: t ≥ x4

(3.4)

Parameters other than τf al l and τf al l were fitted to each epoch using the MATLAB
fminsearchcon function. The fit was formulated in such a way as to automate
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Figure 3.2: A Example fluorescence trace, with model fit overlaid and sparse noise epoch
start and ends marked. B Epoch-wise responses extracted from model fit.

selection of eq. (3.3) if the epoch caused an increase in fluorescence or eq. (3.4) if
the epoch caused a decrease in fluorescence. As some RGCs are tonically active
[199], it was important to use this approach, allowing both increases and decreases
in fluorescence in response to the stimulus. An example fluorescence trace, and
it’s fitted model, can be seen in fig. 3.2.

As the sparse noise stimuli had multiple squares per epoch, the response to each
epoch corresponded to multiple screen locations (either 3 or 4, see section 3.2.2).
Due to the overlap between the squares used, each location on the screen was
covered 9 times by both dark and light squares (with the exception of edges and
corners). Maps of responses to positive and negative contrast changes were thus
built up by assigning the responses of an ROI at each epoch to the screen locations
where luminance changes occurred. Maps of responses to negative contrast
changes were built from the appearance of a dark square, or the disappearance
of a bright one, while maps of responses to positive contrast changes were built
from the appearance of a bright square or the disappearance of a dark one.
The final response to either contrast change at a particular point in visual space
was calculated as the average of the responses to epochs containing luminance
changes covering that point. This gave 2 maps, for positive and negative contrast
responses. To find receptive field centres, the mean of the modulus of these two
maps was gaussian-filtered (with SD of 7.5°) and thresholded at 2 SD above its
mean. If multiple non-contiguous regions were found to be supra-threshold, only
the largest was retained. This approach was expected to lead to noisy receptive
fields (see lower example in fig. 3.1D) but if the receptive field is coherent and larger
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than 3.5° in diameter, it should be revealed. The centre of mass of the thresholded
map was taken as the receptive field centre. The area of the receptive field was
taken as the area of all supra-threshold pixels. Examples of these receptive field
weightings prior to thresholding can be see in the lower right panel of fig. 3.1.

Clustering of OS & DS variants

Clustering of angle-selective variants of DS and OS ROIs was performed as
described in Lowe et al., 2013 [38]: For DS ROIs, the Haar wavelet coefficients
were derived from the 12-element response vector from bar experiments. The 5
wavelet coefficients with the highest variance over the ROIs within each age-group
were selected and then used as input for wave_clus, a semi-supervised clustering
toolbox [200]. Wave_clus was chosen as it was the method used in previous
research [38]. For OS ROIs, which have preferred angles only between 0° and 180°,
the 12-element response vector was taken as the mean of equivalent elements
(for example, 0° and 180°) and only the 3 most variant wavelet coefficients (of
6 total) were used for clustering. All clustering was performed within age-group.
Correspondence between clusters across ages was subjectively assessed based
on similarity of angular selectivity and relative abundance. The angle at which the
fish views the screen affects how the 12 different directions of motion are projected
onto the retina, and thus how they are encoded in the RGCs. Thus, for comparisons
of variants between age groups to be valid, it must be assumed that there are no
systematic differences between the age groups in the angles that the fish were
mounted.

Construction and usage of standardised spaces

All alignments were performed using SPM8 [194].

Z-coordinates for functional scans were checked manually and corrected if
necessary, by comparing the mean image of the functional time-series against
the planes of the structural image, in case the fish had drifted in z during the
experimental session. In order to estimate the 2D rigid-body transformations to
bring ROI coordinates into reference with the anatomical image, the mean image
from 30 frames of the functional time-series (in order to match signal-to-noise ratio)
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was aligned to its corresponding slice from the structural scan, using spm8.

In order to aid alignment despite fine-scale disparities between subjects, a
simplified representation of the RGC-recipient neuropil, comprising just the SFGS
and optic nerve, was produced for each subject. This simplification was
produced by a multi-stage process. First, the image was masked to remove
skin autofluorescence, using an in-house MATLAB script produced by Dr Andrew
Lowe. The resultant image was then thresholded, setting all but the most
brightly-fluorescent of voxels to 0, with the fraction of retained voxels determined
by the experimenter on a case-by-case basis. This was followed by median filtering
and whitening (using parameters adjusted on a case-by-case basis).

From each age group, 6 subjects were selected by hand as having the closest
correspondence between the z-axis of the image and the dorsoventral axis of the
fish: the fish was mounted “straight”. Five of these 6 masked, filtered and whitened
images selected for the template were aligned to the remaining one, then all of them
were aligned to their mean, and resliced. The template was created by rescaling
all voxel brightnesses to match ranges (so that especially bright images did not
dominate) and defining each voxel brightness as the mean of the corresponding
non-zero voxels in the individual subjects. Masked/filtered/whitened images from
all subjects were then individually aligned to the age-appropriate template. The
mean (unprocessed) image of the realigned animals used in the template can be
seen in fig. 3.3 - the gross laminae of the tectal neuropil (the SO, SFGS, SAC and
SGC) are clearly visible. There are, however, discrepancies visible at the poles of
the neuropil, due to the limitations of the rigid-body approach used here.

In order to assure the quality of the registration procedure, there were stringent
manual comparisonsmade between each subject, and the template image. Various
morphological markers were particularly considered: the optic nerve entry point,
the rostral and caudal edges of the neuropil across dorso-ventral coordinates,
the dorsal border of the neuropil across different rostro-caudal coordinates, and,
where visible, laminae and tectal subregions. A subset of pairwise comparisons
were additionally made between individual subjects. Finally, the boundaries of
the whole tectal neuropil, and boundaries of the the SFGS traced on the mean
of all realigned/resampled structural images using an in-house MATLAB script,
producing a mesh representation of the neuropil volume into which coordinates
of ROIs could be placed (see fig. 3.5) [38, 77].
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Figure 3.3: Top: Mean structural image from 6 7 dpf animals, used as template for other
subjects. Laminae of the tectal neuropil are clearly visible. The z-coordinates shown are
relative to the ventral-most slice, with more positive meaning more dorsal. Individual slices
are approximately linearly spaced in z. This is a top-down view of the left tectum, but
as images have been realigned it does not precisely equate to the acquisition view in all
subjects. The bright patch at top of the top-left panel is the optic nerve. Bottom: Illustration
of the approximate orientation of the animal for the above images: the tectum imaged is
highlighted in purple. Image adapted from Kita et al., 2014 [50].
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Estimation of laminar and topographic axes

Estimates of the topographic plane and laminar axis for each age-group were
based on the four “poles” of the tectum [38]. Given that templates were created
in alignment with a single subject judged to be upright, the dorsal and ventral
poles were judged to be the centres of mass of the uppermost and lowermost
layers (respectively) of the manually-segmented template SFGS. The anterior and
posterior poles were taken as the two furthest-apart points within any single
acquisition plane (i.e. the tectum’s longest axis in the horizontal plane). The
topographic plane was defined by fitting a plane to these landmarks in the
least-squares sense.

Once the topographic plane had been estimated, the coordinates of ROIs could
be transformed such that their 3 coordinates now represented the two axes of the
topographic plane, and the “laminar” position within the tectum: the normal to the
topographic plane was taken to represent the laminar axis. Thus in fig. 3.7, the
coordinates visualised represent the coordinates of the topographic plane, while
fig. 3.6 represents only the laminar coordinate. The correspondence between these
coordinates and the cardinal axes of the fish are clearly visualised in fig. 3.5.

If the topographic plane defined here represents functionally-defined retinorecipient
laminae, then the coordinates of DS and OS in the topographic plane should be
uncorrelated with the laminar coordinate. If the estimated plane was incorrect,
then the true plane would be at an angle to it, introducing correlations between the
topographic coordinates and the laminar ones. To test this, Pearson’s correlation
coefficients between the topographic and laminar coordinates were calculated: For
all ages and both DS and OS ROIs, the correlation coefficients were <0.03.

Estimation of relative laminar location, and tectal laminar segmentation

For each ROI, its relative position through the laminar coordinate of the SFGS (in
fig. 3.6) was estimated, allowing the representation of the laminar coordinate of any
ROI as being between 0 (most deep) and 1 (most superficial):

• Finding the facets of the SFGS boundarymesh lying directly above and below
the ROI in question.
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• Linearly interpolating the precise “laminar” coordinate of the mesh above and
below the ROI using only these facets.

• Calculating the location of the ROI as a fraction of the distance between the
two points directly above and below it.

Laminar boundaries for DS & OS ROIs were defined as lying between the centre of
a single fitted gaussian and 1 standard deviation in either direction from it. As these
laminae do not have clean morphological boundaries dividing them [38], they were
allowed to overlap.

Generation of azimuth and elevation maps, showing visuotopy

In fig. 3.9, the topographic plane of the standardised tectum (i.e. ignoring the
laminar coordinate of ROIs) was divided into 10 µm2 bins. Each bin containing
3 or more ROIs was colour-coded according to the mean azimuthal (or elevational)
receptive field centre of the ROIs lying within it.

Estimation of tectal azimuth and elevation axes, and magnification factors

Receptive field centres in visual space were collapsed to their azimuthal (or
elevational) coordinate. Topography was measured as described in Chapter 2
between the azimuthal (or elevational) coordinate in visual space, and the tectal
coordinate, projected into 1D along an axis rotated by 0 ≤ Θ ≤ π radians. Θaz (or
Θel ) was taken as the angle whichmaximised topographic order between azimuthal
(or elevational) screen location and 1D-projected tectal location. The magnification
factor was calculated as the gradient of the best-fit line (estimated using the
polyfit MATLAB function) between the azimuthal (or elevational) coordinate and the
1D-projected tectal location which gave the maximal topographic order.

Testing for differences in topographic order

In order to compare the level of topographic order between two different maps, the
framework described in section 2.3.6 was used. For each map, a Monte Carlo
subsample size was selected as described in section 2.3.6. For each map being
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Figure 3.4: Examining the displacement between visual space locations in two maps, for
the same tectal location, represents a measure of map alignment. This diagram shows
an example tectal location (black star), the mean receptive field locations of DS (blue) and
OS (red) ROIs in visual space (grey rectangle), and the displacement vector between them
(black arrow).

compared, 1000 subsampled maps were generated using the smaller of the two
selected Monte Carlo subsample sizes: this offers a more stringent test than using
independently-selected subsample sizes, and ensures a fair comparison where
numbers of points in the two maps are uneven. The topographic order of each
subsample was quantified using the multisubject euclidean distance correlation
described in eq. (2.12), producing two populations of 1000 R 2 (one for each map).
In order to calculate whether they are statistically different, t-tests were performed
on 10000 random subsamples from the populations of R 2 values, drawing 12
R 2 values randomly from each population, for each test. The final p-value was
calculated using the FDR-correction procedure described in section 2.3.6 [183].

Estimation of displacement between maps

In order to estimate whether or not two maps are aligned with each other in the
topographic plane, the displacement between them was estimated in visual space.
This process is equivalent to using an electrode stuck down the laminar axis of the
tectum and measuring the difference in receptive field centres:

In order to estimate this displacement, the topographic plane of the tectum was
divided into 20× 20 µm2 bins, and for each bin the centres of masses of both DS
and OS ROIs was estimated, via a two-step process: Any bin which contained
≥ 6 DS and ≥ 6 OS ROIs had the centre of mass of each map estimated in visual
space. The distribution of distances (x ) between all points and the centre of mass in
visual space were fitted with Rayleigh distributions, using the MATLAB fminsearch
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function to minimise squared differences between the predicted abundance, A and
the actual one.

A =
Hx

σ2 exp
x 2

2σ2 (3.5)

where σ is the Rayleigh spread parameter and H is the peak height. Fits were
performed independently for DS and OS distributions. In order to remove outliers,
any points further than 2σ° from the initial centre of mass were removed, and the
centre recalculated. A Rayleigh test for circular uniformity, as implemented in the
circstatMATLAB toolbox [201], was used to test for systematic differences in visual
space position between maps.
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3.3 Results

Functional imaging experiments were performed on 3,7 and 10 dpf fish to
allow the classification of ROIs into DS and OS, and also to estimate their
receptive field centres. Isl2b:Gal4;UAS:SyGCaMP6s;nacre −/− fish [174] express
synaptophysin-tagged GCaMP6s in their retinal ganglion cells, and this is
preferentially trafficked to axon terminals. GCaMP6s provides a proxy for neuronal
activity. Visual stimuli were presented using a specially-constructed visual
presentation system, which covers 180° (azimuth) by 56° (elevation) of the visual
field (see Appendix A for details).

These functional imaging experiments, consisting of dark or light square-wave
gratings moving in 12 different directions evenly spaced around a circle, and a
sparse noise stimulus using 3-4 dark or light 7.5° squares per epoch, distributed
on a 2.25° grid. ROIs were automatically defined as groups of voxels with
highly-variable and highly-correlated levels of fluorescence over time, sizes
expected from an axon terminal (see section 3.2.4). The drifting bars allow the
calculation of orientation and direction selectivity according to previously-accepted
criteria [37, 38, 173]. After classification as DS or OS, the receptive field centre was
calculated using reverse-correlation to the sparse noise. The number of ROIs from
each age and functional type is shown in table 3.1.

Once ROIs had been selected based on their functional properties, they were
mapped back into a standardised space. This represents an anatomical average
of a subset of fish used within each age group, and means that data can be pooled
across fish in order to examine whether distributions of ROIs are biased and/or
nonmatching. An example 3D standardised space for the 7 dpf tectal neuropil,
showing manually-segmented anatomical boundaries, is shown in fig. 3.5. The
vast majority of DS and OS ROIs were found within the stratum fibrosum et griseum
superficiale (SFGS; 76% of DS/OS ROIs from 3 dpf, 94% from 7 dpf 92% from 10
dpf). Additionally, given that coherent retinotopic maps are found within the SFGS
neuropil [52], inclusion of ROIs found elsewhere would represent confounding data.
The larger numbers of ROIs outside the SFGS at 3 dpf represent a combination
of false positives due to “spiky” responses in neurons projecting to deeper tectal
layers [38]. Thus, only data from the SFGS are presented. As RGCs are not
bistratified [33], they must originate from different functional types of RGC.
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Anatomical landmarks previously used [52] corresponding to the anatomical “poles”
were selected based on the shape of the meshes surrounding the neuropil. These
poles were used to rotate the neuropil such that the three axes now represented
the two axes of the topographic plane (in which azimuthal and elevational
representations of visual space should lie) and the laminar axis, along which we
expect topographic maps of visual space to be overlaid (see fig. 1.3).

Age ( dpf) ROI type N # scans total n n scan-1

3 DS 14 71 1010 14.2
3 OS 14 71 250 3.5
7 DS 17 70 3385 48.4
7 OS 17 70 1706 24.4
10 DS 16 71 1296 18.3
10 OS 16 71 978 13.8

Table 3.1: Summary of DS and OS ROIs from the SFGS tectal region obtained from
functional imaging of Isl2b:Gal4;UAS:SyGCaMP6s zebrafish of different ages. Both OS
and DS ROIs were found in all fish imaged, at all ages.

3.3.1 Distributions of DS and OS ROIs within standard tecta

Quantifying the laminar distributions of DS and OS ROIs, fig. 3.6 shows the
probability densities for DS and OS functional units, as determined by counting
numbers of ROIs along the laminar axis of the SFGS neuropil. DS and OS lie in
clearly-defined laminae, with the DS RGCs more superficial, as previously shown
[38]. Laminar boundaries have been defined here using single gaussian fits to these
densities, with their boundaries set at one standard deviation from the peak (shown
as dotted lines in fig. 3.6).

Although there are very few OS RGCs at 3 dpf, they appear to be far more
uniformly distributed across the SFGS than the DS, starting with a very diffuse
distribution which refines from 3-10 dpf, as previously observed [38]. A secondary
OS lamina emerges deeper within the tectum, evident at 7 dpf and becoming more
pronounced between 7 and 10 dpf. It appears that the main DS lamina moves from
more superficial to deeper within the tectum over development, which has not been
previously observed [38]. Could this effect be due to the thickening of the statum
opticum (SO), which lies superficial to the SFGS, combined with small errors in
alignment and segmentation? Such errors would also tend to make laminae appear
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Figure 3.5: Standardised space for 7 dpf tectal neuropil, with anatomical poles
marked. Scale bars are 30 µm, and show the approximate dorsoventral, rostrocaudal and
mediolateral axes of the fish. Axes are centred in the same 3D location for each image. Top
left image is roughly equivalent to the acquisition view, although the angle of the acquisition
view varied slightly between fish. Other rotations show the topographic view - the plane
in which topographic maps lie, and an orthogonal view, revealing the laminae in which DS
and OS predominantly lie.
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Figure 3.6: Histograms showing probability density over the laminar axis for DS and
OS ROIs, over development. Dotted lines represent 1 standard deviation from the mean
of a single fitted gaussian, the laminar boundaries used to estimate coverage (in fig. 3.7).
Histogram bin widths were selected to maximise the entropy of the bin height distribution.

more diffuse, and to equally shift the OS lamina - effects which are not seen here,
meaning that the change in depth is real.

Examining the distributions of DS and OS ROIs in the topographic plane, corrected
for the number of times different regions were imaged (fig. 3.7B), certain features
are particularly evident. While there are prominent peaks in the density of DS
ROIs, the OS ROIs appear to be more uniformly distributed, particularly at 10
dpf. Consistent with previous findings [38, 52], there is an area of tectum which
has very sparse DS and OS ROIs in the dorsal/anterior part of the tectum - this
becomes more pronounced through development, producing a “hole” at 10 dpf,
which corresponds to the anterior/upper region of visual space. This is particularly
evident in the density of DS ROIs, and less so with the OS.

The low density of ROIs at the extremities of the tectum could be in part due to
the increased likelihood of receptive fields lying outside the area of visual space
covered by the visual presentation system: although the screen was designed
to cover as much of the field of view as possible (see Appendix A), the angle
from which the fish viewed the screen could not be perfectly matched every time,
meaning that ROIs with receptive fields at the extremities of visual space are more
likely to be missed with this experimental setup. However, it is also possible that
there are in fact fewer DS and OS ROIs at the very edges of the tectum, although
bulk density of RGC axons is not altered in this manner [69], and additionally
indicated by constant density of fluorescently-labelled puncta (for example see
fig. 3.3).
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Figure 3.7: A Distributions of all DS and OS ROIs in 3,7 and 10 dpf larvae, projected onto
the topographic plane of the SFGS standardised space. Grey points indicate ROIs found
outside the lamina. Boundaries of dominant laminae were estimated via a gaussian fit to
the normalised distance through the SFGS (see fig. 3.6). B Maps of ROI density within the
dominant lamina for each ROI functional type. In laminar pixels where no ROIs were found,
the number of times the pixel was imaged is indicated.
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Figure 3.8: Differential probabilities for OS and DSRGCs. Densities of ROIs corrected for
the number of times pixels were imaged (lower panels of fig. 3.7) were rescaled to sum to 1,
indicating the fraction of DS (or OS) ROIs found in each pixel. The rescaled DS density was
then subtracted from the rescaled OS density, meaning that the integral of each parametric
map is 0. Only pixels in which density of either functional type is non-zero are shown.

Additionally, it appears that the areas with the most DS do not correspond with
those with the most OS. The peak in DS density appears to be dorsal and caudal
of the peak in OS density. This difference is more pronounced at 10 dpf than at 7
dpf, hinting at the possibility of developing regional specialisation: certain areas of
the tectum have a denser representation of DS over OS, or vice versa. In order to
more explicitly explore this possibility, parametric maps of the difference between
the fractions of OS and DS ROIs were generated (fig. 3.8). These show an index of
bias for one population versus another across the maps, by subtracting the fraction
of DS density, corrected for imaging coverage, from the corresponding fraction of
OS found in a pixel. By comparing two maps in this way, we can ensure that any
regional specialisation observed is not due to sampling biases in visual space.

While at 3 dpf the differential fraction is extremely noisy (in part due to a very low
number of OSROIs), by 7 dpf there appears to be some semblance of structure, and
this becomes more pronounced by 10 dpf (fig. 3.8). By 10 dpf, there is clear region
of OS bias in the central tectum, with a DS bias in peripheral regions: particularly
in the ventral/caudal regions. This equates to greater representation by DS in the
temporal/ regions of lower areas of visual space, as illustrated in fig. 3.9, which
visualises how visual space is reciprocated in the tectum.
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3.3.2 Topographic order

In order to examine the topographic order within DS and OS maps in a qualitative
fashion, parametric maps of the receptive field locations to which ROIs in different
tectal locations responded were produced (fig. 3.9). Qualitatively, it appears that
the DS maps more accurately reflect visual space than the OS, showing a cleaner
colour gradient, at all ages. It appears that both maps are only coarsely ordered
at 3 dpf, and are far more ordered at 7 dpf, with a less clean gradient seen at 10
dpf. Comparing with fig. 3.7, it becomes apparent that the peak in DS density
corresponds to the anterior/upper region of visual space in both 7 and 10 dpf
animals. However, note that due to pooling of data across subject and the fact
that individual subjects did not necessarily view the screen from the same angle,
order is better judged from descriptive statistics which take this potential issue into
account (see chapter 2) than to visually examine maps where this problem cannot
be fixed.

Age ( dpf) ROI type total n Monte Carlo n p (Nshuf = 1000)
3 DS 1010 391 0.001
3 OS 250 90 0.001
7 DS 3385 1027 0.001
7 OS 1706 573 0.001
10 DS 1296 449 0.001
10 OS 978 313 0.001

Table 3.2: DS and OS maps are statistically significantly topographically ordered, at all
ages. p-values represent the probability that the level of topographic order observed could
occur by chance given the distributions of points in both visual and tectal spaces, tested
via randomly permuting point correspondences in the tectum (see eq. (2.22)). Monte Carlo
subsample sizes were chosen as described in section 2.3.6.

These qualitative trends were then examined quantitatively, using the multisubject
euclidean distance correlation described in Chapter 2. As expected, DS and OS
maps are statistically significantly topographically ordered at all ages, relative to
chance (table 3.2). Comparing betweenmaps, at all ages the DSmap is statistically
significantly more ordered than the OS (fig. 3.10 and table 3.3). Examining the
topographic order of the DS and OS maps at 3,7 and 10 dpf shows that DS and
OS follow the same trend: maps are very poorly ordered at 3 dpf (although they are
all significantly ordered relative to randomly-permuted versions), becoming more
ordered at 7 dpf. However, the map order then decreases from 7 to 10 dpf. This is
consistent with the qualitative properties of fig. 3.9.
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Figure 3.9: Maps of azimuth and elevation for DS and OS ROIs. Each pixel with >3
ROIs of the relevant functional type is coloured according to the mean azimuthal/elevational
coordinate of the receptive field centres of the ROIs within it, as described in section 3.2.4.
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Figure 3.10: Topographic order for DS and OS maps in the tectum from 3-10
dpf, calculated using the multiple-subject modified euclidean distance correlation metric
described in chapter 2 and eq. (2.12). Error bars represent standard deviation of 1000
monte-carlo resampled maps (section 2.3.6), using all data, subsampled according to the
sizes in table 3.2. Significance: * indicates p<0.05, * indicates p<0.01, ***indicates p<0.001.
Precise p-values shown in table 3.3.

Group 1 Group 2 p (q=0.2)
3 dpf - DS 3 dpf - OS 0.0089
7 dpf - DS 7 dpf - OS 0
10 dpf - DS 10 dpf - OS 0
3 dpf - DS 7 dpf - DS 0
7 dpf - DS 10 dpf - DS 0
3 dpf - OS 7 dpf - OS 0
7 dpf - OS 10 dpf - OS 0

Table 3.3: Statistics for pairwise comparisons of topographic order in DS and OS
maps. FDR-corrected p-values calculated as described in section 2.3.6, with q = 0.2,
using Monte Carlo subsample sizes listed in table 3.2. Tests were performed with matched
subsample sizes, in order to ensure fair comparisons where numbers of points were
mismatched.
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Further examination of fig. 3.9 suggests that the azimuthal and elevational axes of
visual space are not orthogonally represented in the tectum; the colour gradients do
not appear to be in orthogonal directions. In order to examine quantitatively how the
cardinal axes of visual space are reciprocated in the tectum, an heuristic approach
based on topographic order was developed. Receptive field centres were projected
on to only azimuth or elevational axes. Correspondingly, the locations of ROIs in
the tectal topographic plane was collapsed into a 1D representation, following a
rotation of the 2D tectal coordinates in the topographic plane. Calculation of the
topographic order between these 1D projected maps allowed the generation of
curves, shown in fig. 3.11, which show the measured 1D topographic order as a
function of rotation angle. As the euclidean distance correlation examines pairwise
distances and thus produces the same result if a map is inverted, these curves are
periodic about 180°. The angle producing the peak topographic order represents
the axis in which the corresponding visual axis is optimally represented.

For azimuthal and elevational axes, the phase difference of these curves gives the
angle between the azimuthal and elevational axes within the tectum. If axes are truly
orthogonal, this phase difference is precisely 90°, while deviations from 90° indicate
that axes are non-orthogonal. None of these axes are orthogonal, as previously
indicated at 7 dpf [52], indicating that the tectal map is nonlinear. At 3 dpf, the
DS azimuth and elevation are separated by approximately 80°, while due to low
numbers of OS ROIs there is a very large spread in the possible values of the phase
difference. At 7 dpf and 10 dpf the maps are highly sheared, with approximately
60° between azimuth and elevation. The angles that optimally represent the cardinal
axes of visual space can be seen overlaid onto the tectum in fig. 3.12.

Using the projection angles giving maximum topographic order with respect to
azimuth/elevation, magnification factors [129] can be calculated for the cardinal
axes of visual space. Magnification factors represent the distance in visual space
that is travelled for a given distance across the tectal surface: in this case, measured
in° µm-1. Examining these magnification factors, shown in fig. 3.13, it appears that
the elevational map is compressed relative to the azimuthal one, which can be seen
qualitatively in the range of fig. 3.9. Is this a biological effect, or simply an artefact of
the experimental setup? Clearly receptive fields (or parts thereof) which lie outside
the screen cannot be recovered fully. Assuming that receptive field sizes for a single
functional type are uniform across the visual field, those ROIs with receptive fields
close to the edge of the screen will exhibit compressed receptive fields. Thus, the
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Figure 3.11: Topographic order for rotated, 1D-projected OS and DS maps. Error bars
calculated using 1000 monte-carlo subsamples, with each subsample used for a full 180°
rotation.
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Figure 3.12: Top: The angles giving peak 1D topographic order and representing the
azimuthal and elevational axes of visual space, determined from themaximum of the curves
in fig. 3.11 and indicated below. Bottom: The visual field as viewed by experimental
animals, to indicate azimuthal and elevational axes.

Figure 3.13: Phase difference and magnification factors, as indicated by 1D
topographic order in fig. 3.11. Error bars are mean ± SD from 1000 resampled datasets.
Phase differences were calculated within each subsample, as the angular shift of elevational
topographic order giving the maximum circular cross-correlation with the azimuthal
topographic order across rotation angles. Magnification factors were calculated as the
gradient of a linear fit bmetween visual and tectal distances after the rotation/projection
giving maximum topographic order (see fig. 3.12), as decribed in section 3.2.4.
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Figure 3.14: Parametric maps of receptive field size, for DS and OS ROIs, projected
onto the screen area used to present visual stimuli. Receptive fields tend to be smaller
at the borders of the screens, and this differentially affects azimuth and elevation due to
the aspect ratio of the screen.

aspect ratio of the screens (see Appendix A) means that the elevational axis could
be artificially compressed more than the azimuthal one. To examine whether such
an effect exists, parametric maps of receptive field size in different screen locations
were produced. As expected, receptive fields at the borders of the screens are
smaller, and this compression affects proportionally more of the elevational axis
than the azimuthal one (fig. 3.14), consistent with the hypothesis that elevational
magnification factors are being underestimated more than azimuthal ones.

Finally, an attempt was made to quantify topographic order in units of
biologically-relevant distance: that is, the distribution of how far each ROI is from
where it might be situated if the visuotopic map were perfect. The deviations from
perfect topographic order observed in DS and OS maps were interpreted as arising
from the standard deviation (SD) of a symmetric 2D gaussian, using the technique
described in section 2.3.7. This represents the distribution of how far each ROI in
the tectum is from the position that would give perfect topographic order (R 2 = 1).
The SD of the DS map reduces between 3 and 7 dpf, although the change is
very small. It remains approximately constant at ~14 µm between 7 and 10 dpf.
However, the OS distribution of distances is more dynamic: it is at its highest
at 3 dpf, before decreasing to a distribution more similar to the DS at 7 dpf, and
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Figure 3.15: 2D standard deviation giving rise to deviations from perfect topographic
order for DS and OS maps in the tectum from 3-10 dpf, calculated using the
multiple-subject modified euclidean distance correlationmetric described in eq. (2.12), with
the SD estimated as described in section 2.3.7. Error bars represent standard deviation of
1000 monte-carlo resampled maps, using the subsample sizes described in table 3.2.

Age ( dpf) Type Age ( dpf) Type p (q=0.2)
3 DS 3 OS 0
7 DS 7 OS 0.0098
10 DS 10 OS 0
3 DS 7 DS 0.0051
7 DS 10 DS 0.23
3 OS 7 OS 0
7 OS 10 OS 0

Table 3.4: Pairwise comparisons of 2D standard deviation giving rise to deviations
from perfect topographic order in DS and OSmaps. FDR-corrected p-values calculated
as described in section 2.3.6, with q = 0.2.

increasing again at 10 dpf to around 22 µm (see fig. 3.15 and table 3.4). However,
given that axes are non-orthogonal, and that it appears that the angle between them
changes over development (fig. 3.13), these estimates are an unreliable metric.
However, they are consistent with diameters of axonal arbours described by sparse
labelling of RGCs [33].

3.3.3 Receptive field sizes

An additional parameter to consider is the receptive field sizes of the two
populations. Do receptive field sizes change over development? Do DS and
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Figure 3.16: Probability density disttributions for receptive field diameters of DS and
OS ROIs across ages.

OS populations have different sizes, and how might this relate to the topographic
precision described earlier?

Overall, the receptive fields measured have a very wide spread, with a peak at ~20°
(fig. 3.16). This is roughly consistent with a previous finding that both DS and OS
RGCs have a mean receptive field size of ~24° at 7 dpf [52]. However, DS receptive
fields are bigger than OS at 7 dpf, but the difference is small and is not present at
either 3 dpf or 10 dpf (fig. 3.16 and table 3.5). Over development, DS receptive field
sizes get bigger from 3 dpf to 7 dpf, but then shrink from 7 dpf to 10 dpf. However,
no such changes can be seen in the OS population, which appear to have constant
receptive field size (fig. 3.16 and table 3.5).

3.3.4 Map alignment

As demonstrated, previously, the tectum contains overlaid topographic maps of
the visual field representing both direction and orientation of motion. These maps
are expected to be in alignment: that is, points matched in the topographic plane
are expected to represent the same location in visual space. In practical terms, if
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DF F p
Age 3 43.22 0
Type 1 44.86 0

Age*Type 3 3.41 0.0169

Age ( dpf) Type Age ( dpf) Type p Significant?
3 DS 3 OS 0.8792 NO
7 DS 7 OS 0.001 YES
10 DS 10 OS 0.2328 NO
3 DS 7 DS 0 YES
7 DS 10 DS 0 YES
3 OS 7 OS 0.0566 NO
7 OS 10 OS 0.0214 NO

Table 3.5: 2-way ANOVA testing the effects of group and functional type on receptive
field size, performed using the anovan MATLAB function. Significance for pairwise
comparisons is calculated using a Bonferroni correction (i.e. significant if p < 0.0071.)

a single electrode were stuck orthogonal to the topographic plane, it should hit
the equivalent point in visual space. Do the maps appear in alignment, or do
they emerge and then align progressively? To answer this question, the vector
between visual space locations corresponding to the same tectal location in OS
and DS maps, which represents the displacement between maps, was analysed
(section 3.2.4). Such a measure is subject to a number of sources of noise: any
eccentricities in the angle of the different fish relative to the screen; compression
artefacts which affect magnification factor as above; and real topographic disorder
in the maps being compared. Thus, for any single tectal location, it is unlikely that
the displacement will be exactly zero. Maps are, as a result, said to be in alignment
here if the distribution of displacements derived from multiple tectal locations is
circular. Conversely, if there is a systematic displacement in a particular direction
(meaning that the distribution is not circular), then maps are misaligned.

Age ( dpf) d.f. z p
3 6 1.378 0.26
7 14 1.524 0.221
10 14 0.736 0.486

Table 3.6: Rayleigh circularity test statistics for displacements between DS and OS maps.

As expected, none of the calculated displacements in visual space are precisely
zero (fig. 3.17). However, the spread in displacements is small, representing less
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Figure 3.17: Displacements between DS and OS maps in the tectum for different ages
of fish. Polar plots show such displacements for many tectal locations (see section 3.2.4),
and mean displacement for each age group

than one receptive field width (fig. 3.16), and with mean displacements less than
5° at all ages. However, displacements in visual space appear to be uniform at
all ages, given that distributions of displacements in each age group are circular
(table 3.6). That is, maps are on average aligned in DS and OS laminae, at all
ages. The increased spread in azimuth relative to elevation is likely to be due to the
elevational compression artefact demonstrated in fig. 3.14.

3.3.5 Topography of angular selective variants of DS and OS RGCs

Having established global properties for DS and OS maps, I set out to examine the
topographic properties of previously-identified angular selective putative variants
of DS and OS RGC [38]. Do the RGCs selective for specific angles of motion have
equivalent topographic order? Is there any evidence for regional specialisation at
the level of OS and DS RGCs selective for different angles?

Using a wavelet-based clustering approach to classify variants of DS ROIs
yields 3 variants, as previously shown [38]. The most abundant variant is
selective for approximately horizontal nasal motion, while the remaining 2 are
temporal/dorsal and temporal/ventral (fig. 3.18A). They exhibit qualitatively similar
laminar distributions to previous work, found in adjacent but overlapping laminae
(see fig. 3.18C), with the nasal/horizontal variant found most superficially, then the
ventral/temporal variant, and the dorsal/temporal variant found deepest.

All variants are significantly ordered at all ages, with the exception of the 166°
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Figure 3.18: Clustering of DS ROIs yields 3 variants. A Mean normalised responses
of variants to bar motion, ± SD, for each variant. The response vector for each ROI was
normalised to its maximum prior to calculation of mean and SD. B Distributions of preferred
angles, coloured by variant. Bin width is 5°. Inset represents peak preferred angles of
variants, calculated from von Mises fit to each variant (shown in black). Bins are 5°. C
Laminar distributions of variants, using normalised distance within SFGS as in fig. 3.6.

Age DS variant N fish total n p (Nshuf = 1000) Monte Carlo n
3 245 10 754 0.001 183
3 21 7 49 0.001 25
3 166 7 136 0.263 n/a
7 261 16 2026 0.001 549
7 28 12 492 0.001 175
7 159 11 606 0.001 209
10 271 12 887 0.001 220
10 28 10 176 0.001 66
10 156 11 180 0.001 70

Table 3.7: Descriptive statistics for angular-selective DS variants. N represents the
number of fish in which variant members were observed. p represents the proability that the
observed level of topographic order could occur by chance, see eq. (2.22). The subsample
size used in significance testing was selected as described in section 2.3.6.
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(ventral/temporal motion) variant at 3 dpf (see table 3.7). Its is possible, particularly
with low numbers of ROIs, to fail to detect topography where sampling is sparse
(see fig. 2.8). An additional consideration not accounted for in Chapter 2 was the
area covered by the sampled points: intuitively, if a map is ordered but contains
noise, and the points sampled are all close together compared to the spatial scale
of the noise, then topography would not be detected. The vast majority of ROIs
found within this map were found within a small region of the tectum: ~40× 40 µm2,
(see bottom left panel of fig. 3.19), and the SD of gaussian noise accounting for
deviations from perfect topographic order is 15 µm (see fig. 3.15), so it is quite
possible that this failure to detect order is an artefact due to limitations within the
dataset.

Map 1 age ( dpf) DS variant Map 2 age ( dpf) DS variant Monte carlo p (q=0.2)
3 245 7 261 0
7 261 10 271 0
3 21 7 28 0.872
7 28 10 28 0
3 166 7 159 n/a
7 159 10 156 0
3 245 3 21 0.0006
3 245 3 166 n/a
3 21 3 166 n/a
7 261 7 28 0
7 261 7 159 1
7 28 7 159 0
10 271 10 28 0.223
10 271 10 156 0.967
10 28 10 156 0.802

Table 3.8: Pairwise tests for differences in topographic order between
angular-selective DS variant maps. Tests were only performed between maps
found to have significant order.

In terms of their distribution across the topographic plane of the tectum, variants
appear to be roughly equivalent, all showing a peak density in the posterior/dorsal
area, and very few ROIs in the anterior/dorsal area (fig. 3.19, consistent with the
pooled density, fig. 3.7). However, when examining topographic order, the variants
are very different - topographic order cannot be detected in the temporal/ventral
direction at 3 dpf (table 3.7), while the nasal-directed variant is as highly ordered
as it is at 7 dpf. It is additionally more highly ordered than either other variant. By
10 dpf, all variants have equivalent topographic order (fig. 3.20 and table 3.8).
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Figure 3.19: Density of DS variants from topographic view. A Raw locations of DS RGCs
within the main lamina, coloured by variant identity. B Normalised densities calculated
dividing the tectal surface in to 10 µm2 bins, and dividing the number of ROIs within each
bin by the number of times an imaging plane intersected the main DS lamina, as defined in
fig. 3.6
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Figure 3.20: Topographic order of DS variants over development Error bars represent
± SD calculated from 1000 resampled datasets, using the sample sizes from table 3.7.
Significance: * indicates p<0.05, * indicates p<0.01, ***indicates p<0.001. Precise p-values
shown in table 3.8.

Similar clustering of OS ROIs yields 4 variants, spaced roughly equally within 180°
(fig. 3.21). OS laminae are very ill-defined at 3 dpf: although there are few ROIs,
the variants do not appear to segregate at all in the laminar axis (fig. 3.21). This is
consistent with previously reported findings, that OS laminae emerge later than DS
[38]. At 10 dpf, the secondary lamina of OS appears to be comprised almost solely
of the horizontal OS RGCs, although there is a small contribution from the vertical
variant. This is in contrast to previous findings [38], which found the secondary
lamina to be composed of vertical OS.

Previous literature has found only one OS variant at 3 dpf [38]. It is possible that this
discrepancy is due to the topographically restricted visual presentation, and tectal
imaging, used in [38], combined with a biased representation in the topographic
plane at 3 dpf. That is, within the region in which OS voxels could be discovered,
there were very few OS ROIs from other variants. Lowe et al., 2013 [38] found most
OS ROIs in the caudo-ventral region of 3 dpf animals (lower right in this thesis).
However, my data does not indicate a particular bias for OS selective for 135-180°
in this area at 3 dpf (fig. 3.22). At 7 dpf and 10 dpf, densities in the topographic
plane are still noisy due to the low number of ROIs within each variant, making them
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Figure 3.21: Clustering of OS ROIs yields 4 variants. A Normalised mean responses of
OS variants to bar motion, ± SD. The response vector for each ROI was normalised to its
maximum prior to calculation of mean and SD. B Distributions of preferred angles, coloured
by variant. Bin width is 5°. Inset represents peak preferred angles of variants, calculated
from von Mises fit to each variant (shown in black). C Laminar distributions of variants,
using normalised distance within SFGS as in fig. 3.6. Abundance normalised to maximum
within age group.
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hard to interpret (fig. 3.22). However, at 7 dpf it still appears that the peak in density
lies in the same tectal location for all variants, with the possible exception of the
horizontal-selective variant which might have its peak more dorsally.

At 3 dpf, only the horizontal-selective variant was found to be topographically
ordered table 3.9. However, with very sparse data (as in this case, see false
negatives are possible as demonstrated in fig. 2.8 - there could be coarse
topography not detected in this dataset given the low number of ROIs in each
of the variants table 3.9). Given that when the variants are pooled, topography
is seen, this seems particularly likely. In additional support of this view, the
horizontal-selective variant shows a similar level of order to the pooled dataset
(~0.3, see fig. 3.10); the addition of the variants in which order cannot be detected
does not lower the overall level of topography. By 7 dpf, all variants are ordered.

OS variant N fish total n p (Nshuf = 1000) Monte Carlo n
6 3 30 0.479 n/a
59 6 33 0.0701 n/a
85 5 57 0.001 20
127 7 79 0.0949 n/a
175 15 378 0.001 137
39 11 274 0.001 99
86 15 416 0.001 143
137 10 250 0.001 87
0 11 180 0.001 61
42 10 163 0.002 66
88 11 334 0.001 122
139 10 189 0.001 66

Table 3.9: Descriptive statistics for angular-selective OS variants. N represents the
number of fish in which variant members were observed. p represents the proability that the
observed level of topographic order could occur by chance, see eq. (2.22). The subsample
size used in significance testing was selected as described in section 2.3.6.

How do the relative abundances of the DS and OS variants change over
development? The fractions do not remain constant, for either DS or OS
(table 3.11). The fractions of each variant for DS and OS can be seen in fig. 3.24.
As seen before [37, 38], the most abundant DS variant is that selective for motion
in the nasal direction of the visual field. At 7 dpf, the other variants become more
abundant, and by 10 dpf the fraction of nasal DS increases again, although the two
other variants are then roughly equally-represented, in contrast to 3 dpf. The most
abundant OS variant throughout is selective for approximately horizontal motion.
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Figure 3.22: Density of OS variants, from topographic view. A Raw locations of OS RGCs
within the main lamina, as shown, coloured by variant identity. B Normalised densities
calculated dividing the tectal surface in to 10 µm2 bins, and dividing the number of ROIs
within each bin by the number of times an imaging plane intersected the main OS lamina,
as defined in fig. 3.6. Colour scale where no ROIs were found represent the number of
times a voxel was imaged.
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Map 1 age ( dpf) OS variant Map 2 age ( dpf) OS variant Monte carlo p (q=0.2)
3 6 7 175 n/a
7 175 10 0 0
3 59 7 39 n/a
7 39 10 42 0.5325
3 85 7 86 0.1113
7 86 10 88 0
3 127 7 137 n/a
7 137 10 139 0.0473
3 6 3 59 n/a
3 6 3 85 n/a
3 6 3 59 n/a
3 2 3 85 n/a
3 2 3 127 n/a
3 85 3 127 n/a
7 175 7 39 0
7 175 7 86 0.0014
7 175 7 137 0.2181
7 39 7 86 0.2512
7 39 7 137 0.0209
7 3 7 137 0.9595
10 0 10 42 1
10 0 10 88 0.0892
10 0 10 139 0.9159
10 42 10 88 0.088
10 42 10 139 0.4093
10 88 10 139 0.0046

Table 3.10: Pairwise comparisons of topographic order between OS variants. Tests were
only performed between pairs of maps found to have significant topographic order.
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Figure 3.23: Topographic order of OS variants over development. Error bars represent
± SD calculated from 1000 resampled datasets, using the sample sizes from table 3.7.
Significance: * indicates p<0.05, * indicates p<0.01, ***indicates p<0.001. Precise p-values
shown in table 3.10. Only variants with significant order are shown.

As with the DS variants, 7 dpf is the age at which the variants are most equally
represented.

Comparison d.f Χ2 p Significant?
DS Global 6 100.47 2.05E-19 YES
DS 3 dpf/7 dpf 3 73.8 6.45E-16 YES
DS 7 dpf/10 dpf 3 38.03 2.79E-08 YES
OS Global 8 108 9.77E-20 YES
OS 3 dpf/7 dpf 4 21.5 2.50E-04 YES
OS 7 dpf/10 dpf 4 93.6 2.23E-19 YES

Table 3.11: Χ2 statistics for comparisons of abundance of DS and OS variants over
development. All p-values calculated using the MATLAB crosstab function. Significance
levels are Bonferroni adjusted.

3.3.6 DS and OS RGCs selective for different contrast changes

Finally, I analysed the distribution and proportions of DS- and OS-RGCs selective
for different contrast changes: the ON, OFF and ON-OFF populations. All
combinations of DS angular-selective variants and contrast-selectivity were seen,
at all ages. A similar result was seen for OS, with the exception of the
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Figure 3.24: Fractions of DS andOSROIs, by angle-selective variant, over development.

ON-OFF population at 3 dpf, which consists of only 3 ROIs. Examining the
fractions of DS and OS ROIs specific for different contrast changes, there are
statistically significant changes over development (table 3.12). While the DS-RGCs
change from an OFF-dominant representation, to having many more ON-OFF,
before returning to an OFF-dominant state, the OS maps remain OFF-dominant
throughout (fig. 3.25). There are very few ON-OFF OS-RGCs, consistent with
findings from the mouse retina [32].

Comparison d.f Χ2 p Significant?
DS Global 4 247.6 2.11E-52 YES
DS 3 dpf/7 dpf 2 168.8 2.22E-37 YES
DS 7 dpf/10 dpf 2 135 4.89E-30 YES
OS Global 4 33.2 1.08E-06 YES
OS 3 dpf/7 dpf 2 16.7 2.33E-04 YES
OS 7 dpf/10 dpf 2 16.6 2.44E-04 YES

Table 3.12: Χ2 statistics for changes in contrast selectivity over development. All
p-values calculated using theMATLAB crosstab function. Significance levels are Bonferroni
adjusted.

In order to investigate how RGCs selective for different contrast changes are
organised within the tectum, their distributions within the standard tecta were
examined. For both DS and OS populations, ON, OFF and ON-OFF populations
do not appear to form separate laminae (fig. 3.26). That is, the probability densities
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Figure 3.25: Fractions of DS and OS ROIs selective for different contrast changes, over
development

across the laminar axes appear very similar to the pooled OS and DS distributions
in fig. 3.6.

However, an additional hypothesis was that contrast-selective maps were overlaid
within the laminae selective for each direction/orientation of motion. Representative
example laminar distributions of ON, OFF and ON-OFF DS and OS ROIs for
angular-selective variants are shown in fig. 3.27. There is no evidence for laminar
segregation of contrast selectivity within angular variants. Overall, my data suggest
that in fact there is no laminar separation of contrast-selective DS or OS ROIs within
the tectal neuropil.

Similarly, examinations of densities in the topographic plane (figs. 3.28 and 3.29)
show no regions that appear to have particular biases for ON, OFF, or ON-OFF
selective DS or OS ROIs; the peaks and troughs in density appear to match
almost perfectly between contrast-selective variants, in both DS (fig. 3.28) and
OS (fig. 3.29) maps, aside from the fact that the more abundant contrast-selective
types (for example ON-OFF DS at 7 dpf) cover more of the tectal surface, and the
less abundant classes have noisier distributions (for example, ON-OFF OS at 10
dpf); effects which are to be expected.
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Figure 3.26: Laminar distribution of DS and OS ROIs selective for different contrast
changes.

Figure 3.27: Representative examples of laminar distributions of DS and OS ROI
variants selective for different kinds of contrast changes.
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Figure 3.28: Distribution of contrast-selective DS ROIs in the topographic plane,
corrected for imaging coverage.
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Figure 3.29: Distribution of contrast-selective OS ROIs in the topographic plane,
corrected for imaging coverage.
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3.4 Discussion

In this chapter, I used synchronised visual stimulus presentation and imaging
of a genetically-encoded calcium indicator, combined with standardised spaces
representing the tectum, to characterise the topographicmaps formed by the axons
of two functional types of feature-selective RGCs, at 3 developmental timepoints. I
examined the distributions of DS and OS ROIs (representing the presynaptic axon
terminals of RGCs) within standard tecta, revealing that the axon terminals of these
two functional types of RGC are distributed in a manner that strongly suggests
regional specialisation for detection of the different features represented by these
RGCs.

I quantified the levels of topographic order within the DS and OS maps, showing
that the the maps representing visual space become more ordered from 3 dpf to
7 dpf, but less ordered from 7 dpf to 10 dpf. Additionally, DS maps are more
ordered than OS at all ages. I additionally demonstrated that the cardinal axes
of visual space are represented non-orthogonally in the tectum, and that the angle
of this non-orthogonality changes during development. No misalignment could be
detected between maps formed by DS and OS ROIs at any of the ages tested.

When split into their angular-selective variants, it does not appear that there
is regional specialisation with respect to different directions or orientations,
although the maps formed by the angular-specific variants do change differentially
across ages. Examining the distributions of DS and OS ROIs selective for
positive or negative contrast changes, reveals no organisation of RGC inputs into
contrast-specific laminae, or bias with respect to regions of the topographic plane.

3.4.1 Reduction in number of ROIs from 7 dpf to 10 dpf

It is striking that far fewer DS and OS RGCs are identified in 10 dpf fish than
7 dpf fish, even when corrected for imaging coverage (table 3.1 and fig. 3.7),
as seen before [38]. Could the reduction in ROI number represent a reduction
in RGC numbers? Apoptosis in the visual system is a well-documented part of
normal development, in a number of species [202]. Although apoptosis does occur
in zebrafish RGCs during normal development, this peaks at around 3 dpf, with
only around 1% of neurons affected [203], meaning that it is extremely unlikely to
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account for the reduction in numbers observed here.

The reduction in numbers could be a consequence of lowering expression levels
of the fluorescent label, which has been observed repeatedly in similar transgenic
lines [191]. Such reduction is likely to lead to reduced signal-to-noise and a higher
false negative rate during ROI selection. If this were the case, it is unlikely to bias
the analyses presented here: qualitatively, the OS and DS laminae did not exhibit
different levels of fluorescence, meaning that artefactual reductions in ROI number
are unlikely to be biased towards OS or DS. Additionally, quantifying the level of
order (as described in Chapter 2) should not be affected by the number of ROIs
present, beyond the uncertainty with which it can be quantified.

An additional possibility is that functional selectivity might change over same
period: that is, stimuli used might less closely match the selectivity of the neurons
being measured, according to their size, spatiotemporal frequencies or luminance
increment/decrement. This possibility will be discussed further in section 3.4.5.

Given that each ROI most likely represents a synapse, rather than the axonal
arbour of an entire RGC, could the reduction be as a result of synaptic
pruning? Previous literature is contradictory: one study examined the number of
synaptophysin-labelled puncta in single RGC axons, finding that the number of
such puncta remains constant over between 7 and 10 dpf period [57]. However,
the receptive fields of tectal neurons get larger from 4-6 dpf, and shrink from 6-8
dpf, as a consequence of changing retinotectal connectivity over that time frame
[204]. Such a finding is consistent with the change in ROI numbers observed here;
a greater number of synapses from RGCs could mean that tectal neurons integrate
over a larger area of visual field. However, the increase and subsequent decrease
of tectal receptive fields [204] could also be interpreted as being a downstream of
the changes in receptive field sizes of RGCs shown here.

What could be the ethological significance of a reduction in RGC-tectal synapse
number from 7 dpf to 10 dpf? It could be specifically to drive sharpening
of receptive fields [204], or it could potentially be interpreted as being due to
maturation of tectal circuits [148], meaning that less input is required for efficient
decoding of the visual field [147].
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3.4.2 Development of topographic order

The axes of visual space are represented non-orthogonally in the tectum, at all
ages tested (fig. 3.13). This is consistent with previous findings at 7 dpf [52].
Of particular interest is the rotation of the cardinal axes of visual space over
development: changes from 3-7 dpf are far greater than from 7-10 dpf, when the
axes are approximately 70° apart.

My data could be interpreted as indicating that the elevational magnification factor
is smaller than that of the azimuthal (fig. 3.13) - however, this is likely an artefact
of the visual presentation system used (fig. 3.14). Measuring magnification factors
is additionally vulnerable to topographic disorder, meaning that the measurements
made here are likely underestimates.

Overall, both DS and OS maps are least ordered at 3 dpf, becoming more ordered
at 7 dpf, and then less ordered at 10 dpf. At all ages tested, the DS topographic
map is more ordered than the OS indicating that different features are encoded
with different precision (fig. 3.10). Interestingly, while the degree to which maps
are ordered follows the same trend for DS and OS, quantifying the noise leading
to deviations from perfect order in biological distance units showed a disparity
between DS and OS: the SD of the DS ROIs stays constant at roughly 15 µm, while
the SD of the OS ROIs starts very high (at around 25 µm), then decreases to be
similar to the DS at 7 dpf and increases back up to around 20 µm at 10 dpf (fig. 3.15).
Due to the presence of nonlinearity in the maps, these rough estimations are prone
to error. Such estimates of biological distances are, however, consistent with
anatomical studies which find axonal arbours to have diameters mostly between 25
µm and 50 µm [33]. An important next step would be to examine whether the axonal
arbours of DS and OS RGCs differ in size - however, as discussed in section 1.1.1,
it is both labour-intensive and technically challenging to examine both functional
selectivity and morphology without genetic markers for the functional types.

The finding that both DS and OS maps have less order at 10 dpf than at 7
dpf is surprising, in that it has been widely assumed that refinement of neuronal
connectivity during development would lead to increased topographic order [145].
Under this model the maps would become more ordered from 7 dpf to 10 dpf, as
well as from 3 dpf to 7 dpf.

My data provides empirical support for the theoretical view, found in [146, 147],
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that topographic maps are in fact limited in their potential for encoding information
and that the underlying algorithm used by the tectum to decode the visual scene
might be based around an alternative, at least at later developmental timepoints.
This view suggests that molecular mechanisms for generating topographic order
early on are an useful heuristic for generating rough connectivity, but that as the
balance of forces controlling connectivity shifts from molecular pre-specification
toward activity-dependent plasticity [58], the map is superseded by some more
sophisticated decodingmodel. One way of asking whether this is the case is to alter
the visual experience of the fish during development, and to ask how topographic
order is affected, an idea which will be explored in Chapter 4.

3.4.3 Directions/orientations of motion obey different developmental
rules with respect to topographic order

We have seen that with DS RGCs, there are 3 easily-identifiable variants which
respond to different angles, and 4 similar variants of OS RGC (figs. 3.18 and 3.21).
Qualitatively, these variants appear to develop in similar ways with respect to
their tectal distributions (figs. 3.19 and 3.22), although their abundances differ
(fig. 3.24). Differences in the progression of topographic order are evident for
both DS or OS variants, with maps encoding specific directions/orientations of
motion more ordered at different ages: at 3 dpf and 7 dpf, the most ordered DS
map is that encoding dorsal/temporal motion, while the most ordered OS map is
that encoding vertical motion. However, by 10 dpf those differences disappear
for DS maps, and are far smaller for OS, making statements about their potential
ethological significance difficult. Regarding the distributions of the variants within
the tectum, laminae containing RGCs selective for the different angles have been
seen previously [38], and were recapitulated here. As expected, DS laminae were
already present at 3 dpf, while OS laminae appeared progressively from 3-10 dpf.
With regard to distribution across the topographic plane, it is difficult to make
statements regarding the distributions at 3 dpf given the low numbers of ROIs from
each variant, but at 7 dpf and 10 dpf, they appear to be roughly equally distributed
over the topographic plane in both DS and OS.

Recent work in the adult mouse superior colliculus has revealed strong topographic
biases for nasal or temporal motion in collicular neurons [141]. However, it is not
clear whether, or how, this bias relates to the organisation of RGC inputs, for which
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no known similar bias exists [141]. It will be interesting to examine whether such a
bias also exists in zebrafish tectal neurons, and how this relates to both RGC inputs
and intertectal projections, which have been unexplored so far at the functional
level.

3.4.4 Organisation of contrast-change selective RGCs

While the DS-RGCs change from an OFF-dominant representation, to having many
more ON-OFF, before returning to an OFF-dominant state, the OS maps remain
OFF-dominant throughout (fig. 3.25). ON-OFF OS RGCs, entirely absent in the
mouse [32], appear to be present at very low abundance - it is possible that
these are false-positives. There were no particular combinations of angular- and
contrast-selective variants that were absent - in contrast to the mouse, in which the
only ON DS population is upward-motion selective. Generally, OFF-dominance is
to be expected from studies of visual areas in many other vertebrates, mice [32],
cats [205, 206], and macaques [207], and from psychophysical measurements in
humans [208, 209]. This OFF-dominant representation has been demonstrated to
be optimal for the statistics of natural images [210].

Are the DS and OS laminae composed of specific angular-selective variants
subdivided further into ON, OFF, ON-OFF sublaminae? The data presented here
suggest this is not the case (fig. 3.27), in contrast with the mouse superior
colliculus, where direction- and contrast-selective RGCs occupy distinct laminae
[28, 211, 212]. However, it is possible that the standardised spaces used here
do not have sufficient resolution with respect to biological variability; although
angular-selective sublaminae can be visualised, contrast-selective sublaminae
could be even smaller. In the zebrafish, RGCs selective for different contrast
changes may not require “separate” maps, unlike in the retina, in which the
ganglion cells take their contrast selectivity from the laminar position of their
dendrites within the inner plexiform layer, across vertebrates [29]. However, lack
of laminar segregation does not preclude the separate usage of contrast channels
in downstream processing: the formation of clear laminae are in fact not required
for the emergence of functional properties in downstream tectal neurons, at least
in the case of orientation selectivity [81], meaning that alternative mechanisms for
synaptic specificity operate.
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3.4.5 Development of regional specialisation

I explored the distribution of DS and OS ROIs within standardised tecta, in part
to examine whether both functional types of ROI are distributed uniformly, and
to examine the possibillity of regional specialisation for the detection of particular
visual features. Qualitatively, the “hole” in the anterior/dorsal region of the
topographic plane for OS and DS maps is more prominent at 10 dpf than at 7
dpf (fig. 3.7). Additionally, over the course of development, is appears that certain
areas have a bias towards OS/DS representation, with central areas of the tectum
biased toward OS, and peripheral areas biased towards DS (fig. 3.8). This indicates
that either OS and DS axonal arbours develop differentially, adding/removing
more or less synapses within different regions of the tectum, or that their
functional selectivity changes differentially across the retina. However, definitively
disambiguating these two possibilities is hard to test without examining a larger
stimulus space, given that the angular-selective and contrast-selective variants of
DS and OS do not appear to be differentially spread over the tectum. It is entirely
possible that the areas in which both DS and OS appear sparser, corresponding
to the anterior/dorsal visual field, still contains both OS and DS but that their
spatiotemporal tuning is different to that tested. For example, if such an area
were specialised to detect the presence and position of prey, then we might easily
expect to find smaller DS and OS sensitive to faster movement and smaller objects
(i.e. faster temporal and smaller spatial frequencies). A next step in this direction
would be to look for regional biases in RGC dendritic morphology within the retina
within specific types of RGC. In absence of genetically-defined RGC types, a
sparse-labelling approach allowing both functional identification and neurite tracing
of RGCs would certainly be an option. An alternative might be a high throughput
approach to functional characterisation of flat-mounted retinae, similar to that of
Baden et al., 2016 [32], which could give insight into regional biases.

Recent findings from the larval zebrafish retina indicate that the visual field is
not uniformly represented at the level of photoreceptors, and of bipolar cells
[30]. These findings have been linked to the spectral properties of the zebrafish
natural environment. My data suggest that at the level of RGC inputs to the
tectum, the visual scene is not uniformly represented with respect to motion
direction and orientation. Can the natural statistics of visual features like motion be
similarly linked to ethologically significant biases in what the fish has around them?
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Alternatively, are certain visual features more likely to be ethologically significant if
they are present in certain parts of the visual field, requiring denser representation?
Certainly, the probability of initiation of prey capture behaviour depends on the
location of prey within the visual field [213]. Does this dependence exist as a result
of regional specialisation within the retina and tectum? This is a hard question to
answer, and would likely require a larger stimulus set to more precisely characterise
the differences in functional selectivity found over different parts of the visual field.

3.4.6 Development of visual topography is not monotonic

A number of measured parameters including topographic order (fig. 3.10), the
relative numbers of ROIs selective for particular contrast changes (fig. 3.25), DS
receptive field sizes (fig. 3.16), and the abundances of angular-selective DS variants
(fig. 3.24) change in one direction from 3 dpf to 7 dpf, but then change in the
opposite direction from 7 dpf to 10 dpf. Such opposing changes in organisation
suggest that visual development proceeds in stages rather than being a continuous,
monotonic change from an immature to mature state.

Although it seems likely that the changes in map properties from 7 dpf to 10 dpf
are a shift from an intermediate to a more adult-like organisation (particularly as
they are roughly concurrent with huge behavioural change), the possibility cannot
be excluded that there are additional stages in development of the visual system.
There are later behavioural alterations, which also might coincide with alterations in
visual drive, such as the development of social behaviour which is absent at 7 dpf,
but develops between 10 and 21 dpf [214, 215].

The idea that the development of the visual system proceeds in stages is consistent
with work on zebrafish tectal receptive fields, which found that tectal receptive fields
grow from 4-6 dpf and shrink from 6-8 dpf, as a result of changes in retinotectal
connectivity [204]. Spontaneous activity in the tectum is similarly affected, with
assemblies of frequently-coactive neurons becoming more compact from 4-6 dpf,
but then increasing in size later on [148]. What could the ethological relevance of
these changes in retinotectal connectivity, and connectivity within the tectum, be?
It is tempting to ascribe them to behavioural changes such as the emergence of
hunting behaviour at around 5 dpf [186], or the recognition of conspecifics, which
could emerge as early as 7 dpf [187, 214].
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Alterations in the visual system that occur around the same time as the emergence
of specific behaviours could be a consequence of alterations in the statistics of the
visual environment as a result of changes in the motion of the fish. For example,
as the fish begins to hunt (perhaps due to changes in connectivity elsewhere),
the statistics of its visual input will be changed, meaning that activity-dependent
plasticity mechanisms will change retinotectal wiring accordingly. Alternatively,
such changes could be genetically hardwired but temporally coincidental, perhaps
even permissive for, such behavioural shifts. The most obvious example of such
a permissive change would be something akin to the emergence of “bug detector”
neurons in the frog retina [216]. One way of disambiguating whether changes to
visual topography are up- or downstream of behavioural changes is to examine how
the maps respond to alterations in visual environment, which will be the focus of
Chapter 4. If map properties are severely affected by visual drive, this is evidence
in favour of the hypothesis that changes in visual physiology are downstream of
behavioural changes; if not, then the changes are are more likely to be hardwired
and permissive for hunting.

139



Chapter 4

Effects of altered visual
experience on visual topography

4.1 Introduction

Having characterised how the topographic maps formed by DS- and OS-RGCs
change over development, I next sought to examine how these properties were
affected by visual experience. This is particularly interesting given the changes
from 7 dpf to 10 dpf, with maps becoming less precise. What is the role of
visual experience in creating this change; are the effects of plasticity dependent
on visual experience actively disordering the maps? How does visual experience
feed into other parameters, like contrast selectivity, and the different angles of
motion that are encoded? Is the maintenance of alignment between maps an
experience-dependent process?

Previous work indicates that silencing RGC axons increases the dynamicity and size
of their arbours during development, altering how neurons compete for spacewithin
the tectum [217]. This raises a key question: when the statistics of visual experience
are altered during development, presumably changing the relative activities of the
different types of RGC, are the relative domains of those RGC types altered?
Unfortunately, the original study did not make any distinction between axonal
arbour shapes in the topographic and laminar axes, roughly corresponding to
alterations in domain within- or between-type respectively. However, more recent
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work indicates that dark-reared animals do not have deficits in the structure of tectal
laminae when examined in totality [76].

In dark-reared fish, the functional properties of OS and DS RGCs were not altered
at 7 dpf, with the same balance of angular-selective variants [38]. Likewise, the
overall distributions in both laminar and topographic axes were unchanged in the
dark-reared fish. However, more recent data indicates that there is no displacement
in visual space between OS and DS maps on WT 7 dpf fish, but there is in
dark-reared fish [52]. In light of the continual movement of RGC axons across
the tectal surface due to mismatched growth of retina and tectum [124], this
displacement can be interpreted as arising due altered migration, meaning that
movement of OS maps across the tectum is retarded by visual experience, while
the DS map is similarly affected but to a lesser extent [52].

In order to further explore whether the effects of visual experience on the
developmental alterations in map properties, I performed experiments to examine
the effects of visual experience on map properties at 10 dpf. Wild-type (WT) data
within this chapter are the same as that used in Chapter 3, and three additional
conditions were considered, with animals reared as far as possible in their altered
environments up until the point of imaging.

Fish were reared as far as possible in environments where no light is present at all, in
order to completely remove visual experience (Dark reared, DR). Based on the data
in Chapter 3, if modifications of retinotectal connectivity due to visual experience
were leading to the decrease in topographic order seen between 7 dpf and 10 dpf,
then both DS and OS maps should have greater topographic order at 10 dpf in DR
animals. Such an effect has been seen at 7 dpf, but only in DS maps [52].

Fish were reared in an “enriched” visual environment (enriched reared, ER), which
should closer match the natural statistics of a real zebrafish habitat, containing
relatively close-up 3-dimensional objects (gravel). The hypothesis being tested was
that the statistics of visual information experienced impact on the organisation of
visual information during larval development, rather than just any visual experience.
Providing a richer visual environment, with more varied visual statistics, gives a
contrasting experiment to the DR, and was expected to also give opposite effects
on the properties of the maps formed, making DS maps less precise than their WT
counterparts.
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Strobe rearing (SR) was chosen as a way to isolate the effects of motion on
how maps are organised. The hypothesis being tested was that maps encoding
different features should be differentially affected by this manipulation. In direct
support of this hypothesis, strobe rearing has been previously shown to impact
on the morphology of RGCs in the goldfish [104], apparently having differential
effects on morphologically-defined types of axonal arbours (although no functional
characterisation was attempted). Parameters were selected based on findings
across many species, in an attempt to create a visual experience in which images
could be discerned by RGCs and their tectal postsynaptic partners, but the
movement of the bars used as stimuli across a typical RGC receptive field could
not.

Animals were reared to 10 dpf under these different conditions, and the same
experiments as in Chapter 3 performed, allowing the characterisation of the
distributions, functional properties and map organisation of DS and OS RGCs axon
terminals in the tectum.
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4.2 Methods & Reagents

4.2.1 Animals

As in Chapter 3, all animals were of genotype Isl2b:Gal4;UAS:SyGCaMP6s, reared
in the same incubator and under all the same conditions as theWT fish inChapter 3.
Functional imaging was performed at 10 dpf according to the same protocol as in
Chapter 3, using the same pool of adult animals to breed experimental larvae.

DR and SR fish were health-checked, fed and had their water changed under red
light (625nm) to minimise visual experience, as zebrafish pigments are blue-shifted
relative to humans [218]. Although they would still see images under these
conditions, the total time they would be exposed was ≤ 15 minutes in total. Prior
to imaging, the fish were removed from their altered environment for ~2 hours
- a period which should allow their retinae to adapt to ambient light conditions
(behaviourally, larvae habituate to changes in ambient light in under an hour [219]),
but minimise developmental changes in retinotectal connectivity.

Experiments on the three altered-rearing conditions were performed
contemporaneously, although all data from WT (10 dpf) experiments were
acquired for Chapter 3 had been previously acquired (~2 months previously). On
any given day, only 2 animals were imaged, and parents used for generation of
larvae were randomised throughout the period when experiments were being
performed.

4.2.2 Dark rearing

Dark-rearing chambers (see fig. 4.1) were designed (using
https://www.tinkercad.com) to completely isolate the fish from light while
providing adequate ventilation. All components were printed using a
Makerbot Replicator 2X (Makerbot). They were built such that interior
surfaces of the ventilation tunnel could be painted with matt black paint
(https://culturehustle.com) to avoid light reflecting in via the shiny black plastic.
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Figure 4.1: Dark-rearing chambers. A Base, with zebrafish embryos. B Complete dark
rearing chamber. C Lid in cross-section, showing ventilation channel.

4.2.3 Enriched rearing

Fish were raised in petri dishes supported over a bed of gravel (fig. 4.2), with the
same lighting conditions as the WT fish (see section 3.2). This should provide
a more naturalistic environment, with closer 3 dimensional objects, shadows and
sources of contrast compared to the sparse visual details in the incubator. Note
that at no point did the fish have direct contact with the gravel, which was placed
in a petri dish underneath that containing the fish, and sealed using a hot glue gun.
Gravel was obtained from Branscombe Beach, South Devon, UK.

4.2.4 Strobe rearing

Using strobe rearing was designed to affect specifically neurons encoding motion
- parameters were chosen to make sure that image-forming vision was possible
(although this was not tested), but so that there was a reduced likelihood that motion
could be encoded.
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Figure 4.2: Enriched-reared zebrafish embryos on a bed of gravel in order to ensure a
visual environment closer to that found in nature.

Rationale

The period with the light on must be smaller than the time over which RGCs
integrate motion. In the Reichardt detector model, in which motion is detected
via a coincidence detector with two inputs spatially separated in the direction of
the motion to be detected and with one of them subject to a delay [220], this would
correspond to the delay time, τ. No direct observations have been made of this
parameter. Furthermore, the off period must be greater than the time over which
these same RGCs integrate. These two conditions ensure that a single RGC has
a reduced likelihood of encoding the motion during a single flash, and additionally
will have reduced likelihood of creating motion-like artefacts by integrating over
multiple flashes, as in the flicker-fusion effect.

Data on such parameters are difficult to measure for the zebrafish, due in large part
to their reliance on psychophysical experiments. Behavioural experiments using
the opotokinetic response have shown that sensitivity to moving gratings drops off
sharply over 2-7Hz [221]. However, the cutoff of a behavioural response represents
a lower bound on the highest temporal frequency of motion that can be encoded
in RGCs. Thus, they must be inferred and data must be carefully interpreted in
context of other organisms. Psychophysical measurements are also limited in
their usefulness for inferring the properties of sensory neurons due to the many
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nonlinearities present throughout the nervous system, meaning that behavioural
output can be divorced from the properties of sensory input neurons. However,
psychophysical thresholds for flicker fusion frequency (in humans) are recapitulated
at the neuronal level in the visual thalamus of the macaque monkey, measured
electrophysiologically [222]. Ideally, the ON-period of the strobe must exceed
the time necessary for image-forming vision. This has not been measured in the
zebrafish, but in humans and macaques, the minimal time for image-forming vision
is 13ms [223, 224]. The ON-period was selected as 20ms. Tectal neurons have
been shown to integrate over as long as 300ms [149]. This represents an upper
bound on the integration period of RGCs, but due to retrograde signalling by tectal
neurons onto RGCs, and the effects of this signalling on RGC axonal connectivity,
this must be upheld within our study, and was set as the OFF-period.

One final question of design is the brightness of the strobe light during its ON
period. In order to ensure that data obtained from SR fish are most comparable
with those from WT and ER conditions, there are 2 alternatives for how to set the
brightness. Either the peak brightness of the strobe should match the luminance
inside the WT incubator (ensuring that the images the animals see have the same
brightness), or the mean brightness over time should be maintained, meaning that
the ON period is lighter than the WT incubator. Few studies have directly compared
these alternatives. In hamsters, adjusting the peak luminance such that the mean
luminance remained constant caused worse visual deficits than using the normal
mean luminance as the peak of the strobe [225], albeit at the level of gross eye
morphology rather than any functional properties. Brightness was adjusted so that
the peak brightness of the strobe was matched to the luminance in the incubator
for fish reared in WT/ER conditions.

Construction

Components were designed using https://www.tinkercad.com, and printed using
a Makerbot Replicator 2X (Makerbot) and black ABS plastic (Makerbot). The
lid used on the strobe chambers was the same as that for the DR chambers,
allowing no light in while providing ventilation (see fig. 4.1B, fig. 4.3B,C). Light was
provided by Rebel Star CW100 LEDs (Opulent), and their brightness was controlled
using a RCD-24-0.70/W/X3 LED driver (RECOM). They were mounted to heat-sinks
(MQ75-1, Aavid Thermalloy). Power was supplied using a dual 12V/5V DC PSU,
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cannibalised from a laptop power supply.

Timings were programmed via a Teensy 3.2 (https://www.pjrc.com). The analog
dimmer for the LED driver received input from a 5V PSU, via a 200KΩ trimmer
potentiometer (3362P-1-203LF, Bourns) allowing the brightness of the LEDs to
be altered after multiple chambers were connected. Multiple connectors were
wired in parallel to allow >1 chamber to be connected simultaneously. The
digital (PWM) input of the LED driver took its input from one of the binary (5V)
outputs of the Teensy, which was programmed to cycle 20ms LOW (corresponding
to light on), 300ms HIGH (corresponding to light off). All wiring was done on
a Raspberry Pi Perma-proto soldered breadboard (Adafruit Industries). Wired
connectors (129-6460, Binder) ensured that no chamber became disconnected
from this board by accident during operation.

On top of the LED was mounted a white weighing-boat (611-0094, VWR), in order
to diffuse the light and make it as uniform as possible over the dish. The petri
dish containing fish rested on two petri dish lids, both covered in diffusing plastic
sheeting to further equalise the luminance. For interior structure, see fig. 4.3C.
The ambient luminance in the normal incubator was ~280 Lux, measured using
an ILM1335 Light Meter (Iso-Tech), and the luminance of the strobe chambers was
altered to match this during the on-period. The strobe light was powered according
to the same 14 hour on/10 hours off cycle as the lights of the normal incubator.

4.2.5 Imaging and analysis

All imaging and analysis was conducted using the same parameters, protocols and
pipeline as the WT animals, described section 3.2. Separate standardised spaces
were made for each rearing condition. Subjects chosen for inclusion in the template
for each group were first aligned to the WT 10 dpf template, prior to alignment with
each other, maximising overlap with the WT template as far as possible in order to
aid in gross morphological comparisons.
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Figure 4.3: Custom-built strobe-rearing chamber. A View of fish living in interior, with LED
on. B Complete chamber, with lid on. C Cross-section of a strobe-rearing base, showing
LED with heat-sink, and multiple layers of optical-diffusing plastic. Cut using a Versatile
Muti Tool with reciprocating saw attachment (Wickes). D the wired components.
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4.3 Results

The same functional imaging and analysis pipeline as in Chapter 3 was used, but
on fish reared to 10 dpf in altered visual environments (N = 12 animals per condition).
Three different environments were selected. DR: fish reared in complete darkness,
ER: reared in a more naturalistic environment and SR: reared in custom-built strobe
chambers. These environments were engineered as far as possible to ensure
that no parameters other than the visual environment were affected (such as
temperature and airflow). WT data shown here are the 10 dpf dataset presented
in Chapter 3. Compared to the WT animals, there are changes in the numbers of
ROIs found in these animals, with fewer of both DS and OS in the DR, and more in
the ER condition. In the SR condition, there are fewer DS ROIs, but the number of
OS ROIs is unaffected (table 4.1).

Rearing ROI type N # scans total n n scan-1 p
WT DS 16 71 1296 18.3 N/A
WT OS 16 71 978 13.8 N/A
DR DS 12 52 562 10.8 0.0007
DR OS 12 52 436 8.4 0.0133
ER DS 12 49 2381 48.6 0.0258
ER OS 12 49 1579 32.2 0.0038
SR DS 12 51 759 14.9 0.0086
SR OS 12 51 578 11.3 0.1401

Table 4.1: Summary of DS and OS ROIs in the SFGS tectal region, obtained from the
functional imaging of Isl2b:Gal4; UAS:SyGCaMP6s zebrafish, reared in different visual
environments. p-values shown are from the Wilcoxon rank sum test, calculated using the
MATLAB ranksum function, comparing the number of ROIs per scan in each functional type
to the WT equivalent.

4.3.1 Distributions of DS & OS ROIs in standard tecta

Separate standardised spaces were generated for each rearing condition (for
volumes, see table 4.2). Examining the laminar distributions of DS and OS ROIs
(fig. 4.4) showed that there are small differences in the positions of DS and OS
laminae, potentially due to small inconsistencies in the shapes of the standard tecta,
they are very similar in terms of extent and position of the dominant laminae. In
one previous study, dark-reared animals did not appear to exhibit altered laminar
structure when RGCs are pooled [76]. However, more recent work examining
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functionally-defined RGC inputs to the tectum has given contrasting results, with
small alterations in the laminar distribution of OS RGCs [38]. One observation is
that the peak-to-peak distance between DS and OS laminae appears greatest for
the ER condition, while it appears reduced in the DR and SR conditions relative to
the WT - additionally, the widths of the laminae appear to follow the same trend
(fig. 4.4).

Condition SFGS volume (×105 µm3)
DR 5.67
SR 6.32
WT 7.51
ER 7.76

Table 4.2: Volumes of SFGS neuropil in standard tecta, calculated as the convex hull
volume of the manually-segmented mesh.

Figure 4.4: Probability densities in the laminar axis, by RGC functional type, from 10 dpf fish
reared in different visual environments. Dotted lines represent 1 standard deviation from
the mean of a single fitted gaussian, the laminar boundaries used to estimate coverage (in
fig. 4.5).

In the DR and SR conditions, the distribution of ROIs appear to be more
topographically restricted (fig. 4.5). There is an area of of increased DS density
in the ventral/anterior quadrant, close to the point of optic nerve entry. All
conditions appear to exhibit a similar “hole” in the density of DS and OS ROIs in the
dorsal/anterior quadrant. Additionally, there is an apparent ventral (high) to dorsal
(low) gradient in the density of both OS, and to a lesser extent DS, ROIs in the ER
condition, which cannot be seen in any of the other conditions. The area of high DS
density close to the optic nerve entry point in DR animals is particularly interesting:
previous work has indicated that some axons terminate prematurely when silenced
[69, 95].

The difference of OS and DS density appears to exhibit roughly the same structure
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Figure 4.5: Maps of DS & OS ROI density, corrected for imaging coverage, within the
dominant lamina. In laminar pixels where no ROIs were found, the number of times the
pixel was imaged is indicated.

in the WT and ER animals, with a central bias for OS and a posterior/ventral DS
bias (fig. 4.6). However, it appears that the magnitude of the differences, and the
smoothness of the gradients, is reduced in the ER condition. This suggests that the
regional specialisation observed in the WT might in fact be due to an environment
that does not contain enough detail for correct visual development. In support of
this point of view, the differences of densities of DR and SR maps have areas with
higher levels of bias than the WT and ER conditions. However, one open question
is whether skewed visual statistics are impairing normal development, or driving a
specific different solution to tectal topography which can be related to the statistics
present.

4.3.2 Topographic order and map curvature

The levels of topographic order in DS & OS maps were assessed using
the multisubject euclidean distance correlation developed in Chapter 2. As
expected, both DS and OS maps, in all conditions, were statistically significantly
topographically ordered (table 4.3). As with the WT animals, and at earlier ages,
in all cases the DS map is statistically significantly more ordered than the OS.

151



Figure 4.6: Differential probabilities for OS and DS RGCs. Densities of ROIs corrected
for the number of times pixels were imaged (fig. 4.5) were rescaled to sum to 1, indicating
the fraction of DS (or OS) ROIs found in each pixel. The rescaled DS density was then
subtracted from the rescaled OS density, meaning that the integral of each parametric map
is 0. Only pixels in which density of either functional type is non-zero are shown.

Surprisingly, it appears that in all three altered rearing conditions, topographic
order is increased in both DS and OS maps relative to the WT animals (fig. 4.7
and table 4.4), with the exception of the OSmap in the SR animals. As experiments
for wild-type animals and other conditions were not performed contemporaneously,
there is a remote possibility that this is an artefact of different parental health or
imaging technique; discussed at greater length later.

Rearing ROI type total n Monte Carlo n p (Nshuf = 1000)
WT DS 1296 449 0.001
WT OS 978 313 0.001
DR DS 562 126 0.001
DR OS 436 132 0.001
ER DS 2381 887 0.001
ER OS 1579 550 0.001
SR DS 759 279 0.001
SR OS 578 188 0.001

Table 4.3: DS and OS maps, in all conditions, are statistically significantly topographically
ordered. p-values represent the probability that the level of topographic order observed
could occur by chance given distributions of points, see Chapter 2 for details. Monte
Carlo subsample sizes were chosen as described in section 2.3.6

The topographic order of 1D-projected tectal coordinates against azimuthal and
elevational axes of visual space were calculated (fig. 4.8), using the framework
established in Chapter 3. This process involved collapsing visual space
coordinates of receptive fields to their azimuthal or elevational coordinate, and
measuring the level of topographic order between the azimuth and elevational, and
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Figure 4.7: Top: DS and OS topographic maps formed in the tecta of 10 dpf fish
reared in different visual environments. Bottom: Topographic order, calculated using
the multiple-subject modified euclidean distance correlation metric described in chapter 2
and eq. (2.12). Error bars represent standard deviation of 1000 monte-carlo resampled
maps (see section 2.3.6), using all ROIs resampled according to subsample sizes
described in table 4.3. p-values shown in table 3.3.

153



Group 1 Group 2 p (q=0.2)
WT - DS WT - OS 0
DR - DS DR - OS 0.0013
ER - DS ER - OS 0
SR - DS SR - OS 0
WT - DS DR - DS 0.004
WT - DS ER - DS 0
WT - DS SR - DS 0
DR - DS ER - DS 0.0186
DR - DS SR - DS 0.0071
ER - DS SR - DS 0.9993
WT - OS DR - OS 0.0002
WT - OS ER - OS 0
WT - OS SR - OS 0.0657
DR - OS ER - OS 0.312
DR - OS SR - OS 0.0058
ER - OS SR - OS 0.824

Table 4.4: Pairwise tests for differences in topographic order between DS and OSmaps
in animals reared in different conditions. FDR-corrected p-values calculated as described
in section 2.3.6, with q = 0.2, using Monte Carlo subsample sizes listed in table 4.3. Tests
were performed with matched subsample sizes, in order to ensure fair comparisons where
numbers of points were mismatched.
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Figure 4.8: Quantification of azimuth and elevation axes in the tectum. Top:
Topographic order for rotated, 1D-projected OS and DS maps. Error bars calculated using
1000 monte-carlo subsamples, with each subsample used for a full 180° rotation. Bottom:
Phase difference, as indicated by maximal circular cross-correlation of 1D topographic
order for azimuth and elevational axes. Error bars are mean ± SD from 1000 resampled
datasets.
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Figure 4.9: The angles giving peak 1D topographic order and representing the cardinal axes
of visual space, as determined from the maximum of the curves shown in fig. 4.8.

the 1D-projected tectal coordinate after 0-180° rotations in the topographic plane.
The angles that optimally represent the cardinal axes of visual space can be seen
overlaid onto the tectum in fig. 4.9. Interestingly, the curves for the ER and DR
datasets resemble sinusoids far closer than that of the other datasets. Why could
this be? Intuitively, the deviation of these curves from a sinusoid could result from
nonlinear curvature of the maps. Such an effect is confirmed in modelled data:
using the modelling framework from Chapter 2, it becomes clear that deviation
from a sinusoidal curve of topographic order against projection angle can arise as
a result of map curvature (fig. 4.10). Thus, it appears that the ER maps, aside
from having the phase difference closest to 90° (which would indicate orthogonal
representations of azimuth and elevational axes, see bottom panel of fig. 4.8), and
which has the axes of the DS andOSmaps in closest agreement (fig. 4.9), is also the
mapwhose plots of 1D topographic order against projection angle closest resemble
sinusoids, implying that they are least likely to be subject to nonlinear distortion. A
similar finding applies to the DR maps relative to the WT and SR maps.

In the SR OSmap, topographic order in the elevational axis seems to be specifically
disrupted. Although the curve of topographic order against rotation angle for the
azimuth is shallow relative to the DS map, or the maps in other conditions, in
contrast there is no single peak or trough in the curve for the elevation. This
suggests that the elevational axis of the OS map is specifically vulnerable to the
SR condition - although the reasons for this would require further exploration.
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Figure 4.10: Modelled data suggest that deviations from a sinusoidal topographic
order curve arise as a result of map curvature. Matched colours indicates point
correspondence on top panels.

4.3.3 Angular-selective variants of DS & OS ROIs

I set out to analyse whether the angular-specific variants of DS and OS were
affected by rearing in altered visual conditions. Applying the wavelet-based
clustering technique used previously [38] to the data reveals that overall, the same
variants are present in both DS and OS populations (figs. 4.11 and 4.12). In
the DS populations, there are 3 variants, selective for nasal, dorsal/temporal and
ventral/temporal motion. In the OS populations, there are 4 variants, roughly
evenly spaced. Although there are small differences in preferred angle, these
are small, and could be a result of small biases in the way the different animals
were mounted/viewed the screen. As with the pooled DS and OS data, examining
the laminar distributions of the DS and OS variants (bottom panels of figs. 4.11
and 4.12) shows that the laminar coordinates are largely unaffected: in the DS
variants, the ordering of the angular-selective laminae remains. In the OS, the
laminar distributions appear noisier in the DR and SR conditions (potentially due to
low number of ROIs) but generally the same, with an overlapping primary lamina and
the secondary, deeper lamina largely consisting of the horizontal-selective variant.

Although the functional identities and laminar distributions of the angular-selective
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Figure 4.11: DS variants are largely unchanged by altered rearing. A Normalised mean
responses of OS clusters to directions of motion, ± SD. The response vector for each ROI
was normalised to its maximum prior to calculation of mean and SD from all members of
each variant. B Distributions of preferred angles, coloured by cluster. Bin width is 5°. Inset
represents peak preferred angles of clusters, calculated from von Mises fit to each cluster
(shown in black). C Laminar distributions of clusters, using normalised distance within
SFGS as in fig. 3.6.
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Figure 4.12: OS variants are largely unchanged by altered rearing. A Normalised mean
responses of OS clusters to bar motion, ± SD. The response vector for each ROI was
normalised to its maximum prior to calculation of mean and SD from all members of each
variant. B Distributions of preferred angles, coloured by cluster. Bin width is 5°. Inset
represents peak preferred angles of clusters, calculated from von Mises fit to each cluster
(shown in black). C Laminar distributions of clusters, using normalised distance with in
SFGS as in fig. 3.6.
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variants do not appear to be affected by visual experience (figs. 4.11 and 4.12),
their relative abundances are (see fig. 4.13). In the DS populations, fractions of
the different variants are unchanged except in the DR condition, in which there is
a disproportionate reduction in the dorsal/temporal and ventral/temporal variants,
making the nasal-selective variant even more dominant. In the OS populations,
there are differences between abundances of all different rearing conditions, but
by far the most profound effect is in the DR animals, in which all populations
are expanded at the expense of the horizontal motion variant, creating a strong
bias towards the vertical variant. Additionally, the vertical-selective variant is
reduced, and the horizontal variant expanded, in the SR condition. This observation
could complement the finding that the SR OS map is specifically disrupted in the
elevational axis (fig. 4.8) - although exactly how these findings are directly related
remains to be seen.

Figure 4.13: Fractions of DS and OS ROIs, by angle-selective variant, in animals reared
in different visual environments.

4.3.4 Altered rearing and contrast selectivity

Next, the effects of altered visual environments on the selectivity for different
contrast changes of DS and OS ROIs were examined (fig. 4.14). In the DS maps, it
is apparent that there is a massive enlargement of the ON-OFF population in the ER
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Comparison d.f. Χ2 p Significant?
DS Global 9 90.88 1.08E-15 YES
DS WT/DR 3 75.51 2.82E-16 YES
DS WT/ER 3 3.753 0.2894 NO
DS WT/SR 3 2.708 0.439 NO
DS DR/ER 3 67.67 1.35E-14 YES
DS DR/SR 3 45.5 7.23E-10 YES
DS ER/SR 3 0.355 9.49E-01 NO
OS Global 12 349.4 1.85E-67 YES
OS WT/DR 4 150.2 1.82E-31 YES
OS WT/ER 4 43.18 9.48E-09 YES
OS WT/SR 4 20.57 3.88E-04 YES
OS DR/ER 4 300.1 1.02E-63 YES
OS DR/SR 4 179.5 9.78E-38 YES
OS ER/SR 4 16.15 2.80E-03 YES

Table 4.5: Χ2 statistics for comparisons of abundance of DS and OS angular-selective
variants for animals reared in different visual environments. All p-values calculated
using the MATLAB crosstab function. Significance levels are Bonferroni adjusted, i.e.
significant if p<0.0083.

animals relative to all other conditions (table 4.6). This potentially means that the
ON-OFF population of DS-RGCs has a particular requirement for visual stimulation
in order to elaborate or maintain axonal arbours. Meanwhile, the ON population is
reduced more than the others in the SR condition. In the OS maps, the fraction
of ON-ROIs remains roughly constant. Like the DS population, the most ON-OFF
are found in the ER animals, while there appear to be a reduced number in the SR
animals.

4.3.5 Displacement in visual space between DS and OS maps

In order to assess the role of visual experience in the alignment of DS and OS
maps, the displacements between themwere calculated as in section 3.2.4. Within
different rearing conditions, no misalignment could be detected, with the exception
of the dark-reared animals (fig. 4.15 and table 4.7). As the mismatched growth
of retina and tectum, with retinal neurons added in concentric rings and tectal
neurons added at the posterior, anterior and ventral borders necessitates the
movement of RGC synapses in order to maintain topography as the animal grows
[124]. Maps formed by RGC axons must migrate from the dorsal edge downwards.
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Figure 4.14: DS and OS ROIs selective for different contrast changes, for animals
reared in different visual environments conditions. Top: Cumulative fractions. Bottom:
Cumulative number of ROIs, per scan.

Thus, the ventral/nasal displacement of the DR OS map relative to the DS OS one
corresponds to a faster movement of the OS map than the DS, consistent with
previous data from 7 dpf animals [52].
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Figure 4.15: Displacements between DS and OS maps at different tectal locations,
calculated in the same way as in section 3.2.4.

Comparison d.f Χ2 p Significant?
DS Global 6 313.8 9.03E-65 YES
DS WT/DR 2 3.886 1.43E-01 NO
DS WT/ER 2 161.11 1.04E-35 YES
DS WT/SR 2 17.58 1.51E-04 YES
DS DR/ER 2 123.24 1.73E-27 YES
DS DR/SR 2 17.87 2.16E-04 YES
DS ER/SR 2 173.27 2.38E-38 YES
OS Global 6 50.3266 4.04E-09 YES
OS WT/DR 2 5.19 7.46E-02 NO
OS WT/ER 2 27 1.37E-06 YES
OS WT/SR 2 4.3 1.16E-01 NO
OS DR/ER 2 2.69 2.60E-01 NO
OS DR/SR 2 11.9 2.50E-03 YES
OS ER/SR 2 30.9 1.94E-07 YES

Table 4.6: Χ2 statistics for fractions of contrast-selective DS and OS ROIs by rearing
condition All p-values calculated using the MATLAB crosstab function. Significance levels
are Bonferroni adjusted i.e. considered significant if p<0.0083.

Condition d.f. z p
WT 14 0.7363 0.4863
DR 13 6.04 0.00138
ER 16 1.51 0.223
SR 11 0.9835 0.382

Table 4.7: Rayleigh test statistics for circularity of DS-OS displacements in visual space.
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4.4 Discussion

In this chapter, I developed bespoke experimental apparatus to allow manipulation
of visual experience in larval zebrafish during development. I then characterised
the topographic maps formed by direction- and orientation-selective RGCs in the
tecta of larval zebrafish reared using such apparatus, in an attempt to elucidate
the contributions of visual experience to the properties of maps formed in WT
animals (Chapter 3). My data indicate that providing a naturalistic visual experience
leads to greater numbers of DS and OS ROIs, while restricting visual experience by
dark- or strobe-rearing has the opposite effect. Visual experience appears to have
differential effects on the balance of contrast- and angular-selective variants of DS
and OS RGC axons. My data also suggests that visual experience is necessary, but
that motion is not required, for the maintenance of alignment between DS and OS
maps. Finally, my work reveals a complex and non-intuitive relationship between
visual experience and the precision of topographic maps.

4.4.1 Effects of altered rearing on ROI number, and density

Of particular note is the massively-increased number of ROIs in the enriched-reared
fish (table 4.1). Additionally, the size of the tectal neuropil does appear to be
correlated with the level of visual experience (table 4.2). An interesting point is
whether such alterations represent a different number of neurons, more developed
axonal arbours on each neuron, or an alteration in the functional selectivity of
neurons rather than a change in number, meaning that more ROIsmeet the stringent
criteria set for OS and DS. A change in the number of RGCs is unlikely, as
examination of the RGC cell bodies and dendrites of dark-reared animals did not
reveal gross morphological defects [76]. However, it should be noted that the DR
animals in this previous study were compared with “WT” animals (which could be
visually deprived, see section 4.4.6), and there could be an increase in RGC number
in the ER condition.

In zebrafish, the effects of visual experience on RGC selectivity are unknown
although the laminar distributions of their dendrites within the retina (which are
major determinants of functional identity) are unaffected by dark-rearing [76]. This
finding suggest that changes in ROI number are not necessarily a result of altered
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RGC selectivity, and are more likely to result from changes in axonal arbourisation.
Similarly, in the rabbit visual experience does not impact on the development of
DS-RGC dendritic morphology [226]. In direct contrast to this view, recordings
of the electroretinogram are altered by rearing in constant light [227], meaning
that retinal circuitry can be altered by experience. Such an effect has also been
demonstrated in the mouse [228–230], with visual experience directly affecting
retinal circuitry, and other studies have found experience-dependent remodelling
of upstream retinal circuitry in mice [231], and rats [232].

It is interesting that alterations in the density of ROIs in the ER condition occur over
the whole tectum, with increased density everywhere fig. 4.5, even though after the
time at which larvae start to swim upright (by 3 dpf [233]), visual experience was
altered far more in the ventral portion of the visual field. Reflections of the gravel
from the lid of the petri dish containing the experimental animals, which would result
in changes in visual statistics over the whole visual field, will be extremely faint as
lighting intensity is far higher from above the dishes than below them - due to the
gravel. As the time of upright swimming is very nearly concurrent with the arrival
of the first RGC axons into the tectum [54, 233], the alterations in topography are
extremely unlikely to result from developmental changes preceding the period when
fish swim upright. Potentially linked to this is the ventral-dorsal gradient of DS and
OS density seen in the ER condition, meaning that the ventral visual field specifically
contains more ROIs (fig. 4.9).

Additionally interesting are the alterations in the bias for DS vs OS ROIs seen in the
DR and SR maps (fig. 4.6). In the DR animals, there are many more DS ROIs than
OS found in the area close to the point of optic nerve entry, while in the SR there
is massive OS bias in the dorsal area. How and why these specific biases emerge
is an open question. However, the different biases present in all conditions here
indicate that skewed visual statistics can drive different specific solutions for visual
topography.

4.4.2 Dark-reared animals do not simply exhibit delayed development

In DR animals at 10 dpf, levels of topographic order in DS and OS maps are
intermediate between that found in the WT dataset at 7 dpf and 10 dpf (figs. 3.10
and 4.7). It could be supposed, based only on this observation, that the DR animals
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are subject to delayed development due to poor nutrition, as animals could be less
able to find food after their yolk sac is depleted around 6 dpf [234]. However, in a
number of other parameters (for example, the balance of contrast-selective ROIs,
the abundance of DS variants, and the number of ROIs), they far more closely
resemble the WT 10 dpf animals than the 7 dpf. Additionally in support of this,
zebrafish larvae can forage almost as efficiently in the dark as in light up to 10 dpf
[235]. Thus, although the progression of topographic order in DR animals may be
delayed as a result of loss of visual experience, this is not simply a knock-on effect
of a broader delay in development of the whole animal, and represents a specific
effect of visual experience on topographic precision.

4.4.3 Visual experience is necessary for map alignment

It is very interesting that maps require visual experience to remain in alignment
(fig. 4.15 and table 4.7), even though they emerge in alignment at 3 dpf (see
Chapter 3). RGC axons are organised chronotopically within the optic nerve, with
the most recently-added RGCs at its outer circumference [236]. As the retina grows
at its circumference, it is presumed that this corresponds to a retinotopic mapping.
Similar organisation has also been identified in other teleosts [237]. Given that RGC
axons only enter the tectum between 2.5-3 dpf [54], it remains to be seen whether
visual experience has major effects on map alignment (or topographic order) at
such an early stage.

The fact that visual experience is necessary for map alignment at 10 dpf, as well
as at 7 dpf [52], supports the idea that as animals move toward adulthood, the
balance of forces maintaining and creating neuronal connectivity shifts away from
molecular pre-specification and towards activity-dependent refinement [58]. In this
scenario, and in light of the coarse topographic order found at 3 dpf, maps are
created in alignment by molecular mechanisms, but maintenance of this alignment
requires visual input. A particularly interesting question, if this were the case, is
at what point in the life of DR fish the maps are first misaligned? An additional
question is whether there are specific mechanisms that maintain the alignment of
multiple maps (and which require visual experience), or whether the mechanisms
for specifying topographic map position (for example, axonal competition for tectal
space [69, 95, 96]) operate independently across multiple maps, maintaining their
alignment passively.
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4.4.4 DS and OS RGCs are differentially affected by visual experience

As discussed in Chapter 1, in fish the mismatched growth of the retina and
tectum necessitates the movement of maps across the tectum [124]. Given that
visual experience is necessary for map alignment, the synaptic remodelling which
comprises this movement could operate under different parameters in DS and
OS maps if there are no specific mechanisms maintaining alignment via visual
experience. If there is no specific mechanism of keeping maps aligned, then
the maps must move independently of each other but still maintain internal order.
Under this model, the misalignment observed in the DR condition would be due to
differences in how the maps migrate across the tectum, potentially due different
rates of synaptic turnover.

Clearly, the effects of visual experience are different in the two functional types
of RGC studied here. The balance of contrast selectivity (fig. 4.14), and
angular-selective variant (fig. 4.13), is far more fluid in the OS than the DS
maps. Previous work has suggested that the DS retinotectal projection is more
“hardwired”, while the OS is more plastic [37, 38, 52]. However, the differences
in topographic order are far more pronounced in the DS maps than in the OS,
somewhat tempering this view. The results here additionally demonstrate that
the laminar and topographic locations of RGCs are differentially affected by visual
experience: only very small changes occured in laminar distributions (consistent
with previous work [38, 76]), while the distributions in the topographic plane, and
levels of topographic order are affected more profoundly, meaning that the maps
themselves are more affected by visual experience than their laminar locations.

In my data, strobe-rearing produced an increase in topographic order of DS
but not OS maps, a reduction in the number of both DS and OS ROIs, and
alterations of the balance of angular-selective variants of OS but not DS RGCs.
Strobe-rearing has previously been shown to impact on RGC axonal arbourisation
in the developing goldfish, specifically affecting some RGC axons more than others
[104], although these findings cannot be directly related to the present study as
functional characterisation was not attempted. However, it is consistent with the
general finding here that RGC functional types are differentially affected by visual
experience.
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4.4.5 Visual experience affects map curvature and axis orthogonality

Examination of the topographic order of 1D-projected azimuthal and elevational
maps allowed the extraction of information about how the cardinal axes of visual
space are represented in the tectum (fig. 4.8). As demonstrated in fig. 4.10,
deviations from sinusoidal relationships are likely to represent axis curvature.

One interesting question which remains unanswered is the precise link between
the SR condition and the complete lack of a defined elevational axis in the OS
map (fig. 4.8). Potentially linked to this is the expansion of the vertical-selective
OS variant in the SR condition. However, whether these two observations can be
explicitly linked remains to be seen.

Interestingly, both the ER and DR animals appear to have maps in which axes are
closer to orthogonal, and which appear to have less curvature in that their plots
of projection angle against 1D topographic order are closer to being sinusoidal.
The DR DS map appears to have very sinusoidal relationships between projection
angle and 1D topographic order, yet also to have non-orthogonal axes. Intuitively,
this could correspond to a linearly sheared map of visual space.

4.4.6 Most experimental zebrafish are visually deprived

The result that map properties in enriched-reared animals are vastly altered relative
to their wild-type counterparts was unexpected. However, this finding carries
with it certain caveats. Data from 10 dpf WT fish in this chapter was recycled
from Chapter 3, and was not acquired concurrently with that from fish reared in
the altered visual environments, meaning that differences could be due to small
changes in acquisition technique or the health of the parents. An extra, desirable,
control would be to darken the area directly below the fish similarly to the ER
condition) but without adding extra detail, as the levels of light experienced by ER
animals will have been lower than that of the WT.

That such a small environmental perturbation as the ER condition had such
large effects on the functional selectivity and map properties of RGC axons is
surprising. Perhaps the “normal” environment most experimental animals develop
in, incubators lacking in visual detail, might be negatively impacting their visual
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development. It is almost certain that alterations in RGC functional properties
impact on those of tectal neurons, and given the reliance of the zebrafish on
vision, the whole brain. Given that the tectum is a major site of multimodal
sensory integration [238], questions arise regarding all research into zebrafish visual
representation, and as a result, their behaviour. One example of such a potential
mistake can be found in fig. 3.8, which appears to show the emergence of regional
specialisation from 3-10 dpf, with areas of the tectum in which DS and OS are
unbalanced in terms of their density. However, in the ER fish, it appears that the
magnitude of these differences is smaller (fig. 4.6), suggesting that the regional
specialisation observed in the WT might be a by-product of a visually-deprived
environment.

Perhaps the WT visual environment is specifically detrimental to map development,
given the sparse incubator environment, lacking in detail. Certainly, exposure to
constant illumination has negative effects on the visual system, both at the level of
photoreceptors [227] and in terms of behaviour [239]. In this thesis, the ER animals
experienced less light than the WT due to the opaque dish beneath them and
unfortunately, the differences cannot be definitively attributed to changes in detail
versus changes in light levels. The WT incubator environment could be producing
a less pronounced version of the condition produced by exposure to constant light.
In contrast, the DR animals have no visual experience, and the organisation of their
neurons must then rely entirely on molecular processes and spontaneous activity
rather than visual-evoked activity. Perhaps a complete lack of input leads to more
healthy map development than the visually-impoverished, or potentially overly-lit
“WT” input, in which plasticity mechanisms disorder the maps.

One hypothesis is that as the balance of factors affecting neuronal connectivity
shifts from being dominated by molecular factors, to activity-dependent plasticity
[58], the “WT” animals visual systems may be deleteriously affected by the
poorly-structured input, similarly to animals reared in constant light [227, 239].
The important question is then, at what point do the topographic maps of
animals reared in different visual environments diverge? Potentially, it might
correspond to the onset of hunting behaviour at 5-6 dpf [186], which will hugely
impact on the statistics of the visual environment and perhaps increase the
effects of activity-dependent plasticity on retinotectal connectivity, as discussed
in Chapter 3. The most important experiment to test this hypothesis would be
to produce developmental profiles for the ER and DR animals, similar to that in
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Chapter 3.

4.4.7 The effects of altered visual environments on topographic order
are complex

The topographic order seen in altered visual environments is certainly not as
expected. All animals reared in altered environments exhibit increased topographic
order in both DS and OS maps relative to the WT animals (fig. 4.7). I originally
hypothesised that DR animals should have increased topographic order, while
ER animals should have reduced topographic order. While my data is consistent
with the former hypothesis, in fact the topographic order in the ER animals was
increased. This is unexpected, as reducing visual experience (as in DR animals)
and increasing its complexity (as in ER) were predicted to have opposite effects on
topographic order. How can these findings be reconciled? How do they relate to
the finding that WT animals maps become less precise from 7 dpf to 10 dpf?

Examination of map curvature using 1D projections shows that ER and DR maps
have more orthogonal axes and are likely to have less curvature than the WT
condition (fig. 4.8). A potential confounding factor here is that maps with more
curvature will have their level of topographic order underestimated to a greater
extent (despite efforts to mitigate this effect, see Chapter 2). Thus, it is perhaps
unsurprising that the ER maps appear to be the most ordered given that they also
appear to have axes closest-to-orthogonal.

As mentioned earlier, it is possible that in fact the WT fish are not directly
comparable to the other conditions due to non-concurrent data acquisition. Under
this assumption, the Wt data should be disregarded and comparisons should be
drawn only from comparisons of the remaining datasets. The data presented here
would conclude that visual experience is necessary to refine DSmaps, making them
more precise. It would appear that, as the ER and SR maps have equivalent levels
of order, the exact statistics of the visual experience provided do not affect DS map
precision. Meanwhile, the precision of OS maps is once again complex as highest
topographic order is seen for the DR condition, while the lowest is for SR. These
findings imply that movement is not specifically necessary for DS maps to form
precisely, but that it is for OS.

However, if there is no artefact due to poor experimental technique, an alternative
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view can be presented: Given the fact that ER maps are the most highly ordered,
it certainly appears that increasing the complexity of visual experience acts to
make the map more precise, in line with the expectations of Kutsarova et al., 2017
[145], and disagree with the view that maps are a non-optimal way of encoding the
visual field [146, 147]. An important next step in exploring the influence of visual
experience would be to produce developmental profiles for all the altered visual
environments used here - particularly the ER condition. An extra control would be
to darken the area directly below the fish (in a similar way to the ER condition) but
without adding extra detail.
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Chapter 5

Conclusions & Further Work

In this thesis, I have examined the development of visuotopic maps in the zebrafish
tectum, and the contribution of visual experience to these maps.

In Chapter 2, using in-silico modelled data, I selected one metric, the euclidean
distance correlation, for topographic precision which was optimally suited for
quantifying maps derived from multiple experimental subjects. This metric was
expanded to allow statistical testing of differences between subjects using a Monte
Carlo resampling strategy, and to allow the quantification of deviations from perfect
topographic order in biological distance units. The major findings are as follows:

• Four metrics for topographic order were assessed based on the amount
of data required for, and the precision with which they could resolve it,
topographic order, using in-silico modelled data

• Selected metrics were reformulated to allow quantification of maps derived
from multiple experimental subjects, and the above analysis repeated in that
context.

• The euclidean distance correlation was selected as the metric allowing best
quantification.

• A framework for testing of statistical differences between maps derived from
multiple experimental subjects was demonstrated
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• A technique for estimating sources of topographic disorder in biological
distance units was developed and validated.

In Chapter 3, I examined the development of tectal visuotopic maps formed by
synapses from two populations of motion-selective RGC. I used synchronised
visual stimuli (presented with a custom built system, described in Appendix A) with
confocal imaging, in conjunction with standardised spaces representing the tectum,
to examine the development of visuotopic maps formed by direction-selective and
orientation-selective RGCs of larval zebrafish of three different ages (3, 7 and 10
dpf). These experiments suggested development of regional specialisation, with
certain regions of the tectum containing a biased representation of DS relative
to OS. DS and OS maps appear in alignment with respect to the visual field
from 3 dpf onwards. Examining the contrast-selective DS and OS RGCs, no
contrast-change-specific sublaminae were observed, either within DS and OS,
or within the angular-selective variants of DS and OS identified. Unexpectedly,
topographic order did not increase monotonically with age; while it increased from
3 dpf to 7 dpf, it reduced from 7 dpf to 10 dpf.

• Using a custom-built experimental setup, topographic maps formed by DS
and OS RGCs in the tectum were derived from zebrafish at 3, 7 and 10 dpf.

• DS maps are more ordered than OS at all ages

• Topographic order increases from 3-7dpf, but decreases from 7-10dpf, in
both DS and OS maps

• Differential densities of DS and OS suggest regional specialisation within the
tectum

• No misalignment between DS and OS maps could be detected at any age

• Variants selective for different angles were identified, consistent with previous
literature

In Chapter 4, animals reared in the dark, an enriched/naturalistic environment and
strobe lights were examined at 10 dpf using the same experimental and analytical
framework as Chapter 3. Such experiments revealed complex relationships
between visual experience and topographic order: order was increased in all altered
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visual environments relative to the “WT” animals. One interpretation is that in
fact the WT fish are visually deprived. Additionally, a more uniform distribution
in enriched-reared (ER) fish suggested that the regional specialisation revealed in
Chapter 3 could be an artefact of the WT rearing condition. Finally, the alignment
of DS and OS maps appeared to be dependent on visual experience.

• Topographic maps formed by DS and OS RGCs in the tectum were derived
at 10 dpf after rearing in altered visual environments: dark-reared animals,
strobe-reared animals and animals reared in an enriched visual environment

• Strangely, topographic order was increased in all altered conditions

• Enriched rearing massively increased the number of DS and OS ROIs
detected, and reduces the degree to which regional specialisation could be
seen

• Reduced numbers of ROIs were seen in dark- and strobe-reared animals

• Angular-selective variants were identified, and while their selectivity and
relative distribution across the tectum was unchanged, their relative
abundances were changed within the dark-reared condition

• Misalignment of DS and OS maps could be detected in the dark-reared
condition, but no others.

Here, the major findings of this work will be discussed at greater length, and the
next steps that could be taken will be considered.

5.1 Quantifying topographic precision

First, in Chapter 2, I developed a framework for assessing which of a number of
metrics for topographic precision were best-suited to quantifying and comparing
the precision of multiple maps, derived from multiple experimental subjects. Using
this framework, based on the amount of data required to reliably quantify defined
levels of topographic order, I selected one particular metric, a multisubject version
of the euclidean distance correlation, for further development. I demonstrated that
it can be used to estimate deviations from perfect topographic order in biological
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distance units, as long as the mapping did not contain nonlinear distortion.
Additionally, using a Monte Carlo resampling strategy and a false discovery rate
correction (developed by Dr Andrew Lowe), it can be used to test for statistical
differences between maps derived from multiple experimental subjects.

This work was further extended in Chapter 3, by using 1D projections following a
rotation to estimate how the cardinal axes of visual space are represented in the
tectum. Intuitively, if the cardinal axes of visual space are reciprocated orthogonally
in the tectum, the curves relating 1D topographic order to the angle of 1D projection
should resemble sinusoidal curves offset by 90°. In Chapter 4, a cursory model
dataset illustrated that increasing map curvature also increased the deviation of the
curve from a sinusoid. One possibility for extending modelling work would be to
examine how the spectral content (that is, the fourier transform [240]) of the curves
used to estimate cardinal axes relate to map curvature in a quantitative manner.
If such an endeavour succeeded, one additional possibility might be to attempt
to use the relationship between spectral content and map curvature to unwarp
curved axes and so produce estimates of map disorder in biological distance units,
independently of nonlinearities.

In sparse and coarsely-ordered datasets, false negatives are common [179], and
this observation was taken account of within the selection of my optimal metric.
However, some considerations were unfortunately not taken into account - for
example, the case where sample points are close together as compared to the level
of noise that explains map imperfections. This became apparent when assessing
the levels of order in the angular-selective variants of DS RGC; in some of the
variants, topographic order could not be detected.

5.1.1 What do nonmatching axes really mean?

If multiple overlaid maps have different cardinal axes (as demonstrated in vivo
across Chapters 3 and 4), it follows that at certain points within the maps they
should be misaligned. How can a situation arise where maps are aligned, but their
cardinal axes are not - which is the case for many experimental conditions?

Firstly, if maps are not perfectly ordered (as is the case for all the maps in this
thesis), the displacement of each point in the map relative to the location it would
occupy if the map were perfectly ordered could eclipse the level of misalignment
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caused by axis disagreement. That is, the displacement between maps with
different axes might be below the level of noise within each of the individual maps,
making it undetectable. However, examining whether this is the case cannot be
determined using techniques established in this thesis, as measurement of sources
of map disorder depends on the level of distortion of the map, as demonstrated in
Chapter 2 and the maps have different levels of distortion.

Secondly, the tests for alignment used in this thesis are performed across the whole
map, and do not take into account local distortions. Thus, if maps are aligned at
their centres, then it is possible that the displacements due to differences in their
cardinal axes at their edges cancel out; at one extreme of the tectal surface, the
displacement could be precisely the inverse of that at the other.

Finally, throughout this thesis, topographic maps have been examined after
projection into a 2D plane. However, tectal laminae are not planar, but rather lie
on a curved manifold; with the caveat that even this is an approximation due to the
partially-overlapping nature of the laminae. Given that the DS and OS maps will
have different topology, their common projection into 2D will introduce different
distortions, potentially leading to the discrepancies in axis alignment shown here.

5.2 Limitations of the experimental setup

As demonstrated in Chapter 3, there are issues surrounding compression of the
receptive fields due to to the aspect ratio of the screen. This could hopefully be
circumvented in future iterations by using screens covering more elevational area.
As flexible screens become more widely available, the ideal screen configuration
would be hemispherical, or even spherical. Although such a configuration has been
developed using a spherical array of LEDs, it currently has very limited resolution
and has only been used for behavioural work so far [Arrenberg AB, personal
communication].

Recent work indicates that UV-detecting cones dominate the photoreceptor
complement in the nasal/upper visual field [30], corresponding precisely with the
area of the tectum where a particularly low density of DS and OS ROIs were seen
(Chapters 3 and 4, an effect also remarked upon in the thesis of Aenea Hendry
[52]). As the screens used in my system are optimised for viewing by humans,

176



one possibility that could explain the low density of DS and OS in that tectal area
is that the screens do not present their patterns in the UV range detected by the
zebrafish photoreceptors. Thus, a useful control would be to examine the output
of the screens with an optical spectrometer, to see whether the contrast patterns
presented in the human-visible range are also detected in the UV range of the cones
which dominate the zebrafish retina in the area corresponding to nasal/upper visual
field.

Finally, in future iterations it would be preferable if there were a method for fixing
the position of the screens relative to the microscope objective. This would allow
differences in fish mounting position to be recorded and taken into account in
analysis: for example, to allow compensation of bar motion angles, and locations
of receptive fields in visual space for animals viewing the screens from different
angles. Such corrections, when correctly applied, would allow exploration of biases
in feature detection in visual as well as tectal space.

5.3 Development is not monotonic

One of the key findings, gleaned from a number of parameters, in Chapter 3, was
that many changes from 7 dpf to 10 dpf are in the opposite direction as from 3 dpf to
7 dpf, suggesting that during development there is a transient state. Similar findings
have emerged from studies of tectal activity: spontaneously active ensembles of
tectal neurons become more compact from 4-6 dpf, but then increase in size later
on [148].

One interpretation of the results in Chapter 4 was that in “WT” animals, poorly
structured visual input actively degrades the maps formed by RGCs in the tectum.
In particular, over a number of different parameters the ER maps resemble the 7
dpf WT condition more than the 10 dpf WT condition. This raises the question of
when precisely the animals in altered environments actually diverge from the WT
ones, and in what manner.

Previous experiments with dark-reared (DR) animals show that topographic maps
formed by DS RGCs in the tectum already diverge from WT at 7 dpf [52], and
properties of tectal activity diverge at 6 dpf [148]. Additionally, the massive
reduction in number of OS and DS ROIs seen in Chapter 4 has been seen at 7 dpf
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[38]. Such findings raise the question of when, precisely, the differences between
animals reared in different visual environments become apparent. Extra work is
needed to see whether changes from 7 to 10 dpf in the WT are recapitulated in
the ER condition, and thus whether the WT condition is specifically deleterious
after a certain timepoint, due to alterations in the balance of molecular and
synaptic plasticity related forces determining neuronal connectivity [58]. The best
experiment would be to produce full developmental profiles for the DR and ER
conditions, and to examine more time-points between 3 and 10 dpf, in order to
find the first point at which divergence occurs between the different conditions.
This would establish at which point loss of DS and OS synapses in the tectum
occurs (and whether it occurs in ER animals as well as in WT), reveal whether a
reduction in topographic order is present in all rearing conditions, and establish
whether poorly-structured visual input in WT animals is damaging the visual system,
and at what point this becomes important.

5.4 Development of regional specialisation

Results in Chapter 3 suggested that over time, regions of the tectum have a biased
representation of DS against OS input. This is interesting, as the pooled density
of RGC axons within the tectum is broadly uniform [69]. Thus, presumably, the
density gradients of all types of RGC must sum to uniformity. As the areas of
DS and OS bias shown here are not reciprocal, there must be further regional
specialisation in other, as-yet unidentified, types of RGC. However, at 10 dpf, such
regional specialisation appears to be much reduced in the ER animals (Chapter 4).
As discussed before, the regional specialisation hinted at earlier may then be an
artefact of poorly-structured visual input, in a similar manner to the effects of visual
environment on topographic order.

At 7 dpf there is a region of very sparse DS andOS corresponding to the upper/nasal
visual field [52] and this is additionally present at 10 dpf in all conditions examined
here. One option, discussed earlier, is that the spectral properties of the current
visual presentation system are not compatible with the dominant photoreceptor
complement elsewhere. However, this area could have altered functional selectivity
in some other domain, and examining either whether regional differences in the
functional selectivity of the DS and OS RGCs innervating this area, or discovering
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which different RGCs are dominant, would require a larger stimulus set.

5.5 Most experimental zebrafish are visually deprived

ER animals have profoundly different organisation of RGC inputs to the tectum than
their WT counterparts, across many different measured parameters - most notably
their topographic precision (Chapter 4). Given the large effects of visual enrichment
on topographic properties from such a small manipulation as introducing gravel
in the lower portion of the visual field, it seems clear that not only are most
experimental zebrafish visually deprived relative to their counterparts in the real
world, but also that the organisation of their visual system is impacted as a result.

Recent, unpublished data indicate that the structure of spontaneous tectal activity
in ER animals also appears changed, with both individual neurons appearing more
active, and larger ensembles of coactive neurons at 7 dpf [Thomas Sainsbury,
personal communication/unpublished data]. Such changes in tectal neurons
must be a knock-on effect of altered retinal input, and mean that downstream
connectivity cannot compensate for the poorly-structured input provided by the
WT environment.

The ER manipulation presented herein almost certainly does not completely mimic
the rich visual environment which zebrafish in the wild likely experience, and thus
the map properties may well be further affected by an even more naturalistic
environment, including other fauna and flora.

5.6 What features do RGCs really encode?

One issue with the approach of this project is the simple stimulus set used. Using
only simple stimuli means that the functional identities assigned to the RGCs
examined might in fact be epiphenomena. In the real world, they might respond
to something entirely different, with the responses to grey, straight edges in fact
being an epiphenomenon. In fact, this is likely given that receptive fields could
be mapped using static sparse noise stimuli, while the criteria used to define the
functional types are based on motion.
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Secondly, the notion of using motion-encoding RGCs to study topographic maps
could be problematic due to their temporally-variant receptive fields [32]. Whether
the temporal components of their receptive fields might affect the location of their
centres is an open question, given that they encode motion - meaning that the
precise parameters of the stimuli used might bias results to some extent.

It is not currently known whether the OS RGCs identified previously [17, 37, 38,
52, 81, 108] and further explored here even encode motion - that is, whether they
respond similarly to static bars or gratings as they do to moving ones. There is
an obvious experiment to test this: to present both static and moving bars and
examine whether or not responses are equivalent, or whether it leads to further
subdivision of OS RGCs. This has not been performed. Additionally, further
characterisation of the spatiotemporal frequencies driving responses in both DS
and OS RGCs is required, particularly in light of the potential regional specialisation
observed.

Additionally, to date no study has attempted an unbiased clustering approach
similar to those used in the mouse retina [32]. It would be extremely interesting
to discover whether the 50+ types of RGC identified according to axo-dendritic
morphology [33] can be related to function.

An alternative step towards characterising the features that different RGCs encode
in the real world would be to use naturalistic stimuli. Such an approach has
been used extensively to recover receptive fields in the mammalian cortex (for
example, see Willmore et al., 2010 [36]). However, there are problems with using
naturalistic stimuli in conjunction with calcium imaging, given that the dynamics
of calcium indicators are much slower than the speeds at which movies of the
natural world vary, in conjunction with spatial and temporal correlations within the
natural images. Similar problems have been overcome in the past: presented
natural movies have been recovered from blood oxygen level-dependent (BOLD)
fMRI signals in the human brain [241], which are extremely limited in both spatial
and temporal resolution.
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5.7 The importance of topographic maps for vision

Overall, data are inconclusive about whether topographic maps are actually
refined or made more disordered by visual experience. There are two possible
interpretations of the data at 10 dpf, as discussed in Chapter 4. Either the WT
condition is specifically deleterious for map precision, and either removal of visual
input or addition of more complexity in the visual input leads to more precise maps,
or the presence of visual input increases the precision of DSmaps, and reduces it in
OS. Vital for disambiguating these possibilities would be full developmental profiles
of animals reared in both DR and ER conditions. Generally, the view that improved
visual input leads to improved map precision [145] appears to be validated either
way, and this weighs in favour of the hypothesis that maps could be used directly
in decoding the visual field. Additionally, it appears that the topographic precision
of the DS map is more affected than the OS by visual experience; an interesting
finding in its own right.

Nikolaou et al., 2015 [81] suggested that correct retinotectal connectivity can be
established without correct laminar targeting - could the same be true of the
topographic map? Such questions could easily be asked using a similar strategy
to that of Avitan et al., 2016 [146]: to ask whether non-topographic encoding
strategies such as linear decoders, and maximum likelihood estimation, function
as well in animals with altered topographic mapping (including comparisons with
the altered visual environments used herein).

The next step would be to use a behavioural paradigm that requires high visual
acuity, and to ask which decoding method best correlates with behavioural
performance across multiple experimental manipulations. How might this be
achieved? One option might be measurement of prey capture efficiency
[213]. Rearing animals in altered visual environments and examining behavioural
parameters is fraught with difficulties in interpretation (particularly setting lighting
levels during the experiments), so these should be complemented with experiments
in which genetic manipulations directly affect the organisation of the tectal
topographic map [69].

To conclude, this thesis has made some progress in deciphering how topographic
maps representing different visual features form and align, and the contribution
of visual experience to these processes. However, there are still open questions
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regarding the precise function of visual topography [1].
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Appendix A

A high-resolution, high-coverage
visual presentation system

A.1 Rationale

Many different systems have been used to present static images and/or videos to
zebrafish [37, 52, 174, 242]. The goals of such systems are to allow reproducible,
tightly-controlled stimuli to experimental animals, while recordings are made of the
neural activity of the animal. This places a number of constraints on such a system,
in that it must be robust, have minimal variation in its performance, and have a
certain degree of interaction with whatever recording technology is used so that
analysis can be automated as far as possible.

In order to maximise the amount of data obtained in each experiment, the
maximum possible amount of visual field should be covered during a presentation,
as functional properties can only be obtained for neurons whose receptive field
contains the screen. The most efficient way to cover maximal visual area would be
with a spherical screen. Although options using curved screens were examined,
current technology for this proved unworkable for the desired size and level of
curvature. An additional concern in this case was that the system must be easily
assembled and disassembled, given that the available microscope was shared
between many users. This microscope also had severe constraints on space,
limiting the size of the system that could be placed inside it.
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Projectors, which have been used extensively in previous systems, are not ideal for
a number of reasons. Their luminance is not uniform across the surface they project
onto. If they are used on curved surfaces, this creates additional nonuniformity in
their luminance, and their resolution is also nonuniform. A significant distance is
required between the projector and the screen. Finally, they take time to set up and
align with their screen, which would limit experimental time on a sharedmicroscope.

Based on these constraints, the chosen solution was a video wall, in which multiple
LCD screens facing the experimental subject approximate a curved surface while
providing as large as possible a viewing area. Here I show the development process
for a novel system, to present videos at high resolution, as well as demonstrating
the quality assurance processes during its design.

A.2 Overview & Software

Fortunately, an open source software library designed specifically for low-cost
video walls was already in existence (www.piwall.co.uk), allowing streaming of
movies via UDP [243] from a single “master” computer to multiple screens, each
driven by a single Rasperry Pi (RPi). This master/slave type design is well suited to
functional imaging experiments as it allows a single point of control for experiments,
and generation of metadata files. The data flow in this system can be seen in
fig. A.1A.

In addition to the 5 RPis driving screens, a sixth was used to generate
Transistor-Transistor Logic (TTL) pulses synchronised with movie presentation. This
utilised a customPython script, outputting TTLs according to when data comprising
streamed movie is received. Two channels of TTLs are sent from RPi6. On one
channel, an analog pin is set to ON at the beginning of the movie, switching OFF
after it has finished. The second channel switches its state when every 500th
UDP packet is received by RPi6, starting from the first packet. The microscope
is set up to record the timing of all rising and falling edges on voltages sent to
a TTL interface (in the case a NI-DAQ (Nikon)) directly into the acquired images as
metadata, allowing automated analysis when combined with metadata files created
by the “master” laptop when movies are streamed.
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Figure A.1: A Data flow in the visual presentation system. B Visual distortion resulting
from straight screens at a fixed distance from the fish, as pixels cannot be equidistant.
C The finished system in all its glory. D A movie of dark and light bars, corrected for
geometric distortions, and with bezel compensation in order to minimise discontinuities
across screens. Imaged using a “fisheye” lens under imperfect conditions.

205



A.2.1 Interface

Given that most analysis would subsequently be performed using MATLAB, the
whole system was ultimately driven by MATLAB, for easy compatibility of metadata
files. A single function was constructed which reads from lists of movies (for
example, “sparsenoise”), randomises their order and streams them to the RPis
with a specified inter-epoch interval. It additionally took as input details about the
fish - a unique identifier, the fish age, rearing conditions, with certain checks to
ensure validity of input information. All this information was then written into a
metadata file (named automatically based on the fish identifier and the number of
experiments already performed on that fish) which could be used in conjunction
with the microscope data for automated analysis. The timing of the movie starts
and ends can be calculated from TTL locations within the microscope output (see
appendix A.4.2), while themetadata specifies whichmovie is which, and the names
of the movies thus connected to changes in fluorescence occurring while they were
played.

A.2.2 Correcting for geometric distortion

The different points on a flat screen can never be equidistant from the viewing eye,
in either azimuth or elevation. Thus, each pixel on the screen occupies a slightly
different visual angle. The visual presentation system was designed such that the
vertical axis of the screen was ~110mm, while the horizontal radius of the ring was
~120mm. The whole screen occupies ~56° of visual space vertically. This means
that while a 1cm bar at the vertical centre of the screen would appear as 4.8°, the
same bar placed at the upper or lower extreme of the screen would occupy only 3.9°
(see fig. A.1B). The resolution of the screen is then between 0.057 and 0.072°/px
at the horizontal screen centres.

There is additional distortion along the horizontal axis, due to the imperfect
dovetailing of the screens - one side of each screen was further than the other
from the fish (see fig. A.1C). In order to remove the effects of the vertical and
horizontal distortion, visual presentations were transformed in order to retain
constant apparent sizes of the relevant features regardless of their location on the
screen and, where appropriate, continuity across screen boundaries (fig. A.5G).
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Figure A.2: The tank, showing pillars used to hold slides and fish in the centre

A.3 Design and construction of physical components

A.3.1 Tank

The tank in which the fish is mounted was constructed using a thin-walled,
cylindrical glass (Riedel H2O), chosen for minimal visual distortion of transmitted
light. 10mm×100mm glass test tubes (Kimble Chase) were cut to a length of 50mm,
and filled with epoxy resin (Scotch Weld), with the same magnet as on the slides
(Eclipse Magnetics N850S) inside one end.

In order to mount these pillars inside the tank, a retort stand held a prebuilt
microscope slide (see fig. A.3B) inside the tank, with the epoxy-filled test tubes
suspended via their magnets. The precise postion of the slide was measured and
corrected using callipers, to a precision of ~1mm. Premixed epoxy resin was then
poured into the surrounding space to a depth of ∼ 5mm and left to set for 24 hours.
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Figure A.3: A Jig used for construction of slides. The magnets are placed into the circular
recesses, with adhesive surface facing upwards, and a pre-cut glass slide is placed on top.
B The magnets remain in place, and a border is added using a hot-glue gun.

A.3.2 Microscope slides

Slides for mounting immobilised fish were constructed from glass microscope
slides (Thermo Scientific BS7011/2). These were trimmed to a length of 50mm
using a tungsten-carbide blade (Stanley), and 6mm self-adhesive magnets (Eclipse
Magnetics N850S) were mounted using a jig (see fig. A.3A) with a width of 38mm
between their centres. The slide was then removed from jig and a border added
using a hot-glue-gun, providing a rough surface for setting agarose to adhere to,
as well as ensuring the magnets do not fall off when their self-adhesive coating
is immersed in water. The magnets facilitate placing the fish in precisely the
same location within the system using complementary magnets in the tank itself.
Removing and replacing fish within the tank is a difficult task, particularly within
the confined environs of a microscope interior, and this magnetic system makes
changing experimental animals far easier than the removal and replacement of the
tank between animals.

A.3.3 Housing for screens and tank

In order to ensure correct placement of screens relative to the fish, a housing
was built to both elevate the tank holding the fish, and to hold all screens in
place. Components were designed using www.tinkercad.com and printed using
a Makerbot Replicator 2X (Makerbot) in black ABS (Makerbot). The enclosure was
designed such that the system (fig. A.1C) is easily disassembled into a group of 2
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Figure A.4: A The 5 RPis which drive video wall screens, in housing and with all cables
connected. B RPi6, with modified housing, and BNC cables connected.

screens, a group of 3 screens, and the holder for the tank.

A.3.4 Housing for Raspberry Pis

The 5 RPis which drove screens were mounted in a custom “stack”
enclosure, printed using a Makerbot Replicator 2X (Makerbot) in black ABS
(Makerbot), see (fig. A.4A). This facilitates debugging, during experimental
setup as it provides easy access to the largest number of fallible cable
connections in one location. The design was stolen, shamelessly, from
https://www.thingiverse.com/thing:664343.

The RPi used for TTL transmission was mounted in a Rasperry Pi Official Case,
modified to accommodate the Pi-EzConnect hat (Adafruit) which allows solder-free
wire access to the analog output pins (fig. A.4B).

A.3.5 Electrical components

RPis were the Raspberry Pi 2 Model B (Raspberry Pi). Screens were Makibes 5”
Touch Screen HDMI Monitor Model B, which are 480×800px.

Power was provided to the screens and RPis separately via 2×PowerPort 10 (Anker),
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with a micro-usb cable powering each unit.

The router for data streaming was a DSR-250N (D-Link). All streaming was via wired
ethernet (rather than wireless) ports to minimise dropouts.

A.4 Quality control and assurance

Such a system inevitably has undesirable characteristics, particularly given the
low-cost nature of the components used. Here the exact procedures used to
quantify and correct for such issues are documented:

A.4.1 Compensation for differences in screen brightness

Early on, it was noticed that the 5 screens being used were of different luminance,
despite their uniform provenance. It was decided that the best way to account for
this eccentricity was via lookup tables (LUTs) applied to movies when they were
generated, and to always use the same screens.

As LCD screens effectively have separate coloured pixels for each whole pixel, the
brightnesses in the colour channels of each pixel sum linearly. This means that
matching the brightnesses of each colour channel across all screens also entails
matching of grey-tones and brightnesses of these greys. Movies were created to
step the brightness of the colour at 1AU/s on an 8bit scale. The luminance emitted
from the screen was recorded using an Opti-CAL OP200E (Camrbidge Research
Systems). The luminance resulting from linear increase in defined brightness was
asymmetrically sigmoidal across all screens and colours (see fig. A.5A-E).

LUTs were created such that an 8bit input would produce linearly variable
luminance, peaking at the maximum brightness of the dimmest screen (the central
one, fig. A.5C) . Although this results in a loss of dynamic range across the other
screens, it ensures uniform luminance while removing the potential for clipping
artefacts.
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Figure A.5: A-E Sigmoidal curves of brightness against luminance for the R, G and B
channels of the five screens used in the final system, used to correct movies. F Desired
appearance of a frame from a sparse noise movie (see section 3.2.2). G Rendered version
of the same frame, after applying compensation for geometric distortion and luminance
eccentricity. This will appear similar to F when presented on the system.

211



A.4.2 Movie start and end timings

In order to allow the storage of movie timing information into the images on the
microscope, RPi6 was used to convert information about movie streaming into
Transistor-Transistor Logic pulses (TTLs). This was achieved using a customPython
script, which monitors the data being streamed through the router and, depending
on the amount and nature of such data, turns the RPi analog outputs on or off. Two
channels of TTLs are sent from RPi6. On one channel, one analog pin is set to ON at
the beginning of the movie, switching OFF after it has finished. The second channel
switches its state when every 500th UDP packet is received by RPi6, starting from
the first.

There could be a number of sources of timing differences between microscope
receiving/recording TTLs, and the actual luminance changes on the screens. For
example, although all Raspberry Pis receive video data simultaneously, the latency
of the video player software on RPis 1-5 is likely to be different from that of
the Python script driving the TTL output on RPi6. Additionally there could be
a systematic difference introduced by the Nikon Elements software recording
imaging data and the TTLs.

The differential latency was calculated by using a sequence of movies with first
frames of radically different brightness than the last frame of the previous one,
driving sharp transitions in brightness at each movie start. One of the screens was
placed directly under the microscope objective, and scanned with no laser power
at ∼ 31Hz, while recording TTLs. This approach does not allow separation of the
different sources of temporal error: it only facilitates calculation of the overall error
introduced over the whole signal path.

For each frame (examples in fig. A.6A), the mean luminance was calculated.
Calculating the pseudo-derivative of the mean recorded brightness allowed the
extraction of peaks representing the actual start times of the movies (fig. A.6B).
Other peaks represent changes of luminance for the scanned area during the movie
- themovement of bars past the area being scanned (see section 3.2.2). The latency
for movie starts (fig. A.6C) was calculated from the difference between the recorded
TTL time and the next frame with a change in luminance above the threshold. The
overall mean latency for movie start was found to be 22ms, with no association
found between the movie shown and the latency (data not shown). Although this
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value is arguably negligible given that recording a frame on the microscope takes
~32ms, this quality control step was vital: latency could easily have been on the
order of seconds.

In order to calculate movie endpoints, the second channel of TTLs was used. The
UDP streaming protocol[243] sends data packets of a uniform size (1433 bytes
measured, data not shown). This information, in conjunction with the sizes of the
streamed movie files, was used to calculate the endpoints of movies, as there were
possibilities of drift in streaming speed. The upper bound for the movie end is
set by the “end” movie TTL, but the true endpoint is better estimated via linear
interpolation of the “packet” UDP TTLs to find the time at which the presentation
ended fig. A.6D. This procedure was applied after correction of all TTL timings by
the 22ms described above.
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Figure A.6: A Example images of low (left) and high (right) luminance frames on a screen,
recorded using the same microscope used for functional imaging. B.Example trace of the
pseudo-derivative frommean luminance traces over images such as inA, with the threshold
for “large” change in luminance (representing movie starts) and TTLs marked. C.Histogram
of calculated latencies between TTL and movie start. µ = 20ms D. An example plot from
a real experiment, demonstrating how end-point is determined automatically from the TTL
timestamps, in conjunction with metadata about the size of the presented movie.
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A.5 Discussion

Here the design and construction of a new visual presentation, built at extremely
low cost, has been described. Although every project has specific needs and
considerations, they often persist, making such a procedure worth examination.
For example, the TTL latency is microscope-specific, but the method used to
calculate and compensate for it is general. In summary, I built a thing. It does
stuff, and after a substantial amount of work, I’m pretty sure it is the right stuff.
Basically I’m no stupider than anyone else who shows movies to fish, as I often
worry.
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Appendix B

Topographic maps: conceptually
easy, practically hard
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Abstract	  
	  
The	  neurons	  in	  sensory	  epithelia	  (such	  as	  the	  retina)	  project	  to	  brain	  areas	  in	  
such	  a	  way	  that	  neighbouring	  cell	  bodies	  within	  the	  epithelium	  produce	  
neighbouring	  axonal	  arbours	  within	  retinorecipient	  brain	  areas.	  Such	  
organisation	  is	  an	  example	  of	  topography:	  two	  spaces	  with	  neighbouring	  points	  
in	  one	  space	  project	  to	  neighbours	  in	  the	  other.	  	  Such	  maps	  are	  widespread	  in	  
nervous	  systems.	  
	  
There	  are	  two	  problems	  concerning	  the	  detection	  and	  quantification	  of	  these	  
maps.	  Firstly,	  the	  maps	  measured	  in	  vivo	  are	  often	  too	  complex	  to	  visualise,	  
making	  qualitative	  judgments	  impossible.	  Secondly,	  brain	  areas	  usually	  have	  
distortions	  at	  the	  meso/macro	  scales	  relative	  to	  the	  sensory	  epithelia	  so	  
quantifying	  topography	  is	  difficult.	  Thus,	  the	  aim	  of	  the	  project	  was	  to	  develop	  a	  
generalisable	  metric	  that	  could	  (a)	  detect	  the	  presence	  of	  topographic	  order,	  
with	  statistical	  confidence	  (b)	  estimate	  the	  precision	  of	  that	  order.	  
	  
Here	  I	  explore	  the	  topographic	  product,	  a	  graph-‐theory	  based	  metric	  for	  
topography,	  and	  apply	  it	  to	  model	  data	  based	  on	  visual-‐to-‐tectal	  maps.	  I	  have	  
shown	  that	  this	  metric	  is	  resistant	  but	  not	  impervious	  to	  map	  shape,	  and	  that	  via	  
a	  novel	  normalisation	  treatment	  the	  output	  is	  improved.	  	  Finally	  I	  show	  that	  
when	  applied	  to	  data	  modelling	  multiple	  independent	  experimental	  subjects,	  it	  
can	  recover	  true	  map	  precision	  unless	  maps	  across	  subjects	  are	  shifted	  relative	  
to	  each	  other.	  Under	  such	  conditions	  I	  have	  developed	  a	  means	  of	  quantifying	  
such	  inter-‐subject	  jitter.	  
	  
Using	  a	  dataset	  derived	  from	  functional	  imaging	  of	  zebrafish	  retinal	  ganglion	  
cells,	  I	  have	  demonstrated	  the	  utility	  of	  the	  topographic	  product	  in	  detecting	  
topographic	  maps	  with	  statistical	  confidence;	  the	  precision	  of	  the	  tectal	  map;	  and	  
inter-‐subject	  variability.	  



Introduction	  
	  
Topographic	  maps	  are	  present	  throughout	  the	  brains	  of	  many	  species.	  For	  
example,	  neurons	  that	  are	  adjacent	  in	  the	  retina	  project	  their	  axons	  to	  adjacent	  
spaces	  in	  retinorecipient	  brain	  areas	  such	  as	  the	  tectum	  in	  zebrafish.	  This	  means	  
that	  these	  areas	  of	  the	  brain	  have	  topographic	  maps	  of	  retinal	  space.	  	  
	  
While	  there	  has	  been	  much	  research	  into	  the	  processes	  by	  which	  these	  maps	  
form	  (for	  example,	  molecular	  guidance	  cues	  and	  neuronal	  activity	  patterns	  
required1),	  their	  actual	  purpose	  is	  far	  harder	  to	  examine.	  Given	  that	  topographic	  
maps	  are	  a	  recurrent	  feature	  of	  visual	  processing,	  if	  we	  are	  to	  understand	  this	  
system	  we	  must	  also	  have	  an	  appreciation	  of	  the	  extent	  that	  topography	  
contributes	  to	  it.	  
	  
This	  necessitates	  a	  robust	  and	  quantitative	  metric	  for	  topography.	  The	  aim	  of	  
this	  project	  was	  to	  research,	  develop	  and	  test	  a	  generalisable	  metric,	  capable	  of	  
detecting	  topographic	  order	  with	  an	  estimate	  of	  statistical	  confidence.	  
Additionally,	  this	  metric	  should	  provide	  estimates	  of	  map	  precision.	  
	  
The	  Lowe	  lab	  currently	  uses	  an	  in-‐house	  metric	  for	  topographic	  order,	  the	  scaled	  
cosine	  of	  similarity	  (CoS).	  This	  metric	  scales	  the	  cosine	  of	  the	  angle	  between	  
paired	  points	  by	  the	  ratio	  of	  their	  lengths	  such	  that	  a	  value	  of	  1	  represents	  
perfect	  order;	  zero	  is	  orthogonal	  and	  -‐1	  the	  points	  are	  inverted.	  Using	  all	  pair-‐
wise	  comparisons,	  a	  distribution	  of	  scaled	  CoS	  against	  the	  distance	  between	  each	  
pair	  of	  points	  is	  derived.	  Binning	  this	  data	  and	  finding	  the	  maximum	  value	  
toward	  which	  it	  tends	  provides	  an	  estimate	  of	  order.	  
	  
Using	  very	  simple	  maps	  I	  have	  produced	  an	  example	  of	  the	  scaled	  CoS	  -‐	  when	  the	  
maps	  are	  identical	  grids,	  with	  noise	  applied	  independently	  (fig.	  1A),	  the	  
maximum	  order	  approaches	  1	  (fig.	  1B).	  However,	  when	  a	  simple	  45°	  rotation	  is	  
applied	  to	  one	  of	  the	  maps	  (fig.	  1C),	  the	  maximum	  detected	  order	  drops	  sharply	  
(fig.	  1D),	  even	  though	  all	  nearest-‐neighbour	  relations	  are	  obviously	  conserved.	  
Although	  this	  can	  be	  overcome	  by	  using	  a	  series	  of	  transformations	  to	  align	  the	  
maps,	  this	  is	  computationally	  intensive	  and	  not	  trivial	  when	  distorted	  maps	  are	  
compared.	  
	  
This	  problem	  illustrates	  one	  of	  the	  difficulties	  in	  quantifying	  topography:	  any	  
metric	  must	  simultaneously	  take	  account	  of	  global	  order	  and	  be	  resistant	  to	  
differences	  in	  shape,	  size	  or	  orientation.	  These	  global	  shape	  differences,	  found	  in	  
vivo,	  alter	  neighbour	  relations	  at	  the	  macroscopic	  scale.	  
	  



	  
The	  topographic	  product	  (TP)	  was	  originally	  developed	  to	  analyse	  chaotic	  
attractors	  in	  nonlinear	  dynamics2,	  but	  was	  later	  implemented	  for	  assessing	  
dimensionality	  mismatches	  in	  feature	  maps3,	  like	  orientation	  pinwheels	  found	  in	  
the	  mammalian	  cortex	  and	  bat	  tonotopic	  maps4.	  It	  was	  more	  recently	  used	  in	  a	  
study	  which	  assessed	  the	  statistical	  power	  of	  a	  number	  of	  metrics	  for	  detecting	  
(but	  not	  quantifying)	  topography,	  at	  which	  it	  was	  found	  to	  be	  successful5.	  
Although	  complex	  and	  non-‐intuitive,	  it	  is	  based	  on	  principles	  of	  graph	  theory,	  
and	  is	  concerned	  with	  comparing	  neighbour	  identities	  of	  each	  point	  between	  the	  
maps,	  on	  microscopic	  and	  macroscopic	  scales.	  I	  chose	  to	  investigate	  it	  for	  this	  
reason.	  
	  
Topography	  can	  be	  modelled	  with	  sets	  of	  coordinates	  in	  two	  spaces.	  Here	  I	  
exploit	  this	  approach	  to	  create	  maps	  inspired	  by	  zebrafish	  visuotectal	  maps.	  The	  
model	  maps	  have	  defined	  topographic	  properties	  and	  known	  levels	  of	  disorder,	  
and	  thus	  have	  been	  used	  to	  assess	  empirically	  the	  behaviour	  of	  the	  topographic	  
product.	  Finally,	  I	  apply	  it	  to	  a	  real	  dataset	  derived	  from	  functional	  imaging	  of	  
zebrafish	  tecta.	  
	  

	  
Figure	   1.	   Scaled	   cosine	   of	   similarity	   cannot	   reliably	   detect	   the	   degree	   of	  
topographic	  order	   in	  maps	  of	  altered	  orientation.	   (A)	  A	  pair	  of	  maps	  generated	  by	  
adding	  noise	  independently	   to	  two	  grids.	  Same-‐coloured	  points	  across	  maps	  represent	  
matched	  pairs	  (B)	  the	  scaled	  cosine	  of	  similarity	  reaches	  a	  maximum	  of	  almost	  1	  (almost	  
perfect	  order).	  (C)	  A	  similar	  pair	  of	  maps,	  but	  with	  one	  rotated	  45°.	  (D)	  In	  this	  case,	  the	  
scaled	   cosine	   of	   similarity	   gives	   a	   much	   lower	   value	   of	   maximum	   order,	   despite	  
neighbour	  relations	  being	  conserved	  analogously	  to	  (A).	  



Methods	  
	  
All	  modelling	  and	  analysis	  performed	  using	  Matlab.	  	  

The	  topographic	  product	  in	  theory	  
	  
The	  formulae	  for	  the	  topographic	  product	  attempts	  to	  provide	  an	  estimate	  of	  
order	  across	  all	  scales	  of	  the	  map.	  It	  achieves	  this	  by	  examining	  the	  ratio	  of	  
distances	  in	  each	  space	  (visual	  or	  tectal)	  for	  all	  pairs	  of	  points	  representing	  the	  
map.	  In	  contrast	  to	  similar	  metrics,	  pairs	  of	  points	  are	  ordered	  by	  ranked	  
distance	  rather	  than	  absolute	  distance.	  It	  is	  the	  ranking	  of	  relative	  distance	  that	  
confers	  its	  purported	  resistance	  to	  map	  shape	  and	  has	  its	  roots	  in	  graph	  theory3.	  
	  
Given	  visual	  and	  tectal	  spaces	  V	  and	  T,	  with	  N	  matched-‐points	  sampling	  both	  
spaces.	  There	  is	  notation	  for	  specifying	  neighbourhood	  relations,	  where	  𝑛!!(𝑗)	  
represents	  the	  point	  j’s	  nearest	  other	  point,	  in	  space	  V.	  Then,	  let	  𝑛!!(𝑗)	  refer	  to	  j’s	  
kth	  nearest	  point	  in	  V.	  Corresponding	  notation	  applies	  to	  space	  T.	  
	  
Let	  𝑑! … ,…   equal	  the	  distance	  between	  any	  two	  points	  in	  space	  V,	  with	  
corresponding	  notation	  in	  space	  T.	  Then,	  𝑑! 𝑗,𝑛!!(𝑗)   refers	  to	  the	  distance,	  
measured	  in	  V	  space,	  between	  j	  and	  its	  kth	  nearest	  neighbour	  in	  T	  space.	  Two	  
sets	  of	  distance	  ratios	  are	  defined:	  
	   	  

𝑄!(𝑗, 𝑘) =
𝑑!(𝑗,𝑛!! 𝑗 )
𝑑!(𝑗,𝑛!! 𝑗 )

	  

	  

(1)	  

	   	  

𝑄!(𝑗, 𝑘) =
𝑑!(𝑗,𝑛!! 𝑗 )
𝑑!(𝑗,𝑛!! 𝑗 )

	  

	  

(2)	  

Q1	  represents	  the	  ratio	  of	  distances	  in	  visual	  space	  of	  j	  and	  its	  kth	  nearest	  point	  in	  
T	  relative	  to	  its	  kth	  nearest	  point	  in	  visual	  space.	  	  Q2	  represents	  the	  ratio	  of	  the	  
distances	  between	  the	  same	  pair	  of	  points,	  but	  measured	  in	  T	  space.	  These	  two	  
ratios	  are	  combined	  to	  produce	  a	  value,	  P3,	  which	  defines	  the	  level	  of	  neighbour	  
conservation	  for	  each	  point	  and	  neighbourhood	  size	  (up-‐to-‐the	  kth	  nearest	  
neighbour	  of	  each	  point):	  
	   	  

𝑃! 𝑗, 𝑘 =    𝑄!(𝑗, 𝑙)𝑄!(𝑗, 𝑙)
!

!!!

!
!!

	  

	  

(3)	  

Finally,	  the	  natural	  logarithm	  is	  taken	  of	  P3,	  then	  it	  is	  made	  positive	  as	  in	  4	  
(facilitating	  calculation	  of	  p-‐values).	  The	  mean	  is	  taken	  across	  all	  points	  and	  
neighbourhood	  sizes	  to	  give	  the	  final	  output,	  PT:	  
	  



	  
𝑃! =

1
𝑁 𝑁 − 1 ln  𝑃!(𝑗, 𝑘)

!!!

!!!

!

!!!

	   (4)	  

	  
The	  minimum	  value	  this	  can	  take	  is	  0,	  representing	  perfect	  order	  across	  all	  
scales.	  

Computational	  models	  of	  visual-‐to-‐tectal	  maps	  
	  
Visual	  space	  was	  modelled	  using	  120-‐by-‐90°	  spaces,	  with	  5°	  between	  points.	  The	  
tectum	  was	  modelled	  using	  a	  biaxial	  quadratic	  transformation	  of	  the	  grid	  (fig.	  
2B),	  derived	  from	  estimates	  of	  tectal	  map	  curvature	  by	  the	  Lowe	  lab.	  Points	  were	  
randomly	  displaced	  in	  both	  dimensions	  according	  to	  a	  normal	  distribution	  with	  
mean	  =	  0	  and	  a	  defined	  SD.	  In	  visual	  space,	  the	  SD	  was	  0.83°	  in	  all	  cases	  (fig.	  2A),	  
whilst	  tectal	  maps	  had	  varying	  degrees	  of	  noise	  added(for	  example,	  fig.	  2C).	  
These	  maps	  were	  used	  to	  examine	  the	  relationship	  between	  varying	  degrees	  of	  
map	  disorder	  and	  the	  TP.	  	  
	  

We	  can	  create	  random	  permutations	  of	  these	  maps,	  in	  which	  each	  point	  in	  the	  
tectum	  is	  randomly	  reassigned	  a	  matched-‐point	  in	  visual	  space	  (fig.	  2D).	  There	  
are	  N!	  different	  shuffled	  versions	  of	  a	  map,	  of	  which	  only	  very	  few	  will	  have	  
order	  –	  meaning	  that	  if	  a	  map	  is	  ordered,	  any	  individual	  shuffled	  version	  is	  likely	  

	  
Figure	  2.	  The	  topographic	  product	  exhibits	  a	  linear	  relationship	  with	  added	  map	  
noise.	   (A)	   Visual	   space	   (B)	   Tectal	   space	  with	   no	   noise.	   Colours	   represent	  matched-‐
pairs	  with	  those	  in	  visual	  space.	  (C)	  Tectal	  space	  with	  noise	  added	  (D)	  Shuffled	  version	  
of	  (C).	  (E)	  PT	  estimated	  for	  each	  map	  pair	  and	  the	  shuffled	  pair	  for	  increasing	  degrees	  
of	  added	  noise	  (F)	  Normalising	   the	  noise	  applied	  to	   the	  square	   root	  of	   the	  map	  area	  
simplifies	  the	  curve,	  and	  compresses	  maximum	  disorder	  into	  a	  cloud.	  Shuffled	  PTs	  are	  
the	  mean	  of	  Nshuf	  =	  1000.	  
	  



to	  be	  less	  ordered.	  Nshuf	  refers	  to	  the	  number	  of	  shuffles	  performed	  for	  each	  
“true”	  map.	  

Relationship	  between	  topographic	  product	  and	  map	  disorder	  
	  
To	  understand	  how	  the	  TP	  operates	  for	  different	  map	  conditions	  it	  was	  first	  
necessary	  to	  examine	  the	  relationship	  between	  the	  TP	  and	  map	  disorder.	  An	  
initial	  experiment	  kept	  noise	  in	  the	  artificial	  visual	  scene	  constant,	  while	  varying	  
the	  amount	  of	  noise	  in	  the	  artificial	  tectum.	  The	  true	  and	  shuffled	  PTs	  were	  then	  
calculated	  and	  reported	  as	  a	  function	  of	  the	  noise	  introduced	  (fig.	  2E).	  This	  
shows	  that	  as	  the	  noise	  within	  tectal	  maps	  increases,	  so	  does	  PT.	  However,	  the	  
curve	  is	  complex.	  Additionally,	  the	  PT	  of	  shuffled	  maps	  increases	  with	  noise,	  
implying	  that	  the	  shape	  of	  the	  map	  does	  contribute	  to	  PT,	  as	  applying	  noise	  
progressively	  degrades	  whatever	  shape	  the	  map	  starts	  with,	  turning	  it	  into	  a	  
circle.	  
	  
The	  point	  at	  which	  true	  PT	  reaches	  a	  plateau	  can	  be	  regarded	  as	  the	  point	  at	  
which	  all	  order	  has	  been	  destroyed	  by	  noise	  (maximum	  disorder),	  although	  this	  
plateau	  itself	  has	  a	  high	  variance.	  A	  corollary	  of	  this	  is	  that	  as	  the	  plateau	  is	  
reached,	  the	  true	  PTs	  and	  shuffled	  PTs	  converge:	  the	  true	  map	  is	  as	  disordered	  as	  
the	  average	  of	  many	  random	  permutations.	  
	  
However,	  the	  application	  of	  noise	  alters	  the	  size	  of	  the	  map;	  in	  fig.	  2F,	  the	  
standard	  deviation	  was	  normalised	  to	  the	  square	  root	  area	  of	  the	  artificial	  
tectum	  (calculated	  by	  Delaunay	  triangulation6):	  
	  
	   𝐴𝑟𝑒𝑎-‐𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑  𝑆𝐷 =

𝑆𝐷
𝐴𝑟𝑒𝑎

	   (5)	  

	  
This	  has	  two	  main	  effects.	  Firstly,	  it	  simplifies	  the	  relationship	  between	  noise	  
and	  PT.	  Secondly,	  the	  plateau	  of	  maximum	  disorder	  is	  converted	  to	  a	  cloud.	  At	  the	  
point	  of	  maximum	  disorder,	  increasing	  the	  SD	  of	  the	  noise	  linearly	  increases	  the	  
square	  root	  of	  the	  area,	  so	  the	  area-‐normalised	  standard	  deviation	  (ANSD)	  stays	  
the	  same.	  	  
	  
In	  terms	  of	  fitting	  curves	  to	  these	  data	  so	  that	  the	  PT	  	  of	  a	  real	  map	  pair	  can	  be	  
converted	  into	  an	  estimate	  of	  disorder,	  the	  points	  appear	  to	  approximate	  a	  linear	  
relationship,	  with	  a	  levelling-‐off	  near	  zero	  noise.	  This	  can	  be	  approximated	  with	  
the	  sum	  of	  a	  linear	  fit	  and	  an	  exponential	  decay,	  of	  the	  form:	  
	  
	   𝑦 = 𝐴𝑒!!" + 𝑏𝑥	   (6)	  
	  
The	  precision	  of	  a	  map	  can	  be	  defined	  as	  the	  smallest	  distance	  at	  which	  
topographic	  order	  can	  be	  observed,	  which	  will	  be	  proportional	  to	  the	  noise	  in	  the	  
map.	  
	  
	  



Calculating	  p-‐values	  
	  
To	  estimate	  whether	  any	  given	  map	  pair	  have	  topographic	  order,	  p-‐values	  can	  be	  
computed	  using	  many	  shuffled	  maps4	  (see	  fig.	  2D).	  PT	  is	  calculated	  for	  a	  large	  
number	  of	  shuffles	  (Nshuf),	  and	  the	  number	  of	  these	  for	  which	  shuffled	  PT	  <	  true	  
PT	  is	  calculated	  (the	  number	  of	  shuffles	  for	  which	  the	  shuffled	  map	  appears	  more	  
ordered	  than	  the	  real	  one,	  Nbetter).	  
	  
	   𝑝 =   

𝑁!"##"$ + 1
𝑁!!!"   + 1

	   (7)	  

	  
This	  gives	  us	  the	  probability	  that	  the	  true	  map	  is	  more	  ordered	  than	  would	  be	  
expected	  by	  chance.	  

Multi-‐subject	  analysis	  
	  
For	  analyses	  involving	  multiple	  subjects,	  points	  from	  all	  subjects	  were	  combined	  
into	  a	  single	  map.	  These	  maps	  were	  then	  subsampled,	  taking	  432	  randomly	  
selected	  points	  (to	  produce	  a	  “composite”).	  The	  normPT	  (see	  Results)	  was	  
calculated	  for	  each	  composite,	  with	  Nshuf=1.	  P-‐values	  calculated	  using	  combined	  
data	  from	  many	  subjects	  in	  the	  manner	  described	  above	  find	  Nbetter	  by	  comparing	  
the	  shuffled	  PT	  s	  compared	  to	  the	  mean	  PT	  	  from	  all	  composites.	  

Results	  

The	  topographic	  product	  is	  resistant	  to	  differences	  in	  map	  shape	  
	  
To	  verify	  whether	  the	  topographic	  product	  is	  sensitive	  to	  transformations	  of	  one	  
of	  the	  maps,	  the	  artificial	  tectum	  was	  transformed	  in	  7	  different	  ways.	  4	  shape-‐
preserving:	  a	  translation,	  rotation,	  reflection,	  expansion	  (fig.	  3C,E,G,I),	  and	  3	  
shape-‐altering:	  unidirectional	  stretch,	  altering	  the	  amount	  of	  curvature,	  and	  all	  of	  
the	  above	  applied	  simultaneously.	  (fig.	  3K,M,O).	  The	  shape-‐preserving	  
transformations	  have	  no	  noticeable	  effect	  on	  PT	  or	  shuffled	  PT	  	  (fig.	  3B,D,F,H,J,Q),	  
meaning	  that	  it	  is	  instantly	  an	  improvement	  on	  the	  scaled	  CoS.	  

Normalising	  PT	  improves	  shape	  resistance	  
	  
Differences	  to	  true	  PT	  	  and	  shuffled	  PT	  appear	  to	  be	  somewhat	  correlated	  (fig.	  
3Q):	  a	  transformation	  increasing	  true	  PT	  appears	  to	  at	  least	  affect	  shuffled	  PT	  in	  
the	  same	  direction.	  Thus,	  I	  hypothesised	  that	  taking	  the	  ratio	  of	  PTs	  between	  real	  
and	  shuffled	  maps	  would	  give	  a	  more	  uniform	  measure	  of	  map	  disorder.	  As	  both	  
PT	  	  and	  shuffled	  PT	  vary	  with	  the	  shape	  of	  the	  map	  and	  the	  ratio	  then	  removes	  the	  
effect	  of	  map	  shape	  –	  within	  and	  across	  transformations.	  
	  
Indeed,	  normalising	  true	  PT	  to	  shuffled	  PT	  appears	  to	  reduce	  the	  variance	  of	  PTs	  
across	  maps	  of	  different	  shapes	  (fig.	  4A).	  This	  is	  validated	  in	  that	  the	  coefficient	  
of	  variance	  is	  smaller	  at	  all	  values	  of	  ANSD	  (fig.	  4B).	  Indeed,	  curve	  fits	  using	  this	  
data	  (equation	  6)	  produce	  smaller	  confidence	  intervals	  for	  their	  parameters,	  



giving	  better	  predictions	  of	  map	  disorder	  from	  the	  normalised	  PT	  (normPT)	  (fig.	  
4C-‐D).	  
	  

	  

Figure	  3.	  The	  topographic	  product	  is	  
resistant	   to	   differences	   in	   shape.	  
(A,C,E,G,I,K,M,O)	   Example	  
transformations	   applied	   to	   artificial	  
tecta	   prior	   to	   the	   addition	   of	   noise.	  
(B,D,F,H,J,L,N,P)	   Profiles	   of	   true	   and	  
shuffled	   PT	   with	   variable	   amounts	   of	  
noise	   applied	   to	   artificial	   tecta	  
transformed	   like	   the	   corresponding	  
image,	  and	  constant	  noise	  in	  grid	  (as	  in	  
fig.	   2A).	   (Q)	   Overlay	   of	   previous	  
graphs.	   The	   true	   and	   shuffled	  PT	   have	  
roughly	   the	   same	   profiles	   when	  
transformations	   are	   applied	   prior	   to	  
noise.	  Nshuf	  =	  1000	  in	  all	  cases.	  



Topographic	  product	  applied	  to	  maps	  from	  many	  artificial	  map	  pairs	  
	  
The	  models	  examined	  so	  far	  are	  somewhat	  artificial	  in	  that	  they	  give	  even	  
coverage	  of	  the	  two	  spaces	  and	  have	  large	  numbers	  of	  points.	  For	  real	  datasets,	  a	  
single	  experimental	  subject	  might	  only	  yield	  a	  few	  points,	  which	  can	  then	  be	  
combined	  into	  a	  single	  map	  pair.	  
	  
This	  means	  that	  it	  is	  worthwhile	  to	  model	  how	  normPT	  is	  affected	  by	  the	  pooling	  
of	  data	  from	  multiple	  map	  pairs,	  each	  with	  few	  points.	  	  

Multi-‐subject	  analysis	  of	  sparsely-‐sampled	  data	  can	  improve	  resolving	  power	  
	  
Fig.	  5A	  demonstrates	  the	  strategy	  used	  to	  test	  multisubject	  analysis.	  Artificial	  
maps	  were	  generated	  as	  before,	  and	  12	  evenly	  spaced	  points	  were	  selected	  from	  
visual	  space,	  along	  with	  their	  tectal	  partners.	  	  
	  

	  
Figure	   4.	   Normalising	   PT	   to	   shuffled	   PT	   improves	   resistance	   to	   shape	   change.	   (A)	  
overlaid	  curves	   for	  normPT,	  using	  the	  same	  data	  as	   figure	  3,	  appear	  closer	  together.	  (B)	  
The	   coefficient	   of	   variation	   is	   lower	   for	   normPT	   at	   all	   values	   of	   noise	   added	   (calculated	  
separately	  for	  each	  of	  50	  bins).	  (C-‐D)	  Curve	  fits	  for	  both	  PT	  and	  normPT,	  with	  confidence	  
intervals.	  These	  are	  much	  smaller	  in	  (D).	  



Calculating	  normPT	  for	  sparsely	  sampled	  maps	  individually	  and	  taking	  the	  mean	  
gives	  a	  higher	  value	  of	  normPT	  than	  when	  densely	  sampled	  maps	  are	  used,	  
meaning	  that	  the	  ability	  of	  the	  metric	  to	  resolve	  precision	  is	  impaired	  (fig.	  5B).	  
	  
However,	  recombining	  the	  points	  of	  these	  sparsely	  sampled	  maps	  for	  
multisubject	  analysis	  allows	  us	  to	  regain	  the	  same	  resolving	  power,	  lowering	  the	  
normPT	  values	  to	  those	  of	  the	  densely-‐sampled	  maps	  (fig.	  5B).	  

	  
	  

Figure	   5.	   NormPT	  
applied	   to	   data	   from	  
multiple	  artificial	  maps	  
with	   few	   points	   each.	  
(A)	  sampling	  strategy	  for	  
choosing	   12	   points	   from	  
each	   original	   artificial	  
map	   (B)	   Red:	   	   mean	  
normPT	  from	  50	  artificial	  
map	   pairs	   with	   432	  
points,	   	   Nshuf	   =	   1000.	  
Green:	   mean	   normPT	  
from	   50	   artificial	   maps,	  
each	  with	  12	  points,	  Nshuf	  
=	   1000.	   Black:	   multi-‐
subject	   	   mean	   normPT	  
from	   the	   same	   50	   12-‐
point	  artificial	  map	  pairs	  
for	   each	   noise	   value.	  
New	   composites	   were	  
generated	   for	  each	  value	  
of	   noise	   until	   the	   mean	  
changed	   by	   <0.1%.	   Nshuf	  
=	  1	  per	  composite.	  (C)	  As	  
(B),	   but	   with	   a	   random	  
offset	  in	  x	  and	  y	  of	  SD	  2.5	  
applied	   to	   all	   artificial	  
tecta.	  



	  

Multi-‐subject	  analysis	  is	  vulnerable	  to	  jitter	  
	  
Randomly	  displacing	  all	  of	  the	  points	  in	  a	  tectal	  map	  by	  a	  randomly	  determined	  
small	  amount	  (“jittering”	  the	  maps)	  models	  inter-‐subject	  variation	  in	  the	  
position	  of	  the	  maps.	  Fig.	  5C	  was	  generated	  by	  generating	  jitter	  with	  an	  SD	  of	  2.5.	  
This	  has	  no	  effect	  on	  the	  data	  from	  single	  subjects	  (to	  be	  expected,	  fig.	  3C-‐D).	  
	  
However,	  with	  multisubject	  analysis,	  the	  estimate	  of	  precision	  is	  poor	  at	  low	  
levels	  of	  disorder	  (fig.	  5C).	  This	  can	  be	  explained	  by	  the	  process	  of	  recombining	  
points;	  as	  points	  are	  randomly	  selected,	  the	  displacement	  of	  each	  point	  by	  jitter	  
ceases	  to	  be	  uniform	  across	  the	  map	  and	  instead	  is	  interpreted	  as	  “extra”	  
random	  movement.	  This	  gives	  a	  lower	  limit	  of	  the	  amount	  of	  intra-‐subject	  noise	  
that	  can	  be	  resolved.	  	  
	  
The	  ANSD	  value	  at	  which	  single-‐	  and	  multi-‐subject	  curves	  converge	  is	  
approximately	  equal	  to	  the	  ANSD	  given	  by	  using	  the	  SD	  of	  the	  jitter	  as	  the	  intra-‐
subject	  noise.	  This	  is	  true	  for	  all	  values	  of	  jitter	  SD	  tested	  (data	  not	  shown).	  In	  the	  
case	  shown,	  this	  value	  is	  ~0.06,	  as	  indicated	  on	  the	  graph.	  Henceforth	  I	  refer	  to	  
this	  point	  as	  the	  Variability	  Equals	  Noise	  (VEN)	  limit.	  This	  is	  useful,	  as	  it	  allows	  
us	  to	  resolve	  the	  relative	  contributions	  of	  intra-‐subject	  noise	  and	  inter-‐subject	  
jitter,	  qualitatively	  and	  quantitatively:	  
	  
If	  single-‐subject	  normPT	  is	  equal	  to	  multi-‐subject	  normPT,	  then	  inter-‐subject	  
jitter	  is	  less	  than	  or	  equal	  to	  intra-‐subject	  noise,	  and	  there	  is	  a	  good	  estimate	  of	  
noise,	  but	  not	  jitter.	  If	  the	  single-‐subject	  normPT	  is	  less	  than	  the	  multi-‐subject	  
normPT,	  the	  inter-‐subject	  jitter	  exceeds	  the	  intra-‐subject	  noise.	  In	  this	  situation,	  
the	  single-‐subject	  value	  will	  be	  an	  over-‐estimate	  of	  the	  disorder	  present.	  
	  

Application	  to	  functional	  imaging	  in	  the	  zebrafish	  tectum	  
	  
Aenea	  Hendry	  has	  obtained	  a	  large	  dataset	  from	  imaging	  the	  tecta	  of	  zebrafish	  
expressing	  GCaMP	  in	  the	  axon	  terminals	  of	  their	  retinal	  ganglion	  cells	  (RGCs)7.	  
Reactive	  clusters	  of	  voxels	  are	  referred	  to	  as	  points,	  which,	  due	  to	  the	  nature	  of	  
the	  GCaMP	  labelling,	  are	  putatively	  synapses.	  Using	  a	  sparse	  noise	  visual	  
presentation	  paradigm,	  the	  centre	  of	  mass	  of	  responsive	  points	  receptive	  fields	  
was	  determined.	  Scanning	  bars	  were	  used	  to	  determine	  whether	  tectal	  areas	  
were	  selective	  for	  directed	  (DS)	  or	  orientated	  (OS)	  motion8,7.	  All	  points	  have	  
been	  placed	  in	  a	  standardised	  model	  tectum7	  (fig.	  6A)	  which	  should	  remove	  
differences	  in	  tectal	  shape	  between	  fishes.	  
	  
To	  test	  the	  hypothesis	  that	  these	  populations	  of	  DS	  and	  OS	  points	  are	  
topographically	  ordered,	  and	  to	  attempt	  to	  estimate	  map	  precision,	  the	  points	  in	  
visual	  and	  tectal	  space	  were	  analysed	  using	  the	  TP.	  	  
	  



Multisubject	  p-‐values	  (see	  Methods/equation	  7)	  are	  p<0.001	  for	  both	  DS	  and	  
OS	  maps.	  This	  is	  as	  expected:	  retinotopy	  is	  well	  established,	  and	  there	  is	  no	  
reason	  to	  expect	  these	  classes	  of	  neurons	  to	  violate	  it.	  
	  
The	  fact	  that	  multi-‐subject	  PT	  appears	  larger	  than	  single-‐subject	  indicates	  that	  
the	  data	  lie	  to	  the	  left	  of	  the	  VEN	  limit:	  there	  is	  more	  jitter	  between	  subjects	  than	  
there	  is	  noise	  within	  subjects	  (fig.	  6B).	  	  In	  order	  to	  control	  for	  the	  effect	  of	  the	  
greater	  number	  of	  points	  in	  the	  OS	  maps,	  the	  analysis	  was	  repeated	  after	  
deleting	  points	  at	  random	  from	  the	  OS	  maps	  until	  there	  were	  the	  same	  number.	  
This	  produces	  minimal	  effects	  on	  normPT,	  precision	  and	  jitter	  (fig.	  6B-‐C).	  	  
	  
The	  amount	  of	  jitter	  and	  point	  noise	  can	  be	  estimated	  (fig.	  6B):	  this	  is	  achieved	  
by	  using	  the	  normPT	  and	  a	  curve	  fitted	  to	  multisubject	  analysis	  (black	  points	  fig.	  
5B,	  	  taking	  the	  form	  of	  equation	  6	  with	  A=0.0464,	  r=4.94,	  b=2.66).	  	  Because	  
these	  are	  rough	  estimates,	  error	  bars	  have	  not	  been	  presented.	  Due	  to	  the	  low	  
statistical	  power	  of	  single-‐subject	  analysis	  and	  the	  roughness	  of	  these	  estimates,	  
precision	  between	  DS/OS	  populations	  cannot	  be	  compared	  in	  a	  quantitative	  
fashion.	  



	  
Figure	   6.	   Topography	   of	   reactive	   points	   in	   the	   zebrafish	   tectum.	   (A)	   All	  
reactive	   points	   identified	   using	   sparse	   noise,	   shown	   within	   the	   standardised	  
tectum.	   The	   blue	   and	   red	   lamina	   are	   those	   that	   contain	   DS	   and	   OS	   points	  
respectively.	   (B)	   NormPT	   for	   direction-‐	   and	   orientation-‐selective	   points	   within	  
the	  tectum.	  Error	  bars	  are	  95%	  confidence	  intervals.	  Differences	  between	  OS	  and	  
DS	   populations	   are	   not	   due	   to	   numbers	   of	   points.	   (C)	   NormPT	   converted	   to	  
estimates	  of	   actual	  precision	  and	   jitter,	   in	  distance	  units.	  Estimates	  of	  noise	  are	  
likely	  to	  be	  overestimates,	  while	  estimates	  of	  jitter	  are	  underestimates.	  
	  
n=32	  fishes	  
Single-‐subject	   analysis	   uses	   Nshuf	   =	   1000,	   or	   the	   number	   of	   unique	   shuffles	  
(whichever	  was	   the	   smaller	  number).	   Fish	  with	   fewer	   than	   5	  points	   in	   a	   given	  
population	  of	  points	  were	  excluded.	  	  
Multisubject	  analysis	  uses	  1000	  composites,	  Nshuf	  =	  1	  per	  composite.	  	  



Discussion	  
	  
Overall,	  I	  have	  demonstrated	  that	  the	  topographic	  product,	  in	  a	  normalised	  form,	  
is	  a	  metric	  capable	  of	  both	  detecting	  topographic	  order	  and	  quantifying	  map	  
precision.	  Further,	  it	  appears	  resistant	  to	  map	  shape	  and	  thus	  a	  robust	  option	  for	  
studying	  biological	  topographic	  maps.	  Indeed,	  it	  has	  been	  applied	  to	  an	  
experimental	  dataset	  derived	  from	  functional	  imaging	  of	  zebrafish	  RGCs,	  
detecting	  visuotopic	  order	  in	  both	  populations	  considered.	  With	  the	  caveats	  that	  
these	  are	  overestimates,	  the	  precision	  is	  7.5µm	  for	  OS	  points	  and	  10µm	  for	  DS.	  	  
	  
The	  metric	  could	  be	  of	  great	  use	  in	  studying	  the	  development	  and	  refinement	  of	  
circuits	  within	  the	  developing	  nervous	  system.	  One	  example	  might	  be	  to	  resolve	  
the	  relative	  contributions	  of	  visual-‐evoked	  activity	  and	  intrinsic	  factors	  to	  map	  
refinement	  at	  different	  time	  points	  by	  dark-‐rearing.	  	  

Improving	  estimates	  of	  noise	  in	  presence	  of	  jitter	  
	  
The	  Lowe	  lab	  are	  particularly	  interested	  in	  quantifying	  topographic	  map	  
precision	  in	  the	  zebrafish	  tectum	  by	  pooling	  experimental	  data	  from	  multiple	  
sparsely	  sampled	  maps.	  From	  my	  analysis	  of	  previously	  obtained	  data,	  it	  appears	  
that	  it	  is	  affected	  by	  jitter.	  In	  this	  situation,	  intra-‐subject	  disorder	  is	  
overestimated	  whether	  we	  consider	  single-‐	  or	  multi-‐subject	  data.	  This	  is	  
probably	  due	  to	  the	  process	  of	  recombining	  points	  in	  the	  multi-‐subject	  analysis;	  
the	  uniform	  translation	  of	  jitter	  is	  converted	  to	  noise	  once	  it	  is	  no	  longer	  uniform	  
over	  the	  points	  considered.	  In	  future,	  the	  formulation	  of	  PT	  could	  be	  remodelled	  
to	  minimise	  effects	  of	  jitter	  on	  pooled	  data.	  

Improving	  estimates	  of	  jitter	  
	  
Additionally,	  in	  modelling,	  there	  is	  an	  upward	  trend	  in	  normPT	  for	  the	  jittered	  
multisubject	  data	  to	  the	  left	  of	  the	  VEN	  limit	  (fig.	  5B).	  It	  is	  possible	  that	  in	  
directly	  converting	  the	  multisubject	  normPT	  to	  jitter,	  this	  value	  is	  
underestimated.	  In	  future,	  adding	  noise	  to	  maps	  to	  reach	  the	  VEN	  limit	  could	  
improve	  the	  accuracy	  of	  this	  measure.	  

Parametric	  maps	  of	  precision	  
	  
One	  of	  the	  inherent	  limitations	  of	  this	  method	  is	  that	  compressing	  map	  disorder	  
into	  a	  single	  number	  is	  potentially	  an	  oversimplification.	  	  In	  a	  growing	  number	  of	  
systems,	  non-‐uniform	  topographies	  have	  been	  identified,	  with	  variable	  density	  of	  
constituent	  neurons	  and	  relative	  expansions	  of	  specific	  parts	  of	  feature	  space9,10.	  
Presumably	  there	  will	  be	  altered	  precision	  in	  expanded	  regions.	  This	  situation	  is	  
also	  likely	  to	  give	  us	  an	  overestimation	  of	  disorder	  overall,	  in	  manner	  similar	  to	  
how	  independent	  contributions	  of	  noise	  and	  jitter	  appear	  to	  be	  or-‐ed	  rather	  than	  
summed	  (fig.	  5C).	  I	  believe	  it	  would	  be	  possible	  to	  examine	  how	  order	  varies	  
across	  a	  map	  by	  calculating	  scores	  a	  PT	  for	  each	  point,	  allowing	  the	  creation	  of	  
illustrative	  parametric	  maps	  of	  disorder	  in	  both	  spaces.	  
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