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Abstract            

There are currently no effective pharmacologic treatments for the core symptoms of Autism 

Spectrum Disorder (ASD); and candidate treatments are often assumed to act in a similar way 

in people with and without ASD. This may not be the case, as there is recent evidence that 

the excitatory (E) glutamate and inhibitory (I) GABA systems, which are crucial to brain 

development and function, are altered in ASD. Abnormalities of E-I balance at rest in ASD 

are described in the literature, however findings often contradict and mostly stem from cross-

sectional studies. To date, no prior studies of ASD have examined the ‘responsivity’ of the E-

I system to pharmacologic challenge. 

 

No single technique can fully capture E-I dynamics in the living brain, however E-I balance 

can be measured at a number of ‘levels’, using different species-specific modalities. Hence, 

in the present thesis, I aimed to explore the effect of pharmacologically modulating E-I 

balance at the i) intracellular, ii) functional, and iii) extracellular level, in both humans, and 

an animal model of ASD (the Neurexin1 knock out rat), after a pharmacological challenge 

with the E-I acting drug, riluzole. 

 

To first capture E-I dynamics at the intracellular level, I investigated riluzole-evoked changes 

in bulk tissue levels of E-I neurotransmitters in the medial prefrontal cortex (mPFC) and 

basal ganglia (BG)- regions known to be important in ASD- using Magnetic Resonance 

Spectroscopy and ex vivo tissue analyses in humans and rats, respectively. In humans, I 

compared the change in ‘Inhibitory Index’ - the GABA fraction within the pool of glutamate 

plus GABA metabolites - post riluzole challenge in adult men with (n = 17) and without (n = 

20) ASD. Despite comparable baseline measures of GABA and Glx (glutamate + glutamine) 

in the mPFC, I found the response of the Inhibitory Index to riluzole to be diametrically 
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opposite in men with and without ASD. In contrast, in the BG, I reported a significant group 

difference in baseline Glx, in which the ASD cohort had lower Glx levels compared to 

controls, yet both groups responded in the same direction to riluzole challenge, with an 

increase in the Inhibitory Index. These findings were partially replicated in the Neurexin1 

knock out rat- with lower subcortical glutamate also reported in an equivalent basal ganglia 

region (the caudate putamen), compared to wild type controls. However, no differences in E-I 

responsivity were observed in the rodent in either strain or brain region. 

 

Given the reported group differences in E-I responsivity profile of the human mPFC, and that 

E-I imbalances are likely to affect the whole brain, I next explored the responsivity of 

functional connectivity of the mPFC with the rest of the brain, using resting-state functional 

Magnetic Resonance Imaging (rs-fMRI). In the ASD group, functional connectivity was 

abnormal at baseline, but restored to control levels after riluzole administration. Conversely, 

riluzole had no effect on the functional connectivity in the control group, thus highlighting 

again a group difference in responsivity. 

 

Finally, to examine whether extracellular changes in E-I dynamics were driving differences 

in functional connectivity, I explored neurotransmitter efflux into the extracellular space in 

the living rat brain, using in vivo microdialysis. However, riluzole had no measurable effect 

on glutamate nor GABA efflux in either wild type, or Neurexin1 knock out rats. 

 

Overall, I have, for the first time, identified that E-I balance at both the intracellular and 

functional level may be shifted in adult men with ASD, and that the brain in ASD is 

pharmacologically different to that of controls. This has implications for future drug 

discovery in ASD and the results of this thesis could be translated forwards to enhance future 
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clinical trial design. Further to this, I found the Neurexin1 knock out rat to have a 

comparable baseline biology to the human condition, which may support its use in future 

studies of back-translate these findings. Such work will be necessary to further understand E-

I pharmacology in ASD, and further validate E-I balance as a tractable therapeutic treatment 

target for this increasingly prevalent condition. 
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Chapter 1 

General Introduction 

Some of the information presented in Chapter 1 has been published in Progress in Neuro-

Psychopharmacology and Biological Psychiatry (See Appendix 1): 

Ajram et al. (2018) The contribution of [1H] Magnetic Resonance Spectroscopy to the study 

of excitation-inhibition in autism. Prog Neuro-Psychopharm & Biol Psych. 89, 236-244.  

 

1.1 Introduction to Autism Spectrum Disorder 

Autism Spectrum Disorder (ASD) is an increasingly common neurodevelopmental condition. 

The frequency of ASD diagnoses in both adults (Brugha et al., 2011) and children (Russell et 

al., 2014) has increased globally over the last 50 years and is currently reported at around 1% 

in the UK, with an estimated 4 times more males affected than females (Ehlers & Gillberg, 

1993). Previously split into the subcategories of Autism, Asperger’s, Childhood 

Disintegrative Disorder and Pervasive Developmental Disorder Not Otherwise Specified 

(PDD-NOS) in the Diagnostic and Statistical Manual of Mental Disorders (DSM) version 4 

(American Psychiatric Association, 2000), ASD is now treated as one umbrella term by the 

DSM-5 (American Psychiatric Association, 2013). For a diagnosis of ASD under the new 

DSM-5 criteria, the following four benchmarks must be met; 1) persistent difficulties with 

social interaction and communication, 2) restricted, repetitive behaviour patterns, 3) 

symptoms must be present from early childhood, and 4) symptoms must limit everyday 

functioning (Table 1.1). Core symptoms can range from mildly to severely debilitating and 

are often complicated by secondary features such as hyperactivity, inattention and intellectual 

impairment (O’Brien & Pearson, 2004; Reiersen & Todd, 2008).   
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Table 1.1: DSM-5 criteria for ASD diagnosis  

All conditions of A, C and D must be met, with an additional 2 of 4 from B. Adapted from 

DSM-5 (American Psychiatric Association, 2013) 

  

Detail Example 

A. Persistent deficits in social communication and social interaction across contexts 

(not accounted for by general development delays) 

A1. Deficit in socio-emotional reciprocity Abnormal social approach 

Lack of normal back and forth conversation 

Lack of initiation of social interaction 

A2. Deficit in nonverbal communicative 

behaviours 

Abnormal eye contact and body language 

Lack of facial expression and gestures 

A.3 Deficits in developing and maintaining 

relationships appropriate to developmental 

level 

Difficulty playing with and making friends 

Difficulty adjusting behavior to suit social 

context 

Absence of interest in others 

B. Restricted, repetitive patterns of behavior, interests or activities 

B.1 Stereotyped or repetitive speech, 

movement or interest in objects 

Unusual language 

Unusual hand and body movements 

Nonfunctional play with objects 

B.2 Excessive adherence to routines, ritualized 

patterns of verbal or nonverbal behavior 

Insistence on rigidity 

Rituals 

Excessive resistance to change 

B.3 Highly fixated interests that have abnormal 

intensity or focus 

Preoccupations 

Unusual interests or fears 

B.4 Abnormal reactivity to sensory aspects of 

the environment 

Adverse response to specific sounds or 

textures 

C. Symptoms must present in early childhood (but may not fully manifest until 

social demands exceed ability) 

 

D. Symptoms together limit and impair everyday functioning 
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There is increasing evidence that clinicians are able to reliably identify children with ASD as 

young as 2 years of age (Charman & Baird, 2002), and traits of ASD and related disorders 

may be recognised even earlier (Charman et al., 2000). However, despite better general 

awareness of ASD and improved early diagnostic tools (Luyster et al., 2009), most 

individuals do not receive a diagnosis until they reach school age (Yeargin-Allsopp et al., 

2003); and a considerable number are not diagnosed until adulthood (Aggarwal & Angus, 

2015; Geurts & Jansen, 2011). Early indicators include; lack of joint attention or shared 

enjoyment, limited social play, delayed onset of language and unusual ‘insistence on 

sameness’. An ASD diagnosis is based upon behavioural observations combined with 

evidence from a detailed developmental history. The diagnosis can be confirmed using the 

gold standard diagnostic tools; the Autism Diagnostic Observation Schedule (ADOS) (Lord 

et al., 2000), that a trained individual conducts with the patient; and the Autism Diagnostic 

Interview-Revised (ADI-R) (Lord, Rutter, & Couteur, 1994), which is an interview 

conducted with the parent/carer; alongside a comprehensive multidisciplinary review.  

 

If a diagnosis is not given in childhood, identifying ASD later in life becomes increasingly 

difficult. Though the ADOS has a specific module designed for use in verbal adults (module 

4), the materials and activities are designed for children, i.e. ‘Telling a story from a book’ or 

‘Imaginative play’, which may not be age-appropriate. Additionally, the ADOS module is 

selected on the basis of verbal ability, which may not always parallel cognitive ability 

(Gotham et al., 2007). Furthermore, as symptoms must be present from an early age to 

support an ASD diagnosis, in older individuals a detailed developmental history may not be 

available from a parent, or may be flawed due to incorrect recall and recall-bias (Schutte et 

al., 2015). Self- report can be used in lieu of parental interview; the Autism-Spectrum 

Quotient (AQ) is a self-reported questionnaire which can be useful in adults to assess the 
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degree of autistic traits, but as patients often lack insight into their own condition, it cannot 

be used as a stand-alone diagnostic tool (Baron-Cohen et al., 2001; Sizoo et al., 2015). 

Furthermore, the AQ has recently been shown to have poor predictive validity in ‘real world’ 

clinical settings. In development, the AQ was found to be highly effective at identifying ASD 

traits in those with a clinical diagnosis of ASD, compared to healthy controls, however in a 

clinical setting the AQ’s predictive power is poor, and may therefore lead to ‘false negative’ 

results (Ashwood et al., 2016). 

 

Recognition of autistic symptoms in general is clearer in children, with defined 

developmental markers in childhood against which progress can be compared. In contrast, 

such references do not exist in adulthood and can be confused by cultural differences. In 

addition, under long term social pressure to ‘fit in’, adults may have developed coping or 

masking techniques, either consciously or unintentionally. For example, training oneself to 

make eye contact during conversation, using learned jokes, or making contextually 

appropriate gestures or remarks (imitating facial expressions, or making sympathetic sounds 

in response to bad news). This ‘masking’ of symptoms is especially common in women with 

ASD (Lai et al., 2011).  

 

Considering the difficulties of diagnosing ASD in adulthood, it is conceivable that the 

prevalence of ASD in this age group is higher than is currently estimated, with many adults 

remaining undiagnosed and untreated, or misdiagnosed with other psychiatric disorders. This 

may also link to the scarcity of autism research in adults, as shown by a recent assessment 

which found only 15% of ASD research in the UK exclusively focused on adults with the 

condition, with the majority of studies focusing on children, or adolescents (Pellicano et al., 

2014). Hence, though it is prudent and necessary to initiate studies of neurodevelopmental 
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disorders as early in development as possible, this may have come at the expense of research 

into those already living with the condition as an adult.  

 

The pervasive idea that ASD is a neurodevelopmental, and therefore primarily a childhood, 

disorder may also contribute to the limited research in this age group. In reality, ASD is a 

lifelong condition, which persists as the brain matures and changes through life. It is 

important to note that findings from research in children cannot necessarily be extrapolated to 

adults- because the adult brain may respond differently. For example, differences in 

responsivity to drugs across ASD age groups have been reported by Hollander et al (2012), 

who observed significant decreases in repetitive behaviours in adults with ASD taking 

fluoxetine, yet only a modest effect in children with the disorder (Hollander, Phillips, et al., 

2005). A similar pattern of efficacy differences has been observed using fluvoxamine 

(McDougle et al., 1996, 2000). Thus, it should not be assumed that the adult brain is just a 

larger child’s brain- and this must be taken into consideration when attempting to identify 

treatments to alleviate the difficulties of living with ASD as an adult. 

 

1.1.1 Living with ASD as an adult 

The importance of providing mental health support for adults with autism is becoming 

increasingly recognised, for example by the UK government’s 2009 Autism Act and 

subsequent extension, ‘Think Autism’ in 2014. However, in reality, clinical services for 

adults remain markedly limited (UK Government, 2009, 2014). In particular, the transition 

from childhood to adulthood is a difficult time, involving the loss of school structure and 

support, and (in the UK) the transition from Child and Adolescent Mental Health Services 

(CAMHS) to Adult Services. For those adults with ASD, but an IQ>70 and no co-morbid 

psychiatric conditions, gaining support from adult services is near impossible, as they do not 
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fit into either learning disability or mental health streams (Pilling et al., 2012).  

 

The core symptoms of autism; difficulties in social interaction, communication and restricted 

interests, do not typically lend themselves to successful adult relationships in the workplace 

and in social settings. Only 15% of people with an ASD in the UK are in employment (NAS, 

2016), many of whom experience difficulty maintaining employment, not due to 

performance, but due to the requirement to interact and engage with colleagues (Vogeley et 

al., 2013). For high functioning individuals able to work, employment not only offers a 

financial income, but a chance to contribute and be valued in the community (Capo, 2001; 

Scott et al., 2015). In addition to poor employment opportunities, studies (admittedly 

conducted prior to the availability of early intervention strategies) predict that over half of 

patients have poor outcomes in terms of independent living, and forming peer relationships 

(Billstedt et al., 2005; Howlin et al., 2004, 2013).   

 

Though many people with ASD are able to live fully functional lives, a large proportion are 

severely debilitated and require full time care. Compounding the difficulties autistic patients 

face are co-occurring health, psychiatric and developmental disorders thought to affect up to 

70% of individuals (Lugnegård et al., 2011). The presence of these additional challenges are 

strongly associated with reduced quality of life, increased need for professional help and 

poorer prognosis (Carlsson et al., 2013; Levy et al., 2010; Mattila et al., 2010). Subsequently, 

the emotional, social and financial cost to these individuals and their families can be huge, 

particularly in areas where access to services and support is inadequate. It is estimated that 

autism costs the UK £32 billion per year; more than cancer (£12bn), heart disease (£8bn) and 

stroke (£4bn) combined (Buescher et al., 2014). The absence of pharmacological treatment 

options for the core symptoms of ASD and sometimes sub-optimal response of comorbidities 
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to conventional medications (Reiersen & Todd, 2008) contributes to the cost of ASD; yet the 

increased rate of diagnosis has not led to a proportional increase in available treatments. 

1.1.2 Current treatment options 

There are currently no pharmacological treatments for the core symptoms of restricted, 

repetitive behaviours, and social and communication difficulties in ASD. Repurposed 

medications have proven useful in managing associated behaviours; for example; the 

antipsychotics risperidone and aripiprazole are FDA-approved for the treatment of irritable 

behaviour in ASD (Dinnissen et al., 2014; Ghanizadeh et al., 2015; Sharma & Shaw, 2012), 

though they also have many detrimental side effects. Despite their efficacy in reducing 

challenging and repetitive behaviours, they also induce weight gain, sedation and 

extrapyramidal symptoms (Jannsen Pharmaceuticals Ltd, 2009; Otsuka America 

Pharmaceutical, Inc, 2002). Additionally, methylphenidate is often prescribed for ADHD 

(though this also comes with potential side effects) and people with ASD may be especially 

sensitive to these (Reiersen & Todd, 2008; Research Units on Pediatric Psychopharmacology 

Autism Network, 2005). Buspirone may also be prescribed with some efficacy, to reduce 

anxiety (Hsia et al., 2014). However, no pharmaceutical intervention has yielded results in 

terms of improving social communication as a primary outcome.  

 

Due to the current lack of pharmacological treatments, non-pharmacological treatment 

strategies have become the cornerstone of ASD management. Educational intervention 

(communication skills, play, addressing behavioural problems), psychotherapy (applied 

behaviour analysis) and cognitive behavioural therapy (CBT- restructuring maladaptive 

thoughts and behaviours) have all been successful in improving patient quality of life (Myers 

& Johnson, 2007), though more evidence is needed to fully assess their effectiveness 

(AHRQ, 2011). 
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Despite the relative success of these measures, there is a pressing need for effective 

pharmacological treatments for core deficits. The high level of phenotypic variability in 

ASD, by which one patient may present as high functioning yet another with the same 

disorder may be non-verbal, likely reflects the marked aetiological heterogeneity of the 

disorder, and has made the identification of a common underlying pathology challenging. If 

the biology was better understood this could point drug development in the direction of 

viable pathways to target. To advance drug discovery in this field, it is therefore of the utmost 

importance that we continue attempts to expose the underlying patho-aetiology of the 

disorder. 

1.1.3 Aetiology 

Autism was originally viewed as a result of inadequate mother-child bonding, specifically a 

cold attitude on the mother’s part, in what became known as the ‘refrigerator mother theory’ 

(Bettelheim, 1967). Today, the notion of parental fault is generally disregarded, and it is 

widely accepted that there is a neurobiological underpinning to ASD.  

 

It is well established that genetics play an important role in the development of ASD. Early 

twins studies suggested familial hereditability estimates of 56-95% (Colvert et al., 2015), but 

the role of genes in ASD is best demonstrated by the presence of syndromic forms, such as 

Fragile X syndrome and Retts syndrome, which have a clear genetic cause (a single gene 

mutation of the Fragile X Mental Retardation protein (FXMRp) or methyl CpG binding 

protein 2 (MECP2) genes, respectively (Amir et al., 1999; Verkerk et al., 1991). In addition, 

up to 1000 susceptibility genes have been identified, each accounting for a very small 

fraction of ASD cases (Berg & Geschwind, 2012). It has been suggested that the genes 

contributing to ASD fall within 3 main groups: those affecting the glutamate/GABA synapse; 

those involved in chromatin remodelling; and those causing alterations to gene transcription 
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and splicing (De Rubeis et al., 2014). 

 

Genetics are not solely responsible however; multiple environmental risk factors have also 

been identified, such as advanced parental age (Lampi et al., 2013), early prenatal maternal 

viral infection (Atladóttir et al., 2010) and environmental chemical exposure (Al-Hamdan et 

al., 2018; Kalkbrenner et al., 2014). However, aside from syndromic forms of ASD, no single 

genetic alteration or environmental factor has been identified as sufficient or necessary to 

develop an ASD. Instead, it is likely that most cases originate from an interplay of genetic 

predisposition and environmental exposures, which converge onto common molecular 

pathways involved in key neurodevelopmental processes (Baudouin, 2014; Persico & 

Bourgeron, 2006). For example, based on evidence that exposure to toxins such as valproic 

acid and maternal immune activation in prenatal life directly alters glutamate metabolism 

(Wei et al., 2016) and the GABA transcriptome (Dickerson et al., 2014; Richetto et al., 2014) 

respectively in the foetal brain; a candidate pathway susceptible to both genetic (above) and 

environmental risk factors for ASD is the glutamate-GABA system. 

Although a range of both genetic and environmental risk factors for ASD are now 

appreciated to act on glutamate-GABA pathways (Banerjee et al., 2013; Baudouin, 2014; The 

Autism Genome Project Consortium, 2007), the first forays implicating this molecular 

pathway in ASD pathology stemmed from the association of ASD with increased rates of 

epilepsy- a condition known to arise from altered excitatory (E) and inhibitory (I) signalling 

in the brain (Tuchman & Cuccaro, 2011; Tuchman & Rapin, 2002). Whilst the high 

frequency of comorbidity of epilepsy with ASD could indicate shared symptomatology or 

even simply similar diagnostic criteria, it is thought likely to be due to a common underlying 

pathology; a disruption of the E-I system (Lai et al., 2014). Furthermore, other conditions 

which are well accepted to be at least partly due to disruption of E-I balance are also often 
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linked to ASD; for example Obsessive Compulsive Disorder (OCD), Attention Deficit 

Hyperactivity Disorder (ADHD), anxiety and depression (Avoli & de Curtis, 2011; Kariuki-

Nyuthe et al., 2014; Lydiard, 2003; Mann et al., 2014; Purkayastha et al., 2015). Early 

developmental problems, such as intellectual disability and ADHD are most commonly 

observed to accompany ASD in childhood (Leyfer et al., 2006; Matson & Shoemaker, 2009; 

Simonoff et al., 2008), whilst in ASD in adulthood, in addition to ADHD and anxiety 

disorders, mood disorders are common (Croen et al., 2015; Ghaziuddin et al., 2002; 

Hofvander et al., 2009; Sterling et al., 2008). A comprehensive list of the conditions highly 

associated with ASD and their proposed pathophysiology are found in Table 1.2. 

 

Though for brevity the present thesis focuses on GABA and glutamate pathways as the 

principle controllers of E-I balance, they should not be viewed in isolation as they interact 

with, and can be modulated by, a number of other neurochemical pathways. Serotonin in 

particular is a particularly influential modulator of E-I balance. For example, in the frontal 

cortex, hippocampus and cerebellum, serotonin induces a decrease of glutamate transmission 

and a parallel increase in GABA (Ciranna, 2006). Likewise, dopamine affects glutamate 

function with different effects depending on the receptor, cell type and brain region, 

involved. In the striatum for instance, D1 receptors potentiate responses mediated by NMDA 

receptors, whereas D2 receptors depress AMPA responses (Tseng & O’Donnell, 2004). 

Given the importance of serotonin and dopamine in modulating E-I balance, it is unsurprising 

that disruptions to these systems have also been implicated in the pathology of ASD (Muller 

et al., 2016; Pavǎl, 2017). The importance of these neurotransmitters is highlighted in Table 

1.2, where disruptions of serotonin and dopamine, amongst others, have been linked to 

disorders often co-morbid with ASD (Clarke et al., 2014; Gleason et al., 2010; Helton & 

Lohoff, 2015; Spencer et al., 2005; Vaswani et al., 2003). Hence, although I focus on GABA 
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and glutamate in the present thesis, it is important to highlight that these are two of many 

neurochemicals altered in the pathogenesis of ASD. 

  

Taken together, these associations strongly implicate differences in the E –I system as a 

potential underlying cause of ASD, and hence a potential therapeutic target. Maintaining a 

balance of excitatory to inhibitory neural control is essential from conception throughout the 

entire lifespan. Any alteration to this system could therefore have profound and far reaching 

effects on both neurodevelopmental processes and the subsequent formation of coherent 

networks. 
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Condition Co-morbidity 

risk 

Further 

information 

Proposed Disease 

Mechanism 

General Medical 

Epilepsy 5-30% (Besag, 

2017; Tuchman 

et al., 2013; 

Viscidi et al., 

2013) 

Onset in childhood 

or adolescence 

(Tuchman & 

Rapin, 2002) 

E-I Imbalance & cortical 

interneuron dysfunction 

(Avoli & de Curtis, 2011) 

Gastrointestinal 

problems 

17-70% (Adams 

et al., 2011) 

Common 

symptoms include 

chronic 

constipation, 

diarrhoea and 

abdominal pain 

Altered gut microbiota 

(de Theije et al., 2014) 

may affect GABA (Kang 

et al., 2018; Lin, 2013) 

and other 

neurotransmitters (Clarke 

et al., 2014) 

Genetic syndromes <5% Fragile X (Verkerk 

et al., 1991) 

Rett Syndrome 

(Castro et al., 

2013) 

Tuberous Sclerosis 

(Gipson et al., 

2015) 

Single genetic mutation 

Psychiatric 
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Anxiety 42-56% 

(Hofvander et al., 

2009; Mattila et 

al., 2010; 

Simonoff et al., 

2008) 

Common across all 

age groups  

GABA dysfunction 

(Lydiard, 2003) and 

Serotonergic dysfunction 

(Gleason et al., 2010; 

Vaswani et al., 2003)  

Depression 12-70% 

(Hofvander et al., 

2009; Mattila et 

al., 2010; 

Simonoff et al., 

2008) 

Common in adults, 

less so in children 

(Ghaziuddin et al., 

2002; Hofvander 

et al., 2009) 

E-I imbalance (Mann et 

al., 2014; Pehrson & 

Sanchez, 2015; Veeraiah 

et al., 2014) 

Serotonergic dysfunction 

(Helton & Lohoff, 2015) 

Obsessive Compulsive 

Disorder 

7-24% 

(Hofvander et al., 

2009; Lugnegård 

et al., 2011; 

Simonoff et al., 

2008) 

May fit the 

‘repetitive 

behaviors domain’ 

of ASD 

E-I imbalance (Kariuki-

Nyuthe et al., 2014; 

Naaijen et al., 2015) 

Serotonergic dysfunction 

(Soomro, 2012) 

Developmental 

Intellectual disability ~30% (Centers 

for Disease 

Control and 

Prevention, 

2014) 

IQ<70 Genetic (Moeschler & 

Shevell, 2006) or 

unexplained 
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Table 1.2: Comorbid conditions common to Autism Spectrum Disorders 

Adapted from Lai et al. 2014. 

  

Attention Deficit 

Hyperactivity Disorder 

(ADHD) 

28-44% (Leyfer 

et al., 2006; 

Simonoff et al., 

2008) 

May now be 

diagnosed in 

addition to ASD 

under DSM-V, 

where DSM-IV 

did not allow co-

morbid diagnosis. 

The current 

prevalence of co-

morbid diagnosis 

is therefore likely 

higher than 

reported. 

Dopamine dysregulation 

(Spencer et al., 2005, 

2007) 

E-I imbalance 

(Purkayastha et al., 2015) 
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1.2 The Excitation - Inhibition System 

Glutamate and -aminobutyric acid (GABA) are respectively the major excitatory and 

inhibitory neurotransmitters in the brain. The processes by which each of these 

neurotransmitters is synthesized, released, removed from the synaptic and extra-synaptic cleft 

and metabolized are all tightly regulated and have, for many years, been targets for drug 

discovery. They are found in all brain regions and have multiple neurobiological functions, 

mediated by different types of receptors. A balanced interaction between glutamate and 

GABA is essential for effective neurotransmission from conception and throughout the whole 

lifespan. The regulation of E-I balance is particularly important during neurodevelopment, 

where GABA and glutamate act in synchrony to regulate the proliferation, migration and 

differentiation of neuronal cells. Balanced neurotransmission is also essential for synaptic 

maturation, refinement of neuronal circuitry and eventually the regulation of cognition, 

emotion and behaviour (Luján et al., 2005).  

 

1.2.1 Pharmacology 

1.2.1.1 Synthesis  

The amino acid glutamine is synthesised by astrocytes and converted to glutamate via the 

enzyme glutaminase in both glutamatergic and GABAergic neurons. In excitatory neurons, 

glutamate is transported into vesicles via vesicular glutamate transporters (vGluT) and 

released into the synaptic cleft upon depolarisation of the neuron. In inhibitory neurons, 

glutamate is converted to GABA, by the glutamic acid decarboxylase (GAD) enzyme. GAD 

exists in two isoforms, GAD65 and GAD67, which have different molecular weights (65 and 

67 kDa respectively), properties, and subcellular localization (Erlander et al., 1991). GABA 

is then transported to vesicles for release via vesicular GABA transporters (vGAT). Upon 
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release, neurotransmitters are taken up by high affinity membrane transporters back into 

neurons and surrounding glia, where they are recycled for continued use. Glutamate may be 

converted to glutamine for storage in astrocytes via glutamine synthase, or converted to 

GABA via GAD in GABA-synthesising inter-neurons (Rowley et al., 2012). In this way, 

GABA and glutamate are in constant flux, each continuously contributing to the synthesis of 

the other (Figure 1.1). 
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Figure 2.1: Synthesis, release and metabolism of glutamate and GABA 

Glutamine is converted to glutamate via the enzyme glutaminase, which then goes on to 

either be released by excitatory neurons, or converted to GABA via the enzyme glutamic acid 

decarboxylase in inhibitory neurons. Neurotransmitters are taken up into astrocytes and 

neurons to be recycled to glutamate and glutamine, thus the cycle re-starts. Adapted from 

Rowley et al., 2012. 

Abbreviations: 2-OG, 2-oxoglutarate; AAT, aspartate aminotransferase; Aralar, aspartate-

glutamate carrier; Asp, aspartate; EAAT, excitatory amino acid transporter; GABA-T, GABA 

transaminase; GAD, glutamic acid decarboxylase; GAT, GABA transporter; GDH, 

glutamate dehydrogenase; SSA, succinic semi aldehyde; TCA, tricarboxylic acid cycle; 

vGAT, vesicular GABA transporter; vGlut, vesicular glutamate transporter. 

http://topics.sciencedirect.com/topics/page/Aspartic_acid
http://topics.sciencedirect.com/topics/page/Transaminase
http://topics.sciencedirect.com/topics/page/Aspartic_acid
http://topics.sciencedirect.com/topics/page/Excitatory_amino-acid_transporter
http://topics.sciencedirect.com/topics/page/Excitatory_amino-acid_transporter
http://topics.sciencedirect.com/topics/page/Transaminase
http://topics.sciencedirect.com/topics/page/Glutamate_decarboxylase
http://topics.sciencedirect.com/topics/page/GABA_transporter
http://topics.sciencedirect.com/topics/page/GABA_transporter
http://topics.sciencedirect.com/topics/page/Glutamate_dehydrogenase
http://topics.sciencedirect.com/topics/page/Glutamate_dehydrogenase
http://topics.sciencedirect.com/topics/page/Citric_acid_cycle
http://topics.sciencedirect.com/topics/page/Citric_acid_cycle
http://topics.sciencedirect.com/topics/page/Excitatory_amino-acid_transporter
http://topics.sciencedirect.com/topics/page/Excitatory_amino-acid_transporter
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1.2.1.2 Receptors and signalling pathways 

Neuronal action potentials initiate neurotransmitter release into the synaptic cleft, where they 

act on multiple pre- and postsynaptic receptors (Figure 1.2), triggering a signalling cascade 

within the cell that modulates neuronal activity. Excitatory synaptic transmission is initiated 

by glutamate binding to either ionotropic (AMPA, NMDA or Kainate) ion channel receptors, 

or metabotropic G protein-coupled receptors (mGluR1-5). Activation of ionotropic receptors 

opens the ion channel and allows influx and efflux of sodium (Na+), potassium (K+) and 

calcium (Ca2+) ions, to produce an Excitatory Post Synaptic Potential (EPSP) and fast 

neuronal activity. In comparison, metabotropic receptors are G protein-coupled, and therefore 

have a relatively slower action, as ligand activation first evokes secondary messenger 

signalling cascades prior to ion channel modulation.  

 

GABA receptors are also grouped according to their activation mechanism; GABAB receptors 

are G protein coupled, and are found pre- and postsynaptically, whereas GABAA receptors 

are ionotropic, postsynaptic chloride (Cl-) ion channels. Upon binding to the GABAA 

receptor, GABA evokes a conformational change, which allows the receptor to facilitate the 

passive influx or efflux of Cl- ions, dependent upon the neuronal equilibrium potential for 

chloride (ECl
-). During postnatal life, this presents as an influx, which results in inhibitory 

synaptic transmission.  
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Figure 1.3: Schematic representation of glutamate and GABA receptors at the synapse 

Glutamate (yellow circles) and GABA (red circles) are released from presynaptic terminals, 

diffuse across the synaptic cleft, and activate receptors located on postsynaptic neurons. 

Additionally, glutamate and GABA can act at receptors on nearby astrocytes and as 

retrograde transmitters on presynaptic nerve terminals. Figure taken from Niswender & 

Conn, 2010. 

Abbreviations: mGluR, metabotropic glutamate receptor; GABAA/B, GABA A and B receptors; 

NMDA, N-Methyl-D-aspartic acid receptor; AMPA, α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid receptor; Ca2+, calcium; Na, sodium; Cl, chloride; cAMP, cyclic 

adenosine monophosphate  
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Prenatally however, GABA acts very differently. Over the time course of synaptic 

development in utero, GABA synapses develop first, prior to their glutamatergic 

counterparts. Hence GABA initially plays an excitatory role, before ‘switching’ to its 

eventual inhibitory purpose after birth.  

 

Initially, immature neurons have a high level of intracellular Cl- ions compared to the 

extracellular space; therefore when activated by GABA, the relative difference of ECl
-  

(positive) to the resting membrane potential (Vm), causes a net Cl- efflux via a sodium-

potassium-chloride co-transporter (NKCC1) and membrane depolarisation (Ben-Ari et al., 

2012). The ‘switch’ to inhibition is thought to occur at birth, as preclinical studies indicate a 

dramatic reduction of intracellular Cl- immediately prior to, and post-delivery, in response to 

maternal oxytocin released during labour (Tyzio et al., 2006). Additionally, around the same 

time, there is a distinct change in neuronal chloride co-transporter expression; NKCC1 

expression decreases, and is superseded by expression of potassium-chloride co-transporter, 

KCC2 (Clayton et al., 1998). The decrease in intracellular Cl- means that the relative 

difference between ECl
-  and Vm is now negative, therefore, in mature postnatal neurons, 

lower intracellular Cl- results in a net Cl- influx via KCC2 and membrane hyperpolarisation 

(see Figure 1.3). 

 

 

  



49 

 

 

Figure 1.3: The developmental GABA switch from excitation to inhibition 

The shift in GABA function is partly determined by the sequential development of two 

chloride transporters; NKCC1 develops first and imports Cl- upon GABAA receptor 

activation, and KCC2 develops later, and exports Cl- upon receptor activation. This causes 

depolarization and hyperpolarization of the neuron respectively.  

Abbreviations: NKCC1, sodium-potassium-chloride co-transporter; Cl-, chloride ion; KCC2, 

potassium-chloride co-transporter 

  



50 

1.2.2 Glutamate and GABA in neurodevelopment 

Glutamate and GABA act together to initiate and control events such as neural proliferation, 

migration, differentiation and synaptogenesis during prenatal brain development and 

throughout postnatal life (Luján et al., 2005).  

 

Prenatally, the proliferation of neuronal progenitor cells is fundamental for generating 

neurons in the correct sequence and location in the brain. Glutamate and GABA receptor 

emergence and activation are believed to regulate this system, and have been identified as 

instrumental in controlling DNA synthesis in dividing neurons (Ben-Yaakov & Golan, 2003; 

Haydar et al., 2000; LoTurco et al., 1995). Post creation, most neurons migrate from their site 

of origin to their intended destination in the cortex, thus creating the complex patterning and 

organization of the brain regions. This too is dependent upon the emergence of GABA and 

glutamate control at the correct time. For example, in the prefrontal cortex, glutamate acts as 

a chemoattractant signal to guide incoming neurons (Behar et al., 1999). For these neurons to 

effectively signal, they need to be positioned and anchored together. This is achieved by a 

complex structure of cell adhesion proteins, most notably neurexins and neuroligins, which 

work together to maintain synaptic stability. These structures are essential for effective 

glutamatergic and GABAergic transmission, and any abnormalities can cause profound 

implications for E-I signalling. Their role in ASD is discussed in further detail in section 1.3. 

 

In addition to correctly positioning cortical neurons, glutamate also alters cortical neuron 

cytoarchitecture prenatally, and during the first postnatal days. Pyramidal neurons are the 

primary excitation unit in the prefrontal cortex, but are also found in abundance throughout 

the cerebral cortex, and in the hippocampus and amygdala; areas known to be associated with 

advanced cognitive function (Spruston, 2008). During pyramidal neuron development, 
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glutamate regulates selective inhibition of dendritic growth and dendritic pruning (at non-

toxic levels). Some studies also show a role for glutamate in encouraging dendritic growth 

and branching of cerebellar granule cells (Pearce et al., 1987) and hippocampal cells 

(Mattson et al., 1988). This complex guidance system, mediated by progressive GABA and 

glutamate activity, allows neurons to grow towards their postsynaptic targets, ready to form 

synapses, which enable neurons to fire and wire together. Hence, what begins as a diffuse and 

overlapping networks of neuronal contacts, is in time refined (through repeated E-I activity) 

into better defined local circuits, which may interact to form extensive neural networks.  

 

With such complex shifts in excitatory - inhibitory function in the perinatal period, it is easy 

to imagine that slight alterations in E –I balance could significantly alter the effectiveness of 

neural signalling and could potentially give rise to subtle, but wide-ranging differences in the 

neural networks which coordinate complex behaviours in ASD. 

 

1.3 Excitation – Inhibition Imbalance in ASD 

The development and firing of neural networks are co-ordinated by excitatory glutamate, and 

inhibitory GABA transmission, hence alterations to this system have been proposed to be key 

to the pathology of ASD (Coghlan et al., 2012; Gao & Penzes, 2015; Uzunova et al., 2016). 

Indeed, many known aetiological and genetic risk factors for ASD appear to affect the 

balance of this system (for more details please see below).  

Initially, this may lead to disruption of neurogenesis, neuronal proliferation and migration 

and synaptogenesis (Packer, 2016). However on a grander scale, such disruptions to brain 

cytoarchitecture would inevitably result in affected brain regions being unable to generate 

connections that give rise to fully effective functional networks (Courchesne et al., 2007; 
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Ecker & Murphy, 2014; Stanfield et al., 2008) and thus behaviour would be affected.  

 

1.3.1 Genetic and preclinical evidence 

There is an accumulation of evidence from genetic and preclinical studies to support a role 

for differences in E-I in ASD. 

 

Genetically determined abnormalities in GABA and glutamate signalling pathways have 

consistently been associated with ASD. The GABAA receptor may be of particular 

significance, as studies of ASD susceptibility genes have identified chromosome 15q11-q13 

as a region of interest, and this contains three GABAA receptor subtype genes (β3, γ3 and α5)  

(Pizzarelli & Cherubini, 2011). Mutations in this region, and in particular those in the β3 

subunit (Chaste et al., 2014; Isles et al., 2016; Shao et al., 2003), convey a high risk for ASD. 

Additionally, evidence for the link between GABAA-β3 and autism has been shown in a 

mouse knock-out model, in which an absence of the β3 subunit caused behavioural 

difficulties relevant to autism; such as repetitive and stereotyped behaviours (stereotypical 

cage circumnavigation and ‘tail chasing’) in addition to poor motor co-ordination and 

learning deficits (DeLorey et al., 1998). Likewise, GABAA-5 alterations have been reported 

in adults with ASD, namely in a preliminary PET study reporting significantly reduced 

binding to the 5 subunit across multiple brain regions (Mendez et al., 2013), although this 

finding was not replicated in a larger cohort (Andersson et al., 2017). Post-mortem studies in 

ASD have also pointed to GABA abnormalities including reduced mRNA levels for multiple 

GABAA and GABAB receptor subtypes (Fatemi et al., 2014; Fatemi & Folsom, 2015; Oblak 

et al., 2009, 2010) and GABAA and GABAB receptor protein levels have been are reported to 

be lower the cingulate cortex of adults (Fatemi et al., 2010; Oblak et al., 2010) and prefrontal 
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cortex of children with ASD (Mori et al., 2012). Furthermore, single cell transcriptomic data 

suggest that inhibitory neurons may be a major neuron subtype affected by the disruption of 

ASD gene networks (Wang, Zhao, Lachman, & Zheng, 2018). 

Studies have also uncovered associations between ASD and polymorphisms in genes 

involved in glutamatergic signalling pathways. Fragile X Syndrome, the most common 

genetic form of ASD-like behaviours, is caused by a single gene mutation affecting fragile X 

mental retardation protein (FXMRp) (Verkerk et al., 1991). In healthy individuals, FXMRp 

acts to negatively regulate postsynaptic glutamate receptor (mGluR5) activity, and its absence 

leads to excessive excitatory activity, which presents as an autism-like phenotype (Lozano et 

al., 2014; Yu & Berry-Kravis, 2014). Furthermore, genetic (Dölen et al., 2007) and 

pharmacological (Mehta et al., 2011) reduction of mGluR activity in rodent models, have 

been shown to significantly improve ASD-like behaviours. However, pharmacological 

attempts to reduce mGluR activity in humans with ASD have since failed in clinical trials 

(Berry-Kravis et al., 2016; Scharf et al., 2015), suggesting the E-I imbalance in ASD is not 

straightforward. For example, the numbers of glutamate receptors have also been reported to 

be altered in ASD; mGluR5 has been shown to be significantly higher in ASD (Fatemi et al., 

2011), whereas reduced NMDA receptor expression gives rise to ASD-like behaviours in 

mice (Gandal et al., 2012). Such alterations in receptor density and activity will no doubt 

affect synaptic efficacy, but coupled with this, there is emerging evidence that the structural 

integrity of the synapse itself is also affected in ASD.  

 

Cell adhesion molecules neurexin and neuroligin, and scaffolding proteins Post Synaptic 

Density – 95 (PSD-95) and SHANK act together to establish the structural architecture of E-I 

synapses (see Figure 1.4). Anchoring of the pre- and post-synaptic neuron terminals via this 

matrix is essential to synapse formation, alignment and stability (Lee & Sheng, 2000). 
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Impairment of any one component therefore, could result in irregular molecular assembly of 

the synapse, and hence faulty E-I neurotransmission (Futai et al., 2007; Südhof, 2008; Zhao 

et al., 2017). 

  



55 

 

Figure 1.4: Neuroligin-Neurexin complexes stabilize the synapse 

Neurexin, a presynaptic neuronal adhesion molecule, interacts with neuroligins (its post-

synaptic equivalent), which in turn bind intracellularly to Post Synaptic Density protein 95 

(PSD-95). SHANK proteins form a matrix to anchor this complex. Figure taken from State, 

2010. 

Abbreviations: mGluR, metabotropic glutamate receptor; NMDAR, N-methyl-D-aspartate 

receptor; FMRP, Fragile X Mental Retardation Protein; PSD-95, Post Synaptic Density 

protein 95; GKAP, guanylate kinase-associated protein. 
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Of this group of synaptic proteins, the neurexin-neuroligin complex is one of the most studied 

trans-synaptic pairs in ASD. Distinct pairings of these families play discrete roles during 

synaptogenesis; for example, neuroligin-1 regulates excitatory synapse formation (Song et 

al., 1999), whereas neuroligins -2 and -3 regulate inhibitory synapse formation and 

maturation (Levinson et al., 2005; Varoqueaux et al., 2004). In connecting the pre- and post-

synaptic neurons, neurexin-neuroligin interactions mediate signalling across the synapse, 

which in turn modulates synaptic activity and determines the properties of neuronal networks. 

It is therefore unsurprising that genetic alterations to this process have been linked to 

cognitive deficits, such as those seen in autism. Several copy number variants (CNVs) across 

the two families have been associated with ASD, with the highest prevalence for mutations in 

Neurexin-1 (Ching et al., 2010; Feng et al., 2006; Kim et al., 2008; Yan et al., 2008) and 

Neuroligin-3 (Jamain et al., 2003; Yanagi et al., 2012; Yu et al., 2011). Considering the 

essential role of neurexins and neuroligins in structuring the synapse, and the clear link to 

ASD in humans, genetically modified animal models have been created to explore the 

disrupted synaptic mechanisms in ASD.  

 

Neurexin1 homozygous knock out (Nrxn1-/-) mice have been reported to have weak 

excitatory synaptic strength and reduced excitatory post synaptic current (EPSC) frequency 

compared to wild type controls (Etherton, Blaiss, Powell, & Südhof, 2009). Additionally, 

knock out mice have fewer spontaneous and evoked excitatory and inhibitory 

neurotransmitter release events (Kattenstroth et al., 2004; Missler et al., 2003; Zhang et al., 

2005). Behavioural abnormalities have also been observed in the knock-outs; including 

increased grooming behaviours, decreased startle response and impaired nest building and 

social investigation (Dachtler et al., 2015; Etherton, 2009; Grayton et al., 2013; Laarakker et 

al., 2012). More recently, a rat model of Neurexin1 deletion became available. This animal 
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has persistent non-social cognitive deficits, such as hyperactivity, reduced learning ability 

and inattention (Esclassan et al., 2015). Though the human condition can never be fully 

replicated in an animal model, the features observed in Neurexin1 rodents may proxy the 

repetitive behaviours, cognitive deficits and inflexibility/stereotypy which are core to the 

human condition and therefore provide a useful model to study mechanisms underpinning 

ASD in the laboratory (Etherton et al., 2009; Grayton et al., 2013). 

 

Thus, the combined evidence from the aforementioned genetic and pre-clinical studies 

strongly suggest that E-I imbalance is relevant to the pathophysiology of ASD. However, 

directly measuring this imbalance in vivo in the living human brain has proved to be 

challenging. There is hope however, as recent advances in magnetic resonance imaging has 

enabled safe, in vivo quantification of brain metabolites in both healthy individuals, and those 

with ASD. 

 

1.3.2 E-I in the living human brain – metabolite levels 

The first approach to assessing levels of both glutamate and GABA in autistic patients was to 

study plasma metabolite concentrations, which were taken as an indication of what may be 

happening in the brain. Findings were inconsistent using this method, for example, glutamate 

serum levels were found to be significantly higher in children (Hassan et al., 2013) and adults 

(Shinohe et al., 2006) with ASD, yet high serum levels of GABA have also been reported in 

ASD populations (Dhossche et al. 2002). Such inconsistencies may have arisen because the 

blood-brain barrier does not permit free movement of metabolites between intracranial and 

plasma compartments. This is especially true for GABA, which is known to be unable to 

cross this barrier (Van Gelder & Elliott, 1958). Measuring E-I by proxy may therefore not be 

the best approach. Rather, direct measures of neurotransmitters in the living brain are needed 
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to understand E-I balance in situ. Direct measures of glutamate, and more recently, GABA, 

using Magnetic Resonance Spectroscopy (MRS) are now possible. Using this technique, E-I 

levels can be quantified in a predefined brain region of interest, in an awake, living human 

brain.  

 

MRS studies in ASD have largely focused on the basal ganglia and prefrontal cortex. ASD is 

believed to be a disorder of network connectivity (Mohammad-Rezazadeh et al., 2016; Nomi 

& Uddin, 2015), and considering the extent of executive function, socio-emotional and 

repetitive behaviours observed in this condition, the subcortical and prefrontal networks sub 

serving these activities have been linked to both socio-communication deficits and repetitive 

behaviours in ASD (Calderoni et al., 2014; Estes et al., 2011; Holmboe et al., 2010; Horder et 

al., 2013; Kalbe et al., 2010; Kratsman et al., 2016; Martínez-Sanchis, 2015; Prat et al., 2016; 

Qiu et al., 2010). Consistent with this, both structural and signalling abnormalities of these 

regions have been associated with the core symptoms of ASD (Haznedar et al., 2006; 

Hollander et al., 2005; Prat, 2016; Schmitz et al., 2007, 2008). However, the results from 

studies comparing baseline metabolite levels in these regions (and other brain areas) between 

groups are still at variance (see Table 1.3; and for a complete review see Ajram et al., 2018, 

Appendix 1).  

 

Multiple MRS studies have reported an excess of glutamate across the brain in ASD, for 

example in the frontal cortex (Hassan et al., 2013; Joshi et al., 2013), amygdala and 

hippocampal regions (Page et al., 2006) and auditory cortex (Brown et al., 2013). Yet others, 

including research from my own department, have found that there is lower resting glutamate 

levels in ASD participants in the subcortex (Horder et al., 2013), cingulate (Tebartz van Elst 

et al., 2014) and anterior cingulate cortex (Bernardi et al., 2011). Still others have found no 
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differences in glutamate levels across the brain (Ajram et al., 2017; Carvalho Pereira et al., 

2017; Cochran et al., 2015; DeVito et al., 2007; Hardan et al., 2008; Libero et al., 2015; 

Tebartz van Elst et al., 2014). 

 

Though fewer in number, MRS studies of GABA are more consistent and generally find 

lower GABA in the ASD brain; for example GABA has been shown to be lower in the frontal 

cortex (Harada et al., 2011; Kubas et al., 2012), motor and auditory regions (Gaetz et al., 

2014) of children with the disorder. Again, others have also observed no differences in brain 

GABA in ASD (Ajram et al., 2017; Brix et al., 2015; Carvalho Pereira et al., 2017; Gaetz et 

al., 2014; Harada et al., 2011).  
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Brain Region Metabolite measured 

 Glx or Glutamate GABA 

Anterior cingulate 

cortex 

 Hassan et al. 2013 * 

 Joshi et al. 2013  

 Bejjani et al. 2012 * 

 Tebartz van Elst et al. 2014  

 Bernardi et al. 2011  

 Libero et al. 2015   

 Cochran et al. 2015  

 Cochran et al. 2015  

= Brix et al. 2015 * 

Medial prefrontal 

cortex 

= Carvalho Pereira et al. 2017 * 

= Ajram et al. 2017  

= Carvalho Pereira et al. 2017 * 

= Ajram et al. 2017  

Amygdala  Page et al. 2006   

Hippocampus  Page et al. 2006   

Basal Ganglia 

Striatum 

 Horder et al. 2013  

 Hassan et al. 2013 * 

 Harada et al. 2011* 

Thalamus  Hardan et al. 2008 *  

Frontal lobe  Hassan et al. 2013 * 

 

 Harada et al. 2011* 

 Kubas et al. 2012 * 

Lenticular nuclei   Harada et al. 2011* 

Motor cortex   Gaetz et al. 2014 * 

Visual cortex   Gaetz et al. 2014 * 

Auditory cortex  Brown et al. 2013b   Gaetz et al. 2014 * 

Cerebellum  Tebartz van Elst et al. 2014  

 DeVito et al. 2007 * 

 Hassan et al. 2013 * 

 

 

Table 1.3: [1H]MRS quantified glutamate and GABA differences for patients with ASD 

1.5 Tesla; 3 Tesla; 4 Tesla; * Children;  Adolescent;  Adult. A comprehensive review of 

MRS studies in ASD can be found in Ajram et al., 2018 (Appendix 1).  
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Discrepancies between studies may be due to a number of factors, most notably the inevitable 

differences in patient demographics that arise when investigating such a heterogeneous 

population. In particular, variations in current medication and the presence of comorbid 

mental or physical health symptoms, such as anxiety or epilepsy, may alter results, as some 

patients may consequently have pharmacologically altered E-I balance or alterations 

attributable to a co-occurring condition (Pizzarelli & Cherubini, 2011). Likewise, 

inconsistencies between studies of different ages are not surprising given reports that 

glutamate also varies across age groups and brain regions in typically developed participants 

(Kaiser et al., 2005; Sailasuta et al., 2008) and metabolite levels may ‘normalise’ with age in 

people with ASD (Aoki et al., 2012; Ipser et al., 2012). Ultimately however, participant 

variability may stem from the fact that even ‘pure’ ASD is a highly heterogeneous disorder 

(Ecker et al., 2013), and not all individuals necessarily share the same E-I profile. 

 

Practically, between-study differences in experimental protocol may also contribute to 

divergent MRS findings. Different scanner field strengths and protocols will provide different 

measures of metabolites, as (due to their structural similarity) glutamate, glutamine and 

GABA are difficult to isolate and quantify at lower field strengths such as 1.5T (Puts & 

Edden, 2012) and are often combined into one measure of ‘Glx’ in these studies (e.g. 

Bernardi et al. 2011; DeVito et al. 2007 and Horder et al. 2013). At field strengths of 3T or 

above, with specific scanner parameters, such as J-edited MEGAPRESS (MEshcher-

GArwood Point RESolved Spectroscopy) (Edden & Barker, 2007; Mescher et al., 1998) and 

specialised software tools (Edden et al., 2014; Naressi et al., 2001), GABA and 

glutamate/glutamine can be isolated and separately quantified, allowing us to observe them as 

independent components of the E-I system (although in the majority of studies the GABA 

measure is a combined signal with lipid macromolecules). Considering the difference in 
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metabolite composition, it may therefore not be appropriate to compare results at different 

field strengths.  

 

1.3.3 Measuring E-I responsivity in the human brain  

The fact that E-I balance is not static (and so may contribute to this failure to replicate study 

results) has been largely overlooked in the literature. As is evident from Table 1.3, the 

majority of research concerning E-I metabolite levels in ASD has focused on either glutamate 

alone, or only GABA levels. However, glutamate and GABA do not exist in isolation in vivo 

- the system is in constant flux (Hyder et al., 2013; Rothman et al., 2011, 2012; Sibson et al., 

1998). Control of this flux may well be abnormal in ASD, as glutamic acid decarboxylase 

(GAD) levels, which converts glutamate to GABA, have been found to be lower in ASD 

(Fatemi et al., 2002; Yip et al., 2007, 2009), and altered in ASD animal models (Wei et al., 

2016; Zhang et al., 2014). Differences in E-I flux, and subsequent responsivity of the E-I 

system, may therefore need to be taken into consideration in studies of E-I in ASD, yet this 

has not been directly examined in vivo. 

 

1.3.3.1 Choice of drug 

To examine system dynamics, one approach is to provide a challenge to the system and 

capture its response. This may be achieved pharmacologically, and in the experiments 

reported in this thesis I elected to use the drug riluzole, because it has broad actions on E-I 

and should therefore modulate E-I transmission in a range of participants. 

 

Riluzole is an FDA-approved medication for the treatment of amyotrophic lateral sclerosis 

(ALS) and has actions at both GABA and glutamate targets. For example, in both in vitro and 
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in vivo studies, riluzole has been shown to inhibit pre-synaptic release of glutamate (Cheramy 

et al., 1992; Doble, 1996; Jehle et al., 2000), potentiate postsynaptic GABAA receptor 

function (He et al., 2002) and block GABA reuptake into the striatum (Mantz et al., 1994). In 

addition to its direct actions on glutamate and GABA pathways, riluzole may also modulate 

E-I via its additional effects on ion channel activity. For example, in vitro studies have shown 

riluzole to decrease sodium (Wang et al., 2008) and potassium (Zona et al., 1998) channel 

activity, as well as inhibiting ionotropic glutamate receptor currents (namely NMDA and 

Kainate; Debono et al. 1993). 

 

In this instance, the polypharmacology of riluzole may be advantageous; as a modulator of 

the E-I system through both glutamatergic and GABAergic mechanisms, riluzole should have 

the potential to modulate E-I flux in the majority of individuals. Importantly, riluzole has a 

well-established pharmacokinetic and safety profile; and a single dose can reach peak plasma 

concentration within a relatively short time frame (1 hour) with relatively low risk of adverse 

effects (Le Liboux et al., 1997). 

 

1.3.3.2 Choice of brain region 

It is clear from Table 1.3 that E-I imbalances are found in a variety of brain regions in ASD. 

For the present study, the dorsomedial prefrontal cortex (containing the anterior cingulate 

cortex) and a sub-cortical region targeting the left basal ganglia were selected as targets as 

both are associated with the social, communication, affective and cognitive functions which 

are disrupted in autism (see page 60 for further detail). The larger area of the dorsomedial 

prefrontal cortex was selected as the region of interest, rather than the anterior cingulate 

alone, in order to compare results with other ongoing studies in the department which used 
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the same methodology. This was also a technical decision, as a large region is needed to 

capture a good signal, thus the voxel extends beyond the size of the ACC. 

 

1.3.3.3 Choice of modality 

Responsivity of the E-I system can be investigated at multiple levels in the human brain, each 

of which tell us something different. As explored in section 1.3.2, MRS enables sampling of 

bulk intracellular measures of metabolites and will allow for comparisons of E-I responsivity 

at a tissue level. In the present thesis, I therefore opted to utilise this technique to investigate 

whether the intracellular dynamics of the E-I system differs in ASD. However, MRS is not 

sensitive to differences in synaptic events, therefore it is not possible to know what 

proportion of the metabolites measured are a result of active neurotransmission. An 

additional approach may therefore help to assess E-I responsivity in terms of its influence on 

brain function.  

 

1.3.4 E-I in the living human brain – functional impact 

Functional connectivity as measured using fMRI refers to the extent that activity across 

interconnected brain regions is synchronized (Friston, Worsley, Frackowiak, Mazziotta, & 

Evans, 1994); i.e. what fires together wires together (Hebbian theory -Hebb 1949). As ‘firing’ 

is primarily determined by the balance between glutamate-driven excitation, and inhibitory 

GABA feedback signalling within local microcircuits (Buzsáki et al., 2007; Kapogiannis et 

al., 2013; Magistretti & Pellerin, 1999), functional connectivity measures can be used to as a 

proxy measure of inter-regional glutamatergic and GABAergic drive. For example, in typical 

individuals, prefrontal glutamate concentration correlates with the strength of prefrontal 

functional connectivity (Duncan et al., 2013); and posteromedial cortex glutamate and GABA 
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predict intrinsic functional connectivity of the default mode network (Kapogiannis et al., 

2013). Likewise, local GABA concentration predicts the extent of inhibition within the motor 

network (Stagg et al., 2014) and striatal GABA levels relate to functional connectivity of the 

basal ganglia (Haag et al., 2015). Any changes to E-I balance may therefore have widespread 

influence on the regulation of the functional connectivity of resting state networks. However, 

functional connectivity can also be modulated through multiple neurotransmitter systems, and 

this should be remembered when interpreting the results from fMRI studies. 

 

It is well established in the literature that functional connectivity, potentially stemming from 

E-I differences, is altered in ASD (Hahamy, Behrmann, & Malach, 2015; Jann et al., 2015; 

Just, Keller, Malave, Kana, & Varma, 2012; Schipul, Keller, & Just, 2011). Under-

connectivity across long-distance networks in ASD has been fairly consistently reported in 

ASD (Cherkassky, Kana, Keller, & Just, 2006; Just, Cherkassky, Keller, & Minshew, 2004; 

Just et al., 2012; Washington et al., 2014), particularly in networks incorporating the 

prefrontal cortex, for example the default mode network (DMN) where reduced connectivity 

in ASD has been linked to severity of social symptoms (Assaf et al., 2010; Weng et al., 

2010).  By contrast, others have found over-connectivity in shorter distance networks in ASD 

(Uddin et al., 2013). For example, social impairments and repetitive behaviours have been 

linked to increased connectivity within cortico-striatal circuitry (Delmonte et al., 2013). 

Taken together, there appears to be a loss of long range neural coherence, coupled with, 

perhaps compensatory, increases in short-range cortico-subcortical connectivity in ASD at 

rest (reviewed by Rane et al. 2015).  However, to date, no one has examined the dynamics of 

this system and whether functional connectivity in ASD is ‘fixed’, or if it can be shifted by E-

I modulation. 
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Hence, the present thesis also incorporated a resting state fMRI study to examine whether 

there are group differences in the response of functional connectivity of networks associated 

with ASD after E-I challenge with riluzole. 

  

As noted above, the MRS and functional connectivity measures used in the human studies in 

this thesis have limitations. For instance, MRS is a direct measure of glutamate and GABA 

but only at a ‘bulk’ tissue (and mainly intracellular) level; and fMRI is an indirect measure of 

network activity that does not directly measure extracellular levels of neurotransmitters in the 

living brain. Examination of neurotransmitter efflux into the extracellular space is however 

possible in animal models using in vivo microdialysis. 

 

1.3.5 E-I in the rodent brain – sampling the extracellular space 

Microdialysis is an established sampling technique for the in vivo measurement of 

neurotransmitter efflux into the extracellular space of discrete brain regions (see methods 

section 2.2.4.2 for further detail). For example, microdialysis has proven effective at 

capturing increases in prefrontal and caudate efflux of glutamate following amphetamine 

(Del Arco, Martínez, & Mora, 1998) and haloperidol treatment respectively (Yamamoto & 

Cooperman, 1994). Pertinently, this technique has also captured decreases in glutamate efflux 

from the ventral posterolateral nucleus of the thalamus following riluzole administration in 

prior rodent studies (Abarca et al., 2000). GABA can also be reliably captured using this 

method (Wydra et al., 2013), and most importantly both glutamate and GABA may be 

sampled from the same brain region at the same time; and measures can be taken at multiple 

time points over a few hours, in freely moving, live rodents (Zapata et al., 2009).  
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To investigate extracellular E-I responsivity using this technique, it was first necessary to 

select an appropriate animal model of ASD. It is essentially impossible to capture the 

complex and heterogeneous phenotype of the human condition with one genetic or 

environmental alteration, and consequently a broad array of animals modelling different 

aspects of ASD have been generated (Burrows et al., 2015; Esclassan et al., 2015; Liu et al., 

2016; Mabunga et al., 2015; Shinoda et al., 2013; Stewart et al., 2014). For my study, I 

selected the Neurexin1 homozygous knock out rat (Nrxn1-/-), as previously described in 

section 1.3.1, because it models disruption at glutamate and GABA synapses, and hence 

potentially the E-I imbalance, which is associated with ASD. To mirror the human arm of the 

experiment, Nrxn1-/- rats or wild type controls were given either a single oral dose of 

riluzole, or equivalent vehicle (placebo), and GABA and glutamate efflux were measured. To 

my knowledge, this is the first time that E-I response to pharmacological challenge has been 

investigated in Nrxn1-/- rats.  
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1.4 The present thesis: aims and hypotheses 

The evidence presented thus far suggests that E-I imbalances contribute to the pathology of 

ASD, yet to date, nobody has ever investigated what is likely to be a crucial element - E-I 

responsivity. This is important as differences in E-I pathways in ASD may not necessarily be 

best understood by capturing data in the ‘resting state’ or at a single time point. Instead, what 

is important in ASD may be the responsivity, or flux, of the E-I system.  

 

To assess E-I responsivity, we can examine how the system is – or is not – shifted by a 

challenge. To this end, riluzole was selected as a pharmacological probe to activate both 

glutamate and GABA pathways.  

 

There is no single modality which can fully assess whether there are E-I responsivity 

differences in the living brain, therefore I employed a range of modalities to probe E-I at 

different resolutions – i) bulk tissue, ii) functional network and iii) extracellular levels. I 

could address i) and ii) in humans but needed to address iii) in an animal model; the Nrxn1-/- 

knock-out rat (see Figure 1.5).  

 

1.4.1 Clinical Studies 

1.4.1.1 E-I responsivity of adult men with ASD: 1[H]MRS  

1[H]MRS was used to investigate whether the responsivity of bulk E-I metabolites differed 

between adult men with and without ASD at the intracellular level, when challenged with the 

pharmacological probe, riluzole. The targets selected for MRS study were the dorsomedial 

prefrontal cortex (Chapter 3) and the basal ganglia (Chapter 4). 
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1.4.1.2 E-I responsivity of adult men with ASD: Resting state fMRI  

The selected brain regions do not act in isolation, rather they function as part of wider brain 

networks. Therefore, where a group difference in MRS measured E-I responsivity was found 

(in the dorsomedial prefrontal cortex, see Chapter 3), resting state fMRI was used to 

investigate the functional connectivity of that brain region with the rest of the brain. I 

hypothesized that there would be an ASD-control difference in resting state functional 

connectivity response to riluzole challenge. Specifically, I anticipated the ASD group would 

demonstrate reduced functional connectivity of the prefrontal cortex at baseline, compared to 

controls, and that functional connectivity of this region would increase upon administration 

of riluzole. Comparatively, I hypothesised that riluzole would not affect the functional 

connectivity of the control group, as they would re-balance E-I after a rilzuole challenge. 

This study is reported in Chapter 3. 

 

1.4.2 Pre-clinical studies 

1.4.2.1 Validating the Neurexin1-/- rat as a model of E-I imbalance 

observed in the human studies: Ex vivo 

Prior to investigating responsivity differences in the Nrxn1-/- rat, I first investigated whether 

baseline E-I differences between the knock out rat and wild type controls were comparable to 

the clinical cohort in terms of their baseline neurochemistry. Equivalent brain regions to the 

human study were dissected (prefrontal cortex and caudate putamen) and the bulk 

intracellular level of metabolites in the tissue were assessed. This study is reported in Chapter 

5. 
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1.4.2.2 E-I responsivity of Neurexin1-/- rats: Ex vivo 

I next examined bulk intracellular differences in E-I metabolites ex vivo in the prefrontal 

cortex and caudate putamen of Nrxn1-/- and wild type rats after riluzole administration. 

Specifically, I tested the hypothesis that there would be group differences in E-I responsivity, 

in terms of bulk measures of E-I metabolites, which would match the results of the human 

MRS study. This approach is reported in Chapter 5. 

 

1.4.2.3 E-I responsivity of Neurexin1-/- rats: In vivo microdialysis 

Finally, I used in vivo microdialysis to investigate changes in extracellular flux of E-I 

metabolites, after riluzole administration. Specifically, glutamate and GABA efflux in the 

medial prefrontal cortex and caudate putamen were compared following administration of 

riluzole or 1% HEC (vehicle) in wild type and Nrxn1-/- rats. I hypothesised that there would 

be group differences in responsivity to riluzole in terms of local extracellular 

neurotransmitter efflux. This study is reported in Chapter 6. 
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1.4.3 Summary of thesis plan 

To summarise, the following thesis will examine E-I responsivity at the intracellular, 

functional and extracellular levels: 

 

 

 

 

 

 

 

 

 

Figure 1.5: Schematic representation of study design and the level at which E-I 

responsivity will be examined 
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Chapter 2  

General Methods 

2.1 Measuring E-I in humans 

2.1.1 Study design 

A case-control, crossover repeated measures study was designed to compare in vivo 

metabolite levels ‘at rest’ (placebo) and when ‘activated’, by a standard 50 mg oral dose of 

riluzole. A placebo condition was deemed essential to control for non-specific effects such as 

anxiety which may independently alter E-I dynamics in both the patient and control 

population (Lydiard, 2003). 

 

Participants were scanned on two occasions, one week apart to ensure full drug ‘wash-out’ 

between scans (riluzole half-life is estimated at 12 hours (Le Liboux et al., 1997)). The order 

of drug administration was pseudo-randomised (crossover) to ensure half of participants 

received placebo on their first visit, and half received riluzole. The participant, clinicians and 

study lead were blind to this randomisation to exclude bias.  

 

At the start of each session, a brief medical assessment was performed by a study clinician to 

check normal heart rate, blood pressure and respiratory function before participants were 

given either a capsule of riluzole or matched placebo to swallow with water. The tablet was 

administered 45 minutes prior to the participant entering the scanner, to ensure data 

collection began at the time of estimated peak drug effect (1-hour post dose). During the wait 

period, participants completed study questionnaires. After the scan, participants were re-



73 

assessed by a clinician and completed an adverse-effect form before leaving the facilities. See 

Table 2.1 for an overview of the study design: 

 

 Prior to Scan First Scan Second Scan 

Recruitment X   

Patient Information and Informed Consent X   

Medical Assessment  

(via questionnaire and physical examination) 

X X X 

Questionnaires 

 

X X X 

Oral administration of placebo/riluzole  X X 

MRI Scan 

 

 X X 

Adverse Effects Interview 

 

 X X 

 

Table 2.1: Study overview 

An example time course of events throughout the duration of the study. 
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On both visits, the total scan duration was approximately 60 minutes. During this time, a 

structural MRI image was obtained, followed by two MRS acquisitions, then resting state 

fMRI. If there was time remaining, Arterial Spin Labelling (ASL) data were also acquired but 

were not used in this thesis. See Figure 2.1 for an overview of the scan timeline: 

 

 

Figure 2.1: Timetable of in-scanner events 

An example time course of events from the time of drug administration. Riluzole or placebo 

was administered at time zero, followed by a 45-minute wait, during which time study 

questionnaires were completed. The participant entered the scanner 45 minutes post-dose and 

the structural scan was performed. MRS data acquisition began 60 minutes after drug 

administration, followed by fMRI. Total scan duration was 60 minutes. Timeline is not to 

scale. 
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2.1.2 Study materials and compounds 

The study was performed on a 3 Tesla (3T) GE Excite II Magnetic Resonance Imaging 

scanner (GE Medical Systems, WI, USA) at the Centre for Neuroimaging Sciences, Kings 

College London, UK. 

 

2.1.2.1 Drug and placebo 

Riluzole was obtained from the manufacturer, Sanofi, UK, and dispensed by the Maudsley 

Hospital Pharmacy (South London and the Maudsley NHS Foundation Trust, UK). 

 

Placebo, ascorbic acid (vitamin C), was obtained from the manufacturer, Dalkeith 

Laboratories Ltd, UK, and dispensed by the Maudsley Hospital Pharmacy. Both riluzole and 

placebo were encapsulated by a pharmacist such that both tablets appeared identical, and 

drug administration was double-blind. The drug or placebo assignment information was held 

by the Maudsley Hospital Pharmacy and the Chief Investigator, who performed the 

randomization using a computer algorithm (Haahr, 1998).  

 

2.1.2.2 Study Questionnaires 

In the wait time between drug administration and the scanning protocol, participants were 

invited to complete a series of questionnaires: 

 

Autism Spectrum Quotient (AQ): A screening instrument of 50 statements which measures 

autistic traits in adults. The subject was asked to indicate to what extent they agree with the 

statements, for example: ‘I find social situations easy’. Scores range from 0-50, with the 

diagnostic cut off being >32 (Baron-Cohen et al., 2001). 
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State-Trait Anxiety Inventory (STAI): We asked participants to complete the ‘State’ part of 

the STAI as a measure of current anxiety levels before both scans. Scores range between 20-

80, with a higher score indicating higher anxiety (Spielberger et al., 1970). 

 

Obsessive Compulsive Inventory- Revised (OCI-R): This questionnaire comprises of 18 

questions which measure to what extent obsessive and compulsive traits interfere with the 

subject’s life (Abramowitz & Deacon, 2006). A score of >21 indicates obsessive compulsive 

disorder, with the mean score of an OCD patient being 28 (Foa et al., 2002). This was used in 

this study as an additional measure of mental state, and as a proxy measure of current traits of 

rituals and compulsions, which are found in ASD but are not always well documented by the 

ADOS. 

 

Barkley’s Current Scale: The participant was asked to complete the Barkley’s self-

assessment, which measures inattention and hyperactivity (Barkley & Russell, 2011). The 

same questionnaire was then given to the participant to take home for an informant (family 

member/friend) to complete to assess the participant’s insight to their symptom presentation. 

 

2.1.3 Participants 

2.1.3.1 Recruitment 

We recruited a total of 37 adult men aged 18-60, 17 of which had a confirmed ASD 

diagnosis, and 20 age- and IQ-matched controls. Adults with ASD were recruited from a 

database of patients at the Maudsley Behavioural Genetics Clinic who had consented to be 

contacted for research. Control participants were recruited from the local community. All 

potential participants were provided with information sheets (see Appendix 2) and had the 



77 

study rationale and protocol explained verbally. Written, informed consent was obtained prior 

to study commencement, by a trained member of the research team (see Appendix 3). 

 

2.1.3.2 Inclusion and Exclusion criteria  

Men with ASD had their clinical diagnosis of autism spectrum disorder confirmed using the 

Autism Diagnostic Observation Schedule and where an informant was available, Autism 

Diagnostic Interview – Revised. This was usually carried out in the clinic at the time of their 

initial diagnosis; if this was the case, it was not repeated for the study. 

Participant suitability was assessed using a thorough pre-recruitment screening questionnaire, 

completed over the phone with a researcher. 

 

Inclusion criteria for all participants were; IQ above 70; absence of current psychoactive 

medication, and being medication free for a minimum of 6 weeks to avoid potential 

confounds from drug interactions. For the same reason, only participants who consumed less 

than 28 units of alcohol per week, and smoked less than 4 cigarettes per day were deemed 

eligible for inclusion. Exclusion criteria for all participants were; comorbid psychiatric or 

medical condition which may affect brain development (e.g. epilepsy or psychosis), head 

injury, or genetic or chromosomal disorder associated with ASD (e.g. Fragile X or tuberous 

sclerosis). In the ASD group, known genetic disorders were screened by checking patient 

records for any outstanding diagnoses. Additionally, both groups were asked if they had any 

knowledge of chromosomal or genetic disorders within their family, or if they had ever had 

tests for, or been told they had a chromosomal or genetic disorder themselves. Participants 

were also excluded if they had a recent history of psychoactive substance abuse, drug allergy 

(particularly to E-I acting drugs) or any contraindication to MRI scanning, for example metal 

in the body. Full exclusion criteria and rationale are provided in Appendix 4. 
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2.1.4 Magnetic Resonance Spectroscopy 

Proton Magnetic Resonance Spectroscopy ([1H]MRS) is a rapidly developing neuroimaging 

technique that allows non-invasive in vivo analysis and quantification of neurochemicals and 

their metabolites. Using this methodology, it is possible to quantify excitatory and inhibitory 

neurotransmitters (glutamate and GABA) within specific, pre-defined regions of brain tissue; 

and thus, to examine the potential biochemical underpinnings of neurological and psychiatric 

disorders. MRS has the advantage of being non-invasive, without the need for injections, or 

radioactive materials. As such, patients tend to be more comfortable and the level of study 

compliance for repeat visits is high.   

 

2.1.4.1 The Physics of 1[H]MRS 

2.1.4.1.1 Nuclear magnetic resonance 

[1H]MRS works on the principle that hydrogen (1H) nuclei, otherwise known as protons, are 

in constant precession (spinning around their own axes); which contributes to the induction of 

a magnetic moment. As shown in Figure 2.2 A, in the absence of a magnetic field, protons ‘at 

rest’ (without artificial stimulation) are in random alignment. The application of an external 

magnetic field (Bo) generated by an MRI scanner magnetizes a proportion of protons and 

causes them to align themselves along the magnetic field lines (Figure 2.2 B). This produces 

a net magnetisation effect, longitudinal to the applied magnetic field. Under normal 

circumstances, the aligned hydrogen nuclei continue to precess around their axes with the 

frequency of their precession being proportional to the applied magnetic field strength 

according to the Lamor equation: 
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𝜔0 =  𝛾 𝛽0 

 

Where 0 represents precessional (Lamor) frequency (MHz),  is the gyromagnetic ratio 

(MHz/T) and 0 is magnetic field strength (T). 

 

2.1.4.1.2 Excitation, relaxation and MR signal acquisition 

The application of a radiofrequency (RF) pulse, Brf, (an additional time-dependent magnetic 

field, equal to the Lamor frequency) causes the nuclei to absorb energy, and transition to a 

higher energy state, thus creating an overall excitation effect. The RF is usually applied 

perpendicular to Bo (Figure 2.2 C), which alters the original direction of proton alignment, 

and causes the protons to spin at a new angle, away from Bo. This new angle of proton 

orientation is termed the flip angle and is directly proportional to the direction and amplitude 

of the applied RF pulse (usually 90 degrees). This changing of the direction of proton 

alignment causes an induced current in the coil of the scanner- this current can be measured 

and is commonly referred to as the MR signal.  

 

When the RF pulse stops, the protons return to their original lower energy state, and line up 

with the direction of the scanner’s magnetic field once more (Figure 2.2 D). This return to 

equilibrium is termed relaxation, specifically ‘T1 longitudinal relaxation’ and is defined as 

the time taken for the protons to realign with Bo after a radiofrequency pulse application. 

During relaxation, protons ‘decay’ and release their absorbed energy. As the protons return to 

their original alignment, the magnetic fields of the individual protons interact with each other 

and exchange energy. This results in an overall loss of signal, and is termed ‘T2 transverse 

relaxation’. Both T1 and T2 times vary, depending on the intrinsic properties of the tissue 
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that is being imaged. We can therefore use this information to distinguish between different 

tissue types in the brain, i.e. structural MRI. 

 

Multiple RF pulses are applied during a single scan, at a predetermined rate, termed 

repetition time (TR). Together with the inversion time (TI- time between different pulse 

sequences) and echo delay time (TE- time between the application of the RF pulse and the 

detection of the response signal) they affect the appearance of the signal readout; variations 

in these parameters can affect both the image contrast and the overall duration of the scan. 
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Figure 2.2: Schematic representation of proton behaviour in an MRI scanner 

A) Hydrogen atoms, or protons, outside a scanner orientate in random directions;  

B) once under the influence of the strong magnetic field (Bo) created by the scanner, the 

protons align with the direction of the magnetic field;  

C) a radiofrequency pulse (Brf) is applied perpendicular to Bo and the protons tilt and change 

their direction of alignment;  

D) once the applied radiofrequency pulse fades, protons return to their equilibrium position, 

as in (B) and release energy in the form of their own radiofrequency signal- this is termed 

‘decay’ and can be measured and quantified.   
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2.1.4.2 Generating a structural MR image  

The MR signal obtained from an MRI scan does not immediately translate to a structural 

image. First, the signal must be expressed in an intermediate form, in k-space, before being 

reconstructed into an image via a Fourier Transform. The final image is given as a map of 

pixels in grey scale- each one representing a spatial location, and coloured to indicate the 

level of tissue contrast. 

 

Tissues with high proton density will release a larger signal (brighter) than those with lower 

proton density (darker). Additionally, the longer a signal takes to decay, the lower the signal 

intensity will be and the darker the pixel will appear. We can externally manipulate tissue 

contrast by varying parameters such as the TE, TR and flip angle; to achieve a T1-weighted 

image, the TR must be short, in order to reduce the recovery time before the application of 

the next RF pulse, whereas T2-weighted images are dependent upon long TE times, given 

that TE controls the amount of T2 decay that can occur. MR sequences can be designed to 

give different weightings to either T1 or T2, depending on the needs of the researcher. 

T1-weighted imaging shows tissues with high fat content (e.g. white matter) as bright and 

compartments filled with water (e.g. CSF and ventricles) as dark, and is therefore used to 

demonstrate anatomical structures. In comparison, T2-weighted images show the opposite- 

water filled regions are bright and tissues with high fat are dark. This is especially useful for 

demonstrating pathology since most lesions are associated with an increase in water content, 

and are easily identifiable as bright spots.  

 

The present study included an initial structural MRI scan, namely a 3D fast spoiled gradient-

recalled echo (FSPGR) acquisition (number of slices = 124, slice thickness= 1.1mm, 

inversion time (TI) = 450 ms, repetition time (TR) = 7.084 ms, echo time (TE) = 2.84 ms, 
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field of view= 280 mm, flip angle= 20o). This was then used to set the voxel locations for the 

spectroscopy scans. 

 

2.1.4.3 Defining a region of interest 

[1H]MRS data acquisition was performed in two regions of interest; a medial prefrontal 

cortical region, comprising the anterior cingulate cortex (primarily grey matter), and a 

subcortical region; in the left basal ganglia, comprising of the head of the caudate, the 

anterior putamen and the global pallidus internal capsule, plus white matter tracts (see Figure 

2.3) using the following parameters: 

 

Bilateral dorsomedial prefrontal cortex; 25 (left-right) x 30 (superior-inferior) x 40 

(anterior-posterior) mm3; TR = 2000 ms, TE = 68 ms. 

 

Left basal ganglia; 35 x 25 x 30 mm3; TR = 1800 ms, TE = 68 ms. 
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Figure 2.3: Examples of placement of [1H]MRS voxels 

A. Example of subcortical voxel placement, including the head of the caudate, putamen 

and internal globus pallidus. 

B. Example of anterior cingulate cortex voxel placement 

 

 

2.1.4.4 Generating a metabolite spectrum 

In MRS, instead of using the MR signal to construct images, the frequency information is 

used to identify chemical compounds. Specific molecules within a scanning region of interest 

can be identified by the way in which their protons behave in the applied magnetic field 

sequences of the scanner. Within a given field strength, protons in different molecules 

experience different levels of ‘chemical shielding’, whereby surrounding electron clouds 

affect the magnetic field experienced by the proton; i.e. if the electrons are close to the 

proton, there is a shielding effect and the proton ‘experiences’ a minimally smaller magnetic 

field. The extent to which the shift caused by shielding occurs, depends on the structure of 

the molecule and the position of the proton within the molecule- for this reason, it is known 

as ‘chemical shift’. As such, each molecule has a specific chemical shift, which can be used 

Left Right 

Left Right 

A 

B 
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to identify it. Much like with MRI structural data, a Fourier Transform is applied to the MRS 

data output to separate the signal into individual frequencies, which are expressed in the form 

of a magnetic resonance spectrum. The spectrum is a plot of signal intensity on the y-axis 

(roughly proportional to metabolite concentration), versus chemical shift on the x-axis. 

Chemical shift is reported in magnetic field-independent units; parts per million (ppm) of the 

proton frequency, so the output is the same regardless of the magnetic strength of the scanner. 

The position of a peak on the x-axis measures the chemical shift relative to a reference (by 

convention, the chemical shift of tetramethylsilane (TMS) protons is defined as 0 ppm) and 

can be used to identify chemicals (see Figure 2.4 and Table 2.2). 

 

In principle, the area under each peak is proportional to the number of protons contributing to 

the metabolite of interest, however this is not an absolute concentration, but rather an 

indication of the level of metabolite, which can be compared between time points or between 

groups (but not interpreted in terms of physical concentration directly). 
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Figure 2.4: An example [1H]MRS spectrum 

A spectrum is a frequency analysis (Fourier Transform) of the signal that is detected during 

an MRS study. The height of the peak is equivalent to the strength of the signal and the 

position on the x-axis is determined by the degree of chemical shift, which is specific to each 

chemical and can be used to identify it. N-acetly-aspartate (NAA) can be identified by the 

large peak at 2 ppm, which is due to the combined J-coupling effect of the three protons in its 

CH3 group. If shown, the water peak would be at 4.7 ppm. The water peak is suppressed in 

most MRS spectra as it would be dramatically larger than the metabolic peaks. Figure 

adapted from Blüml and Panigrahy, 2013. 
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Chemical shift (ppm) Metabolite Properties 

0 Tetramethylsilane (TMS) Reference 

2.0 N-Acetyl-Aspartate (NAA) Neuronal marker 

2.2 - 2.4 Glutamine/GABA Neurotransmitters 

3.0 Creatine (Cr) Energy metabolism 

3.2 Choline (Cho) Cell membrane marker 

3.5 Myoinositol (mI) Glial cell marker 

4.7 Water - 

 

Table 2.2: Observable metabolites using [1H]MRS 

Various metabolites and neuronal markers can be identified by their degree of chemical shift, 

measured in parts per million (ppm). Note that some metabolites have multiple peaks, but the 

ones most useful for quantification are listed above. 

 

In addition to chemical shift, the spectrum is also modulated by J-coupling. J-coupling is the 

result of the interaction between neighbouring protons; uncoupled protons yield single peaks, 

whereas coupled protons give peaks split into two or three. The resulting distinct peak pattern 

and size tells us about bond distance and bond angles and helps to identify molecules. For 

example, the three protons of the -CH3 group of NAA combine to create one large peak at 2 

ppm, which is characteristic of NAA (Figure 2.4). J-coupling modulates signal intensity 

depending on the sequence type and acquisition parameters of the scan. The most important 

parameter is the Echo delay Time (TE) (time between the applied RF pulse and signal 

readout). During this time, the signal from each metabolite peak relaxes with its own 

characteristic T2-relaxation time (a measure of signal decay) and the signal amplitude of J-

coupled proton is modulated. Long echo times (TE  135 ms) simplify spectra by reducing 
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the number of detectable peaks, and are therefore mostly used in clinical practise where clear 

peak identification is needed. By contrast, short echo times (TE< 35 ms) allows the detection 

of an increased number of metabolites and give a better signal to noise ratio than long TE. 

One common pulse sequence is Point RESolved Spectroscopy (PRESS), a 90o - 180o - 180o 

sequence of RF pulses, which gives better visualisation of metabolites with longer relaxation 

times. Whilst this sequence captures glutamate clearly, GABA has proven difficult to reliably 

measure, mainly due to the large overlap between GABA peaks (at 3.0 ppm, 2.3 ppm and 1.9 

ppm) and those of other metabolites which are present in much higher concentrations. GABA 

is found in the human brain at around 1mM, significantly lower than most other metabolites, 

and 40,000 times lower than water (Puts & Edden, 2012).  

 

MEshcher-GArwood Point RESolved Spectroscopy (MEGAPRESS) is, at this stage, the 

standard technique for obtaining GABA measurements in MRS, and can be incorporated into 

the basic PRESS sequence. Unlike conventional PRESS, MEGA-PRESS can separate the 

GABA signal from that of other metabolites, by taking advantage of known J-couplings 

within the GABA molecule. Using a ‘difference-edited technique’, MEGA-PRESS collects 

two datasets which differ in the way they affect GABA spin. In one set, an editing pulse is 

applied at 1.9 ppm which selectively refocuses the GABA signal at 3.0 ppm- this is referred 

to as ‘ON’. In the second, control dataset, the editing pulse is either not applied, or applied at 

a different frequency that does not affect GABA signals or any other metabolite of interest- 

this is referred to as ‘OFF’. During processing of the data, the ON signal is subtracted from 

the general OFF signal, to leave only the data affected by the GABA-specific editing pulse, 

i.e. GABA (Edden & Barker, 2007; Mescher et al., 1998). This process is referred to as J-

difference editing.  
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2.1.4.5 Spectral data processing 

In this study, MRS spectra were pre-processed using SAGE (Spectroscopy Analysis, GE 

Healthcare Technologies, WI, USA) spectral analysis software (SAGE 2007, GE Healthcare 

Technologies, WI, USA) to perform the edit ON – edit OFF subtraction, to extract the 

subtraction (difference) spectrum, the unedited spectrum (equivalent to a conventional 

PRESS spectrum) and the unsuppressed water spectrum. These spectra were further 

processed and quantified using JMRUI (Java based Magnetic Resonance User Interface) 

version 4 software (Naressi et al., 2001) and each participant’s raw data was checked for 

quality to ensure adequate signal to noise ratio and absence of artefacts. If required and 

appropriate, artefacts were removed using JMRUI peak fitting and removal algorithm to 

restore data integrity. Metabolite concentrations were estimated using the AMARES 

algorithm (Advanced Method for Accurate, Robust and Efficient Spectral fitting of noisy 

MRI data). In the subtraction spectrum; GABA (+ macromolecule) at 3.0 ppm, Glx 

(Glutamate + Glutamine; as the measure of glutamate) as two peaks at 3.8 and 3.75 ppm and 

N-acetylaspartate (NAA) at 2.01 ppm were estimated. In the unedited spectrum; Choline at 

3.19 ppm, Creatine at 2.99 ppm and, NAA at 2.01 ppm were estimated. To correct for inter-

subject variations in water levels, each metabolite was multiplied by an individual Water 

Scaling Constant (WSC); 

 

𝑊𝑎𝑡𝑒𝑟 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (𝑊𝑆𝐶) =
1

𝑊𝑎𝑡𝑒𝑟 𝐴𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒
 

 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  = 𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒𝑅𝑎𝑤 𝑣𝑎𝑙𝑢𝑒 ×  𝑊𝑆𝐶 
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Additionally, partial volume effects (group variation in proportions of grey matter (GM), 

white matter (WM) and cerebrospinal fluid (CSF) in the [1H]MRS voxels) are a potential 

confound in spectroscopy. This is of particular relevance to the present study, as previous 

literature has indicated volumetric differences between ASD and control participants 

(Haznedar et al., 2006). To assess voxel composition, the initial structural MRI scan was 

segmented into GM, WM and CSF using SPM2 (UCL). The position of the voxel was then 

registered to the corresponding segmented structural scan and the GM, WM and CSF content 

of this region was calculated using in-house software. Assuming CSF contains negligible 

amounts of the metabolites of interest, all data was corrected for varying levels of CSF in the 

voxel as follows: 

𝐶𝑆𝐹 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 =  
1

(1 − 𝐶𝑆𝐹)
 

 

𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝐶𝑆𝐹 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝑀𝑒𝑡𝑎𝑏𝑜𝑙𝑖𝑡𝑒 𝑊𝑎𝑡𝑒𝑟 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑  ×  𝐶𝑆𝐹 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 

 

2.1.4.6 Limitations of [1H]MRS 

Though sequences such as MEGAPRESS have greatly advanced our ability to measure the 

GABA signal, there remain some problems in the reliability of its detection. When 

MEGAPRESS is implemented at 3T using the standard acquisition parameters of a 68 ms 

echo time (TE), as in the present study, there is potential for contamination of the GABA 

peak with co-edited macromolecular (MM) signals (Edden et al., 2012; Henry et al., 2001; 

Rothman et al., 1993). This is because the ON pulse applied at 1.9 ppm, also affects the MM 

signal at 3.0 ppm, the same frequency as the GABA signal. As a result, the final edited 

GABA measure is contaminated with MM and potentially as much as 45% of the total 

GABA signal output is known to be due to MM, rather than GABA alone (Mullins et al., 
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2014). Modifications to the MEGAPRESS sequence have been devised that reduce the MM 

signal (Harris et al., 2015; Henry et al., 2001), though this often results in also diminishing 

the GABA signal, which is small to begin with. The most common approach therefore, is to 

acknowledge the presence of MM within the GABA signal and report it as such - it is often 

referred to as GABA+MM or GABA+. Whilst this allows for comparison across studies, 

there is always the query over whether results are driven by GABA or MM. 

 

Likewise, depending upon the magnetic field strength of the scanner used, it is not always 

possible to differentiate between glutamate and its metabolite glutamine, due to the overlap 

of their resonant peaks. As a result, the combined signal is commonly reported as Glx 

(Ramadan et al., 2013).  

 

The need to supress the large water signal in order to detect metabolites also poses a problem, 

as insufficient and variable methods of suppression may result in variation of metabolite 

levels across subjects and studies. 

 

Another cause for inter-study variation is the way in which we choose to express metabolite 

levels. It is common in MRS literature for metabolite concentrations to be expressed as a 

ratio, relative to a metabolite which is deemed to be more stable- most often this is creatine. 

This is problematic in atypical brains however; creatine levels have been shown to be 

disrupted in ASD, with reductions in the thalamus, insula, corpus callosum (Friedman et al., 

2003) and head of the caudate (Levitt et al., 2003); and increased levels in amygdala-

hippocampal regions (Page et al., 2006) and the medial prefrontal lobe (Murphy et al., 2002). 

This widespread variability in creatine findings has reduced its use as an internal reference 
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point (Rackayova et al., 2017), and therefore the present study used absolute measures of 

metabolites only to avoid such confounds. 

 

Finally, and perhaps most importantly, [1H]MRS, specifically when applying MEGAPRESS 

techniques, is inherently limited by the size of the voxel and the lack of specificity and spatial 

resolution within the voxel. [1H]MRS is essentially a crude tool which restricts us to bulk 

measurements of metabolites- i.e. a specific region of interest’s capacity to hold metabolites- 

we cannot say whether these metabolites are active or metabolic, or specify whether they 

originate in neurons or in extracellular space. This macroscopic approach may provide insight 

into gross regional metabolite changes, but does not allow for circuit level analysis. 

 

2.1.5 Resting State Functional Magnetic Resonance Imaging 

Unlike Magnetic Resonance Imaging, which maps brain structure, or Magnetic Resonance 

Spectroscopy, which measures metabolite concentration, Functional Magnetic Resonance 

Imaging (fMRI) measures and maps brain activity.  

 

2.1.5.1 Concept 

fMRI was initially based on the premise that whilst performing a task, or action, specific 

areas of the brain are engaged; for example, the motor cortex is active during movement. It is 

now known that certain brain networks are also active ‘at rest’, i.e. even when the brain is not 

engaged in a specific task, certain regions which are known to function together are active in 

synchrony (Biswal et al., 1995). These so-called resting state networks can be examined to 

investigate the brain’s functional organisation and to examine whether it is altered in 

psychiatric disorders.  



93 

As in the construction of MR images (described in detail in the previous section), acquisition 

of fMRI data relies on the magnetisation of hydrogen atoms, which are manipulated with 

various applied radiofrequency pulses, and emit a signal which is measured. When neural 

activity in any particular area of the brain increases, this is matched by a slight increase of 

around 1% in the detected MR signal. Rather than a direct correlation between neural activity 

and MR signal output, the change in signal is an indirect effect caused by the change in 

regional blood flow which follows neural activity.  

 

This is dependent on two factors; firstly, oxygenated and oxygen-depleted blood have slightly 

different magnetic properties due to the bonding of haemoglobin. When oxygenated, 

haemoglobin is diamagnetic (repelled by a magnetic field), but paramagnetic (attracted to a 

magnetic field) when deoxygenated. Deoxygenated blood therefore slightly distorts the 

magnetic field in its immediate vicinity, creating microscopic field inconsistencies, which 

lead to the shortening of the T2 relaxation time within the tissue voxel- this is termed static 

dephasing. Therefore, variations in tissue oxygenation as a result of altered blood supply 

caused by regional changes in brain activity can be mapped by T2*-weighted MRI 

(Holdsworth & Bammer, 2008). 

 

The second effect is the somewhat paradoxical fact that neural activity prompts an increase in 

blood flow in surplus of that needed to satisfy the increase in oxygen metabolism, and thus 

blood actually becomes more oxygenated shortly after neural activity increases. This blood 

oxygenation level dependent (BOLD) effect is the basis for fMRI (Ogawa et al., 1990). At 

rest, the brain remains highly active, and these patterns of activity can reveal particular 

networks of areas which work together, so called resting state networks (RSNs) (Biswal et 

al., 1995). Resting state networks reflect the functional connectivity between different brain 
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regions, irrespective of their anatomical or structural connectivity. The strength of these 

RSNs can be affected by disease and can therefore be used to understand network activity in 

psychiatric disorders (Garrity et al., 2007; Greicius, 2008; van de Ven et al., 2004).  

 

2.1.5.2 Resting state fMRI BOLD data acquisition 

The most common image sequence for fMRI acquisition is echo planar imaging (EPI), in 

which data is captured during a succession of rapid field gradient reversals following RF 

excitation of protons. As in MR imaging, the contrast that is achieved is determined by 

several acquisition parameters, such as the TE, TR and flip angle. The speed at which images 

are acquired means that a whole brain may be imaged in as little as a few seconds, and the 

imaging is less sensitive to motion (i.e. head movement) than conventional MR. Furthermore, 

this speed also allows for the capturing of rapidly changing physiological processes such as 

blood flow and kinetic energy (DeLaPaz, 1994).  

 

In the present study (Chapter 3), resting state fMRI acquisition parameters were as follows: 

an EPI sequence, TR = 2 seconds, TE = 30 ms, 256 volumes. Slice thickness = 3 mm, 

number of slices = 38, slice spacing = 0.3 mm. Each slice comprised of 64 x 64 voxels with a 

field of view of 240 mm, for a final voxel size of 3.75 mm x 3.75 mm x 3.3 mm. Pulse and 

respiration parameters were also acquired during the fMRI scan, for the purposes of 

correcting for physiological artefacts (or noise) in the fMRI dataset, using a 

photoplethysmogram pulse oximeter and a chest band, respectively. 
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2.1.5.3 Resting state fMRI BOLD data processing  

Once data is acquired, the observed changes in the BOLD signal are reconstructed into a 4-

dimensional time series which reflects the changes in neuronal activity. The data undergo 

multiple pre-processing steps, including;  

 

Slice-time correction- as multiple ‘slices’ of the brain are being scanned in quick succession, 

the BOLD signal is sampled at different time points through different layers in the brain. 

Ideally, we want data from the whole brain at the same time point- correcting for slice timing 

allows us to see whole sections as if they were sampled at the same time, to prevent errors 

arising from a region spanning multiple slices. For each voxel, slice timing correction 

examines the time course, and shifts it by a small amount to interpolate between the points 

sampled to provide the time course that would have been observed had every slice within a 

volume been sampled at the same time. 

 

Motion correction- due to the rapid sampling of multiple slices in a short space of time, 

errors can arise from movement, however small, which may cause the brain to be in the 

wrong location for some images, or cause loss of data entirely if the movement is so gross the 

head moves out of the selected scanning volume. Motion correction is particularly important 

in resting state fMRI, when global brain activity is taken into account, and especially when 

comparing control and patient groups, who may significantly differ in their ability to remain 

still whilst in the scanner for extended periods of time. Effects of motion can be removed by 

correcting for motion-related components (as regressors) within the general linear model 

analysis, and further corrected when comparing across subjects by also normalising to a 

standard brain space, or co-registration. Brain normalisation is initiated by segmenting the 

brain into its component GM, WM and CSF tissue types and overlaying the structural and 
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functional images, thereby linking the functional data to the anatomical. Scans are then 

spatially normalised, establishing a one-to-one correspondence between the brains of 

different participants with a common template brain. This allows us to both determine what 

happens generally across individuals, and also identify any differences between groups, 

within a particular study and across other studies. Linear registration using a program such as 

SPM (UCL) accounts for major differences in head shape and positioning (though 

positioning should be somewhat accounted for by initial head placement in the scanner by 

radiographers), before nonlinear registration warps the brain images and accounts for smaller 

differences in anatomy (Friston, Ashburner, & Wellcome, 1997). 

 

Spatial smoothing is performed to average individual data points with their neighbours and 

thus lower the signal to noise ratio, increase sensitivity and increase the validity of statistical 

tests by normalising the error distribution of each point. However, this technique does reduce 

spatial accuracy of the data and may result in misrepresentation of where specifically 

activation is taking place (Mikl et al., 2008). 

 

Lastly, high-pass filtering is performed to ‘clean’ the final data signal and separate out any 

remaining noise. If you know the signal frequency you should be obtaining, you can remove 

any frequencies too low to be relevant, i.e. remove low frequencies and pass through high 

frequencies. 

 

The main approach to resting state fMRI data, and the one used in the present study, concerns 

connections between regions (functional connectivity). A commonly used method for 

analysing this is a hypothesis-driven seed-based analysis. This approach uses an extracted 

BOLD time course from an a priori region of interest and examines the temporal correlation 
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between this signal and the time course from all other brain regions. In this way, a functional 

connectivity map of correlation between a chosen region and the rest of the brain can be 

created. This map allocates Z scores for each voxel, showing how well its time series 

correlates with the time series of the seed region. Two regions are said to be functionally 

connected if the time series of their activation are correlated (Biswal et al., 1995; Fox et al., 

2005). 

 

In the present study, fMRI data were processed using FSL 5.0.0. The following pre-

processing steps were applied: motion correction using MCFLIRT; slice-timing correction 

using Fourier-space time-series phase-shifting; non-brain removal using BET; spatial 

smoothing using a Gaussian kernel of FWHM 5 mm; grand-mean intensity normalisation of 

the entire 4D dataset by a single multiplicative factor; and highpass temporal filtering 

(Gaussian-weighted least-squares straight line fitting, with sigma = 50.0 s).  

 

Manual inspection and removal of artefactual connectivity components was then carried out 

using hypothesis-free Probabilistic Independent Component Analysis as implemented in 

MELODIC (Multivariate Exploratory Linear Decomposition into Independent Components) 

Version 3.10, part of FSL (Analysis group, FMRIB, Oxford; Jenkinson, Beckmann, Behrens, 

Woolrich, & Smith, 2012). The decisions as to whether to exclude each component from a 

given fMRI scan were made by a researcher blind to group and to drug status.  

 

2.1.5.4 Limitations of resting state fMRI 

A much-criticised limitation of fMRI is that it does not measure neuronal function directly, 

rather it is a measure of secondary physiological correlates of neural activity- it is therefore 

not truly quantitative and there is always a risk that group or individual differences are 
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physiological rather than neurological. Additionally, caution must be exercised in processing 

fMRI data, hence the need for the extended measures described above. Further care must be 

taken when interpreting the data; in many pathologic conditions, cerebral blood volume and 

cerebral blood flow may be perturbed, and so the BOLD effect in these regions might present 

differently than in healthy regions despite otherwise normal underlying neuronal activity. 

 

Additionally, whilst spatial resolution is highly accurate, temporal resolution of fMRI is 

inherently limited by the slow speed of the BOLD response, and therefore sub-millisecond 

neural activity is not fully captured (Glover, 2011). 
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2.2 Measuring E-I in rodents 

The following pre-clinical protocols (Figure 2.5) were designed to complement the human 

study described above (section 2.1.1). Two separate studies were undertaken; firstly, an 

initial investigation into the pharmacokinetic profile of riluzole at the selected experimental 

dose was performed in wild type rats only (detailed in Chapter 5). Next, an in vivo 

microdialysis study determined the effect of riluzole on E-I efflux of extracellular 

neurotransmitters and metabolites in wild type and Neurexin 1 alpha () knock out (Nrxn1 -

/-) rats (detailed in Chapter 6). Brain tissue collected from this study was also analysed to 

evaluate the effect of riluzole on bulk tissue levels of E-I neurotransmitters (Chapter 5). 

 

 

Figure 2.5: Representation of pre-clinical study designs 

A. Pharmacokinetic study of blood and brain tissue concentrations of riluzole after a 

single, oral 4 mg/kg dose of riluzole in wild type (+/+) adult Wistar rats. 

B. In vivo microdialysis and ex vivo tissue analysis of wild type (+/+) and Nrxn1 -/- (-/-) 

rats after either 4 mg/kg oral dose of riluzole or equivalent vehicle. 
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2.2.1 Animals 

Adult male Nrxn1 -/- rats and littermate controls were sourced from SAGE labs (now 

Horizon Discovery, USA) and housed at Eli Lilly in standard conditions; 07:00 to 19:00 light 

phase, constant temperature (21°C) and humidity, ad libitum food and water, and 

environmental enrichment. 

Nrxn1 -/- rats contain a biallelic deletion, specifically, a 16 base pair 

(ACCACTCTCTACATCG) frameshift deletion in exon 1 of the Nrxn1 gene (see Figure 2.6), 

which was confirmed using sequencing techniques by the manufacturer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: Location of the 16 base pair deletion in the Nrxn1 gene 

Nrxn1 -/- rats contain a deletion (red) in the Nrxn1 gene in exon 1 (white) 
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2.2.2 Drug and vehicle  

Riluzole was obtained from SIGMA (Sigma, UK) and formulated in 1% HEC (hydroxyethyl 

cellulose; containing 0.25% Tween 80 and 0.05% antifoam) at 4 mg/kg (2 ml/kg).  

Vehicle was 1% HEC. 

 

2.2.2.1 Dose calculation 

50 mg oral dose of riluzole was administered in the human imaging study. To achieve an 

equivalent dose in the pre-clinical studies, a dose translation from human to rodent was 

calculated using body surface area as a guide (Reagan-Shaw et al., 2008): 

 

Human equivalent dose (mg/kg) = Animal dose (mg/kg) × 
𝑨𝒏𝒊𝒎𝒂𝒍 𝑲𝒎

𝑯𝒖𝒎𝒂𝒏 𝑲𝒎
 

 

where Km is the body weight to surface area ratio (human Km = 37; rat Km = 6) as defined by 

FDA guidelines (USA Food and Drug Administration, 2002).  

 

50 mg human dose is equivalent to 0.625 mg/kg for a standard 80 kg male or female, 

therefore using the above formula, where the human Km = 37 and rat Km = 6, the equivalent 

rat dose is 3.85 mg/kg. 

 

A 4 mg/kg dose in adult rats is consistent with previous dosing regimens in neuropathic pain 

experiments (Chew et al., 2014) and experiments investigating glutamate transporter activity 

(Sung et al., 2003). 
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2.2.3 Pharmacokinetics of riluzole 

The following study aimed to determine riluzole brain and plasma concentration over a time 

course of 4 hours in adult male Wistar rats. 

 

12 male Wistar rats were dosed orally (p.o.) with 4 mg/kg riluzole. Animals were culled 0.5, 

1, 2 or 4 hours after drug administration by a non-Schedule 1 procedure by exposure to a 

rising concentration of CO2 delivered at 10 L/min for 2.5 min, n=3/group. Blood was 

collected by cardiac puncture into Li-heparin tubes and placed on a rotating table. Following 

removal of blood, the brains were removed and the forebrain cut at the level of the optic 

chiasm (using a 2 mm brain dissection block), weighed and then frozen on dry ice. Plasma 

was separated by centrifugation at 3,000 rpm for 7 min (Centaur 2; MSE) and frozen on dry 

ice. Brain and plasma samples were stored at -80°C pending analysis by Liquid 

Chromatography and Mass Spectroscopy (LC-MS/MS; see section 2.2.6 for further details). 

 

2.2.4 Effect of riluzole on E-I responsivity; in vivo microdialysis 

The following study aimed to determine the effect of riluzole on GABA and glutamate efflux 

in the medial prefrontal cortex (mPFC) and caudate putamen (CPu) of 16 wild type rats and 

15 Nrxn1 -/- rats. 

 

2.2.4.1 Surgical implantation of microdialysis probes   

Rats were anaesthetised with Isoflurane® (2.5% in O2 at 1 L/min) and administered the 

analgesic Buprenorphine® (0.075 ml subcutaneously (s.c.)), before being positioned on the 



103 

stereotaxic frame. Surgical anaesthesia was then maintained at 2-2.5% Isoflurane® in O2 at 0.5 

L/min, and body temperature was maintained at 36-37◦C using a heated pad.  

MAB 4.7.4 and MAB 4.7.3 microdialysis probes (cuprophan membrane; 6 kDa cut-off; 

MicroBiotech AG, Sweden) were implanted stereotaxically into the medial prefrontal cortex 

and caudate putamen, respectively, of each rat whilst being perfused with artificial 

cerebrospinal fluid at a flow rate of 1.5 µl/min (aCSF; containing NaCl 141 mM, KCl 5 mM, 

MgCl2 0.8 mM and CaCl2 1.5 mM) using the following coordinates: 

 

From bregma and dura surface, with nose bar set to -3.3 mm:  

Medial prefrontal cortex, 4 mm probe (MAB 4.7.4);  

Anterior +3.0 mm 

Lateral ±1.5 mm 

Vertical (from dura) -5.0 mm 

Angle = 12 degrees 

 

Caudate putamen, 3 mm probe (MAB 4.7.3); 

Anterior +0.3 mm  

Lateral -3.0 mm 

Vertical (from dura) -6.0 mm 

 

Probes were fixed in place with two scull screws and dental cement. Animals were allowed to 

recover in a thermacage (28-30◦C) before being returned to their individual home cage. 
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2.2.4.2 In vivo microdialysis 

2.2.4.2.1 Concept 

Microdialysis allows for the sampling, and subsequent quantification, of neurotransmitters 

from the interstitial space in discrete brain regions. The principle element which enables this 

sampling is the microdialysis probe, which is used to capture molecules from the 

extracellular space. Once the probe is inserted into the brain tissue, constant perfusion of a 

solution (in this case, aCSF) begins, and substances on the outside surface of the dialysis 

membrane diffuse through the membrane into the probe along their concentration gradient 

(see Figure 2.7). The perfusate is infused slowly and continuously through the length of the 

dialysis probe into the outflow tubing where it can be collected for quantification. It is 

presumed that the amount of neurotransmitter measured in the resulting sample, or dialysate, 

will depend upon the level of synaptic activity and therefore neurotransmitter efflux in that 

brain region (see Chefer et al. 2009 for a full review). Importantly for the present study, both 

GABA and glutamate efflux can be reliably captured using this methodology (Bourdelais & 

Kalivas, 1992; Dietze & Kuschinsky, 1992).  

 

2.2.4.2.2 Protocol 

The day after probe implantation, 4 animals per experimental day were connected to the 

microdialysis rig. This consisted of a liquid swivel suspended on a counterbalanced arm, 

connected to an infusion pump filled with aCSF. Prior to attaching the animals to the rig, a 

single sample was collected over 6 minutes at a flow rate of 5 µl/min to measure aCSF alone 

and ensure the rig was functional. The sample was also analysed along with all other samples 

in order to identify potential contaminants. 

The rats were then attached and flow rate reduced to 1.5 µl/min for a 90 minute pre-sample 

settling period. Dialysate samples were collected at 20 minute intervals thereafter for a total 
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of 15 samples. After six ‘baseline’ samples (120 min) were collected, animals were 

administered with either 4 mg/kg riluzole or vehicle (1% HEC) p.o. All samples were 

immediately frozen on dry-ice and stored at -80°C pending analysis by LC-MS/MS. 
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Figure 2.7: Schematic illustration of a microdialysis rig (A, B) and probe (C) 

A. The microdialysis probe is surgically implanted into the rodent brain; the inlet is 

connected to an infusion pump, and the outlet attached to a sample tube to collect the 

dialysate 

B. The probe is implanted into a specific brain region 

C. Artificial CSF (perfusate) is perfused into the microdialysis probe via the inlet, and 

dialysate containing neurotransmitters of interest is collected via the outlet 

Images adapted from Chefer et al. 2009. 

C 
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2.2.4.3 Limitations of in vivo microdialysis 

Microdialysis has a few key disadvantages which must be considered. Firstly, it has limited 

time resolution, particularly in this study, as samples are collected over a period of 20 

minutes- therefore samples do not provide real time information regarding changes in the 

extracellular environment. 

 

Secondly, microdialysis is an invasive technique and some tissue damage is likely to occur 

during probe implantation- at least 220 m, and potentially as much as 1 mm, surrounding 

the probe has shown signs of trauma which affect neurotransmitter release in some studies 

(Borland et al., 2005). However, as all animals will undergo the same surgery, it is expected 

that this particular limitation will not preclude comparisons across groups. 

 

Additionally, the efficiency or ‘recovery’ of the probe itself may be questioned. The recovery 

is defined as the percentage of metabolites measured (recovered) in the immediate vicinity of 

the probe, relative to the (estimated) amount of metabolite present in the wider space in 

which the probe sits. Several factors can affect recovery, including but not limited to; flow 

rate, length of the probe membrane (longer = more recovery), temperature and molecular 

weight/shape of the substance being recovered. An in vitro assay was therefore performed to 

estimate the recovery of the microdialysis probes used in the present study, in order to better 

estimate the local extracellular concentration of riluzole in each region (see Appendix 5).  

 

Finally, the dimensions of the microdialysis probes indicate that samples cannot be taken 

directly from the synaptic cleft, rather they may detect compounds further from the site of 

release. A critical question therefore, is whether dialysate measures are reflective of true 
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synaptic release and/or uptake of the measured analyte, or whether they represent ‘overflow’ 

of neurotransmitters from non-synaptic sources, e.g. astrocytes and glia.  

 

Action potential-controlled release of neurotransmitters requires the opening of Na+ and Ca2+ 

channels, which may be experimentally blocked by tetrodotoxin (TTX) or excluding calcium 

from the perfusate, respectively. This approach has conclusively shown that dopamine, 

norepinephrine, serotonin, and acetylcholine present in brain dialysates is derived from 

action-potential controlled release (reviewed by Westerink 2000 and Westerink et al. 1988). 

However, basal dialysate levels of GABA and glutamate have shown no dependence on Na+ 

and Ca2+ channels using this method and growing evidence suggests that synaptic GABA and 

glutamate are only involved in short distance signalling which may not reach the 

microdialysis probe (Del Arco, Segovia, Fuxe, & Mora, 2003). Hence, the extracellular 

concentrations of glutamate and GABA may therefore not provide a reliable indication of 

their synaptic exocytotic release. Many microdialysis studies show changes in extracellular 

GABA and glutamate following pharmacological modulation, yet the origin of these changes 

is unknown. One proposal is that changes to Glu-GABA levels could reflect changes in the 

activation of neuron-astrocyte networks, rather than absolute levels of neurotransmitters 

released from synaptic terminals (for review- see Del Arco et al. 2003). 

 

2.2.5 Effect of riluzole on E-I responsivity; ex vivo 

Following microdialysis, brain tissue was dissected and analysed to investigate bulk 

intracellular tissue measures of GABA and glutamate in the prefrontal cortex (PFC), caudate 

putamen (CPu) and thalamus (Th) of 16 wild type rats and 15 Nrxn1 -/- rats. 
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2.2.5.1 Protocol 

Animals were culled by a non-Schedule 1 procedure by exposure to a rising concentration of 

CO2 delivered at 10L/min for 2.5 min, prior to decapitation by guillotine. Brains were removed 

and the following regions dissected; PFC, CPu, Th and bilateral cerebellum (Cb). For 

consistency, dissections were performed using a brain dissection block according to the method 

outlined in section 2.2.5.2. Time from dose to dissection was recorded. Samples were weighed 

and then frozen on dry ice prior to storing at -80oC pending analysis. Samples were dansylated 

and derivatized (section 2.2.6.1) before analysis by LC-MS/MS (section 2.2.6.2).  

 

2.2.5.2 Brain dissection  

Brains regions were dissected using a cutting block based on Heffner et al’s method for rapid 

dissection of the rat brain (Heffner et al., 1980). Both the cutting block and single edged razor 

blades were kept on ice during dissection. The rat brain was rapidly removed and placed on its 

dorsal surface in the block (Figure 2.8). 

 

Blade 1 (red line in Figure 2.8) was inserted tangential to the most posterior aspect of the 

olfactory tubercles. Two blades (orange line, Figure 2.8) were then inserted anterior to the 

first at intervals of 2 mm. Two further blades (green line, Figure 2.8) were inserted posterior 

to the first at intervals of 2 mm. All blades were removed from the block with the coronal 

brain slice attached and placed on a glass plate over crushed ice, and brain regions were then 

dissected bilaterally as shown in Figure 2.9.  
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Figure 2.8: Diagrammatic representation of brain cutting block 

Representation of brain orientation and razor placement (coloured lines) to obtain coronal 

sections. Figure adapted from Heffner, Hartman, and Seiden 1980. 

 

 

 

Figure 2.9: Dissection guide for coronal brain slices 

Dissections were performed along the red dashed line to dissect individual brain regions. 

Section numbers refer to those in Figure 2.8. 
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2.2.6  Sample analysis 

Brain tissue, plasma and microdialysis dialysate sample analysis was performed at Eli Lilly 

using in house protocols. Analyses were performed by SS and GC; a brief description of their 

methodology is outlined below. 

 

2.2.6.1 Dansylation and derivatization 

2.2.6.1.1 Brain tissue preparation 

Brain tissue samples were homogenised prior to analysis. Briefly, samples were defrosted on 

ice and ice-cold acetonitrile (ACN) was added at a 90:10 ratio with H2O. The tissue was then 

sonicated for 30 seconds using a Vibro sonic probe set at 50% amplitude. The resultant 

homogenous suspension was then allowed to stand in the fridge at 4oC for 30 minutes to aid 

protein precipitation. The samples were then briefly vortexed before being spun at 20,000 x g 

for 15 minutes at 8oC. 80 μl of supernatant was then carefully decanted off into a clean 2 ml 

screw top vial tube. Samples were then derivatized using a dansylation method. 

 

2.2.6.1.2 Sample dansylation 

High performance liquid chromatography (HPLC) is the method of choice for separation, 

identification and quantitative determination of different metabolites in a solution (see section 

2.2.6.2). However, many metabolites of interest cannot be detected by HPLC as they do not 

possess the necessary properties. Dansylation is a chemical derivatization method which 

introduces these properties (e.g. increased molecular weight or hydrophobicity) into the 

sample to increase their sensitivity for detection (Tapuhi et al., 1981; Walker, 1994). 

Dansylation was performed in accordance with standard methods, which were adapted for the 

purposes of this experiment (Cai, Zhu, & Li, 2010). Briefly; to each brain, plasma and 
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dialysis sample, buffer (1M Bis-Tris, pH10), deuterated internal standards and dansyl 

chloride (0.1% w/v in acetone) were added and mixed. 

 

Internal standards are necessary for controlling for differences in extraction, chromatography 

and detection between samples and are often an isotopically labelled version of the molecule 

to be quantified. In the present study, stable deuterium (D) labelled isotopes of GABA (D6-

GABA) and glutamic acid (D5-Glutamic acid) were used. 

 

Samples were vortexed and heated at 65oC for 30 min, then evaporated to dryness under a 

stream of purified N2 at 65oC for 90 min. Samples were re-suspended in 50:50 (v/v) 

ACN:H2O containing 10 mM ammonium formate and 0.06% formic acid. Samples were then 

centrifuged at 13,000 rpm for 10 min at ambient temperature and samples loaded into vials 

for chromatography. A portion of sample (10 µl) was also directly loaded onto the liquid 

chromatography – mass spectrometer (LC-MS/MS) (API 4000, Sciex, Canada) using a 

chilled auto-sampler (PAL HTC-xt, CTC Analytics, Switzerland). 

 

2.2.6.2 Liquid Chromatography – Mass Spectroscopy (LC-MS/MS) 

High Performance Liquid Chromatography (HPLC) is a form of column chromatography, in 

which a sample in liquid form is injected into the LC and the different chemical components 

are separated as they travel at different speeds through the column. The output of the LC 

column is then directed into a mass spectrometer (MS) where it is ionized (using electrospray 

ionization- ESI) and a mass spectrum is generated. Different metabolites can then be 

identified according to their position on the resultant mass spectrum. MS/MS refers to the 

combination of two mass analysers in one mass spectrometer. Hence using LC-MS/MS 
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allows for further increased sensitivity and therefore specificity. This is of particular 

importance for detecting metabolites with similar molecular weights. 

 

In the present study, chromatographic separation of dansylated samples (including drug 

standards) was performed under a 13 min gradient (including washout and a re-equilibration 

step) using Shimadzu LC-20AD XR binary pumps (plus a CBM-20 controller) and a 2.6 μm 

Phenomenex Kinetex, XB-C18 HPLC column. Samples were prepared by 1:10 dilution in 

internal standard and calibration curves for each metabolite and for riluzole were run at the 

end of each batch of samples for quantification. Mobile phase A consisted of ACN:H2O 5:95 

(v/v), 2 mM ammonium formate and 0.06% formic acid, and mobile phase B; ACN:H2O 95:5 

(v/v), 2 mM ammonium formate and 0.06% formic acid. 

 

LC-MS/MS was operated with both negative and positive ESI transition ion detection modes 

(negative for glutamate and glutamine; positive for GABA). A 120 ms dwell time was used 

on the majority of analytes (except for GABA at 25 ms) with MS conditions optimized 

individually by infusion of the dansylated derivative (see Table 2.3): 
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Transition ions measured (ESI negative ionization mode):  

Glutamic acid was detected by monitoring the m/z 378.1 → 143.9 transition and its D5 

analog internal standard at 384.2 → 234.0 (collision energy; -22 V, collision cell exit 

potential; -9 V). 

Glutamine was detected by monitoring the m/z 378.1 → 234.0 transition (collision energy; -

33 V, collision cell exit potential; -7 V). 

Transition ions measured (ESI positive ionization mode):  

GABA was detected by monitoring the m/z 343.0 → 170.2 transition and its D6 analog 

internal standard at 343.0 → 170.2 (collision energy; 25 V, collision cell exit potential; 12V). 
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Negative transition ion mode   

Glutamic acid  m/z 379.1 → 143.9 Rt2.75 min 

Dwell 120 ms; DP -85; CE -22; CXP -9   

D5-Glutamic acid m/z 384.2 → 234.0 Rt2.75 min 

Dwell 120 ms; DP -90; CE -29; CXP -6   

Glutamine m/z 378.1 → 234.0  

Dwell 120 ms; DP -95; CE -33; CXP -7   

Positive transition ion mode   

GABA m/z 337.0 → 170.2 Rt3.25 min 

Dwell 25 ms; DP 66; CE 25; CXP 12   

GABA –D6 m/z 343.0 → 170.2 Rt3.25 min 

Dwell 25 ms; DP 66; CE 26; CXP 14   

 

Table 2.3: LC-MS/MS detection conditions 

Conditions for the detection of glutamate, glutamine and GABA using LC-MS/MS 

Mass/charge number of ions (m/z): The units of the horizontal axis of a mass spectrum. In 

mass analysis, electrons are taken from molecules to create charged ions. The number of 

electrons removed is the charge number. 

Dwell time: The time in which the m/z ion signal is collected. 

Collision energy (CE): To obtain structural information, analyte ions are fragmented by 

colliding them with neutral molecules in a process known as Collision Induced Dissociation 

(CID). Voltages are applied to the analyte ions to add energy to the collisions and create 

more fragmentation; the higher the CE, the more fragmentation. 

De-clustering potential (DP): An applied voltage which helps prevent ions from clustering 

together 

Collision cell exit potential (CXP): The CXP focuses and accelerates the ions towards the 

detector. 
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2.2.7  Data analysis 

2.2.7.1 Pharmacokinetics of riluzole 

Riluzole in the brain and plasma were expressed as mean ( SEM) ng/g and ng/ml respectively. 

A brain:plasma ratio was calculated as brain concentration of riluzole/plasma concentration. 

Graphs were produced using GraphPad Prism Version 7 (GraphPad Software, USA). 

 

2.2.7.2 Microdialysis and ex vivo samples 

Microdialysis data were expressed as a percentage change from a pre-dosing control period. 

This was obtained by averaging the three samples collected prior to drug delivery (=100%) and 

expressing values as a percentage change from this value. The amount of analyte and drug in 

each microdialysate sample was recorded in ng/mL using their respective calibration curves. 

Statistical analyses were undertaken using 2-way ANOVA with Repeated Measures (SAS) 

using log transformed percentage data and comparing the response profiles post drug or vehicle 

administration. Riluzole levels were expressed as a molar concentration and compared using 

linear regression in GraphPad Prism. 

 

Levels of neurotransmitter in ex vivo brain tissue were recorded in ng/g tissue wet weight. 

Statistical analyses were undertaken using 2 way- ANOVA (SAS) to test for main effect of 

drug, main effect of group and drug by group interactions. The SAS package allowed for 

missing values that were an occasional issue with collection of microdialysis samples. This 

was achieved through ‘multiple imputation’, whereby each missing value was replaced with a 

set of plausible values that represent the uncertainty about the right value to impute. The 

multiply imputed datasets are then analysed using standard methods, as would be used for 

complete datasets (SAS Institute, 2018). A probability value of p<0.05 was considered to be 

statistically significant for all analyses.  
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2.2.8 Tissue histology for verification of probe placement 

In order to verify the placement of the microdialysis probes, a supplementary experiment was 

conducted to visually check the approximate probe location. Two adult male Wistar rats 

(Charles River, UK), of a similar age and kept in the same conditions as the experimental 

cohort, were used as subjects. Rats were anaesthetized with Isoflurane® (2.5% in O2 at 1 

L/minute) and administered the analgesic Buprenorphine® (0.075 ml subcutaneously) before 

being positioned on the stereotaxic frame. Surgical anaesthesia was then maintained at 2-

2.5% Isoflurane® in O2 at 0.5 L/min, and body temperature was maintained at 36-37◦C using 

a heated pad. In place of a microdialysis probe, a needle of similar proportions was implanted 

stereotaxically into the medial prefrontal cortex and caudate putamen, at co-ordinates 

outlined in section 2.2.4.1. A small amount of Toluidine Blue dye (1 μl) was injected into the 

tract using a Hamilton microsyringe.  

 

Animals were culled immediately by a non-Schedule 1 procedure of decapitation by 

guillotine, whilst under anaesthetic sedation. Brains were removed and stored in 4% Formalin 

at room temperature. Formalin-fixed brains were ‘snap’ frozen in a beaker of isopentane 

cooled in a cardice (CO2) bath prior to cryo-sectionning. The cerebellum was cut with a razor 

to give a flat surface, and the brain was mounted onto the (pre-cooled) specimen disc with an 

OCT mounting medium, Shandon Cryochrome embedding resin (Thermo Scientific, 

UK). 

Sections were performed, anterior to posterior, on a Leica CM1900 Cryostat (Leica 

Microsystems, GmbH), with the tissue temperature maintained at -18oC. 30 m thick sections 

were cut and ‘lifted’ onto room temperature ColorFrost Plus microscope slides (Thermo 

Scientific, UK). They were air-dried and scanned unstained on a Aperio AT Scanscope 

(Leica Biosystems). 
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Images were acquired using the Aperio ScanScope AT slide scanner which digitizes 

whole/part sections from 3x1” glass files (proprietory .tif style) and stores files to the Lilly 

supported server; YE02aperioprd01. This is maintained and interfaced through Aperio 

Spectrum Digital Image Library (eSlide Manager Version 12.2.1.5006). The images were 

viewed using the Aperio Software application, ImageScope.  

 

Probe placement: 

The following mPFC co-ordinates were chosen for the microdialysis study to best replicate 

and map to the region of interest selected in the human MRS study: bregma +3.0 mm, lateral 

±1.5 mm, vertical (from dura) -5.0 mm, angle: 12 degrees in bregma plane. Though 

experimental co-ordinates were +3.0 mm from bregma, Figure 12 in Paxinos and Watson’s 

stereotaxic rat brain atlas was used for comparison (+2.76 mm from bregma) to best match 

the anatomy depicted in the atlas (Paxinos & Watson, 2009). 

 

The following CPu co-ordinates were chosen to best replicate and map to the region of 

interest in the human MRS study, the basal ganglia: bregma +0.3 mm, lateral ±3.0 mm, 

vertical (from dura) -6.0 mm. Though experimental co-ordinates are + 0.3 mm from bregma, 

Figure 31 in Paxinos and Watson’s stereotaxic rat brain atlas was used for comparison (+ 

0.24 mm from bregma) to best match the anatomy depicted in the atlas. Using these co-

ordinates, I visualized the ideal probe placement using the Paxinos and Watson brain atlas 

(Paxinos & Watson, 2009), and compared this image with the actual placement observed. See 

Figure 2.10 and 2.11 for prefrontal cortex and caudate putamen placements, respectively. 

 

The staining and visible probe tract in both brain regions confirmed the microdialysis probes 

had most likely collected samples from the regions of interest. 
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A 

B 
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Figure 2.10: Microdialysis probe placement- medial prefrontal cortex 

A) Imagined probe placement using atlas stereotaxic co-ordinates, 4 mm microdialysis 

probe depicted in green  

B) Representative example of actual probe placement, 4 mm microdialysis probe depicted 

in blue  

C) Close up view of probe tract terminating in the infralimbic layer 2 region. Toluene blue 

stains the area where the microdialysis probe would lie. 

Abbreviations: ac; anterior commisure, AcbC; nucleus accumbens core, AcbSh; nucleus 

accumbens shell, Cg1; cingulate cortex area 1, Cpu; caudate putamen, DP; dorsal 

peduncular cortex, fmi; forceps minor corpus callosum, IL; infralimbic cortex, lo; lateral 

olfactory tract, M2; secondary motor cortex, Pir; piriform cortex, PRL; prelimbic cortex, rf; 

rhinal fissure 

C 
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B 
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Figure 2.11: Microdialysis probe placement- caudate putamen 

A) Imagined probe placement using atlas stereotaxic co-ordinates, 3 mm microdialysis 

probe depicted in orange  

B) Representative example of actual probe placement, 3 mm microdialysis probe depicted 

in orange  

C) Close up view of probe tract terminating in the centre of the caudate putamen. Toluene 

blue stains the area where the microdialysis probe would lie. 

Abbreviations: ac; anterior commissure, cc; corpus callosum, cg; cingulum, cg2; cingulate 

cortex area 2, CPu; caudate putamen, IPAC; interstitial nucleus of the posterior limb of the 

anterior commissure, lo; lateral olfactory tract, LV; lateral ventricle, M1; primary motor 

cortex, M2; secondary motor cortex, MS; medial septal nucleus, Pir; piriform cortex, rf; 

rhinal fissure, S1; primary somatosensory cortex, S2; secondary somatosensory cortex 

C 
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2.3 Ethical considerations 

2.3.1 Clinical research 

Ethical approval for all aspects of the clinical research outlined in the present thesis was 

provided by Camden and Islington London NHS Research Ethics Committee; study reference 

13/LO/0091. Written, informed consent was obtained by all participants prior to study 

commencement, by a trained member of the research team (see Appendix 3).  

 

2.3.2 Pre-clinical research 

All housing and experimental procedures were performed in compliance with guidelines set 

by the Animal Care and Use Committee of Eli Lilly and Company and the U.K Home Office 

Animals Scientific Procedures Act 1986. Research was carried out under Project Licence; 

PPL30/3226. All efforts were made to minimize animal suffering and to reduce the number 

of animals used in accordance with the 3Rs (Replacement, Refinement and Reduction). 
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2.4 Concluding remarks 

Conducting clinical and pre-clinical research in both an academic group, and in an industry 

research setting allowed me to have access to different expertise and equipment, whilst 

gaining a wide variety of research skills. The array of different techniques available enabled 

me to investigate E-I pharmacology at multiple different levels; namely the E-I dynamics of 

intracellular human (Chapters 3 and 4) and rodent (Chapter 5) brain regions, the functional 

connectivity of those brain networks (Chapter 3), and finally E-I dynamics in the 

extracellular synaptic space in an animal model of ASD (Chapter 6). 

However, back and forward translating the findings of these different approaches between 

animal and human studies proved challenging- the implications of which are discussed 

further in Chapter 7. 
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Chapter 3 

Shifting brain inhibitory balance and connectivity of the 

prefrontal cortex of adults with autism spectrum disorder 

Previous investigations into Excitation (E) – Inhibition (I) balance in the living ASD brain 

have returned inconsistent findings using both MRS and fMRI techniques. One explanation 

for this may be that differences in E-I pathways in ASD are not static - they are in constant 

flux- and therefore are not best captured at a single time-point (i.e. ‘at rest’). However, no-

one has examined E-I flux or ‘responsivity’ to challenge in ASD. The following paper 

published in Translational Psychiatry (2017) aimed to test the hypothesis that there are group 

differences in the dynamics of E-I balance in the living ASD brain. I investigated this on two 

different levels; intracellular changes in E-I flux, using MRS; and network level changes in 

connectivity using fMRI.  
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Supplementary Data to Ajram et al., 2017 

 

 

 

 

 

Measure 

Mean (SEM) 

RM ANOVA RM ANOVA 

  

Between groups Within groups 

Control ASD 

F p F p   

n = 20 n = 17 

Placebo Riluzole Placebo Riluzole   

Grey 54.5 (0.7) 49.9 (3.9) 53.8 (3.4) 53.9 (3.5) 0.2 0.67 1.3 0.27 

White 22.6 (1.1) 22.3 (0.9) 22.6 (0.7) 22.2 (0.8) 0.3 0.59 1.2 0.28 

CSF 23.2 (4.3) 22.2 (3.6) 20.2 (2.7) 19.5 (2.1) 6.9 0.01 5.9 0.02 

 

 

Supplementary Table 1: Prefrontal cortex voxel composition 

There were no significant main effects of group or drug on the proportion of grey or white 

matter in the prefrontal cortex voxel. There was a significant effect of riluzole (F (1,32) =6.9, 

p=0.01) and group (F (1,32) =5.9, p=0.02) on the proportion of CSF in the voxel, hence 

metabolite levels were corrected for CSF.  
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Supplementary Table 2: Detail of fMRI result 

Cluster Index Voxels P -log10P 
Z-

MAX 

Z-

MAX 

X 

Z-

MAX 

Y 

Z-

MAX 

Z  
COPE-MAX COPE-MEAN Brain Region 

(mm) (mm) (mm) 

      

Comparison of connectivity of DMPFC seed, on placebo, in ASD group vs. control group (Figure 4A), between subjects 

ASD>HV 2 831 0.0034 2.46 4.19 28 -52 16 0.21 0.121 

Right occipital white matter, right 

intracalcarine cortex 

ASD>HV 1 786 0.0049 2.31 4.01 -38 -46 22 0.218 0.084 Left cerebral white matter 

HV>ASD 1 894 0.0021 2.68 3.96 12 -16 -24 0.626 0.247 Brainstem 

Comparison of connectivity of DMPFC seed on riluzole vs. placebo, within the ASD group, within subjects (Figure 4C) 

Placebo> 

riluzole 2 

1242 

3.64E-

06 

5.44 4.01 24 -70 8 0.116 0.061 

Right occipital white matter, right 

intracalcarine cortex, right lateral 

occipital cortex 

Placebo> 

riluzole 1 

462 0.0139 1.86 3.57 -58 -60 -4 0.135 0.0756 Left lateral occipital cortex 

Comparison of effect of placebo vs. riluzole (negative slope of riluzole) in ASD vs. negative slope in controls (Figure 4C) 

ASD>HV 3 904 

9.49E-

05 

4.02 3.81 24 -70 8 0.157 0.094 

Right occipital white matter, right 

intracalcarine cortex, right lateral 

occipital cortex 

ASD>HV 2 525 0.0063 2.2 3.79 20 -64 -22 0.204 0.0937 Right Cerebellum 

ASD>HV 1 439 0.0186 1.73 3.66 -36 -40 -36 0.154 0.0888 Left cerebellum 
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3.1 Additional findings not included in the peer-reviewed 

publication 

Additional analyses which were not incorporated into the publication are detailed below. 

3.1.1 E-I responsivity and clinical symptoms 

3.1.1.1 [1H]MRS 

In the ASD cohort, where MRS data was available at two time points, the relationship 

between riluzole-evoked change in the inhibitory index, and clinical symptom profile was 

investigated. The percentage increase in the inhibitory index was shown to be inversely 

correlated with social ability, as measured using the ADOS (Pearson correlation; n=12, r=- 

0.663, p=0.019). Though there was a low n for the ADI, mainly due to advanced parental age, 

there was also a significant association between the ADI communication score and change in 

the inhibitory index (Pearson correlation; n=7, r =-0.803, p=0.03). Specifically, patients with 

lower social and communication scores (i.e. those who were least impaired according to the 

assessment) responded to riluzole with a larger percentage increase in PFC GABA fraction, 

than those who were deemed to have more difficulties (see Figure 3.1).  

The inhibitory index at baseline (placebo condition) did not correlate with any measure from 

the ADOS or ADI. 

 

3.1.1.2 Functional connectivity  

There were no significant associations between baseline, or change, in functional 

connectivity with ADOS or ADI scores in the ASD cohort. 
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Figure 3.1: Riluzole evoked changes in PFC inhibitory index are related to core 

symptom domains in ASD 

Riluzole-evoked percentage increase in the inhibitory index in ASD is inversely correlated 

with social ability, as measured by the ADOS: Pearson correlation; n=12, r=-0.663, p=0.019. 

Removal of the apparent outlier (x=24.7, y=4) did not affect significance (Pearson correlation 

with outlier removed; n=11, r=-0.71, p=0.014). 
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3.1.2 Metabolites levels and functional connectivity 

As local changes in E-I metabolites are thought to influence wider network activity (Duncan 

et al., 2013; Stagg et al., 2014), the association of metabolite levels and functional 

connectivity were investigated. 

There were no significant correlations of baseline glutamate, GABA or the inhibitory index at 

rest with baseline functional connectivity (data not shown). Likewise, there was no 

association between the riluzole-evoked change in PE and change in any MRS measure 

(Table 3.1). Additionally, baseline metabolite levels were not associated with the degree of 

change in connectivity (Table 3.1).  
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Correlation 

Group 
  

Inhibitory index GABA Glx 

Control 

 

 

ASD 

 

Pearson Correlation Δ PE -0.495 -0.542 0.186 

Sig. (2-tailed) 
 

0.213 0.166 0.66 

N 
 

8 8 8 

Pearson Correlation Δ PE -0.491 0.138 0.719 

Sig. (2-tailed) 
 

0.263 0.768 0.068 

N 
 

7 7 7 

      

   
Correlation 

Group 
  

Δ Inhibitory index Δ GABA Δ Glx 

Control 

 

 

ASD 

 

Pearson Correlation Δ PE 0.171 0.223 0.157 

Sig. (2-tailed) 
 

0.543 0.424 0.593 

N 
 

15 15 14 

Pearson Correlation Δ PE 0.308 0.101 -0.17 

Sig. (2-tailed) 
 

0.33 0.743 0.598 

N 
 

12 13 12 

 

Table 3.1: Correlation of MRS metabolites with functional connectivity (PE) 

There were no significant associations between baseline or riluzole-evoked change in 

inhibitory index, glutamate or GABA with change in functional connectivity (PE) in either 

group. 
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3.2 Additional conclusions not included in the peer-reviewed 

publication 

3.2.1 Clinical correlates- MRS 

In addition to group differences in responsivity, the present study also identified a range of 

responses to riluzole in the ASD group; individuals with more ASD symptoms had the least 

shift in GABA fraction. Specifically, men with more social and communication difficulties 

(as measured by higher scores on the ADOS and ADI, respectively) showed the least 

response to riluzole (Figure 3.1). This is broadly consistent with previous findings that 

riluzole (Ghaleiha et al., 2013; Wink et al., 2011), and GABA acting drugs (such as 

arbaclofen (Frye, 2014)), have shown promise in reducing symptoms in some, but not all, 

ASD individuals. This may not be unexpected in a spectrum condition, but may inform the 

biological underpinnings of these symptoms. As there were no reported correlations between 

baseline GABA or glutamate measures with clinical symptoms scores, it may not be 

differences in baseline E-I metabolites which drives symptom severity- rather it is the lack of 

dynamic flux, and responsivity of the system which contributes to symptomatology. 

 

3.2.2 Clinical correlates- fMRI 

As highlighted in Ajram et al., 2017, the number of ASD participants who had both a full set 

of clinical assessment scores prior to scanning, and imaging data at both time points was 

lower than planned (ADOS n=12, ADI n=7). No clinical correlates were found with 

functional connectivity measures. Future investigations with a larger cohort will be necessary 

to increase power. 
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3.2.3 MRS-fMRI 

It is widely established in the literature that local glutamate and GABA levels at rest 

determine the activity of neural networks (Duncan et al., 2013; Enzi et al., 2012; Horn et al., 

2010; Kapogiannis et al., 2013; Kwon et al., 2014) . However, no one has investigated 

whether changes to metabolite flux correlate with changes in functional connectivity.  

There were no significant correlations between resting inhibitory index, GABA or glutamate 

levels with baseline functional connectivity of the ACC (data not shown). Likewise, there 

was no association between change in any MRS measure and change in ACC functional 

connectivity (Table 3.1). It was postulated that baseline metabolite levels may be predictive 

of the extent of change in functional connectivity elicited by riluzole, however no significant 

associations between any metabolite at rest and riluzole-evoked change in PE were found 

(Table 3.1). 

 

Again, however, results are limited by the small sample size in these analyses, as not all 

participants obtained usable data on both scanning occasions, in both MRS and fMRI. 

 

Finally, the present study focused on the prefrontal cortex as a region of interest, however, 

sub-cortical regions including the basal ganglia are also implicated in ASD. The following 

chapter examines the MRS findings from the subcortex. 

 

 

  



141 

Chapter 4 

Shifting brain inhibitory balance of the basal ganglia of adults 

with autism spectrum disorder 

4.1 Introduction 

The previous chapter identified differences in the way that the adult prefrontal cortex of men 

with and without ASD responds to an E-I challenge with riluzole. However, subcortical 

pathology has also been implicated in ASD (Dawson et al., 2005; Dichter et al., 2012; Kohls 

et al., 2012; Langen et al., 2012; Naaijen et al., 2015). These findings are also consistent with 

the known role of fronto-striatal circuits in the processing of higher order cognitive and 

emotive information in neurotypical populations. Moreover, studies of both ASD and 

disorders which share traits with ASD, such as obsessive compulsive disorder (OCD), have 

documented a relationship between repetitive or stereotyped behaviours and abnormalities of 

basal ganglia structure and function (Calderoni et al., 2014; Langen et al., 2009; Rojas et al., 

2006; Whiteside et al., 2004). 

 

Therefore, in an extension to the prior chapter, (Ajram et al. 2017), I also used [1H]MRS to 

investigate excitatory-inhibitory flux in the basal ganglia in response to a riluzole challenge. 
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4.2 Methods 

The research outlined in the present chapter took place as part of the study outlined in 

Chapter 3. The general methods are largely as described in Ajram et al., 2017 (pages 125- 

133). In brief, participants were scanned on two occasions, one week apart; and were given 

either a 50 mg oral dose of riluzole, or equivalent placebo. The order of drug administration 

was both randomised and double-blinded and order effects were controlled for by ensuring 

roughly half of participants received riluzole first, and half received placebo. MRS data 

acquisition began 1 hour after drug administration (see Figure 2.1 for a detailed timetable of 

in-scanner events). 

 

4.2.1 [1H]MRS data acquisition 

[1H]MRS data were acquired on a 3 Tesla GE Excite II Magnetic Resonance Imaging 

scanner (GE, USA). An initial structural scan was performed, which was then used to set the 

MRS voxel locations; namely a 3D inversion recovery prepared fast spoiled gradient-recalled 

echo (IR-FSPGR) acquisition (number of slices = 124, slice thickness = 1.1 mm, inversion 

time (TI) = 450 ms, repetition time (TR) = 7.084 ms, echo time (TE) = 2.84 ms, field of 

view=280 mm, flip angle=20°).  

Single voxel J-edited MEGAPRESS spectra were then acquired in the left basal ganglia (see 

Figure 4.1 for example voxel placement) according to the following parameters: 

Left basal ganglia, comprising of the head of the caudate, lateral thalamus and caudate 

putamen; 35 x 25 x 30 mm3; TR = 1800 ms, TE = 68 ms. 
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The left basal ganglia was selected to correspond with previous data collection from this 

region in our department, and to enable future cross-study comparisons of different E-I 

interventions in this region (Horder et al. 2013 and unpublished data from Murphy lab, 

IOPPN). To avoid lateralisation effects, only right handed participants were recruited (see 

Appendix 4). 

 

 

 

 

 

 

 

 

 

Figure 4.1: [1H]MRS basal ganglia voxel position 

Basal ganglia region of interest outlined in white (35 x 25 x 30 mm3) incorporating the head 

of the caudate, lateral thalamus and caudate putamen. 

 

 

  

Left Right  
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4.2.2 [1H]MRS data analysis 

[1H]MRS data were pre-processed using previously described methods (see Chapter 2, 

section 2.1.4.5). Briefly, the unedited MRS spectrum and unsuppressed water spectrum were 

extracted using GE SAGE software (SAGE 2007, GE Healthcare, USA), prior to 

quantification of metabolites using jMRUI version 4 software (Naressi et al., 2001). Each 

spectrum was manually checked for quality (see Figure 4.2).  

Metabolite concentrations were estimated at 3.0 ppm for GABA and Glx at two peaks; 3.8 

ppm and 3.75 ppm. Absolute measures were calculated by dividing the peak amplitude by 

that of the unsuppressed water peak at 0.00 ppm. 
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Figure 4.2: Example of good (A) and poor (B) quality [1H[MRS spectra 

  

A 

B 
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4.2.3 [1H]MRS voxel composition calculation 

As described in further detail in Chapter 2 (section 2.1.4.5), partial volume effects are a 

potential confound for spectroscopy. Therefore, the relative levels of grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) were measured. No significant group differences 

were found in either grey or white matter (see Table 4.1). Assuming negligible levels of 

metabolites of interest in the CSF, all metabolite values were corrected for CSF variation. 
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Table 4.1: Percentage tissue composition in control (n=20) and ASD (n=17) basal ganglia [1H]-MRS voxels 

There was no significant effect of group or drug on percentage composition of grey or white matter, nor CSF, in the basal ganglia voxel. RM 

ANOVA; degrees of freedom=1 for each analysis.     

  

  Mean (SEM) RM ANOVA 

Between groups 

RM ANOVA 

Within groups 

Region Measure Control, n=20 ASD, n= 17 F p F p 

  Placebo Riluzole Placebo Riluzole  

Basal 

ganglia 

Grey 50.1 (1.1) 44.9 (3.6) 47.1 (3.2) 50.1 (1.3) 1.3 .26 1.4 .24 

 White 42.3 (1.3) 41.0 (2.5) 42.0 (1.5) 42.1 (1.5) 1.3 .26 1.1 .24 

 

 CSF 7.6 (1.7) 6.5 (2.5) 7.9 (1.7) 7.7 (1.5) 2.0 .16 3.6 .07 
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4.2.4 Statistical analysis 

Statistical analyses were performed using IBM SPSS v.22 software (IBM SPSS Statistics for 

Macintosh, Version 22.0, USA). Figures were generated using GraphPad Prism version 7 for 

Windows (GraphPad Software, USA). Participant group comparisons were performed using 

independent samples t-tests. The numbers included in each MR analysis depended upon a 

stringent quality check of data available for each participant per analyses at each time point.  

The [1H]MRS voxel composition in each group was compared using repeated measures two-

way analysis of variance (RM 2-way ANOVA) with ‘group’ as between-subjects factor and 

‘drug’ as within-subjects factor (control n=20, ASD n=17). A complete dataset of two time 

points for Glx levels was obtained for 29 participants and was compared using a RM 2-way 

ANOVA. Likewise, a complete dataset of two time points for the inhibitory index was 

obtained for 26 participants and was compared using a RM 2-way ANOVA. The State score 

measure of anxiety was included as a covariate in analysis of the inhibitory index, as anxiety 

is closely linked to GABA (Lydiard, 2003) and participants with ASD scored significantly 

higher than controls on measures of anxiety. Clinical scores were compared using 

independent samples t-tests. 

Pearson correlation analyses were also used to compare the relationship of baseline, and the 

change in Glx and the inhibitory index with ASD symptom scores. For consistency, the State 

score measure of anxiety was included as a covariate in these analyses. 
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4.3 Results 

4.3.1 Participant demographic and clinical symptoms 

As reported in Chapter 3, participants did not significantly differ in age or IQ (p=0.44 and 

0.15 respectively). As expected, the ASD group scored significantly higher in self-rated 

neuropsychological tests, including assessments of autism traits (AQ; p<0.001), anxiety 

(STAI; p=0.004) and obsessionality (OCI-R; p<0.001). The average scores across the gold 

standard diagnostic tests for ASD were above the cut off level for a diagnosis of autism. 

 

4.3.2 Lower resting Glx levels in the ASD basal ganglia  

At baseline (placebo), there were no group differences in the inhibitory index, or absolute 

levels of GABA in the basal ganglia region (see Table 4.2). There was however a significant 

group difference in baseline Glx, see Figure 4.3 and Table 4.2 (main effect of group, F (1,29) 

=4.926, p=0.034). Riluzole did not significantly affect Glx levels in either group. 



 150 

 

Table 4.2: E-I changes in the basal ganglia of men with and without ASD, after riluzole or placebo administration. 

Riluzole increased the inhibitory index in both ASD and control groups in the basal ganglia. Baseline (placebo condition) Glx was significantly 

lower in the ASD group. Inhibitory index and GABA analyses were corrected for State anxiety measures. GABA and Glx mean and SEM are 

expressed as (x103). Significant p values are highlighted in bold. df = degrees of freedom. Repeated measures ANOVA displays between group 

(effect of diagnosis), within group (effect of drug treatment) and drug by group interactions.  

Region Measure 

Mean (SEM) 

 

RM ANOVA 

Main effect of 

group 

 

 

RM ANOVA 

Main effect of  

drug 

 

 

RM ANOVA 

Drug*Group 

 

 

Control ASD F (df) p F (df) p F (df) p 

n Placebo Riluzole n Placebo Riluzole       

Basal ganglia 

Index 13 
0.077  

(0.001) 

0.078  

(0.001) 
13 

0.08 

(0.001) 

0.081  

(0.001) 

2.8  

(1,23) 
0.11 

4.4  

(1,23) 
0.048 

0.31 

(1,23) 
0.51 

GABA 13 
0.406  

(0.02) 

0.44 

(0.02) 
15 

0.384  

(0.03) 

0.416 

(0.02) 

1.2  

(1,25) 
0.29 

3.6  

(1,25) 
0.07 

0.37 

(1,25) 
0.55 

Glx 16 
0.119  

(0.008) 

0.122  

(0.002) 
15 

0.106  

(0.006) 

0.102  

(0.006) 

4.9  

(1,29) 
0.034 

0.07 

(1,29) 
0.94 

0.35 

(1,29) 
0.56 
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Figure 4.3: Significantly lower baseline Glx in ASD basal ganglia 

Significantly lower Glx levels were observed in the ASD basal ganglia in the placebo 

condition, i.e. at baseline, compared to controls. ANOVA; main effect of group, F (1,29) 

=4.926, p=0.034. Glx levels are presented as x103.  

 

4.3.3 No group difference in E-I responsivity in the basal ganglia 

To examine changes in E-I balance, as before, the inhibitory index was chosen as the 

dependent variable for further investigations. 

 

Despite a trend towards a higher resting inhibitory index in controls, there were no 

statistically significant baseline group differences in inhibitory index in the basal ganglia (see 

Table 4.2). Riluzole increased the inhibitory index in both groups, to a similar degree, see 

Figure 4.4 (main effect of drug; F (1,23) =4.382, p=0.048).  
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Figure 4.4: Riluzole increases the inhibitory index in the basal ganglia of both groups 

Riluzole significantly increased the inhibitory index in the basal ganglia of both ASD and 

control participants; ANOVA; main effect of drug, F (1,23) =4.382, p=0.048.   

 

4.3.4 E-I responsivity and clinical symptoms 

In the ASD cohort, where good quality MRS data was available at two time points, the 

relationship between riluzole-evoked change in the inhibitory index, and clinical symptom 

profile was investigated. There was no significant correlation between change in inhibitory 

index, or any domain of the ADOS or ADI. Likewise, there were no significant associations 

between baseline inhibitory index and ADOS or ADI scores. Despite the ASD cohort 

showing significantly lower baseline Glx compared to the control group, there were no 

significant correlations between Glx and ASD symptom scores (see Table 4.3). As there were 

no significant correlations between symptoms and responsivity, and due to the relatively low 

n for such correlations, it was not possible to stratify the patient population according to 
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degree of responsivity for the basal ganglia. This was possible to some extent in the 

prefrontal cortex (see previous chapter), where patients with lower social scores on the 

ADOS responded with the least change in the inhibitory index (Figure 3.1). 
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Region Measure  Inhibitory 

Index 

 Inhibitory 

index 

Baseline 

Glx 

Basal 

Ganglia 

 

 

ADOS Social 

Pearson 

correlation (r) 

-0.37 0.376 -0.008 

Significance 

(p) 

0.90 0.23 0.98 

N 14 12 15 

 

 

ADOS 

Communication 

Pearson 

correlation (r) 

0.034 0.009 -0.19 

Significance 

(p) 

0.91 0.98 0.49 

N 14 12 15 

 

 

ADI Social 

Pearson 

correlation (r) 

0.614 -0.145 0.35 

Significance 

(p) 

0.19 0.82 0.45 

N 6 5 7 

 

 

ADI 

Communication 

Pearson 

correlation (r) 

0.428 0.389 -0.89 

Significance 

(p) 

0.40 0.52 0.85 

N 6 5 5 

 

Table 4.3: Correlation basal ganglia E-I measures with clinical symptom scores 

There were no significant correlations between the inhibitory index at baseline (placebo) or in 

change in the inhibitory index with any clinical measure. The ASD cohort had lower Glx 

level in the basal ganglia at rest, but there were no significant correlations between baseline 

Glx and clinical scores. 
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4.4 Discussion 

In line with Ajram et al. (2017), this study provides direct evidence that E-I balance can be 

pharmacologically shifted in both the ASD and control brain. In the basal ganglia, this shift 

occurs to the same extent, and in the same direction in both groups, despite baseline 

differences in E-I balance. 

 

4.4.1 Baseline metabolite differences 

Consistent with findings from the prefrontal cortex, there were no baseline differences in the 

level of basal ganglia GABA in men with ASD relative to controls. However, there was a 

significant group difference in baseline Glx (Figure 4.3), with lower Glx in the ASD cohort. 

Lower subcortical glutamate in ASD is consistent with previous research from this 

department (Horder et al., 2013), but contradicts other findings of higher (Hassan et al., 2013) 

or no difference (Harada et al., 2011; Hardan et al., 2008) in glutamate indices relative to 

controls in the same region in ASD. This discrepancy may reflect inter-study differences, 

particularly in age, as both the present study and that of Horder et al., who report similar 

results, examined adults, whereas the others focused solely on children. Furthermore, unlike 

most studies, patients in the present study were psychoactive medication-free and had no co-

morbid mental health conditions (particularly those with a known E-I underpinning cause, 

e.g. epilepsy) and therefore my findings cannot be explained by such potential confounds. 

Additionally, both Hassan et al. and Harada et al. recruited both male and female subjects, 

whereas the present study only recruited males. Brain chemistry has previously been shown 

to differ with age and sex in both healthy controls and ASD patients, hence differences in 

patient demographics may contribute to inconsistencies in the literature (Charles et al., 1994; 

Robinson et al., 2013; van de Lagemaat et al., 2014).  
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4.4.2 E-I response to challenge 

In the basal ganglia, both groups responded in same way to riluzole; by increasing the 

inhibitory index after E-I challenge (Figure 4.4). This was in contrast to the group difference 

in the pattern of response to riluzole in the prefrontal cortex; whereby riluzole increased the 

inhibitory index in ASD, but decreased it in controls (see Appendix 6 for a table of basal 

ganglia and prefrontal cortex results). Collectively these findings indicate that the ASD group 

consistently responded with an increase in GABA tone to riluzole challenge, irrespective of 

the brain region tested, whereas controls had a regionally specific response profile. In the 

prefrontal cortex, the control group E-I balance was ‘shifted’ towards glutamate, whereas in 

the ASD group E-I balance was shifted towards GABA. In the basal ganglia, both groups 

shifted towards GABA (see Figure 4.5). 
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Figure 4.5: Representation of E-I shift in response to riluzole in the prefrontal cortex 

and basal ganglia 

In the prefrontal cortex, riluzole shifted E-I balance towards glutamate in controls, but 

towards GABA in ASD. Conversely, in the basal ganglia; riluzole shifted E-I balance 

towards GABA in both groups 

Key: orange circle represents GABA portion; green circle represents Glx portion; red arrow 

represents shift towards GABA; green arrow represents shift towards Glx. Proportions are 

not to scale and are intended to show direction of change, not size of change. 
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4.4.3 Regional cellular organisation 

Though the degree of response in the two brain regions was not formally compared, it is clear 

that responsivity to E-I challenge is different in the prefrontal cortex and basal ganglia in 

controls, but not in ASD. Using MRS, it is not possible to fully understand the reason for the 

lack of a regionally distinct response profile in the ASD cohort, however both structural and 

neurochemical differences in the cortex and sub-cortex of the ASD brain compared to the 

typically developing brain, may play a role.  

 

The prefrontal cortex consists primarily of excitatory pyramidal neurons, and a multitude of 

glial cells, which act as glutamate stores (Elston, 2003). Comparatively, the basal ganglia, in 

particular the striatum, is comprised primarily of GABAergic medium spiny neurons and has 

many inhibitory projections (Lanciego et al., 2012). Such regional differences in cellular 

organisation will no doubt infer differences in regional glutamate and GABA receptor 

distribution, which may in turn impact their availability for modulation by riluzole. For 

example, the degree of binding of GABA to GABAA receptors has been shown to differ 

throughout the control brain, depending on subunit assembly (Halonen et al., 2009) and in 

controls, glutamate receptors are generally more highly conserved in the PFC, compared to 

basal ganglia regions (Breese & Leonard, 1994). Likewise, the expression of enzymes 

involved in converting glutamate to GABA, which maintain E-I dynamics, such as GAD65 

and GAD67 is known to differ between regions (Collins, 1972; Müller & Langemann, 1962). 

However, as discussed below, the composition and function of both brain regions are known 

to be altered in ASD (Calderoni et al., 2014; Fatemi et al., 2002; Hassan et al., 2013), which 

may go some way to explain why the response profile in ASD does not match that of 

controls. 
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4.4.4 Glial contribution 

[1H]MRS samples the total tissue metabolite pool within both neurons and glia. The relative 

proportions of these two cell types differ from region to region (Pakkenberg & Gundersen, 

1988; Sherwood et al., 2006), and may therefore contribute to the pattern of findings here. 

For example, there are a multitude of glial cells in the prefrontal cortex, which far outnumber 

neurons. Glial cells (astrocytes and microglia) are responsible for the uptake and storage of 

glutamate as glutamine, and the subsequent release of glutamine to be converted to glutamate 

for neurotransmission. They therefore act as a metabolic store, and are required in high 

quantities in the prefrontal cortex in particular due to the high metabolic demand of 

maintaining highly active prefrontal neurons with long dendritic projections (Sherwood et al., 

2006). In addition to glutamate storage, glia help regulate E-I balance and maintain synaptic 

integrity (Auld & Robitaille, 2003; Domercq et al., 2013; Durieux et al., 2015; Graeber, 

2010; Liang et al., 2006; Wake et al., 2009). In the prefrontal cortex (Chapter 3) the change 

in GABA fraction was correlated with the change in Glx in controls but not ASD. Therefore, 

it is possible that the typical neuronal-glia relationship is preserved in controls and maintains 

E-I balance. 

 

In contrast, abnormalities in glia have been implicated in ASD (Bernstein et al., 2009; 

Durieux et al., 2015; Fatemi et al., 2008; Onore et al., 2012; Shigemori et al., 2015); and 

higher glial numbers have been shown in neurodevelopmental models and patients with ASD 

(Dickens et al., 2014; Suzuki et al., 2013). Moreover, differences in both glial number and 

activation state have been shown to be concentrated in prefrontal (e.g. ACC), and not in basal 

ganglia regions (Suzuki et al., 2013). Thus, I speculate that the proportions of cell 

populations contributing to E-I balance in the basal ganglia in ASD may be more similar to 
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controls and so the responsivity to E-I challenge is also similar. Unfortunately, MRS is not 

yet sensitive enough to tease out any differences in glial and neuronal alterations. 

 

4.4.5 Receptor and enzyme contribution 

As the cellular composition of both brain regions are known to be altered in ASD, so too are 

the regional distribution of receptors and enzymes which determine E-I balance. GABAA 

receptor expression has been shown to be abnormal across the ASD brain, with altered levels 

observed in the hippocampus (Blatt et al., 2001) and nucleus accumbens (Mendez et al., 

2013). Pertinently- both GABAA and GABAB receptor expression is reportedly altered in the 

prefrontal cortex and anterior cingulate cortex of children and adults with ASD compared to 

controls (Fatemi et al., 2010, 2014; Mori et al., 2012; Oblak et al., 2009, 2010). This may go 

some way to explain why the effect of riluzole in the prefrontal cortex is different in ASD 

and controls, as one mechanism of action of riluzole is to potentiate GABA receptor activity.  

 

Likewise, glutamate receptor expression is known to be altered across the brain in ASD- 

particularly in the cerebellum, where lower AMPA and higher NMDA and mGluR5 receptors 

have been reported (Fatemi et al., 2011; Purcell et al., 2001).  A near-significant trend 

towards increased mGluR5 levels in the prefrontal cortex of ASD patients was reported by 

Lohith et al., (2013), yet lower levels in the same region and in animal models have been 

reported by others (Chana et al., 2015). With limited available post-mortem samples, it is 

difficult to fully map receptor levels across the human ASD brain, yet regional 

inconsistencies in receptor expression and perhaps function are apparent, which may interfere 

with riluzole’s efficacy and could contribute to the pattern of results presented in this chapter. 

Similarly, the expression of enzymes which regulate glutamate-GABA flux is compromised 

in ASD. The majority of investigations into GAD65 and GAD67, which convert glutamate to 
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GABA, focus on the cerebellum (Fatemi et al., 2002; Yip et al., 2007, 2009), where the 

concentration of enzymes is reportedly lower than in controls. In animal models, however, 

such as the valproic acid mouse model of ASD, the basal ganglia and prefrontal cortex have 

been examined. In these animals, GAD67 was found to be lower in the prefrontal cortex, but 

increased in the basal ganglia, whereas GAD65 was reduced in both regions (Wei et al., 

2016). GAD65 is associated with synaptic terminals, and is therefore thought to impact 

synapatic transmission, whereas isoform 67 is associated with axonal regions and maintains 

metabolic stores (Esclapez, Tillakaratne, Kaufman, Tobin, & Houser, 1994; Martin & 

Rimvall, 1993). Both synaptic function, and metabolic stores of E-I metabolites awaiting use 

in transmission, may therefore be altered in ASD. Additionally, further metabolic alterations 

have been reported in the prefrontal cortex of patients with ASD by Shimmura et al., (2013), 

who highlighted decreased levels of kidney-type glutaminase in the anterior cingulate cortex, 

inferring altered glutamate-glutamine balance, which again, may impact the responsivity of 

the ASD prefrontal cortex. 

 

Taken in combination; differences in regional cellular composition, receptor availability, and 

transmitter metabolic pathways may converge to create group differences in responsivity of 

the ASD brain, and may go some way to explain the differences observed in the prefrontal 

cortex in the present study.  

 

Furthermore, the finding of altered baseline functional connectivity of the prefrontal cortex in 

the ASD group in Chapter 3, could also be considered as a contributing factor to regional 

responsivity differences. Therefore, whilst it is possible that the MRS response difference in 

GABA might explain the functional connectivity response, it could in fact, be the other way 

around. Thus, one cannot know whether by altering FC of the rest of brain with ACC in 
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ASD, a secondary effect is a shift in metabolite in this ‘reconnected’ region. Long-range 

connections are complex and thus the shift in connectivity may have been accompanied by 

metabolite shifts in multiple inter-connected subcortical and cortical components of this 

pathway including in posterior cortices. Unfortunately, I did not acquire MRS across whole 

brain, which might have helped to understand the relationship between metabolite shifts and 

functional connectivity changes. 

 

The explanations suggested above may well be an over-simplification. Although both the 

control and ASD groups responded in the same direction to riluzole challenge in the basal 

ganglia, it is unclear whether this is a ‘normal’ response in ASD and indeed the baseline E-I 

was abnormal in this region in the ASD group. The MRS voxels used in these experiments 

incorporated, multiple anatomical structures. Both cortical and sub-cortical voxels captured a 

mix of CSF, grey matter and white matter; and although the voxel composition was 

segmented to control for variation in tissue composition, the target was sizeable. The basal 

ganglia voxel itself encroached upon the thalamus, insula, internal capsule and caudate 

putamen and it is well documented that the size, in terms of both volume and surface area, of 

basal ganglia structures is altered in ASD (Estes et al., 2011; Sato et al., 2014; Schuetze et al., 

2016), therefore the ASD voxel in our studies and in work by other teams may capture 

different parts of the basal ganglia than the voxel in control group. That being said, there 

were no significant group differences in the percentage composition of either voxel in either 

grey or white matter (Supplementary Table 1 and Table 4.1), but it is impossible to tell which 

anatomical regions the relevant proportions of tissue belong to. 

 

The relative proportions of white (PFC ~ 40%, basal ganglia ~ 20%), but not grey matter 

(~50% in both PFC and basal ganglia) differed between the two brain regions tested, though 
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since there were no differences in each voxel’s composition between groups and variations in 

voxel composition were accounted for, the tissue composition at the level of grey/white 

matter is unlikely to account for the differences in regional responsivity in the groups. 

4.5 Limitations 

Thus, [1H]MRS is a valuable, yet relatively ‘crude’ measure of E-I balance, and can only 

show bulk measures of total metabolite levels within relatively large regions of brain. As a 

result, MRS is unlikely to be sensitive to synaptic levels of neurotransmitters and should not 

therefore be assumed to measure neural signalling (Dager et al., 2008). Additionally, the 

metabolite measures acquired do not reflect absolute concentrations of GABA and glutamate; 

as they are contaminated with other signals (e.g. the GABA signal also contains 

macromolecule and is reported as GABA+; and the Glx signal is a combination of glutamate 

and its metabolite glutamine). It is possible therefore that the presence of these additional 

molecules may confound results (see General methods, section 2.1.4.6 for further details). 

Steps to minimise the impact of these combined signals are now available, using suppression 

and editing techniques (Edden et al., 2012; Harris et al., 2015; Ramadan et al., 2013; Shungu 

et al., 2016). Whilst this technology was not available for the present study, future work 

should utilise these techniques to aim for a ‘pure’ sample of glutamate and GABA. 

 

I also acknowledge that, although based upon prior power calculations, the sample size for 

this study was still modest. However, according to previously published data from our 

scanner, n=12 is sufficient to detect a 10% alteration in E-I levels at a power of 0.8 (Stone et 

al., 2012). I can be confident therefore that any significant findings (such as the group 

difference in basal Glx levels) are sufficiently powered, and similarly, findings of no 

difference are unlikely to be due to a lack of power. In analyses where no significant results 
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were found, for example where there were no group differences in response to riluzole in the 

basal ganglia, sample analysis calculations indicate that a total n of 262 would be necessary 

to find a statistically significant difference between groups (Clin Calc LLC, 2018). If putative 

differences were obtained with such large numbers, they may be statistically significant, but 

are unlikely to be clinically significant.  

 

Finally, this study was intended as an initial ‘Proof of Concept’ study to test responsivity 

differences in ASD, but was not powered to examine symptom correlates. To accommodate 

correlation analyses, with an estimated moderate-large effect size (r=0.5) between acute 

changes in the inhibitory index and primary symptom measures, at =0.05 and a power of 

0.9, the sample size would need to be n=31. Thus, the absence of a relationship between 

symptoms and E-I responsivity in ASD may represent a false negative finding. Future work 

will be required to confirm the findings from this study (particularly with regards to clinical 

correlates) in a larger cohort and determine if these are generalisable, for example, to females 

with ASD, to other age groups and/or to individuals with intellectual difficulties.  

 

4.6 Conclusions 

For the first time, I have shown that E-I balance can be pharmacologically ‘shifted’ in control 

subjects and in patients with an established E-I imbalance. Furthermore, the nature of 

responsivity to E-I challenge differs between adult men with and without ASD. Specifically, 

the control subjects’ response to riluzole in the prefrontal cortex and basal ganglia is in 

opposite directions, whilst participants with ASD respond in the same direction, irrespective 

of brain region. While this evidence that E-I balance can be modulated in ASD gives reason 
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for hope in the search for pharmacological treatment options, I have also shown that the 

response in the ASD brain is pharmacologically atypical. The latter may have important 

implications for drug development and suggests we cannot assume that drugs work in the 

same way in the neurodevelopmental spectrum as in unaffected individuals.  

 

4.7 Next steps 

It is clear from both the MRS and fMRI data presented thus far that there are alterations in E-

I flux in ASD. However, with the techniques available in humans, it was not possible to tell 

how changes to metabolite levels at a cellular level drive changes in functional connectivity. 

Direct measurement of changes in extracellular E-I (efflux) following riluzole administration 

may help address this question and therefore, I used a rat model – the Neurexin1 knock-out.  
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Chapter 5 

The Neurexin1 knock out rat as a model of ASD: Initial 

preclinical investigations 

5.1 Introduction 

Genetic alterations which compromise E-I synaptic stability have been consistently linked to 

neurodevelopmental disorders (Jamain et al., 2003; Südhof, 2008; Zhao et al., 2017). In 

particular, copy number variations in the Neurexin1 gene have been repeatedly observed in 

patients with ASD (Bucan et al., 2009; Ching et al., 2010; Dabell et al., 2013; Feng et al., 

2006; Gauthier et al., 2011; Glessner et al., 2009; Kim et al., 2008; The Autism Genome 

Project Consortium, 2007; Yan et al., 2008) and may contribute to 0.5% of total incidences 

(Etherton et al., 2009). Mostly, disruptions to the alpha () isoform of Neurexin1 are 

implicated, and Neurexin1 has therefore become a target for manipulation in animal models. 

 

Studies using Neurexin1 homozygous knock out (Nrxn1 -/-) mice and rats have shown that 

removing this gene causes deficits in social behaviour which may proxy the core symptoms 

of the human condition (Dachtler et al., 2015; Esclassan et al., 2015; et al., 2009; Grayton et 

al., 2013; Laarakker et al., 2012). Additionally, Nrxn1 -/- models show abnormalities in E-I 

transmission, including decreased excitatory synaptic strength, reduced EPSC frequency and 

reduced release of both excitatory and inhibitory neurotransmitters (Etherton et al., 2009; 

Kattenstroth et al., 2004; Missler et al., 2003; Zhang et al., 2005). The Nrxn1 -/- rat was 

therefore selected as a model for continuing investigations into E-I flux in ASD. However, 

whilst the existing literature infers an E-I imbalance in this model, no one has directly 
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investigated E-I flux in a Nrxn1- deficient animal. The following experiments were 

therefore designed to determine the face validity of the Nrxn1 -/- rat as a model of disrupted 

E-I and test whether the neurochemistry of the Nrxn1 -/- rat would match that of the human 

patient population, both at baseline, and after riluzole administration. 

 

For consistency, the following rodent experiments aimed to mirror those undertaken in the 

human MRS study. First, it was necessary to establish an equivalent dose and route of 

administration of riluzole which would be comparable across species, and confirm the 

pharmacokinetics (PK) in this rat model (see Study 1, section 5.2). Next the aim was to 

establish whether the baseline findings of the human MRS study were comparable with the 

neurochemistry of the animal model at baseline. To this end, HPLC was used to capture bulk 

intracellular levels of metabolites in specific volumes (weights) of tissue as this method has 

been shown to produce equivalent results to MRS (Fatouros et al., 2000). Bulk measures of 

neurotransmitters were measured ex vivo in equivalent brain regions in rats, namely the 

prefrontal cortex and caudate putamen.  
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5.2 Study 1: Riluzole pharmacokinetics in the rodent 

50 mg is the standard oral dose prescribed to adults with Amyotrophic Lateral Sclerosis 

(ALS) and was therefore deemed a suitable dose to use as an initial challenge for the human 

study (Bryson et al., 1996; Joint Formularly Committee, 2017). Using a dose translation 

equation, 4 mg/kg riluzole oral dose (p.o.) was calculated as the rodent equivalent to the 50 

mg tablet administered to humans (see General Methods section 2.2.2.1 for full details). This 

dose was within the range used in previous rodent studies (Chew et al., 2014; Sung et al., 

2003), with minimal side effects (which appear over 10 mg/kg), and far below the lethal dose 

(LD50) of 85 mg/kg (Sanofi-Aventis, 2010). Riluzole at a similar dose (5 mg/kg) shows rapid 

brain penetration which is dependent upon plasma concentrations (Milane et al., 2009); but 

this data comes from intraperitoneal injections in mice. However, as the literature on riluzole 

PK in the rodent varies greatly in dose concentration, route of administration and animal 

species (Milane et al., 2009; Ravi et al., 2013; Wu et al., 2013), a PK study was conducted in 

wild type adult Wistar rats to establish the presence of riluzole in the rat brain and plasma 

after a 4 mg/kg oral dose. 

 

5.2.1 Methods 

The full protocol can be found in General Methods section 2.2.3. Briefly, 12 male Wistar rats 

(average weight 319.9  4.1 grams) were culled by a rising concentration of CO2 0.5, 1, 2, or 

4 hours (n=3/group) after a 4 mg/kg oral dose of riluzole (in 1% HEC). Blood was collected 

by cardiac puncture and plasma separated by centrifugation. Following removal of blood, 

brains were removed and the forebrain cut at the level of the optic chiasm. Forebrains were 

weighed and all samples were frozen and stored at -80oC pending analysis. Samples were 

analysed using previously described methods (General Methods section 2.2.6). Plasma and 
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brain concentrations of riluzole are presented as ng/ml or ng/g of sample respectively and the 

brain:plasma ratio was calculated as brain riluzole concentration divided by plasma riluzole 

concentration. 

 

5.2.2 Results 

5.2.2.1 Riluzole is present in the plasma and brain after 4 mg/kg dose 

Riluzole was detected in the brain and plasma at each time point measured, with peak 

exposure times of 3 and 4 hours post-dose, respectively (Table 5.1 and Figure 5.1). Brain 

exposure was approximately 5 times that of plasma exposure, as determined by the 

brain/plasma ratio (see Table 5.1). 

 

 

Table 5.1: Mean riluzole brain and plasma concentrations after 4 mg/kg oral dose 

 

Time (hr) Plasma Concentration (ng/ml) 

Mean (±SEM) 

Brain Concentration (ng/g) 

Mean (±SEM) 

Brain:Plasma Ratio 

Mean (±SEM) 

0.5 647 (81) 3413 (507) 5.24 (0.4) 

1 576 (24) 3470 (19) 6.09 (0.5) 

2 1011 (72) 5683 (418) 5.67 (0.6) 

4 1150 (39) 5267 (172) 4.58 (0.08) 
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Figure 5.1: Plasma (A) and brain (B) concentration of riluzole after 4 mg/kg oral dose in 

wild type rats 

(A) Riluzole is present in the plasma up to 4 hours post 4 mg/kg oral dose, with a peak 

concentration at the 4 hour time point. 

(B) Riluzole is present in the brain up to 4 hours post 4 mg/kg oral dose, with a peak 

concentration at the 3 hour time point. 
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5.2.3 Conclusions 

After a single oral dose of 4 mg/kg, riluzole was present in both the rat brain and plasma from 

the initial sampling time of 30 minutes up to 4 hours post-dose. Peak plasma concentrations 

were achieved at 4 hours post-dose, and peak brain concentration at 3 hours post dose. The 

drop in brain riluzole concentration after 3 hours, and subsequent increase in plasma levels 

may indicate riluzole starting to leave the brain and being effluxed through the blood-brain 

barrier (BBB) back to the bloodstream. Furthermore, brain exposure in the rat was found to 

be around five times higher than that of plasma exposure. This is consistent with previous PK 

studies in mice, where brain levels of riluzole were found to be four (Milane et al., 2009) or 

five (Colovic et al., 2004) times higher than plasma levels. 

 

In addition to confirming the presence of riluzole in the rodent brain, this study also has 

implications for the previously conducted human study. Though plasma concentrations of 

riluzole in humans are well documented, the levels of riluzole in the human brain after dosing 

have not been evaluated. Whilst riluzole is able to cross the blood-brain barrier (Sanofi-

Aventis, 2010), levels are impossible to directly sample in the living human brain. Assuming 

the brain:plasma ratio is equivalent in humans and rodents, it could be estimated that the 

concentration of riluzole in the human brain is likely to be around five times that of the 

plasma. Taken together with the known plasma levels of 50 mg oral riluzole in humans at 

Cmax (1 hour post-dose) as between 52-300 ng/ml1 or 0.2-1.2 M (Abbara et al., 2011; 

Groeneveld et al., 2008; Le Liboux et al., 1997), it was anticipated that, at an estimated five 

                                                 

1 This value varies greatly between and within studies, for example Le Liboux et al., record 

Cmax at 1 hour post-dose as 180 ± 1220 ng/ml.  
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times higher concentration in the brain, riluzole would be at a concentration that should be 

sufficient to cause the changes in E-I dynamics observed in the human studies outlined in 

previous chapters.  

 

5.3 Study 2: E-I responsivity of Neurexin 1 -/- rats (ex vivo) 

Having established that riluzole was present in the rat brain, the next stage was to examine 

whether the drug had an equivalent effect on E-I responsivity of the PFC and CPu as in the 

human sample. Firstly, experiments investigated whether there were any initial E-I 

differences in Nrxn1 -/- rat at baseline, compared to wild type controls. To compare the 

results to the human findings, baseline GABA and glutamate levels were examined. 

However, as the measure of glutamate used in the human MRS studies was in fact Glx 

(glutamate and glutamine combined), levels of glutamine were also measured in the rodent.  

 

5.3.1 Methods 

16 adult male Wistar Nrxn1 -/- rats and 16 littermate controls were sourced from SAGE labs 

and housed in standard conditions (see General Methods chapter 2.2.1 for further detail). One 

Nrxn1 -/- rat had to be sacrificed after microdialysis surgery as the cement used to attach the 

probes did not bond to the skull, and was therefore excluded from all analyses to give an 

experimental sample of n=15 Nrxn1 -/- and n=16 wild types. Rats did not differ in weight 

(WT, 493.8  11.6 grams; Nrxn1-/-, 495.2  15.9 grams; t=0.07 (29), p=0.94) or age (WT, 

23.4  0.4 weeks; Nrxn1-/-, 21.7  1.5 weeks; t=1.14 (29), p=0.26). See Figure 5.2. 
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All rats underwent microdialysis probe implantation surgery followed by in vivo 

microdialysis experiments (see General Methods section 2.2.4 for further details). Rats were 

dosed with either 4 mg/kg riluzole (in 1% HEC), or vehicle only (1% HEC); WT vehicle n=8, 

Nrxn1-/- vehicle n=7, WT riluzole n=8, Nrxn1-/- riluzole n=8. Following in vivo 

microdialysis, animals were culled using a non-Schedule 1 procedure by exposure to a rising 

concentration of CO2 prior to decapitation by guillotine. Brains were removed and the PFC 

and CPu dissected and frozen pending analysis (see General Methods section 2.2.5.1 for 

further detail). Time from vehicle/drug administration to sample freezing (dose to dissection 

time, DTD) and time from euthanasia to sample freezing (post mortem interval, PMI) were 

recorded (Table 5.2). 

 

Brain tissue samples were analysed using previously described methods (General Methods 

section 2.2.6). Independent samples t-tests were used to compare group weight, age, DTD 

and PMI times (within drug treatment sub-groups). One-way ANOVA was used to compare 

DTD and PMI times across all groups. Two-way ANOVA was used to compare regional 

brain weights, with region and group as the variables of interest. Baseline glutamate, 

glutamine and GABA levels and glutamine-glutamate ratios were compared using 

independent t-tests. Values were then converted to the inhibitory index. In the human MRS 

study, the inhibitory index was expressed as GABA/(GABA + Glx), where Glx represented 

the combined measure of glutamate and glutamine. For consistency across studies, the 

inhibitory index in the rodent was also expressed as GABA/(GABA + Glx), where Glx is the 

sum of glutamate and glutamine. 
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Figure 5.2: Experimental rats did not differ in weight or age 

There were no significant differences between wild type and Nrxn1 -/- rats in weight (t=0.07 

(df=29), p=0.94) or age (t=1.14 (df=29), p=0.26). 

 

Time from dose to dissection (DTD), minutes (mean  SEM) 

Wild Type 

vehicle  

(n=8) 

Neurexin1-/- 

vehicle  

(n=7) 

Wild Type 

riluzole 

(n=8) 

Neurexin1-/- 

riluzole  

(n=8) 

One-Way 

ANOVA 

T-test 

(vehicle) 

T-test 

(riluzole) 

224.3 (3.6) 239.1 (7.6) 228.1 (4.5) 227.1 (6.5) F (3,27) =1.26 

p=0.31  

t=1.85 (13) 

p=0.09 

t=0.13 (14) 

p=0.90 

Post mortem interval (PMI), minutes (mean  SEM) 

8.4 (1.8) 7.3 (1.0) 8.9 (1.4) 9.3 (1.1) F (3,27) =0.36 

p=0.79 

t=0.51 (13) 

p=0.62 

t=0.21 (14) 

p=0.84 

 

Table 5.2: Mean time from dose to dissection and from dissection to sample freezing 

There were no significant differences between groups in time from dose to dissection, or post 

mortem interval (dissection to freezing time). 

W
ild

 T
yp

e

N
eu

re
xi

n1α
 -/

-
0

200

400

600
W

e
ig

h
t 

(g
)

W
ild

 T
yp

e

N
eu

re
xi

n1α
 -/

-
0

5

10

15

20

25

A
g

e
 (

w
e
e
k
s
)



 175 

5.3.2 Results 

5.3.2.1 Regional brain weight  

There were no significant group differences when comparing the weight of each dissected 

brain region; main effect of group, F (1,57) =0.08, p=0.78 (Figure 5.3). 

 

 

 

Figure 5.3: Regional brain weights 

No significant group difference in regional brain weights (main effect of group; F (1,57) =0.08, 

p=0.78). 
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5.3.2.2 Baseline metabolite levels in the rat prefrontal cortex 

There were no significant group differences in baseline (vehicle) GABA or glutamate levels 

between wild type and Nrxn1 -/- rats in the PFC (GABA, t=0.11 (13), p=0.91; glutamate, 

t=0.54 (13), p=0.60, WT n=8, Nrxn1 -/- n=7), see Figure 5.4 A and B, respectively. 

There was however, a significant group difference in baseline glutamine in the same region 

(glutamine, t=3.16 (12), p=0.008, n=7/group), see Figure 5.4 C, and the ratio of glutamate to 

glutamine was significantly lower in Nrxn1 -/- rats compared to wild types (t=3.18 (12), 

p=0.008, n=7/group), Figure 5.4 D. When glutamate and glutamine levels were combined, as 

in the human study (Glx), there was no significant group difference between baseline levels; 

t=1.48 (12), p=0.16. 
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Figure 5.4: Baseline GABA (A), glutamate (B), glutamine (C) and Glu/Gln ratio (D) in 

the prefrontal cortex of wild type and Nrxn1 -/- rats 

There were no significant group differences in baseline (vehicle) measures of GABA (A) or 

glutamate (B), but there was a significant group difference in baseline glutamine (C) in the 

PFC (t=3.16 (12), p=0.008, n=7/group). This translated to a significant group difference in 

the baseline glutamate-glutamine ratio (t=3.18 (12), p=0.008, n=7/group). 
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5.3.2.3 Baseline metabolite levels in the rat caudate putamen 

There were no significant group differences in baseline (vehicle) GABA or glutamine levels 

between wild type and Nrxn1 -/- rats in the CPu (GABA, t=0.18 (13), p=0.86; glutamine, 

t=1.1 (13), p=0.31, WT n=8, Nrxn1 -/- n=7). See Figure 5.5 A and C, respectively. 

There was however, a significant group difference in baseline glutamate in the same region 

(glutamate, t=2.14 (11), p=0.05, WT n=6, Nrxn1 -/- n=7, see Figure 5.5 B), and the ratio of 

glutamate to glutamine was significantly lower in Nrxn1 -/- rats compared to wild types 

(t=2.81 (12), p=0.02, WT n=6, Nrxn1 -/- n=7, see Figure 5.5 D). When glutamate and 

glutamine levels were combined, as in the human study (Glx), there were no significant 

group differences between baseline levels; t=1.08 (11), p=0.3. 
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Figure 5.5: Baseline GABA (A), glutamate (B), glutamine (C) and Glu/Gln ratio (D) in 

the caudate putamen of wild type and Neurexin1-/- rats 

There were no significant group differences in baseline (vehicle) measures of GABA (A) or 

glutamine (C), but there was a significant group difference in baseline glutamate (B) in the 

caudate putamen (t=2.14 (11), p=0.05, WT n=6, Nrxn1 -/- n=7). This translated to a 

significant group difference in the baseline glutamate/glutamine ratio (t=2.81 (11), p=0.02, 

WT n=6, Nrxn1 -/- n=7). 
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5.3.2.4 No effect of riluzole on rat PFC or CPu inhibitory indices 

There were no main effects of group, nor drug on the inhibitory index in the PFC (Figure 5.6 

A; main effect of group; F (1,25) =0.06, p=0.95, and drug; F (1,25) =0.52, p=0.48), nor CPu 

(Figure 5.6 B; main effect of group; F (1,27) =0.93, p=0.34, and drug; F (1,27) =0.29, p=0.59). 
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Figure 5.6: Effect of riluzole on rodent prefrontal cortex (A) and caudate putamen (B) 

inhibitory index 

There were no significant effects of group nor drug on Nrxn1 -/- and wild type rat PFC (A), 

or CPu (B) inhibitory indices. 
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5.3.3 Discussion 

In line with baseline findings from patients with ASD, Nrxn1 -/- rats had significantly lower 

baseline glutamate in the caudate putamen. However, despite a comparable regional E-I 

imbalance, unlike the human condition, no significant effects of riluzole on E-I flux were 

reported in either brain region. This could indicate either a lack of efficacy of riluzole in 

engaging the relevant targets to produce an observable response, or alternatively could be due 

to technical issues relating to study design and translation. 

 

5.3.3.1 Study design 

Groups did not differ in weight, or age, and dissected brain regions were equivalent weights 

across all groups. The time taken to perform the dissections was similar across groups, as was 

the time from vehicle/riluzole dose to dissection. Total time from dose to sample collection 

was around 4 hours for all groups (see Table 5.2).  

 

5.3.3.2 Baseline E-I balance of the rat prefrontal cortex 

There were no group differences in baseline GABA, or glutamate levels in the PFC of wild 

type and Nrxn1 -/- rats. However, the Nrxn1 -/- group had significantly higher levels of 

prefrontal glutamine (Figure 5.4 C). Additionally, glutamate-glutamine ratios were 

significantly lower in the Nrxn1 -/- rats compared to wild type controls (Figure 5.4 D).  

 

The increased glutamine, and accompanying lower glutamine-glutamate ratios found in the 

Nrxn1 -/- PFC are consistent with reports of altered glutamine in the human condition. For 

example, lower glutamate-glutamine ratios have been reported in the anterior cingulate cortex 
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(ACC) of ASD patients compared to controls (Shimmura et al., 2013); and in the only human 

MRS study to measure isolated glutamine, Cochran et al. (2015) reported increased levels in 

the ACC of children with ASD. 

 

The cause of the shift towards glutamine in the Nrxn1 -/- group is unknown, however 

disruptions to the regulation of the glutamine-glutamate cycle are a contributing factor to E-I 

imbalance in ASD, and may play a role here (Fatemi et al., 2002; Shimmura et al., 2013). 

Glutamine synthetase for example (which converts glutamate to glutamine in glial cells), is 

reportedly higher in the ACC of animal models of ASD (Silvestrin et al., 2013) and may 

represent increased astrocytic clearance of glutamate in ASD. Additionally, ACC 

glutaminase, which converts glutamine back to glutamate in neurons, is lower in ASD 

patients (Shimmura et al., 2013). Both may theoretically result in a shift towards glutamine, 

rather than glutamate, as observed here. Additionally, the regulation of this cycle occurs in 

glial cells, which themselves are known to be altered in the ASD PFC. Microglial density is 

reportedly increased in the PFC of mGluR5 knock out autism mouse models, and both 

number, organisation and activation states of microglia have been reported as abnormally 

high in patients and animal models (Morgan et al., 2010, 2012; Suzuki et al., 2013; Vargas et 

al., 2005). 

 

5.3.3.3 Baseline E-I balance of the rat caudate putamen 

There were no group differences in baseline GABA, glutamine, nor combined Glx in the 

CPu. However, there was significantly lower glutamate in the Nrxn1 -/- group, and as a 

result, the glutamine-glutamate ratio was also significantly lower (Figure 5.5).  
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As in the PFC, it is possible that disruptions to the glutamate-glutamine system are 

responsible for the lower glutamate levels observed in the Nrxn1 -/- CPu. Such alterations 

may also be reflective of widespread glutamate dysfunction. This supports the theory of 

altered glutamatergic activity in ASD in both alternative animal models (Wei et al., 2015) 

and human studies (Horder et al., 2013). 

 

5.3.3.4 Comparisons with human findings of the present thesis 

Overall, across both brain regions tested, the baseline neurochemistry of the Nrxn1 -/- model 

was largely consistent with that of the human condition; 

 

In Chapter 3, no differences in baseline GABA or Glx in the human PFC were reported, 

which matches the results observed in the rodent. However, when glutamate and glutamine 

were examined as individual metabolites in the present study, significant group differences in 

rodent PFC glutamine were found, which were not captured by MRS. This highlights the 

potential importance of separating the combined Glx measure in future MRS studies in 

humans, as any group differences in human glutamine levels may have been overlooked, and 

thus the combined Glx findings may present a false negative result.  

 

Likewise, the baseline neurochemistry of the basal ganglia was replicated. In Chapter 4, 

significantly lower baseline Glx was reported in the basal ganglia of the ASD patient 

population. This was comparable to the lower glutamate measured in the CPu of the neurexin 

model of ASD.   
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Having established an equivalence of the model at baseline, differences in responsivity of the 

E-I system were next investigated. 

 

5.3.3.5 Responsivity of the rat brain to riluzole 

Unlike in the human cohort, where distinct regional differences in E-I responsivity were 

found, riluzole had no effect on E-I flux in either brain region tested (Figure 5.6).  

 

At the time the brain regions were analysed (~4 hours post-dose), pharmacokinetic analyses 

from Study 1 indicated that riluzole was present in both the brain and plasma (Figure 5.1). 

Due to the time lag and difference in study protocols, the ex vivo animal findings at 4 hours 

post-dose cannot be directly compared to the findings 1 hour post-dose in the human. For 

both humans and rodents, the maximum effects of riluzole are thought to occur one hour 

post-dose (Sanofi-Aventis, 2010); therefore any changes in E-I flux at this time may have 

been missed in the rat. By the time data was collected at 4 hours post dose in Study 2, the 

system may have ‘normalised’, and E-I balance restored. Considering the significant delay 

from dose to sample measurement, it is also unknown whether riluzole was present at a 

sufficient concentration in the brain to produce an effect on E-I. At 4 hours post-dose in wild 

type rats, the average riluzole plasma level was 1150  39 ng/ml. As the molar mass of 

riluzole is 234.2, the concentration of riluzole in the plasma at this time would therefore be 

around 5 M (calculated as the weight in ng/ml divided by the molecular weight of riluzole 

and then multiplied by 1000 to convert from ng/ml to ng/L = (1150 / 234) x 1000 = 4.9 M). 

Based upon the previously reported brain:plasma ratio in the rat, one could anticipate brain 

riluzole levels of approximately 5 times that of plasma, i.e. approximately 25 M. No other 

studies have evaluated the effects of riluzole at this concentration in vivo or ex vivo, however 
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in vitro studies indicate an IC50 between 18 – 88 M, which would be consistent with the 

estimated regional level of riluzole reported here (Debono et al., 1993; Jehle et al., 2000; 

Wang et al., 2008; Zona et al., 1998). The brain concentrations reached with a 4 mg/kg oral 

dose may therefore have been sufficient to produce a detectable shift in E-I balance, however 

‘total’ brain region levels do not indicate the location of the drug, or whether it is bound or 

free in the extracellular space. They are not therefore directly comparable, and further, more 

localised studies of riluzole are necessary. Direct measurements of riluzole levels in the 

extracellular space were therefore considered in the next set of experiments.  

 

5.3.3.6 Extra notes on the validity of the Neurexin1-/- model 

The present study focused solely on neurotransmitter levels and did not assess animal 

behaviour- however, some observations were made throughout the experiments which may 

be of relevance. Though not formally assessed, the Nrxn1 -/- rats were notably more ill-

tempered than their wild type littermates, and in two instances, had to be housed individually 

to avoid fighting. Increased aggression is a common phenotype in animal models of ASD 

(Brodkin, 2007; Burrows et al., 2015; Schmeisser et al., 2012; Velez et al., 2010) including 

the Nrxn1 -/- (Grayton et al., 2013). Aggression was not assessed in the human arm of the 

study, though a considerable number of patients with ASD in the wider population report 

aggressive behaviour as a co-morbidity. For example in one study of 1,380 children with 

ASD, 68% of parents reported their child had engaged in some form of aggressive behaviour 

towards them (Kanne & Mazurek, 2011). Likewise in adults, 15-18% of people with ASD 

have been reported to engage in aggression towards others (Matson & Rivet, 2008) and 

‘irritability’ and ‘challenging behaviours’ are common and disabling co-morbidities 

(Accordino et al., 2016). 
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Additionally, the Neurexin1 knock-outs were more prone to biting and were more difficult 

to handle- though not formally measured in the present study, this may be an indication of 

increased anxiety. Other behavioural studies of Neurexin1  deficient rats have previously 

identified heightened anxiety compared to wild type controls in the elevated plus maze 

(Grayton et al., 2013), and increased anxiety was also noted in the symptom profile of the 

patients included in the human arm of this study (see Participant Demographic Table, 

Chapter 3), and the general ASD population (Simonoff et al., 2008). Both of these traits add 

to the face validity of the model. 

 

5.4 Limitations  

Back-translating a human study into a rodent is not without limitations and despite all efforts 

to link the two studies, there remained discrepancies. 

 

5.4.1 Study design 

Dissected brain regions did not differ in size, though unfortunately, whole brain weights were 

not assessed before dissection, hence it was not possible to control for potential group 

differences in total brain volume. This is of particular relevance to the present thesis, as 

volumetric differences have been observed between ASD and control brains in humans 

(Haznedar et al., 2006). However, dissections were performed ‘by eye’, using regional 

landmarks, so any gross differences in brain volume would have been noticeable.  

 

In two cases, Nrxn1-/- rats were housed individually after displaying aggressive behaviour 

towards handlers. To match the groups and avoid any potential confounds, two wild type rats 
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could have been housed individually, as isolation may have its own effects on brain E-I 

balance (Lukkes et al., 2012; Sestito et al., 2011). However, in both cases, surgery was 

planned for the following day, hence one night of isolation was not deemed to be sufficient to 

cause changes in E-I balance over such a short period of time. Additionally, social isolation 

mostly affects juvenile rats during weaning, hence the adult rats in the present study were 

most likely unaffected. Finally, although the behaviour may be a characteristic phenotype, 

housing wild type rats singly may not have been an equivalent control, as the reaction of wild 

type rats to being housed singly may be different to that of a knock out animal.  

 

Wistar rats were used as the genetic background for the Nrxn1-/- model used in present 

thesis, which are an outbred stock, and are therefore genetically diverse (compared to an 

inbred strain, such as a Brown Norway rat). This diversity may pose disadvantages, as the 

sample used for the control group may have a genetically different background to those in the 

knock-out group, which may influence their genotype and subsequently, their phenotype 

(NC3Rs, 2018). To mitigate this risk, all rats were genotyped and no significant differences 

were noted. On the other hand, it could be argued that the human population is also 

heterogeneous, therefore selecting an inbred strain may not have effectively translated to the 

human study. 

 

5.4.2 Study translation 

Brain regions were closely matched across studies, but due to the low spatial resolution of 

MRS, and the potential for human error during manual brain dissection, the regions examined 

are not directly comparable. In the basal ganglia in particular, the rodent measures were 

selectively from the caudate putamen, and whilst this region was included in the basal ganglia 

MRS voxel, so too were others (the lateral thalamus for example). It is possible therefore that 
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results from the human are due to brain regions other than the caudate, which are not 

accounted for in the animal study. 

 

Additionally, the analysis techniques used to capture these regions are different. Both capture 

bulk measures of intracellular metabolites, though MRS does so in a living, active brain, and 

HPLC is performed on ex vivo tissue post-mortem. Future work may consider using 

1[H]MRS in living rodents to obtain a more direct comparison. Though GABA and 

glutamate measures have been successfully obtained using this method in studies of 

neurodevelopmental animal models (Gonçalves et al., 2017; Vernon et al., 2015), it was 

deemed inappropriate in the present study due to the need for E-I acting sedatives (e.g. 

isoflurane), which could potentially interfere with interpretation of riluzole action (Petrinovic 

et al., 2016).  

 

5.5 Conclusions 

The Nrxn1 -/- rat modelled the baseline regional E-I imbalance observed in the patient 

cohort examined in previous chapters. The in vivo disruptions to E-I flux seen in the patients 

using MRS however, were not replicated in the animal ex vivo. The time difference in data 

acquisition between studies may account for this discrepancy, hence a real-time measure of 

neurotransmitter flux over time in vivo in animals may better capture any dynamic effects of 

riluzole.  
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5.6 Next steps 

In order to examine changes in E-I efflux, experiments were subsequently undertaken using 

in vivo microdialysis, which allows sampling of neurotransmitters and metabolites in the 

extracellular space.  

 

 

 

  



 191 

Chapter 6 

E-I responsivity of Neurexin1 knock out rats: in vivo 

microdialysis 

6.1 Introduction 

In the thesis thus far, E-I dynamics have been examined in both humans and animals 

primarily at the intracellular level, using MRS and equivalent ex vivo analyses, respectively. 

However, both of these techniques capture bulk E-I tissue measures and as a result, are not 

likely to be sensitive to differences in extracellular metabolite flux. In humans, fMRI was 

utilised as an additional approach to assess the effect of modulating E-I on brain function, 

which is assumed to reflect neurotransmission. However, whilst fMRI is useful, it still does 

not directly access extracellular levels of neurotransmitters in the living brain. Examination 

of neurotransmitter efflux into the extracellular space is however possible in animals using in 

vivo microdialysis.  

 

The present study therefore aimed to use microdialysis to address extracellular E-I dynamics 

and test the hypothesis that there would be group differences in neurotransmitter efflux in 

response to riluzole. I elected to continue to use the Neurexin1 knock out rat (Nrxn1 -/-) as 

it replicated at least baseline ASD E-I. Glutamate and GABA effluxes were sampled in the 

extra-synaptic space of the medial prefrontal cortex (mPFC) and caudate putamen (CPu) in 

rats, after an oral dose of 4 mg/kg riluzole, a dose which was previously demonstrated to be 

comparable to the human dose, and to enter the rat brain (see Chapter 5).   



 192 

6.2 Methods 

6.2.1 Protocol 

15 adult male Wistar Nrxn1 -/- and 16 littermate control rats were sourced from SAGE labs 

and housed in standard conditions. Rats did not differ in weight nor age (see Figure 5.2). 

 

The microdialysis protocol is detailed in full in General Methods section 2.2.4. Briefly, all 

rats underwent probe implantation surgery, followed by in vivo microdialysis experiments the 

next day. MAB 4.7.4 (4 mm) and MAB 4.7.3 (3 mm) microdialysis probes were implanted in 

the mPFC and CPu respectively, at the following co-ordinates (from bregma) with nose bar 

set to -3.3 mm: 

 

mPFC; +3.0 mm anterior, ±1.5 mm lateral, -5.0 mm vertical (from dura); at a 12 degree 

angle 

 

CPu; +0.3 mm anterior, - 3.0 mm lateral, -6.0 mm vertical (from dura) 

 

To match the location of the human MRS voxels (bilateral medial prefrontal cortex and left 

basal ganglia), placement of the mPFC probe altered between left and right mPFC co-

ordinates; whereas placement of the CPu probe was only in the left CPu.  

 

From the day after probe implantation, 4 animals per experimental day were connected to the 

microdialysis rig. Probes were attached to the rig via an infusion pump filled with aCSF, 

which was continuously perfused into the rat brain at a flow rate of 1.5 µl/min. Rats were left 

for an initial settling period of 90 minutes, then samples were acquired at 20 minute intervals 
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for a total of 15 samples. After 6 ‘baseline’ samples were collected, rats were dosed with 

either 4 mg/kg riluzole (in 1% HEC), or vehicle only (1% HEC) via oral gavage (p.o.); WT 

vehicle n=8, Nrxn1-/- vehicle n=7, WT riluzole n=8, Nrxn1-/- riluzole n=8.  

 

All samples were immediately frozen on dry-ice and stored at -80C pending analysis by LC-

MS/MS (see General Methods section 2.2.6 for further details on sample analysis). 

 

6.2.2 Data analysis 

Data were represented as a ‘percentage change from baseline’, where the baseline was the 

average of the final 3 samples prior to drug/vehicle administration (i.e. the average of 

samples at 80-120 minutes) for each rodent. In this way, each animal was normalised to their 

own pre-dose control.  

 

Repeated measures two-way ANOVA with factors of strain and treatment were used to 

compare any main effects of group, riluzole and time. Data from 140 to 300 minutes were 

included in these analyses to exclude the pre-dose settling period. In order to equalise the 

variance across the response range over time, it was necessary to first Log the data. To 

compare the difference in the effect of riluzole between groups (i.e. how responsivity to 

riluzole differed between the two strains), drug by strain interactions were analysed at each 

time point. Briefly; log estimates were calculated, and then transformed (antilogged) to ‘raw 

values’, so raw estimates = LSMean (Ril) / LSMean (Veh). This measure represents a ratio, 

rather than absolute difference, but may be taken as the relative effect of drug compared to 

vehicle. Differences in ‘raw’ treatment effects were again calculated as the antilog of Log 
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estimates, so that raw ratio estimates = LSMean (Ril_Nxn) / LSMean (Veh_Nxn) all divided 

by LSMean (Ril_WT) / LSMean (Veh_WT). 

 

SAS software was used to analyse the data presented in this thesis, which was undertaken by 

Lilly in-house statisticians (RM). SAS was selected as it has the advantage of handling 

missing data without removing subjects.  

 

Riluzole concentration in each sample was measured using LC/MS-MS, in the same manner 

as GABA and glutamate. Riluzole levels per dialysate sample in ng/ml were divided by the 

molecular weight of riluzole (234.199) and multiplied by 1000 to convert to a concentration 

in nM. Linear regressions were performed and then compared to determine whether the slope 

of riluzole in each group were equal.   

 

6.3 Results 

6.3.1 Glutamate efflux from the medial prefrontal cortex 

There were no significant overall effects of rat strain or treatment type on glutamate efflux in 

the mPFC (strain, F (1,24) =0.52, p=0.47; treatment, F (1,24) =0.56, p=0.46, see Figure 6.1). Nor 

was there a main effect of time (F (8,11) =1.58, p=0.23). Further analyses of drug by group 

interactions indicated no significant effects of riluzole at any time point within strains (See 

Figure 6.3 B and D), and hence the response to riluzole in the wild type rats did not differ to 

the that of the knock outs at any time point (no significant drug by group interaction at any 

time).  
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Figure 6.1: Glutamate efflux in the mPFC following riluzole administration 

There were no effects of treatment, nor strain on glutamate efflux from the medial prefrontal 

cortex; RM Two-Way ANOVA; treatment, F (1,24) =0.56, p=0.46; strain, F (1,24) =0.52, 

p=0.47. Further analyses of drug by group interactions showed no significant differences in 

treatment effects between groups at any time point. Arrow indicates time of riluzole/vehicle 

dose (120 minutes). 

 

6.3.2 GABA efflux from the medial prefrontal cortex  

Likewise, there were no significant overall effects of drug (F (1,27) =0.07, p=0.79) or strain (F 

(1,27) =0.18, p=0.67) on GABA efflux from the mPFC (see Figure 6.2). A main effect of time 

almost approached significance (F (8,19) =2.12, p=0.08), which may represent a trend towards 

a slight increase in GABA efflux across all groups over time. However, this may have been 

skewed by larger SEM values towards the end of the study timeline. There was no main 

effect of drug in either strain (see Figure 6.3 A and C), nor did responsivity to riluzole differ 

between groups at any time point (no significant drug by group interaction at any time).  
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Figure 6.2: GABA efflux in the mPFC following riluzole administration 

There were no effects of treatment, nor strain on GABA efflux from the medial prefrontal 

cortex; RM Two-Way ANOVA; treatment, F (1,27) =0.07, p=0.79; strain, F (1,27) =0.18, 

p=0.67. Further analyses of drug by group interactions showed no significant differences in 

treatment effects between groups at any time point. Arrow indicates time of riluzole/vehicle 

dose (120 minutes). 

 

 

 

120 180 240

-40

-20

0

20

40

Time (min)

%
 d

e
v
ia

ti
o

n
 f

ro
m

 b
a
s
e
li
n

e
 G

A
B

A

Wild Type Vehicle

Wild Type Riluzole

Neurexin1α -/- Vehicle

Neurexin1α -/- Riluzole



 197 

 

 

Figure 6.3: No effect of riluzole on glutamate and GABA efflux in the mPFC of wild 

type and Neurexin1 knock out rats 

A) No effect of 4 mg/kg riluzole p.o. on GABA efflux in wild type rat mPFC 

B) No effect of 4 mg/kg riluzole p.o. on glutamate efflux in wild type rat mPFC 

C) No effect of 4 mg/kg riluzole p.o. on GABA efflux in Nrxn1 -/- rat mPFC 

D) No effect of 4 mg/kg riluzole p.o. on glutamate efflux in Nrxn1 -/- rat mPFC 

Riluzole/vehicle dose was administered at 120 minutes. 
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6.3.3 Riluzole levels in the medial prefrontal cortex 

After oral dosing of riluzole at 120 minutes, riluzole rapidly entered the brain and was 

detected at a peak concentration of around 8 nM in the mPFC (see Figure 6.4). However, this 

value does not take into account that each probe samples from its immediate vicinity, and is 

therefore not an accurate representation of the concentration of riluzole in the wider brain 

region in which the probe is placed. Therefore, in a separate in vitro experiment (see 

Appendix 5), the percentage recovery of riluzole by the mPFC microdialysis probe was 

assessed, and found to be on average, 7.5%. The concentration observed in the present 

experiment was therefore extrapolated by a scale factor of 13 (100 / 7.5 = 13), and the total 

riluzole concentration in the wider mPFC region estimated at 100 nM (peak riluzole 

concentration measured multiplied by the scale factor). Riluzole concentration did not 

significantly differ between wild type and knock out rats (wild type slope best fit = 0.03  

0.003, Nrxn1-/- slope best fit = 0.038  0.004, difference in slopes; F (1,26) =1.98, p=0.17). 

 

 

 

 

 

 

 

 

 

Figure 6.4: Concentration of riluzole in rat mPFC dialysate following 4 mg/kg p.o. dose 

Concentration of riluzole did not significantly differ between groups; F (1,26) =1.98, p=0.17. 

Arrow indicates time of riluzole/vehicle dose (120 minutes). 

0 40 80 120 160 200 240 280
0

2

4

6

8

10

Time (min)

R
il
u

z
o

le
 c

o
n

c
e
n

tr
a
ti

o
n

 (
n

M
)

Wild Type

Neurexin1α -/-



 199 

6.3.4 Glutamate efflux from the caudate putamen 

No main effect of treatment, group, nor time was found for glutamate efflux in the caudate 

putamen (see Figure 6.5; main effect of treatment; F (1,22) =1.7, p=0.2; strain; F (1,22) =2.63, 

p=0.12; time; F (8,14) =1.2, p=0.36). There was no main effect of drug in either strain (see 

Figure 6.7 B and D), nor did responsivity to riluzole differ between groups at any time point 

(no significant drug by group interaction at any time).  

 

 

 

Figure 6.5: Glutamate efflux in the CPu following riluzole administration 

There were no effects of treatment, nor strain on glutamate efflux from the caudate putamen; 

RM Two-Way ANOVA; treatment, F (1,22) =1.7, p=0.2; strain, F (1,22) =2.63, p=0.12. Further 

analyses of drug by group interactions showed no significant differences in treatment effects 

between groups at any time point. Arrow indicates time of riluzole/vehicle dose (120 

minutes). 
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6.3.5 GABA efflux from the caudate putamen 

Likewise, there were no main effects of treatment, nor time on GABA efflux of the caudate 

putamen; treatment, F (1,27) =0.99, p=0.33; time, F (8,17) =1.5, p=0.23. There was a trend 

towards a group difference; main effect of strain, F (1,27) =3.4, p=0.075, however this may 

merely represent group differences in variability, as the response profile of the Nrxn1 -/- rats 

was much more varied than that of the wild types (see Figures 6.6 and 6.7). There was no 

main effect of drug in either wild types or knock outs (see Figure 6.7 A and C, respectively), 

and responsivity to riluzole did not differ between groups at any time point (no significant 

drug by group interaction at any time).  

 

 

Figure 6.6: GABA efflux in the CPu following riluzole administration 

There were no significant effects of treatment, nor strain on GABA efflux from the caudate 

putamen; RM Two-Way ANOVA; treatment, F (1,27) =0.99, p=0.33; strain, F (1,27) =3.43, 

p=0.075. Further analyses of drug by group interactions showed no significant differences in 

treatment effects between groups at any time point. Arrow indicates time of riluzole/vehicle 

dose (120 minutes). 
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Figure 6.7: Effect of riluzole on glutamate and GABA efflux in the CPu of wild type and 

Neurexin1 knock out rats 

A) No effect of 4 mg/kg riluzole p.o. on GABA efflux in wild type rat CPu 

B) No effect of 4 mg/kg riluzole p.o. on glutamate efflux in wild type rat CPu  

C) No effect of 4 mg/kg riluzole p.o. on GABA efflux in Nrxn1 -/- rat CPu 

D) No effect of 4 mg/kg riluzole p.o. on glutamate efflux in Nrxn1 -/- rat CPu 

Riluzole/vehicle dose was administered at 120 minutes. 
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6.3.6 Riluzole levels in the caudate putamen 

After oral dosing of riluzole at 120 minutes, riluzole rapidly entered the brain and was 

detected at a peak concentration of around 5 nM in the caudate putamen (see Figure 6.8). As 

for the mPFC probe, the percentage recovery of the CPu microdialysis probe for riluzole was 

calculated in a separate in vitro experiment (see Appendix 5) and was estimated at 4.7%. By 

scaling up the concentration observed in the present experiment by a factor of 21 (100 / 4.7 = 

21), the total riluzole concentration in the wider CPu region was estimated at around 100 nM 

(peak riluzole concentration measured multiplied by scale factor). Riluzole concentration did 

not significantly differ between wild type and knock out rats (wild type slope = 0.024  

0.002, Nrxn1-/- slope = 0.027 0.004; difference in slopes; F (1,26) =0.45, p=0.51. 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Concentration of riluzole in rat CPu dialysate following 4 mg/kg p.o. dose 

Concentration of riluzole did not significantly differ between groups; F (1,26) =0.45, p=0.51. 

Arrow indicates time of riluzole/vehicle dose (120 minutes). 
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6.4 Discussion 

The present study was conducted to investigate extracellular E-I dynamics, using 

microdialysis as a direct measure of neurotransmitter efflux into the extracellular space. 

There were no group differences in responsivity to riluzole in terms of GABA or glutamate 

efflux from either brain region tested, in both wild type and Nrxn1 -/- rats. 

 

6.4.1 Neurotransmitter efflux in the medial prefrontal cortex 

There were no significant effects of riluzole compared to vehicle in wild type, or Nrxn1 -/- 

rats on glutamate (Figures 6.1 and 6.3), or GABA (Figures 6.2 and 6.3) efflux from the 

medial prefrontal cortex (mPFC). Additionally, there were no overall effects of strain, 

treatment or time on the efflux of either metabolite when all groups were compared together.  

 

6.4.2 Neurotransmitter efflux in the caudate putamen 

Likewise, there were no significant effects of riluzole compared to vehicle in either strain on 

glutamate (Figure 6.5 and 6.7) or GABA (Figures 6.6 and 6.7) efflux from the caudate 

putamen (CPu). As in the mPFC, there were no overall effects of strain, treatment or time 

across all groups. 

 

6.4.3 Riluzole levels 

It is possible that these results are false negative findings because riluzole was not present in 

sufficient quantities to engage relevant molecular targets and evoke an E-I response. Previous 

in vitro and in vivo studies report the concentration of riluzole required to inhibit glutamate 
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release to be in the micromolar range (10 M), whereas a 10 times higher dose (100 M) is 

required for inhibition of GABA release (Cheramy et al., 1992; David Martin et al., 1993). 

Analyses of riluzole levels within mPFC and CPu dialysate samples in this study confirmed 

that riluzole was present in the brain of both strains at nano-molar concentrations, from the 

time of dosing (Figures 6.4 and 6.8). Specifically, riluzole presence in the brain remained 

continuous throughout the data collection period, with a peak concentration of extracellular 

(presumably free, unbound) riluzole at 8 nM and 5 nM in the PFC and Cpu, respectively. 

However, in order to consider the efficacy of the microdialysis probe at sampling riluzole, an 

estimated concentration was calculated by extrapolation (see Appendix 5), resulting in an 

approximate concentration of 100 nM riluzole in the extracellular space of each brain region 

(see section 6.3.3 and 6.3.6). Hence, whereas in Chapter 5 the ‘total’ ex vivo brain measures 

of riluzole suggested it was present at 25 M, the free extracellular levels were likely to have 

been much lower (100 nM).  

 

Such discrepancies between tissue and extracellular riluzole concentrations may indicate that 

a large proportion of riluzole is either bound in membranes, or located within compartments 

of the cells. It is impossible to know from the present data whether riluzole is evenly 

distributed across whole brain and where (intracellular or extracellular) it is acting. As 

riluzole acts via a multitude of mechanisms, at glutamate and GABA receptors and ion 

channels, it is likely that the majority of riluzole is either bound to these receptors, or 

partitioned in membranes. 
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6.4.4 Receptor availability and location 

Preclinical studies suggest riluzole acts by reducing excitatory, and potentiating inhibitory 

neurotransmission. Amongst many actions (see Bellingham 2011 and Doble 1996 for a full 

review), riluzole causes inhibition of NMDA receptors (Debono et al., 1993; Prakriya & 

Mennerick, 2000) and sodium and potassium channels (Hebert et al., 1994; Zona et al., 

1998), and potentiation of GABAA receptors (He et al., 2002; Jahn et al., 2008). However, the 

majority of these mechanisms were determined using in vitro cell cultures or brain slices, 

which may represent a more direct evaluation than the complex in vivo environment 

examined in the present microdialysis experiments. It is certainly possible that the abundance 

of other neurotransmitters in living tissue may alter, or mask riluzole’s effects on E-I.  

 

Furthermore, the majority of the literature investigating riluzole’s actions on specific 

glutamate and GABA receptors and pathways cite the hippocampus as the primary location 

for these effects (He et al., 2002; Martin et al., 1993). The thalamus has also been a region of 

interest in previous research; a microdialysis study by Abarca et al. (2000) previously 

reported a significant reduction of thalamic glutamate levels after only a 2 mg/kg dose of 

riluzole (half that of the present study). However, this experiment was conducted in wild type 

rats only and riluzole administered subcutaneously, hence it cannot be directly compared with 

the present protocol. Nonetheless, the lack of results in the mPFC and CPu may be due to 

riluzole having regional efficacy, which was not captured by the present study. 

 

The mPFC and CPu were however, specifically selected to match the human study, where 

effects of riluzole in both the PFC and basal ganglia were apparent (see Chapter 3 and 4). 

Translation between species may therefore be an issue for replication.  
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6.5 Limitations 

A key concern when sampling neurotransmitters using microdialysis soon after probe 

implantation surgery is the potential tissue damage as a result of the surgery. An example of 

the brain tissue after probe implantation can be found in section 2.2.8 of the General 

Methods, where histology was performed to verify the correct placement of each probe 

(Figures 2.10 and 2.11). Minor damage to the surrounding tissue can be seen in both brain 

regions, however it must be noted that these images were captured after probes had been 

inserted, and removed, whereas microdialysis samples were collected only after probe 

insertion. Previous literature has estimated up to 1 mm of tissue damage may occur 

surrounding the probe (Borland et al., 2005). Tissue damage to this extent would likely 

invoke activation of an inflammatory response (Stenken et al., 2010), including activation of 

glial mechanisms, which may in turn affect E-I balance (Auld & Robitaille, 2003; Graeber, 

2010). All groups underwent the same surgery; hence any effects should be consistent across 

all animals- however this may be a factor in why no overall group differences were found if 

glial mechanisms across all groups masked any effects of riluzole. 

 

Further, it is unknown whether the way in which riluzole exerts its effects is compatible with 

detection by microdialysis. Previous analyses of microdialysis studies have shown that 

manipulations which increase neurotransmitter uptake, and simultaneously decrease 

neurotransmitter release, may result in no apparent change in dialysate neurotransmitter 

levels, even though extracellular levels may be reduced (Chefer et al., 2009). This may apply 

to riluzole, as it is known to both increase glutamate reuptake (Dall’Igna et al., 2013; Frizzo 

et al., 2004) and prevent glutamate release (Cheramy et al., 1992; David Martin et al., 1993). 

However other microdialysis studies have found significant effects of riluzole on glutamate 

efflux (Coderre et al., 2007), though admittedly using a higher dose (6 and 12 mg/kg).  
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Finally, whether microdialysis captures glutamate and GABA efflux in response to neural 

signalling has been questioned. As explored in section 2.2.4.3 of the General Methods, 

previous studies have implied that unlike other neurotransmitters such as serotonin and 

noradrenaline, GABA and glutamate are only involved in short distance signalling which 

may not reach the microdialysis probe (Del Arco et al., 2003). Hence, the extracellular 

concentrations of glutamate and GABA may therefore not provide a reliable indication of 

their synaptic exocytotic release (see page 107 for further details). 

 

6.6 Conclusions 

The aforementioned limitations may have contributed to the lack of findings in this 

microdialysis study, however the animal research conducted as a whole has provided 

valuable insight into the Neurexin1 knock out rat model of ASD. This study in particular 

has highlighted the need for other direct evaluations of synaptic activity in the ASD brain, 

which could be explored in future animal research using the Nrxn1-/- model. 
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Chapter 7 

General Discussion 

7.1 Summary of findings 

Evidence to date implicates E-I imbalance in ASD, though thus far E-I has only been 

investigated at rest in mostly cross-sectional studies. To date, no one has examined the 

responsivity of the E-I system, which may well be important, especially when looking 

towards treatment discovery. No single technique can fully capture E-I dynamics in the living 

brain, therefore I looked at E-I responsivity at different levels, using several modalities, 

across both humans and an animal model of ASD. For an outline of the levels of investigation 

conducted, see Figure 7.1. 

 

  



 209 

 

 

Figure 7.1: Investigating E-I pharmacology at the intracellular, functional and 

extracellular level 

Responsivity to E-I challenge with riluzole was investigated at three levels using different 

techniques; 1) bulk intracellular measures of E-I metabolites, i.e. the total ‘neurotransmitter 

pool’, was measured in humans using [1H]MRS and in animals using ex vivo tissue analysis; 

2) whole brain functional connectivity was captured in humans using fMRI as a proxy for 

neuronal activity; and finally, 3) extracellular neurotransmitter efflux was examined in 

animals via in vivo microdialysis. 

Boxes indicate E/I ‘level’ captured by the various techniques. Diagram not to scale. 
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To first capture E-I dynamics at the intracellular level, I investigated riluzole-evoked changes 

in bulk tissue levels of GABA, Glx and the inhibitory index (the relative proportion of 

GABA within the total ‘GABA + Glx’ pool) using in vivo [1H]MRS in the human prefrontal 

cortex and basal ganglia (Chapters 3 and 4), and ex vivo HPLC-MS/MS in a rodent model of 

ASD (the Nrxn1-/- rat) in equivalent brain regions (Chapter 5). In humans with and without 

ASD, despite comparable baseline measures of Glx and GABA between groups in the 

prefrontal cortex, the response to riluzole challenge was diametrically opposite; riluzole 

increased the inhibitory index in ASD, but decreased it in controls. In the basal ganglia, a 

group difference in baseline E-I balance was observed, whereby ASD subjects had 

significantly lower Glx compared to controls. Despite this difference at rest, both groups 

responded in the same manner to riluzole challenge, with an increase in the inhibitory index. 

These intracellular findings in the human cohort partially translated to the animal studies. In 

the Nrxn1-/- rat I recorded lower baseline glutamate in the basal ganglia region (as in 

humans with ASD), but there was no effect of riluzole on E-I dynamics in either wild type or 

knock-out animals in any brain region.  

 

Given that tissue E-I balance is thought to determine network activity, I also explored group 

differences in E-I dynamics at the whole brain connectivity level. Where a group difference 

in tissue responsivity was observed (prefrontal cortex), the responsivity of functional 

connectivity of that region with the rest of the brain was examined using resting-state fMRI 

(Chapter 3). In the ASD group, functional connectivity of the prefrontal cortex was shown to 

be abnormal at baseline, and was restored to control levels after riluzole administration. 

Conversely, riluzole had no effect on functional connectivity in the control group; hence 

again, irrespective of baseline activity, control and ASD subjects significantly differed in 

their prefrontal response to E-I challenge.  
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Finally, to examine E-I dynamics at the extracellular level, I explored neurotransmitter efflux 

into the extracellular space in the living rat brain, using in vivo microdialysis (Chapter 6). I 

hypothesized that differences in E-I dynamics in a rat model of ASD would be present at the 

extracellular level. I hoped that the findings would inform me what extracellular E-I changes 

were driving the observed differences in functional connectivity response. However, riluzole 

had no measurable effect on glutamate or GABA efflux in either brain region in either wild 

type or Nrxn1-/-  rats. For an outline of findings, see Figure 7.2. 
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Figure 7.2: Summary of results at each level of investigation 

Intracellular measures of E-I (MRS in humans and animal ex vivo studies) showed baseline 

differences in E-I balance in the basal ganglia in men with and without ASD and mice with 

and without the Nrxn1 gene. In the prefrontal cortex, despite no group difference at 

baseline, the human study reported a group difference in E-I responsivity. E-I baseline and 

responsivity differences were also found in functional connectivity measures of the human 

prefrontal cortex. No effect of riluzole on E-I dynamics was found in microdialysis studies in 

either brain region. 
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7.2 E-I dynamics at the intracellular level 

Investigations into bulk tissue E-I dynamics in humans 

highlighted group differences in regional responsivity to an E-I 

challenge with riluzole. The findings presented in Chapters 3 and 4 confirm previously 

reported E-I imbalances at the intracellular level in ASD (Bernardi et al., 2011; Harada et al., 

2011; Hassan et al., 2013; Horder et al., 2013; Joshi et al., 2013; Tebartz van Elst et al., 2014) 

and for the first time, show that E-I balance is open to modulation in adults with ASD. The 

potential causes for such group differences in regional responsivity profiles are numerous and 

are discussed in full in Chapter 4.  

  

One potential explanation, is that the cellular composition of the two regions are very 

different in terms of their relative proportions of neurons to glial cells. Abnormalities in both 

neuronal, and in particular glial activity have been reported in the prefrontal cortex, but not 

basal ganglia regions in ASD, which may go some way to explain why the ASD response in 

the prefrontal cortex is different to that of controls, but the basal ganglia effect is the same. 

This is speculative however, as MRS does not distinguish between neuronal and glial effects; 

and though [1H]MRS was able to detect alterations to E-I at rest and when challenged, it is 

unknown where in the total neurotransmitter ‘pool’ this signal arises. 

 

In addition to a lack of cellular specificity, the analysis techniques used in humans in this 

study were also unable to differentiate between some key metabolites, most notably between 

glutamate (glu) and its metabolite, glutamine (gln). In the present study, excitatory 

neurotransmitter measures were reported as the combined ‘Glx’, as is commonly accepted in 

the literature. Capturing Glx in this way, despite being an indicator of E-I flux, does not 

account for potential differences in glu-gln ratios, which may be altered in ASD (Cochran et 
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al., 2015; Shimmura et al., 2013). The importance of eventually investigating glutamine and 

glutamate levels separately in human studies was suggested by the animal ex vivo analyses 

(Chapter 5). Specifically, there were no group differences in the combined Glx measure in 

the animal model and WT at baseline in either brain region tested; yet when analysed as 

individual metabolites, significant differences in baseline glutamine and glutamate were 

found in the PFC and CPu, respectively. In light of these findings, future MRS studies in 

people should endeavour to use new techniques which are capable of quantifying both 

glutamate and glutamine as separate measures (Ramadan et al., 2013), as any group 

differences in human glutamine levels may have been overlooked here, and thus the 

combined Glx findings may present a false negative result. A simple way of tackling this 

problem may be to scan at a higher magnetic field strength, such as 7T, which has proven to 

be capable of separating the Glx signal, whilst also capturing GABA (Cai et al., 2012; Lally 

et al., 2016; Wijtenburg, Rowland, Edden, & Barker, 2013).  

 

Likewise, the GABA measure in the present thesis was also potentially contaminated, as it 

contained macromolecule (MM) signal and was therefore reported as GABA+. New GABA 

editing techniques allow for the detection of GABA alone (Harris et al., 2015; Henry et al., 

2001) and should be considered in addition to separation of the Glx signal to obtain a ‘clean’ 

measure of GABA and glutamate in future MRS studies of E-I.  

 

Finally, pre-selecting the MRS voxels restricted data capture to two specific locations, but it 

is clear from the present thesis (Chapters 3 and 4) and the previous literature (Table 1.3) that 

E-I imbalances in ASD may be found in multiple regions across the brain. These regions 

work together in complex networks, therefore, to further investigate E-I dynamics at the 
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whole brain level, it was necessary to assess the influence of E-I on functional network 

activity. 
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7.3 E-I dynamics at the functional level 

Regional E-I dynamics are thought to regulate the functional 

connectivity of resting state networks in the brain, yet responsivity 

of these networks to E-I challenge has not previously been investigated. In Chapter 3, having 

found group differences in intracellular responsivity of the prefrontal cortex, I next examined 

responsivity of the anterior cingulate cortex (the core region captured by the MRS voxel) in 

terms of its connectivity with the rest of the brain.   

 

Riluzole restored absent functional connectivity of prefrontal-posterior networks in the ASD 

group, and did not alter functional connectivity in the control brain. Thus, for the first time, I 

showed that functional connectivity of the adult ASD brain is open to pharmacological 

modulation, and that functional networks in the ASD brain respond differently to controls. 

Previous studies have indicated that resting tissue measures of glutamate and GABA are 

predictive of network activity in control subjects (Duncan et al., 2013; Enzi et al., 2012; Horn 

et al., 2010; Kapogiannis et al., 2013; Kwon et al., 2014), however the present study showed 

no correlation between MRS and fMRI measures in either controls or those with ASD. This 

disconnect between bulk measures of neurotransmitter pools and neural activity may be 

unsurprising. Functional connectivity is a measure of the oxygen demand of brain tissue, 

which is assumed to be required for neuronal activity. However, this activity could be 

glutamatergic or GABAergic/excitatory or inhibitory. fMRI is unable to distinguish between 

the two and is therefore a measure of ‘bulk’ brain activity, in the same way as MRS is a 

measure of the bulk (metabolic and active) neurotransmitter pool- hence the two may not 

necessarily correlate. Particularly in the ASD cohort, the relationship between brain function 

and tissue metabolite concentration may not be straightforward. Consistent with this, 

intracellular findings have previously been shown to correlate with functional outputs in 
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control subjects, but not in those with ASD. For example, in the absence of a group 

difference in GABA levels in the occipital cortex in adults with and without ASD, Robertson 

et al. (2016) reported a relationship between GABA levels and performance in binocular 

rivalry tasks in controls and not ASD. Likewise, Schallmo et al. (2017) recently presented 

early data indicating modulation of the GABA receptor by lorazepam affected individual 

perception across control individuals in opposite ways. 

 

Therefore, in an attempt to understand the driving factors behind the fMRI result, I sought to 

investigate E-I dynamics at the extracellular level using in vivo microdialysis in a rodent 

model of ASD. 
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7.4 E-I dynamics at the extracellular level 

Having established that the Neurexin1-/- rat had comparable 

baseline E-I balance to ASD (Chapter 5), this model was used to 

investigate extracellular E-I responsivity. I postulated that there would be group differences 

in riluzole-evoked E-I efflux between wild type and Nrxn1-/- rats, which would help to 

further understand what was driving the connectivity findings in the human brain. However, 

no effect of riluzole was observed on either GABA or glutamate efflux in either the medial 

prefrontal cortex or caudate putamen. 

 

Whilst extracellular measures provided a step closer to understanding synaptic activity, they 

are not necessarily indicative of the levels of active neurotransmitters involved in signaling. 

The efflux of neurotransmitter into the extracellular space may therefore not give sufficient 

information to understand the complex mechanisms underlying altered E-I 

neurotransmission, and hence connectivity. 

 

The negative findings from the microdialysis studies could be due to a number of reasons. 

First, as previously discussed - the concentration of riluzole may have been too low to engage 

with relevant molecular targets. In previous in vitro studies, riluzole altered neurotransmitter 

efflux when in the micromolar range (Cheramy et al., 1992; Hubert, Delumeau, Glowinski, 

Prémont, & Doble, 1994; Martin, Thompson, & Nadler, 1993), whereas in my in vivo 

experiment (Chapter 6), riluzole was calculated to be present in nanomolar concentrations. 

Future studies should therefore aim to investigate the effect of a range of doses. This would 

be of particular interest as riluzole has been shown to have different effects on E-I balance at 

different concentrations. For example at low micromolar levels, riluzole reportedly inhibits 

release of excitatory neurotransmitters and potentiates GABAA receptor activity, whereas 
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GABA release is inhibited at 10 fold higher concentrations (Jahn et al., 2008; Martin et al., 

1993). In my human experiments, the poly-pharmacology of riluzole at glutamate and GABA 

systems (in addition to reports of wide-ranging mechanisms of action at ion channels by 

Bellingham, 2011, and Doble, 1996) was advantageous when attempting to evoke a ‘Proof of 

Concept’ response in a heterogeneous cohort of individuals. Yet this same broad range of 

actions may hinder attempts to understand the effect of the drug on specific targets. For this, 

further, more directed probes of E-I may be required. I suggest that future experiments could 

use E-I acting drugs which are more selective for specific targets (for example mGluR5 

antagonists such as 2-methyl-6-phenylethyl-pyrididine (MPEP), or GABAA receptor 

modulators such as benzodiazepines, both of which have shown promise in preclinical and 

clinical studies of ASD models and patients (Han et al., 2014; Mehta et al., 2011; Silverman 

et al., 2010). 

 

7.5 Implications for future research of E-I pharmacology (back-

translation) 

The present thesis attempted to ‘back-translate’ from humans to animal models in order to 

explore the effects of an E-I challenge on neurotransmitter efflux. Going forward, more direct 

measures of E-I in ASD models are needed. 

 

Possible approaches include electrophysiological techniques such as patch clamp recordings, 

which have previously identified differences in the neuronal activity of cultured neurons and 

brain slices from animal models of ASD. For example in cortical neurons, decreased 

glutamatergic transmission was recorded in ubiquitin protein ligase E3A (UBE3A) mice 

alongside social and interaction impairments (Smith et al., 2011), and increased GABA 
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transmission was shown in mice carrying the autism-associated neuroligin 3 point mutation 

(Tabuchi et al., 2007). In vitro electrophysiology may therefore be useful for measuring 

changes in glutamatergic and GABAergic neuronal activity after riluzole administration. 

However, these measurements must be carried out ex vivo, and are therefore not ideal for 

capturing the complex environment of the living brain. Equivalent in vivo alternatives may be 

available however, as shown by a recent study in awake macaque monkeys, which 

demonstrated pharmacological manipulation of E-I balance in the auditory cortex by NMDA 

channel blockers, ketamine and MK-801, in terms of auditory-evoked-potentials as an 

electrophysiological biomarker (Holliday et al., 2017). 

 

There is currently no methodology available to directly measure neural activity in the living 

brain, yet there is hope, as new techniques such as oxygen amperometry can highlight in vivo 

changes in extracellular oxygen, in a similar manner to the BOLD fMRI signal (Bolger et al., 

2011; Lowry et al., 2010). Unlike the BOLD signal however, there is a good degree of 

certainty that recorded changes in oxygen level are functionally related to discrete neural 

activation events (Li et al., 2011). Future experiments could utilize this technique in awake, 

freely moving rats, to investigate the effect of riluzole on the activation of specific regions 

within brain networks. 

 

However, alongside probing E-I regulation of neuronal activity relevant to ASD, it has been 

noted that glia help maintain E-I balance (Auld & Robitaille, 2003; Domercq et al., 2013; 

Liang et al., 2006) and may be involved in the pathology of ASD (Bernstein et al., 2009; 

Durieux et al., 2015; Onore et al., 2012; Shigemori et al., 2015). Furthermore, in addition to 

an effect on neural activity and neuronal glutamate and GABA release, riluzole has been 

shown to affect glial mechanisms. For example, riluzole is reported to enhance glutamate 
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uptake into glia via glutamate transporter GLT-1 (Carbone et al., 2012; Dall’Igna et al., 2013; 

Yoshizumi et al., 2012), whilst paradoxically also facilitating release of glutamate from glia 

(Hayashida et al., 2010).  

 

It may be beneficial therefore for future studies to also investigate riluzole’s glial-specific 

mechanisms of action in the atypical brain. The benefits of investigating drug action in 

different cell types has previously been shown in the field of depression, whereby the 

discovery of riluzole’s effects on glutamate metabolism in astrocytes prompted the 

exploration of its therapeutic potential as an antidepressant. Indeed, the results supported 

riluzole-evoked reversal of a depressive like phenotype in rats, via restoration of glutamate 

homeostasis in glia (Yu et al., 2011). In future, examinations of glial mechanisms may come 

in the form of investigating drug effects on glial specific targets, such as the GLT-1 and 

GLAST glutamate transporters (Chaudhry et al., 1995). Together, findings from more in-

depth back-translation studies, which dissect the mechanism of action of riluzole will, I hope, 

inform future clinical studies. It may eventually be possible to identify which groups along 

the spectrum may respond best to a specific E-I intervention (see Figure 7.3). 

 

Nevertheless, I do not rule out the possibility that the ability of riluzole to affect both 

neuronal and glial targets may itself be beneficial for a spectrum disorder such as ASD, as it 

may be able to modulate E-I in a variety of ways in people with varied clinical presentations.  
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7.6 Implications for future research into E-I acting therapeutics 

(forward-translation) 

In line with this, open label studies in children and adults have provided supportive evidence 

for the effectiveness of riluzole in patients with psychiatric disorders, including OCD (Coric 

et al., 2005; Grant et al., 2007), schizophrenia (Farokhnia et al., 2014), depression (Zarate et 

al., 2004) and generalized anxiety (Mathew et al., 2005). Yet in trials in patients with ASD, 

the primary outcome of improving core symptoms has not yet been reached. For example, in 

a study by Ghaleiha et al., riluzole was used as an adjunct to risperidone for the treatment of 

irritability in 49 children (age 5-12 years) with ASD. Participants in the riluzole treatment 

group demonstrated improved irritability scores, reduced social withdrawal and lethargy, 

reduced stereotypical behaviours and reduced hyperactivity. Within the study, more patients 

within the riluzole group were deemed ‘responders’ than those in the risperidone-only group, 

however despite improvements across symptoms, none reached statistical significance, and 

there were no significant differences in the primary outcome of an improved Clinical Global 

Impressions (CGI) score (Ghaleiha et al., 2013). Likewise, an open-label study of riluzole in 

6 adult men with Fragile X syndrome showed limited improvements in the primary outcome 

of reduced repetitive behaviours, and again showed no significant change in CGI scores 

(Erickson et al., 2011). Wink et al., demonstrated moderate improvements in repetitive 

behaviours and irritability in three adult men with ASD, though the small sample size and 

lack of a placebo control did not allow for a full review of its efficacy (Wink et al., 2011). 

Finally, a single case study of one 13 year old girl with ASD reported an observed reduction 

in screaming and compulsivity after taking riluzole for 6 weeks, but no change in the core 

symptoms of ASD (Veenstra-Vanderweele, 2010). In this case, and in other studies of 

children (Mechler et al., 2017), riluzole treatment was terminated due to adverse side effects 
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(such as mild elevation of liver enzymes), however this is less common in studies of adults, 

who appear to tolerate riluzole well. 

 

Though the results are positive overall, clinical trials of riluzole are hindered by a lack of 

significant outcomes, which may potentially be due to the heterogeneity of the participants in 

the study. Initial stratification of the patient sample, by examining E-I responsivity to a single 

dose of riluzole, potentially using a protocol as outlined in Chapters 3 and 4 of this thesis, 

may highlight those patients who are capable of E-I modulation, and therefore more likely to 

be ‘responders’. For example, in Chapter 3, I observed that the extent of riluzole-evoked shift 

in prefrontal E-I balance was linked to clinical symptom presentation- patients with the most 

symptoms in the social and communication symptom domains responded the least to riluzole 

challenge.  

 

Therefore, based on the results outlined in this thesis, an 8 week clinical study, ‘Predicting 

treatment response in ASD’, is currently under ethical review for implementation in 2018. 

This study will aim to invite patients with ASD to undergo an initial MRS scan after a single 

dose of riluzole, followed by an 8 week period of daily riluzole administration and will 

examine whether response to a test dose is correlated with outcome. The primary end points 

for this study will be acute (initial scan) and persistent (8 week scan) riluzole-induced 

changes in imaging indices (MRS and fMRI) and improvements in clinical scores (from 

psychometric tests), which I hope will correlate. 
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Figure 7.3: Future plans for back and forwards translation of results 

7.7 Conclusions 

From the outset of this thesis, it was clear that improved treatment targets are required for 

ASD. In addition, evidence that these targets can be shifted in advance of starting lengthy and 

expensive clinical trials is much needed. This thesis has begun to address this by identifying 

the glutamate-GABA system as a dynamic biomarker for ASD, against which drugs can be 

targeted and individual response to a test dose i.e. ‘target-engagement’ measured. Over the 

course of this PhD, I have shown the E-I system in ASD can be modulated, even in the 

mature adult brain. Additionally, the results presented here indicate the brain in ASD is 

pharmacologically different to the control brain.  

 

These findings have implications for both back-translation, to better understand the biological 

mechanisms of E-I in ASD, and forward-translation, towards identifying subgroups of 

patients likely to respond to a particular drug prior to treatment, thereby working towards a 

personalized approach to medicine in ASD. 
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APPENDIX 2 

Patient Information Sheet 

 
 

 

 

Information Sheet: Version 4, 29 August 2013 

 

Brain chemistry in Autism Spectrum 

 

Principal Investigator: Dr Grainne McAlonan 

 

Invitation:  

You are being invited to take part in a research study. Before you decide if you want to take part, it is 

important for you to understand why the research is being done and what it will involve. Please take 

time to read the following information carefully and discuss it with others if you wish. Ask us if there 

is anything that is not clear. Take your time to decide whether or not you wish to take part in the 

study. You will be given a copy of this form. Thank you for reading this. 

 

What is the purpose of the study? 

Autism spectrum disorder (ASD) is a group of related conditions including autism and Asperger’s 

syndrome. There is evidence that ASD may be caused by differences in the levels of two signalling 

chemicals in the brain, GABA and glutamate. However, direct evidence is missing. 

 

This study aims to measure GABA and glutamate in the brain of people with and without ASD using 

an MRI brain scanning technique called magnetic resonance spectroscopy (MRS). We hope that 

longer-term the results of our study will improve diagnosis of ASD and confirm a potential novel 

treatment target (the glutamate-GABA system). 

 

We wish to measure glutamate and GABA at ‘rest’ (when taking an inactive “dummy” pill or 

placebo) and when ‘activated’ by a single dose of the drug probe Riluzole.  Riluzole temporarily 

alters GABA and glutamate activity in the brain.  

 

What if I don’t want to take part? 

Whether you agree to participate or not in this study does not in any way affect your clinical care (if 

any). If you do decide to take part, you can still decide to leave the study, at any time in the future, for 

any or no reason. 

 

What will happen to me if I take part?   

If you decide to take part in the study, you will attend our research centre at the Institute of 

Psychiatry, London, on two separate visits. The two visits will be about one week apart (e.g. Friday 

Prof. Declan Murphy 
Head of Department 

Forensic and 

Neurodevelopmental Sciences 
PO Box 50 

De Crespigny Park 

Denmark Hill 
London 

SE5 8AF 
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one week, and then the next Friday) and last about 3 hours. We will ask you to fill out some short 

questionnaires and also carry out some assessments with one of the research team. If you have an 

ASD, we will confirm diagnosis, either (with your permission) by checking a recent clinic record if 

available, or by an assessment with you and/or an informant, depending on what is practical. 

 

On each visit, you will have an MRS scan which lasts about 60 minutes. Before the scan, you will be 

given a tablet to take. The tablet will contain either a 50 milligram dose of riluzole, or a placebo 

(‘dummy pill’). You will not know which tablet you are getting on each occasion. After the scan, we 

will ask you to complete a short interview and checklist with the doctor and we will ask you to wait 

for one hour to make sure you are ok before going home. 

 

Will I be compensated for my time and travel expenses? 

We will reimburse your travel expenses, and also pay you in compensation for your time, £60 per 

session, (i.e. £120 if you complete the study.) For more details please contact one of the researchers. 

 

What is riluzole? 

Riluzole is licenced for the treatment of Amyotrophic Lateral Sclerosis (ALS, “Lou Gehrig’s 

Disease”). More recently it has been shown to improve mood symptoms in adults and symptoms of 

OCD in children with and without ASD. It works by altering glutamate and GABA transmission in 

the nervous system and is thought to protect against neuronal damage. People with ALS take at least 

50 mg riluzole every day. In this study Riluzole is used as a drug probe not a treatment, therefore you 

will only take a one-off standard single dose of 50 mg. 

 

Riluzole has a good safety profile even when used in children. Examples of adverse effects following 

regular treatment are headache, nausea, chest symptoms and liver problems, but these are very rare 

and disappear when the drug is stopped. You will only have a single dose of Riluzole, therefore it is 

extremely unlikely that you will experience any problems as a result of taking the drug. However, a 

doctor will be present throughout the study. 

 

What is MRS scanning? 

The type of scan we use is called a Magnetic Resonance Spectroscopy (MRS) scan. The scanner is a 

magnet and does not involve the use of harmful radiation such as X-rays. 

 

You cannot have a scan if there is any chance that you have magnetic metal inside your body. For 

example, you must not be scanned if you have a pacemaker, if you have ever had surgery on your 

eyes, heart, or head; of if you have suffered an injury that might have left metal fragments in your 

body. Dental fillings and braces, however, are generally safe for MRS scanning, because they are not 

made of magnetic metal. A radiographer will go over a list of possible risks with you before scanning 

begins. 

 

There is a microphone inside the MRI scanner so that you can talk to us at any time during the 

procedure. Some people can feel claustrophobic inside the scanner. If you feel uncomfortable we can 

stop the scanning immediately. The scanner is noisy, so you will be provided with ear plugs for your 

comfort. However, if you feel any distress we will stop the scan and assess any discomfort you may 

experience. You may choose whether you wish to continue and stop the study at any point. 

This is a research scan and is not designed to provide clinical information. Therefore, we will not 

routinely feedback any of the results to you. If, however anything obviously abnormal shows up on 

the scan, we will inform you and (with your permission) your G.P.  
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Will my data be kept confidential? 

The information obtained from your study is covered by the Data Protection Act.  The computerised 

information is protected by a software and hardware barrier and the records are handled in the same 

way as hospital records.  Only members of the research team or responsible persons from the NHS 

Trust, where it is relevant to your taking part in this research, will have access to your data and only 

with permission from the Principal Investigator. We will ensure this data is kept strictly confidential 

and use a subject number to code your data separately from your personal information.  

Are there any reasons why I can’t take part in the study? 

This is a small study therefore you can’t take part in the study if you are: 

. Female  

. Aged under 18 years, or over 60 years 

. Taking certain regular medications (discuss with researcher) 

. Diagnosed with a major psychiatric illness 

. Diagnosed with a medical or genetic illness which is linked to autistic spectrum disorders e.g. 

epilepsy or Fragile X. 

. Suffering from any kind of liver disease; or have ever suffered a serious head injury. 

. Drinking more than 28 units of alcohol per week, or a very heavy smoker or using illegal drugs, 

or have been a heavy user of these substances in the past (discuss with researcher). 

. Not safe to have an MRI e.g. you have a cardiac pacemaker or any other metal implants in your 

body. 

. Learning disabled 

. Claustrophobic, or feel that you would be unable to lie still on your back for a period of 1 hour. 

 

Who has reviewed the study? 

This study has been review by the NHS Research Ethics Committee London – Camden & Islington. 

 

If you have further queries, or would like more information, please feel free to contact us: Dr. 

Andreina Mendez on 0207 848 0934 or email maria.mendez@kcl.ac.uk 

Dr. Jamie Horder on 0207 848 0476 or email jamie.horder@kcl.ac.uk 

 

Addendum 

 

Complaints procedure: 

In case of any complaint please contact a member of the team in the first instance. The NHS 

complaints procedure for our Trust is provided at http://www.slam.nhs.uk/patients/frequently-asked-

questions/complaints  

 

If the team have been unable to resolve your concerns and you want to make a formal complaint you 

can contact the Trust's Chief Executive or Complaints Department: 

Complaints Department, Maudsley Hospital, 111 Denmark Hill, London. SE5 8AZ 

Telephone: 020 3228 2444/2499 

Email: Complaints@slam.nhs.uk 

 

If you have something you want to say about our services, you can also visit the Patient Opinion 

website. This is an independent site which has been set up to give people the opportunity to tell their 

story about their experience of using NHS services. See www.patientopinion.org.uk 

http://www.slam.nhs.uk/patients/frequently-asked-questions/complaints
http://www.slam.nhs.uk/patients/frequently-asked-questions/complaints
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APPENDIX 3 

Patient Consent Form 

 

  

NREC ref: 13-LO-0091 Version 2 

 Submission date 08 March 2013 

 

 

 

 

 
CONSENT FORM FOR STUDY OF BRAIN CHEMISTRY IN AUTISM SPECTRUM 

Version 2, submission date 08 March 2013 

 

IN CONFIDENCE 

Have you read the information sheet about this study?   Yes / No 

 

Do you understand that you are free to withdraw from the study at any time, without having 

to give a reason for withdrawing, and without influencing current or future treatment? 

Yes / No 

Do you understand that relevant sections of your medical notes and data collected during the 

study, may be looked at by responsible individuals from the study team, or from the NHS 

Trust, where it is relevant to your taking part in this research. Do you give permission for 

these individuals to have access to your records?      
         Yes / No 

Do you understand that all the information will be kept strictly confidential within the 

research team?         Yes / No    

                                                                                                               

Do you understand that your GP will be aware that you are participating in the study, but will 

only be informed if there are any clinically significant results?   Yes/No                           

 

DO YOU CONSENT TO TAKE PART IN THIS STUDY?  Yes/No 

 

 

 

 

 

Your Name (capitals)  …………………………………………  

 

 

Your Signature  …………………………………………. 

 

 

 

 

Researcher Name …………………………………………. 

 

 

Researcher Signature  …………………………………………. 

 

 

 

Date of Consent  …………………………………………. 

 

Prof. Declan Murphy 

Head of Department 

Forensic and Neurodevelopmental Sciences 

PO Box 50 

De Crespigny Park 

Denmark Hill 

London  

SE5 8AF 
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APPENDIX 4 

Inclusion and Exclusion criteria for human MRI study 

 

Criteria Reasoning Exceptions 

Males Unknown effect of MRI on 

pregnancy  

- 

Right handed Data was collected from the 

left Basal Ganglia; therefore, 

only right-handed participants 

were recruited to avoid 

possible lateralisation effects 

 

Aged 18-60 Adults only - 

IQ > 70 

As assessed by Wechsler 

Abbreviated Scale of 

Intelligence (WASI) 

(Wechsler, 1999) 

 

Symptom scores of those with 

IQ < 70 may be confounded 

by potential learning 

difficulties 

- 

No major comorbid medical 

illness e.g. epilepsy 

Modulating the GABA 

system may trigger seizures 

in those with pre-existing 

disposition 

- 

No major comorbid 

psychiatric diagnosis 

To ensure any observed 

pathophysiology and 

ADHD, Anxiety and 

Depression (if not 

medicated) may be 
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symptoms are due to autism 

alone 

considered on an 

individual basis due to the 

high association of these 

conditions with ASD 

No regular medication use Potential drug-drug 

interaction with riluzole 

Non-psychotropic 

medication may be 

considered if taken 

consistently over the 

study duration 

No recent (at least 1yr) use of 

illicit substances  

Potential drug-drug 

interaction with riluzole 

- 

No drug allergy In particular those acting on 

the GABA/Glutamate system 

Common allergies e.g. 

penicillin 

No contraindication for MRI MRI safety  - 

Alcohol intake < 28 

units/week 

Excessive alcohol 

consumption may modulate 

GABA receptor 

pharmacology  

- 

Tobacco intake < 4/day Nicotine increases brain 

GABA levels  

Due to paired design, 

heavy smokers may be 

considered if necessary 
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APPENDIX 5 

An in vitro experiment to assess recovery of the microdialysis 

probes 

A5.1 Background 

Microdialysis probes sample from their immediate vicinity, and are therefore not 

representative of the wider brain region we intend to capture (see Figure A1). To an extent, 

this is due to several factors which impact upon the dialysing property of the probe, also 

known as the probes ‘recovery’. For example, recovery may depend upon the flow rate, 

temperature, length of the microdialysis probe and molecular weight of the substance. 

Therefore, the sample concentration in the microdialysis effluent may be an underestimation 

of the true extracellular or regional brain concentration. To calculate the sample 

concentration in the entire region, it is necessary to ‘scale up’ the concentrations we obtain 

from LC/MS-MS analyses. 

 

 

 

 

 

 

Figure A1: Schematic representation of microdialysis probe recovery efficacy 

The microdialysis probe samples from the immediate vicinity (navy dots), and is therefore 
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not representative of the concentration of sample in the wider brain region (yellow). Diagram 

not to scale. 

Previous studies have estimated the percentage recovery of glutamate and GABA in different 

probe lengths (CMA Microdialysis, 1991), however the recovery of riluzole is as yet 

unknown. It is particularly important to assess the level of riluzole in the brain regions 

sampled, in order to know whether any changes in brain neurochemistry are a result of an 

efficacious riluzole concentration.  

By measuring the concentration of riluzole in the microdialysis probe effluent after dialysing 

artificial cerebrospinal fluid (aCSF) containing a known concentration of riluzole, it is 

possible to calculate the percentage recovery of riluzole by the probe, and ultimately gain a 

more accurate estimate the amount of riluzole in the brain region sampled. 

 

A5.2 Methods 

An initial concentration curve of riluzole from 0.1-10ng/ml (Sigma, UK) in aCSF (NaCl 

(141mM), KCl (5mM), MgCl2 (0.8mM) and CaCl2 (1.5mM)) was analysed to calibrate the 

LC-MS/MS apparatus.  

 

Six stock samples of riluzole were diluted in aCSF in Eppendorf tubes at a concentration of 

1ng/ml (37oC). Three 3mm and three 4mm probes were perfused with aCSF at 1.5μl/min and 

placed into each stock Eppendorf tube. Three consecutive 20 min samples were collected 

from each probe. Samples were then immediately frozen on dry ice and stored -80°C pending 

analysis by LC-MS/MS (see General Methods section 2.2.6 for full details). The calculated 

amounts of riluzole from each of the three 20 min samples were averaged, then divided by 
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the concentration of the stock sample, and multiplied by 100 to give an estimation of 

percentage recovery for each probe. 

 

A5.3 Results and discussion 

The average accuracy for LC-MS/MS detection of riluzole from the known standards was 

96.2  1.4%. The average percentage recovery for riluzole using the 3mm probe was 4.7  

0.3 %, compared to 7.5  0.4 % with the 4mm probe (see Table A1). The higher recovery of 

the 4mm probe is to be expected, as the larger surface area would allow for more riluzole to 

pass into the probe.  

 

Probe Length Percentage Recovery Mean 

(SEM) 

Scale factor 

3mm 4.7 (0.3) 21 

4mm 7.5 (0.4) 13 

 

Table A1. In vitro recovery of 3mm and 4mm microdialysis probes for riluzole  

 

The percentage recovery was converted to a scale factor (100 / average recovery), this factor 

can be multiplied by the reported concentration of riluzole in in vivo microdialysis samples, 

to determine an estimate of riluzole levels- see Chapter 6 for further details. 

 

Whilst attempts were made to replicate the in vivo scenario, for example by conducting the 

experiment at physiological temperatures, it is impossible to fully translate the results from in 

vitro to the living brain, where more complex interactions may also play a role in altering 

probe recovery. However, the scale factors determined in this short study allow for a more 

accurate assessment of the in vivo microdialysis data presented in Chapter 6.
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APPENDIX 6 

Index and metabolite changes in response to riluzole in the basal ganglia and prefrontal cortex of 

adults with ASD 

  Mean (SEM) 
RM ANOVA 

Between groups 

RM ANOVA 

Within groups 

RM ANOVA 

Drug*Group 

Intercept 

Region Measure Control ASD F p F p F p 

  n Placebo Riluzole n Placebo Riluzole     

Basal Ganglia Index 13 .765 (.01) .783 (.01) 13 .795 (.01) .810 (.01) 2.8 .108 4.4 .048 .31 .505 

 GABA 13 4.06 (.2) 4.40  (.2) 15 3.84 (.3) 4.16  (.2) 1.2 .291 3.6 .069 .37 .550 

 GLX 16 1.19 (.08) 1.22 (.02) 15 1.06 (.06) 1.02 (.06) 4.9 .034 .07 .936 .35 .562 

Prefrontal 

Cortex 
Index 14 .725 (.2) .714  (.2) 13 .709 (.2) .731   (.2) .4 .847 2.3 .146 4.3 .049 

 GABA 15 3.29 (.1) 3.25  (.2) 14 3.01 (.2) 3.50  (.2) .25 .875 1.2 .275 3.1 .091 

 GLX 16 1.23 (.04) 1.25 (.05) 13 1.21 (.05) 1.26 (.04) .06 .808 1.1 .31 .15 
.698 
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Metabolite and E-I changes in the basal ganglia and prefrontal cortex of controls and 

ASD subjects in the presence and absence of riluzole. 

Index and GABA RM-ANOVA analyses are corrected for state anxiety measures. GABA and 

GLX mean and SEM are expressed as (x10-4). Significant p values are highlighted in bold. 

Degrees of freedom=1 for each analysis. Repeated measures ANOVA displays between 

group (effect of diagnosis), within group (effect of drug treatment) and drug by group 

interactions.   

 


