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Abstract 

Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are 

generally involved in muscle contraction, in particular those related to the structure and/or 

regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. 

Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients 

with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin 

arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the 

primary cause of these nuclear defects. We also establish the role of microtubule organisation in 

determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations 

in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear 

envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in 

regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings 

are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered 

mechanical properties and broad transcriptional alterations. 

 

Introduction 

Nemaline myopathy (NM) is a genetically heterogeneous disease of skeletal muscle caused by 

mutations in genes that are generally involved in muscle contraction, in particular those related to 

the structure and/or regulation of the thin filament. Mutations in ACTA1 (skeletal muscle actin) or 

NEB (nebulin) together make up the majority of cases, whilst other causative genes (to date, TPM3, 

TPM2, TNNT1, CFL2, KBTBD13, KLHL40, KLHL41, LMOD3, MYPN, RYR3 or MYO18B) together with 

unidentified genes, are implicated in the remainder [20, 38]. These mutations result in weakness at 

the contractile level, while other cellular pathological hallmarks include dense accumulations of 

proteins known as nemaline rods, arrested muscle fibre growth, impaired fibre type differentiation, 

and disarray of contractile filaments [20]. However, the underlying mechanisms behind many of 

these features remain uncertain, even though the mutations affecting thin filament structure and 

function are likely to be involved [7, 17, 28, 29, 40, 42, 60, 63]. In the present study, we aimed to 

acquire a clearer understanding of muscle fibre dysfunction in NM by specifically studying nuclei and 

the related cortical cytoskeleton.  

 

Skeletal muscle fibres are large syncytial cells containing many, often hundreds, of nuclei (termed 

myonuclei). Sufficient numbers and regular spacing of myonuclei throughout the muscle fibre are a 
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prerequisite for its function, allowing the efficient delivery of gene products to all parts of the cell, 

with minimal transport distances. Therefore it is thought that each nucleus is responsible for 

maintaining a certain volume of the muscle fibre, termed the myonuclear domain [5, 32]. The nuclei 

of skeletal muscle fibres are linked with various cytoskeletal components including non-

sarcomeric/cytoplasmic actins, microtubules and intermediate filaments such as desmin. All three of 

these cytoskeletal networks have been implicated in the spacing and positioning of nuclei in models 

of skeletal muscle development: microtubules in the initial translocation/spacing of nuclei along the 

fibre [12, 14, 15, 35], and actin and desmin in their movement to the fibre periphery [45]. 

 

At the organelle level, nuclear function and transcription are regulated by a host of external factors; 

the nuclear envelope acts as a signalling hub that is capable of transducing a range of chemical and 

mechanical signals to regulate gene expression [18, 34, 58]. The cytoskeleton is known to regulate 

nuclear shape and morphology via interactions with the nuclear envelope [10, 23], a process which 

can itself impact on gene transcription, with different morphologies being linked to cell type, 

function, differentiation and disease states [10, 23, 62]. Given that the force-generating properties 

of NM muscle fibres are severely limited, we hypothesised that cytoskeletal components as well as 

nuclear function, positioning and integrity might be affected in this disease, and possibly contribute 

to pathology.  

 

Using single muscle fibres from mouse models and NM patients with mutations in ACTA1 or NEB, we 

found that myonuclei display a range of defects, including irregular spacing and morphology, 

abnormal nuclear envelope and altered chromatin distribution. We also observed severe disruption 

within the microtubule, desmin and cytoplasmic (- and -) actin networks, as well as alterations in 

their anchorage at the nuclear surface. We next sought to investigate the underlying pathological 

mechanisms, and found that impaired contractile force production is responsible for the nuclear 

spacing and morphological defects. We further demonstrated the role of a properly organised 

microtubule network in regulating nuclear shape. Our findings suggest that these alterations are 

likely to contribute to some of the features observed in NM, which include: broad transcriptional 

alterations and hindered muscle fibre growth [30, 32] (perhaps due to the nuclear disruption which 

is likely to affect gene expression programmes); myofibril disarray (since desmin and the nuclear 

envelope are known to contribute to their organisation [1, 6]); and altered mechanical properties of 

muscle fibres (known to be related in part to the cortical cytoskeleton) [21]. In addition, our results 

suggest that nuclear and cytoskeletal defects might be a secondary feature and/or source of 

pathology in other (muscle) diseases, even in those where these structures are not primarily 

affected. 

 

Materials and Methods 

Human subjects 

All tissue was consented, stored and used in accordance with the Human Tissue Act, UK, under local 

ethical approval (REC 13/NE/0373). Details of patients providing samples for light microscopy are 

given in Tables 1, and of patients for electron microscopy in Tables 2 and 3. No electron microscopy 

samples were available from the patients used for light microscopy studies, hence the different 

cohorts of patients for the two techniques.  
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Gene Age M/F Mutation (DNA) Mutation (protein) Source 

ACTA1 20 M c.16G>A E6K Copenhagen, 
Denmark 

ACTA1 30 F c.841T>C Y281H Genoa, Italy 

NEB 36 F c.2836-2A>G and c.5763+5G>A Mutation in splice site Copenhagen, 
Denmark 

NEB 56 M c.17234C>T and 
c.2271_22713del 

R5745X and K7571del Copenhagen, 
Denmark 

NEB 71 F c.508-7T>A and c.19097G>T Mutation in splice 
site; and S6366I 

Helsinki, 
Finland 

 

Table 1. Nemaline myopathy patient muscle biopsy samples used for light microscopy. Age at biopsy 

is given (years). 

 

Gene Age M/F Mutation (DNA) Mutation (protein) Source 

NEB 2 (a) M c.17737-2A>T and 
c.21315delA  

Mutation in splice site 
and R7105 frameshift 

Milan, Italy 

NEB 2 (b) M c.4082+5G>T (splice site) 
and g.112388C>T 

Mutation in splice site 
and Q>X 

Milan, Italy 

NEB 17 M c.22249A>C  and  c.8392-
8395 duplication 

T7417P and R2799L 
frameshift 

Helsinki, 
Finland 

NEB 23 M c.11164C>T  and  
c.19097G>T  

R3722* (nonsense) and 
S6366I 

Helsinki, 
Finland 

NEB 30 F c.508-7T>A  and  
c.19097G>T 

Mutation in splice site 
and S6366I 

Helsinki, 
Finland 

ACTA1 11 
weeks 

F c.796T>C F226L London, UK 

ACTA1 3 M c.235A>G T79A Milan, Italy 

ACTA1 10 M c.841T>C Y281H Milan, Italy 

 

Table 2. Nemaline myopathy patient muscle biopsy samples used for electron microscopy. Age at 

biopsy is given (years, unless otherwise specified). 

 

 

 

 

 

 

Table 3. Patients with sporadic late-onset nemaline myopathy (SLONM), used for electron 

microscopy. Ages at biopsy/examination and age of onset are shown in years. SLONM 1 and 2 

correspond to patients 4 and 6 in Monforte et al., 2017 [36]; SLONM 3, 4 and 5 correspond to 

patients 2, 5 and 6 in Schnitzler et al, 2017 [53]. All patients were HIV-negative. 

 

Patient Age Age of 
onset 

M/F Monoclonal gammopathy Source 

SLONM 1 65 64 M IgG lambda Rome, Italy 

SLONM 2 69 68 F Not available Rome, Italy 

SLONM 3 72 67 F No Leuven, Belgium 

SLONM 4 79 54 F Not available Leuven, Belgium 

SLONM 5 34 32 F No Leuven, Belgium 
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Mouse models 

Acta1H40Y mouse tibialis anterior muscle samples, with and without transfer of the Myl4 gene 

remained frozen from a previous study [30]. To summarise, data were collected from 4 wild type and 

4 mutant male mice. At 4 weeks of age, the compartment containing the tibialis anterior muscle was 

injected with rAAV6 virus containing the Myl4 transgene, and contralateral legs served as controls, 

being injected with virus lacking the functional gene. Mice were sacrificed 4 weeks later at 8 weeks 

of age. Colony maintenance and experiments were approved by the Uppsala Local Ethical 

Committee on Animal Research.   

 

Neb cKO mice [28] were maintained at the University of Arizona in accordance with the US National 

Institutes of Health guidelines “Using Animals in Intramural Research”. Mutants and 

WT/heterozygous littermates were sacrificed at 3 months of age by cardiac perfusion with 4% 

paraformaldehyde (PFA)/PBS, to properly preserve microtubule structure. Extensor digitorum longus 

muscles were dissected for whole-mount immunolabelling of cytoplasmic (- and -) actins, desmin 

or microtubules (see below). 

 

Antibodies 

Primary antibodies were as follows (species, isotype, manufacturer, catalogue number and dilution 

are given): lamin A (mouse monoclonal IgG3, Abcam, ab8980, 1:200); nesprin-1 (rabbit monoclonal 

IgG, Abcam, ab192234, 1:400); pericentrin (rabbit polyclonal IgG, Abcam, ab4448, 1:200); -tubulin 

(clone TUB2.1, mouse monoclonal IgG1, Santa Cruz, sc-58886, 1:500); desmin (clone D33, mouse 

monoclonal IgG1, Dako, M076001-2, 1:400); -actin (rabbit polyclonal IgG, Abcam, ab8227, 1:300); 

-actin (clone 2A3, mouse monoclonal IgG2b, Bio-Rad, MCA5776GA, 1:300); acetyl lys9/lys14 histone 

H3 (rabbit polyclonal IgG, Cell Signaling, #9677, 1:200). 

 

Enzymatic isolation and culture of intact single muscle fibres  

Intact single muscle fibres were prepared as described previously, using enzymatic dissociation with 

collagenase I (Sigma Aldrich) and gentle trituration (Sigma Aldrich) [47]. After isolation, fibres were 

plated into 6-well plates (~30 fibres per well) in DMSO/high glucose/GlutaMAX 

supplement/pyruvate (Thermo Fisher Scientific, Cat# 31966021), containing 10% horse serum and 

1% Penicillin/streptomycin solution. Freshly isolated fibres were treated overnight with nocodazole 

(20 μM), taxol (10 μM) or epothilone D (10 μM). Final DMSO (vehicle) concentration was 0.5% in all 

cases. To assess myonuclear spacing, fibres were cultured for 72 hours in the presence of the 

aforementioned drugs. 

 

Immunohistochemistry (single muscle fibres) 

Myofibres were fixed in 4% PFA/PBS for 15 mins, and washed 3x in PBS. Fibres were permeabilised in 

0.1% triton-X/PBS for 10 mins, washed 3x and blocked in 10% normal goat serum/PBS for 1 hour. 

Fibres were then treated with primary antibodies in blocking solution overnight (-tubulin) or for 3 

hours (lamin A, nesprin-1, pericentrin) at 4°C. Fibres were washed 3x in PBS for a total of 30 mins, 

and then treated with Alexa 594 or 488-conjugated secondary antibodies and DAPI (all at 1:1000 in 
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PBS) for 3 hours. Fibres were washed 3x in PBS for a total of 30 mins and mounted in Fluoromount 

mounting medium (Southern Biotech) with coverslip (thickness #1.5).  

 

Immunohistochemistry (whole mount muscles) 

Neb cKO mice and WT/heterozygous littermates (all female) were sacrificed at 3 months of age by 

cardiac perfusion with 4% paraformaldehyde (PFA)/PBS, to properly preserve microtubule structure. 

Extensor digitorum longus muscles were dissected for whole mount immunolabelling of cytoplasmic 

(- and -) actins, desmin or microtubules. Muscles were then permeabilised in 0.5% triton-X/PBS 

(20 mins) and 0.1% Triton-X/PBS (20 mins), with each solution being replaced at least once during 

the incubation. Samples were then blocked in mouse-on-mouse block/PBS for 3 hours, and then 

blocked in 8% bovine serum albumin overnight. Primary antibodies (tubulin, cytoplasmic actins) in 

blocking buffer were applied for 5 hours, followed by 2 hours washing in 0.1% triton-X/PBS. 

 

Fluorescence Imaging 

Fibres were imaged on a Zeiss Axiovert 200 spinning disc confocal microscope equipped with BD 

CARV II and a motorised Z drive at x20 magnification (for imaging of nuclear morphology and nuclear 

envelope). For nuclear number and distribution, Z-stacks with 1 μm Z increments were taken 

through the entire depths of fibres, as described previously[48, 49]. For imaging of cytoskeleton and 

nuclear volume, a Nikon A1 laser scanning confocal microscope with a x100 oil immersion objective 

(1.4 NA) was used, with Z-stacks taken with 0.3 μm Z increments (Nikon Imaging Centre, King’s 

College London). 

 

Image Analysis 

Analysis of nuclear number and spacing: Coordinates of myonuclei were identified in 3D within Z-

stacks of muscle fibres. A custom-made Matlab programme was used to a measure fibre CSA, 

nuclear number, nearest neighbour distances and order score (‘g’) of nuclei within fibres, as 

described previously [4, 48].  

Analysis of nuclear shape parameters: For 2- and 3-dimensional measurements (area, aspect ratio, 

circularity and volume), nuclei in the DAPI channel were thresholded by pixel intensity until fully 

highlighted. Inbuilt ImageJ functions were used to measure 2D parameters and Voxel Counter plugin 

for volume. For accurate shape analysis, nuclei positioned on the sides or the backs of fibres (relative 

to the microscope objective) were excluded, as were those in clusters where nuclei were touching. 

Microtubule quantifications: density (% area) was calculated on binary converted images in ImageJ. 

Microtubule directionality was calculated using the TeDT tool [31]. 

 

Statistics 

Graphs were prepared and analysed in Graphpad Prism. Linear regression lines and statistical 

comparisons were performed using inbuilt algorithms (ANCOVA test was used to compare 

elevations/intercepts and slopes of different regression lines). For statistical comparisons of nuclear 

organisation and nuclear shape in human subjects (column graphs), control data points were pooled, 
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since no significant age-related differences were observed amongst healthy control subjects. Owing 

to the different origins of disease (mutation and gene affected), patient data points were not 

pooled. One-way ANOVA with Tukey post-correction was used to compare each patient against the 

pooled controls; in addition, a random effect algorithm was incorporated into the model, to account 

for any potential inter-individual differences that might exist amongst the control cohort. For studies 

with animals, no significant differences were observed between animals of the same genotype, and 

as such, individual data points for both control and mutant/treated animals were pooled. For 

column comparisons in the animal studies, a two-tailed t-test was used to compare 2 groups, and a 

one-way ANOVA with Tukey post-correction was used to compare more than 2 groups. For drug 

treatments with nocodazole, taxol and epothilone D in ex vivo culture experiments, a cumulative 

probability test (Kolmogorov-Smirnov test) was used to compare groups against control/vehicle only. 

Asterisks denote the following statistical significance levels: * (P<0.05), ** (P<0.01), *** (P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 

 

Results 

Muscle fibres from NM patients have misshapen and mispositioned nuclei with altered chromatin 

organisation   

To assess myonuclear distribution in patients with NM, single skeletal muscle fibres were teased 

from biopsy samples, mounted, and labelled with rhodamine-labelled phalloidin to visualise actin 

(thus marking the dimensions of the fibre) and DAPI to label nuclei, and imaged in 3D. Ages of 

controls were as follows: 20, 25, 25, 30, 30, 44, and 62. Ages of ACTA1 patients were 20 and 30, and 

ages of NEB patients were 36, 56 and 71 (patient details in Table 1). Muscle fibres were generally 

smaller in cross-sectional area (CSA) in patients compared with age-matched control subjects, a 

common characteristic of NM (as well as some other muscle disorders), although some fibres in NEB 

patients (ages 56 and 71) displayed large CSA values, indicating some extent of fibre size 

disproportion (Fig. 1a, b). In one ACTA1 patient (aged 20) and all three NEB patients, there was a 

higher abundance of myonuclei within muscle fibres compared to control subjects, as observed in 

nearest neighbour distances (Fig. 1c; lower values indicating more densely packed nuclei), and in 

numbers of nuclei per length of fibre (Fig. 1e, f; across a range of fibre sizes/CSAs; linear regression 

lines were similar for all control subjects as shown in Suppl Fig. S1a, b (online resource); hence for 

visual clarity, control data was pooled in these graphs). 

 

Order score, a measure of the regularity of nuclear spacing, was also calculated [4]. Mean order 

score was significantly lower in all patients compared with control subjects, indicating that nuclei 

were more unevenly distributed than in controls (Fig. 1d). No correlation between fibre CSA and 

order score was noted in most controls and patients, indicating that nuclear distribution was not 

noticeably affected by fibre size (Suppl Fig. S1c, d). Central nuclei are a hallmark of certain 

neuromuscular disorders including muscular dystrophies; however, this was rare in NM patient 

fibres, with the vast majority of nuclei being located at the fibre periphery, as expected. Overall, 

these results suggest that myonuclear positioning is altered in NM patients, and that there is often a 

higher density of myonuclei within fibres. 
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Fig. 1. Myonuclei are more abundant and unevenly spaced in patients with nemaline myopathy. 

Healthy control subjects and patients are denoted with their mutation and age. (a) Representative 

single skeletal muscle fibres from a control subject and patients with ACTA1 or NEB mutations, 

labelled for actin (rhodamine phalloidin; red) and nuclei (DAPI; blue). (b) Fibre cross-sectional area 

(CSA) for controls and patients. (c) Nearest neighbour distance between myonuclei within fibres; a 

smaller distance indicates greater density of nuclei. (d) Order score (g), an algorithm to assess the 

regularity of nuclear spacing [4]; A lower score indicates more irregular spacing and more nuclear 

clustering. (e) Comparison between controls and ACTA1 patients: relationship between number of 

nuclei per mm of fibre length, and their CSA. (f) As for panel e, but comparing controls and NEB 

patients (graphs e and f separated for visual clarity). For regression lines, data points from control 

subjects were pooled since there were no significant inter-individual variations (full data available in 

Fig. S1a, b). Individual data points represent an individual skeletal muscle fibre, with mean +/- SEM, 

or linear regression lines.  For column graphs, significance was determined using one-way ANOVA 

comparing each patient with a group consisting of all control data points pooled together (since no 

significant inter-individual variation was found amongst controls). ANCOVA was used to compare 

elevations/intercepts and slopes of regression lines. Scale bar: 50μm. * (P<0.05), ** (P<0.01), *** 

(P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 
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Given that the distribution of nuclei was perturbed in NM patient muscle fibres, we next wanted to 

determine if there were any alterations within the nuclei themselves. In control subjects (aged 25 

and 30), nuclei generally possessed an elliptical shape, and nuclear envelope proteins nesprin-1 and 

lamin A localised in a regular rim around the nuclear edges, as expected (Fig. 2a, control subject). 

However, in the two ACTA1 patients (ages 20 and 30) and two NEB patients (ages 36 and 56) 

studied, >50% of the myonuclei were altered in each case, displaying various features including 

shape irregularities (Fig. 2b), faint immunolabelling of nuclear envelope proteins (Fig. 2c), and a 

banded appearance across the nuclear surface (Fig. 2d). Varying proportions of these features were 

observed in the four patients analysed (Fig. 2e). Nuclear shape/elongation was further analysed 

using area (in the 2D X-Y plane), aspect ratio and circularity measures (Fig. 2f-h). Although the 

nuclear area was on average similar in controls and patients, the variability was significantly greater 

in patients (Fig. 2f).  Nuclei in ACTA1 patients shifted towards a more elongated shape (larger aspect 

ratio, lower circularity), and nuclei in NEB patients towards a more circular shape (lower aspect ratio, 

higher circularity; Fig. 2g, h). Similar nuclear defects are observed in laminopathies, which are 

primary genetic disorders of the nuclear envelope, and include muscular dystrophies and 

multisystem disorders caused by mutations in lamin A/C, nesprins and other genes [19]. Our results 

indicate that severe defects in nuclear envelope and morphology can also occur in diseases caused 

by muscle contractile dysfunction. 
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Fig. 2. Nuclear morphology and nuclear envelope are altered in skeletal muscle fibres of nemaline 

myopathy patients. Healthy control subjects and patients are denoted with their mutation and age.  

(a-d) Representative images of myonuclei from healthy controls and NM patients with ACTA1 or NEB 

mutations, immunolabelled for lamin A (left panels), nesprin-1 (middle panels) and merged with 

DAPI (Lamin A, green; nesprin-1, red; DAPI blue). Myonuclei displaying (a) normal shape and nuclear 

envelope; (b) irregular shape; (c) faint immunolabelling for lamin A and nesprin-1; (d) banded 

pattern across surface. Graph showing proportions of each nuclear phenotype for patients and two 

controls (e). Graphs showing shape quantifications for nuclei: area (f), aspect ratio (g) and circularity 

(h). A larger aspect ratio denotes a more elongated shape; a higher circularity denotes a more 

circular shape. Graphs (f-h) show one data point per nucleus analysed, taken from >10 muscle fibres 

per subject, with mean +/- SEM. For graph (f), an F-test for variance was used, to report differences 

in spread/variability of each patient versus controls; for graphs (g) and (h), one-way ANOVA was 

used to report differences in mean between each patient and a group consisting of both control 

subjects pooled together. Note differences in overall data distribution as well as means. Scale bar: 

10μm. NS = not significant * (P<0.05), ** (P<0.01), *** (P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 
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Next, ultrastructural imaging was carried out, revealing nuclear morphological and envelope defects 

in more detail (Fig. 3; see Table 2 for patient details). In NM patients, a proportion of myonuclei 

resembled those seen in healthy muscle tissue, being of normal shape, having a regular distribution 

of heterochromatin largely at the nuclear periphery, and with a nuclear envelope consisting of a 

continuous double membrane (Fig. 3a, a’). However, various defects were also noted: clusters of 

nuclei (Fig. 3b); low chromatin density (i.e. high levels of euchromatin; Fig. 3c); high chromatin 

density (i.e. high levels of heterochromatin; Fig. 3d, e, g, h); discontinuities in the nuclear envelope 

(arrows, Fig. 3d); invaginations (marked ‘inv’, Fig. 3e); regions of separation between inner and outer 

nuclear membranes (marked ‘sep’, Fig. 3e-h). Interestingly, in the latter cases, chromatin was never 

observed to fill the open regions, again suggesting that the abnormality was the result of separations 

between the two membranes, rather than breakage or disruption of both. Table 4 gives a semi-

quantitative analysis of the patients studied, listing the various abnormal features and the relative 

frequency of occurrence. Fluorescence microscopy of acetylhistone H3 (Lys9/Lys14), a well-

characterised marker of transcriptionally active regions of DNA [16, 24, 44], provided further 

evidence of chromatin redistribution within nuclei of patients relative to control subjects (Fig. 3i-k; 

image quantifications in Suppl Fig. S2, online resource). These results demonstrate alterations in the 

nuclear envelope and in chromatin organisation, which would be expected to affect nuclear function 

and transcriptional regulation. 
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Fig. 3. Nuclear envelope and chromatin alterations in myonuclei of nemaline myopathy patients. 

Electron micrographs of patient muscle tissue, denoted with their mutation and age. (a, a’) An 

example of an apparently relatively normal nucleus (N), with normal morphology, chromatin 

distribution, and a nuclear envelope consisting of a continuous double membrane marked “NE” (a’ is 

a magnified image of the boxed region in panel a). Nemaline rods (R) are seen in an adjacent fibre 

(a). The following nuclear abnormalities were also observed in patients: clusters of nuclei (b); 

reduced chromatin density (c); increased chromatin density (d, e, g, h); discontinuous patches of 

nuclear envelope (d, arrows); invaginations (e, denoted “inv”); and separation of the two nuclear 

membranes (e-h, denoted “sep”). Width of separation between inner and outer nuclear membranes 

in (e-h) are 0.16, 0.89, 1.89 and 2.16 m respectively (compared to apparently normal areas with 

separations measuring 25-40 nm (typical of normal nuclear envelope). (i-k) Skeletal muscle fibres 

were immunolabelled with antibody against acetylhistone H3 (Lys9/Lys14), a marker of 
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transcriptionally active regions of DNA (red). DNA is stained with DAPI (blue). Myonuclei from 

control subjects showed an even distribution of staining throughout the nuclei; however, in patients, 

some nuclei showed reduced fluorescence intensity, possibly indicative of global transcriptional 

downregulation within certain nuclei (asterisks); and uneven distribution of staining, suggesting 

irregular packing of active genomic regions (arrowheads). Similar results were observed in one other 

control subject (age 30), and one other ACTA1 and NEB patient (ages 30 and 56 respectively). 50+ 

nuclei were observed per subject across ~9 fibres for light microscopy. Quantifications of 

acetylhistone H3 immunolabelling are found in Suppl Fig. S2 (online resource), and semi-quantitative 

analysis of electron microscopy findings in Table 4. Scale bar (i-k): 20μm. 

 

Patient 
(mutation/age) 

Clusters of 
myonuclei 

Chromatin 
density 

Invaginations Separation of inner and outer nuclear 
membranes 

NEB 2 (a) N ↑ + N  

NEB 2 (b) N ↓↓ + N  

NEB 17 + ↓↓ ++ N  

NEB 23 ++ ↑ + 
 

++   ~50% nuclei with separations 

ranging ~0.15 - 0.2 m; 3 nuclei 
with separations ranging 0.84 - 

1.89m (34 nuclei studied in 
total) 

NEB 30 + ↑ + +  3 nuclei with separations 

ranging 0.89 – 1.44m (25 
nuclei studied in total) 

ACTA1 11 
weeks 

Only one nucleus image recorded +   Separation of 2.16 m 

ACTA1 3 N ↓↓ N N  

ACTA1 10  N ↓↓ N N  

 

Table 4. Ultrastructural observations in myonuclei of nemaline myopathy patients. Categorisation is 

based on criteria described in Fig. 3. For chromatin density, ↑ denotes an increase in density (more 

heterochromatin) and ↓ a decrease in density (less heterochromatin). + indicates the presence of a 

given feature/observation. N denotes none observed. In all cases, two symbols indicates a 

particularly high incidence whereby the majority of observed myonuclei displayed the characteristic 

in question. 6-34 myonuclei observed in all patients, across multiple fibres and fields of view, unless 

otherwise specified. Expected distance between inner and outer nuclear membranes is 20-40 nm, 

which was confirmed by our own measurements in regions of nuclei that appeared normal.  

-------------------------------------------------------------------------------------------------------------------------------------- 
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Reduced cellular force production is responsible for myonuclear alterations in NM  

To investigate potential mechanisms behind aberrant nuclear spacing and morphology in NM, we 

employed a severe model of the disease, the Acta1H40Y mouse [29, 37, 59]. In a recently published 

study, a gene therapy approach was used to enhance myosin force output, via the delivery of a 

myosin light chain isoform (MyL4) that is normally only expressed in developing skeletal muscles 

(schematic, Fig. 4a). This resulted in a partial rescue of the Acta1H40Y phenotype, including an 

improvement in muscle force production and an increase in muscle fibre size [30]. Thus, we aimed to 

determine whether an increase in force output could also rescue the nuclear defects observed in 

NM. Like patients with ACTA1 or NEB mutations, skeletal muscle fibres of Acta1H40Y mice showed an 

irregular distribution of myonuclei (Fig. 4b), which was quantifiable using the order score parameter 

(Fig. 4c). However, delivery of the Myl4 transgene resulted in the full restoration of nuclear spacing 

defects to wild type levels (Fig. 4c). In addition, nuclear shape alterations, including increased area 

and aspect ratio and reduced circularity (Fig. 4d-f), were also restored to wild type values in muscles 

of Acta1H40Y mice treated with the transgene. These results suggest that in NM, force impairment 

results in nuclear spacing and morphological alterations, and that enhancing force production 

restores these parameters. 

 

 

Fig. 4. Partial rescue of force production results in full restoration of nuclear spacing and 

morphology in the Acta1H40Y model of nemaline myopathy. (a) Scheme for mouse model published 

previously, where a gene therapy approach was used to deliver a transgene (Myl4) into tibialis 

anterior muscles [30]. Myl4 encodes a myosin light chain isoform (MyL4) normally only expressed in 

developing muscles, but when incorporated into the adult myosin complex, results in a myosin with 

increased force production (MHC, myosin heavy chain; RLC, regulatory light chain; MyL1, the 

endogenous myosin light chain). (b) Representative single skeletal muscle fibres from wild type (WT) 

and Acta1H40Y mice, treated with empty vector (Veh), or Myl4 transgene. Fibres were stained for 

actin (rhodamine phalloidin; red) and nuclei (DAPI; blue). (c) Order score (g), an algorithm to assess 

the regularity of nuclear spacing [4]; A lower score indicates more irregular spacing and more 

nuclear clustering. Nuclear shape measurements: nuclear area as observed in standard x,y planes 
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(d), aspect ratio (e) and circularity (f). Note in (c-f) that the alterations in nuclear spacing and 

morphology observed in mutants were restored to wild type levels when treated with Myl4 

transgene. (c) One data point per muscle fibre; (d-f) one data point per nucleus analysed, mean +/- 

SEM, with asterisks denoting significance versus WT/vehicle (one-way ANOVA). Scale bar: 50μm. * 

(P<0.05), ** (P<0.01), *** (P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 

To gain further insight into whether force impairments affect nuclear structure in human subjects, 

we studied electron microscopy images of 5 patients with sporadic late-onset nemaline myopathy 

(SLONM). This disease contrasts with typical NM cases, since it is an acquired condition that occurs 

in the absence of mutations in known disease-related genes. However, like NM of known genetic 

origin, on the histopathological level this disease presents with nemaline rods, sarcomeric disarray, 

and crucially, reduced capacity of muscle to generate force. Patient details are given Table 3, and 

were published in two recent studies [36, 53] (ages: 34, 65, 69, 72, 79). A number of nuclear defects 

were observed in all 5 patients, and recapitulated those observed in our analysis (Fig. 3) of patients 

with ACTA1 or NEB mutations. These included nuclear invaginations (Suppl Fig. S3a, b, online 

resource); reduced accumulation of heterochromatin (Suppl Fig. S3a); increased accumulation of 

heterochromatin (Suppl Fig. S3b, d, e); and separations between inner and outer nuclear 

membranes (Suppl Fig. S3c-e). A semi-quantitative analysis of these observations is shown in Table 

5. These results indicate that nuclear defects also occur in presumably non-genetic phenocopies of 

NM, and also provide some correlative evidence that a reduction in force-generating capacity of 

muscle might underlie these defects (although other aspects of myofibre pathology might also 

contribute). 

 

Patient (age) Clusters of 
myonuclei 

Chromatin 
density 

Invaginations Separation of inner and outer nuclear 
membranes 

SLONM 1 (65) + ↑↑, 
some ↓ 

++ + 2 nuclei with separations of > 2 

m (15 nuclei studied in total) 

SLONM 2 (69) N ↑ + N  

SLONM 3 (72) + ↑↑ + + 2 nuclei with separations 0.38 

and 0.85 m (14 nuclei studied 
in total) 

SLONM 4 (79) + ↑↑, 
some ↓ 

+ N  

SLONM 5 (34) N ↑↑ ++ N  

 

Table 5. Ultrastructural observations in myonuclei of patients with sporadic late onset nemaline 

myopathy (SLONM, an acquired form of the disease). See Table 3 for patient details, and recently 

published studies [36, 53]. Categorisation is based on criteria described in Fig. 3 and Suppl Fig. S3 

(online resource). For chromatin density, ↑ denotes an increase in density (more heterochromatin) 

and ↓ a decrease in density (less heterochromatin). + indicates the presence of a given 

feature/observation. N denotes none observed. In all cases, two symbols indicates a particularly high 

incidence whereby the majority of observed myonuclei displayed the characteristic in question. 6-15 

myonuclei observed in all patients, across multiple fibres and fields of view. Expected distance 

between inner and outer nuclear membranes is 20-40 nm, which was confirmed by our own 

measurements in regions of nuclei that appeared normal.  
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-------------------------------------------------------------------------------------------------------------------------------------- 

Muscle fibres from NM patients and mouse models have disrupted cytoskeleton networks   

In studies using cultured myotubes (an in vitro analogue of muscle fibre formation) and in 

developing Drosophila, the lateral spacing/positioning of myonuclei is known to be dependent on 

microtubules and motor proteins including kinesins and dyneins [1, 12, 14, 35]. In addition, these 

motor proteins regulate nuclear shape during their translocation across nascent Drosophila fibres 

[14]. Given that we observe defects in nuclear morphology and spacing in NM patients, we sought to 

determine whether the microtubule network and/or its associated proteins were perturbed. 

Microtubules are sensitive to temperature and rapidly depolymerise when tissue is kept cold or 

frozen [61], and therefore preservation of their structure is not compatible with routine human 

muscle biopsy preparation. As a surrogate, we aimed to analyse the localisation of pericentrin, a key 

microtubule organising centre protein (MTOC) that in skeletal muscle is found at the perinuclear 

regions, consistent with the role of the myonucleus as a nucleator of microtubules. Using the same 

control subjects and patients from Fig. 2, We found that the localisation of pericentrin was markedly 

altered in NM patient myonuclei (Fig. 5a-d; note the rim of pericentrin around the nuclear surface, 

as well as nearby bright puncta in control subjects; note the increased accumulation of pericentrin 

immunolabelling at the nuclear surface in patients).  

 

Fig. 5. Distribution of the microtubule-organising centre around myonuclei of nemaline myopathy 

patients. Healthy control subjects and patients are denoted with their mutation and age.  (a-c) 

Representative images of nuclei immunolabelled for pericentrin (green) and DAPI (blue). Note 

specific arrangement of pericentrin in controls (nuclear surface and puncta) versus patients (marked 

accumulation at the nuclear surface). (d) Quantification of fluorescence intensity of pericentrin at 

the nuclear surface (within 2 m of nearest nuclear (DAPI)-labelled pixel). Quantification includes 

controls aged 25 and 30, two ACTA1 patients (20 and 30) and two NEB patients (36 and 56). Scale 

bar: 10μm. 

-------------------------------------------------------------------------------------------------------------------------------------- 
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To further investigate microtubule organisation, we utilised a mouse model of NM with a conditional 

knockout in the nebulin gene (Neb cKO) [28], and cardiac perfusion fixed with PFA, to allow the 

proper preservation of microtubule structure. We found that microtubules at the cortex of skeletal 

muscle fibres were heavily disorganised compared to their control littermates (Fig. 6a, b). Note that 

the microtubules in control animals appear as a regular grid-like lattice, with denser accumulations 

around the nuclei (Fig. 6a, arrowheads). In mutants, however, the microtubule network was 

markedly disorganised, and the extent of accumulation around many of the myonuclei was visibly 

reduced (Fig. 6b, asterisks). Further analysis indicated that the microtubule network was denser in 

the mutant animals (Fig. 6e), and that their directionality was disturbed (Fig. 6f; a measurement 

made using the TeDT algorithm tool developed by Liu and Ralston [31]).  

 

Desmin is a muscle-specific intermediate filament protein that connects myofibrils at the Z-discs, and 

links to other organelles including nuclei. We found that in most (~90%) of Neb cKO fibres, the 

normal Z-disc localisation of desmin was absent, and that its accumulation at the nuclear surface 

was not discernible (asterisks, Fig. 6c, d). Similar results were observed for cytoplasmic actins (- and 

-) which form part of the cortical cytoskeleton. In control animals, both - and -actin localised in 

striations, previously shown to be in alignment with Z-discs of the sarcomere (Fig. 6g-i) [43, 50, 56]. 

However, in Neb cKO animals, both the striations and the nuclear regions of cytoplasmic actins were 

virtually absent, although -actin appeared as accumulations at the fibre periphery (Fig. 6j-l). 

Together these results indicate that microtubule, desmin and cytoplasmic actin networks are 

markedly altered in this mouse model of NM. 

In addition, myonuclear shape analysis was performed on Neb cKO animals (Fig. 6m-p), and as in 

patients with NEB mutations (Fig 2), nuclei were less elongated/more circular (Fig. 6n, o). In addition, 

both nuclear area (in 2D) and overall nuclear volume were increased in Neb cKO animals compared 

with controls (Fig. 6m, p). 
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Fig. 6. Severe disruption of the cortical cytoskeleton in the Neb cKO mouse model of nemaline 

myopathy. Representative confocal micrographs of skeletal muscle fibres in whole-mount extensor 

digitorum longus muscles of control (a, c) and Neb cKO mice (b, d); tissue was immunolabelled with 

antibodies to -tubulin (a, b) or desmin (c, d) and nuclei were stained with DAPI (blue). In control 

muscles, the skeletal muscle fibre cortex shows a regular grid-like pattern for microtubules and a 

striated appearance for desmin; both are largely disorganised or reduced in mutants. Note the 

clustering of microtubules and desmin at the periphery of nuclei, often altered or lacking in mutants. 

Quantifications of microtubule density (e), and directionality using previously developed algorithms 

[31] (f). Immunolabelling for cytoplasmic (- and -) actins, for control (g-i) and Neb cKO (j-l) mice; -
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actin (g, j), -actin (h, k) and merged images (i, l). Note that microtubules, desmin and -actin show 

specific accumulation at the surface and poles of nuclei (arrowheads), which is frequently reduced or 

missing in mutants (asterisks). Observations were similar in 3 mutants and 3 control littermates. 

Graphs showing quantifications of nuclear shape parameters in muscle fibres: nuclear area (m), 

aspect ratio (n), circularity (o) and volume (p). Scale bars: 20μm. Graphs, mean +/- SEM, two-tailed t 

test. * (P<0.05), ** (P<0.01), *** (P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 

Cytoskeletal organisation defines myonuclear properties  

To investigate whether disorganisation of the cytoskeleton might cause nuclear abnormalities, intact 

muscle fibres were isolated enzymatically from mouse extensor digitorum longus (EDL) muscles, and 

cultured with and without drugs that modulate microtubule structure and dynamics. Overnight 

treatment with nocodazole resulted in an almost complete removal of microtubules (Fig. 7a, b, e), 

whereas treatment with taxol or Epothilone D (EpoD) resulted in increased microtubule density and 

reduced directionality score compared with control/vehicle treated fibres (Fig. 7c-f). Nocodazole 

resulted in small shifts in nuclear morphology towards a more elongated, less circular phenotype 

(Fig. 7h, i; arrowhead in Fig. 7b indicates an example of an abnormally elongated nucleus), although 

nuclear area as assessed in 2D was not affected (Fig. 7g). Treatment with taxol or EpoD resulted in 

an increase in nuclear area (X-Y planes) compared with control fibres (Fig. 7j, top row of panels; Fig. 

7k), although no changes in aspect ratio or circularity were found (Fig. 7m, n). In addition, using 3D 

Z-stacks, we found similar nuclear volumes between control, taxol- and EpoD-treated fibres (Fig. 7l). 

This suggests that the increases in nuclear area observed with taxol and EpoD are caused by the 

nuclei spreading out/becoming flatter, rather than by an overall expansion of their total volume. 

Consistent with this, the lower panels in Fig. 7j shows examples of the Z plane of the Z-stacks 

(orthogonal views), with nuclei appearing flatter in this dimension. These results imply that the 

microtubule network exerts tension on the nuclear surface to regulate nuclear flattening.  

 

It should be noted that myonuclear spacing was preserved in all drug-treated fibres relative to 

control, even after 72 hours treatment (Fig. 7a-d and Suppl Fig. S4, online resource). Also, there 

were no gross changes in nesprin-1 localisation with any of the drug treatments, suggesting that 

microtubule disruption did not have any major effects on the nuclear envelope (Suppl Fig. S4). These 

results indicate that at least in non-contracting isolated muscle fibres, microtubule disruption for this 

length of time has no major impact on nuclear positioning or the nuclear envelope.  
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Fig. 7. Pharmacological disruption of microtubule network structure results in alterations to 

nuclear morphology. Enzymatically dissociated single muscle fibres from wild type mouse extensor 

digitorum muscles treated overnight with (a) DMSO (control), (b) Nocodazole, (c) taxol and (d) 

Epothilone D (EpoD). Microtubules are shown in grey (-tubulin antibody), and nuclei in blue (DAPI). 

Quantifications of microtubule density (e), and directionality using previously developed 

algorithms[31] (f), in drug-treated fibres. Nuclear shape measurements for control versus 

nocodazole treated myofibres: nuclear area as observed in 2 dimensions (g), aspect ratio (h) and 

circularity (i); these results show a modest shift towards more elongated nuclei with nocodazole 

treatment (arrowhead in B shows example of an elongated nucleus). Representative images of 

nuclei from myofibres treated with DMSO, taxol and EpoD (j): upper row, nuclei as observed in 

standard x,y planes; lower row, orthogonal views of nuclei as seen in x,z planes. Nuclear shape 

measurements for control versus taxol and EpoD treated fibres: nuclear area as observed in 

standard x,y planes (k), nuclear volume (l), aspect ratio (m) and circularity (n). All graphs show mean 

+/- SEM; one data point per nucleus in panels (g-i) and (k-n). Microtubule and nuclear 

measurements were taken from multiple regions in 8 fibres per condition, spread across 2-3 
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separate experiments for each condition. Asterisks denote significance versus DMSO/control treated 

fibres. Scale bars: 10μm (a-d) and 5μm (j). Two-tailed t test used for comparison of two groups; one-

way ANOVA for 3 or more groups. * (P<0.05), ** (P<0.01), *** (P<0.001). 

-------------------------------------------------------------------------------------------------------------------------------------- 

 

Discussion 

In this study, we identify a range of nuclear and cytoskeletal defects in skeletal muscle fibres that 

occur as part of ACTA1 or NEB-related NM pathology. We show that such defects in nuclear 

morphology and spacing are caused by the impairment in force production that is a characteristic of 

this disease. We also highlight the role of the microtubule cytoskeleton in the regulation of nuclear 

shape. 

 

Myonuclear spacing defects (Fig. 1) have also been observed in other mutant mouse models, 

including those in genes encoding nuclear envelope proteins (SUN1/SUN2 double KO, Nesprin-1 KO 

[26, 57, 64]), and also in ageing [5]. Interestingly, this effect appears to be specific, since knockout of 

other nuclear envelope proteins such as lamin A/C does not significantly alter myonuclear 

organisation [16, 27]. Currently, there is little insight into whether defects in nuclear spacing 

contribute to myofibre dysfunction, or whether they are merely a secondary phenomenon. 

However, given that regular spacing of myonuclei is a highly conserved feature across invertebrates 

and vertebrates, it is assumed that it is important for proper muscle fibre function, such as inter-

nuclear cooperation and the efficient distribution of gene products throughout the cell [32]. 

Therefore, one might envisage that any deviation from a “normal” nuclear arrangement would result 

in sub-optimal muscle fibre function. 

 

Studies to ascertain the mechanisms of nuclear spacing in skeletal muscle have largely taken place in 

myotubes and embryos of Drosophila and mouse, and have identified a number of mediators 

including nesprins, microtubules, MTOC proteins and the motor proteins kinesin and dynein [14, 15, 

57]. Myotubes, as an in vitro system, are analogous to the events during embryonic development, 

whereby myonuclei are located in the centre/core of the fibre, where their spacing takes place along 

the axis of the fibre. As such, myotubes are not anatomically or developmentally equivalent to 

mature muscle fibres, in which nuclei are anchored at the fibre periphery. In these examples of NM, 

it is unclear whether the nuclear organisation defects are a result of aberrant spacing occurring 

during development, or in events that occur in maturity. However, our results show that nuclear 

positioning can be remodelled in mature fibres, since delivery of the Myl4 isoform into adult 

Acta1H40Y mice rescued nuclear spacing defects (Fig. 4). A key feature of muscle tissue in NM (as well 

as some other myopathies) is a shift towards type I fibres. This alone is unlikely to explain the 

alterations that we observed in NM patients, since no clear difference in the regularity of nuclear 

spacing is observed across human fibre types [9].   

 

Various nuclear envelope and shape defects are also a feature of NM patients (Fig. 2, 3). Perhaps 

associated with this is the frequent observation of chromatin abnormalities in NM patients by EM 

and light microscopy (Fig. 3, Suppl Fig. S2, online resource), since both nuclear morphology and the 
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nuclear envelope are known to play a role in transcriptional regulation via chemical and mechanical 

control of chromatin organisation [10, 18, 23, 34, 58, 62]. Given that NM is caused by mutations in 

genes related to contraction, it would appear that these alterations are a secondary defect. 

However, many of these alterations bear striking resemblance to those seen in primary diseases of 

the nuclear envelope, for instance those caused by mutations in genes encoding e.g. lamins, 

nesprins, or emerin, which frequently present with muscular dystrophy [2, 13, 19, 33, 52, 55]. Given 

the severity of disease caused by mutations in genes encoding nuclear envelope proteins, it is likely 

that the array of nuclear defects that we describe in NM patients contribute to muscle dysfunction. 

Indeed, broad alterations in the transcriptional profile of skeletal muscle is observed in patients with 

NM (including in genes related to metabolism and calcium homeostasis), and this may partially 

result from these characteristic nuclear shape and envelope alterations and/or reorganised 

chromatin [51]. It should be noted that intranuclear rods are also a feature of some cases of NM, 

which might also be expected to affect nuclear function; however, we did not observe any instances 

of these in the patient samples used in this study (either by EM, or by -actinin staining in light 

microscopy samples). 

 

Delivery of the Myl4 transgene to adult Acta1H40Y mouse muscles augments contractile force [30] 

and rescues nuclear spacing and morphology (Fig. 4). This suggests that (i) a lack of force originating 

at the sarcomere is responsible for these nuclear defects, and that (ii) this can be reversed by an 

increase in contractile capacity. The mediators of this effect are unclear, but may involve direct force 

transmission to the nuclei via e.g. microtubule, actin or desmin cytoskeletons, or interactions 

through second messengers that may be responsive to mechanical input. Interestingly, nuclear 

defects at the ultrastructural level were also observed in patients with acquired forms of NM 

(SLONM; Suppl Fig S3, online resource; Table 5), where a reduction in muscle contractile force also 

occurs, but in the absence of mutations in known disease-causing genes. This provides some 

evidence that contractile dysfunction is a cause of nuclear defects in humans, although this data is 

currently only supportive. In a broader sense, nuclear abnormalities might be common to other 

neuromuscular diseases, since various other classes of myopathy are also associated with impaired 

contraction [20]. One example that has been studied in detail is Marinesco–Sjögren syndrome, a 

multisystem disorder with myopathy, which is caused by mutations that affect endoplasmic 

reticulum trafficking and chaperone function [25, 46]. Ultrastructural abnormalities in myonuclei of 

this disorder include highly condensed chromatin and areas of nuclear envelope separation, akin to 

our observations in nemaline myopathy. It should be noted that disease etiology is highly variable 

across neuromuscular disorders, and that various aspects of muscle pathology might influence 

nuclear function and integrity, besides impaired contractile function.  

 

Another of our key findings was the cytoskeletal defects in the Neb cKO model NM, involving 

microtubules, desmin and non-sarcomeric actins (Fig. 5-6). Microtubules also show increased density 

and disorganisation in dystrophic mice with dystrophin or sarcoglycan deficiency, or mice with MAP6 

ablation [3, 54]. In skeletal muscle, microtubules are known to have roles in modulating fibre 

stiffness and contraction, and in signalling via reactive oxygen species (ROS) [21]. Indeed, the 

increased microtubule density in dystrophic mice results in elevated ROS, over-activation of stretch-

sensitive Ca2+ channels, and worsened pathology [22]. In the mouse model of NM utilised in the 

present study, defects in non-sarcomeric (- and -) actins and desmin were striking in that the vast 

majority of fibres showed markedly reduced/virtually absent localisation of all of these components. 
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Ablation of either - or -actin specifically in skeletal muscle causes mild progressive myopathies 

[39], and loss of desmin causes disruptions of muscle architecture [6]. Intriguingly, myofibrils are 

frequently misaligned and disordered in NM [60], and this might be due to (i) the loss of desmin, 

and/or (ii) the defects at the nuclear envelope, since both are involved in the proper arrangement of 

myofibrils [1, 6]. One key role of desmin and actins is the lateral transmission of force to the fibre 

periphery, where actin and microtubules bind to the dystrophin-associated glycoprotein complex at 

the plasma membrane [3, 43, 56]. Therefore, the mislocalisation of these components is likely to 

have implications for the mechanical properties of the fibre. 

 

Cytoskeletal components also have important roles in anchorage at the nucleus, and the normal 

localisation of microtubules, -actin and desmin at the nuclear surface was also largely reduced in 

Neb cKO mice. The cytoskeleton is likely to transmit strain from the mechanical forces of contraction 

to the nuclei, which may be important for fibre integrity and/or regulation of gene expression [8]. 

Consistent with this, disruption of microtubules with several agents resulted in alterations to nuclear 

shape (Fig. 7). Although microtubules are known to regulate nuclear spacing during development, no 

changes in nuclear distribution were observed when fibres were treated with nocodazole, taxol or 

EpoD (Fig. 7; Suppl Fig. S4, online resource). Possible explanations for this include: (i) other 

cytoskeletal systems are instead responsible for nuclear spacing in mature fibres, or are able to 

compensate when microtubules are disrupted; (ii) nuclei are more mobile in actively contracting 

fibres, which was not the case in these experiments; or (iii) longer treatments are required to induce 

significant remodelling of nuclei (which would not be preferable due to the relatively short-term 

viability of muscle fibres in ex vivo conditions). 

 

The range of disease severity varies greatly in NM, and death in childhood is frequent at the most 

severe end of the spectrum. In this study, the patients were almost entirely of adult age, 

representing the milder end of the spectrum (with the exception of some early onset cases included 

for electron microscopy studies). This was an experimental design choice, due to the availability of 

healthy human control tissue at adult, but not childhood ages. Therefore, it is difficult to draw 

extensive conclusions regarding nuclei in typical congenital cases of NM, although several early 

onset cases displayed invaginations, altered chromatin compaction and in one case, separation of 

inner and outer nuclear membranes (Fig. 3, Table 4). To date, our understanding of human muscle 

development at the cellular level during infancy and childhood is incomplete, and is likely to be 

highly dynamic throughout this period of sustained growth [11]. As such, interpretation of cellular 

organisation in congenital NM patients would be difficult, without appropriate information on 

healthy development. 

  

In summary, our results demonstrate that skeletal muscle from NM patients and mouse models 

display defects in the non-sarcomeric cytoskeleton and in nuclear positioning and integrity. They 

indicate that abnormal nuclear spacing and morphology are the result of the impaired contractile 

force production that is a key feature of this disease. In addition, we highlight the role of a properly 

organised cytoskeleton in the regulation of nuclear morphology. Although nuclear defects are 

observed in other diseases, including those caused by mutations in nuclear envelope proteins, these 

findings are somewhat unexpected, given that NM pathology originates at the sarcomere [7, 41]. 

They might explain some of the features observed in NM, such as broad transcriptional changes and 
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hindered muscle fibre growth (possibly related to alterations in nuclear envelope and chromatin 

organisation, which is likely to affect programmes of gene expression [18, 34, 62]), myofibrillar 

disarray (due to the roles of desmin and the nuclear envelope in sarcomere organisation [1, 6]) and 

altered fibre mechanical properties (due to disrupted cytoskeletal arrangements [21]). This study 

raises the possibility that nuclear and cytoskeletal defects may be an overlooked feature and/or 

source of pathology in other (muscle) diseases. 
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Supplementary figures 

 

 

Fig S1. Relationship between nuclear organisation and muscle fibre size (related to Fig 1). Healthy 

control subjects and patients are denoted with their mutation and age. Individual data points 

represent an individual skeletal muscle fibre. (a, b) data is the same as that plotted in Fig 1e and f, 

but linear regression lines for controls are separated into each subject, rather than combined into a 

single line. Number of nuclei per mm of fibre in control subjects versus ACTA1 patients (a) and 

control subjects versus NEB patients (b). (c, d) Order score, an algorithm to assess the regularity of 

nuclear spacing; a lower score indicates more irregular spacing and more nuclear clustering. Order 

score for control subjects versus ACTA1 patients (c); and control subjects versus NEB patients (d). 

For most controls and patients, either no correlation, or a weak positive correlation between fibre 

CSA and order score was observed. One patient (ACTA1 20) showed a positive correlation (R2 = 0.68), 

indicating that larger fibres tended to be more ordered than small, although one control (Ctrl 30) 

showed a negative correlation (R2 = 0.47), suggesting the reverse relationship. 
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Fig S2. Altered chromatin organisation in patients with nemaline myopathy (related to Fig 3i-k). (a) 

Mean acetylhistone H3 pixel intensity per nucleus (one data point per nucleus measured); F test for 

variance indicates that the variation in staining intensity between nuclei is significantly greater in 

patients than controls. (b) Standard deviation of pixel intensity within each nucleus, as a measure of 

staining variability within the nucleus (one data point per nucleus measured); patients frequently 

have more variable staining within each nucleus, possibly indicating irregularly packed regions of 

chromatin. 50+ nuclei were observed per subject across ~9 fibres, mean +/- SEM. One-way ANOVA 

with Tukey post-correction and a random effect algorithm (to account for hypothetical inter-

individual differences that might exist between controls) was used to compare each patient with 

controls. * (P<0.05), ** (P<0.01), *** (P<0.001). 
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Fig S3. Transmission electron microscopy of skeletal muscle biopsies of patients with sporadic late 

onset nemaline myopathy (SLONM). See Table 3 for patient details. (a) myonucleus from patient 

SLONM 1, showing invaginations (“inv”). In addition, a small fragment of nucleus is present in the 

bottom right corner (*), which may represent a separate nuclear entity or a lobulation of the same 

nucleus. (b) myonucleus from patient SLONM 5 with dense chromatin/high levels of 

heterochromatin, and a large invagination. (c) myonucleus from patient SLONM 1 with several 

regions of separation (“sep”) between inner and outer nuclear membranes, of varying width. (c’) is a 

magnification of the boxed region in (c). (d) and (e) myonuclei from patient SLONM 3 showing 

variable separations between inner and outer nuclear membranes. In addition, chromatin is highly 

condensed in these nuclei. A semi-quantitative analysis of electron microscopy findings in SLONM 

patients are shown in Table 5. 
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Fig S4. Nesprin-1 localisation and myonuclear spacing is unaffected by microtubule perturbations 

(related to Fig 7). (a) Typical myonuclei from mouse skeletal muscle fibres treated overnight with 

vehicle (DMSO), nocodazole, taxol or epothilone D. Nesprin-1 staining (green) and DAPI (blue). The 

localisation of nesprin-1 was not markedly affected by treatment with microtubule perturbing drugs. 

~50 nuclei were observed per condition across 2-3 separate experiments. (b) Representative DAPI-

stained images of muscle fibres treated with DMSO, nocodazole or taxol. No overt alterations to 

myonuclear spacing were observed in response to the drugs, even after 72 hours (~20 fibres 

observed across 2-3 experiments). Scale bars: 5μm (A); 50μm (B). 

 

 

 

 


