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Abstract
A string S[1, n] is a power (or repetition or tandem repeat) of order k and period n/k, if it can be
decomposed into k consecutive identical blocks of length n/k. Powers and periods are fundamental
structures in the study of strings and algorithms to compute them efficiently have been widely
studied. Recently, Fici et al. (Proc. ICALP 2016) introduced an antipower of order k to be a string
composed of k distinct blocks of the same length, n/k, called the antiperiod. An arbitrary string
will have antiperiod t if it is prefix of an antipower with antiperiod t. In this paper, we describe
efficient algorithm for computing the smallest antiperiod of a string S of length n in O(n) time. We
also describe an algorithm to compute all the antiperiods of S that runs in O(n logn) time.
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1 Introduction

Algorithms and data structures for finding repeating patterns or regularities in strings (see,
e.g., [6, 16, 24]) are central to several fields of computer science including computational
biology, pattern matching, data compression, and randomness testing. The nature and extent
of regularity in strings is also of immense combinatorial interest in its own right [22].

One of the most fundamental notions of regularity is that of powers (also known as
repetitions or tandem repeats). A power of order k is defined by a concatenation of k
identical blocks of symbols, where k is at least 2. The study of powers began in the early
1900s with the work of Thue [25], who studied a class of strings that do not contain any
substrings that are powers. Powers in various forms later came to be important structures
in computational biology, where they are associated with various regulatory mechanisms
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32:2 Computing the Antiperiod(s) of a String

and play an important role in genomic fingerprinting (for further reading see, e.g., [19] and
references therein). More recently it has been shown that the number of so-called maximal
powers (or runs) in a string is less than the length of the string itself [2] – positively settling
a long-standing conjecture [20, 5].

Antipowers are an orthogonal notion to that of powers, that were introduced recently
by Fici et al. in [9, 10]. In contrast to powers, antipowers insist instead on the diversity of
consecutive blocks: an antipower of order k is a concatenation of k pairwise distinct strings
of equal length.

In the short period of time following Fici et al.’s work, antipowers have received a great
deal of attention, especially from a combinatorial perspective. In a follow-up article, Fici et
al. [10], further showed that every infinite string contains powers of any order or antipowers of
any order. Moreover, Defant in [7] (see also Narayanan [23]) studied the sequence of lengths
of the shortest prefixes of the Thue-Morse string that are k-antipowers, and proved that this
sequence grows linearly in k. Gaetz [12] has since extended Defant’s results to substrings.
Burcroff [4] studied the avoidability of k antipowers in infintite strings, generalizing Fici et
al.’s results.

The algorithmic study of antipowers was initiated recently by Badkobeh et al. [1], who
describe an algorithm that, given a string S of length n and a parameter k, locates all
substrings of S that are antipowers of order k. The algorithm takes Θ(n2/k) time, which the
authors show to be optimal in the sense that there exist strings containing Θ(n2/k) distinct
antipowers of order k. Very recently Kociumaka et al. [18] have shown an output sensitive
algorithm for the same problem with running time O(nk log k + C), where C is the number
of reported antipowers. They also show that they can be counted within time O(nk log k).

New Results. In this paper, we describe algorithms for computing the smallest antiperiod
and all the antiperiods of a string S of length n. Our definition of antiperiod is slightly
more general than that considered by Badkobeh et al., and we define it formally in the next
section. The starting point for both our algorithms is an efficient solution to the monotone
weighted level ancestor problem, which we describe in Section 3. This leads to an O(n logn)
time algorithm for computing all the antiperiods of a given string, described in Section 4.
We then show how to exploit combinatorial properties of antipowers to obtain an algorithm
for computing the smallest antiperiod, of S in time O(n). We notice that a very similar
result to our monotone weighted level ancestor solution was already shown by Kociumaka
et al. [17] (see also Barton et al. [3]). Such a result was unknown to us prior to the initial
submission of this paper.

2 Preliminaries

Let S = S[1, n] be a string of length |S| = n over an alphabet Σ of size |Σ| = σ. The empty
string ε is the string of length 0. For 1 ≤ i ≤ j ≤ n, S[i] denotes the ith symbol of S, and
S[i, j] the contiguous sequence of symbols (called factor or substring) S[i]S[i+ 1] . . . S[j]. A
substring S[i, j] is a suffix of S if j = n and it is a prefix of S if i = 1. A string p is a repeat
of S iff p has at least two occurrences in S. In addition p is said to be right-maximal in S iff
there exist two positions i < j such that S[i, i + |p| − 1] = S[j, j + |p| − 1] = p and either
j + |p| = n+ 1 or S[i, i+ |p|] 6= S[j, j + |p|].

The suffix tree T for a string S of length n over the alphabet Σ is a rooted directed
compacted trie built on the set of suffixes of S. The suffix tree has n leaves and its internal
nodes have at least two children whiles its edges are labelled with substrings of S. The labels
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of all outgoing edges from a given node start with a different character. All leaves of the
suffix tree are labelled with an integer i, where i ∈ {1 · ·n} and the concatenation of the
labels on the edges from the root to the leaf gives us the suffix of S which starts at position i.
The nodes of the (non-compacted) trie which have branching nodes and leaves of the tree are
called explicit nodes, while the others are called implicit nodes. The occurrence of a substring
P in S is represented on T by either an explicit node or implicit node and called the locus of
P . The suffix tree T can be constructed in O(n) time and space. In order to have one-to-one
correspondence between the suffixes of S and the leaves of T, a character $ /∈ Σ is added to
the end of the label edge for each suffix i to ensure that no suffix is a prefix of another suffix.
To each node α in T is also associated an interval of leaves [i..j], where [i..j] is the set of
labels of the leaves that have α as an ancestor (or the interval [i..i] if α is a leaf labelled by
i). The intervals associated with the children of α (if α is an internal node) form a partition
of the interval associated with α (the intervals are disjoints sub-intervals of [i..j] and their
union equals [i..j]). For any internal node α in the suffix tree T, the concatenation of all
edge labels in the path from the root to the node α is denoted by ᾱ and the string depth of
a node α is denoted by |ᾱ|. For brevity, in what follows, we will always talk about depth
instead of string depth 1.

A power of order k (or k-power) is a string that is the concatenation of k identical strings.
The period of a k-power of length n is n/k. For example, abaaba is a 2-power (or a square)
of period 3.

Our main subject in this paper is a complementary structure to a power, called an
antipower, which we now formally define.

I Definition 1 (Fici et al. [9]). An antipower of order k (or k-antipower) is a string obtained
by the concatenation of k pairwise-distinct strings of identical length. The antiperiod of a
k-antipower of length n is n/k.

For example, ababbabab is a 3-antipower of antiperiod 3.
We now extend the notion of antiperiod to strings that are not necessarily antipowers.

I Definition 2. A string s has an antiperiod t if it is a prefix of some k-antipower w =
p1p2 · · · pk whose antiperiod is t.

Note that by this definition every string has antiperiods: bn/2c+ 1, . . . , n− 1.

I Example 3. Suppose we have the following string:

s = aabbbbaaaabb|s| = 12

t = 6: s is a 2-antipower with antiperiod 6. s = (aabbbb)(aaaabb);
t = 5: s is a prefix of a word, w, that is a 3-antipower with antiperiod 5:
w = (aabbb)(baaaa)(bbaaa);
t = 4: s is not a 3-antipower because s = (aabb)(bbaa)(aabb) and it therefore cannot be a
prefix of any antipower with antiperiod 4;
t = 3: s is a 4-antipower with antiperiod 3. s = (aab)(bbb)(aaa)(abb);
t = 2: s is not a 6-antipower because s = (aa)(bb)(bb)(aa)(aa)(bb) and so cannot be a prefix
of any antipower with antiperiod 2.
Therefore, the smallest antiperiod of the string s is 3.

1 Notice that string depth of a suffix tree node is different from the usual definition of node depth in
arbitrary trees which refers to the number of nodes in the path from the root to the reffered node.
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32:4 Computing the Antiperiod(s) of a String

I Example 4. Suppose we have the following string:

s = ababbbaaaaabaa|s| = 14

t = 7: s is a 2-antipower with antiperiod 7. s = (ababbba)(aaaabaa);
t = 6: s is a prefix of a 3-antipower, w with antiperiod 6. w = (ababbb)(aaaaab)(aaaaaa);
t = 5: s is a prefix of a 3-antipower, w with antiperiod 5. w = (ababb)(baaaa)(abaaa);
t = 4: s is a prefix of a 4-antipower, w with antiperiod 4. w = (abab)(bbaa)(aaab)(aaaa);
t = 3: s is a prefix of a 5-antipower, w with antiperiod 3. w = (aba)(bbb)(aaa)(aab)(aac);
t = 2: s is not a 7-antipower. s = (ab)(ab)(bb)(aa)(aa)(ab)(aa).
Therefore, the smallest antiperiod of the string s is 3.

We study two problems in this paper related to the computation of antiperiods.

I Problem 1. Given a string S, find the smallest antiperiod of S.

I Problem 2. Given a string S, find all the antiperiods of S.

In what follows we denote by log x the function log2 x and by ln(x) the natural logarithm of
x. We will also make use of the iterated logarithm function. We denote by log(1)(x) = log(x)
and for integer k > 1 define log(k)(x) = log(log(k−1)(x)). We let k = log∗(x) be the number
k such that log(k)(x) ≤ 1.

3 Monotone Weighted Level Ancestor Queries

In this section, we are interested in weighted level ancestor queries over leaves in the suffix
tree. We will use such queries in subsequent sections to obtain efficient algorithms for
computing antiperiods.

An internal node α spans depth d iff the depth of α is at least d and depth of the parent
of α is less than d. A leaf ` spans depth d iff the parent of ` has depth less than d.

Abusing notation we will identify each leaf of T by its label. A weighted level ancestor
query consists of a pair (`, d), where ` is a leaf in the suffix tree and d is a depth. The
goal is to return the highest ancestor of ` that has depth at least d. Although there exist
some solutions to this problem, none of them is satisfactory for our purpose. The solution
described in [15] supports constant time queries, but does not have an efficient construction
algorithm2. All the other solutions to this problem have linear preprocessing time, but query
time O(log logn) [8, 21]. Here we will describe a solution that can be used to efficiently
answer sequences of weighted-level ancestor queries as long as the depth argument of the
queries in the sequence is non-decreasing.

One of the most frequent applications of weighted level ancestor queries is the determina-
tion of the locus of substrings of S. More precisely, the locus of a substring S[i, j] can be
determined as follows: first determine the leaf ` that corresponds to suffix S[i, n]. Then, the
locus of S[i, j] is obtained by issuing a weighted level ancestor query with pair (`, j − i+ 1).

I Definition 5. A sequence of weighted-level ancestor queries (`1, d1), (`2, d2) . . . (`t, dt) is
called monotone, iff we have that di ≤ di+1 for all i ∈ [1..t− 1].

I Definition 6. A split-find data structure is a data structure over the interval [1..n] that
starts with a set of disjoint non-empty sub-intervals of [1..n] whose union equals [1..n] (the

2 Although not specifically analysed in [15], preprocessing time is O(n log4(n)) [14].
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subintervals form a partition of [1..n]) and in which the query find(k) returns the only
subinterval [i..j] such that i ≤ k ≤ j, and the update query split([i..j], k) with k ∈ [i..j − 1]
removes the interval [i..j] and insert intervals [i..k] and [k + 1..j].

Before describing our proposed solution, we will start by stating some useful lemmas.

I Lemma 7. A node alpha associated with an interval [iα, jα] is an ancestor of a node β
associated with interval [iβ , jβ ] iff [iβ , jβ ] ⊆ [iα, jα]

Proof. The lemma is immediate from the definition of the suffix tree and the definition of
the intervals associated with the suffix tree nodes. J

I Lemma 8. The answer to a weighted-level ancestor query (`, d) is a node α that spans
depth d and has an associated interval [i..j] such that ` ∈ [i..j].

Proof. The fact that α needs to span d is immediate from the definition of the query. The fact
that [i..j] needs to include ` follows from the definition of the query and from Lemma 7. J

I Lemma 9. The collection of intervals associated with the set of nodes that span depth d
forms a partition of the interval [1, n]

Proof. We will first prove that the intervals are disjoint and then prove that their union
equals [1, n]. We will prove that by showing that every leaf is included in exactly one interval
that spans depth d. Suppose that a leaf ` is included in two intervals [iα, jα] and [iβ , jβ ],
then one of the nodes α or β is an ancestor of the other (by Lemma 7), which means that it
has depth less than d thus does not span d. We will now prove that ` is included in at least
one interval. Suppose that the parent of ` has stringdepth less than d. Then, ` spans d and
thus the interval [`, `] is in the collection. Otherwise, clearly one of the ancestors of ` spans
d and its corresponding interval includes `. J

We will now prove the following lemma.

I Lemma 10. The collection of intervals corresponding to nodes that span depth d+ 1 can
be obtained from the collection of intervals that corresponds to nodes that span depth d by
replacing the intervals that correspond to internal node at depth d with intervals of their
children.

Proof. First of all, observe that each node that spans depth d+ 1 either spans depth d or
has a parent that spans depth d. Thus generating all nodes that span depth d+ 1 amounts
to consider all (intervals of) nodes that span depth d and for each such node either add it
(its interval) to the output set or add (intervals of) its children. We will now look at all
nodes that span depth d. Observe that a node α that spans depth d will have depth at least
d. Consider now two cases:
1. If α has depth more than d, then it will clearly also span depth d+ 1, since it obviously

has depth at least d+ 1 and its parent has depth less than d and thus less than d+ 1. It
thus suffices to keep the interval that corresponds to α.

2. If α has depth exactly d, then the depth of all its children is at least d+ 1. Those children
will obviously span d, since their depth is at least d+ 1 and the depth of their parent α is
d < d+ 1. It thus suffices to replace the interval of α with the intervals of its children. J

We are now ready to prove the main theorem of this section.

CPM 2019



32:6 Computing the Antiperiod(s) of a String

I Theorem 11. Suppose that we have a split-find algorithm over n elements in the interval
[1..n] that has initialization time O(n) and that supports the find operation in constant time
and any sequence of k split operations in amortized O(1 + n

k ) time per operation. Then we
can use such an algorithm to support any sequence of k monotone weighted-level ancestor
queries over a suffix tree with n leaves in amortized O(1 + n

k ) time per query.

Proof. We assume depth d1 ≥ 1 (level ancestor queries for depth 0 are trivial – the returned
node is the root). Each node α in the suffix tree has a depth d and an associated interval [i..j],
where [i..j] is the set of leaves that have α as an ancestor. We initialize the weighted level
ancestor query data structure in time O(n) with the intervals associated with the children of
the root. We will use an auxiliary table P [1..n] which will store the data associated with
each interval.

More precisely, the data associated with interval [i..j] will be stored in the cell P [i], and
in our case will consist of a pair (P1, P2), where P1 is a pointer to the suffix tree node to
which the interval [i..j] is associated and P2 is a pointer to the internal representation of the
interval [i..j] in the split-find data structure. We also preprocess the suffix tree, and store a
table L[1..n − 2], where L[d] points to the list of all nodes at depth d (nodes α such that
|ᾱ| = d). This preprocessing can clearly be done in O(n) time 3.

We now describe the algorithm. We proceed in n− 2 update steps numbered from 2 to
n− 1. These steps are intermingled with the queries. More precisely, if we have di > di−1 for
some pair of consecutive queries (`i−1, di−1), (`i, di), we proceed to all steps di−1 + 1, . . . , di,
thus preparing the split-find data structure for the next queries. At update step number
u ∈ [di−1 + 1, di], we will induce the collection of intervals of nodes that span depth u from
the collection of intervals that span depth u− 1. Following Lemma 10, we traverse the list
of nodes L[u− 1] and for every node α with associated interval [i..j] and split the interval
[i..j] in the split-find structure by using the pointer P [i].P2 that points to the internal
representation of the interval in the split-find representation. The interval of α will be
replaced with the intervals of its children. If α has t children, then [i..j] will be split into k
subintervals [i..i1], . . . , [it−1 + 1..j]. This splitting can be done by successively splitting [i..j]
into [i..i1] and [i1 + 1..j], then split [i1 + 1, j] into [i1 + 1, i2] and [i2 + 1, j] and so on, until
we have completed the splitting of the interval [it−2 + 1, j] into subintervals [it−2 + 1, it−1]
and [it−1 + 1, j] (each time using and updating cells P [i], P [i1 + 1] . . .). At the end, the
cells P [i], P [i1 + 1] . . . P [it−1 + 1] will point to the suffix tree nodes with associated intervals
[i..i1], . . . , [it−1 + 1..j].

Notice that after step di, the subintervals stored in the split-find data structure will
precisely form the collection of intervals associated to nodes that span depth di. It is clear
that this set of nodes is precisely the set of nodes that can be answers to weighted level
ancestor queries for depth di. Moreover answering a query (`i, di) amounts to finding the
subinterval [i..j] such that i ≤ `i ≤ j and from there retrieve the pointer to the suffix tree
node pointed by P [i].

It remains to analyze the amortized time of queries to the weighted-level ancestor query
data structure. The total time can be decomposed into three components: the preprocessing
time, the update time and the query time. The preprocessing time is dominated by the
construction of lists L which as argued above is O(n). The update time is dominated by
the updates to the split-find data structure. We argue that the total time for the updates
(between queries) is O(n) assuming that the union-find data structure supports a sequence

3 We traverse all nodes in the tree in depth-first order, computing the depth of every node α from the
depth of its parent β and the length of the label of the edge that connects β to α.
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of k updates in amortized time O(1 + n/k) which in total gives O(n+ k). It is clear that
the total number of split operations is upper bounded by the number of children of internal
nodes in the suffix tree, since we perform t− 1 update operations for an internal node with t
children. The total number of children of all internal nodes is clearly upper bounded by the
total number of nodes in the suffix tree which is 2n− 1. We thus conclude that the total
time for all updates is O(n+ 2n− 1) = O(n).

Finally the amortized query time is constant for each query, since it is dominated by the
query time of the split-find data structure which is constant time. Thus the sum of all query
times is O(k). We thus conclude that the total time for preprocessing, updates and queries
is O(n) and thus the amortized time per operation is O((n+ k)/k) = O(1 + n/k). J

Since there exists a split-find algorithm over n elements that has initialization time O(n),
uses space O(n) working over the interval [1..n], that supports the find operation in constant
time and any sequence of t split in amortized constant O(1 + n

t ) time per operation [11],
we can state the following corollary.

I Corollary 12. Given a suffix tree T with n leaves, we can compute the result of any sequence
of t monotone weighted-level ancestor queries over T in O(1 + n

t ) amortized time.

4 Computing All the Antiperiods of a String

In the smallest antiperiod problem, we are given a string S of length n and have to find the
smallest t such that the string S is a prefix of some string p0p1 . . . pk, where |pi| = t for all
i ∈ [0..k] and pi 6= pj for all i 6= j. This problem can be solved using the suffix tree of S by
making use of the following observation:

I Lemma 13. Two substrings S[i, i+ d− 1] and S[j, j + d− 1] are equal iff they have the
same locus in the suffix tree of S.

The algorithm proceeds in (at most) bn/2c phases, where in phase i, it is tested whether
value t = i is an antiperiod of S. Such a test can be carried out via bn/ic monotone weighted
level-ancestor queries. That is, in phase i, we compute weighted level ancestor queries for
(weighted) level i for the leaves labeled with positions 1, i + 1, 2i + 1, 3i + 1, and so on.
If at any point we visit the same node (i.e. ancestor) a second time, then S cannot have
antiperiod i because at least two of the substrings of length i starting at the tested positions
are equal. On the other hand if all ancestors are unique so are the corresponding substrings
of length i (at tested positions), implying that i is an antiperiod.

Let t be the first phase in which all ancestor nodes returned by the monotone level
ancestor queries are unique. It is clear that t is the smallest antiperiod of S. We now analyse
the running time. The ith phase involves n/i level ancestor queries. Therefore if we stop
the algorithm at phase t, the total number of queries will be N = O(

∑t
i=1 n/i) = O(n log t).

We now bound the total time taken by all queries. First of all, notice that queries have the
monotonicity property, which means that we can apply Theorem 11. Now, by Theorem 11,
each of the N queries is supported in amortized O(1 + n

N ) = O(1) time per query which
means that the total time for all N queries is O(N) = O(n log t). We have thus obtained the
following theorem.

I Theorem 14. We can find the smallest antiperiod of a string of length n in O(n log t)
time, where t is the length of the antiperiod.

CPM 2019



32:8 Computing the Antiperiod(s) of a String

Clearly, if instead of stopping at the point at which we have computed the smallest antiperiod
we continue to run the algorithm up to phase bn/2c, we will compute all the antiperiods of
the string, obtaining the following theorem.

I Theorem 15. We can find the all the antiperiods of a string of length n in O(n logn) time.

5 Faster Computation of the Smallest Antiperiod

In this section we show how to obtain a faster algorithm for the smallest antiperiod problem
via the following two easily proved properties of antiperiods.

I Lemma 16. If t is a an antiperiod, then any multiple of t is also an antiperiod.

I Lemma 17. If t is the smallest antiperiod, then 1, 2 . . . , t− 1 are not antiperiods.

Using the two observations above, we can improve the solution described in the previous
section. More precisely, we can reduce the time down to O(n log log t) as follows. We first
test whether the value i = 1 is an antiperiod. If not we proceed as follows. Let us first define
f(x) = xdlog2 xe. For increasing values of i = 2, 3, . . ., we test antiperiod f(i), and stop
whenever we find a value i such that f(i) is an antiperiod. Clearly this first step takes time:

O(n) +
∞∑
i=2

O

(
n

idlog2 ie

)
= O

(
n+ n

∞∑
i=2

1
idlog2 ie

)
= O(n).

This is because the series
∑∞
i=2 1/(idlog2 ie) converges to a constant (for completeness this is

shown in the appendix).
Now, for any j ∈ [2..i− 1], we have the following two facts:

1. f(j) is multiple of j.
2. f(j) is not an antiperiod.
By Lemma 16, these two facts imply that j is not an antiperiod. We thus have proved that
the smallest antiperiod is in the range [i..f(i)]. Then we test all antiperiods between i and
f(i) (in increasing order), taking time:

O(n) +
f(i)∑
j=i

O

(
n

j

)
= O

n+
f(i)∑
j=1

n

j
−

i∑
j=1

n

j
+ n

i


= O (n+ n(log f(i)− log(i)))
= O

(
n+ n(log(idlog2 ie)− log(i))

)
= O(n logdlog2 ie) = O(n log log i)

Clearly we have that t ∈ [i..f(i)] and so O(n log log i) ∈ O(log log t). We thus have proved
the following theorem

I Theorem 18. We can find the smallest antiperiod t of a string of length n in time
O(n log log t).

5.1 Recursive solution
By recursing on the solution described above multiple times we get total time O(n log∗ t) to
find the smallest antiperiod. That is, at the second step, instead of testing all antiperiods
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between i and f(i), we instead test every ` = dlog log ie value, spending total time O(n).
That is, we test the antiperiods i · `, (i+ 1) · `, . . . , d f(i)

` e · `. The complexity is this time:

O(n) +
d f(i)

` e∑
j=i

O

(
n

j`

)
= O

n+ n

`
·
d f(i)

` e∑
j=i

1
j


∈ O

n+ n

`
·
f(i)∑
j=i

1
j


= O(n+ n

`
· (log(f(i))− log(i) + 1

i
)

= O(n+ n

`
· (log log i)) = O(n).

In the formulae above, the O(n) terms in the beginning is due to the monotone weighted-level
ancestor data structure. At the end of this second step we will have determined an interval
[i2, i2 · `]. In third step, we continue doing the tests but testing every `2 = dlog log log ie
value as a candidate antiperiod, obtaining interval [i3, i3 · `2]. We continue that way, at
each step k using value `k−1 = dlog(k)(i)e until we get into an interval [ik..ik · dlog(k)(i)e],
such that log(k)(i) ≤ 3. Then, we can test all values inside that interval. We also have
log∗ i = O(log∗ t). Now, since we have O(log∗ t) steps and each step takes O(n) time, the
total execution time of our algorithm is O(n log∗ t).

I Theorem 19.We can find the smallest antiperiod t of a string of length n in O(n log∗ t) time.

5.2 Linear time solution
We now show how to further reduce the time for finding the smallest antiperiod from
O(n log∗ t) to O(n). We will make use of the substring hashing data structure described
by Gawrychowski [13]. Given a string S[1..n], the data structure allows to associate to
each distinct substring of S a unique integer in the range [1..O(n3)]. The data structure
can be precomputed in O(n) time and returns the unique identifier associated to a given
substring S[s..e] in constant time. For testing an antiperiod p, we will make bn/pc queries
to the substring hashing data structure and collect the obtainted integer identifiers. We
can check whether two substrings are equal by using radix-sort to sort all the identifiers in
time O(

√
n+ (n/p) · logn

logn/2 ) = O(
√
n+ n/p) using buckets of size 2dlog(n)/2e. At the end of

the sorting we scan the identifiers to check whether any identifier occurs twice, and if not,
conclude that p is an antiperiod. We will modify the recursive algorithm as follows.

At each step k+ 1 we will use `k = d(log(k)(i))2e instead of `k = dlog(k)(i)e. The running
time of step k + 1 will thus be

O

(
n

log `k−1

`k

)
= O

(
n

2 log(k)(i)
(log(k)(i))2

)
= O

(
n

log(k)(i)

)
instead of O(n) (notice that we avoind the O(n) term due to the weighted-level ancestor
data structure). Summing up over all the steps, the running time will be:

O

(
n+ n

log log i + n

log log log i + . . .+ n

)
= O(n)

We thus have proved the following theorem.

I Theorem 20. We can find the smallest antiperiod of a string of length n in O(n) time.

CPM 2019
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A Complement of Section 4

We show that the series
∑∞
i=2 1/(idlog2 ie) converges to a constant. This can be proved as

follows. Since the function f(x) = 1/(x(ln x)2) is monotonically decreasing over [2,∞), we
can upper bound the sum

∞∑
i=2

1
i(ln i)2

by the integral∫ ∞
2

1
x(ln x)2 · dx

By replacing x = eu, we get∫ ∞
2

1
x(ln x)2 · dx =

∫ ∞
ln 2

1
euu2 (eu · du) =

∫ ∞
ln 2

1
u2 · du.

The antiderviative of 1/u2 being equal to −1/u, we get that∫ ∞
ln 2

1
u2 · du = 1

ln 2 −
1
∞

= 1
ln 2 .

We thus have
∞∑
i=2

1
idlog2 ie

≤
∞∑
i=2

1
i log2 i

= 1 +
∞∑
i=2

(ln 2)2

i(ln i)2

≤ 1 + (ln 2)2 ·
∫ ∞

2

1
x(ln x)2 · dx

= 1 + (ln 2)2 · 1
ln 2 = 1 + ln 2.
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