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Abstract

A word x that is absent from a word y is called minimal if all its proper factors occur in y. Given a
collection of k words y1, y2, . . . , yk over an alphabet Σ, we are asked to compute the set M`

y1#...#yk
of

minimal absent words of length at most ` of word y = y1#y2# . . .#yk, # /∈ Σ. In data compression,
this corresponds to computing the antidictionary of k documents. In bioinformatics, it corresponds
to computing words that are absent from a genome of k chromosomes. This computation generally
requires Ω(n) space for n = |y| using any of the plenty available O(n)-time algorithms. This is
because an Ω(n)-sized text index is constructed over y which can be impractical for large n. We
do the identical computation incrementally using output-sensitive space. This goal is reasonable
when ||M`

y1#...#yN
|| = o(n), for all N ∈ [1, k]. For instance, in the human genome, n ≈ 3 × 109

but ||M12
y1#...#yk

|| ≈ 106. We consider a constant-sized alphabet for stating our results. We show

that all M`
y1 , . . . ,M

`
y1#...#yk

can be computed in O(kn +
∑k

N=1 ||M
`
y1#...#yN

||) total time using

O(MaxIn + MaxOut) space, where MaxIn is the length of the longest word in {y1, . . . , yk} and
MaxOut = max{||M`

y1#...#yN
|| : N ∈ [1, k]}. Proof-of-concept experimental results are also

provided confirming our theoretical findings and justifying our contribution.

1 Introduction

The word x is an absent word of the word y if it does not occur in y. The absent word x of y
is called minimal if and only if all its proper factors occur in y. The set of all minimal absent
words for a word y is denoted by My. The set of all minimal absent words of length at most
` of a word y is denoted by M`

y. For example, if y = abaab, then My = {aaa, aaba, bab, bb}
and M3

y = {aaa, bab, bb}. The upper bound on the number of minimal absent words is
O(σn) [1], where σ is the size of the alphabet and n is the length of y, and this is tight for
integer alphabets [2]; in fact, for large alphabets, such as when σ ≥

√
n, this bound is also

tight even for minimal absent words having the same length [3].
State-of-the-art algorithms compute all minimal absent words of y in O(σn) time [1,

4] or in O(n + |My |) time [5, 6] for integer alphabets. There also exist space-efficient
data structures based on the Burrows-Wheeler transform of y that can be applied for this
computation [7, 8]. In many real-world applications of minimal absent words, such as in data
compression [9, 10, 11, 12], in sequence comparison [2, 6], in on-line pattern matching [13], or
in identifying pathogen-specific signatures [14], only a subset of minimal absent words may
be considered, and, in particular, the minimal absent words of length (at most) `. Since, in



the worst case, the number of minimal absent words of y is Θ(σn), Ω(σn) space is required
to represent them explicitly. In [6], the authors presented an O(n)-sized data structure for
outputting minimal absent words of a specific length in optimal time for integer alphabets.

The problem with existing algorithms for computing minimal absent words is that they
make use of Ω(n) space; and the same amount is required even if one is merely interested
in the minimal absent words of length at most `. This is because all of these algorithms
construct global data structures, such as the suffix array [4]. In theory, this problem can
be addressed by using the external memory algorithm for computing minimal absent words
presented in [15]. The I/O-optimal version of this algorithm, however, requires a lot of
external memory to build the global data structures for the input [16]. One could also use
the algorithm of [17] that computes M`

y in O(n + |M`
y |) time using O(min{n, `z}) space,

where z is the size of the LZ77 factorisation of y. This algorithm also requires constructing
the truncated DAWG, a type of global data structure which could take space Ω(n). Thus, in
this paper, we investigate whether M`

y can be computed efficiently in output-sensitive space.
As y can be “decomposed” into a collection of k words—with a suitable overlap of length `
so as not to lose information—we consider the following, general, computational problem.

Problem Given k words y1, y2, . . . , yk over an alphabet Σ and an integer ` > 0, compute
the set M`

y1#...#yk
of minimal absent words of length at most ` of y = y1#y2# . . .#yk, # /∈ Σ.

In data compression, this scenario corresponds to computing the antidictionary of k
documents [9, 10]. In bioinformatics, it corresponds to computing words that are absent
from a genome of k chromosomes. As discussed above, this computation generally requires
Ω(n) space for n = |y|. We do the identical computation incrementally using output-sensitive
space. This goal is reasonable when ||M`

y1#...#yN
|| = o(n), for all N ∈ [1, k]. In the human

genome, n ≈ 3× 109 but ||M12
y1#...#yk

|| ≈ 106, where k is the total number of chromosomes.

Our Results Antidictionary-based compressors work on Σ = {0, 1} and in bioinformatics
we have Σ = {A, C, G, T}; we thus consider a constant-sized alphabet for stating our results.
We show that all M`

y1
, . . . ,M`

y1#...#yk
can be computed in O(kn+

∑k
N=1 ||M

`
y1#...#yN

||) total
time using O(MaxIn+MaxOut) space, where MaxIn is the length of the longest word in
{y1, . . . , yk} and MaxOut = max{||M`

y1#...#yN
|| : N ∈ [1, k]}. Proof-of-concept experimen-

tal results are provided confirming our theoretical findings and justifying our contribution.

2 Preliminaries

We generally follow [18]. An alphabet Σ is a finite ordered non-empty set of elements called
letters. A word is a sequence of elements of Σ. The set of all words over Σ of length at most
` is denoted by Σ≤`. We fix a constant-sized alphabet Σ, i.e., |Σ| = O(1). Given a word
y = uxv over Σ, we say that u is a prefix of y, x is a factor (or subword) of y, and v is a
suffix of y. We also say that y is a superword of x. A factor x of y is called proper if x 6= y.



Given a word y over Σ, the set of minimal absent words (MAWs) of y is defined as

My ={aub | a, b ∈ Σ, au and ub are factors of y but aub is not}
∪ {c ∈ Σ | c does not occur in y}.

For instance, over Σ = {a,b,c}, for y = ab we have My = {aa,bb,ba,c}. MAWs of
length 1 for y can be found in O(|y| + |Σ|) = O(|y|) time using O(|Σ|) = O(1) working
space, and so, in what follows, we focus on the computation of MAWs of length at least 2.

The suffix tree T (y) of a non-empty word y of length n is the compact trie representing
all suffixes of y [18]. The branching nodes of the trie as well as the terminal nodes, that
correspond to non-empty suffixes of y, become explicit nodes of the suffix tree, while the
other nodes are implicit. We let L(v) denote the path-label from the root node to node v.
We say that node v is path-labeled L(v); i.e., the concatenation of the edge labels along the
path from the root node to v. Additionally, D(v) = |L(v)| is used to denote the word-depth
of node v. A node v such that the path-label L(v) = y[i . . n− 1], for some 0 ≤ i ≤ n− 1, is
terminal and is also labeled with index i. Each factor of y is uniquely represented by either
an explicit or an implicit node of T (y) called its locus. The suffix-link of a node v with
path-label L(v) = aw is a pointer to the node path-labeled w, where a ∈ Σ is a single letter
and w is a word. The suffix-link of v exists by construction if v is a non-root branching node
of T (y). The matching statistics of a word x[0 . . |x| − 1] with respect to word y is an array
MSx[0 . . |x|−1], where MSx[i] is a pair (fi, pi) such that (i) x[i . . i+fi−1] is the longest prefix
of x[i . . |x| − 1] that is a factor of y; and (ii) y[pi . . pi + fi − 1] = x[i . . i+ fi − 1] [19]. T (y)
is constructible in time O(n), and, given T (y), we can compute MSx in time O(|x|) [19].

3 Combinatorial Properties

For convenience, we consider the following setting. Let y1, y2 be words over the alphabet Σ
and let y3 = y1#y2, with # /∈ Σ. Let ` be a positive integer and set M`

y1
= My1 ∩Σ≤` and

M`
y2

= My2 ∩Σ≤`. We want to construct M`
y3

= My3 ∩Σ≤`. Let x ∈ M`
y3

. We have two cases:

Case 1 : x ∈ M`
y1
∪M`

y2
;

Case 2 : x /∈ M`
y1
∪M`

y2
.

The following auxiliary fact follows directly from the minimality property.

Fact 1. Word x is absent from word y if and only if x is a superword of a MAW of y.

For Case 1, we prove the following lemma.

Lemma 1 (Case 1). A word x ∈ M`
y1

(resp. x ∈ M`
y2

) belongs to M`
y3

if and only if x is a

superword of a word in M`
y2

(resp. in M`
y1

).

Proof. Let x ∈ M`
y1

(the case x ∈ M`
y2

is symmetric). Suppose first that x is a superword

of a word in M`
y2

, that is, there exists v ∈ M`
y2

such that v is a factor of x. If v = x, then

x ∈ M`
y1
∩M`

y2
and therefore, using the definition of MAW, x ∈ M`

y3
. If v is a proper factor

of x, then x is an absent word of y2 and again, by definition of MAW, x ∈ M`
y3

.
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Figure 1: x2 occurs in y1 but not in y2; x1 occurs in y2 but not in y1; therefore aub does not occur
in y1#y2. By construction, au occurs in y1 and ub occurs in y2; therefore aub is a Case 2 MAW.

Suppose now that x is not a superword of any word in M`
y2

. Then x is not absent in y2
by Fact 1, and hence in y3, thus x cannot belong to M`

y3
.

It should be clear that the statement of Lemma 1 implies, in particular, that all words
in M`

y1
∩M`

y2
belong to M`

y3
. Furthermore, Lemma 1 motivates us to introduce the reduced

set of MAWs of y1 with respect to y2 as the set R`
y1

obtained from M`
y1

after removing those

words that are superwords of words in M`
y2

. The set R`
y2

is defined analogously.

Example 1. Let y1 = abaab, y2 = bbaaab and ` = 5. We have M`
y1

= {bb,aaa,bab,aaba}
and M`

y2
= {bbb,aaaa,baab,aba,bab,abb}. The word bab is contained in M`

y1
∩M`

y2
so it

belongs to M`
y3

. The word aaba ∈ M`
y1

is a superword of aba ∈ M`
y2

hence aaba ∈ M`
y3

. On

the other hand, the words bbb, aaaa and abb are superwords of words in M`
y1

, hence they

belong to M`
y3

. The remaining MAWs are not superwords of MAWs of the other word. The

reduced sets are therefore R`
y1

= {bb, aaa} and R`
y2

= {baab, aba}. In conclusion, we have

for Case 1 that M`
y3
∩(M`

y1
∪M`

y2
) = {aaaa,bab,aaba,abb,bbb}.

We now investigate the set M`
y3
\(M`

y1
∪M`

y2
) (Case 2).

Fact 2. Let x = aub, a, b ∈ Σ, be such that x ∈ M`
y3

and x /∈ M`
y1
∪M`

y2
. Then au occurs in

y1 but not in y2 and ub occurs in y2 but not in y1, or vice versa.

The rationale for generating the reduced sets should become clear with the next lemma.

Lemma 2 (Case 2). Let x ∈ M`
y3
\(M`

y1
∪M`

y2
). Then x has a prefix xi in R`

yi
and a suffix

xj in R`
yj

, for i, j such that {i, j} = {1, 2}.

Proof. Let x = aub, a, b ∈ Σ, be a word in M`
y3
\(M`

y1
∪M`

y2
). By Fact 2, au occurs in y1 but

not in y2 and ub occurs in y2 but not in y1, or vice versa. Let us assume the first case holds
(the other case is symmetric). Since au does not occur in y2, there is a MAW x2 ∈ M`

y2
that

is a factor of au. Since ub occurs in y2, x2 is not a factor of ub. Consequently, x2 is a prefix
of au.

Analogously, there is an x1 ∈ M`
y1

that is a suffix of ub. Furthermore, x1 and x2 cannot
be factors one of another. Inspect Figure 1 in this regard.

Example 2. Let y1 = abaab, y2 = bbaaab and ` = 5. Consider x = abaaa ∈ M`
y3
\(M`

y1
∪M`

y2
)

(Case 2 MAW). We have that abaa occurs in y1 but not in y2 and baaa occurs in y2 but not



in y1. Since abaa does not occur in y2, there is a MAW x2 ∈ R`
y2

that is a factor of abaa.
Since baaa occurs in y2, x2 is not a factor of baaa. So x2 is a prefix of abaa and this is aba.
Analogously, there is MAW x1 ∈ R`

y1
that is a suffix of abaaa and this is aaa.

As a consequence of Lemma 2, in order to construct the set M`
y3
\(M`

y1
∪M`

y2
), we should

consider all pairs (xi, xj) with xi in R`
yi

and xj in R`
yj

, {i, j} = {1, 2}. In order to construct

the final set M`
y1#...#yN

, we use incrementally Lemmas 1 and 2. We summarise the whole
approach in the following general theorem, which forms the theoretical basis of our technique.

Theorem 1. Let N > 1, and let x ∈ M`
y1#...#yN

. Then, either x ∈ M`
y1#...#yN−1

∪M`
yN

(Case

1 MAWs) or, otherwise, x ∈ M`
yi#yN

\(M`
yi
∪M`

yN
) for some i. Moreover, in this latter case,

x has a prefix in R`
y1#...#yN−1

and a suffix in R`
yN

, or the converse, i.e., x has a prefix in R`
yN

and a suffix in R`
y1#...#yN−1

(Case 2 MAWs).

Proof. Let x ∈ M`
y1#...#yN

and x /∈ M`
y1#...#yN−1

∪M`
yN

. Then, x /∈ M`
y1#...#yN−1

and x /∈ M`
yN

.
Let x be a word of length m. By the definition of MAW, x[0 . .m− 2] and x[1 . .m− 1] must
both be factors of y1# . . .#yN . However, both cannot be factors of y1# . . .#yN−1 and both
cannot be factors of yN . Therefore, we have one of the two cases:

Case 1 : x[0 . .m− 2] is factor of y1# . . .#yN−1 but not of yN and x[1 . .m− 1] is a factor
of yN but not of y1# . . .#yN−1.

Case 2 : x[0 . .m− 2] is factor of yN but not of y1# . . .#yN−1 and x[1 . .m− 1] is a factor
of y1# . . .#yN−1 but not of yN .

These two cases are symmetric, thus only proof of Case 1 will be presented here. If
x[0] does not occur in yN then x[0] ∈ R`

yN
. Otherwise, let x[0 . . t] be the longest prefix of

x[0 . .m− 2] that is a factor of yN .
Because 0 ≤ t < m− 1 then x[1 . . t+ 1] is a factor of yN . Therefore, x[0 . . t+ 1] ∈ M`

yN
.

In addition, all factors of x[0 . . t+ 1] occur in y1# . . .#yN−1, so x[0 . . t+ 1] ∈ R`
yN

.
Now, x[1 . .m− 1] does not occur in y1# . . .#yN−1, so either x[m− 1] does not occur in

y1# . . .#yN−1 which means that x[m− 1] ∈ R`
y1#...#yN−1

, or let x[p . .m− 1] be the longest
suffix of x[1 . .m− 1] that occurs in y1# . . .#yN−1.

Because 0 < p ≤ m − 1 then x[p − 1 . .m − 2] occurs in y1# . . .#yN−1, therefore x[p −
1 . .m − 1] ∈ M`

y1#...#yN−1
. Since all factors of x[p − 1 . .m − 1] occur in yN , we have x[p −

1 . .m− 1] ∈ R`
y1#...#yN−1

.

4 Algorithm

Let us first introduce an algorithmic tool. In the weighted ancestor problem, introduced
in [20], we consider a rooted tree T with an integer weight function µ defined on the nodes.
We require that the weight of the root is zero and the weight of any other node is strictly
larger than the weight of its parent. A weighted ancestor query, given a node v and an
integer value w ≤ µ(v), asks for the highest ancestor u of v such that µ(u) ≥ w, i.e., such
an ancestor u that µ(u) ≥ w and µ(u) is the smallest possible. When T is the suffix tree of
a word y of length n, we can locate the locus of any factor y[i . . j] using a weighted ancestor



query. We define the weight of a node of the suffix tree as the length of the word it represents.
Thus a weighted ancestor query can be used for the terminal node decorated with i to create
(if necessary) and mark the node that corresponds to y[i . . j].

Theorem 2 ([21]). Given a collection Q of weighted ancestor queries on a weighted tree T
on n nodes with integer weights up to nO(1), all the queries in Q can be answered off-line in
O(n+ |Q|) time.

4.1 The Algorithm

At the Nth step, we have in memory the set M`
y1#...#yN−1

. Our algorithm works as follows:

1. We read word yN from the disk and compute M`
yN

in time O(|yN |). We output the
words in the following constant-space form: < i1, i2, α > per word [4]; such that
yN [i1 . . i2] · α ∈ M`

yN
.

2. Here we compute Case 1 MAWs. We apply Lemma 1 to construct set M = {w : w ∈
M`

y1#...#yN
, w ∈ M`

y1#...#yN−1
∪M`

yN
} and the sets R`

y1#...#yN−1
,R`

yN
as follows.

(a) We first want to find the elements of M`
y1#...#yN−1

that are superwords of any word

yN [i1 . . i2]·α. We build the generalised suffix tree T1 = T (M`
y1#...#yN−1

∪{yN}) [19].

We find the locus of the longest proper prefix yN [i1 . . i2] of each element of M`
yN

in T1 via answering off-line a batch of weighted ancestor queries (Theorem 2).
From there on, we spell α and mark the corresponding node on T1, if any. After
processing all < i1, i2, α > in the same manner, we traverse T1 to gather all occur-
rences (starting positions) of words yN [i1 . . i2] ·α in the elements of M`

y1#...#yN−1
,

thus finding the elements of M`
y1#...#yN−1

that are superwords of any yN [i1 . . i2]·α.
By definition, no MAW yN [i1 . . i2] · α is a prefix of another MAW yN [i′1 . . i

′
2] · α′,

thus the marked nodes form pairwise disjoint subtrees, and the whole process
takes time O(|yN |+ ||M`

y1#...#yN−1
||), the size of T1.

(b) We next want to check if the words yN [i1 . . i2] · α are superwords of any ele-
ment of M`

y1#...#yN−1
. We first sort all tuples < i1, i2, α > using radixsort and

then check this using the matching statistics algorithm for yN with respect to
T (M`

y1#...#yN−1
) considering the tuples in ascending order (from left to right) at

the same time. By definition, no element in M`
y1#...#yN−1

is a factor of another
element in the same set. Thus if a factor of yN [i1 . . i2] · α corresponds to an el-
ement in M`

y1#...#yN−1
this is easily located in T (M`

y1#...#yN−1
) while running the

matching statistics algorithm. The whole process takes O(|yN |+||M`
y1#...#yN−1

||)
time: O(||M`

y1#...#yN−1
||) time to construct the suffix tree and a further O(|yN |)

time for the matching statistics algorithm and for processing the O(|yN |) tuples.

We create set R`
y1#...#yN−1

explicitly since it is a subset of M`
y1#...#yN−1

. We create set

R`
yN

implicitly: every element x ∈ R`
yN

is stored as a tuple < i1, i2, α > such that

x = yN [i1 . . i2] · α. We store every element of {x2 : x2 ∈ M ∩ M`
yN
} with the same

representation. All other elements of M are stored explicitly.



3. Construct the suffix tree of yN and use it to locate all occurrences of words in R`
y1#...#yN−1

in yN and store the occurrences as pairs (starting position, ending position). This step
can be done in time O(|yN |+ ||R`

y1#...#yN−1
||). By definition, no element in R`

y1#...#yN−1

is a prefix of another element in R`
y1#...#yN−1

, and thus this can be done within the
claimed time complexity.

4. For every i ∈ [1, N − 1], we perform the following to compute Case 2 MAWs:

(a) Read word yi from the disk. Construct the suffix tree Tx of word x = yi#yN
in time O(|yi| + |yN |). Use Tx to locate all occurrences of elements of R`

yN
in yi

and store the occurrences as pairs (starting position, ending position). This step
can be done in time O(|yi|+ |yN |) similar to step 2. By definition, no element in
R`

yN
is a prefix of another element in R`

yN
, and thus this can be done within the

claimed time complexity.

(b) During a bottom-up traversal of Tx mark, at each explicit node of Tx, the small-
est starting position of the subword represented by that node, and the largest
starting position of the same subword. This can be done in time O(|yi| + |yN |)
by propagating upwards the labels of the terminal nodes (starting positions of
suffixes) and updating the smallest and largest positions analogously.

(c) Compute the set M`
yi#yN

and output the words in the following constant-space
form: < a, i1, i2, b > per word; such that a · x[i1 . . i2] · b is a MAW. This can be
done in time O(|yi|+ |yN |).

(d) For each element of M`
yi#yN

, we need to locate the node representing word
ax[i1 . . i2] = au and the node representing word x[i1 . . i2]b = ub. This can be
done in time O(|yi| + |yN |) via answering off-line a batch of weighted ancestor
queries (Theorem 2). At this point, we have located the two nodes on Tx. We
assign a pointer from the stored starting position g of au to the ending position
f of ub, only if g is before # and f is after # (f can be trivially computed using
the stored starting position of ub and the length of ub). Conversely, we assign a
pointer from the ending position f of ub to the stored starting position g of au,
only if f is before # and g is after #.

(e) Suppose au occurs in yi and ub in yN . We make use of the pointers as follows.
Recall steps 3 and 4(a) and check whether au starts where a word r1 of R`

yN

starts and ub ends where a word r2 of R`
y1#...#yN−1

ends. If this is the case
and |u| ≥ max{|r1|, |r2|} − 1, then by Theorem 1 aub is added to our output
set M , otherwise discard it. Inspect Figure 2 in this regard. Conversely, if au
occurs in yN and ub in yi check whether au starts where a word r2 of R`

y1#...#yN−1

starts and whether ub ends where a word r1 of R`
yN

ends. If this is the case and
|u| ≥ max{|r1|, |r2|} − 1, then aub is added to M , otherwise discard it.

Finally, we set M`
y1#...#yN

= M as the output of the Nth step. Let MaxIn be the length

of the longest word in {y1, . . . , yk} and MaxOut = max{||M`
y1#...#yN

|| : N ∈ [1, k]}.
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Figure 2: au starts where a word r1 of R`
yN

starts in yi and ub ends where a word r2 of R`
y1#...#yN−1

ends in yN . Moreover, if |u| ≥ max{|r1|, |r2|} − 1, then aub is a Case 2 MAW.

Theorem 3. Given k words y1, y2, . . . , yk and an integer ` > 0, all M`
y1
, . . . ,M`

y1#...#yk
can

be computed in O(kn+
∑k

N=1 ||M
`
y1#...#yN

||) total time using O(MaxIn+MaxOut) space,
where n = |y1# . . .#yk|.

Proof. From the above discussion, the time is bounded by O(
∑k

N=1

∑N−1
i=1 (|yN | + |yi|) +∑k

N=1 ||M
`
y1#...#yN

||). We can bound the first term as follows.

k∑
N=1

N−1∑
i=1

(|yN |+ |yi|) ≤
k∑

N=1

k∑
i=1

(|yN |+ |yi|) =
k∑

N=1

k∑
i=1

|yN |+
k∑

N=1

k∑
i=1

|yi| = 2k(|y1|+ · · ·+ |yk|).

Therefore the time is bounded by O(kn+
∑k

N=1 ||M
`
y1#...#yN

||).
The space is bounded by the maximum time spent at a single step; namely, the length

of the longest word in the collection plus the maximum total size of set elements across all
output sets. Note that the total output size of the algorithm is the sum of all its output
sets, that is

∑k
N=1 ||M

`
y1#...#yN

||, and MaxOut could come from any intermediate set.
The correctness of the algorithm follows from Lemma 1 and Theorem 1.

5 Proof-of-Concept Experiments

In this section, we do not directly compare against the fastest internal [4] or external [15]
memory implementations because the former assumes that we have the required amount
of internal memory, and the latter assumes that we have the required amount of external
memory to construct and store the global data structures for a given input dataset. If
the memory for constructing and storing the data structures is available, these linear-time
algorithms are surely faster than the method proposed here. In what follows, we rather
show that our output-sensitive technique offers a space-time tradeoff, which can be usefully
exploited for specific values of `, the maximal length of MAWs we wish to compute.

The algorithm discussed in Section 4 (with the exception of storing and searching the
reduced set words explicitly rather than in the constant-space form previously described)
has been implemented in the C++ programming language1. The correctness of our imple-
mentation has been confirmed against that of [4]. As input dataset here we used the entire
human genome (version hg38) [22], which has an approximate size of 3.1GB. The following
experiment was conducted on a machine with an Intel Core i5-4690 CPU at 3.50 GHz and
128GB of memory running GNU/Linux. We ran the program by splitting the genome into

1The implementation can be made available upon request.
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Figure 3: Elapsed time and peak memory usage using increasing k blocks of the entire human
genome for ` = 10, 11, 12; notice that the peak memory usage is the same for all values of `.

k = 2, 4, 6, 8, 10 blocks and setting ` = 10, 11, 12. Figure 3 depicts the change in elapsed
time and peak memory usage as k and ` increase (space-time tradeoff).

Graph (a) shows an increase of time as k and ` increase; and graph (b) shows a decrease
in memory as k increases (as proved in Theorem 3). Notice that the space to construct the
block-wise data structures bounds the total space used for the specific ` values and that is
why the memory peak is essentially the same for the ` values used. This can specifically be
seen for ` = 10 where all words of length 10 are present in the genome. The same dataset
was used to run the fastest internal memory implementation for computing MAWs [4] on the
same machine. It took only 2242 seconds to compute all MAWs but with a peak memory
usage of 60.80GB. The results confirm our theoretical findings and justify our contribution.
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