

King’s Research Portal

DOI:
10.1109/LCOMM.2019.2922658

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Skatchkovsky, N., & Simeone, O. (2019). Optimizing Pipelined Computation and Communication for Latency-
Constrained Edge Learning. IEEE COMMUNICATIONS LETTERS, 23(9), 1542-1546. Article 8736251.
https://doi.org/10.1109/LCOMM.2019.2922658

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 27. Dec. 2024

https://doi.org/10.1109/LCOMM.2019.2922658
https://kclpure.kcl.ac.uk/portal/en/publications/5d53fbc0-52fa-43c3-84ae-83bb9fdeed8d
https://doi.org/10.1109/LCOMM.2019.2922658

OPTIMIZING PIPELINED COMPUTATION AND
COMMUNICATION FOR LATENCY-CONSTRAINED

EDGE LEARNING

A PREPRINT

Nicolas Skatchkovsky∗
Department of Informatics

King’s College London
United Kingdom

nicolas.skatchkovsky@kcl.ac.uk

Osvaldo Simeone∗
Department of Informatics

King’s College London
United Kingdom

osvaldo.simeone@kcl.ac.uk

June 12, 2019

ABSTRACT

Consider a device that is connected to an edge processor via a communication channel. The device
holds local data that is to be offloaded to the edge processor so as to train a machine learning model,
e.g., for regression or classification. Transmission of the data to the learning processor, as well as
training based on Stochastic Gradient Descent (SGD), must be both completed within a time limit.
Assuming that communication and computation can be pipelined, this work investigates the optimal
choice for the packet payload size, given the overhead of each data packet transmission and the ratio
between the computation and the communication rates. This amounts to a tradeoff between bias and
variance, since communicating the entire data set first reduces the bias of the training process but
it may not leave sufficient time for learning. Analytical bounds on the expected optimality gap are
derived so as to enable an effective optimization, which is validated in numerical results.

Keywords Machine learning ·Mobile Edge Computing · Stochastic Gradient Descent

1 Introduction

Edge learning refers to the training of machine learning models on devices that are close to the end users [1]. The
proximity to the user is instrumental in facilitating a low-latency response, in enhancing privacy, and in reducing
backhaul congestion. Edge learning processors include smart phones and other user-owned devices, as well as edge
nodes of a wireless network that provide wireless access and computational resources [1]. As illustrated in Fig. 1, the
latter case hinges on the offloading of data from the data-bearing device to the edge processor, and can be seen as an
instance of mobile edge computing [2].

Research on edge learning has so far instead focused mostly on scenarios in which training occurs locally at the
data-bearing devices. In these setups, devices can communicate either through a parameter server [3] or in a device-
to-device manner [4]. The goal is to either learn a global model without exchanging directly the local data [5] or
to train separate models while leveraging the correlation among the local data sets [6]. Devices can exchange either
information about the local model parameters, as in federated learning [7], or gradient information, as in distributed
Stochastic Gradient Descent (SGD) methods [8, 9].

∗The authors have received funding from the European Research Council (ERC) under the European Union’s Horizon 2020
Research and Innovation Programme (Grant Agreement No. 725731).

ar
X

iv
:1

90
6.

04
48

8v
1

 [
cs

.L
G

]
 1

1
Ju

n
20

19

Data Device Channel Edge node

OH b

ncno

wb

Server

Figure 1: An edge computing system, in which training of a model parametrized by vector w takes place at an edge
processor based on data received from a device using a protocol with timeline illustrated in Fig. 2 (OH = overhead).

In this work, we consider an edge learning scenario in which training takes place at an edge node of a wireless system
as illustrated in Fig. 1. The data is held by a device and has to be offloaded through a communication channel to
the edge node. The learning task has to be executed within a time limit, which might be insufficient to transmit the
complete dataset. Transmission of data blocks from device to edge node, and training at the edge node can be carried
out simultaneously (see Fig. 2). Each transmitted packet contains a fixed overhead, accounting e.g. for meta-data
and pilots. Given the overhead of each data packet transmission, what is the optimal size of a communication block?
Communicating the entire data set first reduces the bias of the training process but it may not leave sufficient time
for learning. We investigate a more general strategy that communicates in blocks and pipelines communication and
computation with an optimized block size, which is shown to be generally preferable. Analysis and simulation results
provide insights into the optimal duration of the communication block and on the performance gains attainable with
an optimized communication and computation policy.

The rest of this work is organized as follows. In Sec. 2, we provide an overview of the model and the associated
notations. In Sec. 3, we examine the technical assumptions necessary for our work. In Sec. 4, we provide our main
result and discuss its implications. Finally, in Sec. 5, we consider numerical experiments in the light of our result.

2 System model

As seen in Fig. 1, we study an edge learning system in which a device communicates with an edge node, and
associated server, over an error-free communication channel. The device has access to a local training dataset
X = {x1, x2, . . . , xN} of N data points {xn}Nn=1, and training of a machine learning model is carried out at the
edge node based on data received from the device. As illustrated in Fig. 2, communication and learning must be com-
pleted within a time limit T . To this end, the transmissions are organized into blocks, and transmission and computing
at the edge node can be performed in parallel.

Training at the edge node aims at identifying a model parametrized by a vector w ∈ Rd within a given hypothesis class.
Training is carried out by (approximately) solving the Empirical Risk Minimization (ERM) problem (see, e.g, [10]).
This amounts to the minimization with respect to vector w of the empirical average L(w) of a loss function `(w, x)
over all the data points x in the training dataset, i.e.,

L(w) =
1

N

N∑
n=1

`(w, xn). (1)

As detailed below, the minimization of the function L(w) is carried out at the edge node using SGD, based on the data
points received from the device.

In order to elaborate on the communication and computation protocol illustrated in Fig. 2, we normalize all time
measures to the time required to transmit one data sample from the device to the edge node. With this convention, we
denote as τp the time required to make one SGD update at the edge node.

As seen in Fig. 2, transmission from the device to the edge node is organised into blocks. In this study, we ignore the
effect of channel errors, which is briefly discussed in Sec. 6. In the b-th block, the device transmits a subset Xb ⊆ X
of nc new samples from its local dataset. At the end of the block, the edge node adds these samples to the subset X̃b+1

of samples it has available for training in the b+ 1-th block, i.e., X̃b+1 = X̃b ∪ Xb with X0 = ∅. The samples in Xb are
randomly and uniformly selected from the set ∆Xb = X \X̃b of samples not yet transmitted to the edge node. A packet

2

n + nc o n + nc o n + nc o n + nc o

n + nc o n + nc o n + nc o n + nc o

...

...

...

...

T

T

(a)

(b)

npnp np np

np np np

1 2 3 B-1

B

1 2 3 Bd

2

~
3

~
4

~

2

~
3

~
4

~

Communication

Computation

Communication

Computation

nl

Figure 2: Transmission and training protocol: when (a) T ≤ Bd(nc + no); and (b) T > Bd(nc + no).

sent in any block contains an overhead, e.g., for pilots and meta-data, of duration no, irrespective of the number nc of
transmitted samples. It follows that the duration of a transmission block is nc + no.

There are at most Bd = N/nc transmission blocks, since Bd blocks are sufficient to deliver the entire dataset to the
edge node. Therefore, we need to distinguish two cases. As seen in Fig. 2(a), when T ≤ Bd(nc + no), the device is
only able to deliver a fraction of the samples. In particular, denoting as B = T/(nc + no) the number of blocks, the
fraction of data points delivered at the edge node at time T equals (B − 1)/Bd. In contrast, if T > Bd(nc + no), as
illustrated in Fig. 2(b), the edge node has the entire dataset available after Bd blocks, that is, for a duration equal to
τl = T −Bd(nc + no). Henceforth, we refer to this last period as block Bl = Bd + 1.

During each block b ≤ Bd, the edge node computes np = (nc + no)/τp local SGD updates (2). During block Bl, the
edge node computes nl = τl/τp SGD updates. The j-th local update at block b, with j = 1, . . . , np, is given as

wjb = wj−1
b − α∇`(wj−1

b , ξjb), (2)

where α is the learning rate, and ξjb is a data point sampled i.i.d. uniformly from the subset X̃b =
⋃b−1

l=1 Xl of samples
currently available at the edge node. Note that we have X̃Bl

= X .

The goal of this work is to optimize the number of samples nc sent in each block with the aim of minimizing the
empirical loss (1) at the edge node at the end of time T . In the next sections, we present an analysis of the empirical
loss obtained at time T that allows us to gain insights into the optimal choice of nc.

3 Technical assumptions

In order to study the training loss achieved at the edge node at the end of the training process, we make the following
standard assumptions, which apply, for instance, to linear models with quadratic or cross-entropy losses under suitable
constraints (see the comprehensive review paper [9]):

(A1) the sequence of iterates wj
b in (2) is contained in a bounded open setW ⊆ Rd with radius D = maxu,w∈W×W ||w −

u||2 over which the function `(w, x) is bounded below by a scalar `inf for all x;

(A2) the function `(w, x) is continuously differentiable in w for any fixed value of x and is L-smooth in w, i.e.,

||∇`(w, x)−∇`(w̄, x)||2 ≤ L||w − w̄||2 (3)

for all (w, w̄) ∈ W ×W , and for all x. This implies

`(w, x) ≤ `(w̄, x) +∇`(w̄, x)T (w − w̄) +
L

2
||w − w̄||22 (4)

for all (w, w̄) ∈ W ×W , and for all x;

3

(A3) the loss function `(w, x) is convex and satisties the Polyak-Lojasiewicz condition in w, i.e., there exists a constant
c > 0 such that

2c(`(w, x)− `(w∗` , x)) ≤ ||∇`(w, x)||22 (5)

for all (w, x) ∈ W×Rd where w∗` (x) = arg minw∈W `(w, x) is a minimizer of `(w, x). The P-L condition is implied
by, but does not imply, strong convexity [9].

We further need to make assumptions on the statistics of the gradient ∇`(w, ξjb) used in the update (2). To this end,
for each block b > 1, we define the empirical loss limited to the samples available at the edge node at block b as

L̃b(w) =
1

(b− 1)nc

∑
xi∈X̃b

`(w, xi); (6)

the empirical loss over the samples transmitted at iteration b ≥ 1 as

Lb(w) =
1

nc

∑
xi∈Xb

`(w, xi); (7)

and the empirical loss over the samples not available at the edge at iteration b > 1

∆Lb(w) =
1

N − (b− 1)nc

∑
xi∈∆Xb

`(w, xi). (8)

Note that we have the identity L(w) =
(
(b− 1)nc/N

)
L̃b(w) +

(
(N − (b− 1)nc)/N

)
∆Lb(w).

First, we observe that given the previously transmitted data samples, the gradient∇`(wj−1
b , ξjb) is an unbiased estimate

of the gradient∇L̃b(w) of the empirical loss limited to the samples available at the edge node at block b. In formulas,
E
ξ
j
b
|X̃b

[∇`(w, ξjb)] = ∇L̃b(w), where E
ξ
j
b
|X̃b

[·] is the conditional expectation given the previously transmitted samples.
We finally make the following assumption (see, e.g., [9]):

(A4) For any set X̃b of samples available at the edge node, there exist scalars M ≥ 0 and MV ≥ 0 such that

V
ξ
j
b
|X̃b

[∇`(w, ξjb)] ≤M +MV ||∇L̃b(w)||22 (9)

where V[·] = E[|| · ||2]− ||E[·]||2 is the variance.

4 Convergence analysis

In this section, we present our main result and its implications on the optimal choice of the number nc of transmitted
samples per block. Henceforth, we use the notation Eb[·] to indicate the conditional expectation E

ξ1
b
,...ξ

np
b
|X̃b

[·] on the
samples selected for the SGD updates in the b-th block given the set X̃b of samples available at the edge node at b. We
similarly define EBl [·] = Eξ1

Bl
,...,ξ

nl
Bl

[·] as the conditional expectation on the samples selected for the SGD updates in
block Bl (see Fig. 2(b)).

Theorem 1 Under assumptions (A1)-(A4), assume that the SGD stepsize α satisfies

0 < α ≤ 2

LMG
(10)

and define

γ = α
(

1− 1

2
αLMG

)
. (11)

Then, for any sequence X̃1, . . . , X̃B the expected optimality gap at time T is upper bounded as

4

0 3000 6000 9000 12000 15000 18000

nc

17.50

17.75

18.00

18.25

18.50

18.75

19.00

U
p
p
er

 b
o
u
n

d
 o

n
 t

h
e

fi
n

al
 t

ra
in

in
g

 l
o
ss

ñc

n o=
206

ñc

n o= 2064
ñc

n o= 4128

ñc

no= 10320

Figure 3: Upper bound (14)-(15) versus block size nc for various values of the overhead no. The full dots represent
values of nc at which we have T = Bd(nc + no) (see Fig. 2), crosses represent the optimized value ñc.

EB [L(w
np

B)− L(w∗)]

≤ α2LM

2γc

(B − 1)

Bd
+
(

1− (B − 1)

Bd

)
EB
[
∆LB(w

np

B)−∆LB(w∗)
]

+
1

Bd

B−1∑
l=1

(1− γc)lnpEB−l
[
LB−l(wnp

B−l)− LB−l(w
∗)− α2LM

2γc

]
(12)

if T ≤ Bd(nc + no); and by

EBl

[
L
(
w
nl
Bl

)
− L(w∗)

]
≤ α2LM

2γc

+
1

Bd
(1− γc)nl

Bd−1∑
l=0

(1− γc)lnpEBd−l

[
LBd−l(w

np

Bd−l)− LBd−l(w
∗)− α2LM

2γc

]
(13)

if T > Bd(nc + no).
Proof: See Appendix A.

The bound (12)-(13) extends the classical analysis of the convergence of SGD for the case in which the entire dataset
is available at the learner [9, Theorem 4.6] to the set up under study. The bound distinguishes the case in which the
edge node has the entire data set by the last block, and the complementary case, as seen in Fig. 2.

The first term in the bound (13) represents an asymptotic bias that does not vanish with the number of SGD updates,
even when all the data points are available at the edge node. It is due to the variance (9) of the stochastic gradient.
The bound (12) for smaller values of T also comprises an additional bias term, that is the second term in (13), due to
the lack of knowledge about samples not received at the edge node by the end of the training process. In contrast, the
last term in bound (12)-(13) accounts for the standard geometric decrease of the initial error in gradient-based learning
algorithms. Here, the initial error for each block b is given by Eb

[
L(w

np

b−1)− L(w∗)
]
. Note that the additional factor

with exponent nl in (13) accounts for the number of updates made after all the samples have been received at the edge
node.

The bound (12)-(13) can be in principle optimized numerically in order to find an optimal value to the block size
nc. However, in practice, doing so would require fixing the choice of the sequence X̃1, . . . , X̃B , and running Monte
Carlo experiments for every randomly selected sample of the sequence of SGD updates (2), which is computationally
intractable. Therefore, in the following, we derive a generally looser bound that can be directly evaluated numerically
without running any Monte Carlo simulations. This bound will then be used in order to obtain an optimized value for
nc.

5

Corollary 1 Under the conditions of Theorem 1, the expected optimality gap at time T is upper bounded as

EB [L(w
np

B)− L(w∗)] ≤ α2LM

2γc

(B − 1)

Bd
+
(

1− (B − 1)

Bd

)LD2

2

+
1

Bd

B−1∑
l=1

(1− γc)lnp

[LD2

2
− α2LM

2γc

]
, (14)

if T ≤ Bd(nc + no); and by

EBl [L(w
nl
Bl

)− L(w∗)] ≤ α2LM

2γc
+

1

Bd
(1− γc)nl

Bd−1∑
l=0

(1− γc)lnp

[LD2

2
− α2LM

2γc

]
(15)

if T > Bd(nc + no).
Proof : See Appendix B.

We plot bound (14)-(15) in Fig. 3. These results are obtained for N = 18, 576, T = 1.5N , L = 1.908, c = 0.061,
M = 1, MG = 1, τp = 1, α = 0.0001. We note that L and c represent respectively the smallest and largest
eigenvalues of the data Gramian matrix for the example studied in Sec. 5. For each value of no, we mark in the figure
both the value of nc that minimizes the upper bound in Corollary 1 and the value of nc at which we have the condition
T = Bd(nc + no). As seen in Fig. 2, this is the minimum value of nc that allows the full transmission of the training
set by the last training block.

A first observation is that the optimized value of nc, henceforth referred to as ñc, is generally smaller than the number
N of training points in X , suggesting the advantages of pipelining communication and computation. Furthermore, as
the overhead no increases, it becomes preferable, in terms of the bound (14)-(15), to choose larger values ñc for the
block size nc. This is because a larger value of no needs to be amortized by transmitting more data in each block, lest
the transmission time is dominated by overhead transmission. Finally, for smaller values of no, the minimum ñc of the
bound is obtained when the entire data set is eventually transferred to the edge node, i.e., T > Bd(nc +no), while the
opposite is true for larger value of no. Interestingly, this suggests that it may be advantageous in terms of final training
loss, to forego the transmission of some training points in exchange for more time to carry out training on a fraction
of the data set.

5 Numerical experiments

In this section, we validate the theoretical findings of the previous sections by means of a numerical example based on
ridge regression on the California Housing dataset [11]. The dataset contains 20640 covariate vectors xn ∈ R8, each
with a real label yn. We randomly select 90% of the samples to define the set X for training, i.e., we have N = 18576.
As for Fig. 4, we choose τp = 1 and α = 0.0001. The parameter vector is initialized using i.i.d. zero-mean Gaussian
entries with unitary power. The loss function is defined as `(w, x) = (wTx − y)2 + λ

N
||w||2 where w ∈ R8 and the

regularization coefficient is chosen as λ = 0.05.

By computing the average final training loss for each value of nc, we can experimentally determine the optimal value
n∗c of the block size. We compare the performance using this experimental optimum with the performance obtained
using the minimum ñc of the bound (14)-(15). To this end, in Fig. 4, given a fixed overhead size no, we plot the
average training loss L(wj

b) against the normalized training time j for n∗c and for the value ñc obtained from the
bound (14)-(15). As references, we also plot as dotted lines the losses obtained for selected values of nc. The choice
of the block size nc minimizing the average final loss is seen to be a trade-off between the rate of decrease of the
loss and the final attained accuracy. In particular, decreasing nc allows the edge node to reduce the loss more quickly,
albeit with noisier updates and at the cost of a potentially larger final training loss due to the transmitted packet being
dominated by the overhead. Importantly, determining the optimum block size experimentally instead of using bound
(14)-(15) only provides a gain of 3.8% in terms of the final training loss, at the cost of a computationally burdensome
parameter optimization.

6

0 2000 4000 6000 8000 10000 12000 14000

Normalized training time

T
ra
in
in
g
lo
ss

(w
j) t

6.0

nc=1

nc=100

nc=5000

nc=10000

n
∗

c

ñc

5.5

5.0

4.5

4.0

3.0

3.5

Figure 4: Training loss versus training time for different values of the block size nc. Solid line: experimental and
theoretical optima.

6 Conclusions

In this work, we considered an edge computing system in which an edge learner carries out training over a limited
time period while receiving the training data from a device through a communication link. Considering a strategy that
allows communication and computation to be pipelined, we have analysed the optimal communication block size as a
function of the packet overhead. Among interesting directions for future work, we mention the inclusion of the effect
of delays due to errors in the communication channel. In this case, the optimization problem could be generalized to
account for the selection of the data rate. Other interesting extensions would be to consider online learning, where data
sent in previous packets can be only partially stored at the server, and to investigate a scenario with multiple devices.

7

A Proof of Theorem 1

Using the same arguments as in the proof of [9, Theorem 4.6], we can directly obtain the following inequality for each
block b:

Eb[L̃b(wnp

b)− L̃b(w∗)]

≤ α2LM

2γc
+ (1− γc)npEb

[
L̃b(w0

b)− L̃b(w∗)−
α2LM

2γc

]
. (16)

Note that we have w0
b = w

np

b−1, since the initial parameter at block b is the final parameter obtained at block b− 1. By
definition of the local empirical losses (6)-(7), we have the equality

L̃b(wnp

b−1) =
b− 2

b− 1
L̃b−1(w

np

b−1) +
1

b− 1
Lb−1(w

np

b−1). (17)

Plugging (17) into (16), we have

Eb[L̃b(wnp

b)− L̃b(w∗)]

≤ α2LM

2γc
+ (1− γc)npEb

[(b− 2

b− 1

)(
L̃b−1(w

np

b−1)− L̃b−1(w∗)
)

+
1

b− 1

(
Lb−1(w

np

b−1)− Lb−1(w∗)
)
− α2LM

2γc

]
. (18)

Iterating this substitution for all blocks b− 1, b− 2, . . . , 2, we obtain

Eb[L̃b(wnp

b)− L̃b(w∗)] ≤
α2LM

2γc

+

b−1∑
l=1

(1− γc)lnp 1

b− 1
Eb
[
Lb−l(wnp

b−l)− Lb−l(w
∗)− α2LM

2γc

]
. (19)

While inequality (19) applies for any choice of T , we now specialize the result to the case where the allocated amount
of time T is not sufficient to transmit the whole dataset, i.e., T ≤ Bd(nc + no). (see Fig. 2(a)). According to (6)-(8),
for this case, we have the equality

L(w) =
(b− 1)

Bd
L̃b(w) +

N − (b− 1)

Bd
∆Lb(w). (20)

Plugging (20) into (19) for block b = B, we then obtain

EB [L(w
np

B)− L(w∗)]

≤ α2LM

2γc

(B − 1)

Bd
+
(

1− (B − 1)

Bd

)
Eb
[
∆LB(w

np

B)−∆LB(w∗)
]

+
1

Bd

B−1∑
l=1

(1− γc)lnpEB
[
LB−l(wnp

B−l)− LB−l(w
∗)− α2LM

2γc

]
, (21)

which is (12) in Theorem 1.

Finally, we consider the case where there is sufficient time to transmit the whole dataset, i.e., T > Bd(nc + no) (see
Fig. 2(b)). According to (16), we have

EBl [LBl(w
nl
Bl

)− LBl(w
∗)]

≤ α2LM

2γc
+ (1− γc)nlEBl

[
L(w0

Bl
)− L(w∗)− α2LM

2γc

]
(a)
≤ α2LM

2γc
+

1

Bd
(1− γc)nl

Bd−1∑
l=0

(1− γc)lnp

· EBl

[
LBd−l(w

np

Bd−l)− LBd−l(w
∗)− α2LM

2γc

]
, (22)

where (a) arises from plugging (21) in (22) with B = Bd. This is (13) in Theorem 1, concluding the proof.

8

B Proof of Corollary 1

Defining for all t = 1, . . . , Bd, the optimum solution ∆w∗b = arg minw ∆Lb(w), we can write ∆Lb(∆w∗b) ≤ ∆Lb(w∗) ,
and hence also the inequality

∆Lb(wnp

b)−∆Lb(w∗) ≤ ∆Lb(wnp

b)−∆Lb(∆w∗b). (23)

Writing the Lipschitz continuity property of the gradients (A2) with∇(∆Lb(∆w∗b)) = 0 and (A1), we have ∆Lb(wnp

b)−
∆Lb(∆w∗b) ≤ LD2

2
. Using a similar argument, we can write Lb(wnp

b) − Lb(w∗b) ≤ LD2

2
, where w∗b = arg minw Lb(w).

Plugging this into (21), we obtain the inequality

EB [L(w
np

B)− L(w∗)] ≤ α2LM

2γc

(B − 1)

Bd

+
(

1− (B − 1)

Bd

)LD2

2
+

1

Bd

B−1∑
l=1

(1− γc)lnp

[LD2

2
− α2LM

2γc

]
, (24)

which is (14) in Corollary 1. Following the same approach with (22), we obtain

EBl [L(w
nl
Bl

)− L(w∗)] ≤ α2LM

2γc

+
1

Bd
(1− γc)nl

Bd−1∑
l=0

(1− γc)lnp

[LD2

2
− α2LM

2γc

]
, (25)

which is (15) in Corollary 1, completing the proof.

References

[1] J. Park, S. Samarakoon, M. Bennis, and M. Debbah, “Wireless network intelligence at the edge.” [Online].
Available: http://arxiv.org/abs/1812.02858

[2] D. S. N. S. Yun Chao Hu, Milan Patel and V. Young, Mobile Edge Computing A key technology towars 5G.
Sophia Antipolis, France: ETSI (European Telecommunications Standards Institute, 2015.

[3] U. Mohammad and S. Sorour, “Adaptive task allocation for mobile edge learning.” [Online]. Available:
http://arxiv.org/abs/1811.03748

[4] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “When edge meets learning:
Adaptive control for resource-constrained distributed machine learning,” in IEEE INFOCOM 2018 Proc, April
2018, pp. 63–71.

[5] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Distributed deep neural networks over the cloud, the edge and
end devices,” in 2017 IEEE Conf on Distributed Computing Systems (ICDCS), June 2017.

[6] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,” in Advances in Neural
Information Processing Systems 30, 2017, pp. 4424–4434.

[7] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas, “Federated learning of deep networks using model
averaging.” [Online]. Available: http://arxiv.org/abs/1602.05629

[8] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge: Distributed stochastic gradient descent
over-the-air.” [Online]. Available: http://arxiv.org/abs/1901.00844

[9] L. Bottou, F. Curtis, and J. Nocedal, “Optimization methods for large-scale machine learning,” SIAM Review,
vol. 60, no. 2, pp. 223–311, 2018.

[10] O. Simeone, A Brief Introduction to Machine Learning for Engineers. F&T in Signal Processing, 2018.
[Online]. Available: https://ieeexplore.ieee.org/document/8453245

[11] R. K. Pace and R. Barry, “Sparse spatial autoregressions,” Statistics and Probability Letters, vol. 33, pp. 291–297,
1997.

9

http://arxiv.org/abs/1812.02858
http://arxiv.org/abs/1811.03748
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1901.00844
https://ieeexplore.ieee.org/document/8453245

	1 Introduction
	2 System model
	3 Technical assumptions
	4 Convergence analysis
	5 Numerical experiments
	6 Conclusions
	A Proof of Theorem 1
	B Proof of Corollary 1

