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Abstract

Damage to the vasculature is the primary mechanism driving chronic diabetic microvascular 

complications such as diabetic nephropathy which manifests as albuminuria. Therefore, 

treatments that protect the diabetic vasculature have significant therapeutic potential. Soluble 

Neurite outgrowth inhibitor-B (sNogo-B) is a circulating N-terminus isoform of full-length 

Nogo-B which plays a key role in vascular remodelling following injury. However, there is 

currently no information on the role of sNogo-B in the context of diabetic nephropathy. We 

demonstrate that overexpression of sNogo-B in the circulation ameliorates diabetic kidney 

disease by reducing albuminuria, hyperfiltration, abnormal angiogenesis and protecting 

glomerular capillary structure. Systemic sNogo-B overexpression in diabetic mice also 

associates with dampening VEGF-A signalling and reducing eNOS, AKT and GSK3β 

phosphorylation. Furthermore, sNogo-B prevented the impairment of tube formation which 

occurred when human endothelial cells were exposed to sera from patients with diabetic 

kidney disease. Collectively, these studies provide the first evidence that sNogo-B protects 

the vasculature in diabetes and may represent a novel therapeutic target for diabetic vascular 

complications.
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Diabetic nephropathy (DN), the leading cause of end-stage renal disease in the Western 

world, is characterised by structural changes in the kidney glomerular filtration barrier (1; 2). 

This leads to enhanced glomerular permeability manifested as albuminuria, representing a 

common mechanism for renal and extrarenal diabetic vascular complications (3).

A complex network of vascular growth factors regulates the permeability and structure of the 

glomerular capillary filtration barrier (4). Glomerular levels of vascular endothelial growth 

factor-A (VEGF-A) and angiopoietin-2 (Angpt2) are upregulated in the early stages of DN 

whilst angiopoietin-1 (Angpt1) is downregulated (5-7); a milieu associated with vascular 

remodelling, endothelial proliferation and increased capillary permeability (1; 4). Blockade of 

VEGF-A signalling (8) or restoration of Angpt1 levels in podocytes (7) ameliorates albuminuria 

and glomerular damage in rodent models of early DN. The effects of vascular growth factors 

on endothelial permeability in DN are partly mediated by nitric oxide (NO) signalling through 

modulation of endothelial nitric oxide phosphorylation (eNOSSer1177) which acts in an AKT-

dependent manner (9). In diabetes, reduction in NO availability due to eNOS uncoupling (10) 

has been implicated in the pathophysiology of DN. Podocyte-specific overexpression of 

Angpt1 activates eNOS (7) in diabetic mice, whilst the beneficial effect of VEGF-A blockade 

on albuminuria in DN is prevented in eNOS knock-out mice (11).

Another pathway involved in vascular remodelling is the neurite outgrowth inhibitor (Nogo) 

family which is encoded by one gene with three major isoforms: Nogo-A, -B and -C (12), 

mainly expressed in the endoplasmic reticulum (ER)(13). Nogo-A and -C are found in the 

central nervous system and muscle tissue respectively, whilst Nogo-B localises to endothelial 

and smooth muscle cells within the vasculature (12). In physiology, loss of Nogo-B 

upregulates eNOS-NO and flow-mediated vasodilation, leading to hypotension (14). Mice 

lacking both Nogo-A and B are viable and do not have major apparent vascular defects (15). 

However, vascular lesions are enhanced in Nogo A/B deficient mice following injury which can 

be prevented by gene delivery of full-length Nogo-B (15; 16).

The full-length Nogo-B protein of 49 kDa can be cleaved into a shorter ~150-aa N-terminus 

fragment (17) which can then be secreted into the circulation as soluble Nogo-B (sNogo-

B)(18). This Nogo-B N-terminus (identical in circulating sNogo-B and full-length Nogo-B within 
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the cells) binds to its receptor NgBR, expressed in endothelial cells on the cell plasma 

membrane and in the ER leading to endothelial cell proliferation/vascular remodelling (15; 19), 

angiogenesis during development, vascular repair, and cytoskeletal organisation (12; 20-23). 

Given the role of this N-terminal fragment of Nogo-B in vascular remodelling, we hypothesised 

that overexpression of sNogo-B in the circulation could have a protective role in the setting of 

diabetic kidney disease.
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Research design and methods

Materials and chemicals were purchased from Sigma (Gillingham, UK) and Starlab (Milton 

Keynes, UK) unless otherwise stated.

Experimental animal model of diabetes

To induce diabetes, 8-10 week old (~20g in weight) male DBA2J mice were administered with 

streptozotocin (low dose multiple injection protocol)(7; 8). Mice were considered diabetic with 

a fed glycemia >22 mmol/l.  Control non-diabetic littermates were injected with vehicle only 

(citrate buffer). Two weeks later, some diabetic and non-diabetic mice were administered an 

Adeno Associated viral Vector expressing 6xHis-Tag/sNogo-B (AAV-sNogo-B)(Supplemental 

Material, Fig. 1a). The utilised vector, AAV/DJ, has a specific tropism for the liver and 

maintains a sustained expression of transgene for 15-17 weeks under the CMV promoter (24). 

The construct also contains a secretory alkaline phosphatase peptide, which drives the release 

of the 6xHis-Tag/sNogo-B protein in the circulation. To control for infection, other diabetic and 

non-diabetic mice were injected with AAV/DJ driving the expression of green fluorescent 

protein (GFP) under the same promoter (AAV-GFP).

All mice were maintained for 12-14 weeks after induction of diabetes before sacrifice and 

tissues analysis. Prior to sacrifice, blood pressure was assessed with tail cuff methodology, 

and 24h-urine collection was conducted with mice kept in metabolic cages for creatinine, 

sNogo-B and albuminuria determination (7). At sacrifice full blood and plasma was collected 

(to assess for HbA1c, creatinine by high performance liquid chromatography, and sNogo-B 

levels). Kidney tissue was harvested for histology, electron microscopy (EM), and lysates of 

kidney cortex or isolated glomeruli frozen for further analysis (7).

Immunofluorescence

Proliferating glomerular ECs (GECs) determination

Glomerular Ki67/CD31 and CD31-positive GECs per glomerulus were visualised with 

fluorescent microscope (7); an average of 30-40 glomeruli per animal were studied and the 

means values utilised in the analysis.
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Endothelial glycocalyx determination

Lectin staining was assessed as indicator of thickness/integrity of the endothelial glycocalyx in 

frozen kidney sections as described (25). A total of 10-15 capillary loops were analysed per 

mouse from 5-7 glomeruli and the mean value for each animal was utilised in the analysis.

Electron microscopy and glomerular ultrastructure analysis

Mesangial volume fraction, GBM thickening, podocyte number and glomerular volume were 

studied as described (7; 8). For detailed methodology see Supplemental Material.

sNogo, VEGF-A, Angpt1/2 and VEGFR2Tyr1173 phosphorylation ELISA

sNogo-B in plasma, urine and cell culture media was assessed by ELISA (BioLegend, San 

Diego, CA, USA). ELISA was also utilised for kidney cortex VEGF-A (R&D Systems, 

Abingdon, UK), Angpt1/2 (Biomatick, Wilmington, DE, USA) and VEGFR2 phosphorylation 

(PathScan, Cell Signalling, Leiden, The Netherlands) levels; results were normalised for mcg 

of total kidney cortex protein lysates.

Immunoblotting

Immunoblotting was performed on cells and tissues lysates (mouse renal cortex and isolated 

glomeruli) as described (7). The following primary antibodies were utilised: Nogo-B (N-

terminus, R&D System, Abingdon, UK); NgBR (Abcam, Cambridge, UK); -tubulin (Santa 

Cruz Biotechnology, Heidelberg, Germany); -actin; pan-AKT, GSK3β, phospho-AKT (Ser473), 

phospho-eNOS (Ser1177), and phospho-GSK3βSer9 (Cell Signalling, Leiden, The Netherlands); 

eNOS (Santa Cruz Biotechnology, Heidelberg, Germany); total β-catenin (Proteintech, 

Manchester, UK).

Culture of mouse lung endothelial cells, human GECs, and human podocytes

Primary lung ECs were isolated from adult C57BL/6J mice and cultured, up to three passages, 

as described (14).
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Human GECs and podocytes were cultured as described (26; 27). To examine the effect of 

high glucose and VEGF-A in fully differentiated GECs, cells were starved for 12h in 1% serum 

followed by incubation in normal glucose (5 mmol/l glucose+20 mmol/l mannitol) or high 

glucose (25 mmol/l glucose) for 72h in the presence or absence of VEGF-A (50 ng/ml).

Immunoprecipitation (IP) and proximity ligation assay (PLA) experiments

For IP experiments, GEC were transfected with 6xHis-Tag/sNogo-B adenovirus (ADV-sNogo-

B - transgene identical to the AAV-sNogo-B construct) at 100 multiplicity of infection (MOI) for 

4h and studied after 24h; whole protein lysates were obtained and incubated with either anti 

NgBR (Novus Biological, Oxford, UK), or anti 6xHis-Tag antisera (ThermoFisher Scientific, 

Oxford, UK), or vehicle IgG. Immunoblotting was conducted on immunoprecipitates obtained 

with anti-6xHis-Tag and -NgBR antisera.

For the PLA experiments cell culture media enriched with 6xHis-Tag/sNogo-B was obtained 

by transfecting confluent human GECs with ADV-sNogo-B (100 MOI) in full media for 4h; 

subsequently cells were put in 1% serum media and supernatant (containing 6xHis-

Tag/sNogo-B protein, ~6000 pg/ml) collected after 48h; collected media was stored at 4°C 

and utilised within 6-12h. Human differentiated GECs were then incubated with “6xHis-

Tag/sNogo-B conditioned media” for 1, 5 and 15min, fixed in 4% paraformaldehyde for 10min, 

and then incubated with primary antisera against NgBR (1:100 dilution, rabbit anti N-terminus 

NgBR, gift from R. Miao), and anti 6xHis-Tag (1:100 dilution) mouse monoclonal antiserum 

(ThermoFisher Scientific, Oxford, UK). The NgBR-sNogo-B interaction was visualised with 

immunofluorescence following manufacturer instructions (Duolink® In Situ Red Starter Kit 

Mouse/Rabbit).

Nogo-B immunogold staining in glomeruli

Nogo-B immunogold staining was conducted in mouse renal cortex tissue as previously 

described using a sheep polyclonal anti-Nogo-B (N-terminus) antibody (R&D System, 

Abingdon, UK)(8).
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Nogo-B immunohistochemistry 

Nogo-B immunohistochemistry was conducted in mouse and human (patients with DN or thin 

basement membrane nephropathy-TBMN)(Supplemental Material, Table 1) kidney tissue 

paraffin sections using the streptavidin-biotin complex method with specific sheep polyclonal 

anti Nogo-B N-terminus antibody (R&D System, Abingdon, UK).

In human tissue, Nogo-B expression was quantified by assessing the % glomerular area with 

positive staining. Ten glomeruli were analysed for each human biopsy and the calculated 

average Nogo-B staining/area of glomeruli was then used for analysis.

Role of sNogo-B overexpression in human umbilical vein endothelial cells (HUVEC) tube 

formation assay

To examine the continuous paracrine/autocrine effect of sNogo-B on angiogenesis, HUVEC 

were transfected with ADV-sNogo-B or identical vector lacking sNogo-B cDNA (control vector)( 

Supplemental Material, Fig. 1b) for 4h; cells were then equilibrated (24h) in complete medium 

and then plated in 96 well plates (5000 cells/well) in EGM basal media containing sera (4% 

vol/vol) obtained from patients with type-1 diabetes (T1DM) susceptible (DN+) or protected 

(DN-) towards the progression of DN (Supplemental Material, Table 2). Tube formation was 

performed on Matrigel (BD Biosciences, UK)(28) in duplicate and assessed after 24h. Tube 

length and number were analysed in a blinded fashion with the Wimasis WimTube image 

system (29).

Statistical Methods

Differences among groups were analysed by two tails Student’s t-test or ANOVA with post-

hoc Least Significant Difference (LSD) pairwise comparisons test for normally distributed 

variables. Kruskal-Wallis and Mann-Whitney non-parametric tests were used for not normally 

distributed variables (albuminuria and sNogo-B). Data are expressed as means±standard 

deviation (SD) for normally distributed data or as median and interquartile range for not 
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normally distributed data. Analysis was conducted with IBM SPSS-22 software (New York, 

NY, USA) and statistical significance was accepted at p≤0.05.
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Results

sNogo-B overexpression ameliorates diabetes-mediated albuminuria and hyperfiltration

Non-diabetic (ND) and diabetic (D) mice injected with AAV-sNogo-B were characterised by a 

12-fold increase in circulating sNogo-B when compared with those injected with control vector 

(AAV-GFP)(Fig. 1a, ND-GFP vs ND-sNogo-B, p=0.00001; D-GFP vs D-sNogo-B, p=0.0001).

Diabetes led to a significant increase in HbA1c levels (ND-GFP vs D-GFP, p=0.00008; ND-

sNogo-B vs D-sNogo-B, p=0.00004), which was paralleled by a loss of body weight (ND-GFP 

vs D-GFP, p=0.0001; ND-sNogo-B vs D-sNogo-B, p=0.00001), increased kidney/body weight 

ratio (ND-GFP vs D-GFP, p=0.006; ND-sNogo-B vs D-sNogo-B, p=0.0002) and a modest 

decrease in systolic blood pressure (ND-GFP vs D-GFP, p=0.01; ND-sNogo-B vs D-sNogo-

B, p=0.003)(Table 1).

Glomerular permeability, measured by albumin excretion rate over 24h urine collection, was 

increased in diabetic mice compared with non-diabetic mice (Fig. 1b, ND-GFP vs D-GFP, 

p=0.0001). Overexpression of sNogo-B in the circulation of diabetic mice led to a significant 

40-50% reduction in albuminuria (Fig. 1b, D-GFP vs D-sNogo-B, p=0.04). This effect was 

independent of changes in systemic blood pressure, kidney/body weight and glycaemic 

control which were similar in diabetic mice administered either AAV-sNogo-B or AAV-GFP 

(Table1). Diabetes-mediated renal hyperfiltration was evidenced by raised creatinine 

clearance levels (Fig. 1c, ND-GFP vs D-GFP, p=0.02) and AAV-sNogo-B overexpression 

attenuated this effect (Fig. 1c, D-GFP vs D-sNogo-B, p=0.04).

Urinary sNogo-B was measured in a subset of animals. Diabetes was paralleled by an 

increase in 24h-urine sNogo-B in both mice administered AAV-GFP or AAV-sNogoB (Fig. 1d, 

ND-GFP vs D GFP and ND-sNogo-B vs D-sNogo-B, p≤0.002); no differences were observed 

in urine sNogo-B between AAV-GFP or AAV-sNogo-B mice within the ND and D group.

Effects of sNogo-B overexpression on GECs and podocytes in diabetes

The results above implicate sNogo-B as having a protective role in glomerular capillary 

permeability in diabetic kidneys. We therefore explored whether elevated circulating levels of 
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sNogo-B might stabilise the glomerular vasculature and confer a healthier GEC and podocyte 

phenotype in diabetes.

Firstly, we examined GECs proliferation to assess the effect of sNogo-B on abnormal vascular 

remodelling that occurs in early diabetic glomerulopathy (Fig. 2a, b)(1; 7). Diabetes increased 

the number of CD31+/Ki67+ cells per glomerulus by 7-fold which was attenuated in mice with 

sNogo-B overexpression in the circulation (Fig. 2b, ND-GFP vs D-GFP, p=0.0001; D-GFP vs 

D-sNogo-B, p=0.005). The total number of CD31+ cells/glomeruli was not different between 

animals with increased sNogo-B in the circulation in either non-diabetic and diabetic mice 

(mean±SD CD31+ cells/glomeruli: ND-GFP 7.6±1.37, ND-sNogo-B 7.7±1.8, D-GFP 9.7±2.4, 

D-sNogo-B 9.5±3.0, n=7 animals per group, p=ns).

We performed lectin staining as an indicator of thickness/integrity of the glomerular endothelial 

glycocalyx, which is known to contribute to vascular permeability (30). The estimated lectin 

thickness was significantly reduced in diabetic mice but restored to base-line levels in mice 

administered AAV-sNogo-B (Fig. 2c, ND-GFP vs D-GFP p=0.009; D-GFP vs D-sNogo-B, 

p=0.0004).

Using EM (Supplementary Material, Fig. 2), we found that diabetes was also paralleled by 

a significant decrease in the number of podocytes per glomerulus (Fig. 2d, ND-GFP vs D-

GFP p=0.0002), increased the mesangial volume fraction (Fig. 2e, ND-GFP vs D-GFP 

p=0.02) but had no effect on glomerular basement membrane (GBM) width (Fig. 2f) or 

glomerular volume (Table 1). The reduction in podocyte number observed in diabetic mice 

was ameliorated by elevated circulating sNogo-B levels (Fig. 2d, D-GFP vs D-sNogo-B, 

p=0.01). Overexpression of sNogo-B in the circulation did not alter diabetes-mesangial 

expansion (Fig. 2e), GBM width (Fig. 2f), or glomerular volume in diabetic mice (Table 1).

Effects of sNogo-B overexpression in the circulation on vascular growth factors, eNOS, AKT 

and GSK3β signalling in the kidney cortex

To identify the molecular mechanisms by which sNogo-B might alter the endothelium in 

diabetes, we examined levels of the vascular growth factors VEGF-A, Angpt1 and Angpt2 in 

kidney cortex lysates. VEGF-A protein levels were significantly increased in diabetic mice (Fig. 
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3a, ND-GFP vs D-GFP, p=0.009) and were reduced when sNogo-B was overexpressed in the 

circulation (Fig. 3a, D-GFP vs D-sNogo-B, p=0.03).

In accord with these findings, phosphorylation levels of the main VEGF-A receptor, VEGFR2, 

in the kidney cortex were significantly elevated in diabetic mice; an effect which was 

dampened in mice with elevated circulating sNogo-B levels (Fig. 3b, ND-GFP vs D-GFP, 

p=0.003; D-GFP vs D-sNogo-B, p=0.01). Angpt1/Angpt2 ratio was lower in diabetic mice and 

was not altered by sNogo-B overexpression in the circulation (Fig. 3c, ND-GFP vs D-GFP, 

p=0.03; ND-sNogo-B vs D-sNogo-B, p=0.001).

Given that upregulation of sNogo-B in the circulation was paralleled by altered VEGF-A 

signalling, whose effects on endothelial permeability in DN are regulated by eNOS activation 

(9), we examined phosphorylation of eNOS. Diabetes led to a significant increase in the ratio 

of phosphorylated eNOSsSer1177/total eNOS (Fig. 3d-e, ND-GFP vs D-GFP, p=0.017) which 

was prevented by sNogo-B overexpression (Fig. 3d-e, D-GFP vs D-sNogo-B, p=0.05). As 

protein kinase B (AKT) activation is involved in endothelial cell proliferation and eNOS 

phosphorylation (9) we investigated the phosphorylation at the AKTSer473 site. The ratio of 

AKTSer473 phosphorylation/total AKT was upregulated in diabetic mice; an effect which was 

significantly attenuated in mice injected with AAV-sNogo-B (Fig. 4a, ND-GFP vs D-GFP, 

p=0.0001; D-GFP vs D-sNogo-B, p=0.04). The level of total AKT protein was downregulated 

by diabetes (ND-GFP vs D-GFP, p=0.002)(31), but elevated circulating levels of sNogo-B had 

no effect on total AKT protein expression in kidney cortex lysate.

We then investigated activation of GSK3β, a known substrate of AKT (32), that has been 

postulated as a therapeutic target for diabetic glomerulopathy (33). The ratio of 

phosphorylated GSK3βSer9/total GSK3β was upregulated in kidney cortex lysates of diabetic 

mice when compared with non-diabetic mice (Fig. 4b, ND-GFP vs D-GFP, p=0.006) 

consistent with previous reports (33). Notably, sNogo-B overexpression in the circulation was 

paralleled by a significant downregulation of GSK3βSer9 phosphorylation/total GSK3β in 

diabetic mice (Fig. 4b, D-GFP vs D-sNogo-B, p=0.04). Total GSK3β protein expression was 

not altered in any of the experimental groups studied. As a known substrate of GSK3β, and 

important player in DN (34), we studied total β-catenin (35) protein levels in kidney cortex 

Page 12 of 50

For Peer Review Only

Diabetes



13

lysate. In line with GSK3β activation status, β-catenin was significantly upregulated in diabetic 

mice when compared to non-diabetic mice (Fig. 4c, ND-GFP vs D-GFP, p=0.007). sNogo-B 

overexpression in the circulation led to a significant downregulation of β-catenin in kidney 

cortex of diabetic mice, (Fig. 4c, D-GFP vs D-sNogo-B, p=0.01), whereas β-catenin protein 

levels were unaffected in non-diabetic animals.

sNogo-B binds to NgBR in human GECs in vitro.

Next, we examined the physical interaction between sNogo-B and NgBR by IP and PLA 

experiments in human GECs (26). Firstly, we showed that GECs expressed NgBR in vitro. 

We then could detect an interaction between 6xHis-Tag/sNogo-B and NgBR with IP 

experiments (Supplemental Material, Fig. 3a).

The sNogo-B/NgBR interaction was further confirmed with PLA experiments where the 

sNogo-B/NgBR interaction was observed by identification of positive red/orange dots signals 

in GECs incubated with “conditioned media” containing sNogo-B protein as early as 1min 

(Supplemental Material, Fig. 3b).

Renal cortical levels of full-length Nogo-B are downregulated in an animal model of diabetes 

and restored by sNogo-B overexpression in the circulation

To further explore the reno-protective mechanisms of sNogo-B overexpression in the 

circulation we investigated the expression of full-length Nogo-B in mouse and human kidney 

tissue in diabetes. With immunogold staining, combined with electron microscopy, we found 

that full-length Nogo-B protein was localised in both GECs and podocytes in non-diabetic male 

adult mice (Fig. 5a). Immunohistochemical staining confirmed the expression of full-length 

Nogo-B in the glomerular tuft and, as described, in cortical collecting duct (Fig. 5b)(36). Full-

length Nogo-B protein, assessed by immunoblotting, in glomeruli enriched kidney cortex and 

isolated glomeruli lysates was 2-3-fold downregulated in diabetic mice when compared with 

non-diabetic controls (Fig. 5c, ND-GFP vs D-GFP, p≤0.045); sNogo-B overexpression in the 

circulation restored the diabetes-induced loss of full length Nogo-B (Fig. 5c, D-GFP vs D-
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sNogo-B, p≤0.015). NgBR was expressed in isolated glomeruli but not modulated by diabetes 

or elevated sNogo-B circulating levels (Fig. 5d).

We also investigated the expression of full-length Nogo-B in human kidney biopsies obtained 

from two distinct glomerular diseases: DN and TBMN. DN represents a progressive proteinuric 

disease, while TBMN represents a benign non-proteinuric, non-progressive disorder, featuring  

a uniformly thinned GBM (37) without any other significant glomerular pathology 

(Supplemental Material, Table 1). Nogo-B expression was lower in glomeruli of kidney 

biopsies of patients with DN when compared with patients with TBMN (Fig. 5e, TBMN vs DN, 

p=0.0001).

High glucose and VEGF-A promote full-length Nogo-B downregulation and increased sNogo-

B secretion in the supernatant of GECs in culture

Fully differentiated human GECs (26) incubated in normal (NG) or high glucose (HG) condition, 

with VEGF-A (50 ng/ml, or vehicle) or a combination of HG and VEGF-A for 72h, showed a 30-

40% downregulation of full-length Nogo-B expression (NG vs HG, NG vs VEGF-A, NG vs 

HG+VEGF-A, p≤0.04)(Fig. 6a). HG and/or VEGF-A-mediated full length Nogo-B 

downregulation was paralleled by an upregulation of sNogo-B secretion in the supernatant (NG 

vs HG, NG vs VEGF-A, NG vs HG+VEGF-A, p≤0.03)(Fig. 6b).

sNogo-B overexpression corrects altered tube formation seen in HUVEC cultured with 

T1DM/DN+ serum

Finally, we explored the paracrine/autocrine effects of secreted sNogo-B overexpression on 

the ability of HUVEC, known to express NgBR (19), to differentiate in a tube-like structure 

(tube formation assay)(38) when incubated with the serum of patients with T1DM with (DN+) 

or without (DN-) DN (Supplemental Material, Table 2).

sNogo-B overexpression led to a 5-fold increase in sNogo-B released from cells into the 

supernatant when compared with ADV-control transfected cells (Fig. 7d, ADV-control vs 

ADV-sNogo-B within DN- and DN+, p=0.0001).
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HUVECs incubated with serum of patients with T1DM/DN+ had decreased numbers and 

lengths of tubes when compared to cells incubated with serum of patients with T1DM/DN- 

(Fig. 7a, b, c, ADV-control, DN- vs DN+, tube length p=0.01, tube number p=0.04). Increased 

sNogo-B in the supernatant was paralleled by a correction of the impaired tube formation 

observed in cells incubated with DN+ serum (Fig. 7a, b, c, DN+, ADV-control vs ADV-sNogo-

B, tube length p=0.02, tube number p=0.001).
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Discussion

In this study, we demonstrated, in DBA2/J diabetic mice, that systemic overexpression of the 

N-terminal fragment sNogo-B, which binds to NgBR, improved diabetic glomerulopathy as 

evidenced by a reduction in albuminuria. This finding was associated with reduced GECs 

proliferation, restoration of glycocalyx thickness, maintenance of podocyte number and 

dampening of VEGF-A signalling and eNOS, AKT and GSK3β phosphorylation as assessed 

in glomeruli enriched kidney cortex lysates. Finally, sNogo-B prevented the impairment of tube 

formation which occurred when endothelial cells were exposed to sera from T1DM patients 

with DN.

The reduction in diabetes-mediated albuminuria seen in mice with sNogo-B overexpression 

in the circulation was possibly partly driven by a parallel fall in diabetes-mediated glomerular 

hyperfiltration; this was not accompanied by an  increase in glomerular volume, which is in 

accord with other reports examining the early (up to 16 weeks of diabetes) phase of DN in 

DBA2J mice (39). Other potential confounders for the reduced albuminuria could be that 

sNogo-B overexpression in the circulation lowers blood pressure or be related to changes in 

glycaemic control (2). However, we did not find any change in systemic blood pressure or 

glycaemic control between diabetic mice with overexpression of sNogo-B in the circulation or 

control mice ruling out these possibilities. As previously described the blood pressure 

observed in diabetic DBA2J mice was slightly lower than in non-diabetic ones (39).

Urinary sNogo-B was elevated in diabetes, likely due to the increased permeability of the 

filtration barrier. However, the excretion of sNogo-B was not increased in either non-diabetic 

or diabetic mice administered AAV-sNogoB; a finding most likely to be attributed to the large 

molecular weight of the 6xHis-Tag/sNogo-B (~80 kDa, Supplemental Material, Fig. 1c). 

As albuminuria results from defects in the glomerular filtration barrier, we initially focussed on 

the glomerular endothelium since the biological effects of sNogo-B and its receptor NgBR are 

primarily on the vasculature (14; 19). Elevated circulating levels of sNogo-B prevented 

diabetes-mediated glomerular endothelial cell proliferation as seen in the early stages of DN 

(1; 7; 40). sNogo-B overexpression in the circulation was also associated with amelioration of 

the diabetes-induced loss of lectin, an important component of the endothelial glycocalyx, 
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known to contribute to vascular permeability (25; 41). These changes were paralleled by a 

reduction in VEGF-A signalling. VEGF-A is a potent stimulator of endothelial cell proliferation 

(42) and dampening VEGF-A signalling ameliorates albuminuria and glomerular damage in 

DN (4). VEGF-A has also been implicated in the regulation of the thickness of the endothelial 

glycocalyx in diabetic mice with the anti-angiogenic VEGF-A165b isoform able to restore the 

diabetes-induced loss of the endothelial glycocalyx and albuminuria (41).  There have been a 

few reports linking the sNogo-B/NgBR and VEGF-A/VEGFR2 systems suggesting a 

concerted vasculoprotective role (20; 43).

The effects on the endothelium may also be related to the changes seen in Wnt/β-catenin 

signalling. Activation of Wnt/β-catenin signaling (with cellular β-catenin accumulation) results 

in endothelial dysfunction, inflammation and fibrosis, and has been implicated in DN (34). 

Inactive GSK3β is also known to promote endothelial cell proliferation (44), with a 

phosphorylated (inactive) GSK3β favouring accumulation of cellular β-catenin (45), a 

promoter of angiogenesis and enhancer of VEGF-A/VEGFR2 signaling (46). In our 

experiments, we showed that sNogo-B reduced GSK3β phosphorylation/β-catenin which may 

contribute to preventing the angiogenesis response to diabetes-mediated vascular damage 

and dampen VEGF-A/VEGFR-2 signalling.

Increased eNOS phosphorylation and NO production have been implicated in hyperfiltration 

in the early phases of diabetic glomerulopathy (47; 48), and the role of eNOS in oxidative 

stress (when in an “uncoupled state”(49)) is implicated in DN and GECs/podocyte damage 

(50). The reduction in diabetes-mediated eNOS phosphorylation, observed in kidney cortex 

lysates of diabetic mice with elevated sNogo-B circulating levels, would result in reduced 

eNOS-mediated NO production and oxidative stress; events that could contribute to a 

reduction in glomerular hyperfiltration (51) and in the prevention of diabetes-mediated loss of 

GECs glycocalyx and podocyte detachment. sNogo-B overexpression in the circulation 

associates with inhibition of diabetes-mediated modulation of VEGF-A/VEGFR2 and 

AKT/GSK3β/β-catenin system, signalling pathways which are implicated in podocyte 

injury/detachment and albuminuria (52-54). Finally, it might be possible that sNogo-B may 
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have a direct effect on podocytes as evidenced by our in vitro data showing expression of 

NgBR in human podocyte cells (Supplemental Material, Fig. 4).

Full-length Nogo-B (assessed with specific N-Terminus antiserum) was found to be expressed 

in isolated glomeruli and glomeruli enriched kidney cortex lysates and downregulated in 

diabetic mice. Full-length Nogo-B expression levels were also lower in glomeruli of proteinuric 

DN (a progressive chronic kidney disease) biopsy kidney samples when compared with 

TBMN, a benign glomerular disease without proteinuria, suggesting that the presence of 

proteinuria/albuminuria associates with reduced glomerular full-length Nogo-B levels. 

Whether low glomerular Nogo-B causes albuminuria is yet to be determined, but in 

experimental models of diabetic retinopathy lack of full-length Nogo-B attenuated high glucose 

induced cell migration and tube formation (EC differentiation)(55). In contrast to our findings, 

studies performed in humans’ and rodents’ renal biopsies (NephroSeq database, University 

of Michigan, USA), showed no change in full-length Nogo-B mRNA expression in diabetic 

kidney tissue when compared with control tissue.

We also demonstrate that high glucose and/or VEGF-A determine, in GECs in culture, an 

increase in sNogo-B in the supernatant and a parallel reduction in cellular full length Nogo-B 

(probed with specific N-Terminus antiserum). These results support the cleavage of the full-

length Nogo-B N-Terminus as previously described (17) and future work will have to address 

the mechanisms behind this phenomenon.

We then explored the putative vasculo-protective role of sNogo-B in an angiogenesis 

experimental model in HUVEC cultured with sera of patients with T1DM susceptible (DN+) or 

protected (DN-) towards the progression of DN (56). We demonstrate that circulating factors 

(sera from T1DM/DN+), other than glucose, negatively affect ECs tube formation and sNogo-B 

overexpression in the supernatant rescued this defect favouring ECs differentiation towards a 

stable tube structure, an effect likely related to the patients’ “DN” status rather than being 

driven by renal impairment given that the average of renal function of the two groups of 

patients studied was 80-100 ml/min per 1.73m2. Importantly, artificial upregulation of the N-

terminus of Nogo-B (sNogo-B) in the supernatant is able, via a paracrine autocrine 
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mechanism, to ameliorate the ability of ECs to migrate and differentiate into tubule-like 

structures (38), which translates in a more stable vasculature.

Collectively, our studies provide the first evidence that a primary increase of sNogo-B in the 

circulation protects the glomerular vasculature in diabetes. More studies will need to further 

dissect sNogo-B mechanism/s of action and explore its potential benefit in diabetic animals 

with established kidney disease. sNogo-B could represent a novel targetable pathway for the 

treatment of diabetic chronic vascular complications.
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Table legend:

Table 1: DBA2J mice clinical and biochemical characteristic.
Clinical and biochemical characteristics in non-diabetic and diabetic DBA2/J mice overexpressing sNogo-B 

(sNogo-B) in the circulation or control vector (GFP). BW: body weight, SBP: systolic blood pressure. Data 

are expressed as mean±SD (ANOVA with post-hoc LSD: ND-GFP vs D-GFP, *p≤0.01; ND-sNogo-B vs D-

sNogo-B, **p≤0.003).

 non diabetic
GFP

non diabetic
sNogo-B

diabetic
GFP

diabetic
sNogo-B

HbA1c %(mmol/mol)
(n=16-17/group) 4.5 (26) ± 1.7 (18) 4.3 (24) ± 1.5 (15) 7.7 (60) ± 2.2 (24)* 7.5 (59) ± 2.8 (30)**

BW (g)   
(n=18-20/group) 28.6 ± 2.9 27.5 ± 3.56 23.6 ± 3.9* 21.6±4.4**

SBP (mmHg)
(n=7-10/group) 112 ± 11 111 ± 11 98 ± 9* 93±12**

Kidney weight/ BW 
(mg/g) (n=12-
18/group)

8.7 ± 0.6 8.5 ± 0.6 9.9 ± 1.4* 10±1.2**

Glomerular volume 
(µm3)
(n=7-12/group, 
average 30 glomerular 
determinations per 
animal)

215480 ± 45972 231523 ± 38702 193193 ± 22518 239640 ± 51064

Page 26 of 50

For Peer Review Only

Diabetes



27

Figures’ legends:

Fig. 1: sNogo-B overexpression in the circulation ameliorates diabetic glomerulopathy.
AAV-sNogo-B administration significantly increases plasma sNogo-B levels (a, n=12-

21/group)(measured at sacrifice, 12-14 weeks post diabetes induction)(ND-GFP vs ND-

sNogo-B, D-GFP vs D-sNogo-B, ~p≤0.0001) and ameliorates diabetes-mediated albuminuria 

(b, n=12-17/group), and hyperfiltration, measured as change in creatinine clearance (c, n=6-

8/group). Diabetes was paralleled by an increase in sNogo-B in the urine (d, n=6/group), no 

differences were observed between mice with GFP or sNogo-B overexpression within the ND 

or D group (ND-GFP vs D-GFP, *p≤0.02; ND-sNogo-B vs D-sNogo-B, **p≤0.002; D-GFP vs 

D-sNogo-B, #p≤0.04). (a, b, d) Kruskal-Wallis and Mann-Whitney test (median interquartile 

range); (c) ANOVA with LSD post-hoc test (mean±SD). AAV-GFP treated mice black circles 

(), AAV-sNogo-B treated mice white circles ().

Fig. 2: sNogo-B overexpression in the circulation ameliorates diabetes-mediated 
glomerular ECs proliferation, reduction in glycocalyx lectin content and podocyte loss.
(a) GECs proliferation was detected by CD31+/Ki67+ cells (white arrow). Diabetes significantly 

increases the average number of glomerular CD31+/Ki67+ cells by 7-fold which was reduced 

by sNogo-B overexpression in the circulation (b, n=8-12/group, average of 30-40 

glomeruli/animal). Diabetes led to a 20% reduction in the thickness of the glycocalyx 

(assessed as lectin content) which was prevented by sNogo-B overexpression in the 

circulation (c, n=5/group, with 10-15 capillary loops studied per mouse). Similarly, diabetes-

mediated glomerular podocytes loss was ameliorated by sNogo-B overexpression in the 

circulation (d, n=7-11/group). Elevated sNogo-B circulating levels had no effect on the 

diabetes-mediated increase in mesangial volume fraction (Vvmes)(e, n=9-12/group) or 

glomerular basement membrane (GBM) thickness (f, n=7-11/group).

(ND-GFP vs D-GFP, *p≤0.02; D-GFP vs D-sNogo-B, #p≤0.01; ND-sNogo-B vs D-sNogo-B, 

**p=0.02).  ANOVA with LSD post-hoc test (mean±SD) for all comparisons. AAV-GFP treated 

mice black circles (), AAV-sNogo-B treated mice white circles ().

Fig. 3: sNogo-B overexpression in the circulation ameliorates diabetes-mediated VEGF-
A/VEGFR2 signaling and eNOSSer1177 phosphorylation in kidney cortex lysate.
Diabetes-induced kidney cortex VEGF-A expression (a, n=11-14/group, in duplicate) and 

phosphorylated p-VEGFR2Tyr1173 (b, n=7/group, in duplicate) was blunted in diabetic mice with 

sNogo-B overexpression in the circulation (ND-GFP vs D-GFP, *p≤0.003; D-GFP vs D-sNogo-

B, #p≤0.03). Angpt-1/Angpt-2 ratio (c, n=7-8/group, in duplicate) was reduced in diabetes 

(ND-GFP vs D-GFP; ND-sNogo-B vs D-sNogo-B, *,**p≤0.03) but not altered by elevated 

sNogo-B circulating levels. The diabetes-mediated increase in ratio of phosphorylated p-
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eNOSSer1177/total eNOS was prevented by sNogo-B overexpression in the circulation (d, n=8-

10/group, ND-GFP vs D-GFP, *p=0.017; D-GFP vs D-sNogo-B, #p=0.05). (e) Representative 

data showing western blotting for phosphorylated p-eNOSSer1177, total eNOS and α-tubulin as 

housekeeping gene. ANOVA with LSD post-hoc test (mean±SD) for all comparisons. AAV-

GFP treated mice black circles (), AAV-sNogo-B treated mice white circles ().

Fig. 4: sNogo-B overexpression in the circulation modulates diabetes-mediated 
AKTSer473 and GSK3βSer9 phosphorylation, while preventing diabetes-mediated β-
catenin upregulation.
Diabetes was paralleled by a 2/3-fold increase in the ratio of phosphorylated p-AKTSer473/total 

AKT (a, n=6-8/group), a significant elevation of the ratio of phosphorylated p-GSK3βSer9/total 

GSK3β (b, n=8/group) and increased total β-catenin levels (c, n=8/group) in kidney cortex 

lysates (ND-GFP vs D-GFP, *p≤0.007). Diabetes-mediated AKT and GSK3β phosphorylation 

and upregulation β-catenin levels were partially or totally prevented by sNogo-B 

overexpression in the circulation (D-GFP vs D-sNogo-B, #p≤0.04; ND-sNogo-B vs D-sNogo-

B, **p=0.0001). ANOVA with LSD post-hoc test (mean±SD) for all comparisons. AAV-GFP 

treated mice black circles (), AAV-sNogo-B treated mice white circles ().

Fig. 5. Full-length Nogo-B is expressed in glomeruli and sNogo-B overexpression in 
the circulation prevents diabetes-mediated Nogo-B downregulation.
(a) Electron microscopy showing the ultrastructure of the kidney glomerulus containing 

podocytes (POD), endothelial cells (EC) and the glomerular basement membrane (GBM). 

Immunogold labelling showed positive full-length Nogo-B expression in podocytes (black 

arrowheads) (i) and endothelial cells (black arrows) (ii). Collecting duct (medullary section) 

(iii) are used as positive control and negative control (omission of first antibody) is shown in 

(iv). Bar is 500 nm. (b) Positive signal for Nogo-B (right panel) is observed by 

immunohistochemistry both in glomerular cells (black arrows) and in the cortical collecting 

duct (positive internal control - red arrows) (magnification x40). Negative control-omission first 

anti-Nogo-B antiserum (left panel). (c) Full-length Nogo-B protein expression was 

downregulated in kidney cortex cell lysate and isolated glomeruli of diabetic mice and was 

prevented by AAV-sNogo-B overexpression in the circulation (c, n=10-13/group fort cortex 

lysate, n=4-5 for isolated glomeruli, ND-GFP vs D-GFP, *p≤0.045; D-GFP vs D-sNogo-B, 

#p≤0.015). (d) NgBR was detected in isolated glomeruli, no effect of diabetes or sNogo-B 

overexpression was noted. (e) Nogo-B expression (brown staining) was detected by 

immunohistochemistry in kidney biopsies from patients with diabetic nephropathy (DN) and 

thin basement membrane nephropathy (TBMN). Positive staining in the cortical collecting 

ducts serves as positive internal control (red arrows). Bar is 100 µm. Quantitative data 

showing the area of the glomerular tuft containing positive Nogo-B staining (n=10/group for 
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both TBMN and DN with an average score from 10 glomeruli obtained for each biopsy, TBMN 

vs DN, *p=0.0001). (c, d) ANOVA with LSD post-hoc test (mean±SD). AAV-GFP treated mice 

black circles (), AAV-sNogo-B treated mice white circles (); (e) Unpaired t-test (mean±SD).

Fig. 6: Incubation of GECs with high glucose and/or VEGF-A in vitro results in 
downregulation of full-length Nogo-B and parallel increase in sNogo-B secretion in the 
supernatant.
Fully differentiated GECs were incubated with normal (NG) or high (HG) glucose for 72h in 

the absence (vehicle: VEH) or presence of VEGF-A (50 ng/ml). Full-length Nogo-B protein 

expression was significantly downregulated by HG and/or VEGF-A (a, n=5-6, in duplicate). 

Conversely HG and/or VEGF-A was paralleled with an increase in sNogo-B levels, expressed 

as pg/ml.µg of cell protein, in the supernatant (b, n=4-5 in duplicate)(NG vs HG, NG vs VEGF-

A, NG vs HG+VEGF-A, *p≤0.03). (a) ANOVA with LSD post-hoc test (mean±SD); (b) Kruskal-

Wallis and Mann-Whitney test (median and interquartile range). NG+VEH black circles (), 

HG+VEH white circles (), NG+VEGF-A black square (), HG+VEGF-A white square ().

Fig. 7: sNogo-B overexpression in the supernatant ameliorates impaired angiogenesis 
in HUVEC cultured with serum from patients with type-1 diabetes mellitus and DN. 
(a) HUVEC transfected with either ADV-control (cont) or ADV-sNogo-B (sNogo-B) were 

seeded onto Matrigel for tube formation assay. HUVEC were then incubated with media 

containing (4% vol/vol) sera obtained from blood of patients with type-1 diabetes mellitus 

susceptible (DN+) or protected (DN-) towards the progression of DN (a, n=16-18/group, in 

duplicate).  An impairment in tube length (b) and number (c) was observed in HUVEC cultured 

with DN+ serum (ADV-control, DN+ vs DN-, *p≤0.04) was prevented by sNogo-B 

overexpression (DN+, ADV-control vs ADV-sNogo-B, #p≤0.02). (d) sNogo-B levels in the 

supernatant of HUVECs transfected with ADV-control (cont) or ADV-sNogo-B (sNogo-B) 

vectors (ADV-control vs ADV-sNogo-B within DN- and DN+, ~p≤0.0001, n=16-17/group, in 

duplicate). (b, c) ANOVA with LSD post-hoc test (mean±SD); (d) Kruskal-Wallis and Mann-

Whitney test (median and interquartile range). ADV-control treated cells black circles (), 

ADV-sNogo-B treated cells white circles ().
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Supplemental Material 
 

Generation of adeno-associated viral (AAV) vectors 
The AAV-sNogo-B vector was generated by cloning the previously described (1) HindIII/XhoI 

200aa N-terminus Nogo-B (sNogo-B) sequence cDNA in frame with the signal secretory 

sequence of placental alkaline phosphatase (AP), His tag, and placental AP coding region 

(gift of W Sessa, Yale University, CT, USA) downstream of the CMV promoter in AAV/DJ 

containing a hybrid capsid derived from eight wild-type AAV serotypes (2).  

As control vector, we utilised an identical vector (AAV/DJ) driving (CMV promoter) the 

expression of green fluorescent protein (GFP). Viral particles were amplified commercially 

(Vectors Bioloab, Great Valley Parkway, Malvern, PA, USA). 

AAV-sNogo-B and AAV-GFP vectors were administered intravenously at a dose of 1x1011 GC 

(gene copies) per mouse of 20gr (2). 

 

Generation of adenoviral (ADV) vectors 
Adenovirus (ADV)-sNogo-B vector (generated with the AdEasy Adenoviral Vector Systems, 

Agilent, Oxford, UK) expressed the described 200aa N-terminus Nogo-B (sNogo-B) sequence 

cDNA in frame with the signal secretory sequence of placental alkaline phosphatase (AP), His 

tag, and placental AP coding region (1)(gift of W Sessa, Yale University, CT, USA) under 

regulation of the CMV promoter, and was propagated in HEK293 cells and purified as 

previously described (3). As control ADV vector, we utilised an identical construct lacking 

sNogo-B cDNA. In experiments confluent cells were transfected with 100 multiplicity of 

infection (MOI). 

 

Immunofluorescence 
GECs proliferation (4). Frozen mouse kidneys, acetone fixed, 4μm sections were incubated 

with Alexa Fluor 594 conjugated anti-CD31 antibody (1:50)(Biolegend, London, UK) and Alexa 

Fluor 488 conjugated anti-Ki67 antibody (1:100)(Biolegend, London, UK) in PBS 1%BSA 

overnight in a humidified chamber at 4°C. Omission of the antisera and incubation with PBS 

1%BSA served as a negative control. Sections were then washed in PBS and mounted with 

Vectashield antifade mounting medium with 4',6-diamidino-2-phenylindole (DAPI) (Vector 

Laboratories, Peterborough, UK). Glomerular Ki67/CD31 and CD31 positive ECs per 

glomerulus were visualised with Olympus BX51 fluorescent microscope. 

Endothelial glycocalyx determination. Frozen kidney 4μm sections were obtained from each 

animal and left to air-dry overnight at RT. Kidney sections were then fixed in acetone at -20°C 

for 10min and left to air-dry for 20min. Sections were incubated overnight at 4°C with 0.2μg/ml 
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FITC-conjugated lectin from Lycopersicon Esculentum Agglutinin (LEA)(Sigma)(1:2500) in 

PBS 1%BSA for glycocalyx staining and 1μg/ml mouse monoclonal CD31 antibody (Santa 

Cruz Biotechnology, Heidelberg, Germany)(1:1000) in PBS 1%BSA for ECs staining. 

Following this, sections were incubated for 1h with 1μg/ml (1:1000 dilution in PBS 1%BSA) 

Alexa Fluor 568-conjugated goat anti-mouse IgG (ThermoFisher Scientific, Oxford, UK). Slides 

were washed between steps with PBS and mounted with Vectashield antifade mounting 

medium with DAPI (Vector Laboratories, Peterborough, UK). 

Capillaries were then analysed by confocal microscopy (Eclipse Ti-E Inverted, Nikon, 

https://www.kcl.ac.uk/innovation/research/corefacilities/smallrf/nikon/index.aspx) with NIS-

Elements Viewer elements software. Multiple glomeruli in each kidney sample were captured 

at 40x magnification. 

To establish the glycocalyx thickness, images were analysed with ImageJ software (NIH-

Bethesda, MD, USA). Glomerular capillary loops were identified in each glomeruli and 

fluorescent intensity plots, for CD31 and intraluminal LEA, were processed from a line 

perpendicular to the capillary wall. The distance from the peak of CD31 signal to the half-

maximal intensity of the intraluminal LEA peak, representing the endothelial glycocalyx 

thickness, was expressed in µm as previously described (5; 6). 

 

Electron microscopy and glomerular ultrastructure analysis 
Mesangial volume fraction, as an index of glomerular extracellular matrix deposition, GBM 

thickening, were studied with electron microscopy stoichiometry techniques as described (7; 

8).  

Specifically, mesangial volume fraction was estimated using point counting. A grid of coarse 

and fine points (ratio 1:8) was overlaid on each image. The number of coarse points hitting the 

reference space (the glomerular tuft as defined by the minimal string polygon) and fine points 

on mesangium were counted. The volume fraction of mesangium was calculated as follows: 

Vv = Pmes/(Pglom * 8) where Pmes is the number of points on mesangium and Pglom is the 

number of points on the glomerular tuft. 

Glomerular basement membrane width was measured directly on images using the line tool. 

In order to select, without bias, the portion of GBM that was measured, a grid of lines was 

superimposed on each image. The GBM was measured wherever a grid line intersected with 

the endothelium, perpendicular to the endothelium. 

Podocyte number was estimated from electron micrographs by first estimating podocyte 

density (Nv) using the method of Weibel and Gomez (9) NV = K/b ÖNA
3/Vv, where NA is the 

profile density of the particles, Vv is the volume fraction of the particles, K is a size distribution 

coefficient and b is a shape constant.  For most biological applications the size distribution 
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coefficient, K, varies between 1 and 1.05 and can therefore be neglected. The shape constant 

used for podocyte nuclei is for an ellipsoid, 1.55. Podocyte density was multiplied by glomerular 

volume to give podocyte number N = NV * V.  

This method has been shown to be comparable to the disector/fractionator method (8), which 

is considered to be the gold-standard. 

Glomerular volume was calculated as described previously in rodents by glomerular diameter 

determination in paraformaldehyde fixed tissue (10). 

 

sNogo, VEGF-A, Angpt1/2 and VEGFR2Tyr1173 phosphorylation ELISA 
All ELISA experiments were conducted in duplicate on plasma, urine and cell culture media 

for sNogo-B. For cortex VEGF-A, Angpt1/2, and VEGFR2Tyr1173 phosphorylation, 50μg of total 

cortex cells lysate was assessed in duplicate for each animal. The ELISA kit utilised for 

VEGFR2 phosphorylation recognises the human VEGFR2Tyr1175 known to be identical to 

residue VEGFR2Tyr1173 in the mouse (11). 

 

Immunoblotting 
Cells or tissues (mouse renal cortex) were homogenised in RIPA lysis buffer (ThermoFisher 

scientific, Oxford, UK) containing proteases and phosphatases inhibitors, and lysates were 

separated by 10% SDS-PAGE. Immunoreactive bands were visualized with 

chemiluminescence and quantified using densitometry with a-tubulin or b-actin as house-

keeping proteins control as previously described (12). 

 

Culture and characterization of mouse lung endothelial cells 
Primary lung ECs were isolated from adult C57BL/6J mice and cultured as previously 

described (13; 14) after two cells’ sorting with CD31 antisera (monoclonal rat anti-Mouse 

CD31 antiserum, BD Pharmingen/Biosciences, Wokingham, UK) and sheep anti-rat IgG 

coated Dynabeads (M-450 Dynabeads, Dynal Biotech, ThermoFisher Scientific, Oxford, UK). 

Lung ECs were cultured up to three passages. Lung EC characterisation was conducted with 

immunofluorescence, in 4% paraformaldehyde fixed (10min) permeabilised (0.5% triton in 

PBS 10min) EC using anti eNOS rabbit polyclonal antiserum (Santa Cruz Biotechnology, 

Heidelberg, Germany) at 4°C for 12h followed by incubation with anti-rabbit Alexa 594 

secondary antibody respectively (ThermoFisher Scientific, Oxford, UK). Slides were washed 

between steps with PBS and mounted with Vectashield antifade mounting medium with DAPI 

(Vector Laboratories, Peterborough, UK). These cells were utilised as positive control for the 

expression of NgBR (15). 

Page 39 of 50

For Peer Review Only

Diabetes



 4 

Human GECs (gift from S Satchell, University of Bristol, UK) were cultured in EGM-2MV 

medium (Lonza, CC-3202) and differentiated as previously described (16). 

 

Immunoprecipitation (IP) and proximity ligation assay (PLA) experiments 
For IP experiments, whole protein cell lysates were obtained from human GECs 

overexpressing sNogo-B (6xHis-Tag/sNogo-B construct) and incubated with either rabbit 

polyclonal anti NgBR antisera (1μg)(Novus Biological, Oxford, UK), or anti 6xHis-Tag (1μg) 

mouse monoclonal antiserum (ThermoFisher Scientific, Oxford, UK), or vehicle IgG (1μg). 

Immunoprecipitates were then obtained by incubation with protein G-coated magnetic beads 

as per standard protocol (Universal Magnetic Co-IP Kit, Active Motive). Immunoblotting was 

then conducted with anti 6xHis-Tag and anti NgBR antisera. 

For the PLA experiments (Duolink Sigma, Gillingham, UK) we followed the manufacturer 

instructions. NgBR-sNogo-B interaction was studied with PLA probes (one PLUS and one 

MINUS) with hosts corresponding to each of the primary antibodies (anti-rabbit and anti-

mouse), and interaction visualised with immunofluorescence following manufacturer 

instructions (Duolink® In Situ Red Starter Kit Mouse/Rabbit). GECs were visualised with 

mouse monoclonal anti VE-cadherin antibody (Santa Cruz Biotechnology, Heidelberg, 

Germany) in PBS 1%BSA and secondary goat anti mouse Alexa 488 (ThermoFisher 

Scientific, Oxford, UK). Negative controls for the PLA consisted of omission of each of the two 

primary antibodies used (one negative control without anti N-terminus NgBR, and one without 

anti 6xHis-Tag, not shown). 

 

Nogo-B immunogold staining in glomeruli 
Nogo-B immunogold staining was conducted in mouse renal cortex tissue fixed in 2% 

paraformaldehyde.  Briefly ultrathin sections (70nm) were incubated overnight at 4°C with 

sheep polyclonal anti-Nogo-B (N-terminus) antibody (R&D System, Abingdon, UK) diluted 

1:200 in phosphate buffer saline (PBS), 0.5% bovine serum albumin (BSA), followed by gold-

conjugated goat anti-sheep IgG (1:20) in PBS 0.5%BSA for 1h at RT.  Grids that had not been 

incubated with primary antibody were used as negative controls.  Samples were examined with 

a Philips CM100 Transmission electron microscopy. 

 

Nogo-B immunohistochemistry  
Human tissue: Human archival formalin-fixed/paraffin embedded kidney biopsies, obtained 

from the National Clinical Research Centre of Kidney Disease and Guangdong Provincial 

Institute of Nephrology, Guangzhou-China between 2013 to 2015, were used for Nogo-B 

immunohistochemistry staining. The study was specifically approved by the Ethics Committee 
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of National Clinical Research Centre of Kidney Disease and Guangdong Provincial Institute 

of Nephrology in Guangzhou, China. 

The indications for performing the renal biopsy in patients with type 2 diabetes (T2DM) 

followed internal guidelines whereby renal biopsy was indicated in the presence of 

macroproteinuria with or without microscopic haematuria or rapid progressive decline in renal 

function. The indication for renal biopsy for patients with thin basement membrane 

nephropathy (TBMN) was microscopic haematuria. Histological diagnosis of diabetic 

nephropathy (DN) and TBMN had been undertaken by two independent renal pathologists, 

and no evidence of other renal diseases and no history of assumption of herbal medicines or 

other nephrotoxic agents was noted. Patients characteristic are described in Table 1. 
Two-µm thick paraffin sections were studied using the standard streptavidin-biotin complex 

method using a specific sheep polyclonal anti Nogo-B N-terminus antibody (1:50)(R&D 

System, Abingdon, UK) at 4°C for 12h followed by incubation with biotin-conjugated goat anti-

sheep secondary antibody (1:200, Dako; Ely, UK) for 30min at RT and peroxidase reaction 

with 3,3’-diaminobenzidine tetra-hydrochloride (Dako, Carpinteria, CA, USA). Nuclei were 

counterstained with haematoxylin and slides mounted in Permount mounting medium 

(eBioscience, San Diego, CA, USA). For visualization, another set of sections was 

counterstained with Periodic Acid-Schiff. Staining of cortical collecting duct served as internal 

positive controls for Nogo-B staining.  Omission of primary antibody served as a negative 

control (not shown). 

Nogo-B expression level was assessed semi quantitatively. Glomerular boundaries were 

defined by external perimeter of the capillary loops.  The proportional area occupied by 

immunoreactive Nogo-B was calculated using a computer assisted KS-300 image analysis 

system (Carl-Zeiss, Jena, Germany) connected to an BX51 microscope (Olympus, Tokyo, 

Japan) and a KY-F55B colour video camera (JVC, Tokyo, Japan).  Determinations were made 

at the same light microscope intensity. 

Mouse tissue: similar immunohistochemistry techniques were utilised for mouse kidney tissue. 

Omission of first antiserum served as negative control and slide were stained with 

haematoxylin as per standard protocol. 

 

Culture of Human umbilical vein endothelial cells (HUVEC) and tube formation assay 
HUVECs were cultured with EGM-MV medium (PromoCell, Heidelberg, Germany) and 

cultured up to third passage. After transfection (ADV-sNogo-B and ADV-control vector) cells 

were trypsinised from tissue culture flasks and then plated in 96 well plates (5000 cells/well) in 

EGM basal media containing patients’ sera (4% vol/vol)(see below) and tube formation 

performed on Matrigel (BD Biosciences, UK) previously described.  
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Patients sera was collected, after consent, from patients with type-1 diabetes (T1DM) with or 

without DN identified within the Department of Diabetes and Endocrinology at Guy’s and St 

Thomas NHS foundation Trust, London, UK.  T1DM was defined as onset before age 35, 

insulin therapy within 6 months of diagnosis and no breaks in insulin therapy for more than 6 

months (17).  DN was defined as albuminuria or history of clinical albuminuria (18) in at least 

two of three overnight urine collections, in the absence of other causes of renal damage or 

urinary tract infections, but in the presence of retinopathy. The patients with T1DM and 

minimal disease progression were defined as patients with ≥20 years of diabetes duration, 

normoalbuminuria, normal serum creatinine, and normal blood pressure (£130/80mmHg).  All 

diabetic patients had normal to mild impairment of renal function (eGFR, assessed with MDRD 

(19) formula, >60 ml/min/1.73m2) with (DN+) or without (DN-) presence or history of 

microalbuminuria (20).  Statin treatment was higher in the DN+ group; all recruited patients 

were non-smokers, and absence of history of acute ischemic events (e.g. myocardial 

infarction, stroke) was ensured in all patients (Table 2).  The study was approved by the 

national Health Research Authority. Blood was collected in the non-fasting state and serum 

was stored at -80°C. 
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Figures 

 

 
 
 
 
Fig. 1: Schematic representation of viral vectors transcription cassettes (not in scale). 
Schematic graphical representation of transcription cassette utilized in the AAV (a) and ADV 
(b) viral vectors. In (c) is presented the estimated molecular weight of the transgene (~80 
kDA) in total cell lysate obtained from HUVEC transfected with ADV-control or ADV-sNogo-B 
vector. 
  

AAV: Adeno associated vector.
ADV: Adenoviral vector.
CMV promoter: citomegalovirus promoter.
sec: secretory signal alkaline phosphatase.
AP: alkaline phosphatase (~1.6 Kb, ~60-65 
kDA), from pSEAP (Clontech).
6xHis: Histidine Tagx6 (~1 kDA).
Poly-A: polyadenylation signal.
Nogo-B N-term (1-200aa): predicted 15-20 
kDA.

sec 6xHis AP Nogo-B N-term (1-200aa) Poly-ACMV promoter

CMV promoter GFP Poly-A

(a) AAV vector expression cassette

sec Poly-ACMV promoter

(b) ADV vector expression cassette

6xHis AP

30 kDA

58 kDA

full length Nogo-B
(~49kDA)

6xHis-Tag/AP/sNogo-B
(~80 kDA)

Total cells lysate of HUVEC transfected
with either ADV-control or ADV-sNogo-B
vector (immunoblotting with anti N-
terminus Nogo-B antisera).

ADV- control
vector

ADV- sNogo-B
vector

sec 6xHis AP Nogo-B N-term (1-200aa) Poly-ACMV promoter

(c)
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Fig. 2: Representative EM scanning images from control and diabetic mice with or 
without sNogo-B overexpression in the circulation. 
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Fig. 3: sNogo-B interacts with NgBR in GECs in vitro. 
(a) sNogo-B/NgBR interaction was demonstrated with immunoprecipitation in 6xHis-

Tag/sNogo-B overexpressing human GECs. Western blot analysis for His-Tag (left blots) and 

NgBR (right blots) after NgBR and His-Tag immunoprecipitation from total GECs’ lysate. (Lane 

1. and 6. total GECs’ lysate, 4. and 10. no IP, 5. and 11. control IgG, lane 7 mouse lung ECs 

(positive control for NgBR expression).  (b) ECs’ sNogo-B/NgBR interaction was visualised 

(red/orange dots) with proximity ligation assay in non-permeabilized human GECs after 1 min 

incubation with “conditioned media” containing 6xHis-Tag/sNogo-B protein (~6000 pg/ml); no 

signal was observed in negative controls where the VE-cadherin positive staining (green) was 

visible. 
 
 
 
 
 
 

a

non permeabilized 
human GECs

non permeabilized 
human GECs, negative control

(VE-cadherin+)

human GECs

kDa 150 -
100 -
75 -

IP:     - His NgBR   - IgG
His-Tag Ab:    +      +      +       +       +

His-Tag
sNogo-B
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Fig. 4: Podocytes express NgBR in vitro 
  

25 kDa NgBR

1. , 2. - diffentiated human podocytes
3. - proliferating human podocytes

4. , 5. - kidney cortex total cells lysate (positive control)

1.     2.    3.             4.    5.
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Tables: 
 

 

 
Table 1: Patients with DN or TBMN clinical characteristics. 
Renal biopsies obtained from patients with T2DM and TBMN were studied. eGFR calculated 

with MDRD formula. Data are expressed as mean±SD, *median [interquartile range]. 
 
 
 
 
 
 
 
 
 
 

  

Controls 

(TBMN) Patients with diabetes 

Sex 1M  9F 8M  2F 

Age (years) 33 ± 5 48 ± 10 

Duration Diabetes (years)  5.8 ± 2.7 

HbA1c % (mmol/mol)  7.3 (56.0) ± 1.2 (13.6) 

BP systolic (mmHg) 121 ± 10 144 ± 20 

BP diastolic (mmHg) 74 ± 10 89.7 ± 10 

eGFR (ml/min/1.73 m2) 117 ± 8.7 107 ± 14 

Proteinuria (g/24h)* 0.13 [0.08-0.21] 2.17 [0.88-4.76] 

Retinopathy (%)  40 
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 T1DM / DN- T1DM / DN+ 

Sex 8M  9F 11M  7F 

Age (years) 46.8 ± 12.2 53.3 ± 10.8 

Duration Diabetes 
(years) 31 ± 11.4 30.4 ± 10.2 

HbA1c % (mmol/mol) 7.9 (62.7) ± 1.2 (13.0) 7.8 (61.8) ± 1.1 (12.6) 

BP systolic (mmHg) 130.2 ± 15.1 140.8 ± 13.1 

BP diastolic (mmHg) 76.6 ± 8.7 75.9 ± 6.8 

Cholesterol (mmol/L) 4.7 ± 0.8 4.05 ± 0.6 

eGFR (ml/min/1.73 m2) 101.7 ± 22.6 81.8 ± 32.2 

ACR (g/mol)* 0.8 [0.4-2.1] 1.15 [0.6-9.3] 

RAAS inhibition (%) 0 100 

Statin (%) 29 70 

Retinopathy (%) 100 100 

Smoking (%) 0 0 

sNogo-B (pg/ml)* 420.7 [270.6-883.2] 463.8 [293.5-658.9] 

 
Table 2: Patients with type-1 diabetes, with (DN+) or without (DN-) history of 
albuminuria, clinical characteristics. 
Patients with type-1 diabetes (T1DM) with (DN+) or without (DN-) history of albuminuria were 

enrolled in the study. eGFR calculated with MDRD formula. Data are expressed as mean ± 

SD, *median [interquartile range]. 
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