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RESEARCH Open Access

Neuronal methylome reveals CREB-
associated neuro-axonal impairment in
multiple sclerosis
Lara Kular1, Maria Needhamsen1, Milena Z. Adzemovic1, Tatiana Kramarova1, David Gomez-Cabrero2,3,4,
Ewoud Ewing1, Eliane Piket1, Jesper Tegnér2,5, Stephan Beck6, Fredrik Piehl1,7, Lou Brundin1,7 and Maja Jagodic1*

Abstract

Background: Due to limited access to brain tissue, the precise mechanisms underlying neuro-axonal dysfunction in
neurological disorders such as multiple sclerosis (MS) are largely unknown. In that context, profiling DNA
methylation, which is a stable and cell type-specific regulatory epigenetic mark of genome activity, offers a unique
opportunity to characterize the molecular mechanisms underpinning brain pathology in situ. We examined DNA
methylation patterns of neuronal nuclei isolated from post-mortem brain tissue to infer processes that occur in
neurons of MS patients.

Results: We isolated subcortical neuronal nuclei from post-mortem white matter tissue of MS patients and non-
neurological controls using flow cytometry. We examined bulk DNA methylation changes (total n = 29) and
further disentangled true DNA methylation (5mC) from neuron-specific DNA hydroxymethylation (5hmC) (n = 17),
using Illumina Infinium 450K arrays. We performed neuronal sub-type deconvolution using glutamate and GABA
methylation profiles to further reduce neuronal sample heterogeneity. In total, we identified 2811 and 1534
significant (genome-wide adjusted P value < 0.05) differentially methylated and hydroxymethylated positions
between MS patients and controls. We found striking hypo-5mC and hyper-5hmC changes occurring mainly
within gene bodies, which correlated with reduced transcriptional activity, assessed using published RNAseq data
from bulk brain tissue of MS patients and controls. Pathway analyses of the two cohorts implicated dysregulation
of genes involved in axonal guidance and synaptic plasticity, with meta-analysis confirming CREB signalling as the
most highly enriched pathway underlying these processes. We functionally investigated DNA methylation
changes of CREB signalling-related genes by immunohistofluoresence of phosphorylated CREB in neurons from
brain sections of a subcohort of MS patients and controls (n = 15). Notably, DNA methylation changes associated
with a reduction of CREB activity in white matter neurons of MS patients compared to controls.

Conclusions: Our data demonstrate that investigating 5mC and 5hmC modifications separately allows the discovery
of a substantial fraction of changes occurring in neurons, which can escape traditional bisulfite-based DNA methylation
analysis. Collectively, our findings indicate that neurons of MS patients acquire sustained hypo-5mC and hyper-5hmC,
which may impair CREB-mediated neuro-axonal integrity, in turn relating to clinical symptoms.

Keywords: Multiple sclerosis, Neurons, DNA methylation, DNA hydroxymethylation, Axonal guidance, Synaptic
plasticity, CREB, Neurodegeneration
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Background
Multiple sclerosis (MS), a leading cause of neurological
disability in young adults, is a chronic inflammatory and
neurodegenerative disease of the central nervous system
(CNS) characterized by autoimmune destruction of mye-
lin and subsequent neuronal death [1]. Although the
cause of MS remains largely unknown, accumulating
data support the notion of MS being a complex disease
influenced by genetic [2] (primarily affecting immune
genes) and environmental factors [3]. While major
advances have been made in understanding immune
dysfunction in early phases of MS, leading to increas-
ingly more effective disease modulatory treatments, the
pathological basis of late-stage brain pathology is still
largely unknown. The disease pathology is characterized
by episodic inflammatory demyelination and axonal in-
jury, which translates into clinical symptoms such as
sensory, motor, visual and coordination deficits, as well
as complex cognitive disturbances [4]. Apart from focal
lesions, neuroimaging [5] and histopathological investi-
gations have revealed association between seemingly
unaffected normal-appearing white matter (NAWM)
integrity and cognitive impairment [6–8]. Evidence sug-
gests that the degree of axonal degeneration rather than
demyelination in corticospinal tracts is the major deter-
minant of clinical motor disability [9]. Neuroradiological
measures, such as global and regional brain atrophy, are
also correlated to disability status, underscoring the
neurodegenerative aspect of MS [10, 11]. Altogether, the
MS paradigm proposes that exhaustion of neuro-axonal
reserve capacity and compensatory mechanisms caused
by energy failure, glutamate excitotoxicity and ionic im-
balance, among others, will ultimately result in perman-
ent neurological sequelae [12]. However, due to limited
accessibility of the CNS, mechanisms underpinning
neuronal dysfunction in MS patients remain largely
unresolved, further hindering clinical translation for the
care of progressive patients.
One way to tackle this challenge is to exploit the

remarkable properties of epigenetic modifications, such
as DNA methylation, which lies at the interface between
internal (genes) and external (microenvironment) cues.
DNA methylation is a stable epigenetic mark that can
impact gene regulation and/or reflect genome activity
and can be accurately quantified at a single-nucleotide
resolution in a genome-wide manner post-mortem. As
such, DNA methylation offers the unique possibility to
interrogate the genome activity underlying cellular dys-
function in conventionally inaccessible organs from aut-
opsy tissue. DNA methylation is acquired and
maintained by the action of DNA methyltransferases
(DNMTs) that catalyse the covalent addition of a methyl
group to cytosine (5mC). Inversely, active demethylation
is catalysed by the Ten-eleven translocation (TET) family

of enzymes. Importantly, the brain methylome is highly
complex due to tissue- and cell type-specific variation
between grey matter (GM) and white matter (WM),
functionally distinct regions of the brain [13, 14] and cell
types [15]. Moreover, the brain and more specifically
neurons are enriched in regulatory non-canonical DNA
modifications such as CpG hydroxymethylation (5hmC)
[15]. A growing body of evidence suggests that in
addition to its crucial role in brain development and
function [15], DNA methylation could be implicated in
MS brain pathology as well [16]. Nevertheless, the ma-
jority of studies of DNA methylation in healthy and dis-
eased brain have been performed on mixed cell
populations (bulk tissue) or on total DNA methylation
modifications (bulk DNA methylation reflecting 5mC +
5hmC), potentially hindering the capture of complex epi-
genome architecture in neurons in situ.
Despite clinico-pathological evidence of accumulating

neuro-axonal impairment occurring over the MS disease
course, the precise mechanisms underpinning neuronal
dysfunction in MS are still largely unknown. In the
present study, we explored the potential of DNA methy-
lation as a readout of neuronal genome activity in
post-mortem brain tissue of MS patients and non-neuro-
logical controls. Using a strategy combining isolation of
neuronal nuclei and array-based 5mC and 5hmC tech-
nology, we here present an analysis of neuronal methy-
lome in MS patients, followed by comparison of
observed changes with functional outcomes.

Results
Investigation of bulk DNA methylation changes in
neurons from MS patients
We first evaluated potential sources of heterogeneity in
brain tissue that could impact DNA methylation vari-
ability. To that end, we conducted genome-wide DNA
methylation analyses using Illumina Infinium 450K Hu-
man Methylation Beadchip arrays (450K) on bisulfite
(BS)-treated genomic DNA in NeuN+-sorted neuronal
nuclei (> 99% purity) as well as the corresponding
unsorted bulk tissue from the same fresh-frozen post-
mortem tissue blocks (Additional file 1: Figure S1). The
analysed tissue comprised various lesion phenotypes as
well as NAWM originating from the same individual
(Table 1, Additional file 2). We tested the effect of lesion
phenotype, degree of myelination (GM/WM) and cell
heterogeneity on DNA methylation values, estimated as
β-values for each CpG site. As expected, tissue compos-
ition (neurons vs. bulk) had the largest influence on
DNA methylation profiles (Additional file 1: Figure S1).
Analyses further suggested DNA methylation differences
between lesion phenotypes (Additional file 1: Figure S1).
To account for neuronal subtypes, we conducted cell
type deconvolution stratifying for glutamatergic (GLU)
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and GABAergic neurons based on previously reported
differentially methylated CpG sites between NeuN+/
SOX6− (GLU) and NeuN+/SOX6+ (GABA) neuronal nu-
clei [17] and found that neuronal subtype proportion in-
deed had an impact on DNA methylation profiles (see
the “Methods” section and Additional file 1: Figure S2).
We next aimed to investigate DNA methylation changes

underpinning neuronal vulnerability in MS. Considering
the extensive heterogeneity of GM methylome [14], likely
due to pervasive phenotypic diversity of GM excitatory
neurons [18], and the substantial evidence of WM abnor-
malities in MS [6–8], we focused on sorted neurons from
subcortical WM. We performed DNA methylation ana-
lysis on BS-treated DNA isolated from WM-neurons in a
first cohort of MS patients and non-neurological controls
(cohort 1, n = 12, Table 1, Additional file 2) using 450K.
After correction for confounders such as sex, age, lesion
phenotype, brain region (according to antero-posterior
axis) and GLU proportions (the most prominent neuronal
subtype within our samples), we detected 13 significant
differentially methylated positions (DMPs) between MS
and controls (adjusted P value < 0.05, Table 2). Gene
ontology (GO) analyses of genes associated with the
candidate DMPs (unadjusted P value < 0.001, Additional
file 3) suggested modest enrichment, which did not reach
significance after correction for multiple testing, of
nervous processes, intracellular signalling pathways and
immune/xenobiotic processes (Additional file 4). Notably,
some candidate DMP-associated genes map to previously

identified differentially methylated regions (e.g. CREB5,
DLL1, PRKG1, PRKCZ and DYRK1B loci) or dysregulated
genes (e.g. SLIT3, NOTCH2, HLA-DR/-DP, GSTT1 or
KCNQ1 genes) in bulk MS NAWM tissue compared to
control WM tissue [19] (Additional file 3).

Separation of true 5mC from 5hmC enables identification
of predominant gene body hypo-methylation in MS
neurons
In addition to the limited sample size and differences in
lesion phenotypes, we hypothesized that heterogeneity in
DNA modifications could be an additional contributory
factor for the lack of functionally significant changes in
the sample set. Indeed, 5hmC is a highly abundant stable
modification in the CNS, especially in actively tran-
scribed neuronal genes [20, 21], thus antagonizing 5mC
action. Given the inability of BS-based technology to
differentiate 5mC from 5hmC, it is highly plausible that
specific signals might be lost or misinterpreted depend-
ing on the overlapping pattern of 5mC and 5hmC. We
further tested this in an additional cohort, focusing on
low-grade inflammation WM samples to further
reduce heterogeneity.
To examine 5mC and 5hmC changes in MS neurons,

we performed traditional BS as well as oxidative BS
(oxBS) treatments in parallel, followed by 450K arrays in
an additional cohort of MS patients and non-neurological
controls (cohort 2, n = 17, Table 1, Additional file 2).
β-values generated by BS conversion represent the total

Table 1 Description of pilot samples and study cohorts

Pilot samples Cohort 1 Cohort 2 Cohort IF

Group Case Control Case Control Case Control Case Control

N individualsa 1 1 5 5 10 7 7 8

Sex ratio (F/M) 1:0 0:1 4:1 1:4 7:3 3:4 6:1 3:5

Age (mean ± SD) 42 92 45.4 ± 4.5 68.4 ± 21.6 60.3 ± 12.4 78.5 ± 7.9 63.6 ± 12.8 78.2 ± 5.1

PMI (mean ± SD) 11 13 17 ± 8.7 21 ± 7.4 17 ± 9.3 11 ± 11.4 15 ± 8.0 23 ± 3.7

N brain samples 4 1 7 5 10 7 7 8

Type lesion (N) AL (1) AL (2) – –

CAL (1) – – –

CL (1) CL (2) CL (2) –

NAWM (1) NAWM (3) NAWM (8) NAWM (7)

Sample type Bulk tissue and neurons Neurons Neurons Meurons

Location GM, WM, mixed WM WM WM and GM

Modification DNA methylation DNA methylation DNA methylation Protein phosphorylation

Analysis Bulk BS
(mixed 5mC/5hmC)

Bulk BS
(mixed 5mC/5hmC)

BS and oxBS
(5mC, 5hmC)

IF: P-CREB

aThree individuals (2 MS cases and 1 control) overlapped between cohort 1 and 2, although different brain samples were used, and, eight individuals (5 MS cases
and 3 controls) were used for both DNA methylation (cohort 2) and immunofluorescence (cohort IF) analyses, among which 4 brain specimens were identical. N
number, F/M female/male, PMI post-mortem interval, AL active lesion, CL chronic lesion, CAL chronic active lesion, NAWM normal-appearing white matter, GM grey
matter, WM white matter, BS bisulfite, oxBS oxidative bisulfite, 5mC methylation, 5hmC hydroxymethylation, P-CREB phosphorylated CREB, SD standard deviation,
IF immunofluorescence
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methylation signal (5mC + 5hmC), while β-values derived
from oxBS conversion reflect only 5mC levels (“true”
methylation). Unsupervised hierarchical clustering and
MDS showed a clear separation of BS and oxBS samples
(Additional file 1: Figure S3). As expected, the corre-
sponding density profiles showed a bimodal distribution
of BS and oxBS β-values, with oxBS peaking at lower
β-values (Fig. 1a). This indicates that 5hmC, which is
quantified by subtracting corresponding oxBS and BS
β-value (ΔβBS-oxBS), accounts for a substantial fraction of
the total methylation levels detected in BS samples, and is
prominent in sorted neuronal nuclei. In accordance with
previous reports [22], 5hmC β-values mostly ranged
between 0 and 0.5 and peaked at β-values ~ 0.25, while a
minor fraction of probes displayed slightly negative values
(Additional file 1: Figure S4). We therefore applied a strin-
gent stepwise probe-filtering strategy, described in detail
in the “Methods” section and summarized in Additional
file 1: Figure S5. We could confirm the reliability of our
strategy for estimating 5hmC in comparison with the
recently published method referred to as OxyBS, which
relies on maximum likelihood estimation (oxy-MLE) [23],
as 5hmC β-values generated by the two methods strongly
correlated (Additional file 1: Figure S6).
Of the 419,858 and 272,883 probes used for the subse-

quent 5mC and 5hmC analyses, respectively, we identi-
fied 2811 significant “true” DMPs and 1534 differentially
hydroxymethylated positions (DhMPs) between MS and
non-neurological controls after correction for con-
founders (adj. P value < 0.05, Fig. 1b, Additional file 5).
It is worth noting that 19 DMPs and 19 DhMPS were
classified as non-CpG methylation sites. However, the
majority of these, 12 and 16, respectively, were located

within non-annotated, intergenic regions, therefore not
pursued further. The top DMPs and DhMPs (adj. P
value < 0.01, |Δβ| > 0.05) are listed in Table 3. Interest-
ingly, we found a striking predominant
hypo-methylation (87%, 2442/2811) and hyper-hydroxy-
methylation (74%, 1137/1534) in MS patients compared
to controls, throughout the genome (Fig. 1c, Additional
file 5). Given the high correlation of DNA methylation
levels between contiguous CpGs forming co-methylated
regions, we sought to identify changes clustering at mul-
tiple neighbouring CpG sites, as differentially methylated
(DMRs) and hydroxymethylated (DhMRs) regions (Add-
itional file 6). We identified 472 DMRs (5mC-Δβ be-
tween − 0.27 and 0.13) and 309 DhMRs (5hmC-Δβ
between − 0.10 and 0.22), the large majority of them
(87% of DMRs and 88% of DhMRs) encompassing at
least one DMP or DhMP, respectively. Consistent with
single CpG analyses, most of the DMRs (88%, 416/472)
were hypomethylated, contrasting with the predominant
(78%, 243/309) hyper-hydroxymethylation of DhMRs
(Additional file 6). We could confirm changes at OBSCN
locus (chr1: 228503693–228503882) using a BS-free re-
striction enzyme-based method that distinguishes 5mC
from 5hmC (Additional file 1: Figure S7).
Analyses of BS signals generated 1434 differentially meth-

ylated DMPs (BS-DMPs, adjusted P value < 0.05) and 193
DMRs (BS-Δβ between − 0.23 and 0.21) (Additional files 5
and 6). Notably, only a very small fraction of BS-DMPs
overlapped with true DMPs (42/1434) and DhMPs (67/
1434) (Fig. 1b), implying that substantial differences
between MS patients and controls might be missed or
diluted using BS-methodology. Indeed, overlapping
DMPs-DhMPs displayed anti-correlated changes (Fig. 2a),

Table 2 BS-DMPs (adjusted P value < 0.05) associated with multiple sclerosis (cohort 1)

probeID Chr Pos mean_MS mean_ctr Δβ P value adj. P value Gene namea Featurea

cg25139877 1 247691111 0.90 0.88 0.02 1.02E−06 0.0391 LOC148824 Body

cg19274180 2 2726437 0.62 0.39 0.23 6.79E−08 0.0062 – –

cg03466083 5 139088813 0.51 0.42 0.08 5.85E−07 0.0273 – –

cg00211215 6 32552246 0.32 0.23 0.09 1.14E−08 0.0028 HLA-DRB1 Body

cg01414268 8 2480911 0.26 0.20 0.06 1.10E−06 0.0391 – –

cg10596483 8 143751796 0.35 0.47 − 0.12 7.26E−08 0.0062 JRK TSS1500

cg27224751 15 41096921 0.53 0.79 − 0.26 8.73E−08 0.0062 DNAJC17 Body

cg14789911 21 47582049 0.65 0.43 0.22 1.25E−06 0.0411 C21orf56 Body

cg03311906 22 20376405 0.77 0.57 0.20 5.23E−07 0.0273 – –

cg15242686 22 24348715 0.39 0.50 − 0.11 3.45E−07 0.0211 GSTTP1 TSS1500

cg04234412 22 24373322 0.49 0.32 0.17 1.31E−08 0.0028 LOC391322 Body

cg01238044 22 24384105 0.30 0.17 0.13 6.40E−07 0.0273 GSTT1 Body

cg17005068 22 24384525 0.51 0.34 0.18 3.95E−08 0.0056 GSTT1 TSS1500
aFrom UCSC annotations. Chr Chromosome, Pos position, MS multiple sclerosis, ctr non-neurological controls, Δβ delta β-value, adj. P val adjusted P value, TSS
transcription starting site
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resulting in unchanged BS-Δβ values for these sites (Fig.
2b, c). This strongly suggests that opposing 5mC and
5hmC levels cancel out differences in the conventional BS
signal, and that investigating 5mC and 5hmC alterations
separately allows the discovery of a substantial fraction of
changes occurring in neurons. Accordingly, we found a
strong positive correlation (P value < 2.2.10−16, r = 0.73)
between oxBS-Δβ (adjusted P value < 0.05) and BS-Δβ
(P value < 0.001) at overlapping sites, and, to a lesser
extent (P value < 2.2.10−16, r = 0.33) at all sites present
in the array (Additional file 1: Figure S8). Collectively,
these findings suggest that many BS changes with P

value < 0.001 are likely true and that the sensitivity for
detection of significant changes using BS data could
be significantly compromised by dilution with 5hmC
signals.
As previously mentioned, 5hmC has been shown to

display a unique genomic distribution compared to 5mC
and to exert antagonistic roles on regulation of tran-
scription [15]. We stratified 5mC and 5hmC changes
based on gene features annotated in 450K and found
overall hypo-methylation and hyper-hydroxymethylation
in MS patients compared to controls across all gene fea-
tures (Fig. 2d). The largest 5mC and 5hmC changes

a

c

b

Fig. 1 Predominant DNA hypo-methylation and hyper-hydroxymethylation in neurons from multiple sclerosis patients. a Density plots of oxBS
(purple) and BS (green) β-values after subset-quantile within array normalization (SWAN)-based type I/II normalization used for downstream
analysis. Venn diagram (b) and Circos plot (c) illustrating number of significant sites and differences (Δβ) in true DNA methylation (5mC, purple),
hydroxymethylation (5hmC, orange) and bulk methylation (BS, green) between patients (n = 10) and non-neurological controls (n = 7) (adjusted P
value < 0.05). Red and blue circular ideograms represent hyper- and hypo-methylated sites, respectively. The outer track is an hg19 ideogram
illustrating chromosome and cytoband information
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occurred within the gene body and 3′UTR, with a
smaller contribution from regions harbouring promoter-
like features (TSS1500, TSS200, 5′UTRs and 1st exon)
(Fig. 2d). Fisher’s exact test revealed that 5mC-DMPs are
strongly enriched (P value = 1.16 × 10−39) within gene bod-
ies while depleted (P value = 4.24 × 10−23 for TSS1500)
from segments with promoter-like features (Fig. 2d,
Additional file 1: Figure S9). Finally, analysis in relation to
CpG islands (CGIs) indicated that CGIs displayed the low-
est 5mC, 5hmC β-values and |Δβ|-values compared to

shores and shelves (Fig. 2e). We found enrichment of
5hmC-DhMPs in CGIs (P value = 1.85 × 10−07), which are
depleted (P value = 3.27 × 10−09) of 5mC-DMPs (Fig. 2e,
Additional file 1: Figure S9). Of note, the backgrounds
used for 5mC and 5hmC analyses are noticeably
different.
Thus, all explored gene features generally showed evi-

dence of negatively correlated changes in 5mC and
5hmC, with DMPs and DhMPs predominantly enriched
in gene bodies and CpG islands, respectively.

Table 3 Top 5mC-DMPs, 5hmC-DhMPs and BS-DMPs (adjusted P value < 0.05) associated with multiple sclerosis (cohort 2).

probeID Ch Pos mean_MS mean_ctr Δβ P value adj. P value Gene namea Featurea Overlap DMP Overlap DMR

5mC-DMP

cg06077821 5 180048893 0.50 0.58 − 0.08 7.8E−08 6.6E−03 FLT4 Body 5hmC 5mC, 5hmC

cg04313978 7 158271081 0.60 0.72 − 0.13 6.4E−08 6.6E−03 PTPRN2 Body 5hmC 5mC, 5hmC

cg24172278 7 1526831 0.67 0.75 − 0.08 1.5E−07 8.4E−03 INTS1 Body – 5mC

cg09226185 7 157342801 0.73 0.81 − 0.08 4.1E−07 9.8E−03 PTPRN2 Body 5hmC 5mC, 5hmC

cg10738865 11 2356706 0.64 0.75 − 0.11 7.2E−10 3.0E−04 – – 5hmC 5mC, 5hmC

cg12910900 12 13155162 0.62 0.70 − 0.08 2.3E−07 8.9E−03 HTR7P Body 5hmC 5mC, 5hmC

cg06703573 16 1364331 0.48 0.58 − 0.10 2.6E−08 5.4E−03 UBE2I Body 5hmC 5mC, 5hmC

cg20942310 17 73728061 0.69 0.78 − 0.08 1.6E−07 8.4E−03 ITGB4 Body 5hmC 5mC, 5hmC

cg15659599 19 55098842 0.36 0.43 − 0.07 4.5E−07 9.8E−03 LILRA2 3′UTR 5hmC –

cg25934700 22 50644755 0.52 0.66 − 0.14 2.1E−07 8.7E−03 SELO Body 5hmC 5mC, 5hmC

5hmC-DhMP

cg18213443 1 4221388 0.21 0.10 0.11 4.7E−07 5.5E−03 – – 5mC 5hmC

cg27331828 1 196619631 0.27 0.08 0.19 2.9E−07 4.6E−03 CFH TSS1500 – 5hmC

cg04639610 2 74942001 0.18 0.03 0.15 1.4E−07 4.6E−03 – – – 5hmC

cg23376467 5 121464241 0.16 0.05 0.11 2.8E−07 4.6E−03 ZNF474 TSS1500 – –

cg06996555 7 151542415 0.25 0.12 0.13 1.0E−06 8.3E−03 PRKAG2 Body 5mC 5hmC

cg10738865 11 2356706 0.26 0.15 0.12 1.4E−08 1.5E−03 – – 5mC 5mC, 5hmC

cg15426626 12 132984261 0.21 0.10 0.11 1.7E−07 4.6E−03 – – 5mC 5hmC

cg01863290 14 96730669 0.25 0.11 0.13 5.0E−07 5.5E−03 BDKRB1 Body 5mC 5hmC

cg25594736 15 67391147 0.19 0.09 0.10 9.1E−07 8.3E−03 SMAD3 Body – –

cg06703573 16 1364331 0.38 0.28 0.11 1.9E−07 4.6E−03 UBE2I Body 5mC 5mC, 5hmC

BS-DMP

cg18327319 1 11795409 0.82 0.66 0.17 1.6E−05 2.8E−02 AGTRAP TSS1500 5hmC –

cg16732616 1 50886782 0.09 0.21 − 0.12 4.3E−06 2.2E−02 DMRTA2 Body 5hmC 5hmC, BS

cg11750112 1 64938742 0.73 0.83 − 0.10 1.4E−05 2.7E−02 CACHD1 Body – –

cg18864124 2 227288863 0.71 0.56 0.14 8.9E−06 2.6E−02 – – 5hmC 5hmC

cg02379784 5 471326 0.62 0.74 − 0.11 1.0E−05 2.6E−02 LOC25845 Body – 5hmC, BS

cg08376583 6 32222492 0.33 0.54 − 0.21 8.6E−06 2.6E−02 – – – –

cg25670061 6 163612896 0.77 0.66 0.10 7.2E−06 2.6E−02 PACRG Body – –

cg00459997 12 130621721 0.75 0.63 0.12 2.8E−06 2.2E−02 – – 5mC –

cg20165520 13 113637829 0.69 0.57 0.12 1.5E−05 2.7E−02 MCF2L Body – BS

cg05491587 18 77659695 0.59 0.69 − 0.10 6.6E−06 2.5E−02 KCNG2 Body – BS
aFrom UCSC annotations. DMP differentially methylated position, DMR differentially methylated region, 5mC oxBS-generated “true” methylation, 5hmC
hydroxymethylation, BS bisulfite-generated, Ch Chromosome, Pos position, MS Multiple Sclerosis, ctr non-neurological controls, Δβ delta β-value, adj. P value
adjusted P-value, TSS transcription starting site
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5mC and 5hmC changes of MS neurons associate with
genes involved in CREB signalling pathway, synaptic
plasticity and axonal guidance
To gain insight into biological functions associated with
changes in 5mC and 5hmC, we performed ingenuity
pathway analysis (IPA) on 2448 genes associated to all
significant sites, i.e. 2811 DMPs + 1534 DhMPs (adj. P
value < 0.05). Top enriched pathways associated to D(h)
MPs remained when relaxing the significance of CpG
sites (unadjusted P value < 0.001), and reflected changes
in both 5mC and 5hmC (Fig. 3a, b Additional file 4).
The most significant canonical pathways were related to
nervous system processes, particularly axonal guidance
(Fig. 3c), cAMP response element-binding (CREB)
signalling and synaptic plasticity, to other intracellular
signalling pathways such as actin cytoskeleton signalling
and to oxidative stress/inflammation processes (Fig.
3a, b, Additional file 4). IPA analysis of BS-DMPs
showed modest enrichment for intracellular signalling
pathways such as xenobiotic metabolism and integrin
signalling (Additional file 4). GO findings were con-
firmed when focusing at region levels where DMRs +
DhMRs were enriched in genes implicated in regulation
of neuron projections (e.g. PLXN4A, NTN1/5, RHOT1/2,
CYFIP1, DOCK1, KIF1A, PACSIN1, RIN1 genes), neur-
onal development (e.g. CFL1, ISL1, ADAP1, DIABLO,
PTK2B, MYBL2 and TP73), as well as ion channels (e.g.
KCNQ1, KCNAB2), and GABA/glutamate activity (e.g.
GABBR1, GRIN2D, LRP1, ABAT) (Additional file 4). Ex-
amples of dendritic and axonal (TBCD, APC2), synaptic
(ADORA2, ELFN1, SLC8A2, CACN1H) and neurogenic
(DMRTA2, LOXHD1) DMR-associated genes are illus-
trated in Fig. 3d and e. Findings were further supported by
GO analysis of the predicted target genes from differen-
tially methylated miRNAs identified in cohort 2 (exempli-
fied in Fig. 3d, Additional file 4), axonal guidance being
the most enriched pathway (Additional file 4).
Considering the limited sample size, we aimed to

validate pathways and functions by performing a meta-ana-
lysis of the BS data generated for both cohorts. We took
advantage of the strong correlation identified between true
5mC and BS-generated DNA methylation changes (Add-
itional file 1: Figure S8). A total of 265,129 common
BS-derived probes considered homogeneous between the

two studies (I2 < 15%, Additional file 1: Figure S10) were
examined. Meta-analysis identified 8281 positions (Benja-
mini-Hochberg adjusted P value < 0.05, Fig. 4a, Additional
file 7), the large majority (97%) exhibiting same direction
of changes in both cohorts (Fig. 4b, Additional file 1: Figure
S10). Pathway investigation of the genes associated with
DMPs confirmed strong enrichment of CREB signalling in
neurons and associated pathways, followed by other ner-
vous system processes (e.g. axonal guidance), intracellular
signalling pathways and inflammatory/oxidative processes
(Fig. 4c, Additional file 4). Accordingly, altered genes are
predominantly involved in CREB signalling (Fig. 4d) and
comprise several subunits of the ionotropic NMDA
(GRIN1, GRIN2A-C genes), AMPA (GRIA4), delta (GRID2)
and kainate (GRIK3-4 genes) and metabotropic (e.g.
GRIM1, GRM3-4) glutamate receptors as well GABA re-
ceptors (e.g. GABBR1, GABRA1, GABRB3, GABRG2).
Downstream pathways involve multiple signalling mole-
cules such as PKA and PKC genes, downstream
cAMP-dependent kinases (CAMK2/4 genes) and
transcriptional regulators (CREBBP, CREB5, EP300),
among others. Axonal guidance genes are associated with
ephrin/Eph receptors (e.g. EFN3-5, EPHA1, EPHA2,
EPHA4, EPHB1, EPHB6) and semaphorin/plexin (e.g.
SEMA4A, SEMA6A-C, PLXNA2, PLXND1) with Slit/
ROBO (SLIT1/3, ROBO1/2) complexes together with
actin-cytoskeleton molecules as well as trophic factors
(BDNF, NGF) and downstream TGF-β, Shh and Wnt sig-
nalling pathways (e.g. BMP4, WNT5A, GLI2). Finally,
inflammatory processes include cytokine signalling (e.g.
TNF, IL1RAP, IRAK3, TRAF6, MAP2K4, MAP3K1,
MAPK11), oxidative pathways (e.g. NOS3, SOD3,
NOSTRIN, HSPA1A/B, HSP90B1) and xenobiotic metabol-
ism such as the aryl hydrocarbon receptor (AHR, AHRR),
glutathione- and cytochrome P450-mediated detoxification
enzymes (e.g. GSTM1/3/5) (Additional file 4).
We then investigated the putative functional impact of

DNA methylation changes by examining corresponding
differentially expressed (DE) genes reported in RNAseq
data from bulk MS-NAWM compared to control WM
[19]. Of 4669 genes associated with 8281 DMPs from
the meta-analysis, 84.4% were detected in the RNAseq
analysis, among which 13% (510) were differentially
expressed (unadjusted P value < 0.05). Of those, 61%

(See figure on previous page.)
Fig. 2 True 5mC and 5hmC changes are anti-correlated and enriched in gene bodies. a Spearman’s rank correlation of Δβ-5mC (oxBS) and Δβ-
5hmC at 425 overlapping DMPs/DhMPs (adjusted P value < 0.05). Regression line, P value (p) and Spearman’s rank correlation coefficient (r) are
given. Scatterplots (b) and boxplots (c) of 5mC (purple), BS (green) and 5hmC (orange) Δβ-values at 425 overlapping DMPs/DhMPs (adjusted P
value < 0.05). Boxplots of β-values (left panel), distribution (in comparison to background, bkg) (top right panel) and Δβ-values between multiple
sclerosis cases (MS, n = 10) and non-neurological controls (Ctr, n = 7) (bottom right panel) for BS-DMPs, 5mC-DMPs and 5hmC-DhMPs (adjusted P
value < 0.05) across d classical gene features (shades of blue) including promoter-like features (TSS1500, TSS200, 1stExon, 5′UTR), gene body and
3′UTR and e CGI-related features (shades of red) including CpG islands, shores, shelves and open sea. In all boxplots, the black line represents the
median, the interquartile range is comprised by a box and whiskers are extended to maximum and minimum Δβ values. *p < 0.05, **p < 0.01 and
***p < 0.001 using Fisher’s exact test for enrichment and depletion analyses (full data are shown in Additional file 1: Figure S9)
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(312/510) were significantly downregulated in bulk MS
NAWM compared to control WM [19] (Additional file
8). Interestingly, genes harbouring methylation changes
within gene body showed the largest proportion of
downregulated genes (72%), which is significantly more
than expected by chance (p = 4.5 × 10−13, Chi-square
test), as opposed to changes within region of promoter-
like features (54%) (Additional file 8). A predominant
downregulation was also evident for true 5mC and
5hmC (cohort 2) (Fig. 4e,f ), with for example 76% (129/
170) of genes affected by gene body 5mC-DMPs dis-
playing a significant decreased expression in bulk
NAWM compared to WM (p = 6.0 × 10−08, Chi-square
test, Additional file 8). This suggests that gene body
hypo-methylation is likely associated with decreased
transcriptional activity, as previously suggested [24, 25].
Altogether, these data strongly suggest that WM-neu-

rons from MS patients manifest 5mC and 5hmC
differences that might impair neuronal homeostatic
functions, possibly through transcriptional regulation of
associated genes. Most of the changes converge on alter-
ation of CREB signalling pathway, synaptic plasticity and
axonal guidance.

DNA methylation changes associate with reduced CREB
activity in NAWM neurons
DNA methylation analysis identified alteration of mul-
tiple genes involved in CREB response in MS neurons,
some of which were dysregulated in transcriptome or
methylome studies of heterogeneous MS brain tissue
[19] (Additional file 7). We then asked whether DNA
methylation changes in CREB-related genes could asso-
ciate with alteration of CREB activation in neurons from
MS patients. We addressed this by examining the activa-
tion status of CREB transcription factor using immuno-
fluorescence (IF), reflected by nuclear phosphorylated
CREB (P-CREB+) in MS and non-neurological controls
(n = 15, a cohort overlapping cohort 2, Table 1,
Additional file 2). Group-representative images are

shown in Fig. 5a. Analysis revealed a significantly lower
number of neurons with nuclear phosphorylated CREB
(P-CREB+) in the NAWM of MS patients (18.3 ± 11.0%)
compared to controls (72.5 ± 23.9%) (p = 3.4 × 10−02,
Kruskal-Wallis with Dunn’s multiple comparisons test,
Fig. 5b). In contrast, no significant change in the activa-
tion status of CREB could be detected in normal-appear-
ing GM from MS patients compared to control GM
(Fig. 5b), implying that NAWM neurons of the MS brain
seem to be more susceptible to dysfunction of the CREB
signalling pathway than the GM ones.

Discussion
We here utilized DNA modifications to investigate pro-
cesses that occur in neurons from MS patients. To our
knowledge, this is the first report of 5mC and 5hmC
abnormalities in neurons, especially WM-neurons, in
the context of neurological disease. We found striking
hypo-methylation and hyper-hydroxymethylation at spe-
cific CpGs, some of which clustered into regions and
occurring mainly within gene bodies. Our findings impli-
cate alterations of genes involved in axonal guidance,
synaptic plasticity and CREB signalling, as putative key
processes that could contribute to impaired neuro-
axonal integrity and inability to repair after immune
insult, and perhaps also be more prone to degenerate.
Importantly, we could associate DNA methylation
changes with functional outcomes by reporting for the
first time a reduction of CREB activity in NAWM
neurons compared to control WM neurons.
Our data show opposing hypo-5mC and hyper-5hmC

changes, which seem to co-localize mostly within gene
bodies. Additionally, we observed that a large majority
of genes acquiring gene body hypo-5mC/hyper-5hmC
was significantly downregulated in bulk MS-NAWM vs.
control WM [19], linking these DNA modifications with
transcriptional activity. Several studies have shown that
hypo-5mC in post-mitotic neurons associates with
impaired survival and excitability [26–28]. Likewise,

(See figure on previous page.)
Fig. 3 Functional association of 5mC and 5hmC changes to axonal guidance, CREB signalling and synaptic plasticity. a Top canonical pathways
associated with “true” methylation (5mC) and hydroxymethylation (5hmC) between multiple sclerosis cases (MS, n = 10) and non-neurological
controls (Ctr, n = 7) using Ingenuity Pathway Analysis (IPA). Results for all adjusted P value < 0.05 5mC-DMPs +5hmC-DhMPs (black) as well as
5mC-DMPs (purple) and 5hmC-DhMPs (orange) separately. Significance is represented as − log10(B-H, P value) after adjustment using Benjamini-
Hochberg (B-H) correction. b Multidimensional scaling of over-represented biological function terms associated with 5mC-DMPs (purple) and
5hmC-DhMPs (orange) (adjusted P value < 0.05), separately, between MS cases (n = 10) and Ctr (n = 7), according to semantic similarities, using
REVIGO. The circle size represents − log10(B-H, P value) after adjustment using Benjamini-Hochberg (B-H) correction. c Representation of the genes
from axonal guidance network using STRING analysis. Grey gradient indicates the strength of data support (darker grey representing stronger
evidence) and colours represent different cluster (kmeans clustering set at 5). d Plots illustrating genes associated with top 5mC-DMR and 5hmC-
DhMR (left and middle panel) or with BS-DMRs and 5hmC-DhMRs (right panel) (|Δβ| > 0.05). e Plots illustrating genes associated with top 5mC-
DMR, 5hmC-DhMR or BS-DMRs (Δβ > 0.05). The hg19 ideogram illustrating chromosome and cytoband information, the complete gene structure
of the locus (blue track), CpG Island (CGI) feature (green track), probes and DMR (black) location are shown. Methylation (β-values) of single CpGs
within and outside the DMR for individual cases and controls is depicted in red and blue, respectively, with connecting lines indicating mean
methylation for each consecutive CpG
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hyper-5hmC can lead to neuronal hypersensitivity [29]
and defects in neurite outgrowth and synaptic forma-
tion[30]. Moreover, a growing body of evidence suggests
that global hypo-5mC and hyper-5hmC changes result
in subsequent TET-mediated activation of specific
endogenous retroviral (ERV) elements [31, 32], that can
ultimately result in severe postnatal neurodegeneration
in rodents [31]. Importantly, strong transcriptional activ-
ity of human endogenous retroviruses, including in CNS
cells, has been detected in MS patients [33]. Thus,
altered 5mC and 5hmC patterns might contribute to
neuronal vulnerability by impairing chromatin regulatory
architecture in MS neurons, leading to dysregulation of
neuron-specific genes and enhanced genome instability.
Whereas specific mechanisms affecting levels of 5mC

and 5hmC in MS neurons remain to be explored, several
processes such as oxidative stress, inflammation or hyp-
oxia together with putative upstream regulators identi-
fied in our study (e.g. TGF-β1, POU5F1, CREB1,
Additional file 4), may impact locus-specific 5mC and
5hmC profiles. Moreover, an emerging body of evidence
suggests a putative role of dysregulated epigenetic
enzymes such as DNMT, TET and MBD genes in MS, as
observed in blood cells [34] and brain [35] from MS pa-
tients compared to controls. This is further supported
by a recent study showing reduced methionine levels in
plasma of MS patients and the regulatory effect of per-
ipheral methionine on DNMT3A in the mouse brain
[36]. Consistent with this, we found that several key
DNA methylation enzymes, namely DNMT1, DNMT3A,
DNMT3B or MBD3, among others, displayed significant
5mC and/or 5hmC (cohort 2) and BS (meta-analysis)
DNA methylation changes in MS neurons compared to
controls. Finally, since DNA methylation levels can be
affected by variations in DNA sequence, it may be spec-
ulated whether MS risk alleles such as that on chromo-
some 4 encompassing the TET2 gene [37], might
contribute to the observed changes in 5mC and 5hmC
levels. In line with this, TET2 promoter exhibited re-
duced 5mC levels in MS neurons (cohort 2). Thus, the

combined influence of neuroinflammatory processes oc-
curring as a result of MS as well as putative upstream
MS disease risk factors may dually impact on 5mC and
5hmC profiles in MS neurons.
While axonal injury is believed to be a major contribu-

tor to disability such as cognitive decline in late MS [6–8],
comprehensive characterization of the underlying mecha-
nisms is still lacking. Moreover, accumulating evidence
points to a role of glutamate excitotoxicity [38, 39] and
synaptopathy [40, 41] in neuro-axonal dysfunction and
degeneration in MS. Importantly, glutamate levels mea-
sured in NAWM of MS patients are predictive of
neuro-axonal integrity, brain atrophy and cognitive im-
pairment [42, 43]. In our study, neurons from MS patients
displayed epigenetic alterations affecting several genes of
the glutamate/GABA signalling, including multiple sub-
units of glutamate and GABA receptors. Additionally, our
data suggest that compromised axonal architecture likely
results from changes in interconnected cellular networks
ranging from surface complexes (semaphorin/plexin,
Ephrin, Slit/ROBO) to genes from the cytoskeleton and
Shh/Wnt-signalling pathways. Comparison of samples
from the same individual containing different lesion
phenotypes (pilot samples, Additional file 1: Figure S1)
suggests lesion-associated changes in genes implicated in
neuronal projections (e.g. EPHA10, NIN, ALCAM) and
synaptic processes (e.g. GABRA5, PRKG1, DLGAP3/
SAPAP3) as well. Thus, neurons of MS patients exhibit
epigenetic alterations that likely reflect neuro-axonal dam-
age and/or failure in compensatory mechanisms.
Interestingly, DNA methylation changes converged on

genes in the CREB signalling pathway, namely PKA,
PKCs, CAMKs kinases and CREB genes. Transcription
factors of the CREB family play pivotal roles in axonal
regeneration, plasticity, cell survival, oxidative stress and
neuroprotection [44, 45]. Prior studies have reported
dysregulated CREB signalling in lesions from bulk/mixed
MS brain tissue [40, 46]. Importantly, we could associate
DNA methylation differences with reduction of CREB
phosphorylation in NAWM neurons from MS patients

(See figure on previous page.)
Fig. 4 Meta-analysis of cohorts and comparison of DNA methylation with transcriptional changes. a Volcano plot illustrating differences in M-
values between multiple sclerosis (MS) cases and non-neurological controls (adjusted P value < 0.05) from meta-analysis of cohorts 1 and 2. b
Correlation between effect sizes (ΔM) of cohorts 1 and 2 for DMPs identified in meta-analysis (adjusted P value < 0.05) revealed predominant
same direction of changes in the two cohorts. Regression line, P value (p) and Spearman’s rank correlation coefficient (r) are given. c Top
canonical pathways of DMPs (adjusted P value < 0.05) identified in meta-analysis. Significance is represented as − log10(B-H, p value) with the red
line showing threshold of significance after adjustment using Benjamini-Hochberg (B-H) correction. d Schematic representation of CREB-signalling
pathway associated with DMPs from meta-analysis, with differentially methylated genes between cases and controls depicted in blue. e
Association of 5mC-DMPs (left) and 5hmC-DhMPs (right) with gene expression data (RNA-seq) in bulk NAWM vs control WM [19]. Proportions
(percentage) of number of upregulated and downregulated genes are depicted in red and blue, respectively (the dotted line represents the
expected proportion). P values (p) generated with the Chi-square test are given for DMPs located in gene body or promoter-associated features
(TSS1500, TSS200, 5′UTR and 1stExon) (full data in Additional file 8). f Scatter plots illustrating association between 5mC-DMPs (purple, left) and
5hmC-DhMPs (orange, right) methylation changes (Δβ-value) from cohort 2 (adjusted P value < 0.05) with gene expression data (RNA-seq) in bulk
NAWM vs control WM [19]. The number of samples used in cohorts 1 and 2 equals to n = 12 and n = 17, respectively
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compared to controls, which is to our knowledge the
first report of altered CREB activity in NAWM in MS.
Undeniably, one cannot exclude additional mechanisms
affecting CREB activity independently of DNA methyla-
tion changes. Nevertheless, this is highly relevant consid-
ering the CREB-mediated neuroprotective effect exerted
by the MS drug fingolimod (Gilenya™; Novartis, Basel,
Switzerland) in vitro and in vivo in a model of neurode-
generative motor disease [47]. Interestingly, CREB

activation differed between WM and GM neurons, likely
reflecting differences in neuronal subtypes and/or
distinct susceptibility towards demyelination pathology
[48], such as hypoxia-like metabolic injury [49].
Altogether, these findings strongly suggest that epigen-
etic and functional alteration of CREB signalling can
occur without or prior to focal tissue damage.
Undoubtedly, epigenetic marks are critical features of

cellular differentiation and phenotype but multiple

a

b

Fig. 5 Reduction of CREB activity in normal-appearing white matter neurons. a Representative images of multiple sclerosis (MS) and non-
neurological control (Ctr) brain tissue sections co-targeted with phosphorylated CREB (P-CREB, green, left panel) and neuronal marker NeuN (red,
middle panel); merged with DAPI (blue, right panel) assessed by immunofluorescence (IF) (magnification 630x, scale bar 15 μm). b Quantification
of IF images from MS cases (n = 7) and Ctr (n = 8). The amount of NeuN+/CREB (phospho S133)+-neurons is presented as a percentage of the
total amount of all detectable NeuN+ cells. In contrast to NAWM, CREB activation status in the NAGM neurons was less affected and comparable
between the groups. *p < 0.05, *p < 0.01 using Kruskal-Wallis test and Dunn’s test for multiple comparisons. NAWM, normal-appearing white
matter, NAGM, normal-appearing grey matter, WM, White matter, GM, Grey Matter
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confounders could bias proper interpretation of DNA
methylation data. Therefore, we aimed to minimize
tissue- and DNA modification-driven sources of hetero-
geneity by studying neuronal nuclei isolated from WM,
correcting for neuronal subtype proportions and separat-
ing true 5mC from 5hmC. To our knowledge, this
strategy has not been previously reported in a neuro-
pathological context. Our results suggest that BS-based
DNA methylation studies might preferentially capture
strong difference in one epigenetic mark and that exam-
ining 5mC and 5hmC separately could greatly aid in
detecting novel changes that might have escaped detec-
tion by conventional BS-based DNA methylation studies.
Nevertheless, in our study, BS-DMP changes appear
strongly correlated with 5mC differences. Moreover,
some of our findings could replicate previously reported
DNA methylation results and could further associate
with differential gene expression in bulk NAWM
compared to control WM [19]. The aberrations in
WM-neurons of MS patients identified here are interest-
ing in light of neuronal circuit disconnection [50] and
subsequent disability in progressive MS. Additional cell
type-specific studies in larger cohorts can shed further
light on mechanisms underlying neuronal dysfunction and
associated disability. In the long term, a better under-
standing of functional implications of epigenetic changes
in CNS cells in MS may lead to novel therapeutic strat-
egies aiming at restoring neuronal integrity and ameliorat-
ing cognitive deficit in progressive MS [51, 52].

Conclusions
Our study demonstrates functionally relevant DNA
methylation alterations in WM-neurons from MS
patients in comparison to non-neurological controls,
thereby providing new insights into mechanisms under-
lying neuro-axonal pathology of the WM and clinical
symptoms in MS patients. Furthermore, our findings
open new perspectives for similar approaches based on
deciphering true 5mC and 5hmC changes in neurons
specifically in other neurological disorders.

Methods
Subjects and cohorts
Brain tissues of all the cohorts was obtained from the
Multiple Sclerosis and Parkinson’s Tissue Bank (Imperial
College London). Briefly, the pilot samples were used to
assess the impact of sample heterogeneity on DNA
methylation profiles, cohorts 1 and 2 were used to ana-
lyse neuron-specific DNA methylation changes between
MS cases and controls and cohort-IF overlapping with
cohort 2 was utilized for functional validation of CREB
activity in brain sections. Further sample details are
given in Additional file 2. The material comprises
snap-frozen brain tissue blocks collected within 33 h

post-mortem and divided by specialist into histopatho-
logically characterized lesion categories: active lesion
(AL), chronic active lesion (CAL), chronic inactive lesion
(CL) and normal-appearing white matter (NAWM).
Control subjects were selected based on a non-neuro-
logical cause of death. The samples were further anno-
tated for cerebral location (antero-posterior axis),
characteristic of the tissue (mixed, white or grey matter)
using the human brain atlas sectional anatomy database
(http://www.thehumanbrain.info/) and were further
dissected accordingly. The anatomical localization of the
samples across brain regions is illustrated in Additional
file 1: Figure S11. Of note, different brain samples from
same individuals were used between cohort 1 and 2,
and, four identical specimens derived from eight individ-
uals were used for DNA methylation study (cohort 2)
and functional validation. No formal sample size calcula-
tion was conducted, samples reaching the following
inclusion criteria have been included in DNA methyla-
tion analyses: (1) all available samples with sufficient
DNA amount, (2) samples that passed DNA methylation
quality control and (3) cases with confirmed MS diagno-
sis and non-neurological controls without any signs of
inflammation in the CNS. The pilot samples were
selected based on the availability of different lesion phe-
notypes within the brain of one MS patient. Cohort 1
was selected based on available amount of DNA from
WM neuronal nuclei. Cohort 2 was selected based on
sufficient DNA amount from WM neuronal nuclei to
perform both 5mC and 5hmC analyses and based on the
low-grade inflammation of the lesion phenotype with
only data from WM-neuronal nuclei being used for the
comparison MS versus non-neurological control. Cohort
used for functional validation was selected based on the
availability and quality of the material.

Sample preparation
Fluorescence-activated cell sorting (FACS)-based neur-
onal nuclei isolation from dissected brain tissue was
performed according to previously published protocol
[53] (see representative experiment in Additional file 1:
Figure S1). Briefly, following resuspension of the homog-
enized brain tissue in hypotonic lysis buffer (0.32M
sucrose, 5 mM CaCl2, 3 mM MgAc2, 0.1 mM EDTA, 10
mM Tris pH.8, 1 mM DTT, 0.1 % Triton), nuclei were
extracted by ultracentrifugation in sucrose gradient (1.8
M sucrose, 3 mM MgAc2, 1 mM DTT, 10mM Tris
pH.8) for 2.5 hours at 4 °C. Nuclei were further labelled
with Alexa Fluor 488 (Invitrogen #A11029)-conjugated
anti-NeuN antibodies (1:700, Millipore #MAB377) and
separated into neuronal and non-neuronal nuclei by flow
cytometry (MoFloTM high-speed cell sorter). First, FSC
[Par] × SSC gating was used to separate larger particles
from smaller debris. Next, FSC [Par] × Trigger Pulse
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Width plot was used to remove aggregated nuclei such
as duplicates. The fluorescence event plot showed two
clear populations including the NeuN-positive fraction
(representing 4–40% of the nuclei). We confirmed that
positive fractions were negligible in negative controls,
i.e. no antibody or unconjugated Alexa Fluor 488-la-
belled nuclei. Neuronal nuclei were pelleted and stored
at − 80 °C until DNA isolation. Genomic DNA was
isolated using QIAmp DNA micro kit (QIAGEN), resus-
pended in water and stored at − 80 °C.

Illumina Human Methylation 450K
We used Illumina Infinium Human Methylation 450K
BeadChip (Illumina, Inc., San Diego, CA, USA; 450K)
for quantitative and genome-wide DNA (hydroxy)
methylation profiling. Genomic DNA was subjected to
either conventional BS-treatment for the pilot samples
and cohort 1 or BS and oxidative BS (oxBS)-conversion
using TrueMethylTM 96 kit of CEGXTM (Cambridge
Epigenetix Limited) for cohort 2. BS-DNA from the pilot
samples and cohort 1 was hybridized to 450K arrays at
BEA core facility (Karolinska Institutet), oxBS/BS-DNA
from cohort 2 were processed at GenomeScan (Geno-
meScan B.V., Leiden, The Netherlands), according to
manufacturer’s instructions and the BeadChip images
were scanned on the iScan system. Samples were
randomized ensuring that disease group, gender and age
were balanced to control for potential confounding
effects. Technicians performing 450K arrays were
blinded to the MS disease status during the experiments.
Persons performing statistical analysis were not blinded
to disease status. The analysts have never altered the
diagnosis of samples and no individuals were excluded
because of diagnosis.

DNA methylation and hydroxymethylation analyses
Quality control
450K data (485,577 probes) were quality assessed using
MethylAid [54], which examines Red(R)/Green(G) signal
intensity, bisulfite conversion, specificity, staining, exten-
sion, target removal and hybridization as well as overall
performance of the assay. All samples passed quality
control and were subsequently processed using the Chip
Analysis Methylation Pipeline (ChAMP) version 1.8.0 [55]
and minfi version 1.16.0 [56] Bioconductor packages.

Probe filter
Upon loading raw IDAT files into ChAMP, probes
were filtered by detection P value > 0.01, bead count
< 3 in at least 5% of the samples, SNPs (minor allele
frequency > 1% in the European population) and
cross-reactivity as identified by Nordlund et al. [57]
(pilot study) and Chen et al. [58] (cohorts 1 and 2).
After filtering, the remaining probes for the pilot

samples, cohort 1 and cohort 2 reached 374,756,
427,712 and 419,958, respectively. Notably, probes lo-
cated on the X and Y chromosomes were also re-
moved, as samples from both females and males were
included in the study.

Between and within-array normalization
β-values of remaining probes were either between-sam-
ple quantile normalized followed by within-sample
Beta-mixture quantile normalization (BMIQ)[59] as pre-
viously recommended [60] in ChAMP for the pilot study
or within-sample normalized using the “Subset-quantile
Within Array Normalization” (SWAN) method[61] as
previously recommended for oxBS-450K data [22] in
minfi for cohorts 1 and 2. Noticeably, within-sample
normalization corrects for two different probe designs
(type I and type II probes) included on the 450K
BeadChip.

Hydroxymethylation (5hmC)
Filtering strategy and pipeline workflows are illustrated
in Additional file 1: Figures S4 and S5. The champ.
TrueMethyl function (ChAMP Bioconductor package
version 1.8.0) [55] was applied to SWAN-normalized
β-values to identify the “most variable positions”
between oxBS and BS samples. The default Benjamini-
Hochberg cut-off (B-H. adj. P value < 0.05) was used and
filtered 110,666 sites, which predominantly encountered
probes with mean hydroxymethylation levels around 0.
Negative average hydroxymethylation sites (3383 probes,
~ 1%), were considered false positives and therefore also
removed. P value distributions confirmed that mean
5hmC values > 0 had lower P values than mean 5hmC
values < 0 (Additional file 1: Figure S4). Of the
remaining 305,809 probes, 5hmC β-values were
calculated by subtracting BS and oxBS β-values. Probes
with > 1 negative value (28,421 probes) were filtered and
since slide 4 only contained 2 neuronal nuclei DNA
samples, no negative 5hmC values were allowed on slide
4 (causing 4505 probes to be removed) to allow for subse-
quent batch/slide correction with ComBat [62]. For com-
parison, we tested another method based on maximum
likelihood estimation (MLE) available through the oxyBS
version 1.0 Cran package [55] with default settings.

Correction for slide-effect
Slide effects were corrected using empirical Bayes
methods [62] implemented in the ComBat function of
the SVA Bioconductor package (version 3.18.0). Principal
component analysis (PCA), combined with cofactor
association testing before and after ComBat, confirmed
that the slide-effect was successfully removed.
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Neuronal subtypes deconvolution
DNA methylation sites previously identified to signifi-
cantly differ between GABA and GLU (FDR < 0.05) were
retrieved from [17] and filtered for |Δβ| > 0.7 which re-
sulted in a total of 162 neuronal subtype-specific sites.
In concordance with previous observations [17], the ma-
jority of the 162 examined neuronal subtype-specific
CpG sites, were hypomethylated in GLU compared to
GABA neurons (Additional file 1: Figure S2). Notably,
due to probe filter (for details see above), the number of
cell type specific probes was reduced to 144 for cohort 1
and 143 for cohort 2, respectively. GABA and GLU cell
proportions were estimated from raw BS β-values using
Houseman’s reference-based algorithm [63] as imple-
mented in the projectCellType() function of the minfi
Bioconductor package [56]. Estimated cell proportions
were confirmed using the robust partial correlations
(RPC) method from the EpiDISH (Epigenetic Dissection
of Intra-Sample Heterogeneity) R package version 1.0.0
[64] (Additional file 1: Figure S2). While we found no
significant differences in GABA and GLU neuronal pro-
portions between MS and non-MS controls in neither
cohorts (Additional file 1: Figure S2), Spearman’s rank
correlation analysis revealed correlation with top PCs
(Additional file 1: Figure S2), indicating that GLU pro-
portions (the most prominent neuronal subtype in our
samples) contribute to variation of DNA methylation in
our samples. Sensitivity modestly increased after includ-
ing GLU proportions as a co-variate in the linear model
(Additional file 1: Figure S2). Heat maps and scatter
plots of GABA and GLU specific probes were generated
using the “ComplexHeatmap” Bioconductor package
version 1.17.1 [65]. Putative differences in cell propor-
tions between MS and non-MS controls were assessed
with non-paired t tests and visualized with the ggbox-
plot() function of version 0.1.6 ggpubr R package. Venn
diagrams were generated using the draw.pairwise.venn()
function of version 1.6.20 VennDiagram R package.

Differentially methylated positions (DMPs) and regions
(DMRs)
The Limma Bioconductor package version 3.26.3 [66] was
used for detection of DMPs with M-values (Mi = log2(βi/
(1 − βi))) as input as previously recommended [67]. The
following covariates, as confirmed by PCA, were included
in the model: Individual, Sex, Age, Lesion phenotype,
Brain localization (according to antero-posterior axis) and
GLU proportion for cohort 1 and Sex, Age, Lesion pheno-
type, Brain localization and GLU proportion for cohort 2.
The influence of brain regionality has been investigated
using association analysis, covariate regression and
randomization and potential confounding effects of brain
regionality have been excluded. DMRcate version 1.6.53

[68], which identifies DMRs based on kernel smoothing,
was applied with default settings (λ = 1000, C = 2).

Meta-analysis
Meta-analysis of cohort 1 and 2 BS-derived 414,306
common probes was conducted using the inverse vari-
ance based method of the METAL tool, which weights
the effect size for each study by their standard error
[69]. Effect size estimates were retrieved as logFC
(M-value based) and standard error estimates as sqrt
(fit$s2.post) × fit$stdev.unscaled from Limma outputs,
respectively. Simultaneous heterogeneity testing allowed
for subsequent filtering of 149,177 heterogeneous probes
based on an I2 threshold of 15% as previously suggested
[70]. P values were adjusted for multiple comparisons
using the Benjamini & Hochberg (B-H) method [71].

Gene annotation
Classical 450K annotations (TSS200, TSS1500, 1stExon,
5′UTR, Gene body, 3′UTR, CGI, Shelf, Shore and Open
Sea) were derived from the “IlluminaHumanMethyla-
tion450kanno.ilmn12.hg19” version 0.2.1 and ChAMP
version 1.8.0 Bioconductor packages. CpG islands (CGIs)
were defined as GC content > 50%, observed/expected
CpG ratio > 60%, and > 200 bp while CGI shore and
shelves represent within and outside a 2-kb flanking
region surrounding a CGI, respectively. Fisher’s exact
test integrated in R (version 3.4.3) was used to estimate
enrichment (alternative = “greater”) or depletion
(alternative = “less”) of features of interest.

Locus-specific validation
“True” DNA methylation analysis of a CCGG motive
located at chr1: 228503770 (included in OBSCN locus
DMR chr1: 228503693–228503882) was carried out
using methylation- and glucosylation-sensitive digestions
of genomic DNA. Briefly, 100 ng of genomic DNA was
mixed with UDP-glucose and 4 units of 5hmC-glucosy-
transferase (Quest 5-hmC Detection kit, ZymoResearch),
allowing 5hmC to be glucosylated (glycosyl-5hmC). Mock
glucosylation consists of all of the above with the exception
of glucosyltransferase. Mock- and glucosylated-DNA were
subsequently incubated with either HpaII, MspI (EpiJET,
ThermoFisher Scientific) or in absence of enzyme (un-
digested). Unmethylated genomic DNA (EpiTect Control
DNA, Qiagen) was used as a negative control.
Methyl-sensitive (MSRE) HpaII enzyme cuts only unmodi-
fied CCGG motif whereas glucosyl-sensitive (GSRE) MspI
enzyme cleaves all modified CCGG except glucosyl-5hmC.
Detection was performed by qPCR on a BioRad CFX384
Real-Time Detection System with SYBR green fluorophore
and the following primers: OBSCN_F: GCTGCTGCT
CAAAAACTTGC and OBSCN_R: AATGCGGACGT-
CACCATATC. The percentage of total 5mC + 5hmC was
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quantified using the 2−ΔCt method comparing Mock- and
HpaII-digested DNA with Mock- and undigested-DNA
(with MspI as a positive control). Percentage of 5hmC
was quantified by applying 2−ΔCt to Glucosylated- and
MspI-digested DNA compared to Glucosylated- and
undigested-DNA. True 5mC was expressed as %
(5mC + 5hmC) − % 5hmC.

MiRNA target genes prediction
Differentially methylated loci mapping to miRNAs
(UCSC Refseq annotations) from cohort 2 (including
5mC-, 5hmC- and BS-DMPs and −DMRs) were used
as input for target prediction using mirDIP (version
4.1.8.2). Of note, corresponding mature miRNAs in-
clude: hsa-miR-339-5p, hsa-miR-1182, hsa-miR-1228-3p,
hsa-miR-136-5p, hsa-miR-154-5p, hsa-miR-1909-3p,
hsa-miR-202-3p, hsa-miR-377-3p, hsa-miR-431-5p, hsa-
miR-432-5p, hsa-miR-496, hsa-miR-518, hsa-miR-548,
hsa-miR-661, hsa-miR-1226-3p, hsa-miR-300, hsa-miR-802,
hsa-miR-1251-5p, hsa-miR-19b-3p, hsa-miR-17-5p, hsa-
miR-18a-5p, hsa-miR-19a-3p, hsa-miR-20a-5p, and hsa-
miR-92a-3p. Two miRNA loci (MIR518A2 and MIR548)
could not be found in the database. mirDIP integrates
predictions from 30 independent resources and offers an
integrative score which has been shown to provide more
accuracy compared to confidence scores from the individ-
ual resources [72]. Among the predicted target genes, only
the ones showing integrative scores > 0.7 were further
examined using gene ontology analysis.

Gene ontology analyses
Genomic locations of 450K probes were obtained from
the ChAMP Bioconductor package version 1.8.0 [55].
Gene ontology (GO) analysis was performed using
ingenuity pathway analysis (IPA) (Qiagen), applying un-
biased parameters for all criteria including tissues selec-
tion. The data were analysed focusing on canonical
pathways. Right-tailed Fisher’s exact test was used to
calculate P values. Enriched GO terms with adjusted P
values < 0.05 (Benjamini-Hochberg, B-H) were consid-
ered statistically significant. Of note, analyses of BS-gen-
erated DMPs from cohorts 1 and 2 did not result in
significant pathways after B-H adjustment, and, in this
case, enriched pathways with P values < 0.05 were shown
in Additional file 4 and mentioned in the text as “mod-
est enrichment”. We further validated findings from IPA
analyses from cohort 2 using overrepresentation analysis
from the online software tool WebGestalt (www.webges-
talt.org) [73] under default settings and summarized using
REVIGO tool [74] based on multidimensional scaling of
overrepresented GO terms with semantic similarities.
STRING network was generated using STRING database
version 10.5.

Brain sectioning and immunofluorescence
Brain blocks from 15 MS cases and controls (8 of them
overlapping with DNA methylation analysis) were
sectioned using a cryostat (Leica CM1850) at the Neur-
ology clinic (Karolinska Hospital, Stockholm). The
14-μm-thick slices on SuperFrost slides were kept at −
20 degrees until further use. Immunofluorescence (IF)
technique was utilized for examination of the transcrip-
tion factor CREB in frozen MS and non-neurological
control brain tissue. Rabbit monoclonal [E113] antibody
specific for CREB phosphorylated on Serine 133 (1:200,
Abcam #ab32096) was co-targeted with mouse monoclo-
nal anti-NeuN antibody (Millipore #MAB377) in the
samples with comparable (posterior) brain localization
containing adjacent white and grey matter portions.
Targets were visualized using fluorescently-labelled sec-
ondary antibodies Alexa Fluor 488 (Abcam, #ab150106)
and 555 (Jackson Immunoresearch #111-545-003),
respectively. NeuN+ white and grey matter neurons were
examined for nuclear expression of phosphorylated
CREB in high magnification using Zeiss LSM 700 con-
focal laser microscope. Captured group-representative
IF- images are shown in the Fig. 5. Amount of NeuN+/
CREB (phospho S133)+ WM neurons is presented as a
percentage of the total amount of all detectable NeuN+
cells in the WM.

Statistical analysis
Details of genome-wide analysis of methylation data are
provided in the sections above. All correlation analysis
were performed using the Spearman’s rank test. Fisher’s
and Chi-square test were used for enrichment and
depletion analyses. Data with more than two groups
were analysed using Kruskal-Wallis test and Dunn’s test
for multiple comparisons.
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