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Abstract
Purpose of Review The purpose of this paper is to review current and new modalities to image key biological processes in
ischemic heart disease and after myocardial infarction non-invasively.
Recent Findings New imaging targets have been developed to detect and quantify myocardial damage after ischemia. Although
positron emission tomography (PET) has been leading the development of new probes in the past, continuous improvements of
magnetic resonance imaging (MRI) together with the development of new novel MRI contrast agents opens new research
avenues including the combination of both PET and MRI to obtain anatomic, functional, and molecular information simulta-
neously, which is not possible from a single imaging session.
Summary This review summarizes the state of art of non-invasive molecular imaging of the myocardium during ischemia and
after myocardial infarction using PETandMRI.We also describe the different contrast agents that have been developed to image
the different phases of cardiac healing and the biological processes associated with each of those phases. Importantly, here we
focus on imaging of inflammation as it is the key biological process that orchestrates clearance of dead cells, tissue remodeling,
cardiac repair, and future outcome.We also focus on clinical translation of some of the novel contrast agents that have been tested
in patients and discuss the need for larger, multi-center patient studies to fully validate the applicability of new imaging probes.

Keywords Cardiovascular imaging . Inflammation . Ischemic heart disease . Vascular remodeling .Myocardial infarction

Introduction

Cardiovascular diseases remain the leading cause ofmorbidity
and mortality in western societies with coronary artery disease
and associated myocardial infarction (MI) being the most
common type of disease in the circulatory system [1].
Myocardial infarction occurs when the coronary arteries are
obstructed, limiting the transport of nutrients and oxygen to

the cardiomyocytes that form part of the ventricular wall.
After the ischemic event, a plethora of molecular and cellular
pathways are activated to compensate and resolve the injury to
the heart. A proportion of the cardiomyocytes die in response
to the coronary obstruction, creating an environment that will
stimulate the infiltration of inflammatory phagocytes such as
neutrophils immediately after the event and is followed by the
influx of inflammatory and reparative monocytes [2].
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Inflammation plays a crucial role in cardiac healing, first by
removing dead cells and secondly by activating cells that will
contribute to the healing response which includes the produc-
tion of extracellular matrix proteins that will become an inte-
gral part of the scar tissue that will replace the dead
cardiomyocytes [3]. However, if the inflammatory response
is unbalanced (too strong or too weak), the effect on cardiac
healing can be deleterious, resulting in ventricular dilation,
hypertrophy or thinning of the myocardium among others, a
phenomenon known as adverse ventricular remodeling.
Patients with adverse ventricular remodeling have a higher
chance of developing progressive heart failure and associated
poor prognosis [4, 5]. Therefore, the identification of patients
undergoing adverse ventricular remodeling is crucial in
influencing their therapeutic intervention and ultimately im-
proving their prognosis.

Current clinical imaging techniques are mainly focused on
assessing the anatomy and function of the heart. However, the
development of new molecular-targeted probes can increase
significantly the information obtained from each imaging ses-
sion, by better visualization and understanding of the molec-
ular pathways involved in myocardial healing and, thus, help
clinicians to provide more personalized treatments to their
patients. In this review, we focus on the two primary imaging
modalities used for cardiac molecular imaging, positron emis-
sion tomography (PET) and magnetic resonance imaging
(MRI), and we discuss new molecular-targeted probes used
to detect different biological processes after myocardial infarc-
tion with special focus on inflammation, as it is considered the
key biological process in cardiac healing.

Clinical Need for Non-invasive Imaging of Post-MI
Remodeling

Optimal myocardial remodeling after ischemia relies on a suit-
able degree of inflammation and its timely resolution.
Inadequate recruitment of granulocytes and monocytes into
the infarcted area triggers impaired healing frequently promot-
ing adverse cardiac remodeling, impaired scar stability, and
long-term risk of heart failure [4, 6•]. Blood biomarker tests
including serum troponin levels, together with clinical symp-
toms of chest pain, and ST segment changes or T-wave inver-
sion on the electrocardiogram (ECG) constitute the basis for
identifying patients suffering from myocardial ischemia [7].
Although increased levels of inflammatory blood biomarkers,
such as interleukin (IL)-6, tumor necrosis factor (TNF)-α, and
C reactive protein (CRP), may predict poor prognosis, they do
not provide information on the local inflammatory response
triggered in the ischemic myocardial segment. Therefore, the
ability to directly visualize and assess the healing process and
cardiac remodelingmay produce useful clinical information to
help individualize patient treatment. In this review, we will
focus on clinical and experimental non-invasive imaging

approaches available for assessing cardiac remodeling after
ischemia, with a specific focus on the inflammatory phase
and macrophage imaging.

Myocardial Remodeling After Ischemia

Coronary artery disease is the consequence of progressive and
gradual narrowing of the coronary arteries by the build-up of
fatty material within the vessel walls or by the obstruction of the
coronary lumen by clot formation as a consequence of acute
plaque rupture. A complete obstruction can severely limit the
availability of oxygen and nutrients inducing rapid cardiomyo-
cyte damage and death [8–10]. Within the culprit coronary
artery myocardial territory, the subendocardial layer is damaged
first, due to effects of cardiac contraction, vascular pressure-
dependent compliance, and potential transmural differences in
vessel anatomy [11]. If the obstruction persists, the injury will
progress along a wave front starting from the subendocardial
layer towards the subepicardial layer [12–14]. Therefore, the
time lapse between acute coronary obstruction and revascular-
ization directly determines the extent of myocardium injury and
significantly affects long-term cardiac function and prognosis.
However, the restoration of blood flow and subsequent reper-
fusion paradoxically induces injury in the myocardium
[15–18]. Several approaches to minimize myocardial injury
inflicted by reperfusion have been tested throughout processes
known as pre- and post-conditioning [17, 19].

The healing of the myocardium after ischemia consists of
an early inflammatory phase followed by a proliferative phase
and a maturation phase [2, 20] (Fig. 1). This process involves
a complex cascade of molecular, cellular, and physiological
responses that affects the structure of the heart. During the
early phase after the insult, inflammatory signals recruit neu-
trophils to the infarcted area within the first 24 h. Neutrophils
and other granulocytes secrete several proinflammatory cyto-
kines such as, IL-1β, IL-12, interferon (IFN)-γ, and TNF-α
[20, 21], while damaged and dying cardiomyocytes secrete
factors such as monocyte chemoattractant protein (MCP)-1
[2, 22]. All of these cytokines and chemokines potentiate the
inflammatory response and trigger the recruitment of “inflam-
matory/classic” Ly6Chigh monocytes that will differentiate in-
to M1-like tissue resident macrophages, being the predomi-
nant inflammatory cell type found in the injured myocardium
3 to 5 days after the insult. M1-like macrophages secrete a
broad range of inflammatory cytokines and have high protease
activity being responsible for the clearance of dead
cardiomyocytes and their debris and degrade the extracellular
matrix, which can weaken the myocardial wall and increase
the susceptibility of rupture and sudden death [2]. Around day
7, “reparative” Ly6Clow monocytes are recruited to the infarct-
ed myocardium, differentiating into M2-like reparative tissue
resident macrophages. At this point the healing process enters
the anti-inflammatory/proliferation stage were both M2-like
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macrophages and endothelial cells release anti-inflammatory
markers such as IL-10, vascular endothelial growth factor
(VEGF), and tumor growth factor (TGF)-β. This response
elicits angiogenesis that supplies blood to the infarcted area,
extracellular matrix synthesis, and myofibroblast proliferation
and reorganization [2, 23]. Finally, during the maturation
phase, a collagen-rich scar is formed, which adequate organi-
zation is crucial for preventing heart dilation and rupture.
However, the scar formed in the infarcted area has poor con-
ductivity properties, potentially compromising the electrical
activity and therefore function of the heart [24–26].

As mentioned above, the extent and duration of the inflam-
matory response post-MI may have profound effects on the
cardiac remodeling and clinical outcome. High levels of spe-
cific inflammatory markers, such as IL-6 and TNF-α, in blood
have been correlated with long-term heart failure and poor
prognosis [27]. High levels of white blood cells within 24 h
after ischemia have shown to be a strong predictor of 30-day
mortality and recurrent clinical events [28]. The CANTOS
study has demonstrated the importance of the inflammatory
marker IL-6 in patients with history of myocardial infarction
showing the potential beneficial effects of the modulation of
its signaling pathways, thereby reducing cardiovascular event
rates independently of lipid lowering [29, 30•]. Similarly, high
levels of other inflammatory markers such as TNF-α and IL-
10 have been associated with recurrent events and poor

prognosis [31, 32]. It is also important to note that a weak
inflammatory response after MI can be deleterious, as the
inflammatory cells might not be able to clear up the injured
area from damaged and dead cells and not be able to produce
strong enough signals to activate other cells involved in the
healing response and scar formation [33]. Therefore, non-
invasive imaging of cardiac remodeling and more specifically
inflammation after myocardial infarction can be a useful clin-
ical tool for patient stratification allowing more targeted and
individualized therapeutic approaches.

Molecular Imaging of Cardiac Remodeling After
Myocardial Infarction

Several imaging approaches can be employed to image the
structural, functional, and molecular changes during persistent
ischemia and after infarction. Cardiovascular magnetic reso-
nance imaging (CMRI) is a non-ionizing imaging modality
which allows the assessment of cardiac function by using cine
imaging and anatomical evaluation with bright and black
blood imaging. In addition, CMRI allows detailed myocardial
tissue characterization using T1 and T2mapping by exploiting
the differences in T1 and T2 relaxation time of the myocardi-
um during health and disease [34, 35]. Following myocardial
infarction, the area at risk is characterized by edema, which is
representative of the percentage of myocardium affected after

Fig. 1 Summary of the healing
phases and biological alterations
that occur in the myocardium
following an ischemic event
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the insult. Edematous regions are usually visualized on T2-
weighted but can also be detected on T1-weighted images as
both are sensitive to changes in water concentration, without
the need for contrast administration [10]. Native T1 and T2
mapping are starting to replace T1w and T2w imaging as they
can quantify the amount of edema and, thereby, further im-
prove diagnostic accuracy [36]. The detection and quantifica-
tion of the extent of the area at risk and especially the area of
infarction can be improved using contrast agents.
Gadolinium-based contrast agents can be used to determine
the damaged areas by using early gadolinium enhancement
(EGE) for area at risk detection and late gadolinium enhance-
ment (LGE) for direct infarct visualization [36]. As the con-
trast agent washes out slower from scar tissue compared to the
healthy tissue, scar appears bright on heavily T1-weighted
inversion recovery prepared LGE images. In addition, myo-
cardial perfusion can be assessed qualitatively and quantita-
tively using first passMR perfusion imagingwith gadolinium-
based contrast agents, as damaged and poorly perfused myo-
cardium will show less gadolinium uptake and, therefore, re-
duced signal on T1-weighted images [37, 38].

PET is a non-invasive imaging technique that uses radio-
active tracers that allow detection and quantification of bio-
logical functions in healthy and more importantly, in diseased
tissues. This modality uses gamma detectors that are posi-
tioned in a stationary ring around the patient which detects
the two photons produced after the annihilation event between
and electron and a positron produced during radiotracer decay,
thereby allowing localization of the annihilation event. The
acquisition of the radioactive tracer decay over several mi-
nutes allows the production of a series of dynamic images
which can then be reconstructed to produce a final higher
quality 3D dataset. In the following sections, we will describe
some of the biological alterations that occur in the heart after
ischemia and the potential of targeted and non-targeted con-
trast agents to image those processes with MRI and PET
(Fig. 2).

Cell Death

Immediately after myocardial infarction, a hypoxic envi-
ronment is generated in the territory supplied by the
obstructed coronary artery leading to cardiomyocyte dam-
age and death. Cells generally die through a non-
programmed or a programmed cell death pathway, which
are known as necrosis and apoptosis, respectively. During
necrosis, the cell membrane is disrupted and the cell con-
tent is released to the extracellular space, leading to the
activation of the inflammatory response. However, during
apoptosis, cells shrink and form apoptotic bodies exposing
specific markers in their membrane that are detected and
subsequently phagocytosed by macrophages.

One of the first approaches to measure myocardial apopto-
sis was targeting the intracellular protein myosin using
indium-111 (111In)-labeled anti-myosin antibodies in dogs
with MI [39]. Clinical validation of targeting the intracellular
myosin was performed using technicium-99 (99mTc) labeled
anti-myosin antibodies in 30 patients that underwent percuta-
neous revascularization after myocardial infarction. This ap-
proach allowed imaging of the necrotic area, but not the bor-
der zones that may or may not have irreversible injury [40].
No follow-up studies have been reported since. Annexin-V is
one of the markers expressed in apoptotic cells and has been
used as target for non-invasive imaging of apoptosis after MI
using MRI. This approach uses Annexin-V-labeled nanopar-
ticles, known as AnxCLIO-Cy5.5, in a murine model of heart
failure [41] and acute ischemia [42]. Other approaches are
focused on the development of contrast agents targeting
caspases, which are key proteins during the apoptotic process.
However, all efforts so far have been focused on imaging
apoptosis in cancer [43], with little to no work in cardiac
apoptosis.

Vascular Permeability (Endothelial Damage
and Angiogenesis)

Acute ischemia is associated with damage of the endothelial
cells that cover the ventricle and, therefore, an increase in
vascular permeability is observed. Moreover, during the
chronic maturation phase, increased levels of VEGF and basic
fibroblast growth factors are released in the injured area, trig-
gering the formation of immature or leaky neovessels contrib-
uting also to an increase in permeability in the infarcted area.
Intense research efforts have been undertaken to develop con-
trast agents that can detect and quantify vascular permeability
to better understand the cardiac healing process during the
acute and chronic phase. Several different imaging targets
sensitive to vascular permeability have been tested, including
αvβ3, VEGF, VCAM-1, and albumin.

The αvβ3 or vitronectin receptor is an integrin highly
expressed in angiogenic endothelial cells that covers newly
blood vessels formed during vasculogenesis or during patho-
logical conditions such as cancer, atherosclerosis, or cardiac
remodeling post-MI. However, theαvβ3 integrin is not detected
on mature vessels [44], making this integrin a very attractive
target for the development of multiple imaging strategies and
treatments for angiogenesis-related diseases. Integrins recog-
nize a short peptide sequence known as RGD (Arg-Gly-Asp)
expressed on extracellular matrix proteins and membrane sur-
faces [45], which is the peptide sequence mostly employed to
develop imaging tracers that detect this specific integrin. The
tracer 18F-galacto-RGD has been successfully used to image
cardiac angiogenesis in animal models [46–48] and in patients
afterMI [49]. Gallium-based tracers have become an alternative
to fluorine-based radiotracers, as the production can be
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performed in an onsite 68Ga generator as compared to the more
complex chemistry and technical support needed for the
fluorine-based tracers. In a rat model of MI, Laitenen et al.
demonstrated that both 68Ga-NODAGA-RGD and 68Ga-
TRAP(RGD)3 showed similar results as compared to 18F-
galacto-RGD [9]. However, the use of these 68Ga-based tracers
has not yet been validated in patients with MI. Similarly, ap-
proaches using 111In-RP748 have been validated at the preclin-
ical level [5]. Although the research of RGD-based radiotracers
and its validation in models of MI has been very intense and
productive, only one RGD-based MRI contrast agent has been
developed and validated in animal models of cancer and ath-
erosclerosis [50]. MRI research has been more focused on the
detection and quantification of vascular permeability using oth-
er targets. Our group has demonstrated the feasibility of imag-
ing vascular permeability in a murine model of MI using a Gd-
based albumin-binding contrast agent, known as gadofosveset,
which is clinically approved as blood pool contrast agent. In
this work, we demonstrated that gadofosveset allows for the
detection of changes in myocardial permeability thereby
allowing to differentiate between the acute and chronic phases
following MI [51] (Fig. 3).

Extracellular Matrix

The maturation or chronic phase after ischemia is character-
ized by the reorganization and production of new extracellular
matrix proteins, the development of a fibrotic scar, typically
rich in type I collagen fibers to prevent heart dilation and

rupture. The presence and extent of myocardial scar carries
important diagnostic and prognostic information [52–54].
LGE MRI is currently considered the standard of reference
for scar detection and quantification [55]. The increase in ex-
tracellular volume (ECV) in the damaged myocardium togeth-
er with the delayed wash allows gadolinium to accumulate in
the infarcted region, thereby providing exquisite visualization
of scar on highly T1-weighted inversion recovery LGE MR
images [56]. While LGE MRI can visualize the location and
extent of the scar, pre- and post-contrast T1 mapping enables
the quantification of ECV non-invasively [57]. ECV has been
shown to be an excellent marker for focal and diffuse fibrosis
[56]. While LGE MRI and T1 mapping provide important
information about scar size and extent of transmurality and
the amount of fibrosis, those methods fall short in providing
detailed information on the underlying biology. An alternative
approach overcoming the above limitation is the use of Gd-
based target-specific contrast agents such as EP-3533, which
binds to collagen types I–IV and, thus, provides additional
information beyond LGE MRI or T1 mapping with non-
specific Gd-based agents. EP-3533 has been successfully val-
idated in a murine model of ischemia-reperfusion and demon-
strated the ability to detect collagen-rich scar tissue 6 weeks
after MI [58]. Other extracellular matrix proteins that are
overexpressed after MI include elastin and tropoelastin.
Importantly, studies suggest that elastin formation after MI
leads to improved ejection fraction and decreased risk of myo-
cardial rupture [59] and therefore may be an attractive imaging
candidate. We and other groups have demonstrated the merits

Fig. 2 Representative examples of targeted and non-targeted contrast agents developed to evaluate biological alterations after myocardial infarction
using MRI and PET
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of an elastin-binding contrast agent, known as ESMA, to vi-
sualize and quantify the infarcted area [60]. While the area of
infarction was similar to that measured with a conventional
Gd-based contrast agent, elastin imaging enabled the monitor-
ing of changes in extracellular matrix remodeling over time
(higher signal at 3 weeks post-MI) in both the infarct and
remote area, which were not seen with standard LGE MRI
[59, 60]. In addition, we have evaluated the interplay between
elastin remodeling and inflammation after MI using simulta-
neous 1H and 19F imaging which may be beneficial to
predicting future outcomes [61]. To enable the assessment of
ECM turnover and fibrosis activity, which may be directly
linked to inflammation, we have recently developed a new
Gd-based contrast agent which specifically binds to
tropoelastin (TESMA), the precursor of elastin. We have suc-
cessfully demonstrated the feasibility of imaging of
tropoelastin in mouse models of atherosclerosis [62] and ab-
dominal aortic aneurysm and future studies will focus on the
added value of TESMA for the detection adverse myocardial
remodeling after myocardial infarction.

Finally, altered levels of matrix metalloproteinases (MMPs),
particularly MMP-2 and MMP-9, which are enzymes involved
on the extracellular matrix remodeling, have been associated
with adverse myocardial remodeling and poor prognosis after
MI [63–65]. Non-invasive imaging using radiotracers enabled
the quantification and localization of MMP activation in a mu-
rine model of myocardial infarction [66]. This is one of the first
approaches that enables the measurement of the biological

activity of enzymes involved in the remodeling process directly
and, thus, could provide important prognostic information and
guide treatment decisions.

Molecular Imaging of Inflammation After
Ischemia

After an ischemic event, different immune cells such as neu-
trophils and monocytes are released by the bone marrow and
spleen and migrate into the infarcted area to trigger an inflam-
matory response which will contribute decisively to the
healing and remodeling of the ventricle [67]. There are differ-
ent ways to non-invasively image these inflammatory cells,
either using their phagocytic properties (passive targeting) or
by targeting specific markers expressed on the cell of interest
known as active targeting. Iron oxide particles have been the
choice for imaging phagocytes and successful macrophage
imaging has been shown both in animal models [68–74] and
humans [75–78]. The presence of macrophages at the site of
injury has been best elicited via the use of superparamagnetic
iron oxide nanoparticles (SPION). This method exploits the
phagocytic properties of macrophages which in turn detect
and internalize SPIONs as foreign bodies. SPIONs are con-
sidered unique molecular probes considering their chemical
neutrality or inertness, their small size, and their excellent
relaxation properties. After macrophage phagocytosis,
SPIONs produce T2* shortening effects that can be detected

Fig. 3 a Late gadolinium
enhancement (LGE) images using
gadofosveset showing contrast
uptake in the infarcted area at
different time points post-MI. b
Trichrome images (first column)
and albumin
immunohistochemistry (second
column) of the infarcted
myocardium at different time
points post-MI. Black arrow
indicates the infarcted area
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using T2*-weighted gradient echo sequences showing
hypointense areas, also referred to as signal voids, thus en-
abling the detection of the presence and degree of inflamma-
tion [79, 80]. An alternative way of detecting and quantifying
SPION’s is by the use of susceptibility gradient mapping
(SGM), which is a quantitative post processing method that
measures the focal field disturbance caused by SPION’s.
SGM has been successfully used to detect macrophages at
different stage of atherosclerosis in mice [74]. An alternative
to iron oxide particles are fluorine-based nanoemulsions (19F),
which are also actively phagocytosed by macrophages and
other phagocytic cells. An advantage of 19F nanoemulsions
are the lack of unwanted background signal, as fluorine is not
present in detectable amounts in the human body. Our group
and others have demonstrated the merits of 19F-
nanoemulsions to directly image inflammatory cells in murine
models of MI [61, 81] (Fig. 4). Although this approach is very
appealing due to the lack of background signal, it suffers from
low signal to noise, requires dedicated dual nucleus coils, and
requires high amounts of 19F-nanoemulsions to be injected to

obtain a detectable signal. Furthermore, similar to SPION’s,
the pharmacokinetics of 19F-nanoemulsions is complicated as
they have long-retention times in blood and tissues, requiring
delayed imaging (usually 24 h post injection) and thus making
it more challenging to obtain approval for clinical use.

Receptor-based targeting of macrophages has also been an
important area of research. Myeloperoxidase (MPO) is an in-
flammatory enzyme produced by neutrophils and macro-
phages that is highly expressed in acute MI or in culprit ath-
erosclerotic lesions [82]. Bogdanov et al. developed a
gadolinium-based contrast agent that targets MPO (MPO-
Gd) [83] which was validated in murine models of ischemia
and reperfusion [84]. The use of Gd-MPO allowed them to
asses MPO activity in vivo in the infarcted myocardium,
which is a direct measurement of the inflammatory response
triggered in the heart by an acute MI. They were also able to
demonstrate the beneficial effect of an anti-inflammatory
therapeutical intervention, using atorvastatin, which resulted
in lower levels of MPO activity [84]. Other target-specific
contrast agents such as gadolinium immunomicelles targeted

Fig. 4 a Co-registered 1H and 19F short-axis images after PFC
administration and macrophage immunohistochemistry (MAC-3) at
different time points post-MI. b Representative short-axis images of

relaxation rate (R1) maps after ESMA administration and tropoelastin
immunohistochemistry of the hearts at different times points post-MI
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to the macrophage scavenger receptor CD206 [85],
gadolinium-loaded LDL-based nanoparticles [86], and
CX3CL1 nanoparticles [87] have been successfully tested to
image and quantify macrophages in atherosclerosis. However,
these agents have not been yet tested in the context of MI.

Nuclear medicine research has also been very active and
focused on the development of novel radiotracers to target
inflammation. 18F-deoxyglucose (FDG) is the best charac-
terized and widely available tracer for imaging inflamma-
tion (metabolic activity of cells) in different diseases, such
as cancer and cardiovascular diseases, among others [88].
Leukocytes that infiltrate the infarcted myocardium have
very high metabolic activity and consume high concentra-
tions of glucose. FDG imaging takes advantage of the met-
abolic change allowing the visualization and quantification
of the inflammatory response at difference stages of the
disease. FDG imaging in combination with PET/MRI tech-
nology has allowed the visualization of the biphasic nature
of monocyte infiltration after an ischemic insult in a mu-
rine model of MI and in patients with acute MI [89]. In
addition, FDG-PET uptake 5 days after percutaneous cor-
onary intervention had an inverse correlation with myocar-
dial outcome measure by MRI 6–9 months after the ische-
mic event in patients with cardiovascular disease [90•]. In
addition, FDG signal exceeded the scar area measured by
MRI, demonstrating that FDG measures the area at risk.
Importantly, blood leukocyte counts correlated with both,
area at risk measured by FDG-PET and scar size measured
by MRI [90•]. However, cardiomyocytes have high meta-
bolic activity and therefore produce a high FDG signal,
which can mask inflammatory activity. To overcome this
limitation, patients undergo special dietary requirements,
including fasting or high fat meals to potentiate fatty acid
metabolism and suppress cardiomyocyte glucose uptake
[91]. Because this method does not always provide the
desirable signal suppression from cardiomyocytes, we
need new, more specific imaging radiotracers to detect
and quantify inflammation. One alternative is the use of
the glucose isomer mannose. Because macrophages ex-
press on their membranes the scavenger receptor known
as CD206 or mannose receptor, 18F-deoxymannose
(FDM) can be used for macrophage imaging. In addition,
this receptor is highly expressed on M2-like macrophages
opening a new research window not only for macrophage
detection, but also for the differentiation between the two
major macrophage subsets. FDM has been tested in athero-
sclerotic rabbits showing that the uptake obtained with
FDM is not inferior to the one when using FDG [92].
However, FDM remains to be evaluated in myocardial in-
farction and in patients with cardiovascular disease.

11C-methionine is a well-characterized PET radiotracer
commonly used for detection of brain tumors. Thackeray
et al. demonstrated in a murine model of MI that PET imaging

with 11C-methionine allows for detection of inflammation in
the injured myocardium at the early stages post-MI and ob-
served a signal decline over 7 days which was paralleled by a
decrease of activated inflammatory cells [93] (Fig. 5). In a
clinical proof-of-concept study, 11C-methionine uptake was
observed in patients with acute MI up to 2 weeks after reper-
fusion [94].

The somatostatin receptor type 2 (SSTR2) is also highly
expressed in activated macrophages, especially in M1-like
macrophages, and is routinely used for imaging neuroendo-
crine tumors. Two imaging agents that are a newer generation
of somatostatin analogs have been developed, known as 68Ga-
DOTATATE and 68Ga-DOTATOC. 68Ga-DOTATATE has
higher affinity to the SSTR2, while 68Ga-DOTATOC has
higher affinity to SST5. Both radiotracers have shown differ-
ent imaging benefits compared to FDG, as it not only presents
superior accuracy and sensitivity, but also allows characteri-
zation of whole-body SSTR expression [95]. 68Ga-
DOTATATE has shown very promising results for the detec-
tion of inflammation in atherosclerosis [96]; however, due to
the very quick metabolism and blood clearance, no conclusive
results were observed in a murine model of MI [97]. In con-
trast, with 68Ga-DOTATOC, the elevation of SSTR2 in the
infarcted myocardium at 3 and 10 days post-acuteMI has been
observed in patients [98].

C-X-C chemokine receptor 4 (CXCR4) is a receptor in-
volved in leukocyte migration and recruitment to injured tis-
sue, such as the infarcted myocardium. 68Ga-pentixafor is a
PET radiotracer that has shown promising results for the de-
tection of inflammation in a murine model of MI. Tracer up-
take in the infarcted myocardium was proportional to leuko-
cyte infiltration as detected by flow cytometry [99]. In the
same study of 12 patients with myocardial infarction, this
radiotracer showed heterogeneous uptake at time points be-
tween 2 and 8 days post-MI, suggesting a patient specific
modulation of the chemokine response [99, 100]. Studies with
larger number of patients are now required to better under-
stand the chemokine response provided by the CXCR4 recep-
tor after MI.

Although several strategies have been developed to image
macrophages, none of them has had the ability to clearly dis-
tinguish between macrophage subsets. Thus, the development
of M1 or M2 specific probes remains an interesting challenge
on the horizon.

Conclusion

Important advances in imaging the molecular processes
associated with the ischemia-induced myocardial injury
and resulting remodeling have been made in the last de-
cade. The development of new target-specific contrast
agents, with some of them currently being clinically
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validated, could open a new era in the management of
patients with myocardial infarction, thereby allowing bet-
ter patient stratification and enable more personalized
treatments. However, intense research is still needed at
both the preclinical and clinical level to develop not only
more specific contrast agents, but also to better understand
the biological information provided by those reagents. For
clinical translation, further validation of these new agents
needs to be performed in larger patient cohorts to evaluate
the diagnostic and prognostic value. The discovery and
development of new agents able to differentiate between
the different subsets of leukocytes, monocytes, and macro-
phages present at different time points in the infarcted
myocardium could open new avenues for more personal-
ized treatments, prognosis and outcome studies.
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