

King’s Research Portal

DOI:
10.1109/ACCESS.2018.2889399

Document Version
Publisher's PDF, also known as Version of record

Link to publication record in King's Research Portal

Citation for published version (APA):
Lano, K., Kolahdouz Rahimi, S., & Yassipour Tehrani, S. (in press). Declarative Specification of Bidirectional
Transformations Using Design Patterns. IEEE Access, 7(1), 5222-5249. Article 8587240.
https://doi.org/10.1109/ACCESS.2018.2889399

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 28. Dec. 2024

https://doi.org/10.1109/ACCESS.2018.2889399
https://kclpure.kcl.ac.uk/portal/en/publications/c7f7bec3-ae06-4d11-bae8-6229b38c92b1
https://doi.org/10.1109/ACCESS.2018.2889399

Received November 6, 2018, accepted December 12, 2018, date of publication December 24, 2018,
date of current version January 16, 2019.

Digital Object Identifier 10.1109/ACCESS.2018.2889399

Declarative Specification of Bidirectional
Transformations Using Design Patterns
KEVIN LANO 1, SHEKOUFEH KOLAHDOUZ-RAHIMI2, AND SOBHAN YASSIPOUR-TEHRANI1
1Department of Informatics, King’s College London, London WC2B 4BG, U.K.
2Department of Software Engineering, University of Isfahan, Isfahan 81746-73441, Iran

Corresponding author: Kevin Lano (kevin.lano@kcl.ac.uk)

ABSTRACT Bidirectional transformations (bx) are a specific form of model transformation (MT) used in
model-driven engineering to maintain consistency between two models, which may change independently.
Currently bx are defined using a number of specialized transformation languages, which have had limited
uptake due to complex semantics and poor efficiency. In contrast, unidirectional transformation languages
such as ATL have beenwidely adopted, but require separate forward and reverse transformations to bewritten
to addressmodel synchronization requirements. In this paper, we provide declarative specification techniques
for bx, systematically constructed using MT design patterns. We define two approaches to declarative bx
definition: 1) by automatically bidirectionalizing unidirectional transformation specifications and 2) by
developing specification guidelines for the QVT-R standard language to make it more effective for bx in
practice. The approaches are evaluated using a large-scale code-generator bx from UML to ANSI C and
other examples. Their semantic validity is demonstrated by rigorous arguments.

INDEX TERMS Bidirectional transformations, design patterns, model transformations, QVT-R,
UML-RSDS.

I. INTRODUCTION
Model-driven engineering (MDE) and Model-based devel-
opment (MBD) have reached a point of significant applica-
tion in industry, particularly in the automotive industry and
more recently in finance. These development approaches use
models (such as UML class diagrams) as key artifacts within
their processes. In some cases the models are used as the
complete definition of an application, with executable code
being generated automatically from the models.

Model transformations (MT) are a key element of MDE
and MBD approaches for software, supporting code gener-
ation, migration, refinement, reverse-engineering and many
other capabilities. Bidirectional model transformations (bx)
are a specific type of MT which provide a means to maintain
a consistency relation R between two models which may
both change. This is in contrast to unidirectional transfor-
mations, which establish R by constructing a target model
from a source model, and do not subsequently maintain the
consistency of these models.

Bx are significant for a wide range of model based engi-
neering scenarios involving model synchronization:
• Incremental execution of transformations, for example,
it is desirable for a code generator to only make the
minimal necessary changes to generated code if a source

model is changed, rather than regenerating the entire
code set again.

• Round-trip engineering [28], where either an application
specification or design may change and the consistency
of the two models at different levels of abstraction must
be automatically maintained.

• Automatic consistency maintenance of multiple inter-
related models at the same level of abstraction [18],
such as UML class diagrams and sequence diagrams,
to support agility in model-based development.

• Application and database co-evolution [5].
The motivating case for this paper was a code generator from
UML to ANSI C [44]. For realistic applications involving
large-scale models with thousands of elements, incremental
code generation of C is a practical necessity. Additionally,
the use of a bx in this case is motivated by considerations
of semantic correctness of the generated code, and by the
desirability of round-trip engineering capabilities.

A bx can be used to enforce a relation R between two
different representations of similar semantic information. For
example, a UML class and a corresponding ANSI C struct.
Such a bx is responsible for ensuring that changes to one of
these representations is propagated to the other to maintain
their mutual consistency. There may however be additional

5222
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 7, 2019

https://orcid.org/0000-0002-9706-1410

K. Lano et al.: Declarative Specification of bx Using Design Patterns

information in one model which has no counterpart in the
other. For example, in the well-known Families to Persons bx
benchmark [1], the persons model includes birthday infor-
mation, whilst the families model differentiates parents and
children. These features are specific to just one of the linked
models.

In the theoretical framework of [59], bx are characterized
by a binary relation R : SL ↔ TL between a source language
(metamodel) SL and a target language TL. R(m, n) holds for a
pair of models m of SL and n of TL when the models consist
of data which correspond under R.
The key idea of a bx is that instead of defining two separate

transformations from SL to TL and from TL to SL, to establish
R, it should be possible to automatically derive from the
definition of R both forward and reverse transformations

R→ : SL × TL → TL

R← : SL × TL → SL

which establish/maintain R between the two models, given
both existing source and target models. This eliminates the
risk that forward and reverse transformations could become
inconsistent with each other, and reduces the workload
involved in maintaining two separate transformation speci-
fications instead of one.

The R→, R← transformations should satisfy two key con-
ditions [46], [59]:

1) Correctness: the forward and reverse transformations
derived from a relation R do establish R:

R(m,R→(m, n))

R(R←(m, n), n)

for each m : SL, n : TL.
2) Hippocraticness: if source and target models already

satisfy R then the forward and reverse transformations
do not modify the models [48]:

R(m, n) H⇒ R→(m, n) = n

R(m, n) H⇒ R←(m, n) = m

for each m : SL, n : TL.
Hippocraticness is a global property, in practice a stronger
local property is desirable: if any part of a target (source)
model is already consistent with the corresponding part of the
source (target) model, then neither part should be modified
by forward or reverse transformations. We refer to this as
local Hippocraticness. Further, it is preferable that updates
to a model by R→ or R← should be minimal necessary to
restore R: this is termed the principle of least change [48].

In the following, we will consider only separate-models
transformations, where source and target models are distinct,
and not update-in-place transformations, which operate on a
single model which is both the source and target.

We describe two alternative approaches to bx definition:
1) In the first approach, unidirectional separate-models

transformations τ are defined declaratively using

the Object Constraint Language (OCL) [52], and a
bx relation R and forward and reverse transforma-
tions R→, R← are derived syntactically from the
specification of τ .
We consider specifically the unidirectional MT lan-
guage UML-RSDS [42].

2) In the second approach, a bx τ is defined using a
restricted subset of QVT-R [51], with the specification
of τ organized so that bothR→ andR← exist and satisfy
the bx properties wrt R derived from the specification.

An original contribution of our work is an emphasis on the
role of design patterns in the definition of τ in order to achieve
bx properties.

Section II describes related work, Section III describes
UML-RSDS, Section IV describes model transformation and
bx design patterns, and Section V defines our approach to
bx specification in UML-RSDS. Section VI considers inverse
transformations and the bx properties of R←. Section VII
describes a large case study of a bx transformation between
UML and C. Section VIII describes our QVT-R based
approach to bx definition. Section IX gives an evaluation
of the approaches, and Section X gives conclusions. The
appendix provides an argument that the bx properties for
R→ are satisfied by transformations defined using our first
approach.

II. RELATED WORK
Bx are the subject of extensive theoretical research [10], [12],
[46], [58]–[60] and an annual conference, BX. Themost well-
known transformation language which supports definition
of bx is QVT-R [51], which uses an OCL-based expression
language. However, QVT-R has had limited uptake because
of its complex semantics and specification style, compared
to simpler unidirectional MT languages such as ATL [31]
and ETL [33]. The semantic basis of the language remains
unclear [8], [46], [60]. The combination of bx and update-in-
place processing involves aspects such as implicit deletion
(if an element is not required to exist by any rule, then it
is deleted), which are difficult to use, and are implemented
differently by different QVT-R tools [8], [40]. Although the
language is intended to be declarative, the meaning of a
specification can depend on procedural aspects (rule invo-
cation relationships) in addition to logical predicates. As the
examples of [46] show, this leads to specifications which are
difficult to understand and liable to subtle errors.

Triple GraphGrammars (TGG) are a graph transformation-
based formalism which supports bx definition [14], although
with a restricted expression language compared to OCL.
Other approaches, such as JTL [11], and extensions of
TGG [2], use constraint-based programming techniques
to interpret relations P(s, t) between source and target
elements as specifications in both forward and reverse direc-
tions. Model finding using Alloy is used to bidirectional-
ize ATL in [46], and to backward propagate view changes
in [58]. These approaches have problems of efficiency for
large-scale models. An alternative constraint-based approach

VOLUME 7, 2019 5223

K. Lano et al.: Declarative Specification of bx Using Design Patterns

is to generate constraints restricting target models, instead of
the models themselves [13]. This allows greater freedom of
choice in the construction of the target model, but requires an
additional step to actually derive specific models.

Another research direction has focused on the special case
of asymmetric bx known as lenses, in which the source to
target mapping is independent of the existing target model.
The target model t : TL is computed as a view or abstraction
get(s) containing partial information from the source model
s : SL [6], [15]. A dual map put : SL × TL → SL propagates
view changes to the source, such that put(s, get(s)) = s and
get(put(s, t)) = t . Various semantic and syntactic techniques
have been developed for deriving the put function from get
in different cases [34], [61].

In previous papers we have briefly introduced some bx
design patterns [39] and techniques for bx verification [41].
In this paper we extend these previous works by compre-
hensively defining an approach to bx specification using
UML-RSDS, and we identify additional bx patterns. We also
introduce an approach using QVT-R with the bx patterns.
We provide rigorous arguments to show the correctness of the
UML-RSDS approach, provide an evaluation, and give new
examples and extensive details of a large case study.

III. UML-RSDS
In our first approach to bx definition, we look at a unidi-
rectional MT language, UML-RSDS. In this approach, uni-
directional transformations τ are specified using UML use
cases with OCL postconditions Postτ and invariants Invτ ,
then a statically-computed bx relation Rτ for τ is defined
as Postτ & Invτ for τ , together with a forward transfor-
mation τ→ extending τ , and an inverse τ← of τ→. These
play the role of R→ and R← in bx theory. The bx relation
and transformations are derived from τ using a higher-order
transformation. This is generally more efficient than the use
of constraint programming and model finding.

UML-RSDS is a precise subset of UML 2 and
OCL 2.4, with a formal semantics [35] and an established
toolset [36], [42]. We use a variant notation for OCL, with
E .allInstances() abbreviated to E for entity types on the
lhs of a → operator. x : s is used for s→includes(x),
s1 <: s2 for s2→includesAll(s1), & is used for con-
junction, H⇒ for implication.1 Logical expressions P
may be used operationally, to stand for behaviors statLC (P)
which establish P (Section III-C). In particular, the predicate
x→isDeleted() is used to express that the element x is
to be removed from all entity types and other collections
in which it resides. s→isDeleted() for collection s means
s→forAll(x|x→isDeleted()). The general iterate operator
is excluded from our subset, as are tuples and invalid .
null cannot be explicitly referred to, but only tested using
x→oclIsUndefined().

1Using symbols for logical connectives helps to visually distinguish these
from the parts of the formulae that they connect.

A. TRANSFORMATION SPECIFICATION
Model transformations τ are specified in UML-RSDS as
UMLuse cases, defined declaratively by twomain predicates,
expressed in our OCL variant:

1) Postconditions Postτ which define the intended effect
of the transformation at its termination. These are an
ordered conjunction C1 & . . . & Cn of OCL con-
straints (also termed rules in the following) and also
serve to define a procedural implementation of the
transformation.

2) Invariants Invτ which define expected invariant prop-
erties which should hold during the transformation
execution (their truth is preserved by individual trans-
formation rule applications). The invariants can be
derived from Postτ , or can be specified explicitly by the
developer.

From a declarative viewpoint, Postτ defines the conditions
which should be established by the transformation. From
an implementation perspective, the constraints of Postτ also
define the intended computation steps of the transformation:
each computation step is an application of a postcondition
constraint (transformation rule) to a specific source model
element or to a tuple of source model elements. The com-
putation steps should preserve Invτ .

A typical postcondition constraint/rule has the form:

Si ::

Cond H⇒ Pred

where Si is the context entity type of the constraint, Cond
is the application condition of the constraint, and Pred its
predicate or succedent. The logical meaning of the constraint
is that for each instance self of Si which exists in the source
model, if self satisfies Cond , then Pred is true for self . The
operational meaning of the constraint is that for each instance
self of Si which exists in the source model, if self satisfies
Cond , then Pred is made true for self , using the activity
statLC (Pred).

Typically, Pred will specify the existence of instances t of
target entity types Tj via formulae Tj→exists(t|P) for con-
crete entity type Tj, where t’s feature values are specified inP.
For example, the simple Families to Persons [1] for-

ward transformation family2person (Figure 1 shows the basic
metamodels of this transformation) could have two rules:

Family::
m : mother->union(daughters) =>

Female->exists(p |
p.name = name + ", " + m.name)

Family::
m : father->union(sons) =>

Male->exists(p |
p.name = name + ", " + m.name)

These rules Postfamily2person express that for each Family
instance, and for each FamilyMember m which is either a
father or son of the family, there should exist a corresponding
Male instance with a name formed as the concatenation of

5224 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

FIGURE 1. Family to Person metamodels.

the family and family member names. Likewise, mothers and
daughters are mapped to Female instances. The invariants
Invfamily2person can be derived syntactically from these rules
by inverting the quantifiers (Table 5, case 2):

Female::
Family->exists(fx |
FamilyMember->exists(m |
m : fx.mother->union(fx.daughters) &
name = fx.name + ", " + m.name))

Male::
Family->exists(fx |
FamilyMember->exists(m |
m : fx.father->union(fx.sons) &
name = fx.name + ", " + m.name))

These invariants are preserved by the family2person rules:
if a new Female instance is created by the first rule, then it
necessarily satisfies the first invariant because of the context
entity type and application conditions of the rule. The new
instance does not affect the truth of the second invariant,
which only restrictsMale instances. Likewise, the second rule
preserves both invariants.

The importance of transformation invariants in verification
is that they can be used to prove transformation contracts:
conditions P and Q such that, if transformation τ is executed
on models satisfying P, it is ensured to terminate in a state
with the models satisfyingQ [7], [19]. If I is a condition such
that P implies I , with I preserved by each rule application
of τ , and such that I together with the fact that no rule is
enabled implies Q, then the correctness part of the contract is
established.

The key idea of our first bx approach is that change-
propagation from the source model to the target can be
achieved by extending a forward transformation τ by addi-
tional constraints/rules derived automatically from Invτ .
In addition, a reverse transformation τ← can also be derived
automatically from Invτ . The reverse transformation is based
on interpreting the invariants as rules in the inverse direction
(notice that the form of the invariants in the family2person
example is very similar to that of use case postconditions).

A rule predicate P such as t.name = s.name + ‘‘*’’ is
converted to an explicit inverse form P∼ such as s.name =
t.name.front in order to provide a computationally explicit
version of the invariants. This approach therefore achieves the
aims of bx in enabling a single transformation specification
to be used for both forward and reverse transformations.

B. TRANSFORMATION IMPLEMENTATION
Designs for model transformations and for general applica-
tions are defined in UML-RSDS using class diagrams, with
UML activities expressing the explicit algorithms of opera-
tions and use cases.
The following concrete syntax is used for a subset of UML

structured activities:

< statement > ::= < loop > | < creation > |
< conditional > |
< sequence > | < choice > |
< basic >

< loop > ::= ‘‘while’’ < expression >
‘‘do’’ < statement > |
‘‘for’’ < expression >
‘‘do’’ < statement >

< conditional > ::= ‘‘if’’ < expression >
‘‘then’’ < statement >
‘‘else’’ < basic >

< sequence > ::= < statement > ‘‘;’’ < statement >
< choice > ::= < statement > ‘‘[]’’ < statement >
< creation > ::= ‘‘var’’ <identifier> ‘‘:’’ <identifier>
< basic > ::= < expression > ‘‘:=’’ < expression > |

‘‘skip’’ |
‘‘execute’’ < expression > |
‘‘return’’ < expression > |
‘‘(’’ < statement > ‘‘)’’ |
< call_expression >

For use cases, their procedural implementation as an activ-
ity is derived as a composition of the activities statLC (Cn) for
each postcondition constraint Cn. statLC (Cn) is constructed

VOLUME 7, 2019 5225

K. Lano et al.: Declarative Specification of bx Using Design Patterns

so that it establishes Cn: [statLC (Cn)]Cn, where [act]P is the
weakest-precondition of predicate P with respect to state-
ment/activity act . As a predicate transformer, statLC (Cn) is
chosen as a minimal (least-refined) transformer which estab-
lishes Cn. In terms of the refinement calculus [50]:

[C]P H⇒ (statLC (P) v C)

for statements C which do not update more variables than
statLC (P). Intuitively, this means that statLC (P) performs the
minimal necessary data modifications needed to establish
P, operating on the write frame wr(P) of P. A definition
of statLC is given in Section III-C. There may not be a
unique least-refined statement that establishes a given predi-
cate, in such cases a suitable minimally-refined statement is
selected instead.

Data-dependency relations between the Post constraints
are important in ensuring the correctness of both unidirec-
tional and bidirectional UML-RSDS transformations. Let
rd(Cn) denote the read-frame of a constraint Cn, the set of
entity type names and data features that it reads, and wr(Cn)
denote its write frame. These are defined in [36]. The def-
inition of wr(P) for a predicate P interpreted operationally
as statLC (P), includes features and entity types affected by
implicit updates which may arise due to metamodel con-
straints involving parts of the metamodel explicitly updated
by statLC (P). There are five main cases of such implicit
updates:

1) A bi-directional association A m1
ar —

m2
br B between

entity types A and B, for any multiplicities m1, m2:
changes to ar will also produce updates to br and
vice-versa.

2) An association A m1—m2
br B: deletion of B instances will

remove these from br .
3) An association A 1—m2

br B with 1-multiplicity end at
entity type A: deletion of A instances ax will result
in deletion of all B instances linked to ax via br . For
example, in Figure 1, deletion of a Family instance
leads to deletion of its linked FamilyMembers.

4) A composition aggregation: deletion of the composite
will result in deletion of its linked parts.

5) Creation or deletion of instances of a subclass B of
a class A will also result in addition/removal of these
instances from the extent of A.

In Figure 1, deletion of Family instances will also affect
FamilyRegister :: families, even though this feature is
not explicitly modified by the transformation. Likewise for
Person and PersonRegister :: persons. We say that there is
deletion propagation from entity type Ei to entity type Ej if
there is a non-empty chain of dependencies of kinds 3, 4 and 5
above between Ei and Ej such that deletion of an Ei instance
may cause deletion of an Ej instance.
A dependency ordering Cn < Cm is defined between

constraints by wr(Cn)∩rd(Cm) 6= {} ‘‘Cm depends onCn’’.
A use case with postconditions C1, . . . ,Cn should satisfy the
syntactic non-interference conditions:

1) If Ci < Cj, with i 6= j, then i < j.
2) If i 6= j then wr(Ci) ∩ wr(Cj) = {}.

Together, these conditions ensure that the activities statLC (Cj)
of subsequent constraints Cj cannot invalidate earlier con-
straints Ci, for i < j.
A constraint is termed a type 1 constraint if its write and

read frames are disjoint. Such constraints usually have an
implementation as a bounded loop, as opposed to a fixed-
point/unbounded iteration. Both of the rules for Family to
Person above are of type 1.

Entity types may have identity attributes of String type.
These uniquely identify instances of the entity: two different
instances must have different values of the attribute. The
first such attribute is used as a primary key for the entity
type.

If entity type E has a primary key att : String, then E[v]
denotes the instance x of E with key value x.att equal to v,
or the collection of E instances with key value in v, if v is a
collection.

C. DEFINITION OF ACTIVITIES FOR PREDICATES
Table 1 gives the definition of statLC for simple predicates.

TABLE 1. Definition of statLC for simple predicates.

An assignable basic expression x is either a variable, a non-
frozen feature f or a basic expression obj.f or obj.f [i] whose
modified feature f is non-frozen. statLC (x→includes(e)) is
the same as statLC (e : x), and likewise x→excludes(e) is
considered the same as e / : x and x→includesAll(e) the same
as e <: x.
statLC (true) is skip. For x→isDeleted(), where x is an

instance of class E , statLC removes x from the set of instances
of E , and performs all the deletion propagation actions from
E listed in the preceding subsection.
statLC (P & Q) is statLC (P); statLC (Q) under the assump-

tion that P H⇒ [statLC (Q)]P.

5226 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

statLC (if C then P else Q endif) is

if C

then statLC (P)

else statLC (Q)

under the assumptions C H⇒ [statLC (P)]C and ¬C H⇒
[statLC (Q)]¬C .

For s→forAll(x|P), statLC is defined as for x :

s do statLC (P), when rd(s)∩wr(P) = {} and rd(P)∩wr(P) =
{}.

For existential quantifiers E→exists(e|P1 & . . . & Pn),
their statLC effect only creates a new e : E instance in
cases where there is no existing e : E that satisfies P
partially or completely. In the case of partial satisfaction the
updates only for the unsatisfied conjuncts are carried out.

If E has a primary key pk and a conjunct Pi is of the form
e.pk = value, then statLC (E→exists(e|P1 & . . . & Pn)) is

var e : E;

e := createByPKE(value);

statLC (Pred)

Where Pred is P1 & . . . & Pn with Pi omitted.
createByPKE(val) looks up E[val], if this is non-null it
returns the instance, otherwise it creates a new E instance
with primary key value val, and returns this instance.

Otherwise, statLC (E→exists(e|P1 & . . . & Pn)) has the
form:

var e : E;

var eset : Set(E);

eset := E .allInstances();

if eset→isEmpty()

then

e := createE();

statLC (P1 & . . . & Pn)

else

(e := eset→any();

eset := eset→select(P1);

if eset→isEmpty()

then

e := createE();

statLC (P1 & . . . & Pn)

else

(e := eset→any();

eset := eset→select(P2);

if eset→isEmpty()

then

statLC (P2 & . . . & Pn)

else

. . . case for 3 . . .))

The general case for k ≥ 2, k < n is

e := eset→any();

eset := eset→select(Pk);

if eset→isEmpty()

then

statLC (Pk & . . . & Pn)

else

. . . case for k + 1 . . .

For k = n, if Pk is an assignment result = e, then the code of
the case is simply e := eset→any(); result := e. Otherwise
it is

e := eset→any();

eset := eset→select(Pn);

if eset→isEmpty()

then

statLC (Pn)

else

e := eset→any()

By reusing e : E instances where possible, the redundant cre-
ation of instances is avoided, however this also introduces the
possibility of conflicts where one target instance is required
to have conflicting attribute values to satisfy a constraint wrt 2
source instances.

IV. PATTERNS FOR MODEL TRANSFORMATIONS
In [38] we identified 29 design patterns which have been used
for model transformation specification and design. Accord-
ing to [43], some of the most widely-used MT patterns in
practice are Entity Splitting, Structure Preservation, Map
Objects before Links and Entity Merging. Our approach to bx
specification using UML-RSDS applies to transformations τ
constructed using these patterns and others, and enables the
automatic derivation of inverse transformations τ← which
also use the patterns, according to Table 2.

TABLE 2. Correspondence of MT patterns.

Here we give a more precise characterization of the pat-
terns, and explain their specialization for use in bx. In each
case in the following patterns, the predicates TCond , P
contain no quantifiers or calls to update operations, and

VOLUME 7, 2019 5227

K. Lano et al.: Declarative Specification of bx Using Design Patterns

have an operational interpretation statLC . They can con-
tain calls of purely functional operations that do not create
instances or modify data.
• Structure Preservation: a rule in which one source
entity type Si is mapped to one target entity type Tj, with
no dependency upon any other target entity types.
Rules Ci have the form

Si ::

SCondi(self) H⇒

Tj→exists(t|TCondj(t) & Pj(self , t))

where SCondi refers only to source model entity types
and features. In the case of a bx, identity attributes idSi
and idTj of the entity types can be used to correlate
instances of Si and Tj.

• PhasedConstruction: as for Structure Preservation, but
with previously-created instances of target entity types
TRef derived from SRef instances being looked up in the
succedent of a rule creating an instance of target entity
Tj, in order to define the value of a TRef -typed role rr
of the Tj instance, as in Figure 2. Pj in this case contains
some equation t.rr = TRef [r .idSRef]. For example:

Si ::

SCondi(self) H⇒

Tj→exists(t|t.rr = TRef [r .idSRef])

This can be used for single-valued r , rr as well as for
collection-valued association ends.

• Entity Splitting: this pattern involves one source entity
typemapping to two ormore different target entity types.
There are two variants of this pattern: (i) horizontal:
two or more separate rules map from Si, with disjoint
SCondi application conditions, to distinct target entity
types Tk , Tl ; (ii) vertical: a single rule maps one Si
instance to multiple linked instances of different Tk , Tl .
The second case is common in refinement transforma-
tions. Constraints, eg., Ci, will have the form

Si ::

SCondi(self) H⇒ Tk→exists(t1|

Tl→exists(t2|TCond1(t1) &

TCond2(t1, t2) & P(self , t1, t2)))

Some explicit means of recording the semantic link
between t1 and t2 is needed to support bx definition
for such transformations, this link data can be based on
identity attributes. This should be the only constraint in
the transformation that creates Tl instances. Other con-
straints can create Tk instances if their TCond conditions
are disjoint from TCond1.

• Entity Merging: As with Entity Splitting, there are two
variants, which are inverses to the corresponding ver-
sions of Entity Splitting. In horizontal Entity Merging,
two or more source entity types Si, Sj are mapped to the

same target entity type Tk by separate rules:

Si ::

SCondi(self) H⇒

Tk→exists(t|TCondi(t) & Pi(self , t))

and

Sj ::

SCondj(self) H⇒

Tk→exists(t|TCondj(t) & Pj(self , t))

For bx, sufficient information must be inserted into the
Tk instances to enable the source entity of the instance
(Si or Sj) to be identified. Usually TCondi and TCondj
would be logically disjoint for this reason:

TCondj H⇒ not(TCondi)

In vertical Entity Merging, two or more source instances
are used to construct a single target instance, in a single
rule:

S1 ::

SCond1(self) & s2 : S2 &

SCond2(self , s2) H⇒

T→exists(t|TCond(t) & P(self , s2, t))

This rule iterates over pairs self : S1, s2 : S2, potentially
creating a t : T instance for each pair that satisfies the
antecedent conditions.

• MapObjects before Links: This pattern, also known as
Entities before Relations [49], separates the construction
of target instances from the linking of target instances
based on source links (Figure 2).

FIGURE 2. Map Objects before Links pattern.

Entity mappings are as for any of the above patterns,
whilst the linking constraints/rules have the form:

Si ::

Tj[idSi].rr = TRef [r .idSRef]

These define target model association ends rr from
source model association ends r , looking-up target

5228 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

FIGURE 3. Auxiliary Correspondence Model pattern.

model elements Tj[idSi] and TRef [r .idSRef] which
have already been created by preceding entity mapping
rule(s).

The Families to Persons transformation illustrates Entity
Splitting (variant (i)). In the forward direction, FamilyMem-
ber instances are mapped to Male instances if they occur
in the father or sons collections of some family, and to
Female instances if they occur in the mother or daughters
collections. This is an example of Entity Splitting variant (i):
an instance of one source entity is mapped to one instance
of possibly different alternative target entities under disjoint
assumptions.

We have also identified a number of specialized pat-
terns for bx, based on inspection of published examples
of bx [43]:

• Auxiliary Correspondence Model: using auxiliary
entity types or features, maintain an explicit correspon-
dence between source model and target model elements
to facilitate change-propagation in source to target or
target to source directions (Figure 3). This pattern is
a built-in mechanism of the TGG language and has
been used in numerous transformation cases [3], [16],
[17], [21], [22], [24], [25], [27], [29], [32], [41], [55],
[58], [67]. In QVT-R there are implicit trace entities for
each relation [51].

• Cleanup before Construct: to enable change-
propagation for R→, define additional rules that remove
superfluous target model elements which are not in the
bx relation R with any source elements, before con-
structing target elements related to source elements, and
similarly for R← (Figure 4). This pattern involves the
introduction of additional rules, prior to themain rules of
the transformation, to remove target elements which fail
to correspond to source elements. Alternatively, cleanup
actions can be performed after the main transformation,
as with QVT-R delete actions [51].

• Unique Instantiation for bx: With this pattern, the
E→exists(e|P) quantifier in rule succedents, for con-
crete entity type E , is interpreted as ‘‘create a new
instance e of E and establish P for e, unless there already
exists an e : E satisfying P’’. This corresponds to the
‘check before enforce’ semantics for QVT-R [59].

FIGURE 4. Cleanup before Construct pattern.

As described in Section III-C, in the case that E has
a primary key eId , E→exists(e|e.eId = v & P) is
interpreted as the sequence of steps: (i) lookup E[v],
if this exists then assign it to e, otherwise create a
new E instance with eId = v and assign this to e;
(ii) try to establish P for e, taking no action if P already
holds.
This avoids the deletion and recreation of elements t in
one model which correspond by key to an element s in
the other model, but which have divergent data. Instead
the data of t is modified to enforce the transformation
relation.
If E does not have a primary key, then statLC
(E→exists(e|P)) selects an e : E for which a maximal
initial partP1 ofP holds and tries to establish the remain-
der of P for this e, or it creates a new e and establishes
P for it, if no element of E satisfies any initial part
P1 of P.

• Lens: the source to target mapping is independent of the
target model data, with the target model t : TL com-
puted as a view or abstraction get(s) containing partial
information from the source model s : SL [15], [6].
A dual map put : SL × TL → SL propagates view
changes to the source, such that put(s, get(s)) = s and
get(put(s, t)) = t .
In our formalism we define view-update functions putE
for views getE in order to reverse fine-grained data
relations P(s, t) such as t.g = getE (s.f) between source
model data s.f and target data t.g, for a wide range of
expression forms getE , as in [34] and [61]. The inverse
P∼(s, t) of P(s, t) is defined as s.f = putE (s.f@pre, t.g)
in such a case.

Our approach to implement Auxiliary Correspondence
Model is to introduce String-valued identity attributes (pri-
mary keys) for source and target entities. These attributes are
used to record which source and target instances correspond:
target instance t corresponds to source s if they have the same
primary key values. For example, the person to family case
would be extended by this pattern as shown in Figure 5.

In addition, we introduce here two new bx patterns, which
we have used in a large-scale code generation transformation
(Section VII):

VOLUME 7, 2019 5229

K. Lano et al.: Declarative Specification of bx Using Design Patterns

FIGURE 5. Families to Persons with Auxiliary Correspondence Model.

FIGURE 6. Inverse Recursive Descent pattern.

• Inverse Recursive Descent: if a forward transformation
τ→ is defined using structural recursion on the source
language SL, the reverse transformation τ← may be
derived from τ→ as a dual structural recursion on TL
(Figure 6). If source entity E has subelements esub :
Collection(ESub), and the corresponding target entity F
has corresponding subelements fsub : Collection(FSub),
then a forward rule

E ::

true H⇒ self .op1()

based on operations op1 and op of E of the form

E ::

op1() : FSup

pre : true

post :

result = op(esub.op1())

E ::

op(fs : Collection(FSub)) : F

pre : fs = FSub[esub.eId]

post :

ECond H⇒ F→exists(f |f .fId = eId &

FCond(f) & f .fsub = fs &

P(self , f) & result = f)

has the transformation invariant

F ::

FCond H⇒ E→exists(e|e.eId = fId &

ECond(e) & e.esub = ESub[fsub.fId] &

P(e, self))

provided that F is only created/modified by op.
The inverse operations for the reverse transformation
are:

F ::

op1∼() : FSup

pre : true

post :

result = op∼(fsub.op1∼())

F ::

op∼(es : Collection(ESub)) : E

pre : es = ESub[fsub.fId]

post :

FCond H⇒ E→exists(e|e.eId = fId &

ECond(e) & e.esub = es &

P∼(e, self) & result = e)

5230 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

The operation op1∼ is used in an inverse rule:

F ::

true H⇒ self .op1∼()

• Flattening/Unflattening: a special case of EntityMerg-
ing/Splitting where a nesting of components within a
composite element is removed in the forward direction
and restored in the reverse direction (Figure 7). A for-
ward rule will have the form:

E ::

f : fs & FCond(f) H⇒

G→exists(g|

g.gId = f .fId & g.eId = eId &

GCond(g) & P(self , f , g))

The corresponding invariant is

G ::

GCond(self) H⇒

E→exists(e|e.eId = eId &

F→exists(f |

f .fId = gId & f : e.fs &

FCond(f) & P(e, f , self)))

The Family to Persons transformation also illustrates Flatten-
ing/Unflattening, with the containment hierarchy of Family-
Member within Family being flattened in the target model.
The case uses an additional attribute familyId (playing the
role of eId in Figure 7) to record in the target model element
which source composite its corresponding source instance
belongs to.

FIGURE 7. Flattening/Unflattening pattern.

The enhanced rules of family2person using the Auxiliary
Correspondence Model and Flattening/Unflattening patterns
are then:

Family::
m : mother->union(daughters) =>

Female->exists(p |
p.personId = m.memberId &
p.familyId = id &
p.name = name + ", " + m.name)

Family::
m : father->union(sons) =>

Male->exists(p |
p.personId = m.memberId &
p.familyId = id &
p.name = name + ", " + m.name)

There are corresponding derived invariants. Other forms of
flattening discard certain model elements (eg., if only leaf
classes in a class diagram are mapped to relational tables)
and associations between elements (eg., state composition
links in the state machine flattening example of [46]). The
reverse transformation then needs to reconstruct the model
elements or structure.

We can extend the patterns of Table 2 to include update
operation calls within succedents, provided the operations
are invertible in the manner of the inverse recursive descent
pattern above. An operation defined as

Si ::

op() : Tj
post :

SCondi(self) H⇒

Tj→exists(t|TCondj(t) & Pj(self , t) &

result = t)

can be inverted to:

Tj ::

op∼() : Si
post :

TCondj(self) H⇒

Si→exists(s|SCondi(s) & P∼j (s, self) &

result = s)

Applications y.rr = x.r .op() in a constraint succedent invert
to x.r = y.rr .op∼().

If Tj elements are only created/modified by op, then the
transformation satisfies the invariant:

Tj ::

TCondj(self) H⇒

Si→exists(s|SCondi(s) & Pj(s, self))

V. APPLICATION OF PATTERNS TO CONSTRUCT BX
A unidirectional transformation τ0 defined using the patterns
of Table 2, and consisting of type 1 constraints satisfying
syntactic non-interference, can be extended by the use of the
Auxiliary Correspondence Model and Cleanup before Con-
struct patterns to a transformation τ→ which is the forward
part of a bx. The bx relation and reverse transformation τ←

can also be derived.
An alternative condition to syntactic non-interference is

semantic non-interference: a use case with postconditions C1
to Cn satisfies this property if for i < j:

Ci H⇒ [statLC (Cj)]Ci

VOLUME 7, 2019 5231

K. Lano et al.: Declarative Specification of bx Using Design Patterns

TABLE 3. Inverses of predicates and expressions.

Syntactic non-interference implies semantic non-
interference, but not conversely.

The bx derivation process consists of the following steps
to enhance τ0:
1) Introduce identity attributes in source and target entity

types where necessary to support the Auxiliary Cor-
respondence Model and Flattening/Unflattening pat-
terns, and extend the postconditions to use these
attributes, forming extended postconditions Postτ of
an enhanced transformation τ of τ0 (cf., the step from
Figure 1 to Figure 5).

2) Compute the invariant Invτ of this extended transfor-
mation.

3) The conjunction Postτ & Invτ is the bx relation Rτ of
the extended transformation (and the logical relation of
the ‘transformation model’ of τ in the sense of [9]).

4) Further extend τ to a forward transformation τ→

by applying Cleanup before Construct to add rules
(applied before the main rules of τ) which remove
target instances that fail to satisfy Invτ with respect to
corresponding source instances.

5) Compute an explicit form Post∼τ of Invτ , to form the
basis τ∼ of the reverse transformation τ←. This step
requires that the computations t.g = getE (s.f) of target
data t.g in terms of source data s.f used within the
postcondition predicates of τ are invertible using view
update functions putE in the sense of a lens.

For transformation postconditions conforming to the pat-
terns of Table 2 and consisting only of type 1 constraints,
using invertible computations of target data based on source

data which are known as valid get/put pairs, Invτ and Post∼τ
can be derived mechanically from Postτ using the defini-
tion of invariant predicates and inverse predicates P∼ given
in Tables 3, 4, 5, 6 and in other catalogued cases. Steps 2) to 5)
can therefore be automated for transformations satisfying
these restrictions. Note that in the final case of Table 3 we
permit a quantification of the form forAll exists within the P
predicate of a constraint, thus extending slightly the range of
constraints to which the bidirectionalization procedure can be
applied.

Given a type 1 structure preservation rule Ci of the form

Si ::

SCondi(self) H⇒

Tj→exists(t|TCondj(t) & Pj(self , t))

the corresponding invariant constraint Invi is:

Tj ::

TCondj(self) H⇒

Si→exists(s|SCondi(s) & Pj(s, self))

The invariant derived from the rule expresses that each tar-
get model instance of Tj corresponds to some source model
instance of Si via that rule.
Tables 3 and 4 show some examples of inverses P∼

of expressions and predicates P. The computation of
these inverses are implemented in the UML-RSDS tools
as a higher-order transformation (the reverse option for
use cases). Intersection on sequences is treated as select:

5232 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

TABLE 4. Inverse of predicates on associations.

TABLE 5. Inverse of constraints.

sq1→intersection(sq2) abbreviates sq1→select(x|x : sq2)
and hence retains the order of sq1. In some cases the inverse
predicate is based on a functional inverse to the source-to-
target mapping. For example, t.g = not(s.f) can be trivially
inverted to s.f = not(t.g), so that the view-update s.f =
putnot (s.f@pre, t.g) for getnot defined as not does not need
to take account of the previous value s.f@pre of s.f . The
case of t.rr = s.r→select(P) is an example of a non-trivial
view update s.r = putselect (s.r@pre, t.rr): given a value
of t.rr , we determine an updated s.r by taking the union
of s.r@pre→reject(P) and t.rr→select(P). The first set are
those elements of s.r which are unaffected by changes to
t.rr , whilst the second set consists of possibly new elements
introduced by changes to t.rr . View updates are discussed in
more detail in Section VI.

Table 5 summarises the inverse forms of different con-
straint kinds involving let variable definitions v = E ,
v = TRef [id] or additional quantified variables v : F .2

In terms of the framework of [59], the source-target rela-
tion Rτ associated with a UML-RSDS transformation τ is
Postτ & Invτ . Rτ is not necessarily bijective (eg., in the
Family to Person transformation only part of the target
model is significant for the bx relation, so multiple non-
isomorphic target models can be related to the same source
model). For unidirectional transformations τ , the design and

2let v : T = e in E is written as v = e H⇒ E in our notation.

implementation of the forward direction of τ is normally
computed as statLC (Postτ): the UML activity derived from
Postτ when interpreted procedurally [35]. However, in order
to achieve the correctness and hippocraticness bx properties,
Invτ must also be considered: before statLC (Postτ) is applied
to the source model m and target model n, n must be cleared
of elements which fail to satisfy Invτ . This is a case of the
Cleanup before Construct pattern (Section IV).

The general cleanup constraint Cleanupi derived from
Invi is:

Tj ::

TCondj(self) &

not(Si→exists(s|SCondi(s) & Pj(s, self))) H⇒

self→isDeleted()

This expresses that if a target instance t does not satisfy
Invi(s, t) for any s : Si, then t is deleted.

However, this rule may delete more Tj instances than are
necessary: not only instances which correspond (i) to deleted
Si instances, or (ii) to Si instances that no longer satisfy
SCondi, but also (iii) to Si instances satisfying SCondi, but not
Pj(s, self). In this last case, self should not be deleted, instead
statLC (Pj) should be performed to re-establish Pj between the
modified s and self . Therefore, some form of source-target
tracing is required, to distinguish these cases.

VOLUME 7, 2019 5233

K. Lano et al.: Declarative Specification of bx Using Design Patterns

TABLE 6. Inverse of predicates (extended).

We apply the Auxiliary Correspondence Model pattern
to introduce String-valued identity attributes (primary keys)
for source and target entities, to record and identify which
source and target instances correspond: source instance s
corresponds to target instance t when s.sId = t.tId . This
also means that Si[t.tId] = s and Tj[s.sId] = t . By using
the Entity Splitting and Entity Merging patterns, described
in Section IV, one-many and many-one relations between
source and target instances can also be recorded using this
technique.

Tables 3 and 4 can be extended to include assignments to
features based on object indexing lookups (Table 6).

If identity attributes have been introduced using Auxiliary
Correspondence Model, the postconditions (rules) Ci of τ
have the typical form

Si ::

SCondi(self) H⇒

Tj→exists(t|t.tId = sId &

TCondj(t) & Pj(self , t))

and the corresponding invariant constraints Invi are:

Tj ::

TCondj(self) H⇒

Si→exists(s|s.sId = tId &

SCondi(s) & Pj(s, self))

The cleanup constraints can then be simplified to:

Tj ::

TCondj(self) &

not(tId : Si→collect(sId)) H⇒ self→isDeleted()

and

Tj ::

TCondj(self) & tId : Si→collect(sId) &

not(SCondi(Si[tId])) H⇒ self→isDeleted()

which correspond to cases (i) and (ii) above. This version
is also potentially more efficient than the original cleanup
constraint. The second case is omitted if SCondi is the default
true. The updates of case (iii) are carried out in the Postτ
constraints. τ→ is defined to have postconditions consisting
of the cleanup constraints, followed by Postτ , and hence it
is an extension of τ : its postconditions imply those of τ .
We denote by τ× the transformation that consists of the
cleanup constraints. Then the forward transformation can be
decomposed as the sequential composition of τ× and the
original τ : τ→ = τ×; τ .

The cleanup constraints can be further optimized by writ-
ing them in the form:

Tj ::

TCondj(self) &

Si[tId]→oclIsUndefined() H⇒ self→isDeleted()

and

Tj ::

TCondj(self) & not(Si[tId]→oclIsUndefined()) &

not(SCondi(Si[tId])) H⇒ self→isDeleted()

A single consolidated Cleanupi constraint is:

Tj ::

TCondj(self) H⇒

if Si[tId]→oclIsUndefined()

then self→isDeleted()

else if not(SCondi(Si[tId]))

then self→isDeleted()

else true

endif endif

A similar analysis and formation of invariants and cleanup
constraints can be carried out for the other bx pattern cases of
Table 2. Details are given in the appendix.

5234 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

τ→ operates on both the source and target model, and
propagates changes in the source model m to the target n: if
elements of m are deleted, so are the corresponding elements
of n. If elements of m are modified so that no rule applies to
map an m element to a particular target element, then that
target is deleted (this is the implicit deletion semantics of
QVT-R [8], here made explicit by the τ× rules). Otherwise,
if a modified source element still corresponds by identity to
a valid target element, that target is updated according to
the forward rules. Finally, if a rule applies to map a source
element (new or modified) to a target which does not already
exist, an appropriate target is created. Changes to identity
attribute values are not permitted.

VI. INVERSE TRANSFORMATIONS AND VIEW UPDATES
For the reverse transformation τ←, the roles of Postτ and Invτ
are interchanged: elements of the source model which fail
to satisfy Postτ with respect to some element of the target
model should be deleted or modified. The postcondition of
the reverse transformation τ∼ is Post∼τ , the explicit form of
Invτ . The key difference between τ→ and τ← is that Post∼τ
may involve view updates [4] of the source model, using
implicit changes to source elements based on target data,
because τ is specified using explicit updates of the target
based on the source.

If a predicate such as t.g = s.f→last() or t.g =
s.f→select(P1) is inverted, the result is a predicate
s.f→last() = t.g or s.f→select(P1) = t.g. These are termed
view updates, because they specify an update to s.f based
on the required value of some view, function or selection
of its data. There may not be a unique way to perform such
an update.

We extend the definition of statLC so that the procedural
interpretation statLC (P) of a view update predicate P is a
statement which makes P true by making minimal necessary
changes to s.f , using suitable putE functions which take as
input the previous value s.f@pre of s.f and the updated value
t.g of the target feature: s.f := putE (s.f@pre, t.g). This
approach can be used to implement target-to-source change
propagation for a bx where the target model is constructed
from views of the source model.
Tables 7, 8, 9 show the extended definitions of statLC for

some common view update predicates.
In the cases for tail and front in Table 7, d is the default

element of the element type of f . In the case for collect , e∼

is an inverse to e, defined, for example, according to Table 3.
Notice that in this case, elements are deleted from f if their
e value is not in g, then any extra elements y where y.e is in
g but y is not in f@pre, are added to f . s→intersection(t) is
treated as for s→select(x|x : t).
An assignment t.g = D[s.f→select(P)→collect(bId)]

can be inverted to s.f→select(P) = B[t.g.dId] if D is the
corresponding target entity type for source entity B, and sim-
ilarly for other cases of binary and unary collection operators
in place of select . The view update definitions can therefore
also be used for bx that involve source-target correspondences
using identity attributes.

TABLE 7. View update interpretations for =.

TABLE 8. View update interpretations for :.

TABLE 9. View update interpretations for <:.

An example of a case from Table 8 is the inverse mapping
person2family of family2person. The Post∼ rules in this case
have the form:

Female::
Family->exists(fx | fx.id = familyId &
FamilyMember->exists(m |
m.memberId = personId &
m : fx.mother->union(fx.daughters) &

VOLUME 7, 2019 5235

K. Lano et al.: Declarative Specification of bx Using Design Patterns

fx.name = StringLib.before(name, ", ") &
m.name = StringLib.after(name, ", ")))

The update m : fx.mother→union(fx.daughters) adds m
preferentially to fx.mother , only adding to fx.daughters if
fx.mother is already set.

The cleanup constraints for τ← are as follows in the
general case:

Si ::

SCondi(self) & not(sId : Tj→collect(tId)) H⇒

self→isDeleted()

for each Ci, and

Si ::

SCondi(self) & sId : Tj→collect(tId) &

not(TCondj(Tj[sId])) H⇒ self→isDeleted()

The latter is omitted if TCondj is not present (ie., it is true).
As with the forward transformation, τ← = τ∼×; τ∼.

statLC (Post∼) establishes Inv, whilst the cleanup con-
straints together with Post∼ establish Post . Thus τ← satis-
fies correctness. Hippocraticness follows since neither the
cleanup or Post∼ constraints modify the source model if R
already holds.

View updates can be defined for certain cases of user-
defined functions by using syntactically-derived view update
functions as in [34], [47], and [61]. In particular, any con-
straint predicate P(s, t) which computes a sequence-valued
feature t.g = get(s.f) from sequence-valued s.f by using a
recursively-defined function get on the elements of s.f can be
inverted to s.f = put(s.f@pre, t.g) for a recursively-defined
view update function put .
If get is schematically of the form:

get(x) = if x.size = 0 then Sequence{}

else if P1(x.first, x.tail) then

Sequence{get1(x.first)}
_get(x.tail)

else if . . .

else get(x.tail) endif

Then a corresponding put is defined by:

put(x, y) = if x.size = 0 then Sequence{}

else if P1(x.first, x.tail) then

Sequence{put1(x.first, y.first)}
_

put(x.tail, y.tail)

else if . . .

else put(x.tail, y.tail) endif

where each puti is an update function inverse to geti. Sim-
ilarly for recursively-defined get functions from trees to
sequences [62].

FIGURE 8. UML2C transformation architecture.

VII. CASE STUDY: MAPPING UML TO C
UML-RSDS already contains code generators for three ver-
sions of Java, and for C# and C++. If a code generator
for a new language or language version is required, this can
be written as a UML-RSDS transformation from the design
metamodel (Figure 9 together with an OCL metamodel
and activities metamodel) of UML-RSDS to the abstract
and concrete syntax of the new target language, and then
incorporated as a plugin into the UML-RSDS tools [44].
Here we consider the generation of ANSI C code from
UML, and the extraction of a UML model from a C model.
The code generator is factored into a model-to-model bx
and a model-to-text transformation using the architecture
of Figure 8.

The model-to-model bx design2C has source language
the combined UML-RSDS metamodels for class diagrams,
expressions and activities. Figure 9 shows the class diagram
metamodel. The target language is a simplified version of the
abstract syntax of C programs (Figure 10 shows the type and
program structure parts of this metamodel).

We define design2C using the patterns of Table 2, to
enable it to be used as the basis of a bx between UML and
C. design2C consists of five subtransformations, mapping
separately (i) types, (ii) class diagrams, (iii) expressions,
(iv) activities, (v) use cases to C. Here we consider specifi-
cally the type mapping (i), and give extracts from (ii) and (iii).

TABLE 10. Informal mapping between UML and C.

Table 10 shows the informal mapping between UML and
C for classes, types and attributes.

Primitive types, entity types and collection types are suc-
cessively mapped. typeId : String and ctypeId : String are
new identity attributes introduced for Auxiliary Correspon-

5236 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

FIGURE 9. UML-RSDS class diagram metamodel.

FIGURE 10. C program and types metamodel.

dence Model. These provide a correspondence between the
occurrences of types in the source UML-RSDS design and in
the target C implementation. typeId is a string consisting of
digits.

The postconditions mapping UML types to C are:

PrimitiveType::
name = "int" =>
CPrimitiveType->exists(p |

p.ctypeId = typeId &
p.name = "int")

PrimitiveType::
name = "long" =>
CPrimitiveType->exists(p |

p.ctypeId = typeId &
p.name = "long")

PrimitiveType::
name = "double" =>
CPrimitiveType->exists(p |

VOLUME 7, 2019 5237

K. Lano et al.: Declarative Specification of bx Using Design Patterns

p.ctypeId = typeId &
p.name = "double")

PrimitiveType::
name = "boolean" =>
CPrimitiveType->exists(p |

p.ctypeId = typeId &
p.name = "unsigned char")

PrimitiveType::
name = "String" =>
CPointerType->exists(t |

t.ctypeId = typeId &
CPrimitiveType->exists(p |

p.name = "char" &
t.pointsTo = p))

Entity::
CPointerType->exists(p |
p.ctypeId = typeId &
CStruct->exists(c |

c.name = name &
c.ctypeId = name & p.pointsTo = c))

CollectionType::
name = "Sequence" =>
CArrayType->exists(a |
a.ctypeId = typeId &
a.duplicates = true &
a.componentType =

CType[elementType.typeId])
CollectionType::
name = "Set" =>
CArrayType->exists(c |
c.ctypeId = typeId &
c.duplicates = false &
c.componentType =

CType[elementType.typeId])

For this mapping we require that collection types cannot have
collection element types. Classes correspond to structs by
name, this is a distinct correspondence to that of UML and
C types. The char type has ctypeId equal to the empty string.

In subtransformation (ii), the attributes (and association
ends) owned by a class are mapped to members of its cor-
responding struct:

Entity::
CStruct->exists(c | c.name = name &
ownedAttribute->forAll(p |
CMember->exists(m | m.name = p.name &

m.isKey = p.isUnique &
m.type = CType[p.type.typeId] &
m : c.members)))

The CStruct[name] instance is looked-up by the name pri-
mary key, and is not re-created, according to the Unique
Instantiation for bx pattern. The CType instance correspond-
ing to p.type for each property p is looked up by its ctypeId .

The type mapping constraints conform to the patterns of
Table 2. In particular they include an example of the Entity
Merging (horizontal) pattern: CPointerType instances can
correspond either to String type instances or to entity type
instances. These cases are distinguished in the C language
model, enabling a valid inverse map to be defined. The
mapping of entity types is an example of (vertical) Entity
Splitting: a UML class (entity type) is mapped to a C pointer
type and to a C struct. In this case these target instances both

belong to the same class hierarchy, so they are given distinct
ctypeId key values, both of which are derived 1-1 from the
source instance.

Following the model-to-model transformation design2C ,
a model-to-text transformation genCtext produces C text
from the C metamodel. For example:

CStruct::
("struct " + name)->display() &
"{"->display() &
members->forAll(m |

(" " + m.type + " " +
m.name + ";")->display()) &

"};\n"->display()

A toString() operation is defined on each CType subclass to
give the text representation of the C type.

Using the results of the appendix, we can show that
design2C can be used as the basis for a bx. Apart from the
practical benefits of change propagation in either direction,
the bx property has important theoretical consequences. For
high-integrity refinement transformations, the property of
conservativeness or model-coverage is important [56]: that
all data and information in the refined model is derived from
the original model. The invariant of a refinement expresses
that this property holds. Similarly, the bx relation can
encode model-level semantic preservation/semantic equiva-
lence of the source and target models: that they have equiva-
lent semantics. Finally, the existence of change-propagation
in both directions helps to support round-trip engineering
between UML and C.

Transformation invariants and cleanup constraints can
be derived for design2C→, following the definitions in
Section V and the appendix. The invariants express that
the C representation is derived entirely from the source
UML-RSDS design, and hence conservativeness of the trans-
formation.

The Post∼ constraints provide an explicit inverse (reverse-
engineering or abstraction) transformation design2C←, and
can be derived automatically:

CPrimitiveType::
name = "int" =>
PrimitiveType->exists(t |

t.typeId = ctypeId &
t.name = "int")

CPrimitiveType::
name = "long" =>
PrimitiveType->exists(t |

t.typeId = ctypeId &
t.name = "long")

CPrimitiveType::
name = "double" =>
PrimitiveType->exists(t |

t.typeId = ctypeId &
t.name = "double")

CPrimitiveType::
name = "unsigned char" =>
PrimitiveType->exists(t |

5238 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

t.typeId = ctypeId &
t.name = "boolean")

CPointerType::
p : CPrimitiveType & p.name = "char" &
pointsTo = p =>
PrimitiveType->exists(t |

t.typeId = ctypeId &
t.name = "String")

CPointerType::
c : CStruct & pointsTo = c =>

Entity->exists(e |
e.typeId = ctypeId &
e.name = c.name)

CArrayType::
duplicates = true =>
CollectionType->exists(t |
t.typeId = ctypeId &
t.name = "Sequence" &
t.elementType =

Type[componentType.ctypeId])

CArrayType::
duplicates = false =>
CollectionType->exists(t |
t.typeId = ctypeId &
t.name = "Set" &
t.elementType =

Type[componentType.ctypeId])

The inverse mapping from C members to UML properties
is (from Tables 3, 6):

CStruct::
Entity->exists(e | e.name = name &
members->forAll(m |

Property->exists(p |
p.name = m.name &
p.isUnique = m.isKey &
p.type = Type[m.type.ctypeId] &
p : e.ownedAttribute)))

Source-to-target change propagation is supported by
design2C→. For example, if a type is changed from a Set to a
Sequence in a UML-RSDS model m, then the Post constraint

CollectionType::
name = "Sequence" =>
CArrayType->exists(a |

a.ctypeId = typeId &
a.duplicates = true &
a.componentType =

CType[elementType.typeId])

applies to set duplicates = true for the corresponding C type.
Other parts of the UML to C translation can also be

defined as a bx in the same manner: mappings from
(ii) class diagrams, (iii) expressions and (iv) activities to
corresponding C elements have been defined as part of a
code generator for C in the UML-RSDS tools version 1.8
(https://nms.kcl.ac.uk/kevin.lano/uml2web/). The mappings
(iii) and (iv) use a Recursive Descent style of transforma-
tion, due to the self-recursive structure of expressions and
activities. To invert such transformations, the Inverse Recur-

sive Descent pattern can be used (Figure 6), based upon the
Auxiliary Correspondence Model and Unique Instantiation
patterns for bx, with invariants and inverse rules defined in
a similar manner as for non-recursive rules. As an example,
for the mapping of expressions from OCL to C, we have the
following operation in the role of op in the pattern:

BinaryExpression::
mapBinaryExpression(lexp : CExpression,

rexp : CExpression) : CExpression
pre:

lexp = CExpression[left.expId] &
rexp = CExpression[right.expId]

post:
CBinaryExpression->exists(c |

c.operator =
Expression.cop(operator) &

c.left = lexp & c.right = rexp &
c.type = CType[type.typeId] &
result = c)

This has the inverse op∼ from C to OCL:

CBinaryExpression::
mapCBinaryExpression(lexp : Expression,

rexp : Expression) : Expression
pre:

lexp = Expression[left.cexpId] &
rexp = Expression[right.cexpId]

post:
BinaryExpression->exists(e |

e.operator =
CExpression.uop(operator) &

e.left = lexp & e.right = rexp &
e.type = Type[type.ctypeId] &
result = e)

where cop and uop are dual functions defining the cor-
responding operators in the two languages. For example,
the OCL operator and (&) corresponds to the C operator &&.
The complete transformation consists of over 250 rules and

operations, and is one of the largest UML-RSDS transforma-
tions that have been developed.

VIII. BX SPECIFICATION IN QVT-R
QVT-R [51] was designed as a declarative MT language
supporting (in principle) specification of bidirectional and
multi-directional transformations. However to achieve bidi-
rectionality, various restrictions need to be placed on QVT-R
specifications.

In particular, the use of recursive where invocations
between QVT-R relations can prevent the use of a transfor-
mation as a bx [46], as can the use of ‘black box’ imple-
mentations of relations [51]. In addition, the semantics in
the standard is incomplete and lacks formality. There is
a lack of guidance for the correct organization of specifi-
cations, in particular how data-dependencies and conflicts
between relations should be managed, and there is a lack of
guidance on the construction of specifications that support
bidirectional/multi-directional execution.

To address these problems, we have implemented a formal
and extended version of the logical semantics of [51] as a

VOLUME 7, 2019 5239

K. Lano et al.: Declarative Specification of bx Using Design Patterns

mapping from QVT-R to UML-RSDS. The mapping makes
explicit the semantic meaning of a QVT-R specification in
a form that can be manually inspected or formally analyzed,
including the use of formal proof.

A. QVT-RELATIONS (QVT-R)
QVT-R transformations are defined using relations, which
are rules that relate elements of a source model to correspond-
ing elements of a target model. For example the UML2C
mapping from classes to C structs (and vice-versa) can be
defined by:

top relation Class2CStruct
{ enforce domain design e : Entity

{ name = n };
enforce domain C c : CStruct
{ name = n, ctypeId = n };

}

Relations include at least one domain, each domain is associ-
ated to some model involved in the transformation. Domain
root variables represent elements of the domain model, in this
case an Entity instance e of the design model, and a c :
CStruct instance of the C model. The keyword enforce indi-
cates that the domain elements may be modified by the
relation when executed in the direction of the model of the
domain.

The relation maps an Entity instance to a CStruct instance
when execution is performed in the C model direction.
If instead the relation was executed in the design direction,
a mapping from CStruct to Entity would result. The variable
n : String is an auxiliary (local) variable of the relation, used
to transfer feature values from one domain to the other.

Top relations correspond to use case postcondition con-
straints in UML-RSDS: they are applied to all source ele-
ments which satisfy their application conditions, in an arbi-
trary order. QVT-R also has non-top relations, which only
execute if explicitly invoked from the where clause of a
relation, and in this case the source elements are supplied as
inputs to the called relation via the call parameters. Non-top
relations correspond to update operations in UML-RSDS.

The UML2C mapping from classes to pointer types in
QVT-R is:

top relation Class2CPointerType
{ enforce domain design e : Entity

{ typeId = t };
enforce domain C p : CPointerType
{ ctypeId = t };

}

As with UML-RSDS rules, QVT-R relations Rj may
depend upon the results of previously-executed relations Ri.
In QVT-R these dependencies can be explicitly stated by a
when {Ri(pars)} clause in Rj. For example, the following rela-
tion creates links between existing CPointerType and CStruct
instances:

top relation LinkCPointerTypeCStruct
{ enforce domain design e : Entity { };

enforce domain C p : CPointerType

{ pointsTo = c : CStruct { } };
when
{ Class2CStruct(e,c) and
Class2CPointerType(e,p) }

}

This is an example of theMap objects before links pattern: the
pointsTo link is only set once the objects c and p are available
to link.

We refer to the domain root variables (e and p here) and
the object template variables of their patterns (eg., c) as the
object variables of the relation.

B. USING BX PATTERNS IN QVT-R
Most of the bx patterns described in Section IV can also be
used in QVT-R, to define bx in the language:
• Structure Preservation: simple top relations such as
Class2CStruct above, with no when clause and a single
enforce domain for each model.

• Phased Construction: top relations R which construct a
target element t and reference another top relation R′ in
their when clause to look up a target element t ′ which R
links to t .

• Entity Splitting (horizontal): two or more top relations
which each map the same source domain s : Si to target
elements of different concrete entity types; the relations
have disjoint when conditions; (vertical): top relations
with a single source domain s : Si and multiple (> 1)
target domains/variables.

• Entity Merging (horizontal): two or more top relations
which map source domains of different entity types to
a common target domain t : T , the top relations have
disjoint when conditions; (vertical): top relations with
multiple source domains/object variables and single tar-
get domains/variables.

• Map Objects before Links: a top relation does not create
target elements, instead it links elements created by
other relations, which are listed in its when clause. Eg.,
LinkCPointerTypeCStruct above.

• Lens: relation R computes a target feature t.g as a get
function of source feature(s) s.f . The assignment t.g =
get(s.f) and its inverse s.f = put(s.f@pre, t.g) must
both be included in the where clause of R.3

• Flattening/unflattening: hierarchical structure in the
source model is discarded in the mapping to the tar-
get, possibly together with source elements. The reverse
direction must reassemble the structure/elements.

The Auxiliary Correspondence Model pattern is implicitly
provided by the trace mechanism of QVT-R. It can also be
explicitly introduced bymeans of key declarations, specifying
that designated attributes are identities. Cleanup before Con-
struct is internally implemented by deletion actions (sched-
uled after creation/update actions [51]). Unique Instantiation
is internally implemented by QVT-R’s check-before-enforce
semantics.

3This use of @pre is supported by the QVT-R to UML-RSDS translation.

5240 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

The same concepts of read and write frames rd(), wr()
from UML-RSDS can be adopted for QVT-R. A significant
difference to UML-RSDS is that relations have a desig-
nated application direction, with some domains considered
as sources and others considered as targets. Only features
and entities of target domains can be written by the relation.
In addition, elements bound in the when clause are assumed
to already exist and are not created by the relation. Eg., for
LinkCPointerTypeCStruct above, wr() in the C direction is
just {CPointerType :: pointsTo}, and in the design direction is
empty (the relation has no effect).

Relations may use auxiliary variables to transfer data
between domains, eg., the string-valued variable t in
Class2CPointerType. These are considered internal to the
relation, and – as with local variables in UML-RSDS – they
are not included in its write and read frame.

C. MAPPING QVT-R TO UML-RSDS
For a QVT-R transformation τ on distinct models s : SL and
t : TL we can define corresponding unidirectional UML-
RSDS transformations τ→ and τ← for the two possible
execution directions s to t and t to s of τ . Top relations are
mapped to UML-RSDS rules, and non-top relations to UML-
RSDS operations.

The enforce semantics of QVT-R ([51, Sec. B.2]) is based
upon two predicates create(R,m) and delete(R,m) for each
relation R and model m of the transformation. Enforcement
of R in the m direction consists of applying create(R,m) to
carry out necessary creation/update actions on m required by
R, and then delete(R,m) to delete elements of m which are
not required to exist by R.

In our mappings from QVT-R to UML-RSDS we give
separate formal interpretations Presτ (m), Conτ (m) and
Cleanupτ (m) for the update, creation and deletion phases
of a relational transformation τ executed in the direction of
model m. As in the QVT-R to QVT-Core mapping of [51],
trace entities R$trace are used to record when relations R on
source domains s and target domains t have been successfully
applied: R$trace has properties x : E for all the object
variables x : E of R. A tuple (a, b) for source elements a and
target elements b should be in the trace R$trace iff R has been
successfully applied to a to update or create b, and all these
elements exist. These traces are tested when R(a, b) occurs as
a rule call in a when clause.

For relation R, PresR(m) is a UML-RSDS constraint that
definesR’s change-propagation actions for elements that have
already been matched (ie., by a previous execution of τ), it is
defined as

R$trace ::

whenp &
∧

d∈sdom
cpred(d) H⇒∧

d∈tdom
epred(d) & wherep

whenp is the logical interpretation of thewhen clause,wherep
of the where clause, cpred(d) of a non-target domain d ,
epred(d) of a target domain d of m, and the conjunction is

taken over all non-target domains sdom in the antecedent
(ie, domains with models m′, m′ 6= m), and over target
domains tdom in the succedent (ie, domains with model m).
The scope of any exists quantifiers in the epred formulae
are extended over the remainder of the succedent. Details of
whenp, wherep, cpred and epred are given in [36]. We collect
all PresR(m) constraints for both top and non-top R into a
UML-RSDS use case Presτ (m) representing a first trans-
formation phase Presτ (m) of τ executed in the m direction.
This phase propagates element feature changes from source
models to m.
For example, PresClass2CStruct (C) is

Class2CStruct$trace ::

n = e.name H⇒

c.name = n & c.ctypeId = n

This constraint propagates name changes from Entity
instances to CStructs.
ConR(m) deals with the case of creation of newm elements

and R traces, for top relations R. It only applies if the source
elements s1, . . . are not already in R$trace:

::

whenp &
∧

d∈sdom
cpred(d) &

not(R$trace→exists(tr|
∧

i
tr .si = si)) H⇒∧

d∈tdom
epred(d) & wherepx

wherepx includes the creation R$trace→exists(tr|
∧

i tr .si =
si &

∧
j tr .tj = tj) of a new trace. Again, exists quantifiers in

the succedent apply over all of the succedent following their
introduction. A predicate θR(m) is formed as for ConR(m) but
without the predicates on R$trace. The ConR(m) constraints
are placed in a use case representing a second τ phase,
Conτ (m). These constraints propagate element creation from
source models to m.
For example, ConClass2CStruct (C) is:

::

e : Entity & n = e.name &

not(Class2CStruct$trace→exists(tr|tr .e = e)) H⇒

CStruct→exists(c|c.name = n &

c.ctypeId = n &

Class2CStruct$trace→exists(tr|

tr .e = e &

tr .c = c))

Unique instantiation/least change semantics is used for the
operational interpretation of the exists quantifier: if x : X
already exists such that P holds for x, then X→exists(x|P)
in a succedent does not recreate x. Target elements identified
by a key value are looked-up by that value and re-used if they
already exist. We use the statLC (P) semantics of Section III-C
for the least-change procedural interpretation of predicates P.

VOLUME 7, 2019 5241

K. Lano et al.: Declarative Specification of bx Using Design Patterns

The Cleanupτ (m) phase of τ removes any spurious target
elements which have not been produced by any relation.
For target entity E of m, CleanupE is defined as:

E ::

not(r1$trace→exists(r1|r1.e1 = self)) & . . . &

not(rm$trace→exists(rm|rm.em = self)) H⇒

self→isDeleted()

where the rk , k = 1 to m, are all the relations (top or non-
top) in which the entity E occurs as the type of some target
domain or target object template ek : E . All Cleanup con-
straints are placed in a final τ phase, Cleanupτ (m). Unlike in
UML-RSDS, where the cleanup constraints precede the main
transformation, in QVT-R the cleanup actionsmust follow the
Conτ (m) phase because traces are explicitly constructed by
that phase, instead of being implicit based on identity attribute
values.

For example, CleanupCStruct is:

CStruct ::

not(Class2CStruct$trace→exists(tr|

tr .c = self)) &

not(LinkCPointerTypeCStruct$trace→exists(tr|

tr .c = self)) H⇒

self→isDeleted()

The Cleanup constraints propagate element deletion from
source models to m, because if any element of a trace object
is deleted, so is the trace.

Additionally, non-top rules R are interpreted as opera-
tions with postconditions defined as for ConR(m). Details are
in [36]. Regarding the overrides clause, we follow [64] in
removing this by expanding out the definition of an overrid-
den relation to include an additional when predicate which
expresses that no overriding relation is applicable. A when
test on an overridden abstract relation R(pars) is expanded
to be a disjunction R1(pars) or . . . or Rn(pars) on all the
concrete relations Ri overriding R.

For each execution direction, the three phases are
executed in the order Presτ (m);Conτ (m);Cleanupτ (m),
and together should establish the following as post-
conditions of τ : (i) that any existing target object
tx : E of m must appear as a target property of
some trace: E→forAll(tx|r1$trace→exists(r1|r1.t1 =

tx) or . . . or rm$trace→exists(rm|rm.tm = tx)) where the
ri are as for CleanupE ; (ii) that all trace objects in R$trace
satisfy the logical relation θR(m) defined by R (ie., PresR(m)
holds); (iii) for top relations R, that any tuple of source
elements that satisfy the antecedent ϕR of θR(m) appears in
some R$trace.

The following restrictions are needed on the QVT-R spec-
ification τ in order that (i), (ii), (iii) are established by its
logical interpretation: (a) No target features/entity names
occur in the when clause or source domain patterns of any

relation; (b) If two relations both write to the same target
features or entities, these updates are non-conflicting (ie, they
create/update disjoint sets of elements of the same target
entity, or update disjoint sets of features of instances of the
entity); (c) there are no self-conflicts of a relation R, ie., one
application of R cannot invalidate a different application; (d)
for anymandatory target model associationA m1—1

r B, the a.r
element for a : A must be created/linked to a by τ if a is
created by τ .

Assuming (a), (b) and (c), the Presτ (m) phase establishes
invariant (ii), since by (a) no target features/entities occur on
the LHS of a Pres constraint, and by (b) and (c) the effect of
onePres constraint application is not invalidated by any other.
Likewise, the Conτ (m) phase establishes (iii) at its termina-
tion and preserves (ii), if there is no conflict between relation
applications (of the same or different relations). For separate-
models transformations, the Cleanup constraints establish (i)
and do not invalidate (ii) or (iii) because they only update the
target model, not the source or traces. Condition (d) ensures
that deletion propagation from a whole to a part object does
not delete elements that are in traces (if the part is in a trace,
so must the whole be). Thus by (a) and (d) Cleanupτ (m) does
not affect the truth of any Con or Pres constraint for target
model m.
If conditions (i), (ii) and (iii) hold, then neither Presτ (m),

Conτ (m) or Cleanupτ (m) have any effect. Therefore τ

directed at m satisfies the bx conditions of correctness and
hippocraticness with respect to (i), (ii) and (iii) as a definition
of the transformation consistency relation R between source
and target models (Section I).

It is possible for τ to satisfy the correctness conditions (a)
to (d) in one execution direction but not in others. For a bx,
we require that the conditions hold in all execution directions.

The following design guidelines for QVT-R should also
be observed: (e) Use when dependencies between top-level
relations where possible, in preference to where invocations
of relations; (f) The when dependencies should be acyclic
and reflect data-dependency relations between relations. Map
Objects Before Links can be used to remove circular depen-
dencies; (g) Relations should be listed in order of their depen-
dencies so that later relations depend only on earlier ones; (h)
There should be no where clauses invoking top relations, and
no negated relation calls in when clauses.
If these conditions and the previous restrictions (a) to (d)

are satisfied for a separate-models transformation τ , then the
constraints of Conτ (m) and Presτ (m) can be implemented
as bounded loops over their source elements, simplifying
verification and potentially improving efficiency.

While the above semantics follows closely that given
in [51], it is not optimally efficient. Further improvements
in efficiency can be made by using traces to lookup target
elements based on source elements, as in UML-RSDS and
ATL, instead of performing iterations through all traces.

We have automated this optimised mapping from QVT-R
to UML-RSDS as a facility to import QVT-R transformations
in UML-RSDS version 1.8.

5242 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

IX. EVALUATION
In this section we evaluate the efficiency of the bx produced
by our two approaches, using the list reversal example of [63],
identify differences in the expressiveness of the approaches,
and summarise the advantages and disadvantages of the
approaches.

The list reversal case is used by [63] to compare different
implementation approaches for QVT-R. Figure 11 shows the
metamodels of the case.

FIGURE 11. List reversal metamodels.

In the UML-RSDS version of this case study the name
attributes of the list and element classes are assumed to be
identity attributes. The forward rules are:

DoublyLinkedList ::

DoublyLinkedList1→exists(l|l.name = name)

Element ::

Element1→exists(e|e.name = name &

e.list = DoublyLinkedList1[list.name])

Element ::

e = Element1[name] H⇒

e.target = Element1[source.name]

This uses Structure preservation, Phased construction and
Map objects before links, and is automatically invertible
according to Tables 5, 6.

In our QVT-R version, Map objects before links is used to
remove dependence of element2element on itself:

top relation list2list
{ enforce domain forward

flist : DoublyLinkedList
{ name = n };

enforce domain reverse
rlist : DoublyLinkedList1
{ name = n };

}

top relation element2element
{ enforce domain forward

fElement : Element
{ list = fList : DoublyLinkedList {},

name = n };
enforce domain reverse
rElement : Element1

{ list = rList : DoublyLinkedList1{},
name = n };

when { list2list(fList,rList) }
}

top relation link2link
{ enforce domain forward

fElement : Element
{ target = fTarget : Element {} };

enforce domain reverse
rElement : Element1
{ source = rSource : Element1 {} };

when
{ element2element(fElement,rElement)
and
element2element(fTarget, rSource) }

}

The QVT-R version does not need to assume that name
attributes are identities for tracing purposes, but instead
this restriction is needed in order to ensure absence of
self-conflicts in the relations (if two different elements
in the source list had the same names they would be
mapped to a single target element by element2element , and
link2link would then attempt to set conflicting links for this
element).

FIGURE 12. Efficiency of QVT-R versus UML-RSDS.

Figure 12 shows the execution time in ms of the
UML-RSDS version and the QVT-R (translated via
UML-RSDS) version, using generated Java 4 code on a 32-bit
JVM and single core of a 2.53GHz Intel i3Windows 7 laptop.
The UML-RSDS version has a low time complexity, and
is comparable to the performance of optimised versions of
the case presented in [63]. The QVT-R via UML-RSDS
version is less efficient, because of its more complex trace
management. We also show the execution time using Medini
QVT (projects.ikv.de/qvt) to execute the QVT-R version.
This uses a 32-bit JVM on a 2.6GHz Intel i7 machine. The
execution time is substantially higher than the QVT-R via
UML-RSDS implementation approach.

The expressiveness of UML-RSDS and QVT-R is simi-
lar, when restricted to follow bx pattern structures and the

VOLUME 7, 2019 5243

K. Lano et al.: Declarative Specification of bx Using Design Patterns

guidelines (a) to (h) above for QVT-R. The QVT-R restriction
(a) corresponds to a UML-RSDS constraint being type 1.
Restriction (b) is semantic non-interference in a UML-RSDS
transformation. Restriction (c) is internal consistency and
confluence for a UML-RSDS rule.

A structure-preservation constraint Ci using Auxiliary
Correspondence Model

Si ::

SCondi(self) H⇒

Tj→exists(t|t.tId = sId &

TCondj(t) & Pj(self , t))

in UML-RSDS corresponds to a QVT-R relation:

top relation mapSiToTj
{ enforce domain src s : Si

{ sId = id }{ SCondi(s) };
enforce domain trg t : Tj
{ tId = id }{ TCondj(t) };

where { Pj(s,t) }
}

executed in the trg direction. This is a structure preservation
relation in QVT-R.

A difference in expressiveness in this case is that the where
clause in our extended QVT-R can also contain the dual pred-
icate P∼j (s, t). This is not possible in UML-RSDS because
there is no restriction of constraint write-frames based on
execution direction.

A phased construction constraint has the same structure but
Pj(s, t) has the form PCondj(s, t) & t.rr = TRef [s.r .idSRef]
to assign a value to an association role end t.rr based on
prior mappings of SRef and TRef elements. In QVT-R this
becomes:

top relation mapSiToTj
{ enforce domain src s : Si

{ sId = id, r = sref : SRef {} }
{ SCondi(s) };
enforce domain trg t : Tj
{ tId = id, rr = tref : TRef {} }
{ TCondj(t) };
when { mapSRefToTRef(sref,tref) }
where { PCondj(s,t) }

}

This is a phased construction relation in QVT-R. Note that the
mapping from r to rr is done element-by-element instead of
by a single assignment as in UML-RSDS.

An entity-splitting (vertical) constraint

Si ::

SCond1(self) H⇒

Tk→exists(t1|t1.t1Id = sId &

Tl→exists(t2|

t2.t2Id = sId & TCond1(t1) &

TCond2(t1, t2) & P(self , t1, t2)))

corresponds to an entity-splitting (vertical) relation:

top relation mapSiToTkTl
{ enforce domain src s : Si

{ sId = id }{ SCond1(s) };
enforce domain trg t1 : Tk
{ t1Id = id }{ TCond1(t1) };

enforce domain trg t2 : Tl
{ t2Id = id }{ TCond2(t1,t2) };

where { P(s,t1,t2) }
}

Likewise for horizontal splitting and for entity merging con-
staints.

A flattening constraint

E ::

f : fs & FCond(f) H⇒

G→exists(g|

g.gId = f .fId & g.eId = eId &

GCond(g) & P(self , f , g))

corresponds to a flattening relation in QVT-R:

top relation mapEToG
{ enforce domain src e : E

{ eId = id, fs = f : F { fId = fid } }
{ FCond(f) };

enforce domain trg g : G
{ gId = fid, eId = id }{ GCond(g) };
where { P(e,f,g) }

}

A map objects before links linking constraint

Si ::

Tj[idSi].rr = TRef [r .idSRef]

corresponds to a linking relation in QVT-R:

top relation linkTjTRef
{ enforce domain src s : Si

{ r = sref : SRef { idSRef = idref }};
enforce domain trg t : Tj
{ rr = tref : TRef { idTRef = idref }};
when
{ mapSiToTj(s,t) and
mapSRefToTRef(sref,tref)

}
}

mapSiToTj is a preceding rule that maps Si to Tj, and
mapSRefToTRef a preceding rule that maps SRef to TRef .
In the QVT-R version the linking occurs element-by-element
(if r and rr are collection-valued), whilst in UML-RSDS the
expression TRef [r .idSRef] computes in one step the collec-
tion of all TRef elements linked to any self .r element.

Operations called by UML-RSDS rules can be mapped
to QVT-R non-top relations (if they involve element cre-
ation/modification) or to QVT-R query functions (if they
are purely functional). Overall, conditions (e) to (h) for
the resulting QVT-R transformation follow by construc-
tion and from syntactic non-interference of the UML-RSDS
transformation.

The inverse recursive descent pattern is not needed in
QVT-R because the same effect can be achieved using rule

5244 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

TABLE 11. Comparison of UML-RSDS and QVT-R approaches.

inheritance. We can conclude that the expressiveness of the
approaches is similar when restricted to the bx patterns and
guidelines, and that usages of patterns in UML-RSDS trans-
late into usages of the same patterns in QVT-R.

Table 11 compares the advantages and disadvantages of the
two approaches we have presented in this paper. Whilst the
UML-RSDS approach has advantages of efficiency and con-
ciseness, the reverse transformation is derived as a secondary
construct from the forward transformation. In QVT-R a single
specification text describes both directions. In the Lens case
this enables the specifier to write both put and get functions
together, and to create new function pairs as necessary, whilst
in UML-RSDS the put is looked-up in a fixed catalogue of
put/get pairs.

X. CONCLUSION
We have defined a declarative approach for defining bidi-
rectional transformations in UML, based on use cases with
dual postcondition and invariant relations between source and
target models. These use cases permit many-to-one and one-
to-many bx, in addition to bijections. The definition of bx and
their analysis is supported by the UML-RSDS tools [42].

By using standard UML notations and concepts, our
approach should enable bx specifications to be retained and
maintained independently of particular transformation tech-
nologies. The use of OCL for transformation specification
facilitates the automated derivation of transformation invari-
ants and reverse rules. Translations from ATL and ETL to
UML-RSDS have been developed [37], [40], and these poten-
tially enable our bx approach to also be applied to unidi-
rectional transformations in these languages. Our approach
scales up to transformations of practical size, and we have
given extracts from a UML to C code generator with over
250 mapping rules and operations.

We have also described an approach using QVT-R, utilis-
ing a translation from QVT-R to UML-RSDS to extend the
expressiveness of QVT-R, and to provide efficient execution
of different directions of the QVT-R specifications. We have
described how bx patterns can be used in QVT-R to support
the definition of bx in the language.

APPENDIX
CORRECTNESS AND HIPPOCRATICNESS
PROPERTIES FOR τ→

In this section we give a formal justification that bx defined
using the UML specification approach described in Section V
do satisfy the bx properties of correctness and Hippocrat-
icness, and that they satisfy local Hippocraticness and least
change principles subject to some restrictions.

We consider the case of UML-RSDS transformations τ that
satisfy the patterns of Table 2, with source language entities
Si and target language entities Tj, and whose constraints
are of type 1, satisfying syntactic non-interference. Identity
attributes are used to implement Auxiliary Correspondence
Model. This means that τ is a separate-models transforma-
tion with source language SL and target language TL, and
postcondition Postτ is an ordered conjunction of constraints
Ci each of the form:

Si ::

SCondi(self) H⇒

Tj→exists(t|t.tId = sId &

TCondj(t) & Pj(self , t))

Invτ is therefore a conjunction of constraints Invi of the form

Tj ::

TCondj(self) H⇒

Si→exists(s|tId = s.sId &

SCondi(s) & Pj(s, self))

A consequence is that Si→select(SCondi) and
Tj→select(TCondj) are isomorphic, with the isomorphism
given by mapping s : Si to Tj[s.sId].
The simplified cleanup constraints for τ→ are therefore:

Tj ::

TCondj(self) & Si[tId]→oclIsUndefined() H⇒

self→isDeleted()

and

Tj ::

TCondj(self) & tId : Si→collect(sId) &

not(SCondi(Si[tId])) H⇒ self→isDeleted()

The second constraint is omitted if SCondi is absent (ie., true).
We denote the collection of the cleanup constraints by
Cleanup. These are the postconditions of τ×.

Bx correctness holds, since the cleanup constraints
together with Postτ establish Invτ : the Cleanup constraints
remove any target model elements that fail to correspond
by identity to source model elements in the domain of
τ , and Postτ modifies target model elements that do cor-
respond to valid source elements, in order to re-establish
Invτ . By construction, statLC (Postτ) preserves Invτ and
establishes Postτ . Therefore, the sequential composition of

VOLUME 7, 2019 5245

K. Lano et al.: Declarative Specification of bx Using Design Patterns

statLC (Cleanup) and statLC (Postτ) establishes the bx relation
R as Postτ & Invτ .
Hippocraticness holds, since statLC (Cleanup) has no

effect if the models already satisfy R, and neither does
statLC (Postτ), due to the Unique Instantiation interpretation
of the exists operator. Local hippocraticness holds in the sense
that if corresponding elements s : Si and t = Ti[s.sId] already
satisfyCi and Invi, then their attribute values are not modified
by τ→. t may however be deleted as a consequence of target
element deletions from cleanup actions of other rules, and to
avoid this we need the condition on TL that Ti is not subject
to deletion propagation from any entity type in wr(τ). These
restrictions are also assumed in the following cases.

The principle of least change is satisfied, since changes
to the source model either lead to deletion of the target
elements (and their incident links) which cannot be modi-
fied to correspond to source elements (cases (i) and (ii) in
Section V), and deletion of any other elements required by
deletion propagation, or to creation/modification of target
elements, using statLC (Ci). But statLC (Ci) is designed as a
minimally-intrusive update to the target model which will
establish Ci. Interpreting a quantifier Tj→exists(t|P) using
Unique Instantiation means that un-necessary creation of
target elements is avoided.

Amore complex case is EntityMerging (Section IV). In the
horizontal version of this pattern two or more source entity
types Si, Sj may map to the same target entity type Tk :

Si ::

SCondi(self) H⇒

Tk→exists(t|t.tId = s1Id &

TCondi(t) & Pi(self , t))

and

Sj ::

SCondj(self) H⇒

Tk→exists(t|t.tId = s2Id &

TCondj(t) & Pj(self , t))

Provided that the respective TCondi, TCondj condi-
tions are pairwise disjoint, and the sets of identities of
Si→select(SCondi) and Sj→select(SCondj) are disjoint,
the same construction and argument for the bx correctness
apply as in the Structure Preservation case. The invariants are

Tk ::
TCondi(self) H⇒

Si→exists(s|s.s1Id = tId &
SCondi(s) & Pi(s, self))

and

Tk ::
TCondj(self) H⇒

Sj→exists(s|s.s2Id = tId &
SCondj(s) & Pj(s, self))

and hence Si→select(SCondi) is isomorphic to
Tk→select(TCondi) and Sj→select(SCondj) is isomorphic
to Tk→select(TCondj). Semantic non-interference of Postτ
holds, because the set of Tk instances produced from Si is
disjoint from the set produced from Sj, although syntactic
non-interference fails. Cleanup constraints can be derived
from the invariants as for the previous cases. The vertical
variant is treated similarly.

Entity Splitting (Section IV) involves one source entity
type mapping to two or more different target entity types.
As for entity merging, there are two versions of this pattern:
(i) two or more separate postconditions on Si, with disjoint
SCondi conditions, mapping to distinct target entity types
Tk , Tl ; (ii) a single constraint which maps one Si instance
to multiple linked instances of different Tj. The first case is
the reverse of Entity Merging (horizontal), and can be treated
in a similar way to the Structure Preservation case, provided
that syntactic or semantic non-interference of Postτ holds.
The second case is common in refinement transformations,
and in some migrations. Constraints, eg., C1, will have the
form

S1 ::
SCond1(self) H⇒ T1→exists(t1|t1.t1Id = sId &

T2→exists(t2|t2.t2Id = sId & TCond1(t1) &
TCond2(t1, t2) & P1(self , t1, t2)))

Both t1 and t2 are given id values self .sId (in the case that T1
and T2 are not disjoint, distinct identifier values derived 1-1
from source instances should be used instead). This should
be the only constraint in the transformation that creates T2
instances. Other constraints can create T1 instances if their
TCond conditions are disjoint from TCond1.
Inv1 is of the form

T1 ::
TCond1(self) & t2 : T2 & t2.t2Id = t1Id &
TCond2(self , t2) H⇒

S1→exists(s|t1Id = s.sId & SCond1(s) &
P1(s, self , t2))

The t2 : T2 expression acts like an additional
T2→forAll(t2| . . .) quantifier over the remainder of the con-
straint. The conjunction t2 : T2 & t2.t2Id = t1Id can
be optimised to t2 = T2[t1Id]. For this type of rule,
S1→select(SCond1) is isomorphic to T1→select(TCond1),
however parts of the data of elements s : S1 may be repre-
sented in the t2 : T2 instances linked to the t1 : T1 instance
corresponding to s, rather than directly in t1.

The cleanup constraints for such constraints are:

T1 ::

TCond1(self) & t2 = T2[t1Id] &

TCond2(self , t2) &

not(S1→exists(s|t1Id = s.sId & SCond1(s))) H⇒

self→isDeleted() & t2→isDeleted()

5246 VOLUME 7, 2019

K. Lano et al.: Declarative Specification of bx Using Design Patterns

The effect of such a bx is that a ‘cluster’ of target instances
(such as t1, t2) are related to each source instance, with
all elements of the cluster having identities based on the
source instance identity value. An example in UML2C is the
mapping of a UML class to a CStruct and a CPointerType.

Again, statLC (Postτ) establishes Postτ and preserves Invτ ,
whilst statLC (Cleanup) together with statLC (Postτ) estab-
lishes Invτ . Thus correctness follows. Hippocraticness holds
because target model pairs (or clusters) t1, t2, . . . are only
deleted if they do not correspond to a source instance. Unique
Instantiation can apply to multiple exists quantifiers in the
same manner as to single quantifiers. Local hippocraticness
applies to a source entity type instance and its corresponding
target cluster. The principle of least change follows from the
minimality of statLC (Ci) as an activity to establish Ci. The
treatment of Flattening/Unflattening is similar. The general
form of the forward rule is

E ::
f : fs & FCond(f) H⇒

G→exists(g|
g.gId = f .fId & g.eId = eId &
GCond(g) & P(self , f , g))

The corresponding invariant is

G ::
GCond(self) H⇒

E→exists(e|e.eId = eId &
F→exists(f |f .fId = gId & f : e.fs &

FCond(f) & P(e, f , self)))

F→select(FCond) is isomorphic to G→select(GCond),
provided that every F instance occurs in some e.fs collection
for some e : E .
The simplified cleanup constraint is:

G ::

GCond(self) &

not(E→exists(e|e.eId = eId &

F→exists(f |f .fId = gId & FCond(f)))) H⇒

self→isDeleted()

That is, g : G is deleted if either its corresponding source
element or source container are deleted. The case of a move-
ment of an element from one container to another is handled
by the Postτ constraints, which updateG :: eId to re-establish
Invτ . Other changes to the source model are also propagated
to the target by Postτ , thus correctness holds. Hippocraticness
holds since neither the cleanup or Postτ constraints modify
the target model if Postτ & Invτ already holds.
For Inverse Recursive Descent (Figure 6), the invariant is:

F ::

FCond H⇒ E→exists(e|e.eId = fId &

ECond(e) & e.esub = ESub[fsub.fId] &

P(e, self))

From this the cleanup constraints can be derived as for Phased
Construction above. The cleanup constraints propagate dele-
tion of E instances to F instances. The operation calls prop-
agate feature changes and object creation from the source to
the target model – for elements that the operation is applied
to. The specifier should ensure that the operation is always
invoked on all instances of E satisfying ECond .

For the Map Objects before Links pattern (Figure 2), the
construction of target instances is separated from the linking
of these instances. In the case that Si corresponds to Tj and
SRef to TRef via one of the other patterns considered above,
the linking constraints have the form:

Si ::

Tj[idSi].rr = TRef [r .idSRef]

These define target model association ends rr from source
model association ends r , looking-up target model elements
Tj[idSi] and TRef [r .idSRef] which have already been created
by preceding constraint(s). The linking constraints can be
inverted to a dual form which defines source data from target
data as:

Tj ::

Si[idTj].r = SRef [rr .idTRef]

according to Table 6.
The invariant for the linking constraint is:

Si ::

Tj[idSi].rr ⊆ TRef [r .idSRef]

That is, every element of t.rr should correspond to an element
of s.r , if s and t correspond.
Cleanup constraints are not needed for linking constraints,

because deletion of SRef instances is propagated to dele-
tion of TRef instances by the cleanup constraint for TRef
construction (destruction of an instance includes removing it
from every association end inwhich it resides, in UML-RSDS
semantics). Other modifications to r are propagated to rr by
the linking constraint itself.

By a similar argument to the previous cases, bx correct-
ness, hippocraticness and least change can be shown. The
re-establishment of Postτ and Invτ for corresponding source
and target elements is now performed by combination of the
construction and linking Postτ constraints.

REFERENCES
[1] A. Anjorin, T. Buchmann, and B. Westfechtel, ‘‘The families to persons

case,’’ in Proc. 10th Transf. Tool Contest (TTC), A. Garcia-Dominguez, G.
Hinkel, and F. Krikava, Eds., 2017.

[2] A. Anjorin, G. Varró, and A. Schürr, ‘‘Complex attribute manipulation
in TGGs with constraint-based programming techniques,’’ in Proc. BX
Electron. Commun. (EASST), vol. 49, 2012.

[3] A. Anjorin and M. Lauder, ‘‘A solution to the flowgraphs case study using
triple graph grammars and eMoflon,’’ Electron. Proc. Theor. Comput. Sci.,
vol. 135, 2013, doi: 10.4204/EPTCS.135.8.

[4] F. Bancilhon and N. Spyratos, ‘‘Update semantics of relational views,’’
ACM Trans. Database Syst., vol. 6, no. 4, pp. 557–575, 1981.

VOLUME 7, 2019 5247

http://dx.doi.org/10.4204/EPTCS.135.8

K. Lano et al.: Declarative Specification of bx Using Design Patterns

[5] M. Beine, N. Hames, J. Weber, and A. Cleve, ‘‘Bidirectional transforma-
tions in database evolution: A case study ‘at scale,’’’ in Proc. EDBT/ICDT,
2014, pp. 100–107.

[6] G. Bergmann, C. Debreceni, I. Rath, and D. Varro, ‘‘Query-based access
control for secure collaborative modeling using bidirectional transforma-
tions,’’ in Proc. MODELS, 2016, pp. 351–361.

[7] L. Burgueño, J. Troya, M. Wimmer, and A. Vallecillo, ‘‘Static fault local-
ization in model transformations,’’ IEEE Trans. Softw. Eng., vol. 41, no. 5,
pp. 490–506, May 2015.

[8] J. Bradfield and P. Stevens, ‘‘Enforcing QVT-R with mu-calculus and
games,’’ in Fundamental Approaches to Software Engineering—FASE
(Lecture Notes in Computer Science), vol. 7793, V. Cortellessa and D.
Varró, Eds. Berlin, Germany: Springer, 2013.

[9] J. Cabot, R. Clariso, E. Guerra, and J. de Lara, ‘‘Verification and validation
of declarative model-to-model transformations through invariants,’’ J. Syst.
Softw., vol. 8, no. 2, pp. 283–302, 2009.

[10] J. Cheney, J. McKinna, P. Stevens, and J. Gibbons, ‘‘Towards a repository
of bx examples,’’ in Proc. EDBT/ICDT, 2014, pp. 87–91.

[11] A. Cicchetti, D. Di Ruscio, R. Eramo, and A. Pierantonio, ‘‘JTL: A bidi-
rectional and change propagating transformation language,’’ in Software
Language Engineering (Lecture Notes in Computer Science), vol. 6563.
2011, pp. 183–202.

[12] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. Terwilliger,
‘‘Bidirectional transformations: A cross-discipline perspective,’’ in Proc.
GRACE Workshop, 2008, pp. 260–283.

[13] A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, ‘‘Constraint-driven
modeling through transformation,’’ Softw., Syst. Model., vol. 14, no. 2,
pp. 573–596, 2015.

[14] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, and G. Taentzer, ‘‘Infor-
mation preserving bidirectional model transformations,’’ in Fundamental
Approaches to Software Engineering. 2007, pp. 72–86.

[15] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt,
‘‘Combinators for bi-directional tree transformations,’’ ACM Trans. Pro-
gram. Lang. Syst., vol. 29, no. 3, p. 17, 2007.

[16] H. Giese, S. Glesner, J. Leitner, W. Schäfer, and R. Wagner, ‘‘Towards
verified model transformations,’’ in Proc. MODEVA, 2006, pp. 78–93.

[17] H. Giese and R. Wagner, ‘‘From model transformation to incremental
bidirectional model synchronisation,’’ Softw., Syst. Model., vol. 8, no. 1,
pp. 21–43, 2009.

[18] H. Giese, S. Hildebrant, and S. Neumann, ‘‘Model synchronization at
work: Keeping SysML andAUTOSARmodels consistent,’’ inProc. ICMT,
2010, pp. 555–579.

[19] M. Gogolla and A. Vallecillo, ‘‘Tractable model transformation testing,’’
in Proc. 7th Eur. Conf. Modeling Found. Appl., 2011, pp. 221–235.

[20] T. Goldschmidt and G. Wachsmuth, ‘‘Refinement transformation support
for QVT relational transformations,’’ in Proc. ENCS, 2011, pp. 1–14.

[21] J. Greenyer and E. Kindler, Softw. Syst. Model., vol. 9, p. 21, 2010.
[22] E. Guerra, J. de Lara, and F. Orejas, ‘‘Inter-modelling with patterns,’’

Softw., Syst. Model., vol. 12, no. 1, pp. 145–174, 2013.
[23] E. Guerra, J. de Lara, D. Kolovos, R. Paige, and O. M. dos Santos,

‘‘Engineering model transformations with transML,’’ Softw., Syst. Model.,
vol. 12, no. 3, pp. 555–577, 2013.

[24] E. Guerra and J. de Lara, ‘‘Colouring: Execution, debug and analysis of
QVT-relations transformations through coloured Petri nets,’’ Softw., Syst.
Model., vol. 13, no. 4, pp. 1447–1472, 2014.

[25] F. Hermann, N. Nachtigall, B. Braatz, S. Gottmann, and T. Engel, ‘‘Solving
the FIXML2 code-case study with HenshinTGG,’’ TTC, Toronto, ON,
Canada, Tech. Rep., 2014.

[26] F. Hermann et al., ‘‘Triple graph grammars in the large for translating
satellite procedures,’’ in Proc. ICMT, 2014, pp. 122–137.

[27] F. Hermann et al., ‘‘Model synchronization based on triple graph gram-
mars: Correctness, completeness and invertibility,’’ Softw., Syst. Model.,
vol. 14, no. 1, pp. 241–269, 2015.

[28] T. Hettel, M. Lawley, and K. Raymond, ‘‘Model synchronisation: Defini-
tions for round-trip engineering,’’ in Proc. ICMT, 2008, pp. 31–45.

[29] S. Hidaka, M. Tisi, J. Cabot, and Z. Hu, ‘‘Feature-based classification
of bidirectional transformation approaches,’’ Softw., Syst. Model., vol. 15,
no. 3, pp. 907–928, 2016.

[30] Z. Hemel, L. C. L. Kats, D.M. Groenewegen, and E. Visser, ‘‘Code genera-
tion by model transformation: A case study in transformation modularity,’’
Softw., Syst. Model., vol. 9, no. 3, pp. 375–402, 2010.

[31] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, ‘‘ATL: A model transfor-
mation tool,’’ Sci. Comput. Program., vol. 72, nos. 1–2, pp. 31–39, 2008.

[32] M. Kleiner, M. D. Del Fabro, and D. De Santos, ‘‘Transformation
as search,’’ in Proc. ECMFA, in Lecture Notes in Computer Science,
vol. 7949. 2013, pp. 54–69.

[33] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, ‘‘The Epsilon transforma-
tion language,’’ in Proc. ICMT, 2008, pp. 46–60.

[34] M. Kramer and K. Rakhman, ‘‘Automated inversion of attribute mappings
in BX,’’ in Proc. 5th Int. Workshop Bidirectional Transformations (Bx), A.
Anjorin and J. Gibbons, Eds. ETAPS, 2016.

[35] K. Lano and S. Kolahdouz-Rahimi, ‘‘Constraint-based specification of
model transformations,’’ J. Syst. Softw., vol. 88, no. 2, pp. 412–436,
Feb. 2013.

[36] K. Lano. (2018). The UML-RSDS Manual. [Online]. Available:
www.dcs.kcl.ac.uk/staff/kcl/uml2web/umlrsds.pdf

[37] K. Lano, T. Clark, and S. Kolahdouz-Rahimi, ‘‘A framework for model
transformation verification,’’ Formal Aspects Comput., vol. 27, no. 1,
pp. 193–235, 2015.

[38] K. Lano and S. Kolahdouz-Rahimi, ‘‘Model-transformation design pat-
terns,’’ IEEE Trans. Softw. Eng., vol. 40, no. 12, pp. 1224–1259, Dec. 2014.

[39] K. Lano, S. Kolahdouz-Rahimi, and S. Yassipour-Tehrani, ‘‘Patterns for
specifying bidirectional transformations in UML-RSDS,’’ in Proc. ICSEA,
2015.

[40] K. Lano, S. Kolahdouz-Rahimi, and S. Yassipour-Tehrani, ‘‘Model trans-
formation semantic analysis by transformation,’’ in Proc. VOLT, 2015.

[41] K. Lano and S. Yassipour-Tehrani, ‘‘Verified bidirectional transformations
by construction,’’ in Proc. VOLT, 2016, pp. 28–37.

[42] K. Lano,AgileModel-BasedDevelopment UsingUML-RSDS. Boca Raton,
FL, USA: CRC Press, 2016.

[43] K. Lano, S. Kolahdouz-Rahimi, S. Yassipour-Tehrani, and M. Sharbaf,
‘‘A survey of model transformation design pattern usage,’’ in Proc. ICMT,
2017, pp. 108–118.

[44] K. Lano, S. Yassipour-Tehrani, H. Alfraihi, and S. Kolahdouz-Rahimi,
‘‘Translating UML-RSDS OCL to ANSI C,’’ in Proc. OCL, 2017,
pp. 317–330.

[45] K. Lano, S. Kolahdouz-Rahimi, M. Sharbaf, and H. Alfraihi, ‘‘Techni-
cal debt in model transformation specifications,’’ in Proc. ICMT, 2018,
pp. 127–141.

[46] N. Macedo and A. Cunha, ‘‘Least-change bidirectional model transfor-
mation with QVT-R and ATL,’’ Softw., Syst. Model., vol. 15, no. 3,
pp. 783–810, 2014, doi: 10.1007/s10270-014-0437-x.

[47] K. Matsuda et al., ‘‘Bidirectionalization transformation based on auto-
matic derivation of view complement functions,’’ in Proc. ICFP, 2007,
pp. 47–58.

[48] L. Meertens, ‘‘Designing constraint maintainers for user interaction,’’ in
Proc. 3rd Workshop Program. Structured Documents, Tokyo Univ., 2005.

[49] C. Mokaddem, H. Sahraoui, and E. Syriani, ‘‘Towards rule-based detection
of design patterns in model transformations,’’ in System Analysis andMod-
eling. Technology-Specific Aspects of Models (Lecture Notes in Computer
Science), vol. 9959. 2016, pp. 211–225.

[50] C. Morgan and K. Robinson, ‘‘Specification statements and refinement,’’
IBM J. Res. Develop., vol. 31, no. 5, pp. 546–555, Sep. 1987.

[51] Object Management Group. (2016). MOF 2.0
Query/View/Transformation Specification V1.3. [Online]. Available:
https://www.omg.org/spec/QVT/About-QVT/

[52] Object Constraint Language Specification V2.4, OMG, 2014.
[53] Action Language for Foundational UML (ALF), V1.0.1, OMG, 2015.
[54] L. Paolini, M. Piccolo, and L. Roversi, ‘‘A class of reversible primi-

tive recursive functions,’’ Electron. Notes Theor. Comput. Sci., vol. 322,
pp. 227–242, Apr. 2016.

[55] S. Peldszus et al., ‘‘Java refactoring case using eMoflon,’’ TTC, Toronto,
ON, Canada, Tech. Rep., 2015.

[56] RTCA/EUROCAE DO-178C Standard: Software Considerations in Air-
borne Systems and Equipment Certification, RTCA, 2012.

[57] L. Samimi-Dehkordi, B. Zamani, and S. Kolahdouz-Rahimi,
‘‘EVL+Strace: A novel bidirectional model transformation approach,’’
Inf. Softw. Technol., vol. 100, pp. 47–72, Aug. 2018.

[58] O. Semerath, C. Debreceni, Á. Horváth, and D. Varró, ‘‘Incremental
backward change propagation of view models by logic solvers,’’ in Proc.
MODELS, 2016, pp. 306–316.

[59] P. Stevens, ‘‘Bidirectional model transformations in QVT: Semantic issues
and open questions,’’ Softw., Syst. Model., vol. 9, no. 1, pp. 7–20, Jan. 2010.

[60] P. Stevens, ‘‘A simple game-theoretic approach to checkonly QVT-
relations,’’ Softw., Syst. Model., vol. 12, no. 1, pp. 175–199, 2013.

[61] J. Voigtlander, Z. Hu, K. Matsuda, and M. Wang, ‘‘Combining syntactic
and semantic bidirectionalization,’’ in Proc. ICFP, 2010, pp. 181–192.

5248 VOLUME 7, 2019

http://dx.doi.org/10.1007/s10270-014-0437-x

K. Lano et al.: Declarative Specification of bx Using Design Patterns

[62] M. Wang, J. Gibbons, and N. Wu, ‘‘Incremental updates for efficient
bidirectional transformations,’’ ACM SIGPLAN Notices, vol. 46, no. 9,
pp. 392–403, 2011.

[63] E. D.Willink, ‘‘Themicromappingmodel of computation,’’ inProc. ICMT,
2017.

[64] E. Willink. (2018). The QVT-D Project. [Online]. Available:
https://projects.eclipse.org/projects/modeling.mmt.qvtd

[65] Y. Xiong et al., ‘‘Towards automatic model synchronization from model
transformationss,’’ in Proc. ASE, 2007, pp. 164–173.

[66] Y. Xiong, H. Song, Z. Hu, and M. Takeichi, ‘‘Synchronizing concurrent
model updates based on bidirectional transformation,’’ Softw., Syst. Model.,
vol. 12, no. 1, pp. 89–104, 2013.

[67] A. Yie, R. Casallas, D. Deridder, and D. Wagelaar, ‘‘Realizing model
transformation chain interoperability,’’ Softw., Syst. Model., vol. 11, no. 1,
pp. 55–75, 2012.

KEVIN LANO has worked for over 25 years in
the fields of system specification and verification.
He was one of the originators of model-driven
engineering, and has been a leading advocate of
improving the precision of software modeling,
and in applying software engineering principles
to transformation construction. In recent years,
he has worked on the integration of model-based
development and agile development.

SHEKOUFEH KOLAHDOUZ-RAHIMI received
the Ph.D. degree in computer science from Kings
College London, in 2013. She is an Assistant
Professor with the Computer Engineering Depart-
ment, University of Isfahan, where she is an
Active Member of the Model Driven Software
Engineering Research Group. Her research inter-
ests include design patterns for model transfor-
mation, specification and verification of model
transformations, bidirectional model transforma-

tions, domain-specific modeling languages, and search-based software
engineering.

SOBHAN YASSIPOUR-TEHRANI has been
working on requirements engineering (RE) in
model transformations (MT). He has developed
a RE technique suitability framework for MT
projects by which the developer(s) are able to
select the most appropriate RE technique for a
particular requirement or a set of requirements. His
research interests include RE, MT, goal modeling,
and agile software development.

VOLUME 7, 2019 5249

	INTRODUCTION
	RELATED WORK
	UML-RSDS
	TRANSFORMATION SPECIFICATION
	TRANSFORMATION IMPLEMENTATION
	DEFINITION OF ACTIVITIES FOR PREDICATES

	PATTERNS FOR MODEL TRANSFORMATIONS
	APPLICATION OF PATTERNS TO CONSTRUCT BX
	INVERSE TRANSFORMATIONS AND VIEW UPDATES
	CASE STUDY: MAPPING UML TO C
	BX SPECIFICATION IN QVT-R
	QVT-RELATIONS (QVT-R)
	USING BX PATTERNS IN QVT-R
	MAPPING QVT-R TO UML-RSDS

	EVALUATION
	CONCLUSION
	REFERENCES
	Biographies
	KEVIN LANO
	SHEKOUFEH KOLAHDOUZ-RAHIMI
	SOBHAN YASSIPOUR-TEHRANI

