

King’s Research Portal

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Bernardini, G., Chen, H., Conte, A., Grossi, R., Loukidis, G., Pisanti, N., Pissis, S., & Rosone, G. (in press).
String Sanitization: A combinatorial approach. In European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD) 2019 (European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD) 2019).
https://ecmlpkdd2019.org/downloads/paper/73.pdf

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 14. Jan. 2025

https://kclpure.kcl.ac.uk/portal/en/publications/d0cd05f5-81be-4a45-9e05-58445c360e6c
https://ecmlpkdd2019.org/downloads/paper/73.pdf

String Sanitization: A Combinatorial Approach

Giulia Bernardini1, Huiping Chen2, Alessio Conte3, Roberto Grossi3,4,

Grigorios Loukides2, Nadia Pisanti3,4, Solon P. Pissis4,5, and Giovanna Rosone3

1 Department of Informatics, Systems and Communication, University of
Milano-Bicocca, Milan, Italy, giulia.bernardini@unimib.it

2 Department of Informatics, King’s College London, London, UK
[huiping.chen,grigorios.loukides]@kcl.ac.uk

3 Department of Computer Science, University of Pisa, Pisa, Italy
[conte,grossi,pisanti]@di.unipi.it, giovanna.rosone@unipi.it

4 ERABLE Team, INRIA, Lyon, France
5 CWI, Amsterdam, The Netherlands, solon.pissis@cwi.nl

Abstract. String data are often disseminated to support applications
such as location-based service provision or DNA sequence analysis. This
dissemination, however, may expose sensitive patterns that model con-
fidential knowledge (e.g., trips to mental health clinics from a string
representing a user’s location history). In this paper, we consider the
problem of sanitizing a string by concealing the occurrences of sensitive
patterns, while maintaining data utility. First, we propose a time-optimal
algorithm, TFS-ALGO, to construct the shortest string preserving the
order of appearance and the frequency of all non-sensitive patterns. Such
a string allows accurately performing tasks based on the sequential nature
and pattern frequencies of the string. Second, we propose a time-optimal
algorithm, PFS-ALGO, which preserves a partial order of appearance
of non-sensitive patterns but produces a much shorter string that can
be analyzed more efficiently. The strings produced by either of these
algorithms may reveal the location of sensitive patterns. In response, we
propose a heuristic, MCSR-ALGO, which replaces letters in these strings
with carefully selected letters, so that sensitive patterns are not reinstated
and occurrences of spurious patterns are prevented. We implemented our
sanitization approach that applies TFS-ALGO, PFS-ALGO and then
MCSR-ALGO and experimentally show that it is effective and efficient.

1 Introduction

A large number of applications, in domains ranging from transportation to web
analytics and bioinformatics feature data modeled as strings, i.e., sequences of
letters over some finite alphabet. For instance, a string may represent the history
of visited locations of one or more individuals, with each letter corresponding
to a location. Similarly, it may represent the history of search query terms of
one or more web users, with letters corresponding to query terms, or a medically
important part of the DNA sequence of a patient, with letters corresponding
to DNA bases. Analyzing such strings is key in applications including location-
based service provision, product recommendation, and DNA sequence analysis.

2 Bernardini et al.

Therefore, such strings are often disseminated beyond the party that has collected
them. For example, location-based service providers often outsource their data
to data analytics companies who perform tasks such as similarity evaluation
between strings [15], and retailers outsource their data to marketing agencies
who perform tasks such as mining frequent patterns from the strings [16].

However, disseminating a string intact may result in the exposure of confiden-
tial knowledge, such as trips to mental health clinics in transportation data [23],
query terms revealing political beliefs or sexual orientation of individuals in web
data [19], or diseases associated with certain parts of DNA data [17]. Thus, it may
be necessary to sanitize a string prior to its dissemination, so that confidential
knowledge is not exposed. At the same time, it is important to preserve the
utility of the sanitized string, so that data protection does not outweigh the
benefits of disseminating the string to the party that disseminates or analyzes the
string, or to the society at large. For example, a retailer should still be able to
obtain actionable knowledge in the form of frequent patterns from the marketing
agency who analyzed their outsourced data; and researchers should still be able
to perform analyses such as identifying significant patterns in DNA sequences.

Our Model and Setting. Motivated by the discussion above, we introduce
the following model which we call Combinatorial String Dissemination (CSD).
In CSD, a party has a string W that it seeks to disseminate, while satisfying a
set of constraints and a set of desirable properties. For instance, the constraints
aim to capture privacy requirements and the properties aim to capture data
utility considerations (e.g., posed by some other party based on applications).
To satisfy both, W must be transformed to a string X by applying a sequence
of edit operations. The computational task is to determine this sequence of edit
operations so that X satisfies the desirable properties subject to the constraints.

Under the CSD model, we consider a specific setting in which the sanitized
string X must satisfy the following constraint C1: for an integer k > 0, no given
length-k substring (also called pattern) modeling confidential knowledge should
occur in X. We call each such length-k substring a sensitive pattern. We aim at
finding the shortest possible string X satisfying the following desired properties:
(P1) the order of appearance of all other length-k substrings (non-sensitive
patterns) is the same in W and in X; and (P2) the frequency of these length-k
substrings is the same in W and in X. The problem of constructing X in this
setting is referred to as TFS (Total order, Frequency, Sanitization). Clearly,
substrings of arbitrary lengths can be hidden from X by setting k equal to the
length of the shortest substring we wish to hide, and then setting, for each of
these substrings, any length-k substring as sensitive.

Our setting is motivated by real-world applications involving string dissemi-
nation. In these applications, a data custodian disseminates the sanitized version
X of a string W to a data recipient, for the purpose of analysis (e.g., mining). W
contains confidential information that the data custodian needs to hide, so that it
does not occur in X. Such information is specified by the data custodian based on
domain expertise, as in [1,4,12,16]. At the same time, the data recipient specifies
P1 and P2 that X must satisfy in order to be useful. These properties map

String Sanitization: A Combinatorial Approach 3

directly to common data utility considerations in string analysis. By satisfying
P1, X allows tasks based on the sequential nature of the string, such as blockwise
q-gram distance computation [13], to be performed accurately. By satisfying P2,
X allows computing the frequency of length-k substrings [21] and hence mining
frequent length-k substrings with no utility loss. We require that X has minimal
length so that it does not contain redundant information. For instance, the string
which is constructed by concatenating all non-sensitive length-k substrings in W
and separating them with a special letter that does not occur in W , satisfies P1
and P2 but is not the shortest possible. Such a string X will have a negative
impact on the efficiency of any subsequent analysis tasks to be performed on it.

Note, existing works for sequential data sanitization (e.g., [4,12,14,16,25]) or
anonymization (e.g., [3,5,7]) cannot be applied to our setting (see Section 7).

Our Contributions. We define the TFS problem for string sanitization and
a variant of it, referred to as PFS (Partial order, Frequency, Sanitization),
which aims at producing an even shorter string Y by relaxing P1 of TFS. Our
algorithms for TFS and PFS construct strings X and Y using a separator letter
#, which is not contained in the alphabet of W . This prevents occurrences of
sensitive patterns in X or Y . The algorithms repeat proper substrings of sensitive
patterns so that the frequency of non-sensitive patterns overlapping with sensitive
ones does not change. For X, we give a deterministic construction which may be
easily reversible (i.e., it may enable a data recipient to construct W from X),
because the occurrences of # reveal the exact location of sensitive patterns. For
Y , we give a construction which breaks several ties arbitrarily, thus being less
easily reversible. We further address the reversibility issue by defining the MCSR
(Minimum-Cost Separators Replacement) problem and designing an algorithm for
dealing with it. In MCSR, we seek to replace all separators, so that the location
of sensitive patterns is not revealed, while preserving data utility. We make the
following specific contributions:

1. We design an algorithm for solving the TFS problem in O(kn) time, where n
is the length of W . In fact we prove that O(kn) time is worst-case optimal by
showing that the length of X is in Θ(kn) in the worst case. The output of the
algorithm is a string X consisting of a sequence of substrings over the alphabet of
W separated by # (see Example 1 below). An important feature of our algorithm,
which is useful in the efficient construction of Y discussed next, is that it can be
implemented to produce an O(n)-sized representation of X with respect to W in
O(n) time. See Section 3.

Example 1. Let W = aabaaaababbbaab, k = 4, and the set of sensitive patterns
be {aaaa, baaa, bbaa}. The string X = aabaa#aaababbba#baab consists of three
substrings over the alphabet {a, b} separated by #. Note that no sensitive pattern
occurs in X, while all non-sensitive substrings of length 4 have the same frequency
in W and in X (e.g., aaba appears twice) and appear in the same order in W
and in X (e.g., babb precedes abbb). Also, note that any shorter string than X
would either create sensitive patterns or change the frequencies (e.g., removing
the last letter of X creates a string in which baab no longer appears). ut

4 Bernardini et al.

2. We define the PFS problem relaxing P1 of TFS to produce shorter strings
that are more efficient to analyze. Instead of a total order (P1), we require a
partial order (Π1) that preserves the order of appearance only for sequences of
successive non-sensitive length-k substrings that overlap by k − 1 letters. This
makes sense because the order of two successive non-sensitive length-k substrings
with no length-(k − 1) overlap has anyway been “interrupted” (by a sensitive
pattern). We exploit this observation to shorten the string further. Specifically,
we design an algorithm that solves PFS in the optimal O(n+ |Y |) time, where
|Y | is the length of Y , using the O(n)-sized representation of X. See Section 4.

Example 2. (Cont’d from Example 1) Recall that W = aabaaaababbbaab. A
string Y is aaababbba#aabaab. The order of babb and abbb is preserved in
Y since they are successive, non-sensitive, and with an overlap of k − 1 = 3
letters. The order of abaa and aaab, which are successive and non-sensitive, is
not preserved since they do not have an overlap of k − 1 = 3 letters. ut

3. We define the MCSR problem, which seeks to produce a string Z, by deleting
or replacing all separators in Y with letters from the alphabet of W so that: no
sensitive patterns are reinstated in Z; occurrences of spurious patterns that may
not be mined from W but can be mined from Z, for a given support threshold, are
prevented; the distortion incurred by the replacements in Z is bounded. The first
requirement is to preserve privacy and the next two to preserve data utility. We
show that MCSR is NP-hard and propose a heuristic to attack it. See Section 5.

4. We implemented our combinatorial approach for sanitizing a string W (i.e., all
aforementioned algorithms implementing the pipeline W → X → Y → Z) and
show its effectiveness and efficiency on real and synthetic data. See Section 6.

2 Preliminaries, Problem Statements, and Main Results

Preliminaries. Let T = T [0]T [1] . . . T [n− 1] be a string of length |T | = n over
a finite ordered alphabet Σ of size |Σ| = σ. By Σ∗ we denote the set of all strings
over Σ. By Σk we denote the set of all length-k strings over Σ. For two positions
i and j on T , we denote by T [i . . j] = T [i] . . . T [j] the substring of T that starts
at position i and ends at position j of T . By ε we denote the empty string of
length 0. A prefix of T is a substring of the form T [0 . . j], and a suffix of T is
a substring of the form T [i . . n − 1]. A proper prefix (suffix) of a string is not
equal to the string itself. By FreqV (U) we denote the number of occurrences of
string U in string V . Given two strings U and V we say that U has a suffix-prefix
overlap of length ` > 0 with V if and only if the length-` suffix of U is equal to
the length-` prefix of V , i.e., U [|U | − ` . . |U | − 1] = V [0 . . `− 1].

We fix a string W of length n over an alphabet Σ = {1, . . . , nO(1)} and an
integer 0 < k < n. We refer to a length-k string or a pattern interchangeably. An
occurrence of a pattern is uniquely represented by its starting position. Let S
be a set of positions over {0, . . . , n− k} with the following closure property: for
every i ∈ S, if there exists j such that W [j . . j + k − 1] = W [i . . i+ k − 1], then
j ∈ S. That is, if an occurrence of a pattern is in S all its occurrences are in S. A
substring W [i . . i+k−1] of W is called sensitive if and only if i ∈ S. S is thus the

String Sanitization: A Combinatorial Approach 5

set of occurrences of sensitive patterns. The difference set I = {0, . . . , n− k} \ S
is the set of occurrences of non-sensitive patterns.

For any string U , we denote by IU the set of occurrences of non-sensitive
length-k strings over Σ. (We have that IW = I.) We call an occurrence i the
t-predecessor of another occurrence j in IU if and only if i is the largest element in
IU that is less than j. This relation induces a strict total order on the occurrences
in IU . We call i the p-predecessor of j in IU if and only if i is the t-predecessor
of j in IU and U [i . . i + k − 1] has a suffix-prefix overlap of length k − 1 with
U [j . . j + k− 1]. This relation induces a strict partial order on the occurrences in
IU . We call a subset J of IU a t-chain (resp., p-chain) if for all elements in J
except the minimum one, their t-predecessor (resp., p-predecessor) is also in J .
For two strings U and V , chains JU and JV are equivalent, denoted by JU ≡ JV ,
if and only if |JU | = |JV | and U [u . . u + k − 1] = V [v . . v + k − 1], where u is
the jth smallest element of JU and v is the jth smallest of JV , for all j ≤ |JU |.

Problem Statements and Main Results.

Problem 1 (TFS). Given W , k, S, and I construct the shortest string X:

C1 X does not contain any sensitive pattern.
P1 IW ≡ IX , i.e., the t-chains IW and IX are equivalent.
P2 FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : i ∈ S}.

TFS requires constructing the shortest string X in which all sensitive patterns
from W are concealed (C1), while preserving the order (P1) and the frequency
(P2) of all non-sensitive patterns. Our first result is the following.

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

P1 implies P2, but P1 is a strong assumption that may result in long output
strings that are inefficient to analyze. We thus relax P1 to require that the order
of appearance remains the same only for sequences of successive non-sensitive
length-k substrings that also overlap by k − 1 letters (p-chains).

Problem 2 (PFS). Given W , k, S, and I construct a shortest string Y :

C1 Y does not contain any sensitive pattern.
Π1 For any p-chain JW of IW , there is a p-chain JY of IY such that JW ≡ JY .
P2 FreqY (U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : i ∈ S}.

Our second result, which builds on Theorem 1, is the following.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n+ |Y |) time.

To arrive at Theorems 1 and 2, we use a special letter (separator) # /∈ Σ when
required. However, the occurrences of # may reveal the locations of sensitive
patterns. We thus seek to delete or replace the occurrences of # in Y with
letters from Σ. The new string Z should not reinstate any sensitive pattern.
Given an integer threshold τ > 0, we call pattern U ∈ Σk a τ -ghost in Z if and

6 Bernardini et al.

only if FreqW (U) < τ but FreqZ(U) ≥ τ . Moreover, we seek to prevent τ -ghost
occurrences in Z by also bounding the total weight of the letter choices we make
to replace the occurrences of #. This is the MCSR problem. We show that
already a restricted version of the MCSR problem, namely, the version when
k = 1, is NP-hard via the Multiple Choice Knapsack (MCK) problem [20].

Theorem 3. The MCSR problem is NP-hard.

Based on this connection, we propose a non-trivial heuristic algorithm to
attack the MCSR problem for the general case of an arbitrary k.

3 TFS-ALGO

We convert string W into a string X over alphabet Σ ∪ {#}, # /∈ Σ, by reading
the letters of W , from left to right, and appending them to X while enforcing
the following two rules:

R1: When the last letter of a sensitive substring U is read from W , we append #
to X (essentially replacing this last letter of U with #). Then, if V is the longest
proper prefix of the succeeding non-sensitive substring (in the t-predecessor
order), we append the longest proper suffix V of U right after #.
R2: When the k − 1 letters before # are the same as the k − 1 letters after #,
we remove # and the k − 1 succeeding letters (inspect Fig. 1).

Fig. 1: Sensitive patterns are overlined in
red; non-sensitive are under- or over-lined in
blue; X̃ is obtained by applying R1; and X
by applying R1 and R2. In green we high-
light an overlap of k − 1 = 3 letters. Note
that substring aaaababbb, whose length is
greater than k, is also not occurring in X.

W = aabaaaababbbaab

X̃ = aabaaa#aaaba#babb#bbbaab

X = aabaaaba#babb#bbbaab

R1 prevents U from occurring in X, and R2 reduces the length of X (i.e.,
allows to protect sensitive patterns with fewer extra letters). Both rules leave
unchanged the order and frequencies of non-sensitive patterns. It is crucial to
observe that applying the idea behind R2 on more than k − 1 letters would
decrease the frequency of some pattern, while applying it on fewer than k − 1
letters would create new patterns. Thus, we need to consider just R2 as-is.

Let C be an array of size n that stores the occurrences of sensitive and
non-sensitive patterns: C[i] = 1 if i ∈ S and C[i] = 0 if i ∈ I. For technical
reasons we set the last k − 1 values in C equal to C[n− k]; i.e., C[n− k + 1] :=
. . . := C[n− 1] := C[n− k]. Note that C is constructible from S in O(n) time.
Given C and k < n, TFS-ALGO efficiently constructs X by implementing R1
and R2 concurrently as opposed to implementing R1 and then R2 (see the
proof of Lemma 1 for details of the workings of TFS-ALGO and Fig. 1 for an
example). We next show that string X enjoys several properties.

Lemma 1. Let W be a string of length n over Σ. Given k < n and array C,
TFS-ALGO constructs the shortest string X such that the following hold:

1. There exists no W [i . . i+ k − 1] with C[i] = 1 occurring in X (C1).

String Sanitization: A Combinatorial Approach 7

2. IW ≡ IX , i.e., the order of substrings W [i . . i + k − 1], for all i such that
C[i] = 0, is the same in W and in X; conversely, the order of all substrings
U ∈ Σk of X is the same in X and in W (P1).

3. FreqX(U) = FreqW (U), for all U ∈ Σk \ {W [i . . i+ k − 1] : C[i] = 1} (P2).
4. The occurrences of letter # in X are at most bn−k+1

2 c and they are at least
k positions apart (P3).

5. 0 ≤ |X| ≤ dn−k+1
2 e · k + bn−k+1

2 c and these bounds are tight (P4).

TFS-ALGO(W ∈ Σn, C, k,# /∈ Σ)

1 X ← ε; j ← |W |; `← 0;
2 j ← min{i|C[i] = 0}; /* j is the leftmost pos of a non-sens. pattern */

3 if j + k − 1 < |W | then /* Append the first non-sens. pattern to X */

4 X[0 . . k − 1]←W [j . . j + k − 1]; j ← j + k; `← `+ k;

5 while j < |W | do /* Examine two consecutive patterns */

6 p← j − k; c← p+ 1;
7 if C[p] = C[c] = 0 then /* If both are non-sens., append the last

letter of the leftmost one to X */

8 X[`]←W [j]; `← `+ 1; j ← j + 1;

9 if C[p] = 0 ∧ C[c] = 1 then /* If the rightmost is sens., mark it

and advance j */

10 f ← c; j ← j + 1;

11 if C[p] = C[c] = 1 then j ← j + 1; /* If both are sens., advance j */

12 if C[p] = 1 ∧ C[c] = 0 then /* If the leftmost is sens. and the

rightmost is not */

13 if W [c . . c+ k − 2] = W [f . . f + k − 2] then /* If the last marked

sens. pattern and the current non-sens. overlap by k − 1,
append the last letter of the latter to X */

14 X[`]←W [j]; `← `+ 1; j ← j + 1;

15 else /* Else append # and the (k − 1)-length suffix of the

current non-sens. pattern to X */

16 X[`]← #; `← `+ 1;
17 X[` . . `+ k − 1]←W [j − k + 1 . . j]; `← `+ k; j ← j + 1;

18 report X

Proof. Proofs of C1 and P1-P4 can be found in the appendix. We prove here that
X has minimal length. Let Xj be the prefix of string X obtained by processing
the first j letters of string W . Let jmin = min{i|C[i] = 0}+k. We will proceed by
induction on j, claiming that Xj is the shortest string such that C1 and P1-P4
hold for W [0 . . j], ∀ jmin ≤ j ≤ |W | − 1. We call such a string optimal.

Base case: j = jmin. By Lines 3-4 of TFS-ALGO, Xj is equal to the first
non-sensitive length-k substring of W , and it is clearly the shortest string such
that C1 and P1-P4 hold for W [0 . . j].

Inductive hypothesis and step: Xj−1 is optimal for j > jmin. If C[j − k] =
C[j − k + 1] = 0, Xj = Xj−1W [j] and this is clearly optimal. If C[j − k + 1] = 1,
Xj = Xj−1 thus still optimal. Finally, if C[j−k] = 1 and C[j−k+1] = 0 we have
two subcases: if W [f . . f + k − 2] = W [j − k + 1 . . j − 1] then Xj = Xj−1W [j],
and once again Xj is evidently optimal. Otherwise, Xj = Xj−1#W [j− k+ 1 . . j].

8 Bernardini et al.

Suppose by contradiction that there exists a shorter X ′j such that C1 and P1-P4
still hold: either drop # or append less than k letters after #. If we appended less
than k letters after #, since TFS-ALGO will not read W [j] ever again, P2-P3
would be violated, as an occurrence of W [j−k+ 1 . . j] would be missed. Without
#, the last k letters of Xj−1W [j − k + 1] would violate either C1 or P1 and P2
(since we suppose W [f . . f + k− 2] 6= W [j− k+ 1 . . j− 1]). Then Xj is optimal. ut

Theorem 1. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, TFS-ALGO solves Problem 1 in O(kn) time, which is worst-case
optimal. An O(n)-sized representation of X can be built in O(n) time.

Proof. For the first part inspect TFS-ALGO. Lines 2-4 can be realized in O(n)
time. The while loop in Line 5 is executed no more than n times, and every
operation inside the loop takes O(1) time except for Line 13 and Line 17 which
take O(k) time. Correctness and optimality follow directly from Lemma 1 (P4).

For the second part, we assume that X is represented by W and a sequence
of pointers [i, j] to W interleaved (if necessary) by occurrences of #. In Line 17,
we can use an interval [i, j] to represent the length-k substring of W added to X.
In all other lines (Lines 4, 8 and 14) we can use [i, i] as one letter is added to
X per one letter of W . By Lemma 1 we can have at most bn−k+1

2 c occurrences
of letter #. The check at Line 13 can be implemented in constant time after
linear-time pre-processing of W for longest common extension queries [9]. All
other operations take in total linear time in n. Thus there exists an O(n)-sized
representation of X and it is constructible in O(n) time. ut

4 PFS-ALGO

Lemma 1 tells us that X is the shortest string satisfying constraint C1 and
properties P1-P4. If we were to drop P1 and employ the partial order Π1 (see
Problem 2), the length of X = X1# . . .#XN would not always be minimal: if a
permutation of the strings X1, . . . , XN contains pairs Xi, Xj with a suffix-prefix
overlap of length ` = k − 1, we may further apply R2, obtaining a shorter string
while still satisfying Π1.

To find such a permutation efficiently and construct a shorter string Y from
W , we propose PFS-ALGO. The crux of our algorithm is an efficient method
to solve a variant of the classic NP-complete Shortest Common Superstring
(SCS) problem [11]. Specifically our algorithm: (I) Computes the string X using
Theorem 1. (II) Constructs a collection B′ of strings, each of two symbols (two
identifiers): the first (resp., second) symbol of the ith element of B′ is a unique
identifier of the string corresponding to the `-length prefix (resp., suffix) of the
ith element of B = {X1, . . . , XN}. (III) Computes a shortest string containing
every element in B′ as a distinct substring. (IV) Constructs Y by mapping back
each element to its distinct substring in B. If there are multiple possible shortest
strings, one is selected arbitrarily.

Example 3 (Illustration of the workings of PFS-ALGO). Let ` = k− 1 = 3 and

X = aabbc#bccaab#bbca#aaabac#aabcbbc.

String Sanitization: A Combinatorial Approach 9

The collection B is aabbc, bccaab, bbca, aaabac, aabcbbc, and the collection
B′ is 24, 62, 45, 13, 24 (id of prefix · id of suffix). A shortest string containing all
elements of B′ as distinct substrings is: 13 · 24 · 6245 (obtained by permuting
the original string as 13, 24, 62, 24, 45 then applying R2 twice). This shortest
string is mapped back to the solution Y = aaabac#aabbc#bccaabcbbca. For
example, 13 is mapped back to aaabac. Note, Y contains two occurrences of #
and has length 24, while X contains 4 occurrences of # and has length 32. ut

We now present the details of PFS-ALGO. We first introduce the Fixed-
Overlap Shortest String with Multiplicities (FO-SSM) problem: Given a collection
B of strings B1, . . . , B|B| and an integer `, with |Bi| > `, for all 1 ≤ i ≤ |B|,
FO-SSM seeks to find a shortest string containing each element of B as a distinct
substring using the following operations on any pair of strings Bi, Bj :

1. concat(Bi, Bj) = Bi ·Bj ;
2. `-merge(Bi, Bj) = Bi[0 . . |Bi| − `]Bj [0 . . |Bj | − 1] = Bi[0 . . |Bi| − `] ·Bj .

Any solution to FO-SSM with ` := k − 1 and B := X1, . . . , XN implies a
solution to the PFS problem, because |Xi| > k − 1 for all i’s (see Lemma 1, P3)

The FO-SSM problem is a variant of the SCS problem. In the SCS problem,
we are given a set of strings and we are asked to compute the shortest common
superstring of the elements of this set. The SCS problem is known to be NP-
Complete, even for binary strings [11]. However, if all strings are of length two,
the SCS problem admits a linear-time solution [11]. We exploit this crucial detail
positively to show a linear-time solution to the FO-SSM problem in Lemma 3. In
order to arrive to this result, we first adapt the SCS linear-time solution of [11]
to our needs (see Lemma 2) and plug this solution to Lemma 3.

Lemma 2. Let Q be a collection of q strings, each of length two, over an alphabet
Σ = {1, . . . , (2q)O(1)}. We can compute a shortest string containing every element
of Q as a distinct substring in O(q) time.

Proof. We sort the elements of Q lexicographically in O(q) time using radixsort.
We also replace every letter in these strings with their lexicographic rank from
{1, . . . , 2q} in O(q) time using radixsort. In O(q) time we construct the de Bruijn
multigraph G of these strings [6]. Within the same time complexity, we find all
nodes v in G with in-degree, denoted by IN(v), smaller than out-degree, denoted
by OUT(v). We perform the following two steps:
Step 1: While there exists a node v in G with IN(v) < OUT(v), we start an
arbitrary path (with possibly repeated nodes) from v, traverse consecutive edges
and delete them. Each time we delete an edge, we update the in- and out-degree
of the affected nodes. We stop traversing edges when a node v′ with OUT(v′) = 0
is reached: whenever IN(v′) = OUT(v′) = 0, we also delete v′ from G. Then, we
add the traversed path p = v . . . v′ to a set P of paths. The path can contain
the same node v more than once. If G is empty we halt. Proceeding this way,
there are no two elements p1 and p2 in P such that p1 starts with v and p2 ends
with v; thus this path decomposition is minimal. If G is not empty at the end,
by construction, it consists of only cycles.

10 Bernardini et al.

Step 2: While G is not empty, we perform the following. If there exists a cycle c
that intersects with any path p in P we splice c with p, update p with the result
of splicing, and delete c from G. This operation can be efficiently implemented
by maintaining an array A of size 2q of linked lists over the paths in P: A[α]
stores a list of pointers to all occurrences of letter α in the elements of P. Thus
in constant time per node of c we check if any such path p exists in P and
splice the two in this case. If no such path exists in P, we add to P any of the
path-linearizations of the cycle, and delete the cycle from G. After each change
to P, we update A and delete every node u with IN(u) = OUT(u) = 0 from G.

The correctness of this algorithm follows from the fact that P is a minimal
path decomposition of G. Thus any concatenation of paths in P represents a
shortest string containing all elements in Q as distinct substrings. ut

Omitted proofs of Lemmas 3 and 4 can be found in the appendix.

Lemma 3. Let B be a collection of strings over an alphabet Σ = {1, . . . , ||B||O(1)}.
Given an integer `, the FO-SSM problem for B can be solved in O(||B||) time.

Thus, PFS-ALGO applies Lemma 3 on B := X1, . . . , XN with ` := k − 1
(recall that X1# . . .#XN = X). Note that each time the concat operation is
performed, it also places the letter # in between the two strings.

Lemma 4. Let W be a string of length n over an alphabet Σ. Given k < n and
array C, PFS-ALGO constructs a shortest string Y with C1, Π1, and P2-P4.

Theorem 2. Let W be a string of length n over Σ = {1, . . . , nO(1)}. Given
k < n and S, PFS-ALGO solves Problem 2 in the optimal O(n+ |Y |) time.

Proof. We compute the O(n)-sized representation of string X with respect to W
described in the proof of Theorem 1. This can be done in O(n) time. If X ∈ Σ∗,
then we construct and return Y := X in time O(|Y |) from the representation.
If X ∈ (Σ ∪ {#})∗, implying |Y | ≤ |X|, we compute the LCP data structure of
string W in O(n) time [9]; and implement Lemma 3 in O(n) time by avoiding to
read string X explicitly: we rather rename X1, . . . , XN to a collection of two-letter
strings by employing the LCP information of W directly. We then construct and
report Y in time O(|Y |). Correctness follows directly from Lemma 4. ut

5 The MCSR Problem and MCSR-ALGO

The strings X and Y , constructed by TFS-ALGO and PFS-ALGO, respectively,
may contain the separator #, which reveals information about the location of
the sensitive patterns in W . Specifically, a malicious data recipient can go to the
position of a # in X and “undo” Rule R1 that has been applied by TFS-ALGO,
removing # and the k−1 letters after # from X. The result will be an occurrence
of the sensitive pattern. For example, applying this process to the first # in X
shown in Fig. 1, results in recovering the sensitive pattern abab. A similar attack
is possible on the string Y produced by PFS-ALGO, although it is hampered by
the fact that substrings within two consecutive #s in X often swap places in Y .

To address this issue, we seek to construct a new string Z, in which #s are
either deleted or replaced by letters from Σ. To preserve privacy, we require

String Sanitization: A Combinatorial Approach 11

separator replacements not to reinstate sensitive patterns. To preserve data utility,
we favor separator replacements that have a small cost in terms of occurrences of
τ -ghosts (patterns with frequency less than τ in W and at least τ in Z) and incur
a bounded level of distortion in Z, as defined below. This is the MCSR problem,
a restricted version of which is presented in Problem 3. The restricted version is
referred to as MCSRk=1 and differs from MCSR in that it uses k = 1 for the
pattern length instead of an arbitrary value k > 0. MCSRk=1 is presented next
for simplicity and because it is used in the proof of Lemma 5 (see the appendix
for the proof). Lemma 5 implies Theorem 3.

Problem 3 (MCSRk=1). Given a string Y over an alphabet Σ ∪ {#} with
δ > 0 occurrences of letter #, and parameters τ and θ, construct a new string Z
by substituting the δ occurrences of # in Y with letters from Σ, such that:

(I)
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) is minimum, and (II)
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ.

The cost of τ -ghosts is captured by a function Ghost. This function assigns a
cost to an occurrence of a τ -ghost, which is caused by a separator replacement at
position i, and is specified based on domain knowledge. For example, with a cost
equal to 1 for each gained occurrence of each τ -ghost, we penalize more heavily
a τ -ghost with frequency much below τ in Y and the penalty increases with
the number of gained occurrences. Moreover, we may want to penalize positions
towards the end of a temporally ordered string, to avoid spurious patterns that
would be deemed important in applications based on time-decaying models [8].

The replacement distortion is captured by a function Sub which assigns a
weight to a letter that could replace a # and is specified based on domain
knowledge. The maximum allowable replacement distortion is θ. Small weights
favor the replacement of separators with desirable letters (e.g., letters that
reinstate non-sensitive frequent patterns) and letters that reinstate sensitive
patterns are assigned a weight larger than θ that prohibits them from replacing
a #. Similarly, weights larger than θ are assigned to letters which would lead to
implausible patterns [14] if they replaced #s.

Lemma 5. The MCSRk=1 problem is NP-hard.

Theorem 3. The MCSR problem is NP-hard.

MCSR-ALGO. Our MCSR-ALGO is a non-trivial heuristic that exploits the
connection of the MCSR and MCK [20] problems and works by:
(I) Constructing the set of all candidate τ -ghost patterns (i.e., length-k strings
over Σ with frequency below τ in Y that can have frequency at least τ in Z).
(II) Creating an instance of MCK from an instance of MCSR. For this, we map
the ith occurrence of # to a class Ci in MCK and each possible replacement of
the occurrence with a letter j to a different item in Ci. Specifically, we consider
all possible replacements with letters in Σ and also a replacement with the empty
string, which models deleting (instead of replacing) the ith occurrence of #. In
addition, we set the costs and weights that are input to MCK as follows. The cost

12 Bernardini et al.

for replacing the ith occurrence of # with the letter j is set to the sum of the
Ghost function for all candidate τ -ghost patterns when the ith occurrence of # is
replaced by j. That is, we make the worst-case assumption that the replacement
forces all candidate τ -ghosts to become τ -ghosts in Z. The weight for replacing
the ith occurrence of # with letter j is set to Sub(i, j).
(III) Solving the instance of MCK and translating the solution back to a (possibly
suboptimal) solution of the MCSR problem. For this, we replace the ith occurrence
of # with the letter corresponding to the element chosen by the MCK algorithm
from class Ci, and similarly for each other occurrence of #. If the instance
has no solution (i.e., no possible replacement can hide the sensitive patterns),
MCSR-ALGO reports that Z cannot be constructed and terminates.

Lemma 6 below states the running time of MCSR-ALGO (see the appendix
for the proof on an efficient implementation of this algorithm).

Lemma 6. MCSR-ALGO runs in O(|Y |+ kδσ + T (δ, σ)) time, where T (δ, σ)
is the running time of the MCK algorithm for δ classes with σ + 1 elements each.

6 Experimental Evaluation
We evaluate our approach, referred to as TPM, in terms of data utility and
efficiency. Given a string W over Σ, TPM sanitizes W by applying TFS-ALGO,
PFS-ALGO, and then MCSR-ALGO, which uses the O(δσθ)-time algorithm
of [20] for solving the MCK instances. The final output is a string Z over Σ.
Experimental Setup and Data. We do not compare TPM against existing
methods, because they are not alternatives to our approach (see Section 7).
Instead, we compared against a greedy baseline referred to as BA.

BA initializes its output string ZBA to W and then considers each sensitive
pattern R in ZBA, from left to right. For each R, it replaces the letter r of R
that has the largest frequency in ZBA with another letter r′ that is not contained
in R and has the smallest frequency in ZBA, breaking all ties arbitrarily. If no
such r′ exists, r is replaced by # to ensure that a solution is produced (even if it
may reveal the location of a sensitive pattern). Each replacement removes the
occurrence of R and aims to prevent τ -ghost occurrences by selecting an r′ that
will not substantially increase the frequency of patterns overlapping with R.

We considered the following publicly available datasets used in [1,12,14,16]:
Oldenburg (OLD), Trucks (TRU), MSNBC (MSN), the complete genome of
Escherichia coli (DNA), and synthetic data (uniformly random strings, the
largest of which is referred to as SYN). See Table 1 for the characteristics of these
datasets and the parameter values used in experiments, unless stated otherwise.

Dataset Data domain Length Alphabet # sensitive # sensitive Pattern
n size |Σ| patterns positions |S| length k

OLD Movement 85,563 100 [30, 240] (60) [600, 6103] [3, 7] (4)
TRU Transportation 5,763 100 [30, 120] (10) [324, 2410] [2, 5] (4)
MSN Web 4,698,764 17 [30, 120] (60) [6030, 320480] [3, 8] (4)
DNA Genomic 4,641,652 4 [25, 500] (100) [163, 3488] [5, 15] (13)
SYN Synthetic 20,000,000 10 [10, 1000] (1000) [10724, 20171] [3, 6] (6)

Table 1: Characteristics of datasets and values used (default values are in bold).

The sensitive patterns were selected randomly among the frequent length-k
substrings at minimum support τ following [12,14,16]. We used the fairly low

String Sanitization: A Combinatorial Approach 13

values τ = 10, τ = 20, τ = 200, and τ = 20 for TRU, OLD, MSN, and DNA,
respectively, to have a wider selection of sensitive patterns. We also used a
uniform cost of 1 for every occurrence of each τ -ghost, a weight of 1 (resp., ∞)
for each letter replacement that does not (resp., does) create a sensitive pattern,
and we further set θ = δ. This setup treats all candidate τ -ghost patterns and all
candidate letters for replacement uniformly, to facilitate a fair comparison with
BA which cannot distinguish between τ -ghost candidates or favor specific letters.

To capture the utility of sanitized data, we used the (frequency) distortion
measure

∑
U (FreqW (U) − FreqZ(U))2, where U ∈ Σk is a non-sensitive pat-

tern. The distortion measure quantifies changes in the frequency of non-sensitive
patterns with low values suggesting that Z remains useful for tasks based on pat-
tern frequency (e.g., identifying motifs corresponding to functional or conserved
DNA [21]). We also measured the number of τ -ghost and τ -lost patterns in Z
following [12,14,16], where a pattern U is τ -lost in Z if and only if FreqW (U) ≥ τ
but FreqZ(U) < τ . That is, τ -lost patterns model knowledge that can no longer
be mined from Z but could be mined from W , whereas τ -ghost patterns model
knowledge that can be mined from Z but not from W . A small number of
τ -lost/ghost patterns suggests that frequent pattern mining can be accurately
performed on Z [12,14,16]. Unlike BA, by design TPM does not incur any τ -lost
pattern, as TFS-ALGO and PFS-ALGO preserve frequencies of nonsensitive
patterns, and MCSR-ALGO can only increase pattern frequencies.

All experiments ran on an Intel Xeon E5-2640 at 2.66GHz with 16GB
RAM. Our source code, written in C++, is available at https://bitbucket.

org/stringsanitization. The results have been averaged over 10 runs.

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(a) OLD

0 ⋅ 10
+0

1 ⋅ 10
+4

2 ⋅ 10
+4

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(b) TRU

0 ⋅ 10
+0

5 ⋅ 10
+6

1 ⋅ 10
+7

2 ⋅ 10
+7

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(c) MSN

0 ⋅ 10
+0

5 ⋅ 10
+4

1 ⋅ 10
+5

2 ⋅ 10
+5

25
163

100
607

200
1167

500
3061

sensitive patterns
|S|

D
is

to
rt

io
n

TPM
BA

(d) DNA

Fig. 2: Distortion vs. number of sensitive patterns and their total number |S| of
occurrences in W (first two lines on the X axis).

0 ⋅ 10
+0

2 ⋅ 10
+3

4 ⋅ 10
+3

6 ⋅ 10
+3

3
600

4
1935

6
621

7
671

k
|S|

D
is

to
rt

io
n

TPM
BA

(a) OLD

0 ⋅ 10
+0

1 ⋅ 10
+3

3 ⋅ 10
+3

5 ⋅ 10
+3

7 ⋅ 10
+3

2
342

3
105

4
100

5
100

k
|S|

D
is

to
rt

io
n

TPM
BA

(b) TRU

0 ⋅ 10
+0

1 ⋅ 10
+8

3 ⋅ 10
+8

5 ⋅ 10
+8

7 ⋅ 10
+8

3
64105

4
62868

6
320480

8
71979

k
|S|

D
is

to
rt

io
n

TPM
BA

(c) MSN

0 ⋅ 10
+0

1 ⋅ 10
+5

2 ⋅ 10
+5

11
3140

13
3607

14
3703

15
3488

k
|S|

D
is

to
rt

io
n

TPM
BA

(d) DNA

Fig. 3: Distortion vs. length of sensitive patterns k (and |S|).
Data Utility. We first demonstrate that TPM incurs very low distortion, which
implies high utility for tasks based on the frequency of patterns (e.g., [21]). Fig. 2

https://bitbucket.org/stringsanitization
https://bitbucket.org/stringsanitization

14 Bernardini et al.

shows that, for varying number of sensitive patterns, TPM incurred on average
18.4 (and up to 95) times lower distortion than BA over all experiments. Also,
Fig. 2 shows that TPM remains effective even in challenging settings, with many
sensitive patterns (e.g., the last point in Fig. 2b where about 42% of the positions
in W are sensitive). Fig. 3 shows that, for varying k, TPM caused on average
7.6 (and up to 14) times lower distortion than BA over all experiments.

Next, we demonstrate that TPM permits accurate frequent pattern mining :
Fig. 4 shows that TPM led to no τ -lost or τ -ghost patterns for the TRU and
MSN datasets. This implies no utility loss for mining frequent length-k substrings
with threshold τ . In all other cases, the number of τ -ghosts was on average 6
(and up to 12) times smaller than the total number of τ -lost and τ -ghost patterns
for BA. BA performed poorly (e.g., up to 44% of frequent patterns became
τ -lost for TRU and 27% for DNA). Fig. 5 shows that, for varying k, TPM led
to on average 5.8 (and up to 19) times fewer τ -lost/ghost patterns than BA. BA
performed poorly (e.g., up to 98% of frequent patterns became τ -lost for DNA).

9

 0

22

 0

22

 0

37

 0

0

10

20

30

40

50

30
606

60
1254

120
2667

240
6103

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(a) OLD

18

 0
16

 0

6

 0

7

 0

0

10

20

30

30
324

60
756

90
1355

120
2410

sensitive patterns
|S|

L
o

s
t

a
n

d
 G

h
o

s
t

TPM
BA

(b) TRU

13

15

28

40

30

59

35

82

0

50

100

150

30
6030

60
12128

90
18276

120
24502

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t

TPM
BA

(c) MSN

1

0

9

0

14

0

47

0

0

20

40

60

25
163

100
607

200
1167

500
3061

sensitive patterns
|S|

L
o
s
t
a
n
d
 G

h
o
s
t

TPM
BA

(d) DNA

Fig. 4: Total number of τ -lost and τ -ghost patterns vs. number of sensitive patterns
(and |S|). xy on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

8

 1

19

 0
15

 0
10

 0

0

10

20

30

40

3
600

4
1935

6
621

7
671

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(a) OLD

0

 0

6

 0

11

 0
10

 0

0

10

20

30

2
342

3
105

4
100

5
100

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(b) TRU

6

25

16

37

15

10

15

13

0

20

40

60

80

3
64105

4
62868

6
320480

8
71979

k
|S|

L
o

s
t

a
n

d
 G

h
o

s
t

TPM
BA

(c) MSN

233

0

71

0
55

0

47

0

0

50

100

150

200

250

11
3140

13
3607

14
3703

15
3488

k
|S|

L
o
s
t
a
n
d
 G

h
o
s
t TPM

BA

(d) DNA

Fig. 5: Total number of τ -lost and τ -ghost patterns vs. length of sensitive patterns k
(and |S|). xy on the top of each bar for BA denotes x τ -lost and y τ -ghost patterns.

We also demonstrate that PFS-ALGO reduces the length of the output
string X of TFS-ALGO substantially, creating a string Y that contains less
redundant information and allows for more efficient analysis. Fig. 6a shows the
length of X and of Y and their difference for k = 5. Y was much shorter than
X and its length decreased with the number of sensitive patterns, since more
substrings had a suffix-prefix overlap of length k − 1 = 4 and were removed (see
Section 4). Interestingly, the length of Y was close to that of W (the string before
sanitization). A larger k led to less substantial length reduction as shown in Fig.
6b (but still few thousand letters were removed), since it is less likely for long
substrings of sensitive patterns to have an overlap and be removed.

String Sanitization: A Combinatorial Approach 15

38K

118K

222K

271K

309K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

5.1 ⋅ 10
6

40
45053

60
77248

80
113597

100
153508

120
196084

#sensitive patterns
|S|

L
e

n
g

th
Length of X
Length of Y

(a) DNA

32K 42K

8K

2K
1K

|W|

4.7 ⋅ 10
6

4.8 ⋅ 10
6

4.9 ⋅ 10
6

5 ⋅ 10
6

10
44405

11
44070

13
44720

14
44993

15
44204

k
|S|

L
e

n
g

th

Length of X
Length of Y

(b) DNA
n

R
u

n
ti
m

e
 (

s
)

5M 10M 15M 20M

1
0

2
0

3
0

4
0

5
0

BA
TPM
linear with n

(c) Substr. of SYN
k

R
u
n
ti
m

e
 (

s
)

3 4 5 6

1
0

2
0

3
0

4
0

BA
TPM

(d) SYN

Fig. 6: Length of X and Y (output of TFS-ALGO and PFS-ALGO, resp.) for varying:
(a) number of sensitive patterns (and |S|), (b) length of sensitive patterns k (and |S|).
On the top of each pair of bars we plot |X|− |Y |. Runtime on synthetic data for varying:
(c) length n of string and (d) length k of sensitive patterns. Note that |Y | = |Z|.
Efficiency. We finally measured the runtime of TPM using prefixes of the
synthetic string SYN whose length n is 20 million letters. Fig. 6c (resp., Fig. 6d)
shows that TPM scaled linearly with n (resp., k), as predicted by our analysis in
Section 5 (TPM takes O(n+ |Y |+ kδσ + δσθ) = O(kn+ kδσ + δσθ) time, since
the algorithm of [20] was used for MCK instances). In addition, TPM is efficient,
with a runtime similar to that of BA and less than 40 seconds for SYN.

7 Related Work

Data sanitization (a.k.a. knowledge hiding) aims at concealing patterns modeling
confidential knowledge by limiting their frequency, so that they are not easily
mined from the data. Existing methods are applied to: (I) a collection of set-valued
data (transactions) [24] or spatiotemporal data (trajectories) [1]; (II) a collection
of sequences [12,14]; or (III) a single sequence [4,16,25]. Yet, none of these methods
follows our CSD setting: Methods in category I are not applicable to string data,
and those in categories II and III do not have guarantees on privacy-related
constraints [25] or on utility-related properties [12,14,4,16]. Specifically, unlike
our approach, [25] cannot guarantee that all sensitive patterns are concealed
(constraint C1), while [12,14,4,16] do not guarantee the satisfaction of utility
properties (e.g., Π1 and P2).

Anonymization aims to prevent the disclosure of individuals’ identity and/or in-
formation that individuals are not willing to be associated with [3,10]. Anonymiza-
tion works such as [3,5,7] are thus not alternatives to our work (see the appendix).

8 Conclusion
In this paper, we introduced the Combinatorial String Dissemination model. The
focus of this model is on guaranteeing privacy-utility trade-offs (e.g., C1 vs. Π1
and P2). We defined a problem (TFS) which seeks to produce the shortest string
that preserves the order of appearance and the frequency of all non-sensitive
patterns; and a variant (PFS) that preserves a partial order and the frequency
of the non-sensitive patterns but produces a shorter string. We developed two
time-optimal algorithms, TFS-ALGO and PFS-ALGO, for the problem and
its variant, respectively. We also developed MCSR-ALGO, a heuristic that
prevents the disclosure of the location of sensitive patterns from the outputs of
TFS-ALGO and PFS-ALGO. Our experiments show that sanitizing a string
by TFS-ALGO, PFS-ALGO and then MCSR-ALGO is effective and efficient.

16 Bernardini et al.

Acknowledgments. HC is supported by a CSC scholarship. GR and NP are partially

supported by MIUR-SIR project CMACBioSeq grant n. RBSI146R5L. We acknowledge

the use of the Rosalind HPC cluster hosted by King’s College London.

References

1. Abul, O., Bonchi, F., Giannotti, F.: Hiding sequential and spatiotemporal patterns.
TKDE 22(12), 1709–1723 (2010)

2. Aggarwal, C.C., Yu, P.S.: On anonymization of string data. In: SDM. pp. 419–424
(2007)

3. Aggarwal, C.C., Yu, P.S.: A framework for condensation-based anonymization of
string data. DMKD 16(3), 251–275 (2008)

4. Bonomi, L., Fan, L., Jin, H.: An information-theoretic approach to individual
sequential data sanitization. In: WSDM. pp. 337–346 (2016)

5. Bonomi, L., Xiong, L.: A two-phase algorithm for mining sequential patterns with
differential privacy. In: CIKM. pp. 269–278 (2013)

6. Cazaux, B., Lecroq, T., Rivals, E.: Linking indexing data structures to de Bruijn
graphs: Construction and update. J. Comput. Syst. Sci. (2016)

7. Chen, R., Acs, G., Castelluccia, C.: Differentially private sequential data publication
via variable-length n-grams. In: CCS. pp. 638–649 (2012)

8. Cormode, G., Korn, F., Tirthapura, S.: Exponentially decayed aggregates on data
streams. In: ICDE. pp. 1379–1381 (2008)

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press (2007)

10. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: TCC. pp. 265–284 (2006)

11. Gallant, J., Maier, D., Storer, J.A.: On finding minimal length superstrings. J.
Comput. Syst. Sci. 20(1), 50–58 (1980)

12. Gkoulalas-Divanis, A., Loukides, G.: Revisiting sequential pattern hiding to enhance
utility. In: KDD. pp. 1316–1324 (2011)

13. Grossi, R., Iliopoulos, C.S., Mercas, R., Pisanti, N., Pissis, S.P., Retha, A., Vayani,
F.: Circular sequence comparison: algorithms and applications. AMB 11, 12 (2016)

14. Gwadera, R., Gkoulalas-Divanis, A., Loukides, G.: Permutation-based sequential
pattern hiding. In: ICDM. pp. 241–250 (2013)

15. Liu, A., Zhengy, K., Liz, L., Liu, G., Zhao, L., Zhou, X.: Efficient secure similarity
computation on encrypted trajectory data. In: ICDE. pp. 66–77 (2015)

16. Loukides, G., Gwadera, R.: Optimal event sequence sanitization. In: SDM. pp.
775–783 (2015)

17. Malin, B., Sweeney, L.: Determining the identifiability of DNA database entries. In:
AMIA. pp. 537–541 (2000)

18. Monreale, A., Pedreschi, D., Pensa, R.G., Pinelli, F.: Anonymity preserving sequen-
tial pattern mining. Artif. Intell. Law 22(2), 141–173 (2014)

19. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets.
In: S&P. pp. 111–125 (2008)

20. Pissinger, D.: A minimal algorithm for the multiple-choice knapsack problem. Eur
J Oper Res 83(2), 394–410 (1995)

21. Pissis, S.P.: MoTeX-II: structured MoTif eXtraction from large-scale datasets. BMC
Bioinformatics 15, 235 (2014)

22. Sinha, P., Zoltners, A.A.: The multiple-choice knapsack problem. Operations Re-
search 27(3), 431–627 (1979)

String Sanitization: A Combinatorial Approach 17

23. Theodorakopoulos, G., Shokri, R., Troncoso, C., Hubaux, J., Boudec, J.L.: Prolong-
ing the hide-and-seek game: Optimal trajectory privacy for location-based services.
In: WPES. pp. 73–82 (2014)

24. Verykios, V.S., Elmagarmid, A.K., Bertino, E., Saygin, Y., Dasseni, E.: Association
rule hiding. TKDE 16(4), 434–447 (2004)

25. Wang, D., He, Y., Rundensteiner, E., Naughton, J.F.: Utility-maximizing event
stream suppression. In: SIGMOD. pp. 589–600 (2013)

A Omitted Proofs

Proof (Lemma 1).
C1: Index j in TFS-ALGO runs over the positions of string W ; at any moment
it indicates the ending position of the currently considered length-k substring of
W . When C[j − k + 1] = 1 (Lines 9-11) TFS-ALGO never appends W [j], i.e.,
the last letter of a sensitive length-k substring, implying that, by construction of
C, no W [i . . i+ k − 1] with C[i] = 1 occurs in X.

P1: When C[j − k] = C[j − k + 1] = 0 (Lines 7-8) TFS-ALGO appends W [j] to
X, thus the order of W [j − k . . j − 1] and W [j − k + 1 . . j] is clearly preserved.
When C[j − k] = 0 and C[j − k + 1] = 1, index f stores the starting position
on W of the (k − 1)-length suffix of the last non-sensitive substring appended
to X (see also Fig. 1). C1 ensures that no sensitive substring is added to X
in this case, nor when C[j − k] = C[j − k + 1] = 1. The next letter will thus
be appended to X when C[j − k] = 1 and C[j − k + 1] = 0 (Lines 12-17). The
condition on Line 13 is satisfied if and only if the last non-sensitive length-k
substring appended to X overlaps with the immediately succeeding non-sensitive
one by k − 1 letters: in this case, the last letter of the latter is appended to X
by Line 14, clearly maintaining the order of the two. Otherwise, Line 17 will
append W [j − k + 1 . . j] to X, once again maintaining the length-k substrings’
order. Conversely, by construction, any U ∈ Σk occurs in X only if it equals a
length-k non-sensitive substring of W . The only occasion when a letter from W is
appended to X more then once is when Line 17 is executed: it is easy to see that in
this case, because of the occurrence of #, each of the k−1 repeated letters creates
exactly one U /∈ Σk, without introducing any new length-k string over Σ nor
increasing the occurrences of a previous one. Finally, Line 14 does not introduce
any new U ∈ Σk except for the one present in W , nor any extra occurrence of the
latter, because it is only executed when two consecutive non-sensitive length-k
substrings of W overlap exactly by k − 1 letters.

P2: It follows from the proof for C1 and P1.
P3: Letter # is added only by Line 16, which is executed only when C[j − k] = 1
and C[j − k + 1] = 0. This can be the case up to dn−k+1

2 e times as array C can
have alternate values only in the first n− k + 1 positions. By construction, X
cannot start with # (Lines 2-4), and thus the maximal number of occurrences
of # is bn−k+1

2 c. By construction, letter # in X is followed by at least k letters
(Line 17): the leftmost non-sensitive substring following a sequence of one or
more occurrences of sensitive substrings in W .

P4: Upper bound. TFS-ALGO increases the length of string X by more than
one letter only when letter # is added to X (Line 16). Every time Lines 16-17

18 Bernardini et al.

are executed, the length of X increases by k + 1 letters. Thus the length of X
is maximized when the maximal number of occurrences of # is attained. This
length is thus bounded by dn−k+1

2 e · k + bn−k+1
2 c.

Tightness. For the lower bound, let W = an and ak be sensitive. The condition
at Line 3 is not satisfied because no element in C is set to 0: j = n. Then
the condition on Line 5 is also not satisfied because j = n, and thus TFS-
ALGO outputs the empty string. A de Bruijn sequence of order k over an
alphabet Σ is a string in which every possible length-k string over Σ occurs
exactly once as a substring. For the upper bound, let W be the order-(k − 1)
de Bruijn sequence over alphabet Σ, k be even, and S = {1, 3, 5, . . . , n − k}.
C[0] = 0 and so Line 4 will add the first k letters of W to X. Then observe
that C[1] = 1, C[2] = 0;C[3] = 1, C[4] = 0, . . ., and so on; this sequence of
values corresponds to satisfying Lines 12 and 9 alternately. Line 9 does not add
any letter to X. The if statement on Line 13 will always fail because of the de
Bruijn sequence property. We thus have a sequence of the non-sensitive length-k
substrings of W interleaved by occurrences of # appended to X. TFS-ALGO
thus outputs a string of length dn−k+1

2 e · k + bn−k+1
2 c (see Example 4).

Example 4 (Illustration of P3). Let k = 4. We construct the order-3 de Bruijn
sequence W = baaabbbaba of length n = 10 over alphabet Σ = {a, b}, and
choose S = {1, 3, 5}. TFS-ALGO constructs:

X = baaa#aabb#bbba#baba.

The upper bound of dn−k+1
2 e · k + bn−k+1

2 c = 19 on the length of X is attained.
ut

Proof (Lemma 3). Consider the following renaming technique. Each length-
` substring of the collection is assigned a lexicographic rank from the range
{1, . . . , ||B||}. Each string in B is converted to a two-letter string as follows. The
first letter is the lexicographic rank of its length-` prefix and the second letter is
the lexicographic rank of its length-` suffix. We thus obtain a new collection B′
of two-letter strings. Computing the ranks for all length-` substrings in B can
be implemented in O(||B||) time by employing radixsort to sort Σ and then the
well-known LCP data structure over the concatenation of strings in B [9]. The
FO-SSM problem is thus solved by finding a shortest string containing every
element of B′ as a distinct substring. Since B′ consists of two-letter strings only
we can solve the problem in O(|B′|) time by applying Lemma 2. The statement
follows. ut

Proof (Lemma 4). C1 and P2 hold trivially for Y as no length-k substring
over Σ is added or removed from X. Let X = X1# . . .#XN . The order of
non-sensitive length-k substrings within Xi, for all i ∈ [1, N], is preserved in Y .
Thus for any p-chain JW of IW , there is a p-chain JY of IY such that JW ≡ JY
(Π1 is preserved). P3 also holds trivially for Y as no occurrence of # is added.
Since |Y | ≤ |X|, for P4, it suffices to note that the construction of W in the
proof of tightness in Lemma 1 (see also Example 4) ensures that there is no

String Sanitization: A Combinatorial Approach 19

suffix-prefix overlap of length k − 1 between any pair of length-k substrings of Y
over Σ∗ due to the property of the order-(k − 1) de Bruijn sequence. Thus the
upper bound of dn−k+1

2 e · k + bn−k+1
2 c on the length of X is also tight for Y .

The minimality on the length of Y follows from the minimality of |X| and
the correctness of Lemma 3 that computes a shortest such string. ut

Proof (Lemma 5). We reduce the NP-hard Multiple Choice Knapsack (MCK)
problem [22] to MCSRk=1 in polynomial time. In MCK, we are given a set of
elements subdivided into δ, mutually exclusive classes, C1, . . . , Cδ, and a knapsack.
Each class Ci has |Ci| elements. Each element j ∈ Ci has an arbitrary cost cij ≥ 0
and an arbitrary weight wij . The goal is to minimize the total cost (Eq. 1) by
filling the knapsack with one element from each class (constraint II), such that
the weights of the elements in the knapsack satisfy constraint I, where constant
b ≥ 0 represents the minimum allowable total weight of the elements in the
knapsack:

min
∑
i∈[1,δ]

∑
j∈Ci

cij · xij (1)

subject to the constraints: (I)
∑
i∈[1,δ]

∑
j∈Ci wij · xij ≥ b, (II)

∑
j∈Ci xij =

1, i = 1, . . . δ, and (III) xij ∈ {0, 1}, i = 1, . . . , δ, j ∈ Ci.
The variable xij takes value 1 if the element j is chosen from class Ci, 0

otherwise (constraint III). We reduce any instance IMCK to an instance IMCSRk=1

in polynomial time, as follows:

(I) Alphabet Σ consists of letters αij , for each j ∈ Ci and each class Ci, i ∈ [1, δ].
(II) We set Y = α11α12 . . . α1|C1|# . . .#αδ1αδ2 . . . αδ|Cδ|#. Every element of Σ

occurs exactly once: FreqY (αij) = 1. Letter # occurs δ times in Y . For
convenience, let us denote by µ(i) the ith occurrence of # in Y .

(III) We set τ = 2 and θ = δ − b.
(IV) Ghost(µ(i), αij) = cij and Sub(µ(i), αij) = 1− wij . The functions are other-

wise not defined.

This is clearly a polynomial-time reduction. We now prove the correspondence
between a solution SIMCK to the given instance IMCK and a solution SIMCSRk=1

to the instance IMCSRk=1
.

We first show that if SIMCK is a solution to IMCK, then SIMCSRk=1
is a solution

to IMCSRk=1
. Since the elements in SIMCK

have minimum
∑
i∈[1,δ]

∑
j∈Ci cij · xij ,

FreqY (αij) = 1, and τ = 2, the letters α1, . . . , αδ corresponding to the selected
elements lead to a Z that incurs a minimum∑

i∈[1,δ]

∑
j=µ(i):FreqY (Z[j])<τ

FreqZ(Z[j])≥τ

Ghost(j, Z[j]). (2)

In addition, each letter Z[j] that is considered by the inner sum of Eq. 2
corresponds to a single occurrence of #, and these are all the occurrences of #.
Thus we obtain that

20 Bernardini et al.

∑
i∈[1,δ]

∑
j=µ(i):FreqY (Z[j])<τ

FreqZ(Z[j])≥τ

Ghost(j, Z[j]) =
∑

i:Y [i]=#, FreqY (Z[i])<τ
FreqZ(Z[i])≥τ

Ghost(i, Z[i]) (3)

(i.e., condition I in Problem 3 is satisfied). Since the elements in SIMCK
have

total weight
∑
i∈[1,δ]

∑
j∈Ci wij · xij ≥ b, the letters α1, . . . , αδ they map to lead

to a Z with
∑
i∈[1,δ]

∑
j∈Ci(1− Sub(µ(i), αi)) · xij ≥ δ − θ, which implies∑

i∈[1,δ]

∑
j∈Ci

Sub(µ(i), αij) · xij =
∑

i:Y [i]=#

Sub(i, Z[i]) ≤ θ (4)

(i.e., condition II in Problem 3 is satisfied). SIMCSRk=1
is thus a solution to

IMCSRk=1
.

We finally show that, if SIMCSRk=1
is a solution to IMCSRk=1

, then SIMCK

is a solution to IMCK. Since each #i, i ∈ [1, δ], is replaced by a single let-
ter αi in SIMCSRk=1

, exactly one element will be selected from each class Ci
(i.e., conditions II-III of MCK are satisfied). Since the letters in SIMCSRk=1

sat-
isfy condition I of Problem 3, every element of Σ occurs exactly once in Y ,
and τ = 2, their corresponding selected elements j1 ∈ C1, . . . , jδ ∈ Cδ will
have a minimum total cost. Since SIMCSRk=1

satisfies
∑
i:Y [i]=# Sub(i, Z[i]) =∑

i∈[1,δ]
∑
j∈Ci Sub(µ(i), αij) ·xij ≤ θ, the selected elements j1 ∈ C1, . . . , jδ ∈ Cδ

that correspond to α1 . . . , αδ will satisfy
∑
i∈[1,δ]

∑
j∈Ci(1 − wij) · xij ≤ δ − b,

which implies
∑
i∈[1,δ]

∑
j∈Ci wij · xij ≥ b (i.e., condition I of MCK is satisfied).

Therefore, SIMCK is a solution to IMCK. The statement follows. ut

Proof (Lemma 6). It should be clear that if we conceptually extend Σ with the
empty string, our approach takes into account the possibility of deleting (instead
of replacing) an occurrence of #. To ease comprehension though we only describe
the case of letter replacements.

Step 1: Given Y , Σ, k, δ, and τ , we construct a set C of candidate τ -ghosts as
follows. The candidates are at most (|Y | − k + 1− kδ) + (kδσ) = O(|Y |+ kσδ)
distinct strings of length k. The first term corresponds to all substrings of length
k over Σ occurring in Y (i.e., if Y did not contain #, we would have |Y | − k + 1
such substrings; each of the δ # causes the loss of k such substrings). The second
term corresponds to all possible substrings of length k that may be introduced
in Z but do not occur in Y . For any string U from the set of these O(|Y |+ kδσ)
strings, we want to compute FreqY (U) and its maximal frequency in Z, denoted
by max FreqZ(U), i.e., the largest possible frequency that U can have in Z, to
construct set C. Let us denote by Sij the string of length 2k − 1, containing the
k consecutive length-k substrings, obtained after replacing the ith occurrence of
with letter j in Y .

(I) If FreqY (U) ≥ τ , U by definition can never become τ -ghost in Z, and we
thus exclude it from C. FreqY (U), for all U occurring in Y , can be computed in
O(|Y |) total time using the suffix tree of Y .

String Sanitization: A Combinatorial Approach 21

(II) If max FreqZ(U) < τ , U by definition can never become τ -ghost in Z,
and we thus exclude it from C. max FreqZ(U) can be computed by adding to
FreqY (U), the maximum additional number of occurrences of U caused by a letter
replacement among all possible letter replacements. We sum up this quantity for
each U and for all replacements of occurrences of # to obtain max FreqZ(U). To
do this, we first build the generalized suffix tree of Y, S11, . . . , Sδσ in O(|Y |+kδσ)
time. We then spell Si1, . . . , Siσ, for all i, in the generalized suffix tree in O(kσ)
time per i. We exploit suffix links to spell the length-k substrings of Sij in O(k)
time and memorize the maximum number of occurrences of U caused by replacing
the ith occurrence of # among all j. We represent set C on the generalized suffix
tree by marking the corresponding nodes, and we denote this representation by
T (C). The total size of this representation is O(|Y |+ kσδ).

Step 2: We now want to construct an instance of the MCK problem using T (C).
We first set letter j as element αij of class Ci. We then set cij equal to the
sum of the Ghost function cost incurred by replacing the ith occurrence of #
by letter j for all (at most k) affected length-k substrings that are marked in
T (C). The main assumption of our heuristic is precisely the fact that we assume
that this letter replacement will force all of these affected length-k substrings
becoming τ -ghosts in Z. The computation of cij is done as follows. For each
(i, j), i ∈ [1, δ] and j ∈ [1, σ], we have k substrings whose frequency changes,
each of length k. Let U be one such pattern occurring at position t of Z, where
µ(i) − k + 1 ≤ t ≤ µ(i) and µ(i) is the ith occurrence of # in Y . We check if
U is marked in T (C) or not. If U is not marked we add nothing to cij . If U is
marked, we increment cij by Ghost(t, U). We also set wij = Sub(i, j) (as stated
above, any letter that reinstates a sensitive pattern is assigned a weight Sub > θ,
so that it cannot be selected to replace an occurrence of # in Step 3). Similar to
Step 1, the total time required for this computation is O(|Y |+ kσδ).

Step 3: In Step 2, we have computed cij and wij , for all i, j, i ∈ [1, δ] and
j ∈ [1, σ]. We thus have an instance of the MCK problem. We solve it and
translate the solution back to a (suboptimal) solution of the MCSR problem: the
element αij chosen by the MCK algorithm from class Ci corresponds to letter j
and it is used to replace the ith occurrence of #, for all i ∈ [1, δ]. The cost of
solving MCK depends on the chosen algorithm and is given by a function T (δ, σ).

Thus, the total cost of MCSR-ALGO is O(|Y |+ kδσ + T (δ, σ)). ut

B Additional Details on Anonymization

Anonymization is a direction in privacy-preserving data mining which is applied to
individual-specific data and aims to prevent the disclosure of individuals’ identity
and/or information that individuals are not willing to be associated with [3,18,10].
On the other hand, our approach is applied to a string modeling information that
does not necessarily refer to specific individuals and aims to protect sensitive
patterns that model confidential knowledge rather than values individuals do not
want to be associated with. For example, our approach may be applied to a string
comprised of letters corresponding to orders of different products by a business. In
this case, subsequences of ordered products that provide competitive advantage

22 Bernardini et al.

to the business [14] are treated as sensitive patterns and should be concealed
from the disseminated string. The fact that anonymization methods deal with
individual-specific data and aim to prevent privacy threats other than confidential
knowledge exposure leads to fundamentally different protection principles and
methods than ours. Thus, our work is related to anonymization approaches in
that it shares the general objective of protecting string data with [3,2] and that
of protecting data while supporting string mining with the works of [5] and [7].
However, our work considers different input data and has a fundamentally different
privacy objective than [3,2,5,7]. Specifically, these works consider a collection of
strings instead of a long string and employ privacy objectives which do not aim
to reduce the frequency of sensitive length-k substrings to zero. Therefore, they
cannot be applied to address our problem.

	 String Sanitization: A Combinatorial Approach

