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metabolites (5) downstream from genome or gene, mRNA, 
and protein (6), reflecting an integrated metabolic profile 
(7–9). This metabolome-wide approach has shown aberra-
tions in metabolic profile to be predictive of CVD (10–13). A 
Mendelian randomization study suggested that higher BMI is 
associated with altered levels of some CVD-related metabo-
lites, including lipoprotein lipid and cholesterol contents, 
saturated FAs, branched-chain amino acids (BCAAs) and 
aromatic amino acids, and inflammatory metabolites (14). 
However, adults with similar BMI may have different fat distri-
butions (15). It is not clear whether central adiposity is 
associated with metabolite levels independent of BMI in late 
adulthood when central adiposity becomes more common. 
Furthermore, there is an indication that changes in BMI over 
up to 7 years are associated with metabolic profile (14, 16). 
However, it is unclear which metabolites are affected by 
changes in BMI across the life course, which is important, 
given the effect of childhood BMI changes on cardiovascular 
function in adulthood (17, 18). Therefore, we assessed the 
similarities and differences between associations of BMI and 
central-adiposity measures, as well as body size across the life 
course, with metabolic profile at age 60–64 in the Medical 
Research Council (MRC) National Survey of Health and  
Development (NSHD) birth cohort.

MATERIALS AND METHODS

Study population
The MRC NSHD has been described in detail (19, 20). From this 

population, we included individuals with measurements of at least 
one circulating metabolite and information on BMI and waist and 
hip circumferences at age 60–64 (n = 900). A flowchart depicting 

Abstract  BMI is correlated with circulating metabolites, but 
few studies discuss other adiposity measures, and little is 
known about metabolomic correlates of BMI from early life. 
We investigated associations between different adiposity 
measures, BMI from childhood through adulthood, and me-
tabolites quantified from serum using 1H NMR spectroscopy 
in 900 British men and women aged 60–64. We assessed 
BMI, waist-to-hip ratio (WHR), android-to-gynoid fat ratio 
(AGR), and BMI from childhood through adulthood. Linear 
regression with Bonferroni adjustment was performed to as-
sess adiposity and metabolites. Of 233 metabolites, 168; 126; 
and 133 were associated with BMI, WHR, and AGR at age 
60–64, respectively. Associations were strongest for HDL, 
particularly HDL particle size—e.g., there was 0.08 SD de-
crease in HDL diameter (95% CI: 0.07–0.10) with each unit 
increase in BMI. BMI-adjusted AGR or WHR were associ-
ated with 31 metabolites where there was no metabolome-wide 
association with BMI.  We identified inverse associations 
between BMI at age 7 and glucose or glycoprotein at age 
60–64 and relatively large LDL cholesteryl ester with post-
adolescent BMI gains. In summary, we identified metabo-
lomic correlates of central adiposity and earlier-life BMI. 
These findings support opportunities to leverage metabolo-
mics in early prevention of cardiovascular risk attributable to 
body fatness.—Wulaningsih, W., P. Proitsi, A. Wong, D. Kuh, 
and R. Hardy. Metabolomic correlates of central adiposity 
and earlier life body mass index. J. Lipid Res. 2019. 60: 
1136–1143.

Supplementary key words  metabolomics, obesity • nutrition • lipids • 
epidemiology

Obesity is a major health problem (1–3) and predisposes 
to CVD (4), but it is unclear which etiological pathways are 
affected by obesity. Recently, high-throughput analysis of bio-
logical samples has allowed quantification of small-molecule 
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selection of final study population is shown as supplemental Fig. 
S1. Ethical approval was obtained from the Greater Manchester 
Local Research Ethics Committee and the Scotland Research Eth-
ics Committee. The study abided by the principles of the Helsinki 
Declaration. Written informed consent was obtained from each 
study member for each component of each data collection.

Metabolite quantification
Targeted metabolomics analysis was performed on serum sam-

ples collected at age 60–64. Metabolites were quantified by an 

automated NMR metabolomics platform (Bruker AVANCE III 
500 MHz and Bruker AVANCE III HD 600 MHz spectrometers), 
which have been widely used in published studies (21). A total of 
233 metabolite concentrations and derived measures were ob-
tained (supplemental Table S1, supplemental data). Of 233 me-
tabolites, 159 (72%) were measured in all included participants. 
The remaining metabolites had <1.5% missing values. Metabolite 
measures that deviated from normality were log-transformed 
(supplemental Table S1, supplemental data), and all measures 
were standardized.

Fig.  1.  Cross-sectional associations between BMI and systemic metabolites at age 60–64. The outer circle shows predicted SD change in 
metabolite levels for every kg/m2 increase in BMI in OLS analysis. The middle circle shows the “Manhattan plot” with green dots indicating 
significant p-values after Bonferroni adjustment. VIP from OPLS analysis is shown in the inner circle. Metabolites identified by the two analyses 
were indicated with dark blue points. See supplemental Table S1 for abbreviations and grouping based on metabolic processes. All models 
were adjusted for sex, age at NMR blood collection, and NMR blood-collection center.
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Assessment of adiposity
At ages 60–64, weight (kg), height (m), and waist and hip cir-

cumference (cm) were measured using standardized protocols by 
trained nurses (19). Weight and height were also measured at 
ages 7, 15, 36, 43, and 53, and BMI (kg/m2) was calculated. 
Measures of body composition at age 60–64 were obtained in 
the supine position using a QDR4500 Discovery DXA scanner 
(Hologic Inc, Bedford, MA) and reviewed using a single opera-
tor using APEX 3.1 software (Hologic Inc.) (15). Measures  
of android and gynoid fat mass were obtained, and the ratio 

between the two [android-to-gynoid fat ratio (AGR)] was calcu-
lated (higher values indicating greater fat distribution in the 
abdomen than hips).

Other covariates
Systemic metabolites have been reported to be altered with 

lipid medications (22), diabetes (23), and other chronic diseases 
(24). Self-reported information on use of statin, diabetes diagno-
sis, and unintentional weight loss was therefore collected. Unin-
tentional weight loss, which may represent preclinical chronic 

Fig.  2.  Cross-sectional associations between WHR and systemic metabolites at age 60–64. The outer circle shows predicted SD change in 
metabolite levels for every kg/m2 increase in WHR in OLS analysis. The middle circle shows the Manhattan plot with green dots indicating 
significant p-values after Bonferroni adjustment. VIP from OPLS analysis is shown in the inner circle. Metabolites identified by the two analyses 
were indicated with dark blue points. See supplemental Table 1 for abbreviations and grouping based on metabolic processes. All models 
were adjusted for sex, age at NMR blood collection, and NMR blood-collection center.
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Metabolomics, adiposity, and earlier-life BMI 1139

disease (25), was defined as losing weight of more than 10 pounds 
unintentionally in the past year.

Data analysis
Association between current adiposity and systemic metabolites.  Ordi-

nary least-squares (OLS) regression was used with the adiposity 
measure [BMI, waist-to-hip ratio (WHR), or AGR] as the predictor 
for each metabolite, adjusting for sex, age, and clinic. Models for 
WHR and AGR were further adjusted for BMI. A sensitivity analysis 
was performed by restricting the models to those without statin use 
(n = 698), diabetes (n = 849), or unintentional weight loss (n = 
856). To address potential correlation between metabolites (9), we 
repeated the analysis for each adiposity measure using a multivari-
ate approach, orthogonal partial least-squares (OPLS) (26). Me-
tabolites with a variable importance in projection (VIP)  1 were 
deemed strongly correlated with adiposity (27).

Association between prior BMI and systemic metabolites.  We then 
investigated how prior BMI was associated with levels of metabo-
lites. OLS regression models were used to assess BMI in child-
hood (age 7; n = 766), adolescence (age 15; n = 722), and 
adulthood (ages 36; 43; and 53; n = 836; 855; and 859, respectively) 
and metabolite levels at age 60–64. Significant associations for 
prior BMI were further adjusted for BMI at age 60–64 in order 
to assess whether prior BMI was associated with metabolite 
level over and above current BMI (28, 29). Because the num-
bers of participants who had data on prior BMI were smaller 
than the maximum sample, we performed a sensitivity analysis 
assessing associations between BMI at all ages and metabolites 
in participants who had complete data on all BMI measures  
(n = 569).

Association between BMI gains and systemic metabolites.  In the 
main sample, we assessed whether there were sensitive periods in 
life during which BMI gains were associated with metabolites in 
late adulthood. This was conducted for ages 7–15, 15–36, 36–43, 
43–53, and 53 to 60–64 by regressing each BMI measure on the 

BMI measured earlier for each sex. Higher residuals represented 
greater BMI gains than expected (30). Each set of residuals was 
standardized and used as predictors of metabolites to address 
whether there were periods when gain in BMI was associated with 
later-life metabolites.

For each model, we used a Bonferroni-adjusted significance 
threshold for 233 tests (p < 0.0002). All analyses were conducted 
in R statistical software version 3.3.2 (R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

Characteristics of study members are shown in supple-
mental Table S2. The majority had nonmanual occupations 
and were overweight at age 60–64. Pairwise correlations  
between metabolites are presented as supplemental Fig. S2.

Association between current adiposity and systemic 
metabolites

In OLS (n = 900), 168 metabolites were associated with 
BMI (Fig. 1), 126 with WHR (Fig. 2), and 133 with AGR 
(supplemental Fig. S3). After adjusting for BMI, 63 metab-
olites remained associated with WHR and 106 with AGR 
(supplemental Fig. S4, S5). Associations were strongest for 
HDL particle diameter (HDL D) and concentration of very 
large (XL) HDL phospholipids (PLs) (Table 1). Sensitivity 
analyses excluding participants with statin use, diabetes, or 
unintentional weight loss yielded similar results (data not 
shown). We identified 25 metabolites in men and 5 in 
women that were associated with WHR or AGR when ad-
justed for BMI, but they were not associated with BMI in 
the main sex-stratified analysis (Table 2).

In OPLS, six predictors or principal components ex-
plained the association between metabolites and each 

TABLE  1.  Ten metabolites associated with each adiposity measure at highest precision

Positive (inverse) associations were highlighted in blue (red), respectively. Significant results with adjustment for multiple testing are indicated 
in white. For abbreviations, see supplemental Table S1.

*Adjusted for BMI.
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measure of adiposity. Taking such clustering into account, 
a total of 99 metabolites were shown to be associated with 
BMI (VIP  1), 87 with WHR, and 90 with AGR. Common 
metabolites identified by both the hypothesis-testing ap-
proach and OPLS are indicated in Figs. 1, 2, supplemental 
Fig. S3 for BMI, WHR, and AGR, respectively. Agreement 
between the two methods was high for associations of BMI, 
WHR, and AGR with metabolite markers of XL and large 
HDL, large and medium VLDL, lipoprotein particle size, 
and BCAAs. HDL D was consistently among the top 10 me-
tabolite correlates of BMI, WHR, and AGR in the OPLS 
analysis (supplemental Table S3).

Association between prior BMI and systemic metabolites
Associations between prior adult BMI and metabolites 

showed similar, albeit weaker, trends to current BMI (sup-
plemental Fig. S6 and Table 2). More metabolites were as-
sociated with more recent BMI, with 125; 147; and 162 
metabolite correlates seen for BMI at age 36, 43, and 53, 
respectively. Of these, only three remained associated with 
BMI at age 43 and 11 with BMI at age 53 when adjusted for 
BMI at age 60–64 (supplemental Fig. S6). No association 
was observed between BMI at age 7 or 15 with systemic me-
tabolites at age 60–64. However, upon adjustment with BMI 
at age 60–64, we found BMI at age 7 to be inversely related 
with 0.11 SD decrease in glucose (95% CI: 0.06 to 0.15) 
and 0.10 SD decrease in glycoprotein (0.05 to 0.15).

The sensitivity analysis in the subset of participants who 
had complete data of prior BMI showed similar results 
(data not shown), and after adjustment with current BMI, 
only one metabolite, small (S) LDL PLs (S LDL PL) re-
mained associated with previous BMI, i.e., BMI at age 43.

Association between BMI gains and systemic metabolites
BMI gains from adolescence through adulthood were 

consistently related to XL and large HDL metabolites (Fig. 3). 
Apart from these, BMI gains at the latter ages were also as-
sociated with larger VLDL metabolites, and adolescent 
gains with relative contents of smaller VLDL and LDL me-
tabolites, medium HDL, FAs, and aromatic amino acids 
(Fig. 3). One metabolite, relatively large LDL cholesteryl 
ester (L LDL CE %), decreased with greater BMI gain be-
tween age 15 and 36 but was not associated with change at 
other ages or BMI at age 60–64. Small HDL total lipids 
(S HDL L) was associated with BMI gains between age 43 
and 53, but not with other periods or current BMI.

DISCUSSION

We showed associations between current adiposity and 
systemic metabolites in late adulthood and BMI in earlier 
ages. Most consistent associations were observed for 
HDL metabolism. We identified 25 metabolite measures 

TABLE  2.  BMI-adjusted associations between body fat distribution and metabolites without associations with BMI at Bonferroni-adjusted 
significance level

AGR WHR

Metabolite n Estimate CI n Estimate CI

Men
  Medium VLDL CEs 368 1.30 0.70–1.90
  Medium VLDL free cholesterol (%) 368 1.24 0.73–1.76
  Small VLDL PLs 368 1.59 1.06–2.12 465 3.56 1.88–524
  Small VLDL total cholesterol 368 1.35 0.79–1.91 465 3.80 2.05–5.45
  Small VLDL CEs 465 3.61 1.81–5.40
  Small VLDL free cholesterol 368 1.66 1.13–2.19 465 3.67 1.97–5.36
  XS VLDL concentration 465 3.48 1.68–5.26
  XS VLDL CEs (%) 368 1.25 1.86 to 0.64
  Small LDL free cholesterol (%) 465 3.86 5.87 to 1.84
  IDL triglycerides 465 3.28 1.67–4.89
  Large LDL triglycerides 465 3.65 1.86–5.44
  Medium LDL triglycerides 465 3.43 1.78–5.09
  Small LDL triglycerides 368 1.24 0.63–1.84 465 4.42 2.49–6.24
  XL HDL triglycerides (%) 363 1.27 0.65–1.90
  Medium HDL triglycerides 368 1.21 0.66–1.76
  VLDL cholesterol 368 1.42 0.84–2.00 465 3.87 2.05–5.68
  RemNAt cholesterol 465 3.64 1.78–5.50
  LDL triglycerides 465 3.90 2.09–5.71
  Diacylglycerol 368 1.26 0.65–1.87
  Apo B 368 1.17 0.58–1.76 465 3.96 2.13–5.78
  Total FAs 464 3.60 1.81–5.38
  MUFA; 16:1, 18:1 368 1.36 0.76–1.95 464 4.22 2.39–6.06
  Saturated FAs 464 3.95 2.05–5.85
  Citrate 465 4.13 6.10 to 2.16
  Glycoprotein acetyls 368 1.83 1.23–2.43 465 5.35 3.45–7.25
Women
  Small HDL concentration 365 2.03 1.23–2.83
  Small HDL PLs 365 1.98 1.18–2.78
  Small HDL total lipids 365 1.96 1.16–2.76
  XXL VLDL PLs (%) 365 1.88 1.00–2.76
  Diacylglycerol 365 1.55 0.80–2.29

Percentage for lipoprotein lipid components refers to proportion against total lipid contents. RemNAt, remnant cholesterol; XS, very small; 
XXL, extremely large.
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Fig  3.  Associations between conditional BMI change and systemic metabolites at age 60–64. Point estimates 
indicate SD change in metabolite levels for every z-score increase in BMI at each age interval, conditioned by 
BMI at the earlier age. Associations that remained after Bonferroni correction are displayed. All models were 
adjusted for sex, age at NMR blood collection, and NMR blood collection center.

independently associated with central adiposity but not 
BMI. When controlling for BMI at age 60–64, greater BMI at 
age 7 was correlated with lower glucose and glycoprotein at 
age 60–64. We also revealed lower relatively large LDL CE at 
age 60–64 with greater adolescent-to-adulthood BMI gains.

Our cross-sectional findings for BMI and metabolites in 
early old age corroborate prior findings linking body size 
and metabolites, including causal associations observed us-
ing a Mendelian randomization study of young adults (31). 
Similar to that study, we found associations between BMI 
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and a number of metabolites including HDL metabolites, 
BCAAs, markers of glycolysis, and inflammation. This may 
suggest that BMI influences metabolites in a similar man-
ner throughout adulthood. Metabolite correlates of cen-
tral adiposity also align with those identified in previous 
studies, such as lipoprotein concentration, HDL particle 
size, and BCAAs (32–35). We added to these findings by 
presenting data in late adulthood in which central obesity 
is common, including specific lipoprotein components, 
and identifying associations independent of BMI. Central 
adiposity may represent visceral rather than overall accu-
mulation of fat (36). There were more metabolites specifi-
cally linked to central adiposity in men compared with 
women. This may support sexual dimorphism in regula-
tion of fat depot and systemic metabolism (32, 37).

A similar pattern to current BMI was observed with 
greater past BMI or its increments, which is in line with a 
previous study assessing metabolites linked to a 7 year 
weight change in adults aged 62–77 (16). Although this 
may indicate BMI tracking, there were remaining associa-
tions between past BMI in adulthood and current metabo-
lites after taking into account current BMI. Plausible 
mechanisms by which high BMI in earlier adulthood may 
affect metabolites in early old age may involve excess adi-
posity affecting systemic processes such as inflammation 
and oxidative stress (38) or predisposing to maladaptive 
lifestyles such as physical inactivity (39). Additionally, we 
identified specific metabolite correlates of BMI at age 7 
after adjusting for BMI at age 60–64 and of BMI gains from 
adolescence to early adulthood, which were different from 
late adulthood. The inverse associations of BMI at age 7 
with glucose and glycoprotein, both of which are greater 
with higher BMI at age 60–64, may indicate that they were 
particularly responsive to greater gains in BMI between 
childhood and adulthood. These metabolites have been 
associated with adverse metabolic pathways, including in-
sulin resistance and advanced glycated end products, 
which are often activated in obesity (38, 40).

Strengths and limitations
The strength of this study lies in the longitudinal mea-

surements of BMI from childhood through adulthood 
and measurements of body fat distribution in early old 
age. A limitation of this study is the smaller number of 
those with information on prior BMI. However, findings 
comparing prior BMI were similar in a sensitivity analysis 
limited to those with complete lifelong BMI information. 
Metabolites were only measured on one occasion. Indi-
viduals who had higher BMI were at higher risk of CVD 
and may have died or dropped out of the study prior to 
metabolite quantification at age 60–64, and this may re-
sult in underestimation of the observed associations. Our 
NMR platform only included absolute or relative quantifi-
cation of metabolites. Future studies of adiposity could 
investigate other characteristics of metabolites such as 
aggregation susceptibility because LDL aggregation has 
been shown to be associated with CVD and is potentially 
modifiable by treatment (41).

CONCLUSION

We found metabolite correlates of current and past 
measures of BMI, which imply that metabolic profiling 
may be valuable for interventions aiming to mitigate the 
impacts of excess adiposity across adult life. The sugges-
tion of alternative mechanisms for central adiposity and 
childhood BMI, which are independent of current BMI 
at age 60–64, indicates the importance of future research 
on body composition and longitudinal measures of 
adiposity.

The authors thank NSHD study members who took part in the 
clinic data collection for their continuing support; members 
of the NSHD scientific and data-collection teams at the follow
ing centers: MRC Unit for Lifelong Health and Ageing at UCL; 
Wellcome Trust (WT) Clinical Research Facility (CRF) Manchester; 
WTCRF at the Western General Hospital in Edinburgh; WTCRF 
at University Hospital Birmingham; WTCRF at University College 
London Hospital; CRF and the Department of Medical Physics 
at the University Hospital of Wales; and CRF and Twin Research 
Unit at St. Thomas’ Hospital London. Data used in this publica
tion are available upon request to the MRC National Survey of 
Health and Development Data Sharing Committee. Further 
details can be found at http://www.nshd.mrc.ac.uk/data and 
at 10.5522/NSHD/Q101, 10.5522/NSHD/Q102, and 10.5522/
NSHD/S102D.
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