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Abstract    

 

The immunosuppressive activity of mesenchymal stromal cells (MSC) is well 

documented. However, the therapeutic benefit is completely unpredictable, thus 

raising concerns about MSC efficacy. One of the affecting factors is the unresolved 

conundrum that, despite being immunosuppressive, MSC are undetectable following 

injection. Therefore, understanding the fate of infused MSC could help to predict 

clinical responses. Using a murine model of graft-versus-host disease (GvHD) we 

demonstrate that MSC are actively induced to undergo perforin-dependent apoptosis 

by recipient cytotoxic cells and that this process is essential to initiate MSC-induced 

immunosuppression. When examining patients with GvHD who received MSC we 

found a striking parallel, whereby only those with high cytotoxic activity against MSC 

responded to MSC infusion whereas those with low activity did not. Importantly, the 

need for recipient cytotoxic cell activity could be replaced by the infusion of apoptotic 

MSC generated ex vivo. Recipient phagocytes engulf apoptotic MSC and produce 

indoleamine 2,3dioxygenase (IDO) that is ultimately necessary for effecting 

immunosuppression. Therefore, we propose the innovative concept that patients 

should be stratified for MSC treatment according to their ability to kill MSC or that all 

patients could be treated with ex vivo apoptotic MSC.  

  

  

 

 

 

 

 



Introduction   

   

Mesenchymal stromal cells (MSC) exhibit potent immunosuppressive and anti-

inflammatory activities (1)  that have been extensively tested in several clinical 

conditions (2–5). However, the results have often been controversial and proof of 

efficacy inconclusive. Two major unresolved challenges undermine progress in the 

field. The first is that, only a proportion of patients, although affected by the same 

disease, responds to MSC infusions and this response cannot be predicted. The 

second is that, to be efficacious, MSC are not required to engraft. The vast majority of 

infused MSC resides transiently in the lungs before becoming undetectable within a 

few hours (6). Since our current knowledge cannot provide an explanation to this 

paradox (7–10) a better understanding of the mechanisms underlying MSC 

therapeutic activity would be highly desirable.  

  

We selected to address these challenges in Graft-versus-Host Disease (GvHD) 

because there is proof of principle that MSC are efficacious (4, 11). Thereby, we 

demonstrate that the activated cytotoxic cells harbored in GvHD mice rapidly induce 

extensive in vivo caspase activation in infused MSC. The presence of activated 

cytotoxic cells in MSC recipients is required for inducing MSC apoptosis and, as a 

consequence, for triggering the MSC immunosuppressive effect. These findings do 

not only explain the rapid clearance of infused MSC but also mechanistically reconcile 

their disappearance with their immunomodulatory activity. The link between cytotoxic 

cell activity, MSC apoptosis and immunosuppression is confirmed by the correlation 

in GvHD patients between high levels of cytotoxic activity against MSC and clinical 

responses. Recipient-mediated killing of MSC can therefore be regarded as the first 



mechanism-based biomarker for patient stratification. Strikingly, apoptotic MSC 

generated ex vivo exhibit a potent immunosuppressive effect that is dependent on 

phagocyte-derived indoleamine 2,3dioxygenase (IDO) activity and bypasses the need 

for cytotoxic cells in the recipient.  Eventually, we propose that novel treatment 

concepts may be devised based on the application of apoptotic MSC.  

     

 

Results  

  

MSC undergo apoptosis in recipient GvHD animals.   

In order to explain the mechanism by which MSC are rapidly cleared after injection (6, 

12), we tested the hypothesis that MSC undergo apoptosis. We injected human MSC 

in a mouse model of GvHD in which lethally irradiated C57BL/6 male mice were 

transplanted with bone marrow (BM) and polyclonal purified CD4+ cells from female 

syngeneic donors, and purified CD8+ cells transgenic for a T-cell receptor specific for 

the male HY antigen Uty (Matahari, Mh) as GvHD effectors (13) (Fig. S1A). In this 

model the expansion of the T cells effecting GvHD (CD8+Vβ8.3+) can be precisely 

enumerated.  

  

In vivo MSC caspase activation was evaluated using MSC that were transfected with 

the pGL3 control vector for the expression of firefly luciferase (luc+) (luc-MSC). 

Caspase activation was measured as luciferase activity using DEVD-aminoluciferin. 

In this system, caspase 3 activation could be quantified on the basis of emitted light 

since DEVD is cleaved upon activation of caspase 3, leading to release of 

aminoluciferin which in turn can be metabolized by the firefly luciferase expressed in 

MSC.  Luc-MSC were injected into recipients of BM transplant with CD8+ Mh T cells 



(GvHD group) and one hour later caspase activity was measured as total 

luminescence signal (TLS). Control mice consisted of naïve males (naïve group) and 

a group of mice which were irradiated and received CD4+ and BM cells (BM group) 

without the transgenic T cells to reproduce the condition of MSC infusion in the 

absence of activated cytotoxic T cells (Fig. S1A). We observed high caspase activity 

only in MSC injected into GvHD mice (Fig. 1, A and B). High signal could be detected 

from the lungs of all animals when the control D-luciferin (firefly luciferase substrate) 

was used (Fig. S1, B and C), thus confirming that luc-MSC can be tracked in the lungs 

also when caspase activity could not be detected.   

  

The evidence that MSC undergo apoptosis after infusion prompted the question of 

whether they are still capable of suppressing antigen-driven T cell expansion. 

Therefore, we analyzed their immunosuppressive effect by enumerating CD8+Vβ8.3+ 

Mh T cells (GvHD effector cells) in MSC-treated or -untreated GvHD mice. MSC 

produced a significant reduction in GvHD effector cell infiltration in both spleen and 

lungs (Fig. 1, C and D). These results indicate that, despite the presence MSC 

apoptosis after infusion (Fig. 1, A and B), MSC immunosuppression still occurs.    

  

We can exclude the possibility that the observed immunosuppressive activity could be 

the consequence of the recipient inflammatory cytokines because in our xenogeneic 

combination murine inflammatory cytokines will not cross-react with the corresponding 

human receptors and will not activate immunosuppressive molecules in human MSC 

(14–16), whilst retaining the ability to expand murine effector cells mediating GvHD 

(17). Accordingly, human MSC were not able to inhibit concanavalin-A (ConA) induced 

proliferation of murine splenocytes (mSpl) unless pre-activated by human cytokines 



(Fig. S2, A, B and C). Furthermore, exposure of human MSC to murine inflammatory 

cytokines did not upregulate IDO, TNF-stimulated gene 6 protein (TSG-6) or 

prostaglandin-endoperoxide synthase-2 (PTSG2), considered major effectors of 

human MSC-mediated in vitro immunosuppression (8) (Fig. S2 D).  

  

In vivo MSC apoptosis depends on activated recipient GvHD effector cells   

Our results show that MSC rapidly undergo apoptosis after infusion, providing the 

long-sought after explanation for the rapid clearance of transplanted MSC in the 

recipient. The absence of in vivo MSC apoptosis in naïve and BM mice clearly 

demonstrates that MSC apoptosis is not the result of xenogeneic recognition of human 

MSC, because it is detected only in GvHD mice. When we enumerated GvHD effector 

cell infiltrate (CD8+Vβ8.3+) in the lungs of mice, where MSC apoptosis occurs, we 

found that only the lungs of GvHD but not naïve and BM mice contained a large 

proportion of CD8+Vβ8.3+ cells (Fig. 2A), thus confirming the correlation between 

caspase activation in MSC and the presence of GvHD effector cells.   

 

To test the hypothesis that GvHD effector cells were responsible for MSC apoptosis, 

MSC were cultivated with CD8+ T cells purified from the lungs or spleens of GvHD (in 

vivo activated) or naïve Mh (in vivo resting) mice. Activated, but not resting, Mh CD8+ 

cells induced MSC apoptosis (Fig. 2B). In further support of the lack of antigen-

specificity in the induction of the killing activity, high levels of cytotoxic activity could 

be elicited by naïve Mh CD8+ cells stimulated in vitro by CD3/CD28 beads (Fig. S3A).  

The requirement of cytotoxic cells in the induction of MSC apoptosis and the 

consequent immunosuppression was evaluated using Mh/Perforin Knock-Out mice 

(Mh/Perf-/-) as donors of cytotoxic defective GvHD effector cells (GvHDPerf-/- group). 



Luc-MSC were infused into GvHDPerf-/- or control GvHD mice which had received Mh 

CD8+ T cells. Mice were imaged 1 hour later and caspase activation measured as 

described before. We observed much lower caspase activity in GvHDPerf-/- mice 

compared to GvHD controls (Fig. 2, C and D). High signal was detected in the lungs 

of all animals when the control D-luciferin was used (Fig. S3, B and C), thus confirming 

that luc-MSC were in the lungs also when caspase activity could not be detected. 

Importantly, the infiltration of GvHD effector cells in the spleen and lungs of mice 

receiving MSC was not reduced in GvHDPerf-/- receiving MSC (Fig. 2, E and F). We 

conclude that MSC apoptosis is indispensable for immunosuppression and requires 

functionally activated cytotoxic cells in the recipient.  

  

Cytotoxic activity against MSC is a biomarker predictive of clinical response to MSC 

in GvHD patients 

Based on these findings, we inferred that the presence of cytotoxic cells in the recipient 

could be predictive of MSC therapeutic activity. Sixteen patients, mean age 40.5 years 

(10-69), with severe steroid resistant grade 3-4 GvHD received a total of 17 doses. 

Patient characteristics are summarized in Table S1.   

  

Clinical responses to MSC were defined by an improvement of at least 50% in at least 

1 organ affected by GvHD as previously described (4, 11, 18). Five patients obtained 

a clinical response. Peripheral blood mononuclear cells (PBMC) were freshly collected 

within the 24 hours preceding the MSC infusion and tested directly for their ability to 

induce MSC apoptosis ex vivo in a 4-hour cytotoxic assay. One patient received two 

doses of MSC and the cytotoxic assay was performed before each dose 

independently. MSC were sourced from the same donor used for the infusion (N=8) 



or from a different donor (N=9). At the time of performing the assay and 

cytofluorimetric analysis the operator was blind to patients’ clinical details. PBMC from 

healthy donors (N=5) were used as controls.  

  

Overall, PBMC from GvHD patients exhibited an average cytotoxic activity against 

MSC higher than that detected in control PBMC but without reaching a significant 

difference (mean±SD were: 10.63±8.76% and 3.82±2.50%, respectively; p=.10). 

However, the level of cytotoxicity between clinical responders and non-responders to 

MSC was markedly different, with the proportion of apoptotic MSC (annexin-V+/7AAD-

) exhibiting a four-fold difference (Fig. 3, A and B). The discrimination threshold of 

apoptotic MSC between responders and non-responders calculated using the 

receiver-operating characteristic curve revealed that a 14.85% cut-off was predictive 

of clinical response with the highest sensitivity and specificity. The level of cytotoxicity 

did not vary amongst MSC preparations, because when we tested patients’ PBMC 

against the MSC used for the infusion as compared to another preparation obtained 

from an unrelated donor, no difference in apoptosis induction could be detected (Fig. 

S4, A). To further confirm the irrelevance of the specific MSC preparation, we 

evaluated the susceptibility of MSC sourced from different unrelated donors to be 

killed by 4 different mixed lymphocyte reaction (MLR) combinations. The proportion of 

apoptotic MSC was similar amongst the different MSC preparations when the same 

MLR was tested. Conversely, the cytotoxic activity against the same MSC varied 

amongst different MLR (Fig. S4, B).  

Finally, we ruled out the possibility that different proportions of CD8+ and CD56+ cells 

could account for the differing cytotoxic activity because the average frequency in the 

PBMC of responders and non-responders was similar (Fig. S4, C and D). Therefore, 



we conclude that the presence of activated cytotoxic cells in the recipient is predictive 

of MSC therapeutic activity. 

 

MSC apoptosis induced by cytotoxic cells is the result of a bystander effect   

To define the mechanisms that drive apoptosis in MSC, we used in-vitro-activated 

PBMC as effector cells. We found that activated but not resting PBMC induced 

extensive early apoptosis (annexinV+/7AAD-) in MSC (Fig. 4A), which peaked at 4 

hours and shifted towards late apoptosis (annexinV+/7AAD+) by 24 hours (Fig. S5A). 

In accord with our in vivo observations (Fig. 1, A and B), only activated PBMC induced 

caspase activation in MSC with a peak at 90 minutes (Movie S1, S2 and S3), and this 

was completely abrogated by the pan-caspase inhibitor Z-VAD-FMK (Fig. 4B, Fig. 

S5B and movie S4).   

  

In order to identify the cells inducing apoptosis in MSC, we performed selective 

enrichment and depletion experiments amongst activated PBMC. We found that 

CD56+ natural killer (NK) and CD8+ populations were the only cells responsible for 

initiating MSC apoptosis (Fig. 4, C and D). To characterize the mechanisms mediating 

MSC apoptosis induced by activated cytotoxic cells, we studied potential factors 

involved in caspase 3 activation. Inhibition of either Granzyme B (GrB) or perforin 

completely abolished the ability of activated PBMC to kill MSC (Fig. 4E) and activate 

caspase 3 (Fig. S5C, movie S5 and S6). We also observed reduced PBMC mediated 

cytotoxicity when CD95 ligand (CD95L, also known as FasL or APO-1L) was 

neutralized (Fig. 4F), but not when TNF-α or TNF-related apoptosis-inducing ligand 

(TRAIL) were inhibited, even in the presence of very high concentrations of their 

respective inhibitors (Fig. S5D).  



  

We then interrogated the nature of the MSC-cytotoxic cell interaction. We observed 

that apoptosis was not affected by the presence of anti-HLA class I- or anti-HLA class 

II neutralizing antibodies. Consistently, the cytotoxic activity of activated PBMC on 

autologous or allogeneic MSC did not differ (Fig. 4G). However, although PBMC 

required physical contact with MSC to induce apoptosis (Fig. 4H), blocking 

immunological synapse formation by inhibiting the polarization of microtubule 

organizing center (19) (Fig. 4I), had no effect. These results demonstrate that MSC 

killing by activated cytotoxic cells is a bystander effect that does not involve the 

immunological synapse.   

  

MSC apoptosis does not interfere with the recognition of the specific target of cytotoxic 

cells  

Having determined that the MSC apoptosis induced by cytotoxic cells is MHC-

independent and not antigen-specific, we asked whether MSC could exert their 

immunosuppressive effects by competing with and antagonizing antigen-specific 

recognition. NY-ESO1-specific CD8+ T cell clone (4D8) or IL2-activated polyclonal 

CD56+ purified NK cells were used as effector cells against NY-ESO-1 peptide pulsed 

T2 or K562 cells, respectively. Two different sets of experiments were performed. In 

the first set, 4D8 or NK cells were tested against fixed numbers of putative 

(susceptible) target cells in the presence of escalating numbers of MSC used as a 

cold target. The alternative condition consisted of escalating the numbers of the 

putative target cells – now used as cold targets – in the presence of a fixed number of 

MSC then considered as the susceptible target. MSC did not compete with antigen-

specific T cell cytotoxicity, since the killing of peptide-pulsed T2 cells was not affected 

by the presence of MSC (Fig. 5A). The same results were obtained using NK cells 



(Fig. 5B). In contrast, the presence of the putative target cells markedly reduced MSC 

killing in a dose dependent manner in both systems (Fig. 5, C and D). Our data show 

that MSC killing does not interfere with the primary recognition of the cognate antigen.  

  

Apoptotic MSC are immunosuppressive in a Th2-type inflammation model  

Our data imply that, since MSC killing does not interfere with the primary recognition 

of the cognate antigen, induction of apoptosis must be prominently involved in the 

immunosuppressive activity. Accordingly, in the GvHD model described, MSC 

apoptosis produced by recipient cytotoxic cells is required for immunosuppression. 

Therefore, we asked whether this causative relationship remains valid in a different 

disease model associated with non-cytotoxic Th2-type inflammation. We selected the 

model of ovalbumin (OVA)-induced allergic airway inflammation (20) summarized in 

Fig. S6A. Although cytotoxic immune cells have been implicated in the induction of 

this condition (21, 22), CD8+ and NK1.1+ cells infiltrating broncho-alveolar lavage 

(BAL) and lung tissues were less than 2% one hour after the last challenge, when 

MSC were infused (Fig. S6, B, C, D and E). To confirm the absence of MSC killing, 

mice received luc-MSC to assess caspase activation after infusion and imaged one 

hour later. No caspase activation was detected in any of the mice (Fig. 6, A and B). 

High signal could be detected in all animals receiving control D-luciferin (Fig. S6, F 

and G).  

  

The therapeutic activity, assessed by quantitating the eosinophil infiltration in the BAL 

showed no difference between MSC-treated and untreated mice (Fig. 6C). Together, 

these results indicate that also in this model MSC immunosuppression relies on the 

presence of recipient cytotoxic cells that mediate MSC apoptosis.  



  

Therefore, we decided to test whether in vitro generated apoptotic MSC (apoMSC) 

could bypass the need of cytotoxic cells and ameliorate eosinophil infiltration. When 

apoMSC were administered to recipient mice we observed that the eosinophil infiltrate 

in BAL was much reduced (Fig. 6D).  

 

Apoptotic MSC infused in GvHD are immunosuppressive and induce IDO production 

in recipient phagocytes 

We subsequently investigated whether apoMSC could be immunosuppressive also in 

the GvHD model. ApoMSC were administered either intravenously (i.v.). or 

intraperitoneally (i.p.). and the infiltration of CD8+Vβ8.3+ Mh T cells was assessed and 

compared to untreated GvHD mice. ApoMSC produced a significant reduction in 

GvHD effector cell infiltration in both spleen and lungs, but this could only be observed 

in those mice treated with ApoMSC infused i.p. (Fig. 7, A, B, C and D). 

 

It has been reported that the injection of irradiated thymocytes into animals results in 

their phagocytosis by recipient macrophages and induction of IDO (23). We therefore 

tested whether apoMSC followed the same destiny by eliciting in vivo efferocytosis by 

recipient phagocytes and inducing IDO production. For this purpose, labelled apoMSC 

were traced in recipient phagocytes after injection. Following i.p. administration, 

apoMSC were largely identified in CD11b+ (Fig. 7, E) and CD11c+ (Fig. 7, F) 

phagocytes in the peritoneal draining lymph nodes (24) (Fig. 7, E) but absent when 

searched for in the lungs and spleen. When the i.v. route was used, amongst the 

several phagocytic populations investigated (25), CD11bhighCD11cint, 

CD11bhighCD11c- and CD11b-CD11c+ were detected as engulfing apoMSC in lungs 



(Fig. 7, G, H and I, respectively). The analysis of IDO expression in the phagocytes 

engulfing ApoMSC both in the i.v. and i.p. groups revealed that only the phagocytes 

in the i.p. group were able to increase IDO expression at a significantly higher level in 

comparison with their counterparts in untreated GvHD mice (Fig. 7, J and K). These 

findings strongly suggest that the immunosuppressive effect of apoMSC involve 

recipient phagocytes and IDO as a crucial effector mechanisms. 

 

Recipient derived IDO-producing phagocytes are indispensable for MSC 

immunosuppression in GvHD 

To directly test the importance of recipient-derived phagocytes and recipient-produced 

IDO in MSC immunosuppressive activity, we depleted phagocytes and inhibited IDO 

activity in GvHD mice before MSC treatment and evaluated the effect of live MSC on 

the expansion of GvHD effectors.  

 

To deplete phagocytes liposome clodronate was given to mice 72 hours before MSC 

injection. The treatment, dramatically impaired the ability of MSC to suppress Mh T 

cell infiltration (Fig. 8, A and B). 

 

Finally, animals were given the IDO inhibitor 1-methyl-D-tryptophan (1-DMT) (26) 

before MSC injection. Also in this case, the beneficial effect of MSC on Mh T cell 

infiltration was much reduced in mice receiving 1-DMT compared to controls (Fig. 8, 

C and D). We therefore conclude that the immunosuppressive effect of MSC requires 

the presence of recipient phagocytic cells or IDO production.   

 

 



Discussion    

  

This study finally sheds light on the controversial topic of MSC therapeutics by 

identifying a crucial mechanism that explains several unresolved issues in the field. 

The first striking piece of information provides the resolution to the until now paradox 

that MSC are therapeutically efficacious despite the lack of engraftment (27–29). We 

demonstrate that MSC undergo extensive caspase activation and apoptosis after 

infusion in the presence of cytotoxic cells, and that this is a requirement for their 

immunosuppressive function. Although other recipient dependent reactions have been 

described as mediating MSC lysis in vitro (30) and MSC clearance in vivo (28, 29, 31, 

32) only our study has unveiled the instrumental role of in vivo MSC apoptosis in 

delivering immunosuppression after infusion. Furthermore, although several studies 

have reported the ability of apoptotic cells to modulate immune responses, here we 

provide evidence that in vivo naturally occurring cell death drives immunosuppression.  

  

MSC apoptosis requires and is effected by cytotoxic granules contained in recipient 

cytotoxic cells that also mediate GvHD in recipient mice (Fig. 1, A and B, fig. 2, C and 

D). Importantly, the cytotoxic activity against MSC can also be detected in the PBMC 

of GvHD patients and it is predictive of clinical responses. Patients displaying high 

cytotoxicity respond to MSC, whilst those with low or absent cytotoxic activity do not 

improve following MSC infusion (Fig. 3, A and B). Therefore, the ability of the recipient 

to generate apoptotic MSC appears to be a requirement for the therapeutic efficacy 

and lends itself to be used as a potential biomarker to stratify patients for MSC 

infusions. Further investigations are warranted to characterize in patients the 

phenotype of the cytotoxic mediating MSC apoptosis. 



  

MSC recognition by cytotoxic cells is not antigen-specific as neither requires HLA 

engagement nor results from an alloreaction rejection, thus supporting the current 

practice of using third-party MSC. MSC must be in physical contact with the activated 

cytotoxic cells to undergo apoptosis, although immunological synapse is not required. 

This supports a bystander role for the cytotoxic granules released by the activated 

cytotoxic cell. Such a mechanism has been described in the context of T-cell target 

recognition (19), HIV infection (33) and atherosclerosis (34). In these studies, 

bystander cells are not of mesenchymal origin, thus raising the interesting question of 

whether nonspecific induction of apoptosis and subsequent immunosuppression is 

selective for MSC.  

  

Our data suggest an approach to MSC therapeutics that highlights the key role of MSC 

recipient to orchestrate and determine MSC effector functions. Not only are cytotoxic 

cells in the recipient required to initiate apoptosis in infused MSC, but also phagocytes 

which, by engulfing apoptotic MSC and producing IDO, ultimately deliver MSC 

immunosuppressive activity. Similar mechanisms have been described to explain how 

apoptotic cells of different lineages, generated in vitro, induce immune modulation in 

GvHD (35–37) and macrophage mediated IDO-dependent immunosuppression in 

other systemic autoimmune diseases (26). This is also consistent with the described 

ability of MSC to stimulate recipient immune tolerance networks, like regulatory T cells 

(38, 39) and macrophages (40, 41).  

The depletion of recipient macrophages or the inhibition of IDO activity impairs also 

the therapeutic activity of live MSC, thereby linking in vivo MSC apoptosis with 

immunosuppression. It is unlikely that any particular phagocyte population 



(macrophages or DC) is selectively involved in engulfing apoMSC because they 

similarly display such an activity in vivo. Accordingly, TYRO3, AXL and MERTK (TAM) 

family members (42, 43) and the T cell immunoglobulin mucin (TIM) proteins 1 and 4 

(TIM1/4) (44) play a crucial role in the recognition and phagocytosis of apoptotic cells 

by both types of phagocytic cells. However, since clodronate exhibit a preferential 

depleting activity on macrophages compared to dendritic cells, our data suggest 

macrophages to play a more important role. 

One of the impacts of our study is that, although MSC remain the necessary starting 

point for therapeutic immunosuppression, patient-derived cells play a crucial role in 

delivering such an immunosuppression. Therefore, the efforts aimed at identifying the 

most clinically effective MSC subpopulation as well as the potency assays to validate 

such a selection may prove futile. A further proof supporting this concept is that the 

administration of ex-vivo generated apoMSC can circumvent the requirement for 

cytotoxic cells in a Th2 inflammatory model (Fig. 6D) and that apoMSC can be effective 

at suppressing the expansion/infiltration of the GvHD effector cells. Interestingly, 

apoMSC were mostly effective in the GvHD model only when administered i.p. (Fig. 

7, A, B, C, and D). Despite being phagocytosed, apoMSC injected i.v. did not induce 

IDO production (Fig. 7, J and K), thus suggesting that the site at which MSC apoptosis 

occur may influence the immunosuppressive function, perhaps by engaging with a 

subpopulation of phagocytes. 

A final question is whether a cytokine-dependent ‘licensing’ (9, 15, 45) co-exists with 

the generation of apoptotic MSC. Although our data indicate that cytokine-licensing is 

not required for the therapeutic activity, we cannot exclude that, before undergoing 

apoptosis, MSC directly inhibit inflammatory reactions through the conventional 



pathways. Furthermore, caspase activation in MSC may trigger cell death 

independent signals that stimulate the synthesis of immunomodulatory molecules 

independently of the generation of signals for phagocytosis (46). Consistent with this, 

it has been shown that MSC activate caspase-dependent IL-1 signalling that 

enhances secretion of immunomodulatory molecules (47).  

 

Our study constitutes a paradigm shift in MSC therapeutics whereby their apoptotic 

demise is a key step in the effector mechanism of immunosuppression exerted by 

MSC. A further impact of our discovery is that the principle underpinning this 

mechanism can be used as a biomarker to predict clinical responses to MSC and 

therefore stratify GvHD patients for MSC treatment. We therefore believe that the next 

generation of clinical trials should swing from choosing the best MSC population to 

choosing the patients most likely to respond. Furthermore, the intriguing possibility that 

apoMSC may be effective in patients refractory to MSC, paves the way to new 

avenues in the manufacturing of MSC. 

 

Materials and Methods  

Study Design  

  

This study aimed to verify whether MSC undergo apoptosis after infusion and to test 

the role played by MSC apoptosis in the initiation of recipient-derived tolerogenic 

immune response.  

A mouse model of GvHD, in which the disease is mediated by the expansion and 

activation of Mh CD8+ cells in the recipient, was chosen for three important reasons: 

it recapitulates a minor mismatch between donor and recipient; T cells effecting GvHD 



can be precisely enumerated; there is proof-of-principle that MSC are effective in 

treating GvHD. Furthermore, human MSC were used in order to avoid the confounding 

effects of recipient cytokines on MSC immune-modulating function (9, 45). In this 

system, murine inflammatory cytokines will not cross-react with the corresponding 

human receptors and will not activate immunosuppressive molecules in human MSC 

(14–16), whilst retaining the ability to expand murine effector cells mediating GvHD. 

Depletion of phagocytes (macrophages and dendritic cells) and inhibition of IDO 

production were conceived as loss of function experiments to assess the requirement 

of these factors in the delivery of MSC apoptosis-dependent immunosuppression. 

 

A mouse model of ovalbumin (OVA)-induced allergic airway inflammation was used to 

assess whether the causative relationship between cytotoxic cells and MSC apoptosis 

in the delivery of MSC immunosuppression is valid in a disease associated with Th2-

type inflammation.  

All animal procedures were carried out in compliance with the UK Home Office 

Animals (Scientific Procedures) Act of 1986.    

 

No randomization method was used. In all experiments animals were randomly 

allocated to control or experimental groups. No blinding approach was adopted. No 

statistical methods were used to predetermine sample size, which was estimated only 

on previous experience with assay sensitivity and the different animal models. Unless 

specified otherwise, three independent experimental replicates were performed.       

 

To demonstrate that the presence of cytotoxic cells against MSC in GvHD patients 

could be predictive of MSC therapeutic activity, samples from GvHD patients were 



collected and tested for their ability to induce MSC apoptosis in a cytotoxic assay 

within 24 hours before MSC infusion. At the time of performing the assay and 

cytofluorimetric analysis the operator was blind to patients’ clinical details. All patients 

were affected by steroid-resistant GvHD and received MSC for compassionate use. 

PBMC from healthy donors were used as controls. All samples were collected after 

informed consent was obtained in accordance with the local ethics committee 

requirements.    

  

Mice and disease models   

Acute GvHD was induced as previously described (13). Briefly, after lethal irradiation 

(11 Gy), recipient C57BL/6 male mice were transplanted with 1x106 purified CD8+ cells 

from female Mh mice, 5x106 unfractionated BM and 2x106 purified CD4+ cells from 

female C57BL/6 wild-type donors. The control group received BM and purified CD4+ 

cells only.  

For the depletion of all macrophages and dendritic cells mice received 1 mg liposome 

clodronate (ClodronateLiposome.com, Amsterdam, The Netherlands) i.v. 72 hours 

before MSC infusion (23). Recipient IDO activity was inhibited by using 1-DMT 

treatment (Sigma-Aldrich Company Ltd, Dorset, UK) (2mg/ml) in the drinking water 

starting from 6 days prior to MSC injection until animals were sacrificed (26).  

 

C57BL/6-Prf1tm1Sdz/J (Perforin-/-) mice were purchased from J Jackson labs, bred 

with Matahari Rag2-/- mice and the resulting offspring intercrossed for 2 generations 

to obtain Mh Rag2-/-.Perf KO F3 mice.  

 



OVA-induced airway inflammation was induced as previously described (20). Briefly, 

female Balb/C mice (Harlan Laboratories, Bicester, UK) were injected intraperitoneally 

with 30 µg of chicken egg albumin (OVA type V) on day 0 and 7. Controls received 

vehicle (aluminum hydroxide) only. On day 14, 15 and 16 animals were challenged 

with an aerosolized solution of OVA (3%) for 25 minutes. MSC or ApoMSC were 

injected 1 hour after the last challenge. After additional 18 hours, mice were terminally 

anaesthetized, a cannula inserted into the exposed trachea and three aliquots of 

sterile saline were injected into the lungs. The total number of cells in the lavage fluid 

was counted.    

 

MSC preparations   

Clinical grade BM-derived human MSC were generated from BM aspirates collected 

from the iliac crest of healthy donors. The cells were plated at a density of 10-25 

million/636 cm2. After 3 days at 37 °C and 5% CO2 non-adherent cells were discarded. 

When cell confluence of 90-100% was achieved, cells were detached with Trypsin-

EDTA and reseeded at a density of 5000 cells/cm2. MSC were used at passage 2 for 

all in vivo experiments, whilst they were used by passage 8 for the in vitro experiments. 

In the latter case we did not observe any difference in terms of apoptosis susceptibility 

between different passages.    

  

Patients   

Between November 2012 and July 2016, 16 patients affected by steroid-resistant 

GvHD were treated with MSC according to Regulation (EC) No 1394/2007. All patients 

received GvHD prophylaxis. Of the 16 patients included in the study, 13 developed 

GVHD following hematopoietic stem cell transplantation, and the remaining 3 after 



DLI. 12 patients were affected by acute GvHD, 3 by late onset acute GvHD and 1 by 

chronic GvHD. The diagnosis of GvHD was made on histological criteria and GvHD 

staged according to standard criteria (48, 49). Patient characteristics are summarized 

in Table S1. Samples were collected within 24 hours before MSC injection.   

  

Statistics   

Results were expressed as mean±SD. The unpaired Student t test was performed to 

compare 2 mean values. One-way ANOVA and Tukey’s Multiple Comparison test was 

used to compare 3 or more mean values. Probability of null hypothesis less than 5% 

(p>.05, two-sided) was considered statistically significant.   

  

Please see Supplementary Materials for full experimental procedures.   
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Figure 1: MSC undergo in vivo apoptosis after infusion without affecting 

delivery of immunosuppression. A: luc-MSC were injected i.v. into naïve, BM and 

GvHD mice 3 days after transplantation. All animals were then injected 

intraperitoneally with DEVD-aminoluciferin and imaged 1 hour later. N: 6 mice per 

group, grouped from 3 independent experiments. White lines separate multiple 

photographs assembled in the final image. B: TLS was measured from the images 

of mice in Fig. 1A and shown as mean±SD. C, D: Infiltration of GvHD effector cells 

(CD8+Vβ8.3+) in the spleen (C) and lungs (D) of GvHD mice (black circles) and GvHD 

mice treated with MSC (black squares), 4 days after MSC injection. N: 15 (GvHD) 

and 13 (GvHD+MSC) mice, grouped from 4 independent experiments; mean±SD 

are shown.  Statistics in B: one-way ANOVA, with Tukey’s Multiple Comparison Test. 

**: p<.01, ***: p<.001, ns: not significant. In C and D: unpaired t-test. **: p<.01.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

  

Figure 2. MSC apoptosis is indispensable for immunosuppression and 

requires functionally activated cytotoxic cells in the recipient. A: The 

percentage of CD8+Vβ8.3+ cells in lung cell suspensions from naïve C57BL/6 male, 

BM or GvHD mice was analyzed in the lymphocyte population; mean±SD are shown. 

N: 12 (GvHD), 3 (BM) and (3 (naïve) mice, grouped from 3 independent 

experiments. B: CD8+ cells were sorted from the lungs and spleens of naïve female 



Mh (grey bars) or GvHD mice (white bars) 7 days after transplant and tested for their 

ability to induce MSC apoptosis in vitro. The results show annexin V+/7-AAD- MSC 

(mean±SD) in 3 independent experiments (N=10 per group), black bar represents 

the level of apoptosis in MSC cultured alone used as control (N: 3) C: luc-MSC were 

infused in three independent experiments in GvHD (N=7) and GvHDPerf-/- (N=7) 

mice 3 days after transplantation. 1 hour later mice were injected with DEVD-

aminoluciferin and imaged. White lines separate multiple photographs assembled in 

the final image. D: TLS was obtained from Fig. 2C and expressed as mean±SD. E, 

F: infiltration of effector GvHD cells (CD8+Vβ8.3+) in the spleen (E) and lungs (F) of 

untreated GvHDPerf-/- (N=16) and GvHDPerf-/- (N=17) mice treated with MSC 

(mean±SD of 4 independent experiments). Statistics in A and B: one-way ANOVA, 

with Tukey’s Multiple Comparison Test. *: p<.05; ***: p<.001. In D, E and F: unpaired 

t-test. ***: p<.001. ns: not significant.  

  

  

  

  

  

  

  

  

 

 

 

 

 



 

  

 

Figure 3. Cytotoxic activity against MSC predicts clinical responses to MSC in 

GvHD patients. A, B: PBMC obtained from healthy controls (HC) or patients with 

GvHD receiving MSC in the following 24 hours were incubated in 24-well plates with 

MSC at a 20/1 PBMC/MSC ratio for 4 hours. The level of apoptosis was measured in 

MSC assessing the level of annexin-V/7-AAD by flow-cytometry. (A) Representative 

plots for HC, clinical responders (R) and non-responders (NR). (B) The level of 

apoptosis was compared among HC (circles, N=5), R (triangles; N=5) and NR 



(squares; N=12). Statistics: one-way ANOVA and Tukey’s Multiple Comparison test. 

***: p<.0001. ns: not significant.   



  



Figure 4. MSC apoptosis is mediated by activated CD8+ and CD56+ cytotoxic 

cells and is the result of a bystander effect. A: PBMC from healthy donors were 

activated using phytohemagglutinin (PHA) (PHA-aPBMC) or Mixed Lymphocyte 

Reaction (MLR) (MLR-aPBMC). Resting (light grey bars), PHA-aPBMC (black bars) 

or MLR-aPBMC (dark grey bars) were incubated with MSC at the indicated ratios 

for 4 hours. ND: Not done. B, E, F, I: MLR-aPBMC or PHA-aPBMC were cultivated 

with MSC in the presence or absence of the pan-caspase inhibitor Z-VAD-FMK (10 

µM) (B), GrB inhibitor Z-AAD-CMK (300 µM), perforin inhibitor ethylene glycol-

bis(2aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA) (4 mM) (E), neutralizing 

concentrations of FAS-L mAb anti-CD178 (F), or escalating doses (10 to 75 µM) of 

PKCζ-PS (I). H: MLR-aPBMC were cultivated with MSC in direct contact or 

separated by a transwell®. C, D: MLR-aPBMC were used unfractionated, positively 

selected for CD11b+, CD4+, CD8+ or  CD56+ cells (C) or depleted of CD56+, CD8+ 

or both (D). G: apoptosis in MSC after culture with autologous (black bars) or 

allogeneic (grey bars) PHA-aPBMC in the presence or absence of neutralizing 

doses of anti-HLA-A-B-C or anti-HLA-DR antibodies. In B- I: the PBMC/MSC ratio 

was 20/1. Results represent the mean±SD of 3 or 6 (H) independent experiments. 

Statistics: one-way ANOVA, with Tukey’s Multiple Comparison Test. *: p<0.5. **: 

p<.01. ***: p<.001. ns: not significant.   

 

 

 

 

 

 



  

  

Figure 5. MSC apoptosis does not interfere with the antigen-specific cytotoxic 

cell recognition of the cognate target. A: apoptosis in T2-cell after culture with 

4D8 cells at a 20/1 4D8:T2 ratio. Where indicated increasing concentrations of MSC 

(used as cold target) were added. Apoptotic T2 cells were identified as annexin V+/7-

AAD+ cells. B: apoptosis in K562 cultured with NK cells (20/1 NK:K562 ratio). Where 

indicated increasing concentrations of MSC (used a cold target) were added. C: 

apoptosis in MSC cultured with 4D8 cells (20/1 4D8:MSC ratio). Where indicated 

increasing concentrations of T2 cells (used as cold target) were added. D: apoptosis 

in MSC cultured with NK cells at a 20/1 NK:MSC ratio. Where indicated increasing 

dilutions of K562 (used as cold target) were added. In all experiments the level of 

MSC, T2 or K562 cell apoptosis was assessed after 4 hours of co-culture by flow 



cytometry. Results represent the mean±SD of 3 independent experiments. Statistics 

in A, B, C and D: unpaired T-test. *: p<.05. ns: not significant.   

  



  

Figure 6. Apoptotic MSC exert in vivo immunosuppressive in a Th2-type 

inflammation model in the absence of cytotoxic cells. A: luc-MSC were injected 

into naïve (N=3) and OVA+MSC (N=6) mice one hour after the last challenge. One 

hour later, mice received DEVD-aminoluciferin and were imaged in 3 independent 

experiments. White lines separate multiple photographs assembled in the final 

image. B: TLS was measured from Fig. 6A (mean±SD). C: Eighteen hours after 

MSC infusion, eosinophil infiltration was assessed in the BAL of naïve (N=3), naïve 

infused with MSC (N=3), OVA (N=6) and OVA+MSC (N=6) mice in two independent 

experiments and mean±SD are shown. D: eosinophil infiltration (mean±SD) in BAL 

of OVA-sensitized mice treated with ApoMSC. Groups were: OVA without ApoMSC 

(N=6), OVA treated with 1x106 ApoMSC (N=7); and naïve mice receiving 1x106 

(N=2) ApoMSC. Results represent the mean±SD of 3 independent experiments. 



Statistics in B: unpaired t-test. ns: not significant. Statistics in C and D: one-way 

ANOVA and Tukey’s Multiple comparison test. *: p<.05. ns: not significant. 

  



 

 

Figure 7. ApoMSC exert immunosuppressive activity in GvHD and are 

engulfed by recipient phagocytic cells in which they elicit IDO production. A-



D: Infiltration of GvHD effector cells was assessed in spleen (A, C) and lungs (B, D) 

of GvHD mice (black circles) and GvHD mice treated with ApoMSC (black squares). 

ApoMSC were infused i.p. (GvHD mice N=10, GvHD+ApoMSC mice N=8) (A, B), or 

i.v. (GvHD mice N=9, GvHD+ApoMSC mice N=7) (C, D). Results represent the 

mean±SD of 3 independent experiments. Statistics: unpaired t-test. *: p<.05; **: 

p<.01. ns: not significant. E-K: MSC were labelled using CellTrace™ Violet and 

subjected to apoptosis induction using GrB/FAS-L (5 µg/ml and 10 µg/ml, 

respectively). ApoMSC were injected i.p. (E, F and J) or i.v. (G, H, I and K) into 

GvHD mice 3 days after the transplant. After 2 hours, animals were sacrificed and 

mesenteric lymph nodes (E, F and J) or lungs (G, H, I and K) were harvested. Cells 

engulfing ApoMSC were identified as Violet+ cells within the CD11b+ (E), CD11c+ 

(F), CD11bhighCD11cint (G), CD11c+CD11b- (H) and CD11bhighCD11c- (I) 

subpopulations. The corresponding subpopulations were gated in GvHD mice which 

had not received violet-labelled ApoMSC. J and K: IDO expression was assessed 

in CD11c+ and CD11b+ (J) or CD11bhighCD11cint, CD11c+CD11b- and 

CD11bhighCD11c- (K) cells positive for CellTrace Violet (engulfing apoMSC) and 

compared with the corresponding populations in GvHD mice that had not received 

ApoMSC. Data are representative of similar results obtained from three mice in 2 

independent experiments.  

  



 

 

Figure 8. Recipient phagocytes and IDO production are required for MSC 

immunosuppressive activity in GvHD. A, B: GvHD mice were treated with liposomal 

clodronate 10 minutes after the transplant. Where indicated, MSC were infused 3 

days later. The infiltration of GvHD effector cells (CD8+Vβ8.3+) in spleen (A) or lungs 

(B) was quantitated in spleen and lungs after 4 additional days. Mean±SD obtained 

grouping three independent experiments with N: 12 (GvHD) and 10 (GvHD+MSC) 

mice per group. C, D: GvHD effector cell infiltration was studied in spleen (C) and 

lungs (D) of GvHD mice treated with the IDO-inhibitor 1-DMT. In the treated mice, 

MSC were infused 3 days after the transplant (N=11). Controls consisted of GvHD 

mice which did not receive MSC (N=9). Results refers to the mean±SD of 3 

independent experiments. Statistics: unpaired t-test. *: p<.05; **: p<.01. ns: not 

significant.     
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Supplemental Experimental Procedures  

  

Mice and disease models   

C57BL/6 (H2b) and Balb/C (H2d) mice were purchased from Harlan Laboratories 

(Bicester, UK). Mh (C57Bl/6 background, CD8+Tg, H-2b, CD45.2+, H-2Db-restricted) 

(50) mice are transgenic for a T-cell receptor specific for the male antigen UTY 

presented in the context of H-Db. Mice were bred in-house and maintained at the 

Biological Service Unit of the Royal Free and University College London Medical 

School (London, UK). All mice were used between 6 and 12 weeks of age.  

 

Acute GvHD was induced as previously described (13). Briefly, after lethal irradiation 

(11 Gy), recipient C57BL/6 male mice were transplanted with 1x106 purified CD8+ 

cells from female Mh mice, 5x106 unfractionated BM and 2x106 purified CD4+ cells 

from female C57BL/6 wild-type donors. The control group received BM and purified 

CD4+ cells only. CD4+ and CD8+ T cells were obtained by positive selection using 

magnetic beads (Miltenyi Biotec Ltd, Bisley, UK). Live MSC (1x106) were injected i.v. 

at day +3, whilst apoMSC (1x106) were administered i.v. or i.p. at day +1, +3 and +6 

from the transplant. In all cases, animals were euthanized for analysis at day +7. The 

infiltration of GvHD effector cells was assessed by flow-cytometry and the percentage 

was expressed as proportion of cells in the lymphocyte gate, based on the physical 

characteristics of the cells.    

OVA-induced airway inflammation was induced as previously described (20). Briefly, 

female Balb/C mice (Harlan Laboratories, Bicester, UK) were injected i.p. with 30 µg 

of chicken egg albumin (OVA type V) (Sigma-Aldrich Company Ltd, Dorset, UK) on 

day 0 and 7. Controls received vehicle (aluminum hydroxide) only. On day 14, 15 and 



16 animals were challenged with an aerosolized solution of OVA (3%) for 25 minutes. 

MSC or ApoMSC were injected 1 hour after the last challenge. After additional 18 

hours, mice were terminally anaesthetized with urethane (2 g/kg i.p.), (Sigma-Aldrich 

Company Ltd, Dorset, UK), a cannula inserted into the exposed trachea and three 0.5 

mL aliquots of sterile saline were injected into the lungs. The total number of cells in 

the lavage fluid was counted. For differential cell counts, cytospin preparations were 

stained with Diff Quick (DADE Behring, Germany) and cells counted using standard 

morphological criteria. 

No randomization method was used. In all experiments animals were randomly 

allocated to control or experimental groups. No blinding approach was adopted.  

 

Animal procedures were carried out in compliance with the UK Home Office Animals 

(Scientific Procedures) Act of 1986.    

 

Cell preparations and media   

Cultures were carried out in complete RPMI 1640 medium containing 

GlutaMAXTM,HEPES (25mM), Penicillin 5000 U/ml and Streptomycin 5000 µg/ml 

(ThermoFisher Scientific, Paisley, UK), fetal bovine serum 10% (Labtech.com, 

Uckfield, UK).   

Human peripheral blood samples from healthy donors were procured by the National 

Blood Service (Colindale, UK) as leukocyte cones. Samples from GvHD patients were 

collected within 24 hours before MSC injection. Informed consent was obtained in 

accordance with the local ethics committee requirements. PBMC were isolated by 

density gradient separation on Histopaque-1077 (SigmaAldrich Company Ltd, Dorset, 

UK).  



mSpl were isolated through a cell strainer (BD Falcon, Oxford, UK), whilst lungs were 

cut into small pieces and incubated with Collagenase type IV (250 U/ml) (Lorne 

Laboratories, Reading, UK), DNAse I from bovine pancreas (250 U/ml) (Merk Millipor, 

Watford, UK) and fetal bovine serum 6.25% at 37⁰ C for 1 hour.   

 

MSC preparations   

Clinical grade BM-derived human MSC were generated from BM aspirates collected 

from the iliac crest of healthy donors. Briefly, 2 ml of BM aspirate was collected in a 

tube with 100 µl preservative-free heparin. The cells were plated within 24 hours at a 

density of 10-25 million/636 cm2 by using alpha modified Eagle’s medium 

(ThermoFisher Scientific, Paisley, UK), conservative-free heparin (1 UI/ml) 

(Wockhardt UK Limited, Wrexham, UK) and 5% platelet lysate and then incubated for 

3 days at 37 °C and 5% CO2 ambience. Non-adherent cells were discarded using 

phosphate buffered saline (ThermoFisher Scientific, Paisley, UK). When cell 

confluence of 90-100% was achieved cells were detached with Trypsin-EDTA (0.05% 

trypsin, 0.5γ mM EDTA•4Na) (ThermoFisher Scientific, Paisley, UK) and reseeded at 

a density of 5000 cells/cm2. MSC were used at passage 2 for all in vivo experiments, 

whilst they were used by passage 8 for the in vitro experiments. In the latter case we 

did not observe any difference in terms of apoptosis susceptibility between different 

passages. Released criteria were based on positivity (> 80%) for CD105, CD90, 

CD73, negativity (<2%) for CD3, CD14, CD19, CD31, CD45. 

 

ApoMSC were obtained by plating 5x105 cells per well in a 96 round-bottom well plate 

in the presence of synthetic human GrB (5 µg/ml) (Enzo Life Sciences, Exeter, UK) 

and anti-FAS human (activating, clone CH11) (10 µg/ml) (Merk Millipore, Watford, UK) 



for 24 hours in complete RPMI. The concentration of GrB and FasL was chosen to 

produce at least 80% of MSC apoptosis. Where indicated (Z-Apo), the pan-caspase 

inhibitor Z-VAD-FMK (10 µg/ml) was added for the entire duration of the treatment.   

 

Patients   

Between November 2012 and July 2016, 16 patients affected by steroid-resistant 

GvHD were treated with MSC in the Department of Haematology at Imperial College 

London, Southampton University Hospital, Bristol Haematology and Oncology Centre 

and the University Hospital Carl Gustav Carus, Dresden. MSC were administered for 

compassionate use (according to Regulation (EC) No 1394/2007). Patients had 

received a myeloablative or reduced-intensity conditioning prior to hematopoietic stem 

cell transplantation. All patients received GvHD prophylaxis with 3 or 4 doses of 

methotrexate combined with cyclosporin. T-cell depletion with alemtuzumab or ATG 

was performed in all adult patients transplanted in the UK centers. Of the 16 patients 

included in the study, 13 developed GVHD following hematopoietic stem cell 

transplantation, and the remaining 3 after DLI. 12 patients were affected by acute 

GvHD, 3 by late onset acute GvHD and 1 by chronic GvHD. The diagnosis of GvHD 

was made on histological criteria and GvHD staged according to standard criteria (48, 

49).     

  

Patients were considered to be steroid-refractory if: (a) those with aGVHD failed to 

respond to high-dose methylprednisolone after 6 days; (b) the one with cGVHD failed 

to respond to high-dose steroids after 2-4 weeks, with the addition of MMF and 

cyclosporin at 1 and 4 weeks respectively. Clinical responses to MSC were assessed 



1 week after MSC infusion and defined as an improvement of at least 50% in at least 

one organ affected by GvHD.  Patient characteristics are summarized in Table S1.    

 

Imaging of MSC   

Luc-MSC were transfected with the pGL3-Control vector containing the SV40 

promoter for the expression of luc+ (Promega, Southampton, UK) or with pECFP-

DEVDR-Venus (Addgene, Teddington, UK) using electroporation (Gene Pulser Xcell, 

BioRad, Kidlington, UK). Cells were suspended in a total volume of 250 µl of buffer 

and electroporated in 0.4 cm gap cuvettes using 10 µg of DNA at 250 volts and 950 

F. When pECFP-DEVDR-Venus was used, the donor fluorophore pECFP and the 

acceptor Venus-YFP were linked through the flexible linker DEVDR which is 

recognized and cleaved by the active form of caspase 3. In this system caspase 3 

activity can be monitored through the analysis of the FRET between pECFP and 

Venus-YFP. When caspase 3 is not active, the flexible linker DEVDR remains intact 

and energy transfer from pECFP is allowed with emission of YFP signal. Conversely, 

in the presence of caspase 3 activation DEVDR is cleaved, thus energy transfer is lost 

and the pECFP signal increases.   

   

For confocal imaging, pECFP-DEVDR-Venus transfected MSC were plated in 

complete RPMI at a concentration of 1x105 cells in a 30mmx10 mm dish (Corning, 

Flintshire, UK) and let adhere overnight. The following day PHA-aPBMC were added 

at a PBMC:MSC ratio of 40/1. Where indicated, pancaspase inhibitor Z-VAD-FMK (50 

µM), EGTA (4 mM), GrB inhibitor Z-AAD-CMK (300 µM) were used. Living cell imaging 

was acquired every 3 minutes for 180 minutes using a Leica TCS-SP5 II Confocal 



Microscope, with 488 nm and 407 nm lasers. The images were processed and 

analyzed by using the software “R” and EBImage package.   

  

In vivo imaging was performed injecting i.v. 1x106 luc-MSC into naïve C57BL/6, BM 

or GvHD mice 3 days after the transplant in the GvHD model. In the airway 

inflammation model, luc-MSC were infused i.v. in naïve Balb/C or OVA-treated mice 

1 hour after the last OVA challenge. After one additional hour, mice were anesthetized 

with isoflurane (1.5% isofluorane, 98.5% Oxiygen), injected i.p. with 3 mg of 

VivoGloTM Casp 3/7 Substrate Z-DEVD Aminoluciferine (Promega, Southampton, 

UK) and imaged using IVIS® Lumina III (PerkinElmer, Waltham, USA) system for a 

total time of 5 minutes. Images were analyzed by using the software “R” and EBImage 

package to obtain mean TLS. Confirmation of the presence of transfected MSC was 

obtained injecting mice with VivoGloTM Luciferin (Promega, Southampton, UK).   

 

Detection of efferocytosis  

MSC were first labelled using CellTraceTM Violet labelling (ThermoFisher Scientific, 

Paisley, UK) at a final concentration of 5 µM. Then ApoMSC were obtained as 

described above, using synthetic human GrB (5 µg/ml) and anti-FAS human (10 

µg/ml) for 24 hours. 10x106 labelled apoMSC were then injected i.p. or i.v. and mice 

sacrificed after 2 hours post-injection. Spleen, lungs, peritracheal, paratracheal, 

pericardial, mesenteric, periportal and celiac lymph nodes were collected and 

analysed by flow-cytometry. Positivity of CellTrace Violet was assessed as measure 

of ApoMSC engulfment in CD11b+ and CD11c+ gated subpopulations of phagocytic 

cells. Cells positive for the CellTrace Violet were then assessed for their expression 

of IDO. 



 

Pre-activation of human PBMC and murine CD8+ cells   

PHA-aPBMC were obtained plating 5x106 human PBMC in 24-well plate in the 

presence of PHA (5 µg/ml) (Sigma-Aldrich Company Ltd, Dorset, UK) in a final volume 

of 2 ml of complete RPMI for 72 hours. MLR-aPBMC were obtained using one-way 

MLR in which PBMC from one donor (stimulators) were irradiated (30 Gy) and co-

cultured with the PBMC of an unrelated donor (responder) at a stimulator:responder 

ratio of 1/1 in complete medium at a density of 0.75x106 cells/cm2. Cells were then 

incubated at 37⁰ C, 5% CO2 for 5 days.     

NK cells were purified by positively selecting CD56+ cells from healthy donor PBMC 

(Miltenyi Biotec Ltd, Bisley, UK) and activated with rh-IL-2 (1000 U/ml).     

NY-ESO1-specific CD8+ T cell clone (Clone 4D8) was kindly supplied by Prof. 

Vincenzo Cerundolo (Institute of Molecular Medicine, Oxford university, UK). The 

clone was expanded in complete RPMI 1640 with Sodium Pyruvate (1 mM), 2-

Mercaptoethanol (0.05 mM) (ThermoFisher Scientific, Paisley, UK), recombinant 

human-IL-2 (rh-IL-2) (400 U/ml) (Peprotec EC Ltd, London, UK) and PHA (5 µg/ml) 

(Sigma-Aldrich Company Ltd, Dorset, UK) (51).    

Mh CD8+ were stimulated using the following protocol: 5x106 purified CD8+ Mh cells 

were plated in 24-well plates in the presence of CD3/CD28-coated beads 

(Dynabeads®) (ThermoFisher Scientific, Paisley, UK) in a final volume of 2 ml of 

complete RPMI and incubated for 72 hours.   

 

Immunosuppressive assay   

Serial dilutions of human MSC were plated in a flat bottom 96-well plate and let adhere 

overnight in 100 µl of complete RPMI. Where indicated, MSC cultures were exposed 



to hIFN-γ and hTNF-α, mIFN-γ and mTNF-α (20 ng/ml each) (all cytokines were from 

Peprotec EC Ltd, London, UK), supernatant from PHA-aPBMC or from ConA-aSpl.  

The following day, 5x105 Balb/C mSpl were labelled with Carboxyfluorescein 

Diacetate Succinimidyl Ester (ThermoFisher Scientific, Paisley, UK) dye and plated 

with MSC at escalating MSC/mSpl ratios. The culture controls consisted of mSpl 

plated without MSC in the presence (positive control) or in the absence of ConA 

(negative control). Proliferation of mSpl was then assessed by flow-cytometry after 72 

hours and expressed as the percentage of the proliferation obtained at each 

MSC/mSpl dilution in comparison with the one obtained in the positive control culture. 

Results were expressed as percentage of inhibition.    

 

Cytotoxic Assay   

1x105 MSC were plated overnight in a total volume of 500 µl. The day after pre-

activated immune cells were plated at different concentrations (2.5 to 40/1 

effector:MSC ratios). MSC apoptosis was then tested at different time points using 

flow-cytometry or confocal microscopy analysis. Eventually, the assay was performed 

for 4 hours in the vast majority of the cases. At flow-cytometry MSC were identified as 

CD45- cells.  

Antigen-specific cytotoxic activity of clone 4D8 was tested using T2 cells pulsed with 

NY-ESO-1 antigen (epitope SLLMWITQC) at a concentration of 0.1 µM for 1 hour.    

In the competition assay, T2 (from Hans Stauss, University College London) and K562 

cells (from Junia Melo, Imperial College London) were discriminated from effector cells 

by CellTraceTM Violet labelling. The tracer concentration was optimized for the T2 (1 

µM) and K562 (2.5 µM) cells. Cell lines were tested for mycoplasma contamination 

before use.  



 

When flow-cytometry was used, the level of apoptosis was assessed using the PE 

Annexin V apoptosis detection kit (BD Biosciences, Oxford, UK). Unless specified, 

apoptotic cells were identified as annexin V+/7-AAD- cells.    

 

Inhibitors   

Where indicated cultures were supplemented with pan-caspase inhibitor Z-VAD-FMK 

(10 µM in the flow-cytometry experiments or 50 µM in the living cell confocal 

experiments) (R&D System, Oxon, UK), perforin inhibitor EGTA (4 mM) (Sigma-

Aldrich Company Ltd, Dorset, UK), GrB inhibitor Z-AAD-CMK (300 µM) (Merk Millipor, 

Watford, UK), neutralizing antibodies against HLA-DR (clone L243) (50 µg/ml), human 

HLA-A,B,C (clone W6/32) (100 µg/ml) (BD Biosciences, Oxford, UK), TNF-α 

antagonist Etanercept (Enbrel®) (10 µg/ml or 100 µg/ml) (Amgen, Cambridge, UK). 

Each reagent was incubated with MSC 1 hour before the culture with effector killer 

cells. In all cases, the concentration of the corresponding inhibitor was kept for the 

duration of the cytotoxic assay.   

   

The neutralizing anti-CD178 (Clone NOK-1) (10 µg/ml or 100 µg/ml) (BD Biosciences, 

Oxford, UK), anti-TRAIL (clone 2E2) (10 µg/ml or 100 µg/ml) (Enzo Life Sciences, 

Exeter, UK) antibodies, MYR Protein Kinase-Cζ Pseudosubstrate (PKCζ-PS) (10 µM, 

25 µM or 75 µM) (ThermoFisher Scientific, Paisley, UK) and Etanercept (10 µg/ml or 

100 µg/ml) were incubated with effector killer cells for 2 hours before the cultures with 

MSC. In all cases, the concentration of the corresponding inhibitor was kept for the 

duration of the cytotoxic assay.   

 



Flow-cytometry   

The following antibodies specific for murine molecules were used: anti-CD45 (FITC, 

Clone 30-F11) (eBiosciences Ltd, Hatfield, UK), anti-Vβ8.3 (FITC, Clone 1B3.3), anti-

CD8 (APC, Clone 53-6.7), antiCD4 (PE, Clone H129.19), anti-CD19 (APC-H7, Clone 

1D3), anti-NK1.1 (PerCP-Cy5.5, Clone PK136) (BD Biosciences, Oxford, UK), anti-

CD11b (PerCP-Cy5.5, clone M1/70), anti-CD11c (APC-Cy7, clone n418), Ido1 (Alexa 

Fluo647, clone 2e2) (BioLegend, London, UK). For human specific molecules, the 

following antibodies were used: antiCD45 (FITC, clone 2D1), anti-CD8 (APC, Clone 

SK1), anti-CD4 (PE, Clone SK3), anti-CD11b (PerCP-Cy5.5, clone M1/70), anti-CD56 

(FITC, clone HCD56) (BD Biosciences, Oxford, UK).   

All samples were acquired using BD FACS Canto II using the software FACS Diva 

and analyzed with Flow-jo software. FRET and CAf were assessed by flow-cytometry 

as previously described (52).   

 

Real Time quantitative PCR   

MSC RNA was obtained from TRIzol® (ThermoFisher Scientific, Paisley, UK) lysates 

and extracted using RNeasy Mini Kit (Qiagen, Manchester, UK). Real Time 

quantitative PCR (qRT-PCR) was performed following TaqMan® RNA-to-CT™ 1-Step 

Kit instructions (ThermoFisher Scientific, Paisley, UK), using 20 ng of RNA template 

per reaction. Assays were carried out in duplicates on an StepOnePlus RT PCR 

system thermal cycler (Applied Biosystem, UK) using TaqMan primers (all purchased 

from ThermoFisher Scientific, Paisley, UK). The human primers used were the 

following: IDO2 (Hs01589373_m1), TSG6 (Hs01113602_m1) and PTSG2 

(Hs00153133_m1) and HPRT1 (Hs02800695_m1) as housekeeping gene. Data were 



then analysed using StepOneTM software version 2.1 and relative quantification 

obtained with ΔΔCt method, considering untreated MSC as reference.    

 

Statistics   

Results were expressed as mean±SD. The unpaired Student t test was performed to 

compare 2 mean values. One-way ANOVA and Tukey’s Multiple Comparison test was 

used to compare 3 or more mean values. Probability of null hypothesis less than 5% 

(p>.05, two-sided) was considered statistically significant. No statistical methods were 

used to predetermine sample size, which was estimated only on previous experience 

with assay sensitivity and the different animal models.   

  



 

 

 

Figure S1. MSC can be traced in the lungs of mice after infusion. A: lethally 

irradiated C57BL/6 male mice were transplanted with bone marrow (BM) and CD4+-

purified cells from female syngeneic donors with or without CD8+ cells purified from 

Mh mice (CD8+Vβ8.3+) (GvHD and BM groups, respectively). At day +3 post-

transplant, luc-MSC were infused and mice imaged one hour later for the analysis of 

caspase 3 activation after i.p. injection of DEVD-aminoluciferin. At day +7 post-



transplant, mice were sacrificed and the infiltration of GvHD effector cells 

(CD8+Vβ8.3+) in lungs and spleen was analyzed by flow-cytometry. B: in order to 

confirm the presence of luc-MSC in the lungs of all groups of mice infused with MSC, 

the same mice imaged in Figure 1A were injected with D-Luciferin. White lines 

separate multiple photographs assembled in the final image. C: TLS was measured 

from the images of mice in Fig. S1B and shown as mean±SD. Statistics: 1-way 

ANOVA, with Tukey’s Multiple Comparison Test. ns: not significant.  

  

  

  

  

  

  

  

  

  

  

  

  



 

  



 

Figure S2. Human MSC immunosuppression is not ‘licensed’ by murine 

cytokines. A: human MSC were plated overnight at serial dilutions alone or in the 

presence of human interferon-γ/human Tumour Necrosis-α (hIFN-γ/hTNF-α) (20 

ng/ml each) or murine IFN-γ/murine TNF-α (mIFN-γ/mTNF-α) (20 ng/ml each) or 

supernatant obtained from PBMC activated with PHA (PHA-aPBMC) for 72 hours or 

mSpl activated with ConA (ConA-aSpl) for 72 hours, as indicated. MSC were then 

tested for the ability to inhibit the proliferation of ConA-stimulated mSpl labelled with 

carboxyfluorescein succinimidyl ester. Proliferation was determined after 72 hours by 

flow-cytometry. The curve was obtained plotting the percentage of inhibition against 

the corresponding MSC/mSpl ratio. B, C: human MSC were plated overnight either 

untreated or exposed to hIFN-γ/hTNF-α (20 ng/ml each) as indicated and then tested 

for the ability to suppress mSpl proliferation at 1:10 MSC/mSpl ratio. The histogram 

plot (B) is representative of 3 independent experiments, while bars (C) represent the 

mean±SD of 3 independent experiments. Statistics: one-way ANOVA and Tukey’s 

Multiple Comparison test. ***: p<.001. ns: not significant. D: human MSC were 

incubated alone or in the presence of hIFN-γ/hTNF-α (20 ng/ml each), mIFN-γ/mTNF-

α (20 ng/ml each), supernatants obtained from PHA-aPBMC or ConA-aSpl. After 24 

hours, IDO, TSG6 and PTSG2 expressions were assessed by real time PCR and 

calculated as relative expression in comparison to untreated MSC. Representative 

results of three independent experiments are shown.  

  

  



  

 

Figure S3. MSC apoptosis is activated by cytotoxic cells in a non-antigen-

specific manner. A: CD8+ cells isolated from naïve female Mh mice were stimulated 

for 3 days with anti-CD3/CD28 beads and cultured with MSC at a 20/1 Mh T-cell:MSC 

ratio. After 4 hours the level of apoptosis was assessed in MSC by annexin V/7AAD 

staining. Results represent the mean±SD of 3 independent experiments. Statistics: 

one way ANOVA, with Tukey’s Multiple Comparison Test. ***: p<.001. B: in order to 

confirm the presence of luc-MSC in the lungs of all groups of mice infused with MSC, 

the same mice imaged in Figure 2C were injected with D-Luciferin. White lines 

separate multiple photographs assembled in the final image. C: TLS was measured 

from the images of mice in Fig. S3B and shown as mean±SD. Statistics: unpaired t-

test. ns: not significant.   



  

 

Figure S4. Cytotoxicity against MSC varies amongst PBMC donor but is 

independent on the percentage of CD8+ or CD56+ in GvHD patients. A: PBMC 

obtained from 2 different GvHD patients (Patient 1 and Patient 2) were tested for their 

cytotoxic activity against MSC from two different donors (MSC1 and MSC2). B: 

apoptosis in MSC obtained from different donors (MSC1, MSC2 and MSC3) after 

incubation with PBMC from four different MLR responder/stimulator combinations 

(MLR1, MLR2, MLR3, MLR4). In A and B the level of apoptosis was assessed by flow-

cytometry after 4 hours of co-culture. C, D: PBMC obtained from 11 GvHD patients 

(R: 3, NR: 8) were analysed for the percentage of CD8+ (C) and CD56+ (D) cells.  

Statistics: unpaired t-test. ns: not significant.   

  

  



 

  



Figure S5. MSC killing is mediated by caspase 3 and effected by GrB and 

perforin. A: PHA-aPBMC were incubated with MSC at escalating PBMC/MSC ratios. 

MSC apoptosis was assessed by annexin V/7-AAD at different time-points by flow-

cytometry. Results represent the mean±SD of 3 independent experiments. B, C: MSC 

were transfected with the pECFP-DEVDR-Venus vector (FRET-MSC) and the Förster 

Resonance Energy Transfer (FRET) between pECFP and Venus-YFP FRET was 

studied by flow-cytometry and Caspase activity (CAf) calculated. FRET-MSC were 

cultured alone, with PHA-aPBMC, or PHAaPBMC in the presence of Z-VAD-FMK (50 

µM) (B), GrB inhibitor Z-AAD-CMK (300 µM) or the perforin inhibitor EGTA (4 mM) 

(C). Results of 5 (B) or 3 (C) independent experiments are shown. When PBMC were 

present, the PBMC:MSC ratio was 40/1. Statistics: one-way ANOVA and Tukey’s 

Multiple Comparison test. **: p>.01. ***: p>.001. ns: not significant. D: MLR-aPBMC 

were cultivated with MSC (20/1 ratio) and apoptosis evaluated by flow-cytometry 4 

hours later. Where indicated, the TNF-α inhibitor Etanercept or the mAb antiTRAIL 

were used at 10 µg/ml or 100 µg/ml. Results represents the mean±SD of 3 

independent experiments.    



 

  
 

 



Figure S6. Infused MSC can be imaged in the lungs of mice with Th2-type lung 

inflammation. A: Balb/C mice were immunized i.p. with OVA at day 0 and 7 and 

subsequently challenged with OVA through aerosol at days 14, 15 and 16 (OVA 

group). Experimental group was treated with MSC one hour after the last challenge 

(OVA+MSC). When luc-MSC were used, mice were imaged one hour after infusion 

for the analysis of caspase 3 activation after i.p. injection of DEVD-aminoluciferin. 

After 18 hours from treatment, eosinophils infiltration in BAL was evaluated. B-E: 

Percentage (B, D) and absolute numbers (C, E) of different cellular types in the BAL 

(B, C) and lungs (D, E) of naïve (with bars) (N=3) and OVA-sensitized (black bars) 

(N=3) mice. Results represent the mean±SD of 3 independent experiments. In OVA-

sensitized mice, the analysis was performed 1 hour after the last aerosol challenge. 

F: in order to confirm the presence of luc-MSC in the lungs of all groups of mice 

infused with MSC, the same mice imaged in Figure 6A were injected with D-Luciferin. 

White lines separate multiple photographs assembled in the final image. G: TLS was 

measured from the images of mice in Fig. S6F and shown as mean±SD. Statistics: 

unpaired t-test. ns: not significant.   

  

    

    

  



Supplementary Table.  

Table S1. Clinical features of GvHD patients  

Diagnosis  Donor 
type  

GvHD  Grade  Organs 
involved  

Concomitant therapy for GvHD  MSC Dose  
(x106/Kg)   

Response  

DLBCL  SIB  Late onset  3  skin, liver  Steroid, MMF, Infliximab  1.6  NR  

CLL  SIB  Late onset  4  gut  Steroid, MMF, Infliximab, Alemtuzumab  2.8  R  

HL  VUD  Acute  3  skin, Gut  Steroid  3.0†  NR†  

            7.4‡   R‡  

CML  VUD  Late onset*  3  Skin, Liver  MMF  3  NR  

AML  VUD  Chronic*  N/A  Skin  Steroid, CSA  2.7  NR  

AML  SIB  Acute  3  Gut  Steroid, CSA  2.1  R  

CML  VUD  Acute*  4  Gut  Steroid, CSA  2.9  R  

AML  VUD  Acute  4  Skin, gut  Steroid, CSA  3.1  NR  

FL  SIB  Acute  4  Skin, gut, Liver  Steroid, CSA, MMF  1.6  R  

MM  SIB  Acute  4  Gut  Steroid, Infliximab  2.1  NR  

AML   VUD  Acute  4  Gut  Steroids, Budenofalk, CsA  1.28  NR  

pre-B ALL  UUD   Acute  4  Skin  Steroids, Topic glucorticoids  1.03  NR  

MDS/RAEB-2  VUD  Acute  4  Gut  Steroids, Tacrolimus,MMF, Etanercept, 
Ruxolitinib, MTX, Alemtuzumab, CsA  

1.55  NR  

Mixed AML/T-
ALL  

VUD  Acute  4  Gut  Steroids, CSA  1.33  NR  

MM  VUD  Acute  3  Gut  Steroids, CSA  1.01  NR  

B-ALL, 
BCRABL+  

SIB  Acute  3  Skin, Liver  Steroids, ECP, CsA   1.11  NR  

 



†: first dose  

‡: second dose  

*: GvHD post-Donor Lymphocite Infusion  

AML: Acute Myeloid Leukemia; CML: Chronic Myeloid Leukemia; CLL: Chronic Lymphocitic Leukemia; CSA: Ciclosporine; DLBCL: Diffuse Large 

B-Cell Lymphoma; FL: Follicular Lymphoma; HL: Hodgkin Lymphoma; NR: no response; MM: Multiple Myeloma; MMF: Mycophenolate; R: 

response; SIB: HLA-identical sibling; VUD: Volunteer Unrelated Donor.



Supplementary Video Legends  

Video S1. Living cell imaging of FRET-MSC plated alone. MSC were transfected with the 

pECFP-DEVDR-Venus vector (FRET-MSC) and caspase 3 activation studied through the analysis 

of the FRET between pECFP and Venus-YFP. Living cell imaging was acquired every 3 minutes 

for 180 minutes using a Leica TCS-SP5 II Confocal Microscope, with 488 nm and 407 nm lasers. 

The images were processed and analyzed by using the software “R” and EBImage package. Red 

and blue colors correspond to high (high caspase 3 activity) or low (low caspase 3 activity) 

ECP/FRET ratios, respectively.  

Video S2. Living cell imaging of FRET-MSC plated with PHA-aPBMC. As in Video S1 but with 

FRE-TMSC plated with PHA-aPBMC at a PBMC:MSC ratio 40/1.    

Video S3. Living cell imaging of FRET-MSC plated with resting PBMC. As in Video S1 but with 

FRET-MSC plated with resting PBMC at a PBMC:MSC ratio of 40/1.   

Video S4. Living cell imaging of FRET-MSC plated with PHA-aPBMC in the presence of the 

pan-caspase inhibitor Z-VAD-FMK. As in Video S2 but in the presence of the pan-caspase 

inhibitor Z-VADFMK (50 µM).  

Video S5. Living cell imaging of FRET-MSC plated with PHA-aPBMC in the presence of the 

GrB inhibitor Z-AAD-CMK. As in Video S2 but in the presence of the GrB inhibitor Z-AAD-CMK 

(300 µM).  

Video S6. Living cell imaging of FRET-MSC plated with PHA-aPBMC in the presence of the 

perforin inhibitor EGTA. As in Video S2 but in the presence of the Perforin inhibitor EGTA (4 mM).   

 

 

 

 

 


