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Abstract 

Cells have been identified in post-natal tissues that when isolated from multiple mesenchymal 

compartments, can be stimulated in vitro to give rise to cells that resemble mature mesenchymal 

phenotypes such as odontoblasts, osteoblasts, adipocytes and myoblasts. This has made these adult 

cells, collectively called mesenchymal stem cells (MSCs), strong candidates for fields such as tissue 

engineering and regenerative medicine. Based on evidence from in vivo genetic lineage tracing 

studies, pericytes have been identified as a source of MSC precursors in vivo in multiple organs, in 

response to injury or during homeostasis. Questions of intense debate and interest in the field of 

tissue engineering and regenerative studies, are 1. Are all pericytes, irrespective of tissue of isolation, 

equal in their differentiation potential? 2. What are the mechanisms that regulate the differentiation 

of MSCs?  To gain a better understanding of the latter, recent work has utilised ChIP-seq to reconstruct 

histone landscapes. This indicated that for dental pulp pericytes the odontoblast specific gene Dspp 

was found in a transcriptionally permissive state, whilst in bone marrow pericytes the osteoblast 

specific gene Runx2 was primed for expression. RNA-seq was also utilised to further characterise the 

two pericyte populations and results highlighted that dental pulp pericytes are already pre-committed 

to an odontoblast fate based on enrichment analysis done indicating over-representation of key 

odontogenic genes. Furthermore, a ChIP-seq experiment on the PRC1 component RING1B indicated 

that this complex is likely involved in inhibiting inappropriate differentiation as it localised to a number 

of loci of key transcription factors that are needed for the induction of adipogenesis, chondrogenesis 
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or myogenesis. In this review we highlight recent data elucidating molecular mechanisms that indicate 

pericytes can be tissue specific pre - committed MSC precursors in vivo and that this pre-commitment 

is a major driving force behind MSC differentiation.  

Keywords: pericytes, stem cells, plasticity, regeneration, epigenetics, mesenchymal stem cell, 

perivascular stem cell, mesenchymal stromal cell, tissue repair 
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Introduction 

 

Mesenchymal stem cells (MSCs) is the generic name (rightly or wrongly), commonly used to describe 

cells isolated from connective tissues (stroma), that in vitro exhibit properties of stem cells. The 

prototypical MSC described almost three decades ago, resides within bone marrow (Caplan 1991; 

Friedenstein et al. 1974; Pittenger et al. 1999). Since then, cells with similar immunophenotype (in 

vivo and in vitro), molecular, and functional properties have been described in multiple organs, 

including teeth  (Gronthos et al. 2002; Gronthos et al. 2000; Miura et al. 2003; Sonoyama et al. 2008), 

dermis  (Toma et al. 2001), adipose  (Zuk et al. 2002), and muscle (Dellavalle et al. 2011). Functional 

(in vitro) characteristics include: their adherence to tissue culture plastic (Pittenger et al. 1999; Zhu et 

al. 2010), morphological similarity, multipotency and tri-lineage differentiation into mesodermal 

lineages including chondrocytes, adipocytes and osteoblasts when stimulated with a cocktail of factors  

(Beltrami et al. 2007; Covas et al. 2008; Huang et al. 2009). While the field was intensely focused on 

studying and exploiting the in vitro characteristics of MSCs, much less attention has been paid to 

identifying their in vivo origin, although certain observations have provided some important clues.  To 

paraphrase Murray et al, there has been great focus on multipotency and tissue engineering and 

repair, but the native origin and physiological roles of MSCs in vivo have been greatly overlooked. The 
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in vivo counterpart of culture expanded MSCs remained largely unknown for many tissues (Murray et 

al. 2014).  

Connective tissues (stroma), exist throughout the body and this suggests that their precursors are 

locally available in multiple tissues where they can act as a source of MSCs for homeostatic 

maintenance and repair of these structures. This would  explain why MSCs can be isolated from almost 

all tissues  (Bianco et al. 2001; Crisan et al. 2008a; Farrington-Rock et al. 2004; Shi and Gronthos 2003). 

In the late 1800s, a contractile cell population residing around capillaries was described by Charles 

Benjamin Rouget  (Rouget 1873). These Rouget cells were then renamed by Karl Zimmermann to what 

today we refer to as pericytes  (Zimmermann 1923), to better describe their perivascular location in 

close association with blood vessels. When considering their cell surface marker profiles, pericytes 

express many MSC “markers” (in vivo and in vitro) CD90, CD73, CD105 and CD44. In addition, other 

markers such as CD146,  smooth muscle actin (SMA), neural glial antigen 2 (NG2) and platelet 

derived growth factor receptor  (PDGFR-β) have been associated with pericytes in multiple human 

and mouse organs including pancreas, placenta, skeletal muscle and adipose tissue (Caplan 2008; 

Crisan et al. 2008b). Pericytes isolated using these markers can give rise to adipocyte-like, osteoblast-

like and chondrocyte-like cells in vitro using tailored tissue culture conditions (Caplan 2008; Crisan et 

al. 2012; Crisan et al. 2008a; Doherty et al. 1998). This has resulted in more similarities being identified 

between MSCs and pericytes (reviewed extensively in : Caplan et al. 2008, and Feng et al. 2010 ) 

leading many researchers to an acceptance that in most tissues, pericytes are precursors of MSCs  

(Covas et al. 2008; Schwab and Gargett 2007). A further source of evidence for this came from the 

observation that typical MSC cultures were capable of being established using blood vessels alone  

(Caplan 2007). Genetic lineage tracing studies performed using a number of Cre-recombinase mouse 

lines is providing in vivo evidence, showing that pericytes can give rise to mature MSC progenitors 

such as odontoblasts  (Feng et al. 2011), osteoblasts (Supakul et al. 2019), and myoblasts  (Dellavalle 

et al. 2007) (Figure 1). A question that remains unanswered however, is how a widely distributed 

differentiated cell type, a pericyte, can give rise to MSCs that will differentiate into tissue-specific cell 
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types depending on the tissue where they are located. Is this a result of niche originating signals or 

mechanisms more intrinsic that regulate appropriate choice of cell fate (Feng et al. 2010)? 

Evidence of MSC pre-programming 

Although MSCs from many tissues can differentiate into osteoblast-like cells, chondrocyte-like cells 

and adipocyte-like cells in vitro, they do not do this in vivo during homeostasis. Although a multipotent 

MSC may exist, no single cell has been definitively described that forms these three differentiated cell 

types in vivo. Several cell populations have been described that can undergo a form of multi-lineage 

differentiation ex vivo, but single cell lineage tracing in vivo is needed to definitively prove the 

existence of a multipotent stem cell  (Chan et al. 2018; Mizuhashi et al. 2018). 

Most MSCs when expanded in vitro show a certain homogeneity in their morphology, cell surface 

antigen profile, and differentiation potential when stimulated (Beltrami et al. 2007; Covas et al. 2008; 

Huang et al. 2009) . It has however, always been recognised that MSCs derived from a wide range of 

tissues are inherently different as suggested by in vitro experiments. Depending on where the cells 

are sourced from, they vary in their colony forming efficiency (Peng et al. 2008), their ability to 

influence the immune system  (Hegyi et al. 2010), and most importantly their potential to differentiate 

down certain mesodermal lineages. MSCs sourced from umbilical cord blood are unable to 

differentiate into adipocytes (Peng et al. 2008) or myoblasts (Sacchetti et al. 2016). Conflicting reports 

exist with regards adipose derived MSCs and their ability to differentiate down osteogenic lineages 

(Azzaz et al. 2014; Covas et al. 2008; James et al. 2012a; James et al. 2012b; James et al. 2012c). It is 

likely that the outcomes of these experiments are context dependent on the adipose tissue depot 

used. What is clear from our observations and that from others such as Sacchetti et al (2016), is that 

pericytes are most likely to yield cells appropriate to the tissue compartment from where they were 

isolated. It is important to note that the vast majority of experiments performed on MSCs describing 

their multipotency, have been carried out with cells propagated in vitro. This could impact the 
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behaviour and innate plasticity of these cells. Therefore, more focus should be placed on studies 

where a strong emphasis is placed on observing these cells as close to their in vivo context as possible. 

What we have observed is that mechanisms for faithful propagation of the appropriate lineage 

identity are established in these cells in vivo (Figure 2). To investigate these mechanisms, we isolated 

pericytes from mouse incisor and long bone. The selection of these cells was based on their proven 

ability to differentiate into two different mineralised cell types (odontoblasts and osteoblasts 

respectively) and also their different embryonic derivation, cranial neural crest and pulp  mesoderm 

respectively  (Arthur et al. 2008; Dennis and Charbord 2002). 

Isolated pericytes were profiled using a number of next generation sequencing (NGS) approaches, 

including RNA sequencing (RNA-Seq) and chromatin immunoprecipitation followed by sequencing 

(ChIP-Seq), to reveal extensive differences in the transcriptomes and histone landscapes of these cells 

(Yianni and Sharpe 2018).    What emerged was that fresh pericytes from tooth pulp and long bone 

marrow shared expression of genes relating to homeostatic processes and those involved in physical 

(adhesion) and molecular (signalling) interactions with the underlying vasculature. Epigenomic 

profiling revealed that the majority of genes in transcriptionally active chromatin regions, identified 

by the abundance for trimethylation of lysine 4 on histone 3 (H3K4me3) (Dennis et al. 2003; Karlić et 

al. 2010; Zhang et al. 2015) were shared between both pericyte populations and were statistically 

enriched for genes involved in regulation and maintenance of cell adhesion. The majority of the genes 

found in these H3K4me3 regions were confirmed to be actively expressed by RNA-seq profiling, this 

being a reflection of these pericytes attachment to blood vessels.   Focusing on gene expression 

differences between the two populations, a gene set enrichment (GSEA) analysis (Subramanian et al. 

2005)unexpectedly revealed that dental pulp residing pericytes were enriched for a number of genes 

involved in odontogenesis. The most striking feature in these incisor pericytes is a low baseline 

expression of Dspp, a gene expressed in odontoblasts, a highly specialised cell type that can 

differentiate from pericytes. This was also evident when interrogating the Dspp locus for the 
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prevalence of a transcriptionally permissive or repressive histone environment. Incisor pericytes 

possessed a sharp peak of H3K4me3 at the transcription start site (TSS) of Dspp, while their bone 

marrow counterparts did not. Mouse incisors grow rapidly, (1.0 mm in 2 days) (An et al. 2018) and the 

transcriptionally open state of chromatin at the promoter of Dspp is indicative of a stem cell primed 

to differentiate. In the BM pericyte RNA-seq datasets we did not detect significant expression of genes 

relating to osteoblast specification. However when investigating the epigenetic landscapes of these 

BM pericytes we found that the promoter of the Runx2 transcription factor,  which is the master 

regulator and first step towards osteoblast differentiation (Gaur et al. 2005; James 2013) was in a 

bivalent state. This locus was abundant in both active and repressive histone post translational 

modifications as shown by ChIP-seq (Yianni and Sharpe 2018) (Figure 3). This observation is intriguing, 

since it is known that bivalent promoters mark genes that are poised for activation should the cognate 

upstream regulator (e.g a transcription factor) or stimulating signal become available  (Bernstein et al. 

2006; Dennis et al. 2003; Gan et al. 2007). This prompted further investigation into the epigenetic 

status of master regulators governing commitment for myogenesis, chondrogenesis and adipogenesis. 

To do this we performed a ChIP-seq experiment to identify the genomic binding sites for the catalytic 

subunit of polycomb repressor complex 1 (PRC1), RING1B. RING1B is  an E3-ubiquitin ligase which 

allows PRC1 to polyubiquitinate lysine 119 of histones H2A (H2Aub119) (Stock et al. 2007). This causes 

further compaction of that genomic locus and predominantly leads to stable repression of genes 

within that locus due to a number of reasons, including physical exclusion of transcription factors from 

subsequent binding (Ren et al., 2008; van Arensbergen et al., 2013; Vidal, 2009).   (Ren et al. 2008) 

(van Arensbergen et al. 2013) (Vidal 2009)What these datasets revealed was that a number of genes 

necessary to drive pericytes down inappropriate (for their organ) lineages were bound by RING1B and 

repressed. These included Myf5, Pax3 and Myod for myogenesis, Osr1, Runx3, Osr2, Nfib, Scx and Sox9 

for chondrogenesis, and Cebpa and Cebpb for adipogenesis. This highlighted that in vivo, bone marrow 

and incisor pericytes are lineage restricted by previously undescribed mechanisms to give rise to pre-

programmed MSCs that can then differ 



 7 

tiate into organ-specific cell types (Figure 3). An important question this raises is are these epigenetic 

mechanisms a bi-product of niche originating regulatory events, potentially driven by signalling 

cascades, or are these mechanisms innate in the pericytes themselves? To further investigate this, 

FACS isolated pericytes from both incisor pulp and bone marrow were expanded in vitro using basal 

medium lacking any stimulating factors, thereby removing any potential niche - originating signals and 

tailored differentiation cocktails. Total RNA was collected from these cells after 31 days and pericytes 

isolated from incisor pulp were found to have upregulated expression of Dspp, whilst pericytes 

isolated from bone marrow had upregulated expression of Runx2, as compared to their fresh in vivo 

counterparts (Figure 4). These in vitro expanded pericytes did not upregulate marker genes of any 

other mesodermal lineage. This observation indicates that although in vitro these pericytes can be 

driven to produce muscle, mineral or fat, this is a by-product of their exogenous stimulation and not 

their endogenous lineage plasticity. These cells carry an epigenetic and transcriptomic program that 

persists even in culture that restricts them to a particular lineage, in this case enforcing an odontoblast 

or an osteoblast differentiation program respectively (Figure 4). This should not be surprising since ex 

vivo differentiation of bone marrow derived and tooth pulp derived MSCs clearly indicates tissue of 

origin -specific differentiation (Gronthos et al. 2000). This data also accurately mirrors the in vivo 

observations from lineage tracing studies showing the contribution of dental pericytes to odontoblasts 

(Feng et al. 2011; Vidovic et al. 2017)and bone marrow pericytes to osteoblasts  (Supakul et al. 2019) 

and not to other lineages within the same organ.  

A recent study has led to some confusion regarding the role of pericytes as MSC precursors where 

lineage tracing with Tbx18, a gene reported to be expressed by pericytes, showed no evidence of a 

differentiated cell contribution in certain tissues including fat, brain and heart (Guimarães-Camboa et 

al. 2017). In addition to already published comments on this study, our transcriptome datasets show 

no expression of Tbx18 in cells identified as pericytes  (Yianni and Sharpe 2018). 
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It is important to note that researchers outside the mineral biology field have also provided evidence 

indicating that in vivo, pericytes are not plastic, but tissue specific pre-committed precursors of MSCs, 

although the molecular basis of this restriction was not investigated. In a recent study, Sacchetti and 

colleagues (Sacchetti et al. 2016) established MSC cultures from pericytes sourced from tissues 

including bone marrow (BM), skeletal muscle (MU) and perinatal cord blood (CB). These perivascular 

cells were FACS isolated from fresh human tissues with the criteria of being negative for pan-

endothelial and pan-haematopoietic marker but positive for MCAM ( CD34- / CD45- / CD146+ ). These 

cells gave rise to MSC colonies in vitro under basal culture conditions that do not stimulate 

differentiation. Using gene-expression profiling the authors determined the transcriptional signature 

of these cells and performed unsupervised hierarchical clustering and principle component analysis. 

An ANOVA-based analysis determined that these cells are radically divergent from each other in terms 

of the genes they express when comparing the same “MSCs” isolated from different anatomical 

locations. They showed that the MU cells express the lineage specific myogenic transcription factor 

PAX7. Interestingly, BM MSCs express a number of genes associated with haematopoietic support 

something that was also validated in our recent epigenetic studies. Sacchetti et al, noted that the 

pericytes they prospectively isolated ( CD34- / CD45- / CD146+ ) when transplanted heterotopically 

using an osteoconductive carrier, formed bone and also established a haematopoietic 

microenvironment while MU and CB MSCs did not. They further showed that MCAM/CD146 

expressing stromal cells from different human tissues differed radically from their BM counterparts in 

differentiation potency and transcriptional profile, reflective of their different developmental origins. 

While BM derived MSCs/pericytes are natively skeletogenic but not myogenic, muscle derived 

MSCs/Pericytes are inherently myogenic but not natively skeletogenic and represent a subset of cells 

with functional features of satellite cells (Figure. 5) (Sacchetti et al. 2016). Multiple studies 

independently corroborate that MSCs and their precursors, residing in a wide range of tissues, are 

very similar, but they are clearly not identical populations. It was first thought that the tissue specific 

microenvironment could be a likely source of this variation, but evidence highlighted here would argue 
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that this is something intrinsically encoded within the molecular memory of these cells. When 

considering the differentiation capabilities of these cells (based on in vitro studies) it makes biological 

sense that molecular checkpoints would be in place to prevent non-specific differentiation in vivo. It 

could be argued that with age these molecular mechanisms could be perturbed as is suggested in 

tissues of aging patients or experimental animals where  pericytes increasingly contribute to scarring 

and fibrosis as opposed to regeneration and repair (Goritz et al. 2011; Greenhalgh et al. 2013; 

Sundberg et al. 1996). 

Considerations for the future  

Recent publications in the field of MSC biology highlight a number of important concepts that have 

been largely overlooked or understudied. There is a widely shared acceptance that pericytes and MSCs 

are ubiquitous in the mesenchymal compartment of tissues, and regardless of the tissue they are 

sourced from, can be expanded to give a skeletogenic, adipogenic or myogenic phenotypes depending 

on how they are stimulated. Data discussed here clearly demonstrate that these ubiquitous cells differ 

in their in vivo transcriptomes/epigenomes and are not uniform in terms of their lineage commitment: 

they represent subsets of tissue specific lineage committed precursors.  

A number of important points need to be raised; at this stage it is unclear how differences in cell 

surface marker expression might possible mirror functional heterogeneity in vivo. When taking into 

account the total pericyte content of a tissue, one subset of cells might be pre-destined to differentiate 

into mature mesodermal cells while others are confined to functional properties relating to the 

maintenance of the underlying vasculature. Single cell RNA-seq studies are being utilised to better 

understand the population architecture of pericytes within a given organ (He et al. 2018; Tikhonova 

et al. 2019; Zeisel et al. 2018). In the brain for example, single cell transcriptomics has identified three 

different populations of pericytes (Zeisel et al. 2018) 

These studies can be used as a way to design lineage tracing strategies to investigate the contribution 

of these sub-types to other cell types in vivo. Data discussed here have implications for a number of 
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fields including stem cell biology, regeneration, and also tissue engineering. In approaches that require 

the use of MSCs in a scaffold to facilitate repair in vivo, not all sources of primary cells will be 

equivalent in their ability to regenerate the tissue of interest.  
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Figures and Legends: 

 

Figure 1. Pericyte injury/repair response in vivo. In response to injury, or as part of maintaining tissue 

homeostasis, pericytes detach from the blood vessel wall and act as bona fide mesenchymal stem cells 

we will refer to as pMSCs, to distinguish them from MSCs that are not pericyte derived. pMSCs can 

proliferate and move to the area of injury where they differentiate into tissue specific cells to facilitate 

repair.  

  



 15 

 

Figure 2. Pericyte differentiation potential, in vitro and in vivo. In vivo, pericytes have a tissue - 

specific epigenome and a transcriptome that is restricting their differentiation. Upon receiving a 

signal, these pericytes detach and adopt an MSC phenotype that is pre-programmed to give rise to 

cells that will facilitate repair.  In vitro, isolated pericytes will adhere to tissue culture plastic and give 

rise to characteristic looking MSC cultures. These can be directed to differentiate into any 

mesenchymal lineage using tailored stimulating factors that partially alter the inherent 

epigenetic/transcriptomic programs of these cells. As previously shown, if left unstimulated, these 

cells will upregulate lineage specific genes of specialised cells appropriate to their tissue of 

residence(Yianni & Sharpe, 2018).   
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Figure 3.  Lineage priming in vivo. A molecular method has been identified in dental and bone marrow 

pericytes that contributes to organ specific lineage commitment before pericytes detach from the 

basal membrane of blood vessels. In incisor pericytes a transcriptomically permissive chromatin 

structure is in place (high in H3K4me3) that allows transcription of Dspp to take place via the 

recruitment of RNA polymerase II (A). In contrast, while Runx2 is not expressed in bone marrow 

pericytes, we have identified that it is positioned in a bivalent chromatin environment that makes it 

amenable to transcription once the upstream cognate transcription factors become available (B). 
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Figure 4. Lineage Restriction persists in vitro. Fresh pericytes isolated from incisor and long bone will 

readily adhere to tissue culture plastic and give rise to conventional MSC cultures. If they are left to 

proliferate and mature in the absence of stimulating factors, they will upregulate genes for the lineage 

specific to their tissue of origin (A). In contrast, most experiments perturb (or ignore) this innate MSC 

differentiation bias. These cells are driven down non-specific cell lineages by the addition of tailored 

supplements to give rise to mature, terminally differentiated, mesenchymal derivatives. 
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Figure 5. Pericyte MSCs as pre-programmed precursors. Sacchetti et al. isolated pericytes ( CD34- / 

CD45- / CD146+ ) from human bone marrow (BM), post-natal umbilical cord blood (CB), and skeletal 

muscle (MU) which gave rise to traditional MSC cultures in vitro. These MSC cultures could only 

differentiate into bone producing osteoblast or haematopoietic supporting stromal cells if they were 

derived from BM (A). CB MSCs could only be differentiated into chondrocytes (B) and MU MSCs only 

into myoblasts (C).  Adapted from (Sacchetti et al. 2016) 


