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Abstract 35 

Background: Metabolites are genetically and environmentally determined. Consequently, they can be 36 

used to characterize environmental exposures and reveal biochemical mechanisms that link exposure to 37 

disease. To explore disease susceptibility and improve population risk stratification, we aimed to 38 

identify metabolic profiles linked to carcinogenesis and mortality and their intrinsic associations by 39 

characterizing subgroups of individuals based on serum biomarker measurements. We included 13,615 40 

participants from the Swedish Apolipoprotein MOrtality RISk Study who had measurements for 19 41 

biomarkers representative of central metabolic pathways. Latent Class Analysis (LCA) was applied to 42 

characterise individuals based on their biomarker values (according to medical cut-offs), which were 43 

then examined as predictors of cancer and death using multivariable Cox proportional hazards models. 44 

Results: LCA identified four metabolic profiles within the population: (1) normal values for all markers 45 

(63% of population); (2) abnormal values for lipids (22%); (3) abnormal values for liver functioning 46 

(9%); (4) abnormal values for iron and inflammation metabolism (6%). All metabolic profiles (classes 47 

2-4) increased risk of cancer and mortality, compared to class 1 (e.g. HR for overall death was 1.26 48 

(95%CI: 1.16 - 1.37), 1.67 (95%CI: 1.47 - 1.90), and 1.21 (95%CI: 1.05 - 1.41) for class 2, 3, and 4, 49 

respectively). 50 

Conclusion: We present an innovative approach to risk stratify a well-defined population based on 51 

LCA metabolic-defined subgroups for cancer and mortality. Our results indicate that standard of care 52 

baseline serum markers, when assembled into meaningful metabolic profiles, could help assess long 53 

term risk of disease and provide insight in disease susceptibility and etiology 54 

Keywords: 55 

Risk stratification, biomarkers, metabolic profiles, latent class analysis, disease susceptibility, cancer 56 

epidemiology. 57 

 58 

 59 
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Background 60 

Cancer is a multi-pathway disease, assembled as a heterogeneous and hierarchically organized system, 61 

and still one of the major causes of death worldwide – with an increasing burden given the aging 62 

population (1-3). Cancer data has grown exponentially in the last decade with new advanced 63 

technologies resulting in highly diverse, mixed data types and huge volumes of information (e.g.: 64 

542045 is the number of publications retrieved in PubMed when searching the terms ‘cancer’ AND 65 

‘data’ on August 2017). Due to the nature of this emerged “Big Cancer Data” and the demand for high-66 

sensitive and high-specific biomarkers, there is a need for significant sample sizes and advanced 67 

mathematical and statistical models (4, 5) capable of extracting relevant clinical and biological 68 

information (6, 7). These more systematic-based approaches, replacing single biomarker analyses by 69 

multiple profiling testing, may provide new avenues for biomarker development in cancer diagnosis 70 

and management (8, 9). Recent studies have adopted these integrative approaches assessing multiple 71 

serum markers simultaneously for cancer diagnosis (10-13). Furthermore, the concept of the exposome 72 

has been introduced into the field of cancer epidemiology (14). It refers to every non-genetic exposure 73 

to which an individual is subjected from conception to death (14, 15) . Specifically, metabolites, part of 74 

the internal exposome, are both genetically and environmentally determined and can consequently be 75 

used to characterize environmental exposures and reveal biochemical mechanisms that link exposure to 76 

disease (15-18). Hence, the internal distribution of metabolites and their interactions might help 77 

unravelling cancer susceptibility in a population. 78 

 79 

With the overall goal of identifying statistical methods to stratify individuals based on their underlying 80 

risk of developing cancer and risk of increasing mortality,  we conducted a data driven approach 81 

utilizing standard serum markers available from routine health check-ups to study susceptibility to 82 

cancer and death in a well-defined cohort of 13,615 participants from the AMORIS study 83 

(Apolipoprotein MOrtality RISk) (19, 20).  More specifically, the study was set out to explore 84 

population heterogeneity and cancer susceptibility by investigating serum metabolic profiles using 85 

latent class analysis (LCA). This data reduction method clusters covariates based on models of data 86 



4 
 

distribution probabilities. It allows for evaluation of clusters of biomarkers linked to carcinogenesis and 87 

their intrinsic associations, which ultimately helps us assess their possible role in predicting long-term 88 

cancer and mortality. 89 

 90 

 91 

Results 92 

Characteristics of the study population 93 

A total of 1,956 individuals (14.37%) developed cancer after at least 3 years of follow-up, including 94 

655 breast and genito-urinary cancers, 330 cases of digestive cancer, 133 cases of respiratory cancers 95 

and 129 lymphatic and hematopoietic cancers during a mean follow-up time for cancer of 16.6 years, 96 

median follow-up time in the cohort of 17.22 years with a minimum of 3.01 years and a maximum of 97 

24.77. 3,158 participants (23.20%) died during a mean follow-up of 17.3 years, comprising 706 cancer-98 

specific deaths. Study population characteristics by cancer status is illustrated in Table 1. 99 

 100 

 101 

Table 1| Characteristics of the study population by cancer status defined at the end of the follow up period. All the serum 102 
markers are dichotomized using standard clinical cut-offs.  103 

 Total 

N=13,615 (100%) 

No Cancer 

N=11,659 (85.63%) 

Cancer 

N=1,956 (14.37%) 

Age (years) 

   

Mean (SD) 51.91 (14.80) 50.86 (15.00) 58.14 (11.75) 

Under 40 2951 (21.67) 2841 (24.37) 110 (5.62) 

40-50 3550 (26.07) 3148 (27.00) 402 (20.55) 

50-60 3065 (22.51) 2491 (21.37) 574 (29.35) 

Above 60 4049 (29.74) 3179 (27.27) 870 (44.48) 

Sex 

   

Female 7588 (55.73) 6636 (56.92) 952 (48.67) 

Male 6027 (44.27) 5023 (43.08) 1004 (51.33) 

Socio-economics Status 

   

High 6493 (47.69) 5416 (46.45) 1077 (55.06) 

Low 5007 (36.78) 4368 (37.46) 639 (32.67) 

Not employed or missing 2115 (15.53) 1875 (16.08) 240 (12.27) 

Educational Status 

   

High 4313 (33.42) 3688 (33.40) 625 (33.57) 
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Middle 5495 (42.58) 4725 (42.79) 770 (41.35) 

Low 3097 (24.00) 2630 (23.82) 467 (25.08) 

Missing b 710 (5.21) 616 (5.28) 94 (4.80) 

CCI 

   

0 12258 (90.03) 10520 (90.23) 1738 (88.85) 

1 963 (7.07) 807 (6.92) 156 (7.98) 

2 221 (1.62) 188 (1.61) 33 (1.69) 

3+ 173 (1.27) 144 (1.24) 29 (1.48) 

Total Cholesterol (mmol/L) 

  

Mean(SD) 5.82 (1.17) 5.79 (1.18) 6.00 (1.13) 

< 6.50 9774 (71.79) 8453 (72.50) 1321 (67.54) 

≥ 6.50 3841 (28.21) 3206 (27.50) 635 (32.46) 

Triglycerides (mmol/L) 

   

Mean(SD) 1.44 (1.00) 1.43 (1.00) 1.48 (0.93) 

< 1.71 10128 (74.39) 8716 (74.76) 1412 (72.19) 

≥ 1.71 3487 (25.61) 2943 (25.24) 544 (27.81) 

Apolipoprotein A-1 (g/L) 

   

Mean(SD) 1.44 (0.23) 1.44 (0.23) 1.43 (0.23) 

< 1.05 328 (2.41) 278 (2.38) 50 (2.56) 

≥ 1.05 13287 (97.59) 11381 (97.62) 1906 (97.44) 

Apolipoprotein B (g/L) 

   

Mean(SD) 1.22 (0.35) 1.22 (0.35) 1.29 (0.34) 

< 1.50 10902 (80.07) 9431 (80.89) 1471 (75.20) 

≥ 1.50 2713 (19.93) 2228 (19.11) 485 (24.80) 

HDL Cholesterol (mmol/L) 

  

Mean(SD) 1.54 (0.43) 1.54 (0.43) 1.52 (0.43) 

< 1.03 1457 (10.70) 1231 (10.56) 226 (11.55) 

≥ 1.03 12158 (89.30) 10428 (89.44) 1730 (88.45) 

LDL Cholesterol (mmol/L) 

   

Mean(SD) 3.64 (1.06) 3.61 (1.06) 3.82 (1.04) 

< 4.10 9345 (68.64) 8128 (69.71) 1217 (62.22) 

≥ 4.10 4270 (31.36) 3531 (30.29) 739 (37.78) 

Glucose (mmol/L) 

   

Mean(SD) 5.22 (1.53) 5.21 (1.53) 5.30 (1.53) 

< 6.11 12223 (89.78) 10488 (89.96) 1735 (88.70) 

≥ 6.11 1392 (10.22) 1171 (10.04) 221 (11.30) 

Fructosamine (mmol/L) 

   

Mean(SD) 2.09 (0.27) 2.08 (0.27) 2.10 (0.25) 

< 2.6 13184 (96.83) 11291 (96.84) 1893 (96.78) 

≥ 2.6 431 (3.17) 368 (3.16) 63 (3.22) 

GGT (IU/L) * 

   

Mean(SD) 33.21 (48.12) 32.74 (48.09) 36.03 (48.21) 

Normal (<18) 5511 (40.48) 4827 (41.40) 684 (34.97) 

Normal high (18-36) 4983 (36.60) 4236 (36.33) 747 (38.19) 

Elevated (36-72) 2098 (15.41) 1750 (15.01) 348 (17.79) 
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Highly elevated (>72) 1023 (7.51) 846 (7.26) 177 (9.05) 

AST (IU/L) 

   

Mean(SD) 22.84 (19.23) 22.70 (19.60) 23.64 (16.88) 

< 45 13155 (96.62) 11271 (96.67) 1884 (96.32) 

≥ 45 460 (3.38) 388 (3.33) 72 (3.68) 

ALT (IU/L) 

   

Mean(SD) 29.02 (34.35) 28.95 (35.73) 29.41 (24.54) 

< 50 12296 (90.31) 10546 (90.45) 1750 (89.47) 

≥ 50 1319 (9.69) 1113 (9.55) 206 (10.53) 

Albumin (g/L) 

   

Mean(SD) 43.05 (2.82) 43.13 (2.83) 42.58 (2.72) 

<35 28 (0.21) 23 (0.20) 5 (0.26) 

>35 13587 (99.79) 11636 (99.80) 1951 (99.74) 

Leukocytes (109 cells/L) 

   

Mean(SD) 6.52 (1.97) 6.49 (1.96) 6.65 (2.01) 

<10 12956 (95.16) 11106 (95.26) 1850 (94.58) 

≥ 10 659 (4.84) 553 (4.74) 106 (5.42) 

C-Reactive Protein (mg/L) 

   

Mean(SD) 5.86 (15.14) 5.82 (14.25) 6.16 (19.58) 

<10 11858 (87.1) 10193 (87.43) 1665 (85.12) 

10-15 1196 (8.78) 993 (8.52) 203 (10.38) 

15-25 265 (1.95) 223 (1.91) 42 (2.15) 

25-50 200 (1.47) 167 (1.43) 33 (1.69) 

>50 96 (0.71) 223 (0.71) 13 (0.66) 

Iron (µmol/L) * 

   

Mean(SD) 18.13 (5.80) 18.13 (5.83) 18.11 (5.59) 

Low 636 (4.67) 540 (4.63) 96 (4.91) 

Normal 12512 (91.90) 10715 (91.90) 1797 (91.87) 

High 467 (3.43) 404 (3.47) 63 (3.22) 

TIBC (mg/dL) * 

   

Mean(SD) 0.39 (0.11) 0.31 (0.11) 0.31 (0.10) 

Low 4067 (29.87) 3494 (29.97) 573 (29.29) 

Normal 6650 (48.84) 5683 (48.74) 967 (49.44) 

High 2898 (21.29) 2482 (21.29) 416 (21.27) 

Creatinine (µmol/L) * 

   

Mean(SD) 79.65 (16.16) 79.38 (16.37) 81.26 (14.74) 

Low 40 (0.29) 31 (0.27) 9 (0.46) 

Normal 12088 (88.78) 10392 (89.13) 1696 (86.71) 

High 1487 (10.92) 1236 (10.60) 251 (12.83) 

Phosphate (mmol/L) * 

   

Mean(SD) 1.07 (0.17) 1.07 (0.17) 1.05 (0.17) 

Low 95 (0.70) 76 (0.65) 19 (0.97) 

Normal 12796 (93.98) 10948 (93.90) 1848 (94.48) 

High 724 (5.32) 635 (5.45) 89 (4.55) 

Calcium (mmol/L) * 
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Mean(SD) 2.38 (0.09) 2.38 (0.09) 2.38 (0.10) 

Low 191 (1.40) 167 (1.43) 24 (1.23) 

Normal 13195 (96.92) 11300 (96.92) 1895 (96.88) 

High 229 (1.68) 192 (1.65) 37 (1.89) 

Log (triglycerides/HDL) c 

   

mean(SD) (-)0.19 (0.81) (-)0.20 (0.82) (-)0.14 (0.80) 

< 0.5 11197 (82.24) 9618 (82.49) 1579 (80.73) 

≥ 0.5 2418 (17.76) 2041 (17.51) 377 (19.27) 

ApoB/ApoA-I c 

   

mean(SD) 0.87 (0.29) 0.87 (0.29) 0.92 (0.30) 

< 1.00 9584 (70.39) 8347 (71.59) 1237 (63.24) 

≥ 1.00 4031 (29.61) 3312 (28.41) 719 (36.76) 

Life Status 

   

Alive 10457 (76.80) 9385 (80.50) 1072 (54.81) 

Death 3158 (23.20) 2274 (19.50) 884 (45.19) 

Cancer 1956 (14.90) 11659 (0.00) 1956 (100.00) 

 104 
The following abbreviations have been used in Table 1: High Density Lipoprotein (HDL), Low Density Lipoprotein (LDL), 105 
Gamma-Glutamyl transferase (GGT), Alanine aminotransferase (ALT), Aspartate aminotransferase (AST) and Total iron 106 
binding capacity (TIBC). 107 
a Clinically abnormal cut-off values are highlighted for each biomarker. 108 
b The missing values are not included in the percentage of the Educational Status categories 109 
c Ratios are dimensionless 110 
*Clinical cut-offs 111 
The following cut-offs criteria was applied: 112 
GGT reference interval: 113 
Low [GGT < 18 IU/L] 114 
Normal high [18 IU/L ≥ GGT <36 IU/L] 115 
Elevated [36 IU/L ≥ GGT <72 IU/L] 116 
High elevated [GGT ≥ 72 IU/L] 117 
Iron reference interval: 118 
Men [Low ≤ 11, Normal = 11-31, High ≥ 31] 119 
Women [Low ≤ 9, Normal = 9-30, High≥ 30] 120 
TIBC reference interval: 121 
Men [Low ≤ 0.257, Normal = 0.257-0.379, High ≥ 0.379] 122 
Women [Low ≤ 0.246, Normal = 0.246- 0.391, High ≥ 0.391] 123 
Creatinine reference interval: 124 
Men [Low ≤ 60, Normal = 60-100, High ≥ 100] 125 
Women [Low ≤ 45, Norma l= 45-90, High ≥ 90] 126 
Phosphate reference interval: 127 
Men [Low ≤ 0.7, Normal = 0.7-1.4, High ≥ 1.4] 128 
Women [Low ≤ 0.8, Normal = 0.8-1.4, High ≥1.4] 129 
Calcium reference interval per gender by age: 130 
Men 131 
[Age < 40, Low ≤ 2.22, Normal = 2.22-2.60, High ≥2.60] 132 
[Age 40-60, Low ≤ 2.20, Normal = 2.20 -2.59, High ≥2.59] 133 
[Age > 60, Low ≤ 2.19, Normal= 2.19 -2.58, High ≥ 2.58] 134 
Women 135 
[Age < 40, Low ≤ 2.17, Normal = 2.17-2.56, High ≥2.56] 136 
[Age 40-60, Low ≤2.19, Normal = 2.19-2.60, High ≥2.60] 137 
[Age > 60, Low ≤ 2.21, Normal = 2.21-2.60, High ≥2.60] 138 

 139 



8 
 

Latent Class Analysis characterizes the study population into four metabolic profiles 140 

LCA was executed using the dichotomized values of the biomarkers to facilitate the biological 141 

interpretation of the results. The Chi-squared distribution criterion for model selection indicated a best 142 

fit model comprehend of four LCA classes, while AIC and BIC stabilized at 4 classes (Figure 1A, Figure 143 

1B) (43). All the criterions did not converge to a local maximum from class 12 onwards. The class 144 

allocation of the observations (individuals), the class conditional probability of each biomarker and the 145 

latent mixing proportions were obtained when running poLCA package in R statistical language. 146 

 147 

Table 2 and Figure 2 outline the LCA-derived classes with the estimated class population proportions, 148 

the class conditional probabilities of belonging to each latent class for each of the biomarkers and the 149 

biological interpretation of the LCA-derived classes. The four mutually exclusive classes characterize 150 

the population in metabolic profiles based on class conditional probabilities: (1) those with probabilities 151 

for all abnormal values of the markers under 0.3; therefore, considered the normal class (63% of 152 

population); (2) those with abnormal values for lipid markers (22%); (3) those with abnormal values 153 

for liver function markers (9%); (4) those with abnormal values for iron and inflammation metabolism 154 

(6%).  155 

A validation of the characterization of the population performed with the Latent class methodology is 156 

outlined in Appendix Table S3. The baseline clinical characteristics of the individuals by LCA-derived 157 

metabolic classes (supplementary Table S3) replicate the results displayed in Table 2 for the class 158 

conditional probabilities.  159 

Table 2| Predicted class memberships of the clinically abnormal biomarkers cut-off values for  160 
the 4 latent classes model. Estimated class population shares for the four different LCA classes. 161 
 162 

LCA-derived Classes Class 1 Class 2 Class 3 Class 4 

% on the population 63% 22% 9% 6% 

Biological interpretation Normal Lipids Liver 
Iron/ 

Inflammation 

ApoB/ApoA-I ≥ 1.00 b 0.1320 0.6840 0.4519 0.2480 

Log (Triglycerides/HDL) ≥ 0.50 

b 
0.0126 0.5436 0.3852 0.1421 

Glucose ≥6.11 mmol/L 0.0342 0.2401 0.2174 0.0919 

Fructosamine ≥ 2.60 mmol/L 0.0039 0.0967 0.0555 0.0280 

ALT ≥ 50 IU/L 0.0051 0.0107 1.0000 0.0291 

GGT Elevated36-72 IU/L 0.0848 0.2532 0.3521 0.1732 
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GGT Highly elevated ≥72 IU/L 0.0240 0.0843 0.4098 0.0619 

AST ≥ 45 IU/L 0.0052 0.0045 0.3168 0.0180 

CRP >10 mg/L 0.0282 0.0715 0.0771 0.2740 

Albumin <35 g/L 0.0007 0.0022 0.0024 0.0114 

Leukocytes ≥ 109 cells/L 0.0265 0.0786 0.0438 0.1344 

Iron low µmol/L 0.0001 0.0040 0.0281 0.5527 

Iron high µmol /L 0.0404 0.0155 0.0712 0.0000 

TIBC low mg/dL 0.2201 0.2807 0.2622 1.0000 

TIBC high mg/dL 0.2438 0.1707 0.2984 0.0000 

Creatinine low µmol /L 0.0022 0.0037 0.0041 0.0051 

Creatinine high µmol /L 0.0822 0.1765 0.1166 0.1116 

Phosphate low mmol/L 0.0078 0.0041 0.0063 0.0098 

Phosphate high mmol/L 0.0425 0.0611 0.0544 0.1110 

Calcium low mmol/L 0.0124 0.0092 0.0099 0.0458 

Calcium high mmol/L 0.0121 0.0253 0.0299 0.0135 

 163 
a High probabilities of the biomarkers to belong to a class are highlighted. 164 
b Ratios are dimensionless 165 
 166 

LCA derived metabolic profiles as cancer and mortality predictors 167 

We then investigated the prediction capabilities of the four LCA-derived metabolic profiles to estimate 168 

overall cancer risk, specific cancer types risk, cancer mortality and overall mortality, assigning the 169 

reference level to the healthy metabolic profile Class 1 (Tables 3A - 3B). 170 

 171 

Table 3A| Hazard ratios and 95 % confidence interval for the association of LCA-derived metabolic classes and overall 172 
cancer risk and cancer specific risk. 173 
 174 

 Hazard Ratios (95% CI) a Hazard Ratios (95% CI) b 

Cancer Risk: All cancer types   

Number of events 1956 1956 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.09 (0.98 - 1.22) 1.05 (0.94 - 1.17) 

3 - Liver 1.28 (1.10 - 1.50) 1.28 (1.09 - 1.49) 

4 – Inflammation & Iron 1.17 (0.97 - 1.41) 1.17 (0.97 - 1.41) 

Cancer Risk: Buccal cavity and pharynx   

Number of events 34 34 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.79 (0.77 - 4.14) 1.70 (0.73 - 1.17) 

3 - Liver 2.66 (0.96 - 7.35) 2.60 (0.94 - 7.16) 

4 - Inflammation & Iron 3.94 (1.38 - 11.30) 3.77 (1.31 - 10.82) 
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Cancer Risk: Digestive organs and peritoneum  

Number of events 133 133 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 0.83 (0.62 - 1.11) 0.83 (0.62 - 1.11) 

3 - Liver 2.12 (1.54 - 2.91) 2.12 (1.54 - 2.91) 

4 - Inflammation & Iron 0.86 (0.51 - 1.46) 0.86 (0.51 - 1.46) 

Cancer Risk: Respiratory system   

Number of events 133 133 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.40 (0.94 - 2.08) 1.32 (0.88 -1.96) 

3 - Liver 0.90 (0.44 - 1.82) 0.87 (0.43 - 1.77) 

4 - Inflammation & Iron 1.48 (0.76 - 2.88) 1.46 (0.75 - 2.84) 

Cancer Risk: Skin melanoma   

Number of events 205 205 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 0.78 (0.56 - 1.10) 0.78 (0.56 - 1.11) 

3 - Liver 0.71 (0.40 - 1.26) 0.73 (0.41 - 1.31) 

4 - Inflammation & Iron 0.70 (0.35 - 1.37) 0.70 (0.35 - 1.37) 

Cancer Risk: Breast and genito-urinary organs   

Number of events 655 655 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.19 (0.99 - 1.42) 1.12 (0.94 - 1.33) 

3 - Liver 1.04 (0.80 - 1.37) 1.04 (0.80 - 1.37) 

4 - Inflammation & Iron 1.25 (0.91 - 1.71) 1.25 (0.91 - 1.71) 

Cancer Risk: Brain & nervous system, Thyroids  

Number of events 34 34 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.01 (0.51 - 1.99) 0.96 (0.48 - 1.00) 

3 - Liver 1.01 (0.38 - 2.67) 0.99 (0.38 - 2.59) 

4 - Inflammation & Iron 0.92 (0.28 - 2.99) 0.91 (0.28 - 2.96) 

Cancer Risk: Connective and endocrine tissue  

Number of events 56 56 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 0.65 (0.21 - 1.95) 0.64 (0.21 - 1.94) 

3 - Liver 2.65 (1.00 - 7.02) 2.67 (1.01 - 7.07) 

4 - Inflammation & Iron 3.00 (1.11 - 8.11) 2.96 (1.10 - 8.00) 

Cancer Risk: Lymphatic and hematopoietic tissues: Hodgkin lymphoma, Non-H lymphoma, Leukemia and 

Myeloma 

Number of events 129 129 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.72 (1.15 - 2.56) 1.68 (1.12 - 2.51) 

3 - Liver 1.65 (0.91 - 3.00) 1.68 (0.93 - 3.05) 

4 - Inflammation & Iron 1.23 (0.56 - 2.68) 1.25 (0.57 - 2.73) 

 175 
a Time scale adjusted for age, sex and CCI 176 
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b Age scale adjusted for age, sex and CCI 177 

 178 

Table 3B| Hazard ratios and 95 % confidence interval for the association of LCA- derived metabolic classes and all 179 
causes death, Cancer death and CVD death. 180 
 181 

 Hazard Ratios (95% CI) a Hazard Ratios (95% CI) b 

All causes death   

Number of events 3158 3158 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.26 (1.16 - 1.37) 1.29 (1.19 - 1.40) 

3 - Liver 1.67 (1.47 - 1.90) 1.70 (1.49 - 1.93) 

4 - Inflammation & Iron 1.21 (1.05 - 1.41) 1.20 (1.04 - 1.40) 

Cancer death   

Number of events 706 706 

1 - Normal class 1.00 (ref) 1.00 (ref) 

2 - Lipids 1.22 (1.02 - 1.45) 1.20 (1.01 - 1.42) 

3 - Liver 1.44 (1.11 - 1.86) 1.46 (1.13 - 1.90) 

4 - Inflammation & Iron 0.93 (0.66 -  1.32) 0.93 (0.66 - 1.32) 

 182 
a Time scale adjusted for age, sex and CCI 183 
b Age scale adjusted for age, sex and CCI 184 

All metabolic profiles increased risk of cancer and mortality compared to Class 1. For instance, 185 

individuals in Class 3 (abnormal liver function profile) had a higher risk of overall cancer (HR: 1.28 186 

(95%CI: 1.10- 1.50)), but also a worse cancer-specific survival and overall survival as compared to 187 

those in Class 1 (Tables 3A – 3B). Class 2 (abnormal lipid profile) and Class 4 (abnormal iron markers 188 

and inflammatory) were positively associated with overall death, while Class 2 was also associated with 189 

cancer–specific death. The results were consistent for both time-scales (Tables 3A – 3B). 190 

 191 

When assessing the risk of specific cancer types, several patterns occurred (Tables 3A –3B).  Individuals 192 

in Class 2 (abnormal lipid markers) presented a higher risk of lymphatic and hematopoietic tissue cancer 193 

(HR: 1.72 (95%CI: 1.15 - 2.56)). There was a greater risk of digestive cancers in individuals in Class 3 194 

(abnormal values of liver enzymes) (HR: 2.12 (95%CI: 1.54 - 2.91)), while individuals in Class 4 195 

(abnormal iron markers and inflammation) were exposed to a higher risk of buccal and oral system 196 

cancers in comparison with the individuals in Class 1 (HR: 3.94 (95%CI 1.38 - 11.30)) (Table 3A). 197 
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Moreover, the connective tissue and endocrine glands cancer risk was higher in individuals grouped in 198 

liver metabolic profile (HR: 2.65 (95%CI: 1.00 - 7.02) and in participants belonging to the iron markers 199 

and inflammation (HR: 3.00 (95%CI: 1.11 - 8.11)). Similar associations were observed when using the 200 

age scale for the multivariable cox proportional hazard regression model (Table 3A – 3B). 201 

 202 

Discussion 203 

We demonstrated that standard of care baseline serum markers when assembled into meaningful 204 

metabolic profiles can help stratify the population for cancer risk, cancer mortality and overall mortality. 205 

More specifically, we observed that abnormal values for markers of the lipid metabolism, liver function 206 

and inflammatory and iron metabolism distinguish participants into metabolic profiles, which are 207 

predictive of long term cancer risk and/or mortality. 208 

 209 

Metabolic profiles 210 

Among the biological pathways addressed in our LCA, abnormalities in the lipid metabolism were the 211 

most common. Hyperlipidemia was present in about a quarter of the study population explaining the 212 

largest abnormal metabolic profile. The weight of the lipid profile in the analysis was consistent with 213 

the reported global prevalence of hypercholesterolemia among adults (37% for males and 40% for 214 

females) as reported in the Global Health Observatory in 2008 estimates by the World Health 215 

Organization (WHO) and the results from the  Swedish population in the WHO MONICA project (46). 216 

Dyslipidemias are associated with higher risk of CVD and other chronic diseases such as cancer, as also 217 

observed in our study (47). Liver dysfunction, iron deficiency and altered inflammatory markers 218 

profiles also distinguished important subgroups in our study population. About 9% of our population 219 

had abnormal values for markers of liver functioning (GGT, AST and ALT), which is similar to the 220 

results obtained in a population-based survey in the United States that estimated abnormal alanine 221 

aminotransferase (ALT) was present in 9% of respondents in absence of viral hepatitis C or excessive 222 

alcohol consumption (48). Moreover, these enzymes are known to be linked to cancer because of their 223 
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role in preserving the intracellular homeostasis of the oxidative stress (49-51), which is concordant with 224 

the results of these analyses. The iron profile and inflammatory markers clustered 6% of individuals in 225 

the study, which was predominantly driven by low levels of serum iron and TIBC, as well as high levels 226 

of CRP and leukocytes. This could potentially point towards anemia of inflammation, a chronic 227 

inflammation presenting low iron values, that occurs because the iron deficiency provides the body with 228 

infection resistance, which demonstrates the tightly connection between the inflammatory response and 229 

the iron and its homeostasis (52). This condition has been reported in more than 30% of cancer patients 230 

at time of diagnosis. 231 

 232 

Metabolic profiles as a risk factor for long term cancer and mortality  233 

The above-described three classes of abnormal metabolic profiles were all associated with an increased 234 

risk of cancer and worse survival, as compared to the healthy class. The findings therefore confirm the 235 

key importance of these metabolisms in the maintenance of the intracellular homeostasis and how their 236 

unbalance can be related with the etiology of cancer disease and mortality (2). The LCA adapted in this 237 

study thus illustrates how a biomarker-wide approach can help assess markers of the blood exposome 238 

in the context of carcinogenesis and mortality (53) (Figure 3). 239 

 240 

More specifically, individuals presenting abnormal liver function markers carried worse outcomes in 241 

terms of overall cancer risk and cancer death, and a positive association with digestive, connective and 242 

endocrine cancers diagnosis. Moreover, the participants with this profile had a higher probability of 243 

overall death. These results are consistent with previous published data. A positive association between 244 

elevated GGT and overall cancer risk, with no interaction of ALT, was found in the AMORIS cohort 245 

previously (24), and it was also reported in other large cohort studies (54, 55). These studies also found 246 

strong associations with elevated levels of GGT and digestive and respiratory cancer incidence. 247 

Elevated GGT has been associated with mortality from all causes, liver disease, cancer and diabetes, 248 

while ALT only showed associations with liver disease death in a large US cohort (56). However, in a 249 

study based on an elderly population it was found that GGT was associated with increased 250 

cardiovascular disease mortality, and ALP and AST with increased cancer-related mortality (57). 251 
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Moreover, a meta-analysis evaluating the associations between liver enzymes and all-cause mortality 252 

found positive independent associations of baseline levels of GGT and ALP with all-cause mortality 253 

(58). In the present study, the liver biomarker profile was positive associated with all the outcomes 254 

studied, suggesting a key role of this pathway in the development of cancer, probably related with its 255 

active role maintaining the intracellular redox regulation. Further investigations are necessary to 256 

establish the potential of the altered liver enzyme profile as a tool for cancer risk stratification. 257 

 258 

Individuals allocated to the lipid profile presented positive associations with cancer mortality, and 259 

overall mortality and higher risk of lymphatic and hematopoietic cancers. The link between 260 

hyperlipidemia and mortality has been studied broadly, with associations with established links for 261 

cancer and all-cause mortality (59-61). The association between lipids and lymphatic and hematopoietic 262 

cancers is more controversial, as other studies found an inverse association for these cancers and high 263 

levels of serum cholesterol (62, 63). However, a systematic literature review from 2016 found no 264 

association (64). 265 

 266 

Participants clustered in the unbalanced iron profile and inflammation had an increased risk of 267 

endocrine, buccal and oral cancers and were observed to have a higher risk of all-causes death. Altered 268 

inflammation and iron metabolisms are key metabolic ‘hallmarks of cancer’ (2, 34, 65).  Our 269 

observation of an association with an increased risk of buccal and oral cancer corroborates previous 270 

findings in AMORIS (34). 271 

 272 

Population heterogeneity and risk stratification: the need for data reduction techniques 273 

The modulation effect of population heterogeneity on the association between potential risks factors 274 

and disease is a new avenue to understand the variability of risk in the population (66). For instance, in 275 

a targeted metabolomics exercise Shan et al. performed a principal component analysis and time to 276 

event analysis identifying metabolic profiles to predict risk of CVD (13). Another study used Monte 277 

Carlo Cross Validation and Lasso logistic regression to evaluate serum biomarkers as an alternative to 278 

fecal immunochemical testing to improve detection of colorectal cancer (11).  In 2010, the European 279 
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Prospective Investigation on Cancer and Nutrition (EPIC) cohort reported that a specific prediagnostic 280 

plasma phospholipid fatty acid profile could predict the risk of gastric cancer (67). As rationalized in 281 

the HELIX project,  these multiple profiling approaches aim to identify groups of individuals in the 282 

population that share a similar exposome that might account for differences on the specific risk of study 283 

(68).Together with these studies, our systematic data integration approach based on LCA demonstrates 284 

the potential of investigating population heterogeneity using metabolic profiling  as risk factors for long 285 

term cancer risk and mortality prediction. However, in order to establish the prediction capability of 286 

these LCA metabolic profiles and implement their use in a clinical setting, further studies to validate 287 

the results whilst allowing to measure sensitivity and specificity, will need to be conducted such as a 288 

nested case-control in AMORIS that could determine the predictive capabilities of the metabolic 289 

profiles to estimate cancer risk and mortality. 290 

 291 

Strengths and limitations 292 

The present study has been conducted in a large and well-defined population, applying a multi-faced 293 

approach covering main biological pathways to assess biomarker profiles that could indicate cancer 294 

risk, cancer survival and mortality.  The major strength of these analyses lies in the innovative avenue 295 

to study population heterogeneity and susceptibility to disease and mortality in a large cohort of 296 

participants with multiple measurements, all measured on fresh blood samples on the same day at the 297 

same clinical laboratory. We included all the markers available in the cohort for a large population 298 

(n>13000), however not every marker of the central metabolic pathways was available in the database 299 

(i.e. Complete Blood Count). Life-style factors established as cancer risk factors such as tobacco 300 

smoking, low physical activity, poor diet, alcohol intake, obesity and hypertension were partially 301 

available in AMORIS which limited their used in the study. To mitigate the lack of some of these 302 

external factors such as BMI, the analyses have been adjusted for Charlson Comorbidity Index which 303 

includes comorbidities such as obesity and hypertension. The lack of others life-style factors such as 304 

alcohol consumption was mitigated by using information on serum biomarkers such as gamma glutamyl 305 

transferase and other liver enzymes.  All participants were selected by analyzing blood samples from 306 
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health check-ups in non-hospitalized individuals from the greater Stockholm area ensuring good 307 

internal validity in the study. Future studies will benefit from a longitudinal approach with repeated 308 

serum markers measurements that will capture the population phenotypic variations in relation to 309 

disease over long periods of time and will help to improve our understanding of the biomarkers’ impact 310 

on carcinogenesis and mortality.  311 

 312 

Conclusion 313 

Our findings support the recently expressed need for a shift from the classical epidemiological approach 314 

of assessing one exposure to a systemic approach with multiple exposures. The LCA adapted in this 315 

study illustrates how a biomarker-wide approach can help assess population susceptibility to disease 316 

and provide insight into disease etiology in the context of carcinogenesis and mortality (Figure 3). Given 317 

the environmental and genetic modulation of metabolic molecules, metabolic profiling based on 318 

standard of care serum markers could become a useful non-invasive predictive signature for risk 319 

stratification and an important area of research for mechanisms and clinical relevance. 320 

 321 

Methods 322 

Study design and study population 323 

The AMORIS study, a large prospective cohort study, has been described in detail elsewhere (19, 21, 324 

22). Briefly, the AMORIS database is based on linkages with the Central Automation Laboratory 325 

(CALAB) database, which analyzed fresh blood samples from subjects from the greater Stockholm 326 

area. All individuals were either healthy individuals referred for clinical laboratory testing as part of a 327 

general health check-up or outpatients between 1985 and 1996. The AMORIS cohort has been linked 328 

to several Swedish national registries such as the National Cancer Register, the Patient Register, the 329 

Cause of Death Register, the consecutive Swedish Censuses during 1970-1990, and the National 330 

Register of Emigration, using the Swedish 10-digit personal identity number. These linkages provide 331 

detail information on demographics, lifestyle, socio-economic status, vital status, cancer diagnosis, 332 
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comorbidities and emigration. The AMORIS study conformed to the declaration of Helsinki and was 333 

approved by the ethics board of the Karolinska Institute. 334 

 335 

From the AMORIS cohort, we included all individuals aged 20 years or older with measurements for 336 

the following serum biomarkers (n=13,615), which were all measured on the same day, using fully 337 

automated methods with automatic calibration performed on fresh blood samples, at the same laboratory 338 

(CALAB) of high quality according to international blinded testing (23) (Appendix Table S1 and S2): 339 

total cholesterol (TC) (mmol/L), triglycerides (TG) (mmol/L), apolipoprotein A-1 (ApoA-I)  (g/L), 340 

apolipoprotein B (ApoB) (g/L),  high density lipoprotein (HDL) (mmol/L), low density lipoprotein 341 

(LDL) (mmol/L), glucose (mmol/L), fructosamine (FAMN) (mmol/L), gamma-glutamyl transferase 342 

(GGT) (IU/L), alanine aminotransferase (ALT) (IU/L), aspartate aminotransferase (AST) (IU/L),  343 

albumin (g/L), leukocytes (WBC) (109 cells/L), C-reactive protein (CRP) (mg/L),  iron (FE) (µmol/L), 344 

total iron binding capacity (TIBC) (mg/dL), creatinine (µmol/L), phosphate (mmol/L) and calcium 345 

(mmol/L). All methods have previously been described (22). 346 

These biomarkers were selected to reflect common metabolic pathways: lipid (TC, TG, ApoA-I, ApoB, 347 

HDL and LDL) and glucose metabolism (Glucose, FAMN), liver function (GGT, ALT and AST), 348 

inflammation (Albumin, WBC and CRP), iron metabolism (FE and TIBC), kidney function (Creatinine) 349 

and phosphate (Phosphate and Calcium). The blood metabolites included in the analysis were all the 350 

standard serum markers available from routine health check-ups. Most of  the markers included have 351 

been previously studied individually in AMORIS, however no systemic integrative approach to 352 

examine the metabolic markers interactions and susceptibility to cancer has been conducted to date (24-353 

35). All participants were free from cancer at time of study entry and none were diagnosed with cancer 354 

within the first three years of follow-up to avoid reverse causation. 355 

 356 

The main exposure variables for the analyses were the above-mentioned metabolic biomarkers, for 357 

which the values were categorized using standardized clinical cut-offs based on recognized medical 358 

criteria to facilitate interpretation of the results (Appendix Table S2). The main outcomes were first 359 

cancer diagnosis, as registered in the National Cancer Register using ICD-9 for the years 1987-1992, 360 



18 
 

ICD-O/2 for years 1993-2004 and for year 2005 onwards has been coded in ICD-O/3), and mortality. 361 

As secondary outcomes, we explored those cancer types for which there were more than 30 events 362 

during follow-up. Likewise, cancer mortality was explored. Follow-up time was assessed specifically 363 

for each of the outcomes studied. For cancer diagnosis, follow-up time was defined as time from blood 364 

drawn until date of first cancer diagnosis, death, emigration or study closing date (31st of December 365 

2012), whichever occurred first. The follow-up time for death was described as time from blood drawn 366 

until date of death, emigration or study closing date (31st of December 2012), whichever occurred first. 367 

 368 

Information on the following potential confounders was also incorporated: age, sex and comorbidities. 369 

The latter was quantified using the Charlson Comorbidity Index (CCI) calculated based on data from 370 

the National Patient Register. The CCI comprises 17 disease categories, all assigned a weight. The sum 371 

of an individual’s weights was used to create the CCI ranging from no comorbidity to severe 372 

comorbidity (0, 1, 2, and ≥3) (36).  373 

 374 

Data Analysis 375 

First, we calculated Pearson correlation coefficients to measure the strength of association between 376 

the biomarkers included in the analysis. Pearson’s correlation analyses showed strong correlation 377 

between the different biomarkers in the lipid metabolism (TC, LDL and ApoB (r >0.7); HDL and ApoA-378 

I (r>0.8)). We replaced the individual lipid biomarkers by the established ApoB/ApoA-I ratio and log 379 

(TG/HDL) ratio (20, 23, 37, 38)  to avoid collinearity and to comply with the principle of local 380 

independence as required by latent class analysis (39). Most of the markers were normally distributed 381 

except from the liver biomarkers. 382 

 383 

Latent Class Analysis (LCA) (39, 40) is a model-based clustering method that reduces the dimension 384 

of the data by clustering covariates into latent classes, using a probabilistic model that describes the 385 

data distribution, and it assesses the probability that individuals belong to certain latent classes. LCA 386 

avoids the use of a linear combination or a random distance definition to reduce the number of covariates 387 
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(41) and has recently been employed in health sciences (42, 43). More specifically, we applied LCA to 388 

characterize different classes of individuals based on their metabolic profiles (44) and to evaluate 389 

intrinsic associations between the  biomarkers, using the poLCA package (45) in R statistical 390 

programming language. We first determined the optimal number of LCA-derived classes by executing 391 

step-wise models with different numbers of classes, starting with the null model and adding one extra 392 

class in each model until reaching the total number of biomarkers in the data, while the model kept 393 

converging into a local maximum likelihood. The criterions used for model selection (Akaike 394 

information criterion (AIC), Bayesian information criterion (BIC) and Chi-squared distribution) were 395 

evaluated to estimate the best goodness of fit model and to define the optimal number of LCA-derived 396 

metabolic classes that characterized our dataset. To identify which sets of biomarkers predominantly 397 

explained each latent class, how the classes were distributed across the study population and which 398 

individuals were allocated to each class, we assessed the conditional probabilities, mixed proportions 399 

and class memberships of the best fitted latent class model. 400 

 401 

Once each subject was assigned to its LCA-derived metabolic class, we conducted multivariable Cox 402 

proportional hazard regression to examine whether the LCA-derived metabolic classes were 403 

associated with long term risk of overall cancer as well as specific cancer types. In addition, we 404 

evaluated how the classes were associated with all cause-death and cancer-specific death. All models 405 

were adjusted for age, sex, and CCI. We performed a sensitivity analysis using age as a time-scale, as 406 

this is potentially a strong confounder. Moreover, Schoenfeld residuals were tested to ensure the 407 

proportional hazard assumption of the multivariable cox proportional hazard regression analysis. 408 

 409 

Data management and statistical analyses were performed using Statistical Analysis Systems (SAS) 410 

release 4.3 (SAS Institute, Cary, NC) and R version 3.0.2 (R Foundation for Statistical Computing, 411 

Vienna, Austria). 412 

 413 

https://en.wikipedia.org/wiki/Model_selection
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 692 

  693 

 694 

Figure 1A| Line-graph depicting the goodness of fit indicators AIC and BIC. The model that best 

fits the dataset comprehends of four latent classes as determined by the minimum value reached by 

AIC and BIC criterions before stabilization of the values. The criterion did not converge to a local 

maximum from class 12 onwards. 
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695 

Figure 1B| Line-graph depicting the goodness of fit indicators (X^2(1) (Chi-square). The model that 

best fits the dataset comprehends of four latent classes as determined by the minimum value reached by 

Chi-square. The criterions did not converge to a local maximum from class 12 onwards. 

 

Figure 2| Class Membership Probabilities for abnormal clinical values of the serum markers for the 

four LCA – derived metabolic classes.  The four different biomarker profiles are represented in the 

graph. 

Figure 3| Study statistical pipeline describing the methodology followed in the project. We explored 

the blood exposome using metabolic markers of the population to assess how population heterogeneity 

is associated with cancer risk and mortality. 
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Additional Files 696 

Table S1.docx| Laboratory fully automated methods with automatic calibration were performed at one accredited 697 

laboratory (CALAB to measure the serum biomarkers examine in the study. 698 

 699 

Table S2.docx| Panel of serum markers describing standard medical cut-offs information.  700 

 701 

Table S3.docx| Characteristics of the study population by LCA-derived metabolic classes.  702 
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