
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.3389/fphys.2019.00955

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Stolp, H. B., Fleiss, B., Arai, Y., Supramaniam, V., Vontell, R. T., Britles, S., Yates, A., Baburamani, A.,
Thornton, C., Rutherford, M., Edwards, A. D., & Gressens, P. (2019). Interneuron development is disrupted in
preterm brains with diffuse white matter injury: observations in mouse and human. Frontiers in Physiology,
10(JUL), Article 955. Advance online publication. https://doi.org/10.3389/fphys.2019.00955

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 19. Oct. 2024

https://doi.org/10.3389/fphys.2019.00955
https://kclpure.kcl.ac.uk/portal/en/publications/831aed60-0cd9-4868-a4df-51c601a36774
https://doi.org/10.3389/fphys.2019.00955


   

 

Interneuron development is disrupted in
preterm brains with diffuse white
matter injury: observations in mouse
and human

 
Helen B. Stolp1, 2*, Bobbi Fleiss3, 1, 4, Yoko Arai4, Veena G. Supramaniam1, Regina Vontell1, 5,

Sebastian Birtles1, Abi Yates1, Ana A. Baburamani1, Claire Thornton1, 2, Mary A. Rutherford1,

David Edwards1, Pierre Gressens1, 4

 

1Centre for the Developing Brain, King's College London, United Kingdom, 2Department of Comparative

Biomedical Sciences, Royal Veterinary College (RVC), United Kingdom, 3School of Health and Biomedical

Sciences, RMIT University, Australia, 4INSERM U1141 Neuroprotection du cerveau en développement,

France, 5Department of Neurology, University of Miami Leonard M. Miller School of Medicine, United
States

  Submitted to Journal:

  Frontiers in Physiology

  Specialty Section:

  Embryonic and Developmental Physiology

  Article type:

  Original Research Article

  Manuscript ID:

  450351

  Received on:

  25 Jan 2019

  Revised on:

  19 Jun 2019

  Frontiers website link:
  www.frontiersin.org

In review

http://www.frontiersin.org/


   

  Conflict of interest statement

  The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest

   

  Author contribution statement

 
Conceptualisation - HS, BF, YA, PG; Formal Analysis and Investigation - HS, YA, SB, VS, RV, AY; Resources - CT, MR, DE, PG; Data
Curation - HS, BF, AB; Writing- Original Draft Preparation – HS; Writing – Review & Editing - All authors. Visualisation - HS, BF, AB;
 Supervision - HS, CT, BF, MR, DE, PG; Project Administration - HS, PG; Funding Acquisition - HS, PG, CT, MR, DE.

   

  Keywords

 
parvalbumin, Perineuronal nets (PNNs), Mouse, human, Neuroinflammation

   

  Abstract

Word count: 276

 

Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational age, is associated with an increased
risk of neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD).
The mechanism of grey matter injury in preterm born children is unclear and likely to be multifactorial, however inflammation, a
high predictor of poor outcome in preterm infants, has been associated with disrupted interneuron maturation in a number of
animal models. Interneurons are important for regulating normal brain development, and disruption in interneuron development,
and the downstream effects of this, has been implicated in the aetiology of neurodevelopmental disorders. Here we utilise
post-mortem tissue from human preterm cases with) or without diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for
non-WMI group, 26+6 to 30+0 for WMI group, p=0.002), and a model of inflammation-induced preterm diffuse white matter injury
(i.p. IL‐1β, b.d., 10µg/kg/injection in male CD1 mice from P1‐5). Data from human preterm infants show deficits in interneuron
numbers in the cortex and delayed development of neuronal arbours at this early stage of development. In the mouse, significant
reduction in the number of parvalbumin positive interneurons was observed from postnatal day (P) 10. This decrease in
parvalbumin neuron number was largely rectified by P40, though there was a significantly smaller number of parvalbumin positive
cells associated with perineuronal nets in the upper cortical layers. Together, these data suggest that inflammation in the preterm
brain may be a contributor to injury of specific interneuron in the cortical grey matter. This may represent a potential target for
postnatal therapy to reduce the incidence and/or severity of neurodevelopmental disorders in preterm infants.

   

  Funding statement

 

The authors’ research is supported by the Medical Research Council [MR/K006355/1], the Wellcome/EPSRC Centre for Medical
Engineering at King’s College London [WT 203148/Z/16/Z], Inserm, Université Paris Diderot, “Investissement d'Avenir -ANR-11-
INBS-0011-“ NeurATRIS, Fondation Grace de Monaco, Fondation Roger de Spoelberch, PremUP, Cerebral Palsy Alliance, and Fondation
des Gueules Cassées. The authors acknowledge financial support from the Department of Health via the National Institute for
Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's & St Thomas' NHS Foundation Trust in
partnership with King's College London and King’s College Hospital NHS Foundation Trust. The supporting bodies played no role in
any aspect of study design, analysis, interpretation or decision to publish this data.

   

  Ethics statements

  (Authors are required to state the ethical considerations of their study in the manuscript, including for cases
where the study was exempt from ethical approval procedures)

Does the study presented in the manuscript involve human or animal subjects: Yes

Please provide the complete ethics statement for your manuscript. Note that the statement will be directly added to the
manuscript file for peer-review, and should include the following information:

Full name of the ethics committee that approved the study
Consent procedure used for human participants or for animal owners
Any additional considerations of the study in cases where vulnerable populations were involved, for example minors, persons with
disabilities or endangered animal species

In review



As per the Frontiers authors guidelines, you are required to use the following format for statements involving human subjects:
This study was carried out in accordance with the recommendations of [name of guidelines], [name of committee]. The protocol
was approved by the [name of committee]. All subjects gave written informed consent in accordance with the Declaration of
Helsinki.
For statements involving animal subjects, please use:
This study was carried out in accordance with the recommendations of 'name of guidelines, name of committee'. The protocol
was approved by the 'name of committee'.

If the study was exempt from one or more of the above requirements, please provide a statement with the reason for the
exemption(s).
Ensure that your statement is phrased in a complete way, with clear and concise sentences.

 

This study was carried out in accordance with the recommendations of National Health Services (NHS) UK guidelines with written
informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The
protocol was approved by the National Research Ethics Services (West London), UK (ethics number: 07/H0707/139; Post-mortem
Magnetic Imaging Study of the Developing Brain).

This study was carried out in accordance with the recommendations of UK Home Office according to the regulations in the Animal
(Scientific Procedures) Act (2012). The protocol was approved by the King’s College London (KCL) Animal Welfare and Ethical Review
Board, PPL 70/8376.

   

  Data availability statement

Generated Statement: All datasets generated for this study are included in the manuscript and the supplementary files.
   

In review



1 

Interneuron development is disrupted in preterm 

brains with diffuse white matter injury: observations 

in mouse and human 

 

Helen B Stolp1,2*, Bobbi Fleiss2-4, Yoko Arai3,5, Veena Supramaniam2, Regina Vontell2,7, 

Sebastian Birtles2, Abi Yates2,6, Ana A Baburamani2, Claire Thornton1,2, Mary Rutherford2, A. 

David Edwards2, Pierre Gressens2,3  

 
1 Department for Comparative Biomedical Sciences, Royal Veterinary College, UK 
2 Centre for the Developing Brain, School of Biomedical Engineering & Imaging Science, King’s College 

London, UK 
3 NeuroDiderot, UMR 1141, Robert Debre Hospital, INSERM, France 
4 School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia 
5 BrainEver, Paris, France 
6 Department of Pharmacology, University of Oxford, UK 
7 Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, United States 

Corresponding Author  

*Helen B Stolp 

Department for Comparative Biomedical Sciences, Royal Veterinary College, UK 

hstolp@rvc.ac.uk 

Abstract  

Preterm brain injury, occurring in approximately 30% of infants born <32 weeks gestational 

age, is associated with an increased risk of neurodevelopmental disorders, such as autism 

spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). The mechanism 

of grey matter injury in preterm born children is unclear and likely to be multifactorial, however 

inflammation, a high predictor of poor outcome in preterm infants, has been associated with 

disrupted interneuron maturation in a number of animal models. Interneurons are important 

for regulating normal brain development, and disruption in interneuron development, and the 

downstream effects of this, has been implicated in the aetiology of neurodevelopmental 

disorders. Here we utilise post-mortem tissue from human preterm cases with) or without 

diffuse white matter injury (WMI; PMA range: 23+2 to 28+1 for non-WMI group, 26+6 to 30+0 for 

WMI group, p=0.002), and a model of inflammation-induced preterm diffuse white matter injury 

(i.p. IL-1β, b.d., 10µg/kg/injection in male CD1 mice from P1-5). Data from human preterm 

infants show deficits in interneuron numbers in the cortex and delayed development of 

neuronal arbours at this early stage of development. In the mouse, significant reduction in the 

number of parvalbumin positive interneurons was observed from postnatal day (P) 10. This 

decrease in parvalbumin neuron number was largely rectified by P40, though there was a 

significantly smaller number of parvalbumin positive cells associated with perineuronal nets in 

the upper cortical layers. Together, these data suggest that inflammation in the preterm brain 
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may be a contributor to injury of specific interneuron in the cortical grey matter. This may 

represent a potential target for postnatal therapy to reduce the incidence and/or severity of 

neurodevelopmental disorders in preterm infants. 

Key words 

Parvalbumin, perineuronal nets, neuroinflammation, mouse, human  

Introduction  

While preterm birth has a multi-factorial aetiology, it is widely recognised as being precipitated 

by pro-inflammatory events (reviewed by Hagberg et al. 2015), and these vulnerable infants 

are at risk of further exposure to inflammation and infection. As such, in preterm born infants 

the severity and duration of inflammation highly correlates with long term outcome (Kuban et 

al. 2015). Inflammation is also a risk factor in the development of neurodevelopmental 

disorders (Hagberg et al. 2012, Jiang et al. 2018), such as autism spectrum disorder (ASD), 

attention deficit hyperactivity disorder (ADHD), childhood epilepsy and disorders of learning, 

cognition and emotional development. Given the associations, it is possibly unsurprising that 

up to 30% of preterm born infants are diagnosed with a neurodevelopmental disorders in 

childhood (Marlow et al. 2005, Wood et al. 2005, Johnson et al. 2010, Franz et al. 2018). 

Neurodevelopmental disorders have a substantial effect on the quality of life of affected 

individuals and their families, but we have limited options to improve the brain health of these 

infants. The development of therapies is hampered by the fact that the neuropathology of 

developmental disorders is as mixed as the diagnosis, varying both between and within 

specific clusters of disorders.  

 

Specifically in preterm born infants, patterns of white matter injury, and increasingly of a grey 

matter injury, are recognised and associated with poor outcome. In contemporary cohorts of 

preterm infants, white matter injury includes periventricular leukomalacia in the most severe 

cases and more commonly diffuse white matter injury (Counsell et al. 2003, Back et al. 2007, 

Buser et al. 2010). The scale of white matter injury correlates with the severity of the outcome 

for preterm born infants (Counsell et al. 2008, Keunen et al. 2017, Tusor et al. 2017). Diffuse 

white matter injury has been successfully modelled in mice and sheep by re-capitulating the 

exposure to early-life inflammation seen in preterm born infants (Mallard et al. 2003, Stolp et 

al. 2005, Dean et al. 2009, Favrais et al. 2011), though chronic hypoxia can result in similar 

pathology (Back et al. 2006), supporting a multi-factorial aetiology. Improvements in imaging 

modalities have made it possible to study the ultrastructure of the grey matter. Concomitantly 

there has been a reduction in the most severe forms of white matter injury allowing the nature 

of subtle grey matter deficits to be probed in more detail. The microstructural pathology in the 

grey matter of preterm infants is still an on-going study (Ajayi-Obe et al. 2000, Boardman et 

al. 2006, Ball et al. 2013, Batalle et al. 2019) but it is clearly linked with the later development 

of cognitive disorders (Kersbergen et al. 2016, Lean et al. 2017). However, inflammation, 

synaptic dysfunction and altered gamma-aminobutyric acid (GABA) signalling are frequently 

identified as underlying causes and mechanisms of injury in neurodevelopmental disorders 

(Pardo and Eberhart 2007, Pinto et al. 2010, Deidda et al. 2014, Coelewij and Curtis 2018, 

Dark et al. 2018). This suggests that synaptic dysfunction and altered GABA signalling are 

valid candidates to mediate the neurodevelopmental disorders associated with 

encephalopathy of prematurity.  
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Interneurons make up approximately 20-30% of cells within the cortex (slightly higher in 

primates than mice; Jones 2009), and provide inhibitory balance for the excitatory pyramidal 

neurons by connecting cortical layers and cortical regions via interactions with glia, the 

vasculature and other neurons (Cossart 2011, Marin 2012, Marin 2013, Barber et al. 2018). 

Interneurons are primarily born within the medial and lateral ganglionic eminence during 

embryonic development and migrate to the cortex during the early postnatal period, where 

they mature over the first few weeks of life in mice (Cossart 2011), equivalent to early 

childhood in humans. This maturation process includes differential expression of subtype 

markers (see below), maturation of dendritic arbours and synapsis, as well as changes in 

synaptic activity, and contacts, and transient networks (Butt et al. 2005, Cossart 2011, 

Marques-Smith et al. 2016, Butt et al. 2017). There is a complex array of interneuron subtypes 

based on their morphological, electrophysiological and molecular signatures (Kelsom and Lu 

2013). Major populations of interneurons in the cortex include those immunopositive for 

somatostatin (SST), calbindin (CalB), calretinin (CalR) and parvalbumin (PV). Changes in 

interneurons is termed an interneuronopathy and deficits in each of these cellular subtypes 

have been associated with neurodevelopmental disorders (Marin 2012), including those 

prevalent in preterm born children. There is currently little known about the effect of 

prematurity on cortical interneurons, although a recent study by Panda and colleagues (2018) 

has shown a general decrease in GABAergic (glutamate decarboxylase, GAD, positive) 

interneurons in the cortex, primarily driven by a decrease in parvalbumin positive interneurons 

in the upper (layers II-IV), and to a lesser degree, lower (layers V & VI) cortex (Panda et al. 

2018). However, this study focused on the effect of early or later prematurity and did not 

specifically study cases of encephalopathy of prematurity compared with controls. Changes 

in parvalbumin-positive interneurons in particular are commonly reported in studies of patients 

with neurodevelopmental disorders, or in associated animal models (Kataoka et al. 2010, 

Gandal et al. 2012, Bitanihirwe and Woo 2014, Barnes et al. 2015, Filice et al. 2016, Hashemi 

et al. 2018, Vogt et al. 2018). Parvalbumin knockout mice have ASD-like behavioural 

symptoms (Wohr et al. 2015). Additionally, knockout of metabotropic glutamate receptors 

(mGluR5) in parvalbumin interneurons results in specific memory deficits, altered sensory 

motor gating and increased compulsive-like behaviours (Barnes et al. 2015). Similarly, 

maternal immune activation, a common experimental model for ASD, reduces parvalbumin 

inhibitory activity on pyramidal neurons, resulting in defects in attentional shifting (Canetta et 

al. 2016). Interneurons, including parvalbumin-positive interneurons, have a specialised area 

of extracellular matrix (chondroitin sulphate proteoglycans) surrounding them, called a 

perineuronal net. It has been shown in the past years that this net forms and enlarges during 

development, representing a marker of a functionally mature neuron. The perineuronal net 

plays a role in regulating plasticity and deficits are associated with epilepsy induced plasticity 

(Galtrey and Fawcett 2007). 

 

Here we aim to assess whether there is a subtype specific disruption in interneuron maturation 

in our population of preterm infants with diffuse white matter injury compared with age-

matched controls. Further to this, in mice exposed to IL-1β-induced inflammation, which 

produces diffuse white matter injury (Favrais et al. 2011, Krishnan et al. 2017), we will assess 

the long-term trajectory of interneuron development, and the consequences for wider cortical 

maturation.  
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Methods 

Human post mortem tissue 

Written informed parental consent was acquired according to the National Health Services 

(NHS) UK guidelines and study ethics were obtained from the National Research Ethics 

Services (West London), UK (ethics number: 07/H0707/139; Post-mortem Magnetic Imaging 

Study of the Developing Brain). Thirteen extremely preterm post-mortem brains (<30 weeks 

gestational age, 1 female/12 male) of vaginally delivered neonates were used in this study 

and obtained from the Perinatal Pathology Department, Imperial Health Care Trust, London 

UK. The primary cause of death for each case was assessed by a pathologist. Brain tissue 

blocks from these cases had a post-menstrual age (PMA) range from 23+2 to 30+0 weeks, 

calculated by GA (at birth), plus age at death (PMA range for each cohort: 23+2 to 28+1 for non-

WMI cases, 26+6 to 30+0 for WMI cases, p=0.002). The details of each case are summarised 

in Table 1. Amniotic fluid infections were identified in most cases, however no cases had 

identifiable vascular thrombosis or leptomeningitis. From post-mortem examination, brains 

were assessed macroscopically and microscopically. Seven cases showed no significant brain 

pathology, these were used as non-neuropathologic controls (no WMI cases). Six brains had 

evidence of diffuse (non-cystic) white matter injury (WMI cases) including white matter gliosis 

and focal lesions. 

  

As previously reported (Supramaniam et al. 2013, Vontell et al. 2013) after post-mortem, 

whole brains were fixed with 4% formalin for 5 – 7 weeks, depending on size. The whole brains 

were sliced by a pathologist, and tissue blocks were processed on a Bright Tissue Processor 

(Bright Instrument Co. Ltd.). Paraffin-embedded tissue blocks of the frontal lobe at the level of 

the caudate (i.e. anterior to Ammon’s Horn) were sectioned at 6µm using a Leica RM2245 

microtome (Leica Microsystems Ltd.). 

Animal model 

All animal procedures were approved by the UK Home Office according to the regulations in 

the Animal (Scientific Procedures) Act (2012), and the King’s College London (KCL) Animal 

Welfare and Ethical Review Board (AWERB; PPL 70/8376). Inflammation-associated brain 

injury of the preterm born infant was modelled in mice by exposing them to systemic 

inflammation from postnatal day 1 (P1) through to P5; P0 is the day of birth, as previously 

reported (Favrais et al. 2011). P1-P5 is approximately equivalent to the period of 23-32 weeks 

gestation for brain development in the human pregnancy, based on a mixture of myelination 

and cortical development processes (Clancy et al. 2001, Clancy et al. 2007, Semple et al. 

2013). Pregnant CD-1 mice were purchased from Charles Rivers, and transferred to the KCL 

Biological Services Unit (BSU) at embryonic day (E) 16 of pregnancy. Animals were housed 

separately in individually ventilated cages with food and water available ad libitum, in a 

temperature controlled environment with a 12 hour light-dark cycle. This injection paradigm 

only produces consistent and reproducible diffuse white matter injury in male mice (Favrais et 

al. 2011), compared with female mice. Therefore, following birth, female pups were culled by 

cervical dislocation, and male pups were randomly divided into litters for saline or IL-1β 

treatment (typically numbering 4-7 pups per ‘new’ litter). Each pup received a 5μl 

intraperitoneal (i.p.) injection twice daily from P1 to P4, and a final injection in the morning at 

P5 (Favrais et al. 2011). IL-1β (R&D Systems) was diluted in saline to a working concentration 
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of 8ng/µl (for a final dose of 10µg/kg/injection). Animals remained housed in litter groups until 

weaning (P21), when they were group housed (3-4/cage). At P5 (6 hours post final injection), 

P10 (approximate time of six layered cortex formation), P40 (when interneuron markers are 

mature), and P60 (early adulthood) randomly selected pups from each litter were killed by 

terminal anaesthesia (i.p. pentobarbitone overdose) and perfused with saline followed by cold 

4% paraformaldehyde. The brain was dissected out of the skull and immersion fixed in Bouin’s 

solution (Sigma). Fixed tissue was washed and dehydrated through graded alcohol 

(progressing from 50-100%) and embedded in paraffin wax (Sigma, UK). Coronal 6μm thick 

consecutive sections were cut and placed on microscope slides, with three sections at an 

interval of approximately 250μm per slide. 

Immunohistochemistry & Microscopy 

As previously reported (Vontell et al. 2013) post mortem human sections underwent routine 

paraffin removal and rehydration, then were placed in 3% hydrogen peroxide to quench 

endogenous peroxidase activity, and immersed in preheated 10mM citric acid with 0.1% 

Tween-20 (VWR International Ltd.) for 30 min and cooled at room temperature for 20 min. 

Sections were blocked with 5% normal goat or horse serum (as appropriate based on the 

secondary antibody host species) and primary antibodies were incubated overnight at 4°C; 

concentrations below. The next day, biotinylated secondary antibodies (1:200, Vector 

Laboratories) goat anti-rabbit, goat anti-rat, or horse anti-mouse were incubated for 1h at room 

temperature, then with avidin-biotin complex (ABC, 1:200, Vector Laboratories, UK) for 1h. 

The reactions were visualised with 3,3’-diamino-benzidine (DAB; Sigma-Aldrich Company) for 

10 min. Sections were then dehydrated, cleared in xylene and cover-slipped. Primary 

antibodies used to identify all neurons in the developing human cortex was mouse anti-

HuC/HuD (1:500, Life Technologies) and interneuron markers; mouse anti-Calretinin (CalR; 

1:100, Millipore), mouse anti-Calbindin D-28 (CalB; 1:100, Sigma), rabbit anti-Parvalbumin 

(PV; 1:500, Abcam), rat anti-Somatostatin (SST; 1:50, Abcam), rabbit polyclonal Neuropeptide 

Y (NPY; 1:5000, Abcam). Routine H&E staining was also performed on this cohort of brain 

samples to assess for gross neuropathologies. 

 

Mouse tissue was processed as described above and stained as previously reported (Stolp et 

al. 2011). Mouse anti-CTIP2 (1:400; Abcam) was used to identify neurons in the developing 

cortical plate in the mouse (Stolp et al. 2011, Garcez et al. 2018). Interneuron populations 

were stained with one of rabbit anti-Parvalbumin (PV, 1:200, Abcam), rabbit anti-Calretinin 

(CalR, 1:200, Swant), rat anti-Somatostatin (SST, 1:100, Abcam), rabbit anti-Neuropeptide Y 

(NPY, 1:100, Abcam), mouse anti-Calbindin (CalB, 1:100, Sigma), mouse anti-Reelin (1:500, 

Calbiochem), rabbit anti-Vasoactive Intestinal Peptide (VIP, 1:100, Abcam). Perineuronal nets 

were identified using biotinylated Wisteria Floribunda Lectin (WFL, 1:200, Vector). Sections 

were incubated in the appropriate biotinylated or fluorescently-tagged secondary antibody: 

biotinylated goat anti-rabbit or mouse (1:200, Vector); donkey anti-mouse-488; donkey anti-

rabbit-488/546 (1:400, Invitrogen) or streptavidin-488 (1:400, Invitrogen). All antibodies and 

lectins were diluted in 1% donkey serum in phosphate-buffered saline with 1% tween-20. 

Sections with fluorescent secondaries were incubated with DAPI for 5 minutes (4’,6-diamidino-

2-phenylindole, 1:1000, SigmaAldrich) and mounted with ProlongGold (ThermoFisher 

Scientific).  
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A subset of brains were processed for Golgi staining using the FD Rapid GolgiStain Kit (FD 

Neurotechnologies Inc.), following the manufacturer's instructions.  Briefly, brain tissue was 

washed in dH2O immediately following collection and then incubated in impregnation solution 

for 2 weeks. After this period, the samples were incubated in Solution C for 3 days before 

tissue sections were cut with a Vibratome (Leica) at 100μm thickness, mounted in slides and 

dehydrated through ethanol and xylene before mounting with DPX (Sigma).  

Image Analysis and Statistics 

Human tissue sections were visualised with bright-field microscopy, using a light microscope 

(Leica DM6000B, Leica Microsystems Ltd.), CCD colour video camera (Leica CTR6000, 

Leica, UK), equipped with a motorised stage for automated sampling (MicroBrightfield Inc.). 

Cell number was assessed using optical fractionator stereological software (Stereo 

Investigator v8.27, MicroBrightfield Inc.). Contours were drawn around the frontal cortex 

magnified by a 5x objective (0.0426mm2), with an average area for each contour of 1mm2. 

Counting was performed at the magnification provided by the 40x objective, from multiple 

counting sites throughout the contour, to allow unbiased sampling of the frontal cortex and an 

estimate of cell density. The number of counting sites was for varied for each cell type, due to 

differences in density (determined from preliminary assessments of cell number), overall an 

average of 35-45 counting sites were used for each contour (Vontell et al. 2013, Vontell et al. 

2015). Three contours were assessed for each brain region of interest (cortex and subcortical 

white matter, therefore, approx. 3mm2 assessed in total for each), and averaged to produce 

the estimated cell density for each region. Neurite lengths were assessed in positively stained 

somatostatin and neuropeptide Y neurons from images obtained with a x40 objective. An 

average of seven cells were assessed per case, using ImageJ software (Schneider et al. 

2012). 

 

Mouse tissue sections were imaged with a Leica SP5 confocal microscope (P5, P10 and P40 

fluorescently stained mouse tissue) or Leica DM4000 upright microscope (P40 mouse tissue). 

For cell counts, upper (II-IV) and lower (V, VI) layer layers were delineated as a region of 

interest for each image, and the immunoreactive cells counted manually, by a blinded 

observer, using the ImageJ cell counter tool. For the parvalbumin/perineuronal net counts, 

multiple markers were used so that single labelled and double labelled neurons could be 

counted together in a single region of interest. Images were taken from the area of the 

somatosensory cortex identified by the presence of the barrel cortex, and measurements were 

averaged from both the medial (M1) and lateral (S1BF) cortex (Paxinos and Franklin 2012), 

from three sections per brain. Therefore, data was averaged from 3-6 images per brain (tissue 

was excluded if it was damaged or where the staining had excessively high background or 

was non-specific), and from 3-6 brains per treatment and age (P5: n=3-6 both groups; P10: 

n=5 saline, n=6 IL-1β; P40: n=3 saline, n=5 IL-1β).  

 

Cell counts are presented as mean ± standard deviation (SD). Statistical analysis was 

performed using Prism 7 (GraphPad). Post-mortem human samples were analysed with an 

unpaired t-test. Grouped data from P5 tissue was analysed using a two-way ANOVA for 

treatment and cell population, with post-hoc analysis performed with Sidak’s multiple 

comparison test. For P10 and P40 data, grouped data from each cell population was analysed 

using a two-way ANOVA for treatment and layer, with post-hoc analysis performed with 

Sidak’s multiple comparison test. A p-value <0.05 was considered statistically significant.  
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Golgi stained neurons, with consistent stain impregnation and isolation from neighbouring 

stained cells, were imaged with a Leica DM6000B microscope for analysis. Stacked images 

in the z-axis were obtained at x40 magnification, with a 1µm interval. Dendritic branching and 

intersections were quantified and analysed by Sholl analysis (Gutierrez and Davies 2007), 

using ImageJ image processing programme. Image stacks were compressed in one 2D image 

and the centre of the soma was marked for reference. Concentric circles, with radii increasing 

by 9.06µm (50 pixels) per circle, were set from the soma centre. Multiple neurons (10-15 from 

multiple slices across the brain) were analysed from 3 brains per treatment, and results are 

presented as the average number (± SD) of dendritic intersections per concentric circle, for 

each treatment group. Sholl profiles were statistically compared using a 2-way ANOVA for 

treatment and distance from soma. 

 

For spine analysis, dendrites were isolated in images of neuronal cells collected for Sholl 

analysis. Dendrites chosen were of different lengths, with a substantial portion in the plane of 

focus, and were representative of spine density and morphology of unselected dendrites. 

Spine density of selected dendrites was analysed using Image-Pro Premier image analysis 

software (MediaCybernectics). Data was blinded and images were categorised as having a 

high or low synaptic frequency (41 from saline treated brains, 57 from IL-1β treated) based on 

the number of synaptic protrusions along the length of the dendrite, and the spaces, if any, 

between the protrusions (Smrt and Zhao 2010, Phillips and Pozzo-Miller 2015). This 

categorical data was statistically compared using the Fisher exact test, with a p-value <0.05 

considered statistically significant. 

Results 

Preterm born infants with diffuse white matter injury had reduced number of calretinin 

interneurons in the cortex, and altered arborisation of other interneuron populations 

Stereological assessment of cell number in the frontal cortex of the developing human brain 

showed no change in the total number of neurons, identified by HuC/HuD immunoreactivity, 

with 53,104 ± 11,009 immunopositive cells/mm2 found in the control brains (n=5), and 52,120 

± 6,327 cells/mm2 in the cortex of the white matter injury cases (n=4). In contrast, there was a 

significant decrease in the cortical calretinin immunopositive cells in the white matter injury 

cases, compared with preterm infants without white matter injury (from 1,084 ± 96 cells/mm2 

to 663 ± 327 cells/mm2, p=0.043, Figure 1A-D). Calbindin and parvalbumin positive cells were 

observed in low numbers in both cases, insufficient for determining statistical significant 

changes. Somatostatin and neuropeptide Y immunopositive interneurons also occurred much 

less frequently than calretinin positive cells and were not found in the cortex at this stage of 

development. However, the cells immunopositive for these markers were found in the 

subcortical white matter, and these were analysed for neurite length and branching. There 

were no statistical differences in the number of cells in either interneuron (SST or NPY) 

subpopulation between preterm infants with or without white matter injury (n=5 for both). The 

branching of immunopositive cells was assessed with a modified Sholl Analysis, and there 

was a significant decrease in the arborisation of neurons in both of these interneuron classes. 

Somatostatin cells in white matter injury cases had shorter leading neurite length (33.2 ± 

8.7µm, n=6, compared with 56.7 ± 8.5 µm in the no WMI cases, n=6; p<0.001) and fewer 
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branches (7.4 ± 1.4 compared with 4.6 ± 0.7, p=0.001). Neuropeptide Y immunopositive 

neurons also had shorter neurites (51.5 ± 5.2 µm compared with 72.6 ± 13.7 µm in no WMI 

group, n=5-6; p=0.01) and fewer branches (5.3 ± 0.85 WMI, compared with 8.1 ± 1.9, p=0.009) 

in white matter injury cases (Figure 1E, F). 

 

The developmental trajectory of a number of interneuron populations is disturbed in a 

mouse model of preterm birth 

In mice with IL-1β-induced inflammation, at the end of the inflammatory exposure (P5), there 

was no gross alteration in the cortical layering (Figure 2A, DAPI) or cell density. In addition, 

no statistically significant change in CTIP2 immunoreactive neuron number per cortical area 

was observed (saline: 204.3 ± 37.4 cells, IL-1β: 162.7 ± 29.8 cells, p<0.086, Figure 2B), 

suggesting no overall change in the development of the early cortical neurons with injury. 

There was a significant decrease in the number of reelin positive (saline: 64.2 ± 5.1 cells, IL-

1β: 51.7 ± 5.7 cells, p=0.047) and calretinin positive (saline: 55.7 ± 9.7 cells, IL-1β: 31.3 ± 12.6 

cells, p<0.001) neurons in the IL-1β treated animals compared with the saline-treated control 

(Figure 2C). In comparison to these reelin and calretinin positive cells other interneuron 

populations were present in a much lower number (Figure 2A, C), as would be expected at 

this early stage of brain development, as the majority of interneuron markers don’t fully 

develop until the second or third postnatal week in the mouse (Cossart 2011). In general, at 

this stage of development, the interneuron populations were present in higher numbers in the 

lower cortical layers (layer V and VI) than in the upper layers (II, III & IV). Specific analysis of 

interneuron populations (PV, CalB, SST, NPY) in the upper layers showed no difference 

between treatment groups (Figure 2D). In the lower layers, two-way ANOVA analysis showed 

a significant treatment effect (p<0.043), reflecting a general increase in the same interneuron 

populations in the IL-1β group. However, no significant difference was found for individual 

populations following correction for multiple comparisons.  

 

At P10 (Figure 3), the somatostatin, neuropeptide Y, calretinin and calbindin populations were 

present in greater, though still relatively low, numbers, and there was no significant difference 

in their presence, or distribution through the cortex between the saline and IL-1β treated 

groups. Parvalbumin-positive cells were found in significantly greater numbers in layer IV, V 

and VI (p=0.005). There was an overall decrease in the number of parvalbumin-positive 

neurons (p<0.014), with no significant layer effect (Figure 3B).  

Parvalbumin interneurons show long-term disruption in neuronal number, arborisation 

and association with perineuronal nets 

To determine whether perturbations in parvalbumin number present at P10 in mice following 

IL-1β-induced inflammation persisted beyond this early developing period, the number of 

these neurons was assessed at a later stage of development. At P40, there was a trend 

towards a decrease in parvalbumin cells in the upper layers of the cortex, but not the lower 

layers (Figure 4A&B). The maturation state of parvalbumin interneurons was assessed by the 

presence of perineuronal nets, which start to form in a loose association with the parvalbumin 

neurons in the barrel cortex from P10 in the mouse (Figure 4A). Clear association of the nets 

with parvalbumin positive interneurons is visible by P40, which mature further as development 

continues (P60; Figure 4A, Ueno et al., 2017). When explored in more detail a statistically 

significant decrease in parvalbumin positive neurons that had fully formed perineuronal nets 
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(17.6 ± 0.2 cells/mm2 in saline, 15.1 ± 0.5 cells/mm2 in IL-1β, p=0.008) was seen specifically 

in the upper layer of the IL-1β treated animals (Figure 4C). At this age, there was a relatively 

high proportion of parvalbumin neurons without perineuronal nets (25% in saline), but there 

was no change in this subpopulation of neurons with treatment (32% in IL-1β group, p=0.8, 

Figure 4C). Likewise, in brains from both saline and IL-1β treated animals, a small number of 

perineuronal nets were observed without PV staining (1.5 ± 0.3 cells/mm2 in saline, 1.2 ± 0.2 

cells/mm2 in IL-1β), but the proportions were very low and there was no significant difference 

between groups. In comparison with these small but significant changes in parvalbumin 

interneurons, there remained no significant difference in the number of either neuropeptide Y, 

Calretinin or VIP positive neurons in the cortex between saline and IL-1β treated animals 

(Figure 5A-C). 

Long-term changes in arborisation and spine density are broadly observed in areas 

of the cortex with disrupted parvalbumin interneuron development 

Golgi staining was performed to visualise the individual neurons within the cortex, to allow 

Sholl and spine analysis to be performed. No significant effect of IL-1β treatment was observed 

on the overall dendritic morphology of neurons at P40 (Figure 5D), but there was a statistically 

significant shift in the number of dendrites showing a low frequency of spines, with 35% of the 

spines from Golgi stained cells from IL-1β treated animals showing a low spine frequency 

compared with 15% in saline treated tissue (p=0.007, Figure 5E, F). 

Discussion  

We have revealed a general decrease in the number of GABAergic interneurons in the cortex 

of preterm born human infants with diffuse white matter injury, compared with age-matched 

controls, and similarly in mice with diffuse white matter injury following IL-1β-induced 

inflammation. This interneuron deficit (reduced numbers and reduced morphological 

complexity) occurred in the absence of severe injury, as there were no changes in the numbers 

of neurons in the cortex in the clinical (human) or pre-clinical (mouse) study. Also, subtypes 

of interneurons were differentially affected over development indicating population specific 

vulnerabilities. The early disruption of interneuron populations in our clinical sample is 

supported by our pre-clinical evidence that not only did these changes persist but were found 

together with changes in the excitatory-inhibitory cell balance, spine density and the density 

of perineuronal nets. Altogether these data support the hypothesis that inflammation 

associated with preterm birth may alter the excitatory-inhibitory balance in the brain. This effect 

would partly explain the link between exposure to inflammation during development and poor 

neurodevelopmental outcomes in these infants that lead to life-long functional impairment. 

However, Canetta et al. (2016) have shown maternal immune activation at the very beginning 

of neurogenesis (E9 in the mouse) can also result in parvalbumin-specific pathology, possibly 

suggesting a particular susceptibility of this cell population to disturbances in normal 

development.  More work will be required to explore this concept. 

 

Interneurons are produced within the medial ganglionic eminence throughout development 

and migrate to all cortical layers (Butt et al. 2005, Butt et al. 2017). Interneuron fate is 

genetically coded, and follows a clear pattern of migration and maturation, related to the 

regulatory transcription factors imposed in the ganglionic eminence at the time of cell 

production (reviewed by Marin 2012; Kelsom & Lu, 2013). It is postulated that the 
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developmental period during which an injury or perturbation occurs will influence the cell 

population affected. Injury would also interact with genetic risks, which may affect when 

phenotypes caused by altered genetic code manifest, explaining the variety of 

neurodevelopmental disorders associated with similar phenotypes. Animal models allow the 

progression of injury to be assessed, in comparison with the snapshot of information typically 

obtained from clinical studies. The utility of the mice with IL-1β-induced inflammation and 

subsequent diffusion white matter injury used here, is that the injury is broadly comparable in 

nature to that seen in our patient samples. Specifically, this model displays the hallmarks of 

injury observed in contemporary preterm born infants; hypomyelination, axonopathy, 

oligodendrocyte dysmaturation and also, reported here and previously, no gross cortical injury 

evidenced by no change in cortical neuronal number (Favrais et al. 2011, Schang et al. 2014, 

Krishnan et al. 2017, Rangon et al. 2018). In this model, females have a less severe and more 

transient phenotype, which is why they were not used in this study (unpublished data), which 

suggests a bias seen in the animal model similar to that observed in the human population 

(Marlow et al. 2005). However, it is of course impossible to recapitulate the complex processes 

leading to injury in the human completely with any model and we would acknowledge that the 

differences in the magnitude of the observed changes probably lie in multifactorial injury to the 

infants. 

In this animal model, at the time when the brain is still being subjected to an inflammatory 

challenge (Krishnan et al. 2017) interneurons appear slightly increased in the cortex of injured 

animals compared with controls. It is worth noting that most interneuron populations are not 

properly established in the cortex at this stage (Cossart 2011), reflected in lower numbers than 

were found in the adult analysis. As development progresses, and after the injurious stimuli 

has resolved (at P10, Krishnan et al. 2017), a mild parvalbumin-specific neuronal reduction 

becomes apparent). Parvalbumin interneurons make up approximately 40% of GABAergic 

cortical interneurons, which, compared with the less frequent interneuron subpopulations, may 

make the detection of statistical changes in the cell population easier. Parvalbumin 

interneurons are fast-spiking interneurons with basket or chandelier morphology that make 

synaptic connections on proximal dendrites and the soma of target neurons (reviewed by 

(Marin 2012, Kelsom and Lu 2013). The cells produce oscillations in the gamma range (30-

80Hz) which is associated with cognitive processes such as memory and attention (Bartos et 

al. 2007, Canetta et al. 2016). This function may partly explain why parvalbumin knockout 

mice have an ASD-like phenotype: repetitive behaviours, impaired social interaction and 

communication, as well as reduced startle response and increase risk of seizure (Wohr et al. 

2015). 

 

The severity of injury will also have an effect on outcome, with more severe injury producing 

larger, more widespread changes. Previous studies of grey matter injury have been performed 

in human preterm infants with cystic white matter injury, in which there is extensive cell death 

and reactive gliosis. However, in our human post-mortem cases of diffuse white matter injury 

there was no overall change to neuronal number. Possibly unsurprisingly then, compared with 

our data of limited and cell type-specific changes, studies of grey matter injury in severe cystic 

cases show more widespread grey matter injury (Andiman et al. 2010, Kinney et al. 2012). As 

such, our data is an important contribution to understanding how interneuron deficits may 

impact on neurodevelopmental disorders for contemporaneous cohorts of preterm born 

infants. The diffuse white matter injury studied here is the predominant form of injury seen in 

preterm born infants, and cystic cases account for only approximately 5% of neuropathology, 
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based on MRI and ultrasound imaging studies in preterm cohorts (Hamrick et al. 2004; 

reviewed by Back, 2017).  

It must be noted that preterm birth occurs due to a complex, and often undetermined aetiology, 

and can be concomitant with other clinical findings, e.g. intrauterine growth restriction (IUGR), 

which in themselves are also predictive of reduced brain development (Rees et al. 2007; 

O’Shea et al. 2009; Korzeniewski et al. 2017). The fact that many infants in our cases (both 

WMI and non-WMI groups) have IUGR may well be a confounder in the injury observed. While 

the mouse data clearly links interneuron (and white matter) pathology with inflammation, it is 

likely that there are many contributing factors in preterm brain injury, of which inflammation is 

only one. This, and the different developmental timetables of mouse and human brains, may 

also explain the different interneuronopathies identified in this study. Adding to that complexity 

is the varying age range between the preterm white matter injury and non-white matter injury 

cohorts examined in this study. From a developmental point of view, the greater PMA of WMI 

group compared with control, should be associated with more visible interneurons in the cortex 

(through processes of migration and maturation). As a result, we suggest that the significant 

decrease in interneuron numbers in this group, is if anything, an underestimate of the 

interneuron injury in preterms with diffuse WMI. However, the longer survival times of these 

infants does increase the difficulty of defining the aetiology of the interneuron injury, as many 

features of the ex utero environment may contribute to the injury severity. For instance, Panda 

et al. (2018) suggest that deficits in maternal oestrogen is a major contributor to interneuron 

injury. That being said, in the data from the mouse model, when exposure to maternal 

oestrogen (and other factors of the external environment) is constant, there is still a reduction 

in interneurons.  

 

The significant early decreases seen for interneurons in general in this study, are similar to 

findings recently reported by Panda et al (2018), where early prematurity in humans was 

associated with a reduction in parvalbumin positive interneurons, primarily in the upper cortical 

layers, and an increase in somatostatin positive interneurons also in the upper cortex. There 

was also an overall decrease in glutamate decarboxylase (GAD)-positive neurons, attributed 

primarily to the changes in the parvalbumin subpopulation. However, a direct comparison with 

Panda and colleagues is difficult as their cases were compared based on the degree of 

prematurity rather than on their diagnosis (Panda et al. 2018). This resulted in a comparison 

of early born infants that had long survival times (up to 3-4 weeks) with later born preterm 

infants who had survival times of only 2-3 days. The role of postnatal care in interneuron 

development has been shown in a model of preterm delivery in the baboon, where 14 days of 

positive pressure ventilation lead a reduction in the numbers of calretinin positive cells in the 

visual cortex (Verney et al. 2010). Although this and other confounding factors are almost 

impossible to remove from a human post-mortem study, we are confident that our cases 

provide evidence more specifically related to the effects of prematurity on interneuron 

development without the specific effect of postnatal care. 

 

To further assess interneuron number, we investigated their migration through the subcortical 

white matter in our clinical cases. Reduced morphological complexity was observed for 

somatostatin and neuropeptide Y immunopositive neurons within the subcortical white matter 

in this study.  As these neurons are still migrating, changes in their morphology may reflect a 

disruption in migration that will contribute to later reduced interneurons in the cortex, another 

process associated with neurodevelopmental disorders (Marin 2013). It is possible that a delay 

in migration could explain initial reductions in interneuron number in the cortex that lessen or 
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normalise as development continues. Mild models of perinatal injury have recently shown 

altered neuronal arborisation in the sheep subplate (McClendon et al. 2017) and cortex (Dean 

et al. 2013), though these were not specific to interneurons. These changes in arborisation 

are generally interpreted as a delayed maturation, consistent with Diffusion Tensor Imaging 

data showing altered diffusion characteristics in the cortex of preterm infants (Ball et al. 2013). 

These most likely reflect reduced cortical complexity, and contribute to a delay in local 

connection formation (Batalle et al. 2019), which will have downstream effects on subsequent 

brain development. The mechanism of delayed maturation is, as yet, unclear, but could be 

due to delayed interneuron migration to the correct position within the cortex (as discussed 

above). Alternatively, this may be due to intrinsic changes that have occurred within the cells 

as a result of the injury, or due to a wider disruption of the network and integration of neurons 

within it. More work is required to elucidate this process. 

 

Perineuronal nets are a dynamic structure of extracellular matrix proteins that develop around 

a subpopulation of neurons in the brain. Parvalbumin interneurons are one of the cell types 

most commonly associated with perineuronal nets, and it has been suggested that these nets 

modulate the connections between cells, and the plasticity to form new connections (Shen 

2018). The presence of perineuronal nets around parvalbumin interneurons regulates Otx2 

levels, and critical periods of synaptic plasticity between these interneurons and their local 

networks (Beurdeley et al. 2012). It is unclear in many reports of parvalbumin neuronal loss in 

clinical cases or animal models of injury/neurodevelopmental disorders whether the deficit is 

actually in the number of parvalbumin interneurons, or in the expression of the parvalbumin 

protein within the neurons. In a SHANK3 knockout model of ASD a significant loss of 

parvalbumin staining was observed in the cortex, but no disruption in the perineuronal nets, 

implying presence of ‘parvalbumin-neurons’ but not of the parvalbumin protein (Filice et al. 

2016). This phenotype in both SHANK3 and parvalbumin knockout mice suggests loss of 

parvalbumin protein is associated with increased inhibition, whereas loss of the parvalbumin 

interneurons as a whole is associated with decreased inhibition (Wohr et al. 2015, Filice et al. 

2016).   

 

It should be noted that a number of models of hypoxic-ischemic perinatal injury have also 

shown changes in parvalbumin interneurons and, in some cases, their perineuronal nets. In 

the recent study by Fowke et al. (2018), a substantial loss of interneurons was observed in 

the cortex, and there was an associated disruption of the perineuronal nets within 7 days of 

the injury, particularly in layer 6 of the cortex. Loss of calbindin- and parvalbumin- 

immunopositive neurons from the striatum has also been reported after perinatal asphyxia 

(Van de Berg et al. 2003). However, as mentioned above, due to the much greater severity of 

this model of brain injury, compared with the inflammation-injury model used here, the 

mechanism of damage is likely to be quite different. In the context of severe damage, it is 

unclear how much the interneuron damage alone contributes to the neuropathology and 

behavioural deficits observed in cases of human hypoxic-ischemic encephalopathy.  

 

Early changes in calretinin-positive interneurons were also seen in this study, both in human 

and mouse tissue, however in mouse they didn’t persist after the initial injury period. Calretinin-

positive neurons are present in the cortex from as early as 12-weeks of gestation in the human 

brain (Al-Jaberi et al. 2015), possibly explaining their early response to injury. A reduction in 

calretinin-positive neurons was also observed in the visual cortex (but not other cortical 

regions) in a preterm baboon exposed to ventilator support (Verney et al. 2010), but not in the 
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caudate following prenatal cerebral ischemia in sheep (McClendon et al. 2014). However, it 

has recently been shown that there is a significant decrease in size and number of calretinin 

positive neurons in the caudate nucleus in the brains of autistic patients (Adorjan et al. 2017). 

A previous study of adult males with autism also showed a decrease in calretinin-positive 

interneurons specifically localised in the dentate gyrus of the hippocampus and more wide-

spread changes in parvalbumin-positive interneuron numbers (Lawrence et al. 2010). Of note, 

Canetta et al. (2016) clearly show no change in calretinin, or somatostatin, interneurons in 

their model of maternal immune activation induced brain injury. This suggests that calretinin 

and parvalbumin injury may occur via different mechanisms, or that early, mild changes in 

calretinin interneurons are normalised as development progresses. 

 

The altered frequency of synaptic boutons on the dendrites of Golgi stained neurons in the 

cortex was an interesting finding. Favuzzi et al. (2017) have shown that altering the integrity 

of perineuronal nets by the deletion of one component, in this case brevican, alters the 

electrophysical properties of interneurons, and subsequently the number of synapses of 

parvalbumin interneurons onto pyramidal neurons. While in the present study, there was not 

a significant loss of perineuronal nets at P40, the time when this altered synaptic distribution 

was observed, there was a small but significant decrease in the number of cells positive for 

both parvalbumin and perineuronal nets. This may suggest an on-going reduction in inhibitory 

control in the cortex, and a related change in the pyramidal neuron function. 

Electrophysiological studies will need to be performed to confirm if this is the case. However, 

it is important to note that long-term behavioural changes have been observed in this mouse 

model (Favrais et al. 2011) where animals treated with IL-1β from P1 to P5 fail to recognise 

novel or displaced objects in memory tests. Brevican deletion in the adult also showed 

impaired working and short-term memory (Favuzzi et al. 2017) supporting the assumption that 

the reduction in parvalbumin interneurons and perineuronal nets observed in this study may 

contribute to a disordered brain function.  

 

In conclusion, this study provides clinically important information on the effects of preterm birth 

to decrease parvalbumin neurons and their perineuronal nets, disrupt the excitatory-inhibitory 

cell balance and reduce spine density in the cortex. Altogether these suggest that a decrease 

in cortical inhibition may result from preterm birth and its associated exposures to inflammatory 

injuries, though the potential contribution of other factors in this complex clinical situation can’t 

be ruled out. The pathology can be consistently recognised from P10 in the mouse, 

approximately equivalent to term in humans. This suggests that it may be possible for 

pharmacological tools that modulate cortical excitability to correct the abnormal developmental 

trajectory of the brain. This would open therapeutic avenues for reducing the long-term burden 

of neurodevelopmental sequelae occurring in many millions of infants every year due to brain 

injury associated with preterm birth. 
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Table 1: Summary of clinical information of human post mortem cases 

Group Sex GA at 
birth 

(weeks) 

Postnatal 
age 

PMA at 
death 

(weeks) 

Clinical Context Neuropathology 

No White Matter Injury 

1 M 23+2 5min 23+2 Ass IUGR, 
oligohydramnios, 
congestive heart failure 

 

2 M 23+6 9h 51min 23+6 Ass IUGR (twin) leptomeninges 
congested with focal 
haemorrhages 

3 F 24+1 4h 40min 24+1 Extreme prematurity, 
congestive heart failure 

 

4 M 24+2 IUD/ 
Stillbirth 

24+2 Constricted umbilical 
cord, congestive heart 
failure 

 

5 M 25+3 21h 7min 25+3 Ass IUGR (twin) odematous brain with 
transtentorial herniation 
of the unci 

7 M 26+2 43h 26+3 TTT, 
Ass IUGR, 
pulmonary haemorrhage 

 

8 M 28+1 <1h 28+1 oligohydramnios, 
lung hypoplasia, 
congestive heart failure 

 

Non-Cystic White Matter Injury 

1 M 26+5 1d 7h 
52min 

26+6 Ass IUGR, 
oligohydramnios, 
congestive heart failure 

PVWM injury/pathology 
in PVWM at angles of 
the lateral ventricle 

2 M 24+6 16d 19h 
10min 

27+0 AAAFI, 
PPROM, 
acute necrotizing 
pneumonia 

PVWM injury/pathology 
in PVWM at angles of 
the lateral ventricle 

3 M 24+0 5w 1d 8h 
25min 

29+1 AAAFI, 
Retroplacental 
haemorrhage 

PVWM injury/pathology 
in PVWM at angles of 
the lateral ventricle 

4 M 29+3 11h 
17min 

29+3 TTT, 
AAAFI, 
Hydrops Fetalis 

GM/IVH 

5 M 27+5 12d 29+4 Ass IUGR, 
necrotizing entercolitis, 
uterine constraint/ 
oligohydramnios 

PVWM injury/pathology 
in PVWM at angles of 
the lateral ventricle 

6 M 26+0 1min 30+0 necrotizing enterocilitis Patchy WM gliosis 

Abbreviations: Asymmetric interauterine growth restriction (Ass IUGR), Acute ascending amniotic 
fluid infectin (AAAFI), germinal matrix (GM), intraventricular haemorrhage (IVH), preterm 
premature rupture of the membranes (PPROM), periventricular white matter (PVMW) Twin-Twin 
Transfusion (TTT), white matter (WM) 
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Figure legends 

 

Figure 1. Interneuron development in the cortex and subcortical white matter of the 

damaged preterm brain is altered compared with age-matched cases without white 

matter injury. Cell counts were performed in cortical and subcortical white matter in the frontal 

lobe, anterior to Ammon’s Horn. Total cortical neuronal number was assessed counting 

HuC/HuD positive neurons (A, C). A significant decrease in Calretinin (CalR)-positive 

interneurons was observed in the cortex of preterm brains with non-cystic white matter injury 

(WMI) compared with no WMI controls (B, D). No significant difference in Somatostatin (SST) 

or Neuropeptide Y (NPY)-positive interneurons was observed in the subcortical white matter. 

However, SST and NPY labelled interneurons from non-cystic white matter injury showed 

shorter neurites, with fewer branches (E, F). Data presented as mean ± SD; scale bar = 100µm 

(A-D), 25µm (E, G); * p<0.05, **p<0.01, ***p<0.001; Somatostatin (SST), Neuropeptide Y 

(NPY), white matter injury (WMI). 

 

Figure 2. P5 mice with inflammation-induced brain damage also show altered 

interneuron development across the cortex. Cortical development was assessed based on 

immunohistochemistry for general microstructure (DAPI), developing cortical neurons (CTIP2) 

and interneuron subpopulations at P5 (A, B). A significant decrease in Reelin and Calretinin 

(CalR)-positive neurons was observed in the whole cortex (C), but no change in CTIP2 positive 

pyramidal neurons (B). Assessment of the less prevalent interneuron populations according 

to upper (II-IV) or lower (V, VI) cortical layer distribution showed a small but significant increase 

the majority of interneuron populations in the lower layers (treatment effect, p=0.04, 2-way 

ANOVA) and no significant change in the upper layers (D, E). Data presented as mean ± SD; 

scale bar = 100µm. *p<0.05, ***p<0.001. Abbreviations: Calretinin (CalR), Parvalbumin (PV), 

Somatostatin (SST), Neuropeptide Y (NPY), Calbindin (CalB).  

 

Figure 3. Developmental pattern of interneuron injury changes by P10 in mice with 

inflammation-induced brain damage. Interneuron populations were assessed again at P10 

by immunohistochemistry (A) and quantified (B-E) for number and distribution through cortical 

layers. There was a significant decrease in the number of parvalbumin (PV)-positive 

interneurons across the cortex (B; treatment effect, p=0.01, 2-way ANOVA), but no change 

for somatostatin (SST), Neuropeptide Y (NPY), Calretinin (CalR) or Calbindin (CalB, C-F). 

Data presented as mean ± SD; scale bar = 100µm. *p<0.05. 

 

Figure 4. Long-term changes in parvalbumin positive interneurons and their 

perineuronal nets extend to P40 in mice with inflammation-induced brain damage. The 

beginning of perineuronal net formation could be seen in the cortex, primarily in layer IV, from 

as early as P10 (A, top row). The aggregation of the perineuronal nets and their association 

with the parvalbumin-positive interneurons became more pronounced through development 

(A, lower rows). In the IL-1β challenged mice, there was no gross alteration in perineuronal 

net formation or in the number of cortical parvalbumin neurons (B). However, there was a 

significant decrease in the number of PV+/PNN+ neurons in the upper layers of the cortex (C). 

Data presented as mean ± SD; scale bar = 100µm. *p<0.05. Abbreviations: Parvalbumin (PV), 

perineuronal nets (PNN). 

 

In review



17 

Figure 5. By P40 the majority of interneuron pathology has recovered, but there are 

long-term changes in dendritic spines associated with the early inflammation-induced 

brain damage. No difference was seen in the number of Neuropeptide Y (NPY), Calretinin 

(CalR) or VIP-positive neurons (A-C) at P40. Golgi staining was performed to assess the 

general morphological development of cortical neurons at this stage. Image Ea is an example 

of a well stained cortical neuron used for spine analysis. Images Eb and c are representative 

images of spine density on dendrites in the brains of IL-1β and saline treated mice, 

respectively.  There was no significant difference in the dendritic arborisation (D) but there 

was a significant reduction in spine frequency on the dendritic processes in the IL-1β 

challenged mice (E, F). Data presented as mean ± SD; scale bar = 60µm for Da, 10µm for 

Db,c. **p<0.01. 
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