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Abstract  83 

Background: Due to the highly penetrant gene mutation and the clinical features consistent 84 

with idiopathic Parkinson’s disease, carriers of the autosomal dominant A53T (p.Ala53Thr, 85 

c.209G>A) point mutation in the α-synuclein gene (SNCA) represent an ideal population to 86 

study the premotor phase and evolution of Parkinson’s pathology. Given the known 87 

neurochemical changes in the serotonergic system and their association with symptoms of 88 

Parkinson’s disease, we hypothesised that A53T SNCA mutation carriers might show 89 

abnormalities in the serotonergic neurotransmitter system before the diagnosis of Parkinson's 90 

disease, and that this pathology may be associated with measures of Parkinson’s burden. 91 

Methods: Between September 2016 and September 2018, we recruited 14 A53T SNCA 92 

mutation carriers (seven premotor without Parkinson’s disease). We compared their data with 93 

two cohorts of 25 and 40 patients with idiopathic Parkinson’s disease, and a cohort of 25 94 

healthy controls. [11C]DASB PET non-displaceable binding (BPND) was used to quantify 95 

serotonin transporter density. We constructed brain topographic maps reflecting Braak stages 96 

1-6 and used these as seed maps to calculate [11C]DASB BPND in the cohort of A53T SNCA 97 

carriers. In addition, all participants underwent a battery of clinical assessments, [123I]FP-CIT 98 

SPECT to assess striatal dopamine transporter binding and MRI for volumetric analyses. 99 

Findings: Seven-day continuous recording of motor function confirmed the absence of motor 100 

symptoms and [123I]FP-CIT SPECT the absence of striatal dopaminergic deficits in premotor 101 

A53T SNCA carriers (p>0·10). Premotor A53T SNCA carriers showed loss of [11C]DASB 102 

BPND in the raphe nuclei (p<0·001), caudate (p<0·001), putamen (p=0·036), thalamus 103 

(p=0·001), hypothalamus (p<0·001), amygdala (p=0·004) and brainstem (p=0·046), which was 104 

extended to hippocampus (p=0·005), anterior (p=0·022) and posterior cingulate (p=0·036), 105 

insula (p=0·005), frontal (p=0·002), parietal (p=0·019), temporal (p=0·001) and occipital 106 

(p=0·005) cortices in A53T SNCA Parkinson’s disease. A53T SNCA Parkinson’s disease 107 

patients showed a loss of striatal [123I]FP-CIT specific binding ratio (p<0·001). Premotor A53T 108 

SNCA had loss of [11C]DASB BPND in brain areas corresponding to Braak stages 1-3, whereas 109 

[11C]DASB BPND was largely preserved in areas corresponding to Braak stages 4-6. With the 110 

exception of a recently diagnosed subject with Parkinson’s disease, A53T SNCA Parkinson’s 111 

subjects had [11C]DASB BPND decreases in brain areas corresponding to Braak stages 1-6. 112 

[11C]DASB BPND decreases in brainstem were associated with increased MDS-UPDRS total 113 

scores in A53T SNCA carriers (r=-0·66; p=0·0003; 95% CI -0·84 to -0·36), idiopathic 114 

Parkinson’s patients (r=-0·71; p<0·0001; 95% CI -0·84 to -0·52), and a second cohort of 115 
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idiopathic Parkinson’s patients scanned on a different scanner (r=-0·71; p<0·0001; 95% CI -116 

0·84 to -0·52). 117 

Interpretation: Our findings indicate the presence of serotonergic pathology in premotor A53T 118 

SNCA mutation carriers, that precedes the development of dopaminergic pathology and motor 119 

symptoms. The presence of brainstem serotonergic pathology is associated with the overall 120 

burden of Parkinson’s disease. Our findings provide evidence that molecular imaging of 121 

serotonin transporters may provide with an imaging tool to visualise in vivo premotor 122 

Parkinson’s pathology. Future work may allow for the development of serotonin transporter 123 

imaging into an adjunctive tool for screening and monitoring progression for individuals at risk 124 

or patients with Parkinson’s disease, to complement existing molecular imaging tools such as 125 

dopaminergic imaging, and could serve as a sensitive marker of Parkinson’s burden in clinical 126 

trials.  127 

Funding: The study was funded by the Lily Safra Hope Foundation and by the National 128 

Institute for Healthy Research (NIHR) Biomedical Research Centre at King’s College London.   129 
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Research in context 130 

Evidence before this study: We reviewed current literature on familial Parkinson’s disease, 131 

A53T α-synuclein (SNCA) and related neuropathology by searching PubMed on 2nd October 132 

2018, for published articles containing the search terms “familial Parkinson’s disease”, “A53T 133 

α-synuclein”, “p.A53T α-synuclein”, “positron-emission tomography”, “magnetic resonance 134 

imaging”, “alpha-synuclein”, “serotonin transporter, SERT, or “DASB”, “dopamine 135 

transporter, or DAT”. To-date, the majority of neuroimaging studies on familial Parkinson’s 136 

disease have focused on the most common monogenic forms, such as the Leucine Rich Repeat 137 

Kinase (LRRK2). Neuroimaging studies in A53T SNCA familial Parkinson’s have focused on 138 

assessing striatal dopaminergic function in individual case reports and small cohorts of A53T 139 

SNCA carriers. Studies in idiopathic Parkinson’s disease report early loss of serotonin 140 

transporter availability associated with motor and non-motor symptoms. In familial 141 

Parkinson’s disease, serotonin transporter has only been investigated in vivo in LRRK2 142 

mutation carriers. The expression of serotonin transporters was increased in LRRK2 mutation 143 

carriers without manifest Parkinson’s disease, while serotonin transporter expression was 144 

reduced in LRRK2 mutation carriers with Parkinson’s disease. 145 

Added value of this study: To our knowledge, this is the first study to assess serotonergic and 146 

dopaminergic pathology in A53T SNCA gene mutation carriers in vivo to elucidate the 147 

pathophysiology underlying Parkinson’s disease. Premotor A53T SNCA carriers, presented 148 

with normal motor and striatal dopaminergic function; while striatal dopaminergic dysfunction 149 

becomes exclusively prominent in A53T SNCA carriers with Parkinson’s disease. All A53T 150 

SNCA carriers, premotor and with a Parkinson’s diagnosis, exhibited serotonergic pathology, 151 

with patterns consistent with Braak’s histopathological staging showing caudal to rostral 152 

ascending progression. Furthermore, we demonstrate brainstem serotonergic pathology, 153 

measured with [11C]DASB PET, as an in vivo marker of total disease burden.  154 

Implications of all the available evidence: Serotonergic pathology is present in premotor 155 

A53T SNCA carriers, prior to striatal dopaminergic loss; highlighting the very early role of 156 

serotonergic pathology in the progression of Parkinson’s disease. Our findings highlight that 157 

measuring serotonergic integrity may serve as a useful in vivo tool to identify individuals at 158 

risk before there is evidence of a dopaminergic deficit, preceding disease onset by many years; 159 

thus, such a measurement could serve as a sensitive marker of Parkinson’s burden. Differing 160 

patterns of serotonergic and dopaminergic pathology across familial forms of Parkinson’s 161 

disease suggests that distinct pathologies underlie different phenotypes of Parkinson’s disease. 162 
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The classification of Parkinson’s based on different pathological phenotypes, assessed in vivo, 163 

could lead to a more targeted therapeutic approach.  164 
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Introduction 165 

The neuropathology of Parkinson’s disease is characterised by the presence of α-synuclein 166 

(SNCA) aggregates, which form the main components of Lewy bodies and neurites.(1) 167 

According to Braak’s histopathological staging, Lewy pathology spreads in a gradual 168 

ascending fashion, starting from the olfactory nucleus and the medulla in premotor stages and 169 

spreading to subcortical and cortical areas at later stages of the disease,(2) affecting both 170 

dopaminergic and non-dopaminergic containing neurons, such as the serotonergic neurons.(3) 171 

Neuropathological studies demonstrated involvement of serotonergic neurons in idiopathic 172 

Parkinson’s disease,(4) associated with the presence of Lewy pathology within the raphe nuclei 173 

at early disease stages,(2) suggesting that caudal serotonergic brainstem neurons may be 174 

affected prior to dopaminergic neurons in the midbrain, as the disease evolves. However, to 175 

date, there has been no proof provided for this concept, in particular in an in vivo context. 176 

The PET radioligand [11C]DASB, which is selective for the serotonin transporter, has been 177 

employed to study presynaptic serotonergic terminal integrity in idiopathic Parkinson’s 178 

disease. Idiopathic Parkinson’s patients show early progressive loss of serotonergic 179 

function,(5) which has been associated with the development of motor and non-motor 180 

symptoms and complications such as tremor,(6) dyskinesias,(7) fatigue,(8) sleep(9) and 181 

depression.(10) A recent PET study in a cohort of familial dominant LRRK2 mutation 182 

carriers,(11) showed increased expression of serotonin transporters, while serotonin transporter 183 

expression was reduced in LRRK2 mutation carriers with manifest Parkinson’s. About half of 184 

LRRK2 mutation carriers, however, do not show the classical Lewy body pathology,(12) and 185 

therefore, it is challenging to associate changes in the serotonergic system detected in vivo with 186 

Parkinson’s pathology in the absence of histopathological data.  187 

One of the major challenges of Parkinson’s research is the ability to study premotor pathology 188 

in vivo. Although Braak and colleagues have suggested a large premotor period, which may be 189 

as lengthy as the symptomatic;(2) identification of this period in clinic has been proven 190 

challenging. Autosomal dominant and highly penetrant familial forms of Parkinson’s disease, 191 

which present with a similar phenotype to idiopathic cases, provide an ideal population to study 192 

in vivo in order to understand premotor stages and the evolution of Parkinson’s disease 193 

progression. Of the several mutated genes associated with familial forms of Parkinson’s, the 194 

point mutation A53T (p.Ala53Thr, c.209G>A) in the SNCA gene was the first mutation 195 

identified in an autosomal dominant pedigree of Italian and Greek families and was associated 196 

with the development of Parkinson’s disease. (13) Carriers of the A53T SNCA mutation 197 
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typically present with Parkinson’s symptoms which are indistinguishable from idiopathic 198 

cases,(14, 15), however motor symptoms commonly manifest early, have rapid progression, 199 

and are often associated with cognitive impairment.(16-19) Furthermore, histopathological 200 

studies have demonstrated classical Lewy body pathology in A53T SNCA mutation 201 

carriers.(20) 202 

In this study, we investigated, in vivo, the serotonergic and dopaminergic pathology in A53T 203 

SNCA mutation carriers by using [11C]DASB PET for serotonin transporters and [123I]FP-CIT 204 

SPECT for presynaptic dopamine transporters. To increase our understanding, we compared 205 

data between cohorts of A53T SNCA mutation carriers in premotor stages, A53T SNCA 206 

mutation carriers with manifestation of Parkinson’s disease, idiopathic Parkinson’s disease 207 

patients, and age-matched healthy controls. We hypothesised that serotonergic pathology may 208 

be evident at premotor stages and before dopaminergic deficits can be detected in vivo and may 209 

be associated with measures of Parkinson’s burden. 210 

 211 

Methods 212 

Study design and participants 213 

This is a cross-sectional study that included seven premotor A53T SNCA mutation carriers, 214 

seven A53T SNCA mutation carriers with a Parkinson’s disease diagnosis, 25 healthy controls, 215 

and two cohorts of 25 and 40 idiopathic Parkinson’s disease patients (table 1). Parkinson’s 216 

disease diagnosis, for both idiopathic patients and A53T SNCA mutation carriers, was 217 

determined according to the UK Brain Bank diagnostic criteria. A53T SNCA carriers and 218 

idiopathic Parkinson’s disease patients (cohort-1) were recruited between September 2016 and 219 

September 2018. Data from the second cohort of 40 idiopathic Parkinson’s disease patients 220 

were retrieved from our electronic database and was added to investigate whether serotonergic 221 

dysfunction, assessed with [11C]DASB PET, could be used a marker of disease burden across 222 

a second population of Parkinson’s patients scanned on a different PET scanner. Healthy 223 

individuals, age matched for A53T SNCA carriers, served as the control group. Within the 224 

cohort of A53T SNCA mutation carriers only two, one premotor and one with manifest 225 

Parkinson’s disease, were related by blood. The study was approved by the institutional review 226 

boards and the research ethics committee. Permission to use radioactive substances was 227 

obtained by the Radioactive Substances Advisory Committee (ARSAC), Department of Health 228 
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and Social Care, United Kingdom. Written informed consent was obtained from all study 229 

participants in accordance with the Declaration of Helsinki. 230 

Procedures 231 

All participants underwent a battery of clinical assessment to assess motor and non-motor 232 

symptoms and cognitive status (supplemental materials). Fourteen A53T SNCA carriers, 25 233 

idiopathic Parkinson’s patients and 25 healthy controls underwent [11C]DASB PET, [123I]FP-234 

CIT SPECT and a 3-Tesla MRI scan. PET imaging assessments were performed on a Siemens 235 

Biograph Hi-Rez 6 PET-CT scanner (Erlangen, Germany), and MR imaging was acquired with 236 

a 32-channel head coil on a Siemens Magnetom TrioTim syngo MR B17 (Erlangen, Germany), 237 

performed at Invicro LLC, UK. An additional second cohort of 40 idiopathic Parkinson’s 238 

disease patients with [11C]DASB PET were included; and these patients were scanned using a 239 

GE Discovery RX PET/CT scanner and MR imaging acquired using a 3-Tesla Siemens 240 

Magnetom Avanto. Full acquisition parameters are outlined in the supplemental material. For 241 

all idiopathic Parkinson’s disease patients and A53T SNCA Parkinson’s patients, all PET and 242 

SPECT imaging was performed in an “OFF” medication state and following an overnight 243 

withdraw of their normal medications.  244 

[11C]DASB PET data processing and kinetic modelling was carried out using the Molecular 245 

Imaging and Kinetic Analysis Toolbox version 4·2·6 (MIAKATTM, Invicro LLC, London), 246 

implemented in MATLAB® version r2015a (The Mathworks, Natick, MA, USA). [123I]FP-CIT 247 

SPECT images were reconstructed using the HERMES Hybrid Recon™-Neurology software, 248 

and BRASS™ was used for the semi-quantification of striatal specific binding ratio 249 

(supplemental materials).  250 

Regions-of-interest were defined using the multi-atlas propagation with enhanced registration 251 

(MAPER) to automatically segmented individual subjects’ T1 MRI into 95 anatomic 252 

regions.(21) Individual subjects’ MAPER atlas and manual regions-of-interest were overlaid 253 

on co-registered PET data and sampled in ANALYZE medical imaging software (version 12·0, 254 

Mayo Foundation AnalyzeDirect). First, we quantified [11C]DASB BPND in regions-of-interest 255 

across cohorts; we then investigated the spread of pathology according to Braak’s 256 

histopathological staging,(2) for SNCA pathology (table S1). [11C]DASB BPND values for each 257 

Braak stage were extracted, from [11C]DASB parametric maps, taking region-volume-258 

weighted averages for individual A53T SNCA carriers and healthy controls. For each Braak 259 

stage, the presence of serotonergic pathology was graded in each anatomical region as one or 260 
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two standard deviations from the control mean. Regions where further categorized into groups 261 

according to their anatomical location, by grouping frontal, temporal, occipital, parietal, insula 262 

and subcortical regions depending on the regions within each Braak stage (table S2). The 263 

number of groups, within each stage, with one or two standard deviations from the control 264 

mean was considered for grading the severity of serotonin pathology (table S3). 265 

FreeSurfer image analysis suite (version 5·3·0) was used to derive measures of cortical 266 

thickness and subcortical deep grey matter nuclei volumes. Additionally, voxel-based 267 

morphometry, implemented in SPM12 (Wellcome Department of Cognitive Neurology, 268 

London, UK), was used to assess subcortical grey matter intensity differences as a measure of 269 

grey matter atrophy. 270 

Statistical analysis  271 

Statistical analysis was performed with Statistical Package for Social Science version 23·0 272 

(SPSS, Inc, Chicago, IL, USA) and graph illustration with GraphPad Prism (version 7·0c). For 273 

all variables, variance homogeneity and Gaussianity were tested with Bartlett and 274 

Kolmogorov-Smirnov tests. We proceeded with parametric tests as our imaging and clinical 275 

data were normally distributed. Multivariate analysis of covariance (MANOVA) was used to 276 

assess group differences in clinical, PET and MR imaging data. If the overall multivariate test 277 

was significant, two-tailed exact t-tests were used for between-group comparisons in each 278 

imaging modality in predefined regions-of-interest and p-values for each variable were 279 

calculated following Bonferroni’s multiple comparisons test. We interrogated correlations 280 

between PET and clinical data using Pearson’s r correlation coefficient and applied Benjamini-281 

Hochberg correction to reduce false discovery rate. The false discovery rate cut-off was set at 282 

0·05. Cohorts of idiopathic Parkinson’s disease patients were older compared to healthy 283 

controls and A53T SNCA mutation carriers, and there were gender differences across the group; 284 

therefore, age and gender were used as covariates in the MANOVA to assess group differences 285 

in PET and MR imaging data. All data are presented as mean ±SD, and the level α was set for 286 

all comparisons at p<0·05. 287 

Role of the funding source 288 

The funder had no role in study design, data collection, data analysis, data interpretation or 289 

writing of the report. The corresponding author has full access to all data in the study and had 290 

final responsibility for the decision to submit for publication.  291 

 292 
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Results 293 

Fourteen A53T SNCA carriers were recruited between September 2016 and September 2018. 294 

A53T SNCA carriers were recruited from specialist Movement Disorders clinics at the 295 

University of Athens, Greece, and the University of Salerno, Italy. Twenty-five idiopathic 296 

Parkinson’s disease patients (cohort-1) were recruited from specialist Movement Disorders 297 

clinics at King’s College Hospital, London, UK. Twenty-five healthy controls were recruited 298 

through public advertisement. All participants travelled to King’s College London, UK, for 299 

clinical assessments and to Invicro, LLC, UK, for PET and MR imaging assessments; all 300 

assessments were performed within three weeks. Clinical, PET and MR imaging data of 301 

idiopathic Parkinson’s disease (cohort-2) were retrieved from our electronic database. 302 

A53T SNCA mutation carriers were subdivided into two subgroups according to the presence 303 

(A53T SNCA Parkinson’s disease) or absence (premotor A53T SNCA) of a Parkinson’s disease 304 

diagnosis, as defined by MDS PD Criteria.(22) The absence of motor symptoms in premotor 305 

A53T SNCA was confirmed with a 24-hour continuous recording of their mobility for seven 306 

days, using automated wrist-worn devices in both sides (figure S1). Whereas, measures 307 

obtained in A53T SNCA Parkinson’s disease patients presented with cardinal motor symptoms 308 

of Parkinson’s disease (figure S2). 309 

There were no differences in age between the cohorts of A53T SNCA carriers compared to 310 

healthy controls; while the cohorts of idiopathic Parkinson’s patients were significantly older 311 

compared to the healthy controls and cohorts of A53T SNCA carriers (table 1). UPDRS total 312 

scores were higher in the cohorts of A53T SNCA carriers and in the cohorts of idiopathic 313 

Parkinson’s patients compared to the healthy controls. Non-motor symptoms, including 314 

UPSIT, SCOPA-AUT, NMSS, BDI-II were increased in A53T SNCA Parkinson’s disease 315 

compared to healthy controls; while premotor A53T SNCA showed no significant differences 316 

compared to healthy controls (table 1). Within the group of A53T SNCA Parkinson’s disease 317 

only three subjects had high depression levels (BDI-II scores ≥ 17),(23) which may be of 318 

clinical significance. While premotor A53T SNCA did not show significant increases in total 319 

non-motor symptom burden, three premotor A53T SNCA carriers had NMSS total scores 320 

between 9-13 suggesting the development of early mild non-motor symptoms. The cohort of 321 

A53T SNCA Parkinson’s disease, but not premotor A53T SNCA, showed lower scores in global 322 

measures of cognitive performance, MoCA and MMSE, compared to healthy controls (table 323 

1).  324 
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Premotor A53T SNCA exhibited no differences in [123I]FP-CIT striatal specific binding ratio 325 

(p>0·10), whilst A53T SNCA Parkinson’s disease patients showed loss of [123I]FP-CIT striatal 326 

specific binding ratio compared to healthy controls (p<0·001; table 2, figure 1). Compared to 327 

idiopathic Parkinson’s disease, A53T SNCA Parkinson’s disease patients showed greater loss 328 

of [123I]FP-CIT caudate specific binding ratio (left caudate: p=0·049; right caudate p=0·025) 329 

but no differences in [123I]FP-CIT putamen specific binding ratio (left putamen: p=0·47; right 330 

putamen: p=0·50; table S5). 331 

Premotor A53T SNCA showed decreased [11C]DASB BPND in the ventral (p<0·001) and dorsal 332 

raphe nuclei (p<0·001), caudate (p<0·001), putamen (p=0·036), thalamus (p=0·001), 333 

hypothalamus (p<0·001), amygdala (p=0·004) and the brainstem (p=0·046) compared to 334 

healthy controls (F(8,17)=17·327, p<0·001; table 2; figure 1). A53T SNCA Parkinson’s disease 335 

showed additional [11C]DASB BPND decreases in  the hippocampus (p=0·005), anterior 336 

(p=0·022) and posterior cingulate (p=0·036), insula (p=0·005) and in frontal (p=0·002), 337 

temporal (p=0·001) and occipital cortex (p=0·005) compared to healthy controls 338 

(F(8,17)=3·073, p=0·025; table 2, table S4; figure 1). The severity of serotonergic loss in 339 

premotor A53T SNCA was in line with reductions in idiopathic Parkinson’s patients, while 340 

A53T SNCA Parkinson’s disease showed greater loss of [11C]DASB BPND in the putamen 341 

(p=0·005), caudate (p=0·004), hypothalamus (p<0·001) and amygdala (p=0·004) compared to 342 

idiopathic Parkinson’s disease patients (table S5). 343 

Having demonstrated the presence of serotonergic pathology in premotor and Parkinson’s 344 

disease A53T SNCA, we proceeded to investigate topographic reductions of [11C]DASB BPND 345 

in relation to Braak’s histopathological grading of Lewy bodies and neurites pathology,(2) by 346 

constructing [11C]DASB BPND maps reflecting Braak stages one to six (table S1 and table S2). 347 

Premotor A53T SNCA had loss of [11C]DASB BPND in brain areas corresponding to Braak 348 

stages 1-3, whereas [11C]DASB BPND was largely preserved in areas corresponding to Braak 349 

stages 4-6. SNCA14 had a MoCA score of 28 and an MMSE score of 29 and there was no 350 

indication of subtle cognitive or behavioural changes. However, SNCA01 had a MoCA score 351 

of 23 and an MMSE score of 29, and there were mild changes in the visuospatial/executive 352 

cognitive function and working memory as indicated by the MoCA subitem scores. With the 353 

exception of a recently diagnosed subject with Parkinson’s disease, A53T SNCA Parkinson’s 354 

subjects had [11C]DASB BPND decreases in brain areas corresponding to Braak stages 1-6 355 

(figure 2). 356 
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To assess whether serotonergic dysfunction could be a marker of disease burden, we looked 357 

for associations between [11C]DASB BPND across the brain and MDS-UPDRS total scores. In 358 

the cohort of A53T SNCA carriers, reduced brainstem [11C]DASB BPND correlated with higher 359 

total UPDRS (n=14; r=-0·66; p=0·009; 95% CI -0·88 to -0·20; figure 3A). Reduced brainstem 360 

[11C]DASB BPND correlated with higher total UPDRS also within the subgroups of premotor 361 

A53T SNCA (n=7; r=-0·75; p=0·049; 95% CI -0·96 to -0·004; figure S3A) and A53T SNCA 362 

Parkinson’s disease (n=7; r=-0·76; p=0·049; 95% CI -0·96 to -0·005; figure S3B). Similarly, 363 

in the cohort of idiopathic Parkinson’s disease patients (n=25), reduced brainstem [11C]DASB 364 

BPND correlated with higher total UPDRS (r=-0·66; p=0·0003; 95% CI -0·84 to -0·36; figure 365 

3B). We then wanted to test the applicability of these findings to a different cohort of idiopathic 366 

Parkinson’s disease patients (n=40), who were scanned previously with [11C]DASB PET in a 367 

different scanner. We found that also in this cohort, reduced brainstem [11C]DASB BPND 368 

correlated with higher total UPDRS (r=-0·71; p<0·0001; 95% CI -0·84 to -0·52; figure 3C). 369 

We noted that as the sample size increased the correlation became stronger. Furthermore, 370 

reduced brainstem [11C]DASB BPND correlated with lower [11C]DASB BPND in regions 371 

reflecting Braak stage 1 (r=0·87; p<0·0001; 95% CI 0·64 to 0·96; figure S4A), Braak stage 2 372 

(r=0·90; p<0·0001; 95% CI 0·71 to 0·97; figure S4B) and Braak stage 3 (r=0·88; p<0·0001; 373 

95% CI 0·66 to 0·96; figure S4C). 374 

We investigated whether there was a relationship between [11C]DASB BPND with cognitive 375 

impairment and non-motor symptoms. In the cohort of A53T SNCA, lower MoCA scores 376 

correlated with reduced [11C]DASB BPND in Braak stage 4 (r=0·63; p=0·017; 95% CI 0·14 to 377 

0·87; figure 4A) and with reduced [11C]DASB BPND in Braak stage 5 (r=0·61; p=0·022; 95% 378 

CI 0·11 to 0·86; figure 4B). No correlations were found between regional [11C]DASB BPND 379 

and SCOPA-AUT or UPSIT scores. Reduced brainstem [11C]DASB BPND correlated with 380 

higher NMSS total scores in the cohort of A53T SNCA (n=14; r=-0·77; p=0·0042; 95% CI -381 

0·90 to -0·29; figure S5A), and in subgroups of premotor A53T SNCA (n=7; r=-0·78; p=0·040; 382 

95% CI -0·97 to -0·055; figure S5B) and A53T SNCA Parkinson’s disease (n=7; r=-0·76; 383 

p=0·047; 95% CI -0·96 to -0·016; figure S5C). FreeSurfer and voxel-based morphometry 384 

cortical thickness and subcortical volumetric analysis revealed no atrophy (supplemental 385 

results, tables S6-S8, figure S6). 386 

 387 

 388 
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Discussion 389 

In this cross-sectional study we assessed molecular, structural and clinical markers of 390 

pathology in a cohort of A53T SNCA gene mutation carriers and compared with idiopathic 391 

Parkinson’s disease patients and healthy controls. Half of the cohort of the A53T SNCA 392 

mutation carriers was at the premotor stage which was confirmed clinically and with the aid 393 

from digital continuous recordings of motor function. Our findings provide novel insights into 394 

the premotor pathology and evolution of Parkinson’s disease, suggesting that serotonergic 395 

dysfunction, which can be detected with in vivo molecular imaging in patients at risk for 396 

Parkinson’s disease, precedes the development of motor symptoms and the visualisation of 397 

dopaminergic pathology. Moreover, the presence of serotonergic pathology in the brainstem is 398 

associated with the overall burden of Parkinson’s disease. 399 

Premotor A53T SNCA carriers had normal striatal dopamine transporter scans, but loss of 400 

serotonin transporters in raphe nuclei, brainstem, striatum, thalamus, hypothalamus and 401 

amygdala. A53T SNCA Parkinson’s disease patients had loss of striatal dopamine transporters, 402 

and loss of serotonin transporters extended to further subcortical (e.g. cingulate, insula) and 403 

cortical regions. Our findings indicate that premotor A53T SNCA with normal visualisation of 404 

dopamine transporters show an average of 34% loss of serotonin transporters in raphe nuclei 405 

and 22% loss in the striatum. In A53T SNCA Parkinson’s disease patients the serotonin 406 

transporters losses are extended to 48% in raphe nuclei and 57% in striatum, whereas the loss 407 

of striatal dopamine transporters in this group is 71%. In line with previous studies,(18, 19, 24) 408 

A53T SNCA Parkinson’s disease patients showed greater loss of dopamine transporters in the 409 

caudate, while there were no differences in the putaminal binding ratios, compared with 410 

idiopathic Parkinson’s disease. Furthermore, the severity of serotonin transporter loss in 411 

premotor A53T SNCA carriers was in line with reductions observed in idiopathic Parkinson’s 412 

patients, while A53T SNCA Parkinson’s disease patients showed even greater loss of serotonin 413 

transporters. Combined these findings suggest similarities in the pathophysiology between 414 

idiopathic Parkinson’s disease and A53T SNCA Parkinson’s disease but with a faster 415 

progression in A53T SNCA mutation carriers. 416 

In a previous [11C]DASB PET study in idiopathic Parkinson’s disease,(5) we have 417 

contemplated that serotonergic pathology could be an early phenomenon in the course of the 418 

disease, though it evolves at a slower pace compared to dopaminergic pathology. Additional 419 

[11C]DASB PET studies in idiopathic Parkinson’s disease have demonstrated an association of 420 

serotonergic pathology with non-motor symptoms such as fatigue,(8) depression,(10) and 421 
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sleep,(9) and motor symptoms and complications such as tremor,(6) and levodopa-induced 422 

dyskinesias.(7) On the contrary dopaminergic markers correlate well with the symptoms of 423 

rigidity and bradykinesia which are also responding well to dopamine replacement therapy.(25)  424 

The neurons of the raphe nuclei, which are located in the brainstem, are the main source of 425 

serotonergic neurotransmission in the human brain, and through the rostral and caudal 426 

pathways innervate a very large part of the brain, while modulating a large number of 427 

physiological functions.(26) Similarly, Braak and colleagues,(2) have described with 428 

histopathology the distribution of Lewy body and neurite spread, in tissue of Parkinson’s 429 

brains, which follows closely the topographic distribution of serotonergic circuits in the brain. 430 

Moreover, SNCA is expressed in the perikarya and neuritic processes of serotonergic raphe 431 

nuclei neurons, and has been shown to directly impact on serotonin transporters by generating 432 

a negative modulation and reducing its cell-surface availability.(27) The influence of SNCA 433 

on serotonin transporter arises through a direct binding between the two proteins, 434 

predominantly involving the non-amyloidogenic component domain of SNCA. This is 435 

particularly interesting as the A53T mutation, which has drastically increased aggregation 436 

kinetics, may hinder the ability of SNCA to form α-helices, thus promoting -sheet 437 

configuration and SNCA aggregation. This could lead to the sequestration of serotonin 438 

transporter into aggregates, resulting in its depletion, as reflected by our results.  439 

Our findings further support the potential association of [11C]DASB binding potential loss, 440 

reflecting serotonergic pathology, with the distribution of Lewy body and neurite pathology. 441 

We went on to construct brain topographic maps reflecting Braak stages 1-6 and used these as 442 

seed maps to calculate [11C]DASB binding potential in the cohort of A53T SNCA carriers. In 443 

line with Braak, premotor A53T SNCA carriers showed serotonergic pathology in brain areas 444 

corresponding to stages 1-3, whereas [11C]DASB binding potential was largely preserved in 445 

brain areas corresponding to stages 4-6. Interestingly, the youngest premotor A53T SNCA 446 

carriers (SNCA05 and SNCA06), showed extensive loss of [11C]DASB binding potential in 447 

areas corresponding to stages 1 and 2 and only partial loss in areas corresponding to stage 3. 448 

Furthermore, A53T SNCA Parkinson’s disease patients showed serotonergic pathology in brain 449 

areas corresponding to stages 4-6. SNCA09 who had very recently been diagnosed with 450 

Parkinson’s disease showed minimal loss of [11C]DASB binding potential in areas 451 

corresponding to stage 4, whereas [11C]DASB binding potential was largely preserved in brain 452 

areas corresponding to stages 5 and 6. 453 
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If loss of [11C]DASB binding potential in the Parkinson’s brain, reflecting serotonergic 454 

pathology detected in vivo, was to follow the progression and spread of Lewy body and neurite 455 

pathology; and if serotonergic pathology could provide an overall weighted capture of motor 456 

and non-motor symptomatology in line with the role of the serotonergic system in a high 457 

number of human physiological functions; then we hypothesised that there should be an 458 

association between loss of [11C]DASB binding potential and overall Parkinson’s burden. 459 

Indeed, our findings indicate that serotonergic pathology in the brainstem, which was present 460 

in all A53T SNCA carriers correlated with total UPDRS scores, which captures the overall 461 

burden of the disease including both motor and non-motor symptoms. This correlation was also 462 

present in both subgroups of premotor and manifest Parkinson’s A53T SNCA suggesting that 463 

the correlation between brainstem serotonergic pathology and overall Parkinson’s burden was 464 

driven by both premotor and manifest Parkinson’s A53T SNCA carriers. In order to further test 465 

and generalise the applicability of this finding we attempted similar correlations in two larger 466 

cohorts of patients with idiopathic Parkinson’s disease, one of which scanned on a different 467 

scanner. In both occasions the correlation remained true, and we noted that by increasing the 468 

sample size the significance of correlation was becoming stronger. This highlights the potential 469 

applicability of our findings from A53T SNCA carriers into patients with idiopathic Parkinson’s 470 

disease and suggests the potential application of brainstem [11C]DASB PET as a marker of 471 

disease burden across different scanners and sites. This preliminary evidence could be useful 472 

for future multi-centre studies and highlights the need for further studies to investigate 473 

brainstem [11C]DASB PET as a potentially robust biomarker to monitor disease progression. 474 

Larger cross-sectional and longitudinal studies are required to confirm these findings. 475 

Non-motor symptoms typically present before the onset of cardinal motor symptom in 476 

idiopathic Parkinson’s disease, marked by the accumulation of Lewy bodies in Braak stage 1-477 

3.(2) We investigated the association of serotonergic pathology with non-motor symptoms in 478 

A53T SNCA carriers. In A53T SNCA carriers, loss of [11C]DASB in the brainstem was 479 

associated with higher global burden of non-motor symptoms; this correlation was present also 480 

in both subgroups of premotor and manifest Parkinson’s A53T SNCA carriers. Therefore, 481 

suggesting that brainstem serotonergic pathology may be preceding the gradual development 482 

of non-motor symptom burden. Our findings are in line with previous studies in idiopathic 483 

Parkinson’s disease supporting a link between non-motor symptoms and serotonergic 484 

pathology.(8-10) We did not have enough power in the present study to investigate the 485 

relationship between [11C]DASB binding with depression levels in A53T SNCA carriers. We 486 
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did not find any association between [11C]DASB binding and dysautonomic or olfactory 487 

symptoms; suggesting other neurotransmitter systems, such as the noradrenergic system, may 488 

play a more prominent role in their pathophysiology.  489 

The presence of serotonergic pathology in Braak stage 4 and 5 was associated with global 490 

cognitive deficits. One premotor A53T SNCA carrier with serotonergic pathology in the 491 

temporal mesocortex and allocortex (Braak stage 4) presented with subtle cognitive deficits, in 492 

visuospatial/executive cognitive function and working memory. Therefore, suggesting that the 493 

accumulation of serotonergic pathology in basal prosencephalon, mesocortical and neocortical 494 

regions could play a role in the development of cognitive deficits, which are often prominent 495 

in A53T SNCA carriers.(16) Histopathological evidence suggests tau neurofibrillary tangles 496 

and amyloid-β plaques can coexist with SNCA accumulation.(28) In vivo PET studies have 497 

demonstrated the presence of amyloid-β and tau neurofibrillary tangles in Parkinson’s cases 498 

with cognitive impairment.(29, 30) Therefore, the role of tau neurofibrillary tangles and 499 

amyloid-β plaques in the development of cognitive impairment in A53T SNCA carriers 500 

warrants further investigation in vivo.  501 

In conclusion, the combined use of thorough clinical observation with molecular imaging, 502 

which encompasses nanomolar sensitivity, and the study of A53T SNCA carriers, related to a 503 

gene mutation directly linked with Lewy body pathology and Parkinson’s disease 504 

susceptibility; allowed insight into the early role of serotonergic pathology in the progression 505 

of Parkinson’s disease. Our findings provide the first to our knowledge in vivo imaging data 506 

that corroborate the Braak staging scheme, in terms of showing a neurotransmitter deficit 507 

corresponding to stage 2 antedating the dopaminergic deficit that occurs in stage 3.  Although 508 

PET molecular imaging is expensive and A53T SNCA carriers rare, our study highlights the 509 

potential to extend findings in A53T SNCA carriers to classic forms of idiopathic Parkinson’s 510 

disease, which is the second most common neurodegenerative disorder. However, further 511 

studies are required to fully elucidate the molecular pathology and disease mechanisms across 512 

familial forms of Parkinson’s disease compared with idiopathic Parkinson’s disease. While our 513 

community is in the pursuit to identify reliable markers sensitive to disease progression, and 514 

also to identify candidates at risk for novel neuroprotective treatments, we provide evidence 515 

that the detection of serotonergic pathology, which can be visualised in vivo in humans, could 516 

identify individuals at risk even before there is evidence of a dopaminergic deficit or premotor 517 

symptoms, thus preceding disease onset by many years. Given the high signal-to-noise ratio of 518 

[123I]FP-CIT SPECT, it could also provide a useful tool to detect longitudinal changes in A53T 519 
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SNCA carriers. Future studies are warranted to evaluate longitudinal changes in [123I]FP-CIT 520 

SPECT and [11C]DASB PET as potential markers to monitor disease progression. Provided 521 

that accurate serotonin transporter imaging can be labelled with longer lived F-18 isotopes for 522 

wider PET applicability or transferred to the less expensive SPECT platform, it has the 523 

potential to become a more affordable method for screening and monitoring disease 524 

progression. Future work could allow for the development of serotonin transporter imaging 525 

into an adjunctive tool for screening and monitoring progression for individuals at risk or 526 

patients with Parkinson’s disease, to complement existing molecular imaging tools such as 527 

dopaminergic imaging, and could serve as a sensitive marker of Parkinson’s burden. 528 

 529 
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