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Inter-Tenant Resource Sharing and Power
Allocation in 5G Virtual Networks
Jinwei Gang, Student Member, IEEE and Vasilis Friderikos, Member, IEEE

Abstract—Recently the concept of network virtualization and
network slicing attracted significant attention from both industry
and academia as a key component of the evolving 5G architecture
to allow the efficient entrance of vertical industries and tackle
increased aggregate traffic by flexible network re-configurability.
However, the potential price to be paid for facilitating network
slicing in a multi-tenant virtual network is the underutilization
of the scarce wireless network resources due to the different
tenant requirements and the inherent dynamics of the traffic.
A potential way to avoid such sacrifice of radio resources is
to allow efficient inter-tenant resource sharing. To this end,
this work proposes a novel optimization framework for flexi-
ble inter-tenant resource sharing embedded with transmission
power control to aggressively improve network capacity, the
utilization of wireless access resources, user data rate as well
as energy efficiency. More specifically, we define two novel
resource sharing mechanisms called Tight Coupling (TX) and
Loose Coupling (LX), respectively, via Mixed Integer Linear
Programming (MILP) formulations. Furthermore, two Resource
and Power Joint Allocation (RPJA) algorithms are designed to
solve the optimization problem in polynomial time. Based on
3GPP network parameterization, a rigorous analysis via a wide
set of numerical investigations reveal that significant gains in
network throughput, individual user rate and energy efficiency,
can be achieved compared with current baseline network slicing
methods and constant power resource sharing algorithms.

Index Terms—5G networks, mathematical programming, net-
work virtualization, resource sharing, resource reuse, optimiza-
tion, energy efficiency.

I. INTRODUCTION

OVER the last few years, significant attention has been
placed on defining and architecturing 5G communica-

tion networks; a central focus on the design is to enable
significant levels of programmability and flexibility in addition
to advanced schemes that will allow denser deployment of
heterogeneous networks (HetNets) [1]. These emerging net-
works are expected to provide highly increased data rates but
more importantly to efficiently and cost-effectively support
new services and vertical market integration to create in that
sense an integrated ecosystem for both technical as well
as business innovation [2]. However, the densely deployed
multi-tier networks that combining both macro base station
(MBS) and small base station (SBS) can cause significant
operating cost in infrastructure and cumbersome network
management/cooperation. On this point, enabling the logically
isolated, coexisted and shareable virtual networks within the
physical substrate infrastructure is considered as a fundamental
component of future 5G networks [3]. In terms of wire-
less resources, resource slicing and potential sharing among
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multi-service provider (SP)/tenants1 is the key to support the
envisioned diversity and increased overall capacity in the
networks. By combining these concepts and technologies, the
costs reduction of infrastructure provider (InP) (both CAPEX
and OPEX), and efficient cooperation between SPs can be
achieved.

Hand in hand with the aforementioned techniques and
benefits, a set of challenges also arrive when bringing vir-
tualization functionalities to a dense multi-tier Radio Access
Network (RAN). Although the Third-Generation Partnership
Project (3GPP) [4] has standardized certain functionalities to
motivate multiple SPs to share a cellular network, there are still
limitations in the definition of the specific resource assignment
techniques among virtual slices and the detailed implementa-
tion of functionalities. Summarized in articles [3]-[6], open-
ended research aspects are in the following areas: (1) how
wireless network resources be shared and reused efficiently
between tenants based on customized tenancy agreements, (2)
how wireless resources be allocated dynamically and flexibly
in virtual network with varying traffic demand (especially
in overloaded network scenarios) and finally (3) how the
increased traffic control signalling that occurs due to the
communication between SPs and InPs be handled to ensure an
efficient and robust operation of the network. In the view of
wireless architecture, these issues become more challenging
when applying multi-tier HetNets in which overlapped and
densely deployed base stations, where strong co-channel in-
terference emerges, need to be controlled.

To this end, by studying the present state of the art and
principle of network architecture, we hereby propose an opti-
mization framework to flexibly share and reuse the OFDMA
(Orthogonal Frequency Division Multiple Access) based phys-
ical resource block (PRB) among tenants in a virtualized
wireless network. Furthermore, to aggressively improve the
overall network capacity and avoid overwhelming levels of in-
terference, we combine the proposed resource reuse approach
with transmission power control and shed further light on
different degrees of resource sharing. More specifically, this
work defines a resource reuse maximization problem in form
of a MILP, and provides two low complexity algorithms to
achieve tangible improvement in system throughput, per user
achievable rate and energy efficiency. We note that the pro-
posed schemes are inline with emerging network architecture
concepts in Software Defined Network (SDN) such as C/U
split (Control plane/User plane split) network [7] or the so-
called ‘super base station’ [8] that provide the overarching

1In this paper the terms SP and tenant are used interchangeably.
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framework to limit control plane signalling in the network
and inter-tier interference.

A. State of The Art and Related Works

With the tremendous growth in mobile network traffic
and the need to accommodate new vertical markets in the
mobile/wireless ecosystem, the role of network virtualization
to RAN is becoming enormously significant [9]. The mobile
carrier networks in this case have to satisfy two main require-
ments: coexistence and isolation of multiple virtual networks
[3][10][11]. In terms of wireless resources, network slicing is
a more specific concept to realize a virtual network, which
is usually defined as the assignment of a subset of network
resources or functionalities to certain tenants for supporting
their end users [12]. Summarized in [3], network slicing
can be considered in three levels: spectrum, infrastructure
and network. To realize efficient network slicing and reliable
virtualization services, SDN bound with network function
virtualization (NFV) is seen as the key enabler for future
5G networks. The main principle of SDN is to decouple the
data forwarding and control planes of a network, motivating
in that respect a flexible and simplified network management
[13][14]. The centralized control plane normally can be located
in a data center of the core network/central cloud [15];
however, with the trend of denser cell deployment in HetNets,
the control plane is also considered to be located in the cloud
edge or even decentralized at the MBS. As proposed in [7][8],
if the control plane is implemented in a MBS (like a C/U
split or the so-called ’super BS’ architecture), such MBS is
able to manage the whole system resources horizontally and
guide SBS or RRH (remote radio head) to assign virtual
resources to users without cross tier interference. In this work,
the C/U split architecture is considered as the foundation
architectural element to embed the proposed optimization
framework and algorithms. On the other hand, NFV assists
SDN by providing management/cooperation within network
entities without hardware restriction as in traditional networks
[16]. The Cloud-RAN proposed by Chen and Hadzialic et
al [17][18] shows an example of taking signal processing
functions from physical base station to the cloud. Similarly,
authors in [19] illustrates NFV of the Evolved Packet Core
(EPC), a core network with different functional entities, in
LTE networks. In their work, the virtualized functions of all
entities are stored in the cloud in the sense of a Cloud-RAN.

Based on the present state of the art, solutions dedicated to
perform intelligent slicing and virtual resources assignment
are widely studied. The authors in [10] provide a detailed
comparison between different sharing approaches that could
be applied to current or emerging wireless architectures.
In order to motivate flexibility in traditional static resource
reservation (SR)/fixed slicing, a well-known concept named
network virtualization substrate (NVS) is proposed [20] and
further enhanced in [21], [22], [23]. The NVS scheme specifies
two approaches of resource slicing with customized scheduling
techniques. These two approaches are named as bandwidth
based NVS and resource based NVS, indicating resource
slicing based on application/service bandwidth requirement

or amount of aggregated resources required by a tenant,
respectively. Unfortunately, these approaches only consider
single cell scenarios. Considering a multi-tier network with
dense cell deployment, work in [24] presents an optimization
scheme to jointly allocate power and subchannel resources in
a two-tier network with functional virtualization. Similarly,
a 5G network based control plane is proposed by [25] to
perform trade-off between resource slicing and user mobility.
Moreover, authors in [26][27] introduce a set of game theory
based methods to dynamically assign system bandwidth as
an auction game in virtualized wireless networks. However,
underutilization of resources and infeasibility to cope with
dynamic traffic are still the issues once customized resource
assignment and slicing is done by the methods mentioned
above. Thus, we further research several proposals that could
be used to solve the issues. We found that works in [28] and
[29] present two different methods to re-assign radio resources
between slices in a short time basis. Meanwhile, authors in
[23] also propose a novel version of NVS with the so called
PRR (partial resource reservation) technique defining certain
‘mutual resources’ reserved in the network to compensate
unbalanced traffic between tenants in time.

B. Contributions and Structure

Based on the current state of the art and related works,
and to the best of our knowledge there is no previous work
that enables different levels of resource reuse of orthogonal
resources by introducing scalable degrees of inter-tenant shar-
ing with controllable interference in emerging 5G network
architectures. As being an extension of our previous work
[30], the main contributions of this work include (1) proposal
of an optimization framework that offers inter-tenant resource
reuse/allocation with different sharing flexibility and opera-
tion complexity (LX and TX) in a virtual wireless network
environment, (2) an illustration of practical implementation of
the proposed scheme in an SDN network enabled by specified
software defined mobile controller (SDM) [31], (3) an inves-
tigation on binding variable transmission power to motivate
further inter-tenant resource reuse with benefit of improved en-
ergy efficiency, and (4) two heuristic based algorithms (RPJA-
h and RPJA-adv) that can be embedded in network controllers
to provide efficient sub-optimal solutions to the optimization
problem. In this paper we provide a deterministic optimization
framework using integer linear programming. In that setting
the salient assumption is that batch processing of the requests
is performed; for example this can be done by introducing
a small delaying and process a number of requests together.
Another way on looking at this problem is to assume some
form of knowledge regarding future requests and perform
stochastic optimization [47]. In that case, since our proposed
framework assumes perfect knowledge we can consider it as
providing a bound on the achievable performance.

The rest of the paper is organized as follows: Section II
presents the ETSI framework of SDN and NFV, where our
proposed scheme and algorithms can be applied, and detailed
implementation of two resource sharing mechanisms on SDM
controllers. In Section III, a realistic network topology used
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by the framework is introduced and the optimization problem
is formulated accordingly. Section IV introduces the proposed
algorithms to tackle computational complexity issues. Section
V illustrates the details of the numerical investigations by
comparing the proposed scheme with classic methods and
Section VI concludes the work.

II. INTER-TENANT RESOURCE SHARING AND POWER
ALLOCATION FRAMEWORK (LX & TX)

A. SDN and NFV with Resource Sharing

Broadly speaking, ETSI NFV provides a very precise archi-
tectural framework for managing and orchestrating virtualized
resources that relate to network functions as well services of
an operator. SDN, on the other hand, can be deemed as a
more generic framework compared to NFV and in that respect
an ETSI NFV architecture can utilize the services of SDN
to provide a programmable platform for establishing links
between the various VNFs in the sense of routing and overall
policy based management. At the moment, ETSI NFV is in the
process of specifying the interfaces for allowing interworking
between SDN controllers with the NFV MANO system, and
various options have already been previously defined [32].

A number of recent EU-funded research projects like 5G
NORMA further the MANO/SDN integration by leveraging
on the SDN and NFV concepts to develop a novel mobile
network architecture that shall provide the necessary adapt-
ability in a resource efficient way able to handle variations
in traffic demand. More specifically, 5G NORMA extends the
NFV MANO framework to support multi-tenancy; a critical
enabler of resource sharing. Together with that two SDN-
based controllers have been defined, one for the management
of network functions local to a mobile network service slice
(the so-called SDM-C), and the second for the management
of network functions that are common/shared between mobile
network service slices (the so-called SDM-X). As can be
seen in Fig.1, these controllers can be implemented as VNFs
themselves since the MANO architecture supported by SDN
allows for such flexibility (and in fact that was the preferred
architectural decision within the project).

The proposed techniques detailed hereafter assume the
existence of such flexibility on the mobile network. However
the proposed set of techniques are generic enough to allow
implementation in other potential architectures that support
resource sharing in emerging 5G networks.

The SDM controller is usually defined in four aspects:
topology, resource, function and deployment [31]. In the
resource aspect, the main function SDM provides is to slice
the bandwidth of the virtual network (also called SDM or-
chestrator in this case) and realize real-time scheduling and
resource management for different network slices. To motivate
high flexibility in resource management, the 5GNORMA [31]
proposes a pair of distinguished SDM controllers: SDM-C
and SDM-X. The details of implementation of these SDM
controllers and examples of network level Demo can be found
in [33]. In definition, SDM-C refers to the general controller
operating in the dedicated control layer, which provides per

Fig. 1: Set of options of locating SDN Resources, SDN Controllers
(such as SDM-C/X) and SDN Applications in the MANO NFV
Architectural Framework [32].

Fig. 2: Two sharing mechanisms explanation: in this example each
tenant share only one of its PRB. In LX, two sharing PRBs (1 &
4) are specified manually but, in TX, the sharing PRBs are decided
optimally and dynamically during operation

slice based resource management; on the other hand, SDM-
X refers to the inter-slice controller operating in the com-
mon control layer, which is in charge of inter-slice resource
management. Both controllers can work either separately or
congruently, depending on the service request. As with respect
to our work, the inter-tenant resource sharing framework
should operate by proper coordination between SDM-X and
SDM-C. With the programability and softwarization of SDN,
optimization and well-designed algorithms like the proposed
ones can be embedded into virtualization control layers to
engage system improvement. As already mentioned above,
these SDN controllers can be implemented as VNFs.

B. Operation Mechanisms: Loose Coupling (LX) and Tight
Coupling (TX)

Based on the virtual controllers described previously, we
hereby introduce two different operation mechanisms under
the framework of the proposed inter-tenant resource sharing
and variable power allocation.
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1) Loose Coupling (LX): LX operation refers to the sce-
nario where inter-tenant sharable resources are pre-defined
before the system operation. Therefore inter-slice control func-
tionalities provided by SDM-X need to be set up before the
operation of the optimization or algorithmic framework. Once
the operation begins, LX assigns PRBs to users and allocates
a proper transmission power within a defined power range to
the assigned PRB based on an optimal reuse principle. By
choosing a proper transmission power, more PRBs reuse can
be engaged and interference can be further limited.

2) Tight Coupling (TX): This case is recognized when
resources of individual tenants and shared ones are decided
dynamically during the operation. Computationally TX is the
most complex one in operation and requires a fully functional
overlap between the SDM-C and SDM-X controllers. Com-
pared to LX, TX only has the information about the amount of
sharable resources before operation, and which PRBs shared in
each tenant can be consistently changed according to resource
re-usability, system interference and traffic conditions. The
variable transmission power is also available in TX mode to
engage the reuse of resources.

In terms of resource sharing, in LX, the SDM-C con-
troller splits the bandwidth into different partitions to tenants,
meanwhile, the SDM-X controller optimizes the reuse of
the predefined inter-tenant sharable resources. On the other
hand, in TX, the SDM-X controller takes all resources into
account to find the optimal subset for sharing in each operation
period. This distinction is depicted via a toy example shown
in Fig.2. In essence, TX is considered as the most general and
complex case for resource sharing, where a defined number
of resources can be shared, but without depicting which ones
from the full available set of resources. Therefore, in terms
of network management, the trade off or implementation
preference between TX and LX can be evaluated based on
both sharing flexibility and operation complexity.

III. SYSTEM MODEL AND PROBLEM FORMULATION

This work considers a C/U split SDN architecture where
SBSs are densely deployed in a centralized MBS controlling
area. For this reason, and without loss of generality, we can
ignore the inter-tier interference to simplify the model. In a
C/U split network, the data plane (SBSs) focuses only on
the forwarding user data rate while the control plane (MBSs)
provide control functionalities. All SBSs in the network utilize
a common frequency band (frequency reuse is allowed), which
is different from the one used by MBS [7]. In terms of
the topology we assume a number of K SBSs distributed
in the MBS area based on a Poisson Point Process (PPP)
[34] recognized as user hot zones, and a number of N user
(UEs) that are randomly located in the hot zone SBSs. To
serve the arrival traffic, the control plane creates a centralized
resource pool based on the bandwidth of SBSs and SPs/tenants
registered in this network can require virtual resources from
the pool. In this case, the SPs serve their subscribers via the
SBSs that provide the best signal link. The number of PRBs
M in the pool is directly dependent on system bandwidth and
only downlink traffic is considered in this work.

Fig. 3: An example of C/U split RAN architecture with traffic from
two tenants: MBS controls SBSs which forward user data in hot zones
and builds the centralized resource pool

An example of the network topology described above is
shown in Fig.3. The available PRBs and UEs of two tenants (A
and B) are colored blue and red, respectively. In the resource
pool, two marked PRBs are those chosen to be shared between
tenants in this example.

A. Preliminaries
To model the resource association and power allocation

problem in a mathematical programming setting, we define
the following binary decision variables.

xrt =

{
1 if PRB r is assigned to tenant t.
0 otherwise. (1)

yirtl=

{
1 if user i of tenant t uses PRB r with power level l.
0 otherwise.

(2)
Notations I, C, T and P are used to indicate the set of UEs,

PRBs, tenants and power level, respectively. In this paper,
only mathematical sets and decision variables are written
in bold style. Besides, we assumed discretized power level
denoted by the index l [35] to embrace the nature of integer
linear program. In this case, a power value pi

′

irtl represents
a controllable transmission power by the base station when
serving user i, and i’ indicates the cell connected to user i.
Previous research in [36] shows the details of how a PRB
can be allocated a variable power by using discrete power
levels. As mentioned before, we have |C| = M PRBs in the
resource pool, |P| power levels and |B| = K SBSs (in a
set B) waiting to serve a number of |I| = N users from a
number of |T| tenants, then the potential maximum power of
each PRB is pmax

irtl = Ptx/M . The notation Ptx denotes the
maximum transmission power of a SBS; in our case all SBSs
have the same maximum transmission power. Based on this,
the variable transmission power that can be allocated to each
PRB is defined as follows,

pi
′

irtl ≤ pmax
irtl (3)
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Furthermore, we define the following indicator to express the
orthogonal resource reuse principle,

φtt
′

ij =

{
1 if users i, j of tenants t and t’ in different BSs.
0 otherwise.

(4)
In this case, if users i and j belong to the same tenant then
we have t = t′. Regarding the channel gains on downlink
transmissions, we denote by gi

′

irtl the link gain between the
serving base station i′ and user i using PRB r. Also, with gj

′

irtl

we denote the link gain between the serving base station of
user j (base station j′) and user i as the interference link. There
is no cross-tier interference due to the no data forwarding
nature of MBS. In that respect, the signal to interference and
noise ratio (SINR) for a PRB-UE pair can be estimated by the
following expression,

γirtl =
gi

′

irtlp
i′

irtlyirtl∑
j∈I′
∑

t′∈T
∑

l∈P φ
tt′
ij g

j′

irtlp
j′

irtlyjrt′l + Inoise
(5)

The terms γirtl and Inoise indicates the SINR and the back-
ground noise of the channel, respectively. We note that the set
I′ represents the user set without user equipment (UE) i.

Based on Eq.(5), the achievable data rate of UE i by taking
PRB r can be approximated by the Shannon Capacity Formula,

Rirtl(yirtl) = ∆flog2(1 + γirtl) (6)

where ∆f is the LTE-based frequency space for a PRB [37].
Comparing to previous research [38][39] using the aggregated
energy as the energy measurement metric, we utilize the
Energy Efficiency (EE) metric, since it indicates both the
energy consumption and user data rate [40]-[43]. Based on
the accumulated energy consumption and aggregated user data
rate, the EE in this work is defined as follows,

EE =

∑
i∈I
∑

r∈C
∑

t∈T
∑

l∈PRirtl(yirtl)∑
i∈I
∑

r∈C
∑

t∈T
∑

l∈P p
i′
irtl +

∑
k∈B P

k
SBS

(7)

The term P k
SBS represents the circuit/operation power of

each SBS [42][43]. The unit of EE is bit/Joule or Mbit/Joule.

B. Problem Formulation

Based on the previously defined network modelling, the
proposed resource reuse maximization problem can be defined
as follows,

[Problem I] max
∑
i∈I

∑
r∈C

∑
t∈T

∑
l∈P

yirtl (8)

s.t.∑
r∈C

xrt ≥ nt, ∀t ∈ T (8a)∑
t∈T

xrt ≤ β, ∀r ∈ C (8b)∑
r∈C

∑
l∈P

yirtl ≤ δ, ∀i ∈ I, ∀ t ∈ T (8c)∑
r∈C

∑
l∈P

yirtl ≥ 1, ∀i ∈ I, ∀ t ∈ T (8d)∑
r∈C

∑
t∈T

xrt ≤
∑
t

nt + α (8e)

yirtl ≤ xrt, ∀i ∈ I, ∀r ∈ C, ∀t ∈ T, ∀l ∈ P (8f)
γirtl(yirtl) ≥ γth, ∀i ∈ I,∀r ∈ C,∀t ∈ T,∀l ∈ P (8g)

yirtl + yjrtl≤1+V · φtt
′

ij ,∀i, j∈I,∀r∈C,∀t∈T,∀l∈P (8h)
xrt ∈ {0, 1} (8i)
yirtl ∈ {0, 1} (8j)

Constraint (8a) ensures that every tenant will be allocated
at least nt orthogonal PRBs as agreed by a Service Level
Agreement (SLA). Constraint (8b) indicates that a PRB can
be reused up to β times across all tenants, which is one
way to manage network interference. Furthermore, constraint
(8c) aims to limit the potential intra-tenant interference by
ensuring that up to δ PRBs can be associated to one UE per
tenant. Constraint (8d) indicates for each UE should at least
take one PRB as a successful channel connection. Constraint
(8e) ensures that only up to α PRBs can be shared between
tenants; this can be set by the InP according to some pre-
defined policies or rules. The binding constraint between the
decision variables yirtl and xrt is expressed in (8f). Constraint
(8g) expresses the SINR threshold γth that need to be satisfied
in order to use a PRB. Constraint (8h) defines that users from
the same tenant and different tenants should be allocated a
different PRB if they connect to the same SBS (same cell
avoidance) and V in this case is an arbitrary large integer.
Constraints (8i) and (8j) ensure that the variables are binary.
To guarantee constraint (8g) is always satisfied when yirtl =
0, γirtl is re-written as follows,

γirtl =
gi

′

irtlp
i′

irtlyirtl + V (1− yirtl)∑
j∈I′
∑

t′∈T
∑

l∈P φ
tt′
ij g

j′

irtlp
j′

irtlyjrt′l + Inoise
(9)

In this optimization problem, note that we maximize the
amount of reusable resource blocks with SINR restriction
rather than directly optimize the data throughput. Even so, we
can still have promising gains in terms of throughput, since
our proposal aims to ultimately reuse inter slice resources
compared to the present state of the art in the scope area.
However, we note that this gain might not be guaranteed all
the time as in our previous work [30], which performs the
same optimization but with constant transmission power. To
this end, the following result is contributed to shed light on
this issue.

Lemma 1: Under the proposed inter-tenant resource sharing
framework, the maximum system rate can be possibly provided
by the non-reuse case with constant power rather than the
reuse case with power control in certain scenarios.
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Proof: See Appendix.

C. Mathematical Differences between LX and TX

The above problem formulation is the one describing math-
ematically the TX mode of operation, since the inter-tenant
sharing subset is completely decided by the optimization
problem itself. There is no pre-defined subset of resources that
decide which PRBs are sharable or belong to a certain tenant.
With this understanding, we illustrate the difference between
LX and TX in terms of formulation based on their available
PRBs set:
• TX Optimization: Problem I is the exact mathematical

expression for TX operation. To be noted, the set of PRBs that
users and tenants can use coincide, which is C.
• LX Optimization: The LX mode of operation has the

same objective function and constraints as the TX operation,
except the different PRB set for each tenant t, defined as Ct.
In the PRBs subset Ct of a tenant, the pre-defined sharable
PRBs are marked manually before operation starts. Regarding
to Problem I, the resource set C shall be replaced by Ct in
all constraints when considering different t.

IV. RESOURCE AND POWER JOINT ALLOCATION (RPJA)

In this section, we propose two algorithms with different
complexity to solve the optimization problem in polynomial
time due to the NP-hardness of the optimization framework.
Both algorithms aim to allocate PRBs and variable power
to UEs jointly, therefore we name them the Resource and
Power Joint Allocation algorithms (RPJA). In addition, to
offer fair comparison between this work and our previous
work [30] we further illustrate the resource allocation only
version of these two algorithms (called RA algorithms) to
realize constant power resource allocation in our previous
optimization problem.

A. RPJA-h and RA-h: Greedy based Heuristic

The proposed optimization problem is classified as a knap-
sack problem due to the nature of assigning discrete PRBs and
power levels. Therefore, to explore the sub-optimal solutions
in polynomial time, we firstly propose a simplified greedy
based heuristic algorithm named RPJA-h. The procedure of
conducting RPJA-h is shown in the pseudo code Algorithm
1: in step 1, RPJA-h randomly selects one PRB from set
C and associates it with a UE requiring minimum power to
pass its SINR threshold; in this way, the lowest interference
will be generated at this stage. The association is made if
all the constraints in the optimization problem are satisfied.
In terms of power, a minimum power pmin

irtl with a slack
S (a small portion of pmin

irtl ) is allocated to the PRB-UE
pair which ensures the connection would not be lost because
of the future reuse of this PRB. Meanwhile, the potential
interference will be quantified and saved to an interference
matrix HN×N in which each interfering user pair is indicated

by hij elementally. The matrix is in the form shown in Eq.(10)
for a N users system:

HN×N =


0 h12 . . . h1N
h21 0 . . . h2N

...
...

. . .
...

hN1 hN2 . . . 0

 (10)

With the updated HN×N , the remaining unassociated UEs
will be sorted again based on the present system interference
until no more association can be made. This step ends when
all PRBs are considered. In step 2, the sum rate of all
associations Rh is calculated. This algorithm can also be called
an interference based greedy algorithm because the sorting is
based on HN×N . To compare with our previous work [30],
RPJA-h has another version without variable power allocation
(PRB association only) named RA-h. The only difference
RA-h has in Algorithm 1 is that RA-h allocates maximum
transmit power pmax

irtl to association pair instead of (1+S)pmin
irtl

through the whole process. As can be seen, RPJA-h engages
more resource reuse compared to RA-h due to its stricter
interference control.

Algorithm 1: RPJA-h
Data: Location coordinates of UEs and SBSs; network

parameters nt, β, δ, α and γth; Interference
matrix HN×N = ∅, PRBs set C and UEs set I.

Result: PRBs Association, Power Allocation and Rate
Estimation.

Step 1: PRB Association and Power Allocation
for r:=1 to M ∈ C do
• sort elements (ascending) in I based on pmin

irtl ;
for i:=1 to N ∈ I do

repeat
• obtain location and channel information of
UE i;
• allocate power (1 + S) pmin

irtl from nearest
SBS;

if (φtt
′

ij = 1 & γirtl ≥ γth for all associated
users) then
• yirtl =1, PRB r is assigned to UE i;
• xrt =1, Mark PRB r used by tenant t;
• update matrix HN×N ;
• sort remaining elements (ascending)
i+ 1 to N in I based on HN×N ;

else
• yirtl & xrt = 0, no association made

end
until δ, β or (nt + α) is reached;

end
• HN×N = ∅, clear the interference matrix for next
PRB;

end
Step 2: Compute Sum Rate
• Rh =

∑
Rirtlyirtl
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Algorithm 2: RPJA-adv
Data: Location coordinates of UEs and SBSs; network

parameters nt, β, δ, α and γth; Interference
matrix HN×N = ∅, PRBs set C and UEs set I.

Result: PRBs Association, Power Allocation and Rate
Estimation.

Step 1: PRB association and Power Allocation
for z:=1 to Z do
• generate a random number ζ between 0 and 1;
for r:=1 to M ∈ C do
• conduct the transformation in Eq.(11) and

Eq.(13) based on pmin
irtl and generate Di for all

UEs;
• sort elements (ascending) in I based on the

distance between ζ and Di;
for i:=1 to N ∈ I do

repeat
• obtain location and channel information

of UE i;
• allocate power (1 + S) pmin

irtl from
nearest SBS;

if (φtt
′

ij = 1 & γirtl ≥ γth for all
associated users) then
• yirtl =1,PRB r is assigned to UE i ;
• xrt =1,Mark PRB r used by tenant
t;
• update matrix HN×N ;
• conduct the transformation in

Eq.(11) and Eq.(13) based on
interference in HN×N and generate
Di for remaining UEs;
• sort unassociated elements

(ascending) in I based on the
distance between ζ and Di;

else
• yirtl & xrt = 0, no association made

end
until δ, β or (nt + α) is reached;

end
• HN×N = ∅, clear the interference matrix for

next PRB;
end
• R(z) =

∑
Rirtlyirtl;

end
Step 2: Provide Best Performed Sum Rate
• Radv = max{R}

B. RPJA-adv and RA-adv: Advanced Iterative Heuristic

To improve the performance of RPJA-h, we further design
an advanced iterative algorithm named RPJA-adv. The pro-
cedure of implementing RPJA-adv is illustrated in Algorithm
2. The key difference between RPJA-adv and RPJA-h is that
RPJA-adv randomly changes the sorting result in RPJA-h with
certain probabilities in each iteration z, thus better PRB-UE
association can be expected.

In order to augment the algorithm with the proposed prob-

abilistic selection, a set of mathematical transformations is
proposed accordingly. A parameter named critical decision
value d′i for each UE i is defined as follows,

di = 1− Ei

Emax
(11)

d′i =
di∑
i∈I di

(12)

Ei indicates the sorting element of corresponding UE i
which can be either pmin

irtl or aggregated interference in HN×N
for this UE, and Emax indicates the maximum element among
all candidate users. Once d′i for all users has been decided, a
critical selection range for each UE is derived as Di. The
first sorted user has critical selection range D1 ∈ [0, d′1] and
Di ∈ [d′i−1, d

′
i + d′i−1] is the one for the rest of users. As

shown in Algorithm 2, step 1 begins with uniformly generating
a random number ζ between 0 and 1 for each iteration z,
then the critical selection range Di is found for each UE by
Eq.(11) based on pmin

irtl . In this case the sorting of users is
carried out depended on the distance between ζ and each
Di. With this sorting result, PRB-UE association will be
made and minimum power with a slack will be allocated
as in RPJA-h. It is important to note that the same sorting
decision with mathematical transformation is conducted based
on interference matrix HN×N for the remaining users until
no more association can be made afterwards. At the end of
step 1 the sum rate for each iteration z is estimated and
saved to database, and in step 2 the result of the best sum
rate iteration will be generated as final output of RPJA-adv.
Similarly, another version of RPJA-adv with constant power
allocation is also designed, as RA-adv.

Similar to Problem Formulation, both algorithms shown in
this section are based on the TX mode of operation. For the
LX operation, the subset of available PRBs shall be decided
based on the requirements from users, which are assumed to
be known by the network controller (obtaining location and
state channel information of the users).

V. NUMERICAL INVESTIGATIONS

The numerical investigations have been conducted based on
a wide set of varied scenarios with a realistic set of parameters
from 3GPP. We firstly explain the system environment and as-
sumptions that realize a C/U split wireless network. Secondly,
a set of large scale realistic network simulations is presented,
in which we compare the RPJA and RA embedded LX and
TX with classic network slicing methods in terms of the
different performance perspectives. Lastly, we further illustrate
improvement limits, optimality, complexity and scalability of
proposed optimization problem and algorithms by introducing
a small scale network simulation.

A. Simulation Scenarios and System Model Parameters

The simulated wireless network environment follows the
LTE-Advanced network principles proposed by 3GPP [12].
In all simulated scenarios the widely used 10 MHz channel
bandwidth is adopted, which provides in total 50 available
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PRBs. To realize the C/U split RAN network, a cluster of SBSs
is deployed in a MBS (located at the center) controlling area.
The number of SBSs varies from 3 to 15 and the deployment
follows a Poisson Point Process (PPP). The selected SBSs are
standard pico cells that serve traffic in hot zones. We assume
the base station transmits with its maximum power in the case
without power control and only the downlink is considered.
A summary of used parameters can be found in Table I. The
custom Monte Carlo based simulation has been designed and
implemented in MATLAB. In each iteration, UEs from two
tenants are randomly distributed in the hot zones. The SINR
threshold is decided by the average channel conditions of all
users in each iteration. In addition, according to [44], the gen-
eral used maximum transmission power of a pico cell is 0.25
W and the circuit power of each is 14.9 W. In order to provide

TABLE I: SIMULATION SPECIFICATION AND PARAMETERS

Parameters Values / Assumptions
Network layout 1 MBS with

3 - 15 SBSs
Cell radius (m) MBS:1000

SBS: 200
Carrier frequency (GHz) 2
MBS antenna gain (dBi) 14
SBS antenna gain (dBi) 10
Antenna configuration 1 Tx for BS, 1 Rx for UE

Thermal noise (dBm/Hz) -174
System Bandwidth (MHz) 10
No. of PRBs in the pool 50

SBS Path loss (dB) 140.7+36.7log10(D) (D in km)
MBS Path loss (dB) 128.1+36.7log10(D) (D in km)

Shadowing standard deviation (dB) 6
Max SBS TX power (dBm) 24

MBS TX power (dBm) 43
Number of UEs 50 - 150

Max No. of a PRB reuse 5
Max No. of UE requirement for PRBs 2

a holistic view on attainable performance, we compare our
proposed algorithms with two nominal virtual resource slicing
approaches in virtual network for a two tenants scenario. These
are the resource based NVS (NVS-RB) scheme and the static
reservation (SR). As mentioned in the introductory section,
the NVS-RB [20] offers certain flexibility in network slicing;
it initially reserves a proportion of resources for each slice
but automatically transfers resources between slices based
on traffic conditions (dynamic resource requirement of each
tenant). On the other hand, in the SR based slicing approach
the resources for each slice are fixed and remain constant
independently of traffic variations. The advantage of NVS-RB
is the self-reacting adjustment for slicing resources based on
incoming traffic; therefore, in all simulation scenarios our LX
and TX mechanisms will be embedded on the top of NVS-
RB by slicing PRBs in resource pool before enabling inter-
tenant sharing. In summary, for all scenarios, the performance
evaluations are compared among the following cases: LX and
TX (using RPJA-h, RPJA-adv, RA-h and RA-adv), NVS-RB
and SR. The results are presented by the mean value of
data observations. To ensure the analysis credibility, we also
calculate the confidence interval (CI) and statistical error (SE)
in each numerical result section by using 95% confidence level

(CL) [45][46]. The formula of CI is shown in Eq.(13) below:

CI = x̄± z σ√
n

(13)

where x̄ is the mean value of observations, z is the z statistic, σ
is the standard deviation and n is the number of observations.

B. Performance Evaluation

1) System Throughput Performance:
In this large scale simulation, we show the network perfor-
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Fig. 4: Throughput performance of both RPJA and RA algorithms

mance of 6 SBSs scenarios. Besides, the number of UEs is
varied from 50 to 150 as traffic load. To be noted, we applied
10 PRBs (20% of total resources) as the total amount of inter-
tenant sharing PRBs, the parameter α, among two tenants
registered in the network.

Fig.4a and Fig.4b show the cumulative throughput of
variable power allocation (RPJA) and constant power
allocation (RA). As may be observed, the total throughput in
all cases increases with the traffic load due to the increasing
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number of UEs in the network. Note, however, that the
throughput reaches a saturated status at certain traffic load
since the UEs’ requirement exceeds the available PRBs in
resource pool for all cases. As expected, our proposed LX
and TX embedded in both RPJA-adv and RA-adv methods
are the last saturated methods in very congested traffic with
around 140 UEs. Meanwhile, with slight loss of maximum
throughput of LX and TX both RPJA-h and RA-h methods
are saturated at around 130 UEs, still outperforming the SR
(saturated at 80) and NVS-RB (saturated at 100) schemes.
As shown in Fig.4a, TX (RPJA-adv), LX (RPJA-adv), TX
(RPJA-h) and LX (RPJA-h) achieve the maximum system
throughput of 154.1 Mbps, 152 Mbps, 147.2 Mbps and 144.9
Mbps, respectively, at their saturated point, which translates
to maximum throughput gains 19.5%, 17.8%, 14.1% and
12.3% compared to SR (129 Mbps), and 11.6%, 10.07%,
7.4% and 4.9% compared to NVS-RB (138.1 Mbps). Note
that with slightly higher gains (see Fig.4b), the maximum
throughput of TX (RA-adv), LX (RA-adv), TX (RA-h) and
LX (RA-h) outperformed SR by 20.6%, 18.6%, 15.3% and
14.0%, and NVS-RB by 12.10%, 12.7%, 8.0% and 6.2%. As
stated in Lemma 1, the RA embedded methods with constant
power can have slightly higher sum rates compared to the
RPJA embedded methods with power control due to the
dynamic network traffic. In addition, LX usually loses 1-3%
throughput compared to TX embedded in all methods due to
the flexibility in choosing the shareable PRBs of TX. The
margin error of this result is ranged from around -2.4 Mb/s
to 2.2 Mb/s, contributing maximum 2.4% variation in data
statistic.

2) Per User Rate Performance:

In Fig.5(a-d), we present the per user achievable rate based
on the cumulative distribution function (CDF). For simplicity
of presentation, in this part we only compare TX embedded
in all algorithms and the nominal methods because the result
of LX has the same trend and characteristics as TX. Among
these figures, we focus on the CDF percentage of 1.5 Mbps
point which can be seemed as a threshold dividing lower rate
and higher rate. In terms of this specific point, Fig.5a and 5b
show that both RPJA and RA based TX operation provide
more users with higher data rate (≥ 1.5 Mbps) compared
to classic methods in a low traffic network scenario with
50 users, in which RA-adv, RA-h, RPJA-adv and RPJA-h
have 68%, 62%, 65% and 60%, respectively, of total user
population achieving data rate beyond the threshold compared
to 44% and 52% of SR and NVS-RB, respectively. This result
indicates that our proposed algorithms can not only improve
the system throughput but also the individual user rate by
engaging aggressive PRB reuse between tenants. Similarly,
Fig.5c and Fig.5d indicate that even in a very congested
traffic scenario with 150 users, TX embedded in RA-adv,
RA-h, RPJA-adv and RPJA-h also generate 12%, 8%, 8.5%
and 7.5% higher data rate UEs compared to SR and NVS-RB
both with merely 5% higher data rate UEs. However, in this
extreme congested scenario, not all UEs can be served with a
satisfying rate or even connected to the SBSs due to the high

0.5 1 1.5 2 2.5

Per User Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F
 fo

r 
50

 U
se

rs
 T

ra
ffi

c

SR

NVS-RB

TX (RPJA-h)

TX (RPJA-adv)

(a) RPJA based TX for 50 Users

0.5 1 1.5 2 2.5

Per User Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F 
fo

r 5
0 

U
se

rs
 T

ra
ffi

c

SR
NVS-RB
TX (RA-h)
TX (RA-adv)

(b) RA based TX for 50 Users

0.5 1 1.5 2 2.3

Per User Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F
 fo

r 
15

0 
U

se
rs

 T
ra

ffi
c

SR
NVS-RB
TX (RPJA-h)
TX (RPJA-adv)

(c) RPJA based TX for 150 Users

0.5 1 1.5 2 2.3

Per User Throughput (Mbps)

0

0.2

0.4

0.6

0.8

1

C
D

F
 fo

r 
15

0 
U

se
rs

 T
ra

ffi
c

SR
NVS-RB
TX (RA-h)
TX (RA-adv)

(d) RA based TX for 150 Users

Fig. 5: Per user rate performance of TX operation

interference environment and the lack of resources.

3) Energy Efficiency Performance:

In this part, we evaluate the energy efficiency between
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different methods to demonstrate the potential benefits of
variable power algorithms. The EE result is shown as a set
of box plots, using all traffic scenarios EE statistical data. In
Fig.6, the EE of all methods with TX operation is illustrated.
The reason for using only TX is still that there is no obvious
difference in EE results between LX and TX operations in our
simulation. We use the box plots to illustrate the variations
of EE for all methods through the low traffic load scenario
to the high traffic load scenario. Each box itself represents
the EE value variation range, and the red band in the box
indicates the median value. Some extreme values (i.e., outliers)
are indicated by the red crosses.
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Fig. 6: Energy efficiency(EE) advantage of RPJA based TX

Without doubt, RPJA-adv has the best EE distribution (as
shown in the box plot) and RPJA-h, RA-adv, RA-h ranks
accordingly behind it. Such results indicate that the RPJA
algorithms not only focus on motivating the reuse of PRBs
but also lowering transmit power which can still satisfy the
required received signal level . More specifically, RPJA-adv
and RPJA-h provides the EE distribution from 1.32 to 1.53
and 1.29 to 1.50, respectively, compared to the one of RA-adv
and RA-h from 1.27 to 1.49 and 1.23 to 1.42, respectively.
As may be observed, RA-adv is the one with the closest
distribution of RPJA algorithms, which is brought by its
advantage in providing high rate. In terms of classic methods,
we compared with, SR has the worst EE performance with
distribution between 1.15 and 1.20; on the other hand, NVS
has relatively higher distribution between 1.65 and 1.27 due
to the relatively higher PRBs reuse efficiency. The error
margin of EE value is ranged from -0.02 to 0.03, contributing
a maximum 1.70% variation in data statistic.

4) Parameter’ Margin Study:

In this set of numerical investigations, we study two parame-
ters that potentially influence the performance of our proposed
algorithms. Firstly, Fig.7a and Fig.7b show that the change
of inter-tenant sharing capacity α, ranged from no sharing
to 14 PRBs sharing, can translate to a variation in system
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Fig. 7: Throughput improvement brought by changing sharing capac-
ity of RPJA and RA for 150 users traffic load

throughput. In a highly congested network scenario with 150
users, Fig.7a indicates that the system throughput of RPJA
algorithm, TX and LX based RPJA-adv and RPJA-h both
increase the network throughput with respect to increasing
sharable number of PRBs. However, they all comes to a
saturated status with sharing capacity increased to 12. This
happens because the total interference in the network reaches
its cap; therefore, no more reuse could happen even though
more sharable resources become available. Compared to no
inter-tenant sharing scenario (α = 0), which has system
throughput of 138.1 Mbps, TX(RPJA-adv), LX (RPJA-adv),
TX (RPJA-h) and LX (RPJA-h) improve system throughput by
13.7%, 11.7%, 7.8% and 6.6%, respectively, at their saturated
point. Note that the same changing pattern also appears in
the RA algorithm. Compared to the no sharing scenario, the
maximum gains in throughput provided by TX (RA-adv), LX
(RA-adv), TX (RA-h) and LX (RA-h) are 14.5%, 13.1%, 8.7%
and 7.4%, respectively. The error margin of sharing capacity
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results is very close to the throughput result, ranged from -2.3
Mb/s to 2.2 Mb/s.
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Fig. 8: Iterations applied by RPJA-adv and RA-adv algorithms for
Searching the Solutions

Additionally, we study the efficiency of proposed RPJA-
adv and RA-adv algorithms to locate a near-optimal solutions
compared to RPJA-h and RA-h. In Fig.8, the curve was
plotted based on the average number of both RPJA-adv and
RA-adv near-optimal solutions compared to greedy heuristic
results for different designated iterations Z. It can be easily
understood that better solutions are obtained increasingly with
the increasing iteration times from initially 50 iterations until
400 iterations are reached. The maximum number of near-
optimal solutions found is around 21 on average and it is
unchanged after 400 iterations mainly because of the searching
limitation of both the RPJA-adv and RA-adv schemes.

C. Small Scale Simulation: Optimality and Complexity

Finally, we present performance comparison between opti-
mal solutions and the proposed algorithms in a small scale
simulation where optimal solutions could be attained. The
simulation was conducted based on an environment including
3 SBSs, 10 to 50 UEs traffic load, 10 available PRBs, totally
4 inter-tenant sharing PRBs and other unchanged parameters.

Fig.9a and Fig.9b show the system throughput of variable
power allocation framework and constant power allocation
framework, respectively. In both graphs, as expected optimal
solutions (RPJA-OP and RA-OP) for both LX and TX show
the similar developing trend of the algorithms but with higher
throughput in value, which stems from the optimality provided
by the solution of the proposed linear integer program. The
maximum throughput improvement is still evaluated at the
saturated point of all methods. In Fig.9a, the optimal solution
LX(RPJA-OP) outperforms LX(RPJA-adv) and LX(RPJA-h)
by 15.1% and 24.0%, respectively; On the other hand, optimal
solution TX(RPJA-OP) outperforms TX(RPJA-adv) and TX
(RPJA-h) by 14.5% and 24.2%, respectively. For constant
power methods, Fig.9b shows that LX(RA-OP) outperforms
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Fig. 9: Throughput performance of the MILP based optimal solution
and proposed heuristic algorithms in small scale simulation scenario.

LX(RA-adv) and LX(RA-h) by 14.5% and 19.0%, respec-
tively, as well as TX(RA-OP) outperforms LX(RA-adv) and
LX(RA-h) by 11.4% and 21.8%, respectively. The throughput
performance compared with the SR and NVS-RB schemes is
also summarized in Table II.

TABLE II: AVERAGE ENHANCEMENT IN SMALL SCALE SIMULATION

Methods Complexity Gains on SR Gains on NVS-RB
LX: RPJA-OP NP-Hard 27.2% 19.5%
LX: RA-OP NP-Hard 33.9% 25.9%
LX: RPJA-adv O(|I||C|Z) 11.2% 4.6%
LX: RA-adv O(|I||C|Z) 18.1% 11.0%
LX: RPJA-h O(|I||C|) 6.8% 1.3%
LX: RA-h O(|I||C|) 13.7% 6.9%
TX: RPJA-OP NP-Hard 30.2% 23.3%
TX: RA-OP NP-Hard 34.9% 29.6%
TX: RPJA-adv O(|I||C|Z) 15.3% 8.4%
TX: RA-adv O(|I||C|Z) 22.2% 14.9%
TX: RPJA-h O(|I||C|) 8.9% 2.4%
TX: RA-h O(|I||C|) 15.8% 8.9%
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Furthermore, the dimension of the optimization problem is
|C|+ |T|+ |C||T|+ 2|I||T|+2|I||C||T||P|+ |I|2|C||T||P|,
which makes optimal solution impossible to achieve in a
real network. Table III shows an example of the scalability.
However, the complexity of the proposed algorithms is simply
decided by the number of iterations, users and resources (also
see II). Therefore, by sacrificing a slight loss in a large
scale network scenario, the performance of both greedy and
iterative algorithms is acceptable. More information about the
optimality and complexity can be found in Table II.

TABLE III: VARIABLES AND CONSTRAINTS SIZE SCALABILITY

Problem I dimension Variables Constraints
M=5, N=5, |T|=2, |P|=3 160 1087
M=10, N=10, |T|=2, |P|=3 620 7272
M=10, N=50, |T|=2, |P|=3 3100 36192
M=50, N=50, |T|=2, |P|=3 15100 780352

VI. CONCLUSIONS

In this paper, a novel inter-tenant resource sharing method
bound with a variable power allocation optimization frame-
work is proposed. The significance of the framework lies
on the fact that it allows to expand network capacity and
user service available rate by reusing the physical resources
between tenants incorporated with suitable power control poli-
cies. To allow different depth of resource sharing, two schemes
have been proposed under a mathematical programming opti-
mization framework. To eliminate the curse of dimensionality,
scale-free resource and power joint allocation algorithms are
designed amenable for real-time implementation and rigorous
analysis via numerical investigations reveals significant perfor-
mance gains compared to nominal network slicing schemes.
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APPENDIX

A. Proof of lemma 1

In this case, a simplified mathematical model is shown to
prove the statement in lemma 1. Eq.(14) shows the typical
SINR calculation for a user i, where ω1 and ω2 are the
power controlling ratio of the signaling cell and interfering
cell respectively, ranged from 0 to 1. The parameters gi and
gi′ are antenna gains from the signaling cell and interfering
cell for the user. Still, the two cells have the same maximum
transmission power pmax.

γi =
giω1p

max

gi′ω2pmax + Inoise
(14)

Assume an extreme scenario where two users are located
in two adjacent cells with UE1 located at the edge of cell
1 ended up with an extremely small antenna gain g1=1 and
UE2 located at the center of cell 2 with an extremely high

antenna gain as g2=N, a large positive number. Moreover,
assume that the antenna gain from the interfering cell for
UE1 is g1 = 1 (maximum interference) and for UE2 is
g2 = 1

N . To further simplify the SINR calculation, assume
that maximum transmission power pmax for both cells is 1
and thermal noise Inoise is 1

N , which is small enough to be
ignored. Following Eq.(14), the SINR for each user in this
scenario can be expressed as,

γ1 =
g1ω1p

max

g′1ω2pmax + Inoise
(15)

γ2 =
g2ω2p

max

g′2ω1pmax + Inoise
(16)

With all the denoted values, Eq.(15) and Eq.(16) can be
expresses as,

γ1 =
ω1

ω2 + 1
N

=
ω1N

ω2N + 1
(17)

γ2 =
ω2N

ω1

N + 1
N

=
ω2N

2

ω1 + 1
(18)

Based on the achieved SINR, the system sum rate can be
calculated (aggregated rate of two users) as,

R = ∆f [log2(1 + γ1) + log2(1 + γ2)]

= ∆f [log2(1 +
ω1N

ω2N + 1
) + log2(1 +

ω2N
2

ω1 + 1
)] (19)

To compare with the non-reuse case, Eq.(19) can be rewrit-
ten to express the following scenarios: (1) only UE1 is served
(ω1=1 and ω2=0) and (2) only UE2 is served ((ω1=0 and
ω2=1)).

The achievable rate for the ω1=1 and ω2=0 scenario is
calculated as,

R(ω1=1&ω2=0) = ∆flog2(1 +N) (20)

The achievable rate for the ω1=0 and ω2=1 scenario is
calculated as,

R(ω1=0&ω2=1) = ∆flog2(1 +N2) (21)

If we start from the first scenario (ω1=1 & ω2=0), we can
always obtain higher rate than the rate calculated in Eq.(20)
by increasing ω2 from 0 to 1 in Eq.(19). On the other hand,
if we start from the second scenario (ω1=1 & ω2=0), we can
always obtain lower rate than the rate calculated in Eq.(21)
by increasing ω1 from 0 to 1. In this case, it is true to
say that either higher or lower rate can be achieved by re-
using the PRBs between users with power control compared
to non-reuse with a constant power/ maximum power under the
proposed optimization framework. The achievable aggregated
rate can be deeply influenced by the value of N .
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