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Supplemental Information 

Participants 

Dataset 1 was obtained from the Neuroimaging Informatics Tools and Resources 

Clearinghouse (NITRC) website and was provided by the Centers of Biomedical 

Research Excellence (COBRE; http://fcon_1000.projects.nitrc.org/indi/retro/ 

cobre.html). In this dataset, a diagnosis of schizophrenia was made using the 

Structured Clinical Interview for DSM Disorders (SCID; Diagnostic and Statistical 

Manual of Mental Disorders, DSM-IV) (First et al., 2012). Exclusion criteria included 

confirmed or suspected pregnancy, any history of neurological disorders and a history 

of intellectual disability. The patients were all receiving various antipsychotic 

medications at the time of the study (no medication changes in 1 month). Written 

informed consent was obtained from participants according to institutional guidelines 

at the University of New Mexico. 

Dataset 2, acquired as part of the UCLA Consortium for Neuropsychiatric 

Phenomics LA5c Study, was obtained from the OpenfMRI database (accession 

number: ds000030). All patients underwent a semi-structured assessment with the 

Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental 

Disorders, Fourth Edition (DSM-IV) (First et al., 2004). Exclusion criteria included 

left-handedness, pregnancy, history of head injury with loss of consciousness or 

cognitive sequelae, or other contraindications to scanning. Stable medications were 

permitted for the patients and 81% of patients had at least one comorbid diagnosis  

(Poldrack et al., 2016). After receiving a verbal explanation of the study, participants 

gave written informed consent following procedures approved by the Institutional 

http://fcon_1000.projects.nitrc.org/indi/retro/


Review Boards at UCLA and the Los Angeles County Department of Mental Health. 

Dataset 3 was acquired at Maastricht University, The Netherlands. Patients were 

recruited through clinicians working in selected representative geographic areas in the 

Netherlands and Belgium. Diagnosis of schizophrenia was based on DSM-IV criteria 

(Association, 2000), assessed with the Comprehensive Assessment of Symptoms and 

History (CASH) interview (Andreasen et al., 1992). Exclusion criteria included 

confirmed or suspected pregnancy, any history of neurological disorders, a history of 

intellectual disability and/or a history of substance abuse/dependence within the last 

12 months. Antipsychotic medication use for patients was determined using the 

reports of the participant’s psychiatrist. The ethics committee of Maastricht University 

approved the study, and all the participants gave written informed consent in 

accordance with the committee’s guidelines and the Declaration of Helsinki. 

Dataset 4 was acquired in Dublin and scanned at the Trinity College Institute of 

Neuroscience as part of a Science Foundation Ireland-funded neuroimaging genetics 

study ("A structural and functional MRI investigation of genetics, cognition and 

emotion in schizophrenia"). Patients with confirmed DSM-IV diagnosis of 

schizophrenia were recruited through local clinical services. Exclusion criteria 

included confirmed or suspected pregnancy, any history of neurological disorders or 

intellectual disability and substance misuse in the preceding three months. All patients 

were chronic, but stable, medicated outpatients, with a confirmed diagnosis. 

Participants provided written, informed consent in accordance with local ethics 

committee guidelines. 



Dataset 5 was acquired at the West China Hospital of Sichuan University, 

Chengdu, China. An initial diagnosis of schizophrenia and duration of illness were 

determined by consensus between 2 experienced psychiatrists, using the Structured 

Clinical Interview for DSM-IV(SCID)-Patient Version (Association, 2000). In 

addition, diagnosis of schizophrenia was confirmed for all the patients at 1-year 

follow-up. Exclusion criteria were the existence of a neurological disorder or other 

psychiatric disorders, alcohol or drug abuse (DSM-IV), pregnancy, and any chronic 

physical illness such as a brain tumor, hepatitis, or epilepsy, as assessed by clinical 

evaluations and medical records. All patients are drug-naive first-episode 

schizophrenia. The study was approved by the ethics committee of West China 

Hospital, and written informed consent was obtained from all participants. 

 

MRI acquisition 

At each site the rs-fMRI images were acquired by the Echo-Planar Imaging (EPI) 

sequence. Dataset 1 was acquired using a 3T Siemens scanner. The sequence 

parameters were as follows: repetition time/echo time (TR/TE) = 2000/30 ms; flip 

angle = 90°; 33 axial slices per volume; voxel size = 3.75 × 3.75 × 4.55 mm3; number 

of volumes= 150. Dataset 2 was acquired using a 3T Siemens scanner. The sequence 

parameters were as follows: repetition time/echo time (TR/TE) = 2000/30 ms; flip 

angle = 90°; 34 axial slices per volume; voxel size = 3 × 3 × 4 mm3; number of 

volumes= 152. Dataset 3 was acquired using a 3T Siemens Magnetom Allegra head 

scanner. The sequence parameters were as follows: repetition time/echo time (TR/TE) 



= 1500/30 ms; flip angle = 90°; 27 axial slices per volume; voxel size = 3.5 × 3.5 × 

5.2 mm3; number of volumes= 200. Dataset 4 was acquired using a 3T Philips Intera 

Achieva scanner. The sequence parameters were as follows: repetition time/echo time 

(TR/TE) = 2000/30 ms; flip angle = 90°; 35 axial slices per volume; voxel size = 3.5 

× 3.5 × 3.5 mm3; number of volumes= 180. Dataset 5 was acquired using a 3T GE 

scanner (EXCITE; General Electric, Milwaukee, Wisconsin). The sequence 

parameters were as follows: repetition time/echo time (TR/TE) = 2000/30 ms; flip 

angle = 90°; 30 axial slices per volume; voxel size = 3.75 × 3.5 × 5 mm3; number of 

volumes= 200.  

 

Dealing with potential motion-related artifacts.  

To deal with potential artefacts arising from motion or other factors, we applied 

Friston 24-parameter correction colleagues (Yan et al., 2013). In addition, to ensure 

that motion artifacts were not contributing to the observed group differences, we 

employed the “head motion scrubbing” method proposed by Power and colleagues 

(Power et al., 2014). 

 

Machine learning models.  

In the present study, we used three machine learning methods - logistic regression 

(LR), support vector machine (SVM) and deep learning (DL) to perform 

single-subject classification. These methods were chosen in light of their widespread 

use amongst the neuroimaging community and their varying degrees of complexity 



and abstraction. In particular, LR is considered to be the “simplest” ML method; SVM 

is associated with medium levels of complexity and abstraction, and is the most 

widely used ML method in psychiatric neuroimaging; and DL is thought to have the 

greatest potential of detecting hidden patterns in the data, due to its higher levels of 

complexity and abstraction. These methods are described in detail below.  

Treatment of whole brain images. For LR and DL, the whole brain images were 

treated as 3D * time data. Here we treated each time point separately and computed 

the subject's final prediction based on the average probability across all time points; 

for SVM, the whole brain images were treated as 4D data. The different treatment of 

whole brain images was due to computational constrains (i.e. memory limitation and 

computing time) affecting the implementation of LR and DL but not SVM. 

Logistic Regression. The LR model fits a separating hyperplane, i.e. a linear function 

of the input features, between different classes (e.g. patients and controls). Within this 

framework, the probability that an observation belongs to a specific class is 

determined by the sigmoid function of a weighted sum of the input. These weights are 

estimated using a training sample and then assessed using an independent testing 

sample. In the present study, logistic regression was implemented using the Lasagne 

library (https://zenodo.org/record/27878). We initialized the weights of the classifier 

using the Glorot method (Glorot and Bengio, 2010), with parameters sampled from 

the uniform distribution, and initialized the bias with zero value. These parameters 

were then optimized using the Rmsprop algorithm (Tieleman and Hinton, 2012) using 

a mini-batch with 16 training samples, 100 training epochs, and a learning rate 

https://zenodo.org/record/27878


starting with a value of 0.05 with a learning rate decay decrease a factor of 10-6 per 

epoch. An L2 penalization with parameter value equal to 5*10-5 was applied to the 

model to penalize weights with excessively high values and to prevent overfitting. 

Support Vector Machine. The SVM model (Cortes and Vapnik, 1995) maps the input 

vectors to a feature space using a set of mathematical functions known as kernels. In 

this feature space, the model finds the optimum separation surface that can maximise 

the margin between different classes within a training dataset. Once the separation 

surface is determined, it can be used to predict the class of new observations using an 

independent testing dataset. Here a linear kernel was preferred to a nonlinear one to 

minimise the risk of overfitting. The model was based on libsvm and implemented 

using the Scikit-Learn library (Pedregosa et al., 2012). The linear SVM has only one 

parameter (soft margin parameter C) that controls the trade-off between reducing 

training errors and having a larger separation margin. This parameter was optimized 

spitting the data into training and validation sets and performing a grid search (i.e., C 

= 2-5, 2-3, 2-1, 2-0, 21, 23 … 213, 215) to estimate the best value. 

Deep Learning Technology. DL models are a set of machine learning algorithms that 

extract multiple levels features from the input data (Vieira et al., 2017). Here 

higher-level features are learned as a non-linear combination of lower-level features, 

allowing the extraction of complex and abstract patterns in the data. Based on these 

higher-level features, the model determines the separation surface to perform the 

classification task. Here we used two types of deep learning models: the 

Convolutional Neural Network (ConvNet) and a deep neural network with fully 



connected layers. 

Because whole brain images data are associated with high dimensionality (over 

50,000 voxels), the application of a deep neural network with fully connected layers 

to this type of data would require excessive computational resources. However, since 

whole brain time series data are also associated with correlation between 

neighbouring voxels, we used ConvNet (where the units are not connected to all the 

units in the previous layer) to reduce the number of parameters in the network. This 

reduction had the impact of reducing risk of overfitting whilst alleviating 

computational demands. The training of the ConvNet was performed using 3D kernels 

in which each time step was considered an input channel; training was implemented 

using the Rmsprop algorithm with a mini-batch with 16 training samples, 100 training 

epochs and a learning rate starting with a value of 0.05 and decaying a factor of 10-6 

per epoch. The batch normalization (Ioffe and Szegedy, 2015) was applied to all 

layers to accelerate the convergence of the training. The architecture of the deep 

learning model is represented in Figure S1. 

In contrast, it was possible to use a deep neural network with fully connected layers to 

analyse connectome-wide matrices and graph-based analytic metrics, in light of the 

lower dimensionality of these measures. In particular, we adopted a structure with 

three hidden layers with 100 units in each hidden layer. We used the Rectified Linear 

Unit (ReLU) in all hidden layers and the softmax units in the output layer. The 

training of the network was performed using the Rmsprop algorithm using a 

mini-batch with 16 training samples, 100 training epochs, and a learning rate starting 



with a value of 0.05 with a learning rate decay decrease a factor of 10-6 per epoch. 

The L2 parameter was set to 5*10-5. Both deep learning models were implemented 

using the Lasagne library. 
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Figure legends 

 

Figure S1.  The architecture of the deep learning model.  

We used a convolutional neural network in which the first layer was a 3D convolutional layer with 64 filters (each filter 

with size 7x7x7 voxels), a stride with size of 2, and "valid" padding (V). Next, a max pooling layer was used to reduce 

the dimensionality of the feature maps of the network. This layer had filter sizes of 5x5x5 voxels and stride size of 3. 

The third layer was a convolutional layer with 64 filters (each filter with size 5x5x5 voxels), a stride size 1, and a 

"same" padding. Next, we used a max pooling layer with filter size of 5x5x5 voxels and a stride size of 3 voxels. Finally, 

the feature maps were flattened from a 3D space to a 1D vector in order to be used as input to the next layer: a 

full-connected (FC) layer. This layer had 50 rectified linear units (ReLU). Lastly, the output layer had 2 units with 

softmax activation function that outputs the probability of the input data being from a patient or control. 

 


