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Abstract: 250 words; text: 3,751 words. 

 

ABSTRACT: 

 

Objective: Seasonal Affective Disorder (SAD) is a form of cyclic mood disorder that tends to 

manifest as winter depression. SAD has anecdotally been described as a hypocortisolemic 

condition. However, there are no systematic reviews on SAD and Hypothalamic-Pituitary-

Adrenal (HPA) axis function. This review intends to summarize these findings. 

Methods: Using the PRISMA (2009) guideline recommendations we searched for relevant 

articles indexed in databases including MEDLINE, EMBASE, PsycINFO, and PsychArticles. 

The following keywords were used: "Seasonal affective disorder", OR "Winter Depression", 

OR "Seasonal depression" associated with: “HPA Axis” OR “cortisol” OR “CRH” OR 

“ACTH”. 

Results: Thirteen papers were included for qualitative analysis. Studies used both 

heterogeneous methods and populations. The best evidence comes from a recent study showing 

that SAD patients tend to demonstrate an attenuated Cortisol Awakening Response (CAR) in 

winter, but not in summer, compared to controls. Dexamethasone Suppression Test (DST) 

studies suggest SAD patients have normal suppression of the HPA axis.  

Conclusion: There is still insufficient evidence to classify SAD as a hypocortisolemic 

condition when compared to controls. Heterogeneous methods and samples did not allow 

replication of results. We discuss the limitations of these studies and provide new methods and 

targets to probe HPA axis function in this population. SAD can provide a unique window of 

opportunity to study HPA axis in affective disorders, since it is highly predictable and can be 

followed before, during and after episodes subsides.  

Keywords: Seasonal Affective Disorder, Winter Depression, HPA axis, cortisol, depression, 

mood disorder. 
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1- Introduction 

 

Seasonal affective disorder (SAD) was first described in 1984 as a form of recurrent 

depression that usually occurs during winter and spontaneously resolves in spring/summer 

(Pjrek et al., 2016). SAD is usually characterized by atypical features, such as fatigue, 

hyperphagia, craving for carbohydrate-rich foods and weight gain, putatively energy-

conserving symptoms that frequently precede the functional impairments seen afterwards 

(Gudenas and Brooks, 2013). Another described feature of SAD seems to be an improvement 

in mood after light therapy (LT) (Nussbaumer et al., 2015a; Perera et al., 2016). Because of 

controversies regarding the classification of SAD as a distinct condition (Rosenthal, 2009), 

seasonality is a specifier for both Major Depressive Disorder (MDD) and the depression and 

hypo/manic episodes seen in Bipolar Disorder (BD) (Severus and Bauer, 2013). Regardless of 

its classification, the predictability of SAD makes it an ideal condition to prospectively study 

possible hormonal changes in the context of depression.  

The prevalence of SAD in the general population varies between 1-9%; it is especially 

influenced by latitude(Mersch et al., 1999; Nussbaumer et al., 2015b) and gender, with almost 

80% of patients being female (Kasof, 2009). Light exposure has been implicated as a major 

factor in the pathophysiology of the condition. From melanopsin alterations or genetic variants 

(Coogan et al., 2015; Roecklein et al., 2009) to increased incidence of SAD in visually impaired 

people (Madsen et al., 2017, 2016), there is evidence supporting a role for light deprivation in 

the development of depressive symptoms in these individuals. Light is the main environmental 

cue for circadian rhythms and stress response, mainly by activation of the suprachiasmatic 

nucleus (SCN) of the hypothalamus (the human central master clock) and the autonomic and 

endocrine response that follows (Fig 1). The main hormonal component of the stress response 

involves activation of the hypothalamic-pituitary-adrenal (HPA) axis and consequent 

glucocorticoid (GC) release (in humans, cortisol). Cortisol is an important epigenetic agent that 

regulates the expression of a large array of genes (Reul et al., 2015) (Fig 2). GC are thought to 
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regulate approximately 20% of the expressed human genome, and their effects spare no organ 

or tissue (Chrousos and Kino, 2005). 

Interestingly, evidence suggests that genetic expression exhibits a circannual pattern, 

with inverted immune-metabolic profiles observed between the northern and southern 

hemispheres (Dopico et al., 2015). Participants investigated during winter tend to exhibit a 

profound pro-inflammatory transcriptomic profile, with elevated levels of C reactive protein 

(CRP) and increased IL-6 soluble receptors, inflammatory factors previously associated with 

MDD (Dantzer et al., 2008), BD (Fernandes et al., 2016) and SAD (Leu et al., 2001). Another 

recent paper shows that neocortical genetic expression is also subject to circadian and 

circannual (seasonal) effects (Lim et al., 2017). Because of its wide epigenetic and metabolic 

properties, it is reasonable to believe that cortisol might play a role in these seasonal changes. 

However, evidence suggests different HPA axis profiles in distinct depressive subtypes 

(Gold, 2014; Gold and Chrousos, 2002). While melancholic depression has been consistently 

associated with hypercortisolism, the same does not apply for depression with atypical features 

(Mario F Juruena et al., 2017; Lamers et al., 2013). Due to the very similar symptoms of SAD 

and atypical depression, it has been suggested that both these conditions, along with Chronic 

Fatigue Syndrome (CFS) (Papadopoulos and Cleare, 2012), are characterized by 

hypocortisolism (Juruena and Cleare, 2007). In turn, atypical depression has been linked to 

increased inflammation, an analogous stress response system (Lamers et al., 2013). However, 

to our knowledge, there are no systematic reviews on SAD and HPA axis function. This review 

intends to summarize these findings and shed some light on the pathophysiology of this 

condition. 

 

2- Methods:  

Using the PRISMA (2009) guideline recommendations, we searched for relevant 

articles indexed in databases including MEDLINE, EMBASE, PsycINFO, and PsychArticles, 

using the Ovid platform. The following keywords were used: "Seasonal affective disorder", 

OR "Winter Depression", OR "Seasonal depression" associated with: “HPA Axis” OR 

“cortisol” OR “CRH” OR “ACTH”. We included full-text articles, in humans, written in 

English language, with no temporal limits, published until September 2018. Animal studies 

and review articles were excluded from the main analysis but are discussed when thought 

relevant. 
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3- Results: 

 

This search strategy resulted in 13 full articles that evaluated the HPA axis function in 

SAD. Studies had very heterogeneous designs, populations and drug challenges, and followed 

an interesting chronology (Table 1).  

 

3.1: Dexamethasone Suppression Test (DST) Studies: 

 

At his seminal paper of SAD in 1984, Rosenthal et al. describe winter depression in 29 

individuals, with spontaneous remission during summer. After performing a DST in 7 of these 

individuals, during summer and winter, the authors’ found normal suppression of the HPA axis 

in both seasons (Nussbaumer et al., 2015b). A second DST study (1986) by the same group 

recruited 20 patients (5 male, 15 female) with at least two episodes of SAD (James et al., 1986). 

Of those, 2 patients had an abnormal DST, while the rest had normal suppression (James et al., 

1986). After this second study, the authors concluded that “normal suppression of the HPA 

axis appears to be a feature of SAD, since SAD patients have normal suppression of the HPA 

axis after DST”  (James et al., 1986).  

 

3.2: 5- Hydroxytryptophan challenge (5HT agonist) 

 

In 1987, the same group set out to test a different approach. They recruited 10 

participants with at least 2 years of seasonal depression and compared them to 10 healthy 

controls (matched by age, sex and menstrual history) (Jacobsen et al., 1987). This time, 

researchers compared the effects of placebo and a serotonin agonist [5-Hydroxithryptophan 

(5HTP)] in HPA axis function. At baseline and after placebo, they found higher levels of 

prolactin (F=7.83, p < 0.02) and a trend for higher cortisol levels (F=3.33, p=0,09) in 

participants with SAD. After the challenge with 5HTP, there were no significant differences 

between groups. The authors concluded that prolactin and cortisol levels might be elevated in 

SAD patients, although their sample was very small (Jacobsen et al., 1987).  

 

3.3: Ovine Corticotropin - Releasing Hormone Challenge (oCRH): 
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During the winter of 1991, Rosenthal’s group recruited another 10 SAD patients (5 men 

and 5 women) depressed at the moment of assessment (Joseph-Vanderpool et al., 1991). 

Participants were studied under two conditions: light-treated (2.5hs of LT, twice a day, for 9 

days, before the infusion) and untreated. Controls were 13 age- and sex-matched healthy 

individuals. Basal assessment was performed in 7 out of 10 SAD patients (before and after LT) 

and in 9 controls. On the study day, all subjects received 100 ug of Ovine CRH (oCRH) and 

had their ACTH and cortisol levels assessed. 

Clinical response was statistically significant after LT in SAD patients (Baseline 

HDRS: 16.4 ± 1.33 vs LT: 7.5 ± 1.10; p < 0.01). They also found that cortisol levels were 

significantly lower in SAD patients at 10 pm (when cortisol levels are usually at their nadir) 

compared to controls (mean (SD): 46.6 (± 27.6) nmol/L vs 137.9 (± 71.73) nmol/L; p= 0.02). 

They found no significant differences in diurnal levels of ACTH and cortisol between treated 

and untreated patients. 

After the oCRH challenge, untreated SAD patients had a delayed and reduced response 

to CRH compared to controls (ACTH: SAD 4.4 ± 0.6 pmol/L vs 8.1 ± 1.2 pmol/L; p=0.02); 

(cortisol: SAD 508 ± 27.5 nmol/L vs 583.8 ± 35.3 nmol/L; p < 0.01). After 9 days of LT, basal 

plasma ACTH and cortisol (and their responses to oCRH) showed a trend towards similarity 

between light-treated SAD participants and controls (p=0.1). SAD patients also had a delayed 

response to oCRH of approximately 30 minutes, compared to controls (p=0.05). That 

difference tended to decrease in the treated group.  The ratios of ACTH and cortisol were 

similar between treated and non-treated groups. The authors hypothesized a possible 

dysfunctional CRH system in SAD, with blunted adrenal response (Joseph-Vanderpool et al., 

1991).  

 

3.4: d- Fenfluramine Challenge (5HT agonist) 

 

In 1993, Coiro et al. from the University of Parma, Italy, recruited 7 SAD patients (5 

men, 2 women, aged 30-44 years) and compared them with 8 healthy controls (matched by 

Body Mass Index [BMI]), during summer and winter. SAD patients had a mean score in the 

HDRS of 19.2 during winter and 2.5 during summer. The study aimed to investigate the 

hormonal effects of 60 mg of d-Fenfluramine (5HTa), compared to placebo. At baseline, there 

was no difference between hormone levels in both groups. After the challenge with d-

Fenfluramine, SAD patients displayed a blunted HPA axis response to the drug, with lower 

cortisol levels than controls, regardless of the season (Summer/Spring F=7,39; p < 0.05; 
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Fall/Winter F=7,5; p < 0.02). There were no differences between groups when using placebo 

as challenge. The authors suggested a serotonergic dysfunction in SAD patients to explain these 

findings (Coiro et al., 1993).  

In 1994 Yatham et al. from the University of British Columbia in Canada, tested this 

same approach (Yatham and Michalon, 1995). They recruited 10 SAD patients (6 women, 4 

men) with a mean HDRS [15.8 ± 3.12], and compared with the same number of healthy 

controls, during winter and fall. Using the same dose of 60 mg of d-Fenfluramine as challenge, 

the authors found no differences between groups before and after drug administration. They 

suggest the small sample did not provide them sufficient power to detect small changes and 

that different populations (including gender differences) might be responsible for the 

conflicting results seen in the previous study (Yatham and Michalon, 1995).  

 

3.5 Light Therapy 

 

In 1995, Anna Wirz-Justice et al. from Basel, Switzerland, intended to check the effects 

on cortisol of ‘Natural Light Treatment” (NLT), (which consisted in a 1-hour morning walk 

outdoors) vs ‘Artificial Light Treatment’ (ALT), in SAD patients  (Wirz-Justice et al., 1996). 

From a total of 74 SAD patients, 34 participated in the study and 28 finished the protocol. 

Participants were divided into 2 groups, according to their own preference [20 NLT (mean 

HDRS = 18) vs 8 ALT (mean HDRS = 20)]. They were followed weekly with depression scales 

and had sleep and food logs filled daily. They also provided saliva samples for cortisol 

assessments and rated their humour based on a visual scale. At baseline, there was no difference 

in hormone levels between groups. After one week, participants exposed to natural light had a 

significant improvement in depressive symptoms (reduction of 65% on HAMD) compared to 

artificial light. In addition, cortisol levels were significantly lowered in this group and tended 

to return to baseline values after the withdrawal of treatment. Participants on the natural light 

group were also found to have an advanced mean wake up time (by 40 minutes), an advance 

sleep midpoint (by 26 minutes) and spent, on average, 30 minutes less in bed. Natural light was 

also shown to reduce carbohydrate craving in the second part of the afternoon. The authors 

suggest this effect is mainly due to light, suggesting that exercise was limited to walking, and 

so had minimal effect. They emphasize the need for walks in winter as a means of reducing 

SAD symptoms.  

In 1996 Rosenthal’s group aimed to evaluate the effects of 9 days of ALT in 22 

depressive patients with a seasonal pattern (including 10 participants with a BD type II 
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diagnosis, and 1 participant with BD type I), compared to 24 healthy controls. The aim was to 

investigate the consequences of LT in the hormonal profile of SAD patients. They found that 

patients had a significant symptomatic improvement with light therapy (HAMD off LT=19, 

after LT=8; < 0.01). However, they found no differences in cortisol levels (at baseline and after 

treatment) between the two groups. The authors suggest that measures of free cortisol would 

be more specific, something they were not able to do (Oren et al., 1996).  

After this, Thalen et al., from the Karolinska Institute in Stockholm, Sweden, were able 

to recruit a larger sample of SAD patients (Kjellman, 1997). In 1997, they recruited 63 

depressed patients, 42 with a seasonal pattern (35 women) vs 21 (16 women) without a seasonal 

pattern. Participants were divided into two arms: morning and night light therapy. At baseline, 

levels of hormones were the same between groups. They found that LT had a bigger effect in 

symptomatic improvement in SAD patients compared to depressed controls without seasonal 

pattern (50% vs 21% reduction on depressive scores; p < 0.01), regardless of the time of 

administration. Also, there was a small but significant correlation with symptomatic 

improvement and an advancement of cortisol nadir ( 1 hour delay = - 4.5 % change in 

depression scale; p < 0.05), which was larger in participants receiving light in the morning ( 

F159 = 12,74; p < 0.01) (Kjellman, 1997). The study also found that SAD participants reported 

significantly more frequent carbohydrate craving than non-seasonal depressed individuals, 

although this was not correlated with hormonal levels.  

Also in 1997, Avery et al. recruited 12 SAD patients and 9 controls, but only 6 (all 

female) patients with SAD and 6 controls finished the study (Avery et al., 1997). The study 

measured baseline cortisol levels and rectal temperature during an overnight hospital 

admission. After that, participants underwent 2 hours of light therapy at home, in the morning 

time, for 4 weeks. They were then readmitted to repeat the protocol. SAD patients were found 

to have phase delays of the minimum temperature (5:42 AM vs 3:16 AM; p < 0.01) and a 

delayed cortisol nadir (12:11 AM vs 11:38 PM in controls; p < 0.05). No other statistically 

significant difference was seen between groups. After LT, there were no significant changes, 

although a trend for chronologic adjustment was seen (from 5:42 AM to 3:36 AM for lowest 

temperature; and from 12:11AM to 11:38 PM for cortisol nadir; p = 0.06).  

 

3.6: Light Therapy + meta-chlorophenilpiperazine (m-CPP) (5HT agonist) challenge 
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In 1997, Schwartz and colleagues investigated the effects on temperature, cortisol 

measures and reactions to the infusion of another 5HTa, in this case, meta-

chlorophenilpiperazine (m-CPP). They were following one of their own leads that showed 

behavioural activation after m-CPP in SAD patients (Joseph-Vanderpool et al., 1993). 

Researchers recruited 17 patients with SAD (3 men) and 15 controls (3 men) during winter. 

All subjects underwent 2 phases of “treatment”: 3 weeks of LT + 3 weeks of “untreated 

condition” (which involved less exposure to natural light and the use of dark goggles with 3% 

light, while outdoors on sunny days). The order was randomized. On the third week, 

participants were admitted overnight for infusion tests (either 0.8 mg/kg of m-CPP or placebo) 

and had hormonal levels assessed.  

Baseline measures showed a trend for higher cortisol in SAD patients compared to 

untreated controls and compared to themselves after LT. After the m-CPP challenge, they 

found that patients with SAD had a blunted ACTH response compared to controls (drug x time 

x group: F(6,138)  = 6.39; p < 0.01), but there was no difference in cortisol levels between groups 

(Deegan et al., 2009). They suggested a serotonergic dysfunction as a plausible mechanism in 

SAD pathophysiology. They also found a reduction of temperature at night in the light treated 

group, which was weakly associated with symptomatic improvement.  

The results from Schwartz encouraged more research with this 5HTa compound, and 

in 1998, Levitan et al. in Canada used the same m-CPP challenge in 14 SAD patients (all 

women) and 15 healthy matched controls (Article, 2008). At baseline, cortisol levels between 

groups were the same. Patients were then admitted overnight and in the morning received a 

lower dose of m-CPP (0.1mg/kg) than in Schwartz’s study. Although participants with SAD 

described mood improvement after the infusion, there was no significant difference in cortisol 

levels between groups. The authors suggest that more specific serotonergic agonists could 

improve our understanding of the role of serotonin and HPA axis in SAD.  However, due to 

heterogeneous methods and populations, the study did not replicate the previous findings. 

 

3.7: Cortisol Awakening Response (CAR) 

 

In 2011, Thorn et al. (Thorn et al., 2011), in London, measured the Cortisol Awakening 

Response (CAR) and the diurnal pattern of cortisol secretion of 26 patients with self-assessed 

SAD (recruited from the local Seasonal Affective Disorder Association [SADA- UK]) and 

compared them to 26 healthy matched controls. Participants collected their own salivary 
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cortisol samples throughout the day, for 2 consecutive days, during summer and winter. They 

were supposed to collect samples on awakening and 15, 30 and 45 minutes after; and then after 

3, 6, 9 and 12 hours. This was to distinguish the CAR from the remaining cortisol diurnal 

profile. Subjects were also asked to fill several psychological measures, including how long 

they expected to be busy in the next day, the Stress Arousal Checklist (Cox and Mackay, 1985), 

the Seasonal Pattern Assessment Questionnaire (Mersch et al., 2004), the Hospital Anxiety and 

Depression Scale (Zigmond and Snaith, 1983), and the 14-item Perceived Stress Scale (Cohen 

et al., 1983). The authors grouped some of these scores to develop a “distress” construct and 

an “arousal” one. The results of the study show that there were no differences between SAD 

and control groups during summer in either hormones or psychological distress. However, in 

winter, SAD patients had a significant attenuated CAR in comparison to healthy control 

participants (F(1.9,97.3) = 75.91, p < 0.01). Importantly, there was a significant three-way 

interaction between season, sample and group (F(F=2,100) = 4.5, p = 0.01). In winter, the CAR 

was significantly attenuated in SAD participants in comparison to controls. This three-way 

interaction accounted for a significant main effect of season (F (1,50) = 5.662, p = 0.02) and a 

significant two-way interaction between sample and group (F(1.9,94.1) = 3.159, p = 0.05). The 

“dysphoria” construct was found to be inversely correlated with CAR levels during winter, but 

not in summer (p=0.03). Interestingly, there was no difference between groups on circadian 

variation. The authors suggest that it can be ignored in future research since the CAR is under 

a different regulation from the remaining diurnal cortisol profile (Clow et al., 2010).  

 

4- Discussion: 

 

To our knowledge, this is the first review to systematically evaluate and summarize the 

different approaches used to investigate HPA axis function in SAD. Our results show that 

findings are inconsistent, mainly due to different methods and heterogeneous populations. 

Most (if not all) studies did not have enough statistical power to detect small hormonal 

differences between groups. Studies followed an interesting chronology, learning from 

previous scenarios. Methods included hourly rectal temperature measures, overnight 

admissions, blood sampling throughout 24 hours with venepunctures and the use of dark-

goggles in participants in off-light groups. These methods do not provide optimal conditions 

to study stress-related physiology since they carry a good amount of stress themselves. 

Technological advances (and greater accessibility to them), enabled researchers to perform the 
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most rigorous (and simplest) study so far, with salivary cortisol measures taken at home 

(providing a more realistic setting for a stress-related study) demonstrating an attenuated 

cortisol awakening response in SAD participants during winter, but not in summer (Thorn et 

al., 2011). 

The cortisol awakening response is subject to a different regulation mechanism 

compared to the circadian cortisol profile (Clow et al., 2010; Thorn et al., 2009). The CAR is 

the rapid increase in cortisol levels following morning awakening and it seems to be regulated 

not only by HPA axis activation but by a SCN extra-pituitary neural pathway, that sends signals 

directly to the adrenal glands in order to sensitize receptors before ACTH stimuli (Thorn et al., 

2009). Depending on this sympathetic mechanism, the adrenal might become more or less 

sensitive to ACTH, consequently altering cortisol release (Clow et al., 2010). The hippocampus 

has been hypothesized to play a major role in this task (Fries et al., 2009). This physiological 

mechanism may be affected by several factors, including adverse prior day experiences, 

boosting this function to provide extra energy for imminent demands (Adam et al., 2006). It 

may be that diminished light input in the SCN disrupts this extra-pituitary mechanism, leading 

to the attenuated CAR response that we see in SAD patients during winter (Thorn et al., 2009). 

This agrees with the finding of delayed ACTH and cortisol release after oCRH challenge 

performed by Rosenthal’s group. They hypothesized a dysfunctional CRH system, but 

sympathetic activity and consequent adrenal sensitivity might play an important role (Joseph-

Vanderpool et al., 1991). Consistently, SAD individuals were found to have lower levels of α-

amylase, a possible marker of low sympathetic tone (Ivanova et al., 2017).  

Both studies of DST in SAD participants found that the majority of patients have 

normal suppression after 1mg of Dexamethasone (James et al., 1986). Their samples were 

small, heterogeneous and 10% of patients did not, in fact, suppress cortisol after the challenge. 

In both studies, sample bias, especially due to gender differences, confound the results. Gender 

plays a major role in HPA axis regulation and SAD incidence (80% female) (Koch et al., 2017). 

Gonadal steroids differently impact HPA axis function (Le Tissier et al., 2016). While, 

testosterone generally tends to inhibit stress reactivity (Viau and Meaney, 1996), estradiol 

appears to enhance it, possibly by increasing adrenal sensitivity to ACTH (Figueiredo et al., 

2007). One study using salivary cortisol measures found that women with depressive symptoms 

in their premenstrual period tended to have lower cortisol levels compared to themselves after 

menstruation (Odber et al., 1998). Cyclic fluctuations of estradiol seen in women of 

reproductive age, and their consequent modulation of adrenal sensitivity, may play a role in the 

increased vulnerability of women to develop stress-related conditions (Weiss et al., 1999). This 
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study provides evidence for an interesting concept, the one of “relative hypocortisolism”. When 

compared to controls, normal cortisol levels do not necessarily mean sufficient cortisol 

signalling for the individual. Longitudinal studies using patients as their controls might provide 

key insights into this. 

The studies with serotonin agonists and HPA axis function in SAD were conducted 

with heterogeneous, small samples, and could not be replicated. Serotonin abnormalities are 

commonly cited as consistent findings in SAD literature (D., 2010), but no clear conclusions 

from serotonergic challenges can be drawn from the studies conducted so far. Serotonin 

systems show bidirectional interactions with the HPA axis (Mario F. Juruena et al., 2017) and 

play an important role in circadian rhythms, partially by modulating the SCN response to light 

(Ciarleglio et al., 2011). However, their impact on HPA function in SAD is still to be 

elucidated. Future studies might aim for multiple cortisol salivary measures at home before, 

during and after long periods of treatment with serotonergic drugs, observing the possible 

impact of these drugs in cortisol release and rhythms at an individual levels.  

The studies with light therapy in SAD related to HPA axis function were also conducted 

with heterogeneous methods and populations. Virtually all of them found symptomatic 

improvements in the SAD population, but their analysis of HPA axis function was conflicting 

and inconclusive. Only one study was positive and suggested a decrease in cortisol levels after 

intervention (morning walk – natural light). This study has several potential confounders, such 

as high attrition, patient preference (i.e. non-randomized), physical activity, social interaction 

and depression severity (Wirz-Justice et al., 1996). Cortisol levels tended to get back to usual 

values after withdrawing of the strategy. Recent studies have shown that light might play an 

important role in the treatment of seasonal and non-seasonal depression (Perera et al., 2016; 

Schwartz and Olds, 2015), mainly by modulating circadian rhythms. Evidence suggests that 

humans (as most mammals) are vulnerable to the manipulation of light cues, entraining 

circadian rhythms accordingly (Wehr et al., 2007). Using this theoretical background, 

chronotherapeutic strategies are increasingly under scrutiny as possible treatments for mood 

and metabolic disorders (Coogan and Thome, 2011; Dyar and Eckel-Mahan, 2017; Schwartz 

and Olds, 2015). Light seems to play an important role in energy regulation and symptomatic 

improvement in SAD, but their relation to HPA axis modulation is still unclear. 

 

5- Conclusion: 

 



14 
 

Based on the findings of this systematic review, we conclude that there is still 

insufficient evidence to classify SAD as a hypocortisolemic condition when compared to 

controls. Methodological inconsistencies, very small sample sizes, and different populations 

did not allow for replication of results. Our findings are consistent with a recent systematic 

review that failed to show cortisol abnormalities in atypical depression (the typical seasonal 

pattern) when compared to melancholic depression (Mario F Juruena et al., 2017). As those 

authors, we suggest a future focus on clinical characteristics, especially neurovegetative 

symptoms, might provide a deeper understanding of the biological mechanisms involved. So 

far, the most notable finding in the field is the attenuated cortisol awakening response seen in 

winter, but not in summer, demonstrated in SAD patients. 

Future research on SAD and HPA axis might focus on salivary assays, which measure 

a more reliable, “free”, biologically active form of cortisol. This method also allows patients 

to collect the sample themselves, at home, reflecting more natural conditions, a crucial factor 

in stress-related studies. Furthermore, it is now possible to track subjects regarding mood 

rating, eating and sleeping patterns, as well as to obtain physical data (e.g. heart rate, heart rate 

variability) via ecological momentary assessement using smartphones, smartwatches or 

actigraph apps. Because cortisol seems to impact most of these functions, including sleep 

(Vadivelu et al., 2016), these data can be correlated with biochemical (possibly salivary) 

findings before, during and after mood episodes (in this case, SAD) subsides. Following 

patients prospectively for longer periods (years) could also give us estimates of “relative 

cortisol deficiency”, comparing patients as their own controls (Celec et al., 2009; Odber et al., 

1998). Another possible approach would be to follow patients in both hemispheres and see if 

these immune-endocrine patterns are consistently inversely correlated, as a recent paper 

suggests (Dopico et al., 2015).  

There is strong evidence for seasonal variation in a myriad of human psychological 

features (from mood and cognition to genetic expression (Abbasi, 2018; Byrne et al., 2015; 

Geoffroy et al., 2015; Lowell and Davis, 2008)), and seasonality clearly impacts the lives of 

(at least) one sub-group of people with mood disorders. Regardless of the classification status 

of SAD (BD or recurrent MDD), the presence of seasonality might provide the perfect 

condition to study physiological changes in depressive disorders. Its high predictability 

provides a clear opportunity to study these changes during the whole process and the 

technology now available enables us to have a variety of physical and activity data to correlate 

with these changes.  
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Table 1: Seasonal affective disorder and HPA axis studies: 
 

Author/ 
Year 

Sample Diagnostic 
tools 

Outcome 
measures 

Key findings Limitations 

Rosenthal 
N et al. 
1984 

7 cases. No 
controls. 

2 years of 
winter 
depression, by 
RDC 

DST Normal 
suppression.  
No difference 
between 
summer/winter
. 

Small n.  
1st study did 
not describe 
the methods 
of DST. No 
control group. 

James SP, 
Rosenthal 
N et al. 
1986 

20 cases. 
No control 

group. 

RDC, SPAQ,  
HRSD-21 (>14) 

DST Normal 
suppression in 
18 patients; 2 
non-
suppressors 

Small sample. 
No control. 

Jacobsen 
FM, 
Rosenthal 
N, et al. 
1987. 

10 cases;  
10 healthy 
matched 
controls 

RDC, 2 years of 
the seasonal 
pattern 

HDRS + 7 item atypical 
symptoms; Blood 
Cortisol, Melatonin 
and Prolactin levels, 
after 200mg of 

5-HTP. 

Baseline 
prolactin levels 
greater in the 
SAD group 
(p<0.02); trend 
for higher basal 
cortisol levels in 
the SAD group 
(p=0.09); no 
statistically 
significant 
differences 
between 
groups after 5-
HTP. 

 

Small 
sample. 

Joseph-
Vanderpoo
l JR, 
Rosenthal 
N et al. 
1991. 

10 cases, 
before and 
after light 
therapy 
(5 male);  
13 matched 
controls. 

DSM III R 
criteria (SCID); 
HRSD-21 (>14) 

HRSD; Blood ACTH, 
cortisol levels (basal 
and after ovine CRH 
stimulation) 

Baseline 
cortisol levels 
lower in SAD 

patients 
(p=0.02); after 

oCRH, SAD 
patients had 

Small sample. 
Not 
representative 
of real-world 
conditions 
(F>M). 
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delayed and 
reduced 

responses in 
ACTH (p<0.02) 

and cortisol 
(p<0.01). 

Significant 
improvement in 

hormonal 
response after 
9 days of LT, 

accompanying 
symptomatic 

improvement. 
Coiro, V et 
al., 1993. 

7 (5 male);  
8 healthy 
controls (6 
male) 

SCID for DSM 
III R with a 
seasonal 
pattern. HDRS-
21. 

Blood Cortisol and 
Prolactin levels after 
60mg of  
d, Fenfluramine 
(5-HT agonist) and 
placebo, in winter and 
summer  

Prolactin 
(p<0.02) and 
cortisol 
(p<0.05) levels 
significantly 
lower in the 
SAD group after 
dF. Combined 
(p<0.02); 

Small 
sample, 
composed 
mainly by 
males. 

Yatham, 
LN. 1994 

10 (6 
female);  
10 healthy 
matched 
controls 

SCID for DSM 
III R; SPAQ. 
HDRS-21. 

Blood cortisol and 
prolactin levels after 
60mg of d, 
Fenfluramine or 
placebo 

 

No significant 
difference 
between 
groups 

Small sample, 
different from 
previous study 

Wirz-
Justice et 
al. 1995. 

28 cases (26 
female);  
Same group 
after 
intervention
: 
20 (19 
female) 
natural light;  
8 (7 female) 
artificial 
light 

HDRS-21, at 
winter 

HAM-D, CGI, food and 
sleep log, salivary 
cortisol and melatonin 

 

Symptomatic 
improvement in 
the NL group 
(d=2.17); 
Morning 
cortisol 
significantly 
lower in the 
natural light 
group (p=0.04), 
return to 
baseline after 
withdrawal. 
Melatonin 
changes not 
statistically 
significant. Less 
carbohydrate 
craving after 
natural light 

Physical 
activity in the 
natural light 
group might 
be a 
confounder 

Oren, DA, 
Rosenthal 
N, et al. 
1996. 

21 cases (10 
BD2, 1 BD1); 

8 males;  
20 controls 

SPAQ; HRSD-21 
(>14), atypical 
depression 
scale (ATY) 

Blood cortisol, 
prolactin, thyrotropin. 

HRSD 

Cortisol levels 
did not differ 
between SAD 
(before and 

after LT), and 
controls 

Heterogeneou
s sample 
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Thalen, B-
E, et al. 
1997 

42 SAD 
(35 female);  
21 non-
seasonal 
depression  
(16 female) 

DSM III criteria; 
Comprehensiv
e Psychological 
Rating Scale 
(CPRS) 

HRSD-18; Serum 
cortisol and melatonin 

levels 

No difference in 
baseline 

hormones. 
Light therapy 

improved 
symptoms of 

SAD more than 
non-SAD. 
Cortisol 

bathyphase 
advanced by 
morning LT. 

 

Avery, DH 
et al. 1997 

12 (6 
finished the 

study); 
 9 controls  
(6 finished) 

SPAQ Rectal temperature, 
Blood cortisol and TSH 
levels 

Phase delayed 
circadian 
rhythms in the 
SAD group, 
regarding lower 
temperature 
(p<0.05) and 
lower cortisol 
(p<0.06). Light 
therapy 
advanced these 
rhythms. 

Very small 
sample. 
Cortisol 
findings not 
statistically 
significant. 
Stressful 
methods might 
have 
confounded 
results 

Schwartz, 
PJ. 
Rosenthal 
N. et al. 
1997 

17 cases (3 
male); 15 
healthy 
controls (3 
male) + 
cases after 
LT 

Rosenthal’s 
criteria 

HDRS, HSRS-SAD 
version; cortisol, 
prolactin, ACTH, GH, 
NE: basal and after 
stimulation with Meta-
chlorophenylpiperazin
e (m-CPP) –  
5-HT agonist 

Tendency for 
higher cortisol  
(p=0.10) and 
lower NE 
(p=0.07) in SAD 
patients at 
baseline. 
Blunted ACTH 
(p<0.05) and NE 
(p<0.05) 
responses after 
m-CPP in the 
SAD group. No 
differences 
between 
groups in 
cortisol, 
prolactin or GH 
after m-CPP. 
Reduction of 
night 
temperature 
after LT in the 
SAD group. 

Stressful 
methods might 
have 
confounded 
results 

Levitan, RD 
et al. 1998 

14 (all 
female);  
15 healthy 
matched 
controls 

SCID for DSM 
III with a 
seasonal 
pattern; HDRS 
29 item (8 item 
addendum 
with atypical 
features 

Prolactin and cortisol 
levels (baseline and 
after m-CPP) 

No statistically 
significant 

differences in 
baseline levels. 

Positive 
correlation 
between 

cortisol and 
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HDRS score at 
baseline in SAD 
group (p=0.02). 

Blunted 
prolactin 

response in the 
SAD group 
(p=0.04) 

Thorn, L, et 
al. 

26 (19 
female);  
26 healthy 
controls  
(15 female) 

SPAQ, salivary 
cortisol, HADS, 
Stress arousal 
checklist  

SPAQ, salivary cortisol, 
HADS, Stress arousal 
checklist  

SAD patients 
had lower 
cortisol 
awakening 
response during 
winter, but not 
during summer, 
compared to 
controls 
(p<0.02). 
Diurnal cortisol 
variation was 
the same 
between 
groups. 
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Figure 1: Light activation of HPA axis 
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Fig 1: After light reaches photosensitive receptors in the eye, it sends a message through the Retino-
Hypothalamic-Tract to the Suprachiasmatic Nucleus (SCN) of the hypothalamus. The SCN activates the 
Paraventricular nucleus of the hypothalamus (PVN), which liberates corticotropin-releasing hormone (CRH) and 
initiates HPA axis response. The final product of this process is cortisol that exerts negative feedback on 
mineralocorticoid receptors (MR) (Red, present in the Hippocampus, Amygdala and Prefrontal cortex) and 
glucocorticoid receptors (GR) (Blue, expressed diffusely in several brain regions). Serotonin and Norepinephrine 
neurons have important connections with the SCN and the PVN, respectively.  

 

 

 

 

 

 

 

Figure 2: Epigenetic properties of cortisol 
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Fig 2: Glucocorticoid receptors (GR) are present in almost every tissue of the human body. Cortisol has facilitated 
passage through the cell membrane and GR’s are localized inside the cytoplasm, along with heatshock proteins. 
After cortisol (GC) connects to GR, the complex is transported to the cell nucleus, where it partially regulates 
genetic expression. GC also appear to exert its effects directly in the cell mitochondria. 

 


