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Abstract 
Gram-negative bacteria possess numerous defence mechanisms against antibiotics, due to 

the intrinsic permeability barrier afforded by their outer membrane and the various efflux 

mechanisms which pump out drugs, explaining the recalcitrance of some common and life-

threatening infections. A novel compound, PPA148, was synthesised in-house and showed 

promising activity against Gram-negative bacteria. Nevertheless, in some clinical bacterial 

strains, drug efflux resulted in reduced efficacy was observed, which was reversed in the 

presence of the efflux pump inhibitor phenylalanine-arginine β naphthylamide (PAβN). A 

formulation of PPA148 consisting of a drug/cyclodextrin (drug/CD) complex encapsulated in 

liposomes is investigated as a way to increase drug uptake. PPA148 has very low water 

solubility, which was measured using spectroscopic techniques: photon correlation 

spectroscopy (PCS) and Ultra-Violet spectroscopy (UV). Its solubility is improved by 

complexation with βCD derivatives (HPβCD and RAMEB) and the complex is characterized 

by applying nuclear magnetic resonance (NMR) and fluorescence. Fluidosomes, loaded with 

the drug/CD complex, are manufactured by applying the thin-film hydration method followed 

by extrusion for reducing the size of liposomes. PCS is used to size the particles and measure 

their zeta-potential. A Stewart assay and UV were used to quantify the lipid and drug 

concentration respectively, in the final formulation. A disk diffusion microbiological assay is 

used to assess the efficacy of the formulation against E. coli (DH5a). A variety of in vitro 

biophysical techniques are used to assess the mechanism of the drug uptake. Phospholipids, 

Re Lipid A extracted from S. Minnesota and Rc J5 LPS extracted from E. coli are used to 

make a synthetic monolayer and bilayer model of the outer and inner bacterial membranes. 

They are adapted for use with the Langmuir trough (LT) and neutron reflectivity (NR) 

techniques to monitor changes occurring upon interaction with the drug alone and the 

formulated drug. The results revealed an possible increase in drug efficacy with a possible 

fusion mechanism of uptake. NR provides a new method to examine the fusion mechanism of 

fluidosomes with bacterial membrane.   
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1.1 Antibiotics and Bacteria: a unique class of medicines and 

pathogens 

Antibiotics are a group of drugs used to treat bacterial infections. They are a unique class of 

medicines because of their complicated mechanisms of action as well as their restricting use and 
long-term efficacy. Unlike other drugs, antibiotics should selectively target several pathogens 

that are responsible for conditions ranging from pneumonia to urinary infections, acting in 

different body sites, whilst at the same time they should not affect the host organism (1). 

Antibiotics made a significant contribution to public health, having been used not only in medical 

practice but also in agriculture and other industries. They also help to promote growth in livestock, 

preserve building materials from contamination and treat blight in orchards (2). Antibiotics have 

saved countless lives and improved surgery conditions by preventing or curing bacterial 

infections in patients including those: receiving chemotherapy treatments; suffering from chronic 
diseases such as cystic fibrosis, diabetes, end-stage renal disease, or rheumatoid arthritis; or 

having undertaken complex surgical procedures such as organ transplants, joint replacements, 

or cardiac surgery (3–5). Moreover, they have increased the average life expectancy and 

decreased the morbidity and mortality caused by food-borne and other poverty-related infections 

(5,6).  

1.2 Antibiotic classification  

Antibiotics are classified based on their chemical family and mechanism of action. They are 

separated into 32 groups, based on their chemical functional groups, the larger being 
aminoglycosides, glycopeptides, imidazole, macrolides, nucleosides, penicillins and 

cephalosporines (β-lactams), peptides, pyrimidines and pyridines, sulfonamides and 

tetracyclines. Each of them possesses unique chemical properties and functional groups to target 

different parts of bacterial cells. For example, penicillins inhibit cell wall synthesis (7), whilst 

rifampins target RNA synthesis (8). Their action to either kill bacteria (bacteriocidal) or inhibit 

bacterial growth (bacteriostatic) falls within four categories. Three of those functions are the 

inhibition of (a) enzymes involved in cell wall and protein synthesis, (b) deoxyribonucleic acid 
(DNA) replication and/or (c) ribonucleic acid (RNA) transcription as shown in Figure 1.1 (9,10). 

The fourth category is the disruption of bacterial membrane structure (10). For example, 

penicillins; cephalosporins; carbapenems; daptomycin and monobactams; glycopeptides cause 

inhibition of cell wall synthesis. Tetracyclines, aminoglycosides, oxazolidonones, streptogramins, 

ketolides, macrolides and lincosamides cause inhibition of protein synthesis. Fluoroquinolones 

act by inhibiting DNA synthesis while rifampins RNA synthesis. Sulfonamides cause inhibition of 

folate synthesis. Daptomycin depolarizes membrane potential (10). 
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Figure 1.1: Mechanism of action of some major antibiotic agents reproduced from Clatworthy et 
al. (10). 

1.3 Bacterial classification 

Bacteria are prokaryotic microorganisms which can be classified as either Gram positive or Gram 
negative, on the basis of their cell envelope structure. The cell envelope of Gram positive bacteria 

possesses a thick peptidoglycan wall external to their plasma membrane, whereas the 

peptidoglycan of Gram negative constitutes a thinner layer between their outer and inner 

membranes.  

The activity of antibiotics is designated as broad, intermediate or narrow-spectrum based on the 
number of different bacterial species they can affect (11). For example, antibiotics that kill both 

Gram positive and negative bacteria are called broad spectrum antibiotics, while those which kill 

only Gram positive bacteria are considered narrow spectrum (11). The research conducted in 

this project is focused exclusively on Gram negative bacteria because their complex outer 

membrane (OM) hinders drug uptake, resulting in low efficacy. 

1.3.1 Physicochemical properties of antibiotics  

Active pharmaceutical compounds are classified based on their physicochemical properties and 

fall within the Lipinski's rule of five (i.e., a molecule with a molecular mass under 500 Da, no more 

than 5 hydrogen bond donors, no more than 10 hydrogen bond acceptors, and an octanol–water 

partition coefficient, logP, no greater than 5). Antibacterial agents have always been deemed to 

deviate from Lipinski’s rule of five due to their higher molecular weight and polarity (Table 1.1) 

(12,13). Several research groups have tried to correlate the physicochemical properties of 

antibiotics with their activity by collecting experimental data from the literature and databases of 
already marketed drugs to compare them in terms of lipophilicity (clogP), polarity (PSA), 
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molecular weight (MW), number of H-donors, number of H-acceptors and number of aromatic 

rings. Leeson and Davis compared drugs, including antibiotics, from five different therapeutic 

areas (cardiovascular, nervous system, gastrointestinal, respiratory/inflammation and infection) 
that were launched from 1983 to 2002 (14). Antibiotics, antimalarial, antiviral, antifungal and 

antiparasitic drugs were all included in the general infection category, known as anti-infectives. 

Their results showed that anti-infectives have a different physicochemical profile by being larger 

and less lipophilic than the other classes, which can be explained by their activity against non-

human cells and their need to penetrate the bacterial cell envelope. O’Shea and co-workers, 

particularly, examined the properties of 147 antibacterial agents, classifying the results into 

activity against Gram negative and Gram positive bacteria, and compared them with results from 
non-antibiotic drugs (12). Their analysis is presented in Table 1.1. 

Table 1.1: Comparison of non-antibiotic drug properties with the generic optimal properties for 
antibacterial drugs for oral or parental administration as were calculated by O’Shea et al based 
on data collected from the literature and drug data bases (12). 

Physicochemical 
properties Non-antibiotic 

Antibiotics with optimal 
properties against Gram 

negative 

Antibiotics with 
optimal properties 

against Gram positive 

Molecular weight 
(g/mol) 

338 414 813 

cLogP  2.7 -0.1 2.1 

cLogD7.4 1.6 -2.8 -0.2 

PSA (Å2) 70 165 243 
cLogP is the logarithm of the partition coefficient (LogP) between n-octanol and water and is a measure of 
the compound’s hydrophilicity and an indication of absorption and permeation. clogD7.4 is the logarithm of 
the distribution coefficient at pH 7.4 which is another measure of lipophilicity of unionized and ionized forms. 
PSA is the polar surface area, which provides a prediction of drug passive intestinal permeability (<140 Å2) 
and blood-brain barrier penetration (<60 Å2) (15–17). 

Table 1.1 shows that in general, antibiotics have significantly higher molecular weights and 

polarities compared to non-antibiotic drugs. Interestingly, there are variations between drugs 

acting against Gram negative and positive bacteria which can be explained by the differences in 

the constitution of the cell envelopes between these two groups. The lipophilicity of non-

antibacterial drugs and the Gram positive activity group present similarities, but a substantially 

higher polarity is noted for the Gram negative specific group. This difference in lipophilicity is 

more obvious when comparing the cLogD7.4 (4 log units lower, which means more hydrophilic) 

and PSA values.  

1.3.2 Gram negative bacterial cell envelope as a barrier to antibiotics 

Gram negative bacteria possess a complex envelope structure with two main permeability 

barriers: the outer membrane (OM) and the inner (cytoplasmic) membrane (IM). The OM is a 

unique feature of the Gram negative bacterial cell envelope providing cell protection. It is a lipid 
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bilayer whose outer leaflet consists of lipopolysaccharide (LPS) while the inner leaflet is 

composed of phospholipids (18). 

 

Figure 1.2: Cell envelope of Gram-negative bacteria reproduced from Silhavy et al. (18). 

LPS belongs to the category of glycolipids and consists of Lipid A, a hydrophilic oligosaccharide 

core and a hydrophilic O-antigenic polysaccharide side chain (O-chain) (Figure 1.2). Lipid A 

provides the membrane anchor for the LPS molecule, and is made up of a β(1 → 6)-linked 

glucosamine disaccharide backbone which is acylated at positions 2 and 3 of each 
monosaccharide portion involving six to seven fatty acid chains (Figure 1.10). This acylated 

disaccharide is also mostly phosphorylated at positions 1 and 4′ or even further substituted (19–

21). The core oligosaccharide is subdivided into an inner and outer core. The inner core is 

composed of 3-deoxy-d-manno-oct-ulosonic acid (Kdo) and L-glycerol-D-manno-heptose which 

are typically phosphorylated or modified with phosphate containing groups, increasing their 

overall negative charge helping stabilize the structure through divalent cation cross-linking (22). 

Kdo links the core oligosaccharide with Lipid A anchor while the outer core attaches to the O-

antigen. The outer core is more diverse than the inner and is composed of three to six additional 
saccharides such as D-glucose and N-acetyl-D-glucosamine and D-galactose (23,24). There are 

also proteins present in the outer membrane (OMP); lipoproteins and β-barrels. OMP such as 

porins are of major importance because they are transmembrane and their function is to allow 

the uptake of nutrients and hydrophilic compounds. LPS provides protection against hydrophobic 

compounds (18), and makes the OM a semipermeable barrier which protects the cell from 

harmful organic compounds such as antimicrobials and allows the uptake of sufficient nutrients.  

A thin peptidoglycan layer sits between the OM and IM to provide extra support and flexibility to 

the IM, which is the last part of the cell envelope and is composed of phospholipids and proteins. 

IM proteins are responsible for the energy production, lipid biosynthesis, protein secretion and 

transport of materials in and out of the cell. The principal lipids which are present in the IM of the 

majority of bacteria, such as P. aeruginosa and Escherichia coli (E. coli), are 
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phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs) and 

cardiolipins (CL) (25) (Figure 1.3). Bacterial efflux pumps present in the cell envelope prevent 

the accumulation of toxic compounds, such as antimicrobial drugs, in the cell. Efflux pumps are 
comprised of a transporter (protein) in the IM, an accessory protein (membrane-fusion protein) 

in the periplasm and an outer membrane protein channel in the OM (Figure 1.4 e, f, g) (26).  

 

Figure 1.3: Structure of phospholipid headgroups with different substitution in the phosphate 
group which gives a different curvature and charge. R1 and R2 are the fatty acid chains which 
can be either saturated (PC with C16:0 is DPPC while PC with C14:0 is DMPC) or unsaturated 
(PC with C16:1 is POPC). 

1.3.3 Drug uptake mechanisms 

Based on the cell envelope structure (Figure 1.2) it can be seen that there are several 

mechanisms of drug and ion uptake (Figure 1.4). They are divided into two major categories: 
passive and active transport (27). Hydrophobic compounds diffuse passively through the 

membrane because of their lipid solubility (passive diffusion) while hydrophilic agents are 

transported through the water channels (facilitated diffusion). General diffusion porins form water 

channels facilitating the passage of small hydrophilic molecules (~ 400 Da, >600 pass very 

slowly) and ions (non-specific diffusion) while the specific porins allow the passage of specific 

molecules or classes of molecules that binds to the substrates that preferentially flow through 

these channels (self-promoted diffusion) (18,28–30). For instance, it has been found that uptake 
of native α- and β-cyclodextrin depends on specific membrane protein channels (cyclodextrin 

metabolism A or CymA) in the outer membrane of the Gram negative bacterium, Klebsiella 

oxytoca (31). Drugs might have a different mechanism of uptake across OM and IM as is the 

case with the aminoglycosides. Gentamicin is known to pass passively (self-promoted) through 

the OM and actively through the IM (32,33). 

Phosphatidylethanolamine 
(PE)

Phosphatidylglycerol
(PG)

Phosphatidylcholine  
(PC)

Cardiolipin
(CL)
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Figure 1.4: Different ways by which a substance can be transported across the membranes 
reproduced from Bolla et al., (34). Hydrophilic components and nutrients can pass through porins 
(a) and hydrophobic molecules diffuse through the OM and/or IM (b and d respectively). The 
diffusion through the periplasm which is packed with proteins is represented by (c). Drugs can 
be recognised as foreign molecules by the efflux pumps (e and f) and can be transported out of 
the membranes. Several pumps such as AcrA/B and AcrE/F must recruit the OM barrel protein 
such as TolC (g) in order to expel drugs directly out of the cell (35). 

1.4 Antimicrobial Resistance (AMR) 

Although antibiotics have been highly effective against pathogens, they impose substantial 

selective pressures on bacteria, which are living organisms and thus tend to adapt to changes 

and evolve. Antibiotic-resistance is a natural process because bacteria develop their own 

resistance mechanisms and constantly acquire those that had evolved over billions of years in 

environmental bacteria (36). Therefore, resistance is not a new phenomenon, as it is shown in 

Figure 1.5. It first emerged in hospitals in the late 1930s with the sulfonamide-resistant 
Streptococcus pyogenes bacteria, shortly after sulfonamides were made available on the market, 

and penicillin-resistant Staphylococcus aureus appeared 6 months after being used in clinical 

practice in the UK (36–38). After 1985, the antibiotic pipeline began to dry up and fewer new 

drugs were introduced; leading to a situation now, where we are in danger of entering a “post-

antibiotic” era (2,10,36,37,39–41). 
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Figure 1.5: Timeline of antibiotics from their market introduction (red line) to the first observations 
of drug resistance, which is represented by a blue ‘X’. The figure is reproduced and adapted for 
the needs of this report from Kennedy et al. (37). 

1.4.1 Causes of AMR 

Antimicrobial resistance is driven by natural factors. The results of human activity, clinical use, 

extensive use of antibiotics in agriculture and public behavior and perception have all contributed 

to its widespread proliferation. Bacteria are small prokaryotic organisms with simple intracellular 

features and circular DNA (chromosomal DNA) which coexists with independent DNA pieces 

(plasmids). Plasmids encode traits and genes required for ever-varying environmental 

challenges. Due to the small size of bacterial cells, individual pathogens contain a limited number 

of those genes, thus hindering its ability to face environmental changes. The key to bacterial 

natural adaptive strength is their ability to reproduce rapidly, creating bacterial populations with 
wide variability in terms of advantageous characteristics. Even though changes in the genes of 

plasmids are rare, the rapid generation time ensures that these advantageous changes will 

become rapidly predominant in the bacterial population and help them evolve in response to the 

environmental changes. 

Although antimicrobial resistance is a natural process, the main reason for the widespread 
proliferation was both the misuse and overuse of antibiotics in humans and animals. Once 

antibiotics were introduced, they were effective and efficient. Thus, there was a general public 

belief that antibiotics should be applied in the first instance for every type of illness. This 

perception, along with the over-prescription and extended regimens in clinical practice, created 

strong selective pressures on bacteria which, in turn, generated resistant strains responding to 

prolonged antibiotic exposure. The more bacteria are exposed to antibiotics, the more likely the 

emergence of resistant strains. Empirical treatment and prescription of antibiotics by general 

practitioners based on local epidemiology before the results of the diagnostic tests often leads to 
their misuse. If the initial antibiotic regimen is not the appropriate one, the patient’s microbiota is 

subjected to an intense and repeated selective pressure that encourages and conserves the 

development of AMR among currently non-pathogenic organisms. In addition, poor hygiene and 

infection prevention leads to an increased number of infections and thus increased use of 
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antibiotics. Moreover, the use of antibiotics in agriculture too, may have increased productivity 

but it has been increasing the abundance and diversity of AMR genes across rural and urban 

environments. 

Bacteria have become resistant to a number of drugs because they have resistance mechanisms 

to first and second line of infection treatment. The deficiency of existing antibiotics and the 

widespread proliferation of antimicrobial resistance has been examined in depth by the US 

Center for Disease Control and Prevention (CDC) (42), European CDC (ECDC) (43), WHO (44) 

and European Antimicrobial Resistance Surveillance Network (EARS-Net) (43). These 
organizations reported that Gram negative bacteria are becoming pan-drug or extensively-drug 

resistant which leads to increased morbidity and mortality.  

1.4.2 Mechanisms of bacterial resistance 

Resistance to antibiotics falls into two broad categories: intrinsic and acquired. The conventional 

example of intrinsic resistance is the multi-drug resistant (MDR) phenotype existing in Gram 
negative bacteria which includes inherent active drug efflux and low permeability of the OM. As 

mentioned previously, the Gram negative bacterial outer membrane outer leaflet consists of LPS 

which is anchored by Lipid A and stabilized by divalent cation crosslinking between the 

phosphate groups which decorate the inner core oligosaccharides (Figure 1.10). This cross-

linking facilitates tight packing of the Lipid A hydrocarbon chains, decreasing OM fluidity and 

increasing the permeability threshold for drugs whose main mechanism of uptake is passive 

diffusion (45). For those drugs requiring other means of being transported into the bacterial cell 

envelope, the limiting step is the structure and properties of the porins and proteins present in 
the OM (45). Porins selectively retard the influx of drugs and nutrients according to their size, 

hydrophobicity and charge. The OM can also control the efflux of materials via efflux pumps 

which primarily actively transport toxins out of the cell. Efflux pumps can either be substrate 

specific, and only export one molecule, or they can be broad-spectrum, and export structurally 

distinct classes of molecules (26). There are five types of efflux pumps: ATP binding cassettes 

(ABC), major facilitators (MF), multidrug and toxic-compound efflux (MATE) pumps, small 

multidrug resistance (SMR) pumps, and the resistance-nodulation-division family (RND). 
However, only the latter is the main facilitators of intrinsic resistance (26,46,47). RNDs are also 

known as outer membrane proteins and are transmembrane. For example, MexAB-OprM 

contributes to β-lactam and fluoroquinolone intrinsic resistance in P. aeruginosa (48) and the 

AcrAB-TolC in E. coli facilitates resistance to a broad range of antibiotics such as the 

tetracyclines, fluoroquinolones, β-lactams and the macrolides (26). The high level of intrinsic 

resistance in Gram negative bacteria is a result of the synergistic effect between the low 

permeability of the outer membrane and the efflux pumps. Mutations in genes encoding efflux 

pump expression may lead to their upregulation which is clinically associated with the multi-drug 
resistance phenotype of bacteria (9,26,29,34). 



General Introduction 

 

 
10 

Acquired antimicrobial resistance mechanisms includes genetic modifications in the efflux pumps 

and porins or incorporation of new genetic material through plasmids, bacteriophages, 

transposons and naked DNA (Figure 1.6). The genes for single drug resistance traits developed 
from a mutation in an intrinsic chromosomal gene can spread from one generation to another 

(vertical gene transfer). These genetic mutations can not only cause upregulation of efflux pumps 

but also alter antibiotic targets or cause target overexpression (9,45). Moreover, acquired 

resistance can occur by transferring genetic material between related or unrelated species 

(horizontal gene transfer), which accounts for the rapid proliferation of acquired resistances. 

Multiple genes can accumulate in the same organism, leading to multi-, pan- or extensive- drug 

resistance (9,45).  

 

Figure 1.6: Mechanisms through which drug resistance can be spread horizontally from one 
bacterium to another reproduced from Levy et al. (9). 

1.5 Strategies to combat antimicrobial resistance 

Several reviews have stated that the last resorts for treatment of infections caused by resistant 

bacteria were the broad spectrum carbapenem agents. Over recent years, the emergence of 

carbapenem-resistant Enterobacteriaceae as well as carbapenem-resistant Gram negative 
bacilli (Acinetobacter baumannii, Pseudomonas aeruginosa) have left a few treatment options, 

while the spread of carbapenem-resistant Enterobacteriaceae has created a serious threat to 

public health worldwide (49). In this context, older drugs with adverse effects, such as polymyxins 

(colistin and polymyxin B), have been used by clinicians. The re-introduction of polymyxins for 

antimicrobial therapy has been followed by an increase in reports of acquired polymyxin 

resistance in clinical isolates such as P. aeruginosa, A. baumannii and Klebsiella pneumoniae 

(50). Therefore, there is an urgent need to overcome antimicrobial resistance by either 
discovering new antibiotics, applying combined antibiotic therapy or developing new drug carriers 

and rapid diagnostics.  
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1.5.1 Drug development 

The development of new drugs was initiated by modifying already marketed antibiotics to extend 

their spectrum activity (51). Examples of this initiative are penicillins, fluoroquinolones and 
cephalosporins. However, bacteria also became resistant to those drugs because the 

modifications in their structure failed to change their site and mechanism of action. Attempts have 

been made by research groups to introduce new drugs but the majority of these attempts have 

failed because their physicochemical properties reduce their bioavailability and reduce outer 

membrane penetration. Teixobactin was discovered in 2015 as a new class of antibiotics against 

Gram positive bacteria but its activity is limited. Therefore, new drugs need to be discovered as 

was proposed by O’Neill (52) in his wide-ranging report into antimicrobial resistance strategies 

for the UK government. Table 1.2 presents a list of resistant bacteria deemed by the WHO as 
urgently requiring the discovery and development of new antibiotics in order to tackle them (53).  

1.5.2 Antibiotic combination therapy  

The rise of multi-drug resistant (MDR) Gram negative bacteria and the lack of new antibiotic 

classes make monotherapy inadequate for treating infections and increases the likelihood that 

combination therapy would be more effective (54). Antibiotic combination therapy is widely used 
to treat severe infections caused by Gram negative bacteria and may be divided into two 

categories: antibiotic synergism and antibiotic/adjuvant combination (55,56).  

Table 1.2: WHO priority list for the development and discovery of new antibiotics for antibiotic 
resistant bacteria (57). 

Priority 1: Critical 
Acinetobacter baumannii, carbapenem-resistant 

Pseudomonas aeruginosa, carbapenem-resistant 
Enterobacteriaceae, carbapenem-resistant, 3rd generation cephalosporin-resistant 

Priority 2: High 
Enterococcus faecium, vancomycin-resistant 

Staphylococcus aureus, methicillin-resistant, vancomycin intermediate and resistant 
Helicobacter pylori, clarithromycin-resistant 
Campylobacter, fluoroquinolone-resistant 
Salmonella spp., fluoroquinolone-resistant 

Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant 

Priority 3: Medium 
Streptococcus pneumoniae, penicillin-non-susceptible 

Haemophilus influenzae, ampicillin-resistant 
Shigella spp., fluoroquinolone-resistant 
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1.5.2.1 Combination of two or more antibiotics 

The combination of antimicrobial agents to produce potent synergistic effects has been applied 
to combat MDR in Gram negative bacteria. Combination therapy of two to four different antibiotics 

against multidrug-resistant Pseudomonas spp. typically includes a broad-spectrum beta-lactam 

and an aminoglycoside or a fluoroquinolone, colistin, a macrolide, or rifampin (55,58). The 

mechanisms of synergistic bacteriostatic activity are not fully understood for all drug combination 

but plausible explanations exist for some antibiotics. For example, colistin increased membrane 

permeability by acting as a disruptive agent, enabling rifampin to exert its action against colistin-

resistant Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria (59). Co-
administration of colistin and sulfamethoxazole causes an increased in vitro activity against 

colistin resistant and susceptible Gram negative bacterial strains when compared to 

monotherapy (50). The combination of colistin with meropenem or doripenem has also resulted 

in synergistic effects in vitro against multidrug-resistant Pseudomonas spp., Acinetobacter spp., 

and carbapenemase-producing Enterobacteriaceae and has been reported as a successful 

treatment in case reports (55). 

1.5.2.2 Antibiotic-adjuvant 

Antibiotic-adjuvant combination is an alternative approach for reviving antibacterial drug 

discovery by targeting the resistance processes (60). Adjuvants are compounds that enhance 

antibacterial drug activity but do not act as antibacterial agents themselves. Products consisting 

of beta-lactam antibiotics and an inhibitor of the beta-lactamase enzyme are already on the 

market and represent a successful approach in targeting resistance to a defined class of 
antibiotics (61,62). A well-known example is the combination of amoxicillin with clavulanic acid, 

which is a beta-lactamase inhibitor but is not effective as an antibiotic by itself (63). There are 

newly synthesized beta-lactamase inhibitors for co-administration with cephalosporins and 

carbapenemes, i.e. avibactam (64) and vaborbactam (65), respectively. The combination of 

avibactam and ceftazidime has recently been approved for therapeutic use in the US and Europe 

(66).  

Within a similar conceptual framework, efflux pump inhibitors have also been investigated as 

adjuvants. A common synthetic efflux pump inhibitor, widely used in vitro, is phenylalanine-

arginine β-naphthylamide (PAβN), capable of inhibiting clinically relevant pumps for resistance 

in P. aeruginosa, as well as similar pumps in other MDR Gram-negative bacteria (63,67). The 

combination of PAβN and levofloxacin decreased resistance to the drug by eight-fold in wild-type 

strains of P. aeruginosa, while in efflux pump overexpressing strains it increased efficacy by up 
to 64-fold (68). In addition, PAβN has been shown to have membrane permeabilizing activity in 

a concentration dependent manner. It promotes its own entry into the cells where it can access 

its efflux pump targets (69). Therefore, PAβN has an excellent potential as an antibiotic adjuvant 

by increasing outer membrane permeability and/or impairing drug efflux pumps. 
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1.5.2.3 Pro-drug formation 

A promising platform to overcome antimicrobial resistance is to design and develop prodrug 
antibiotics which are ineffective until they are activated by specific bacterial enzymes, allowing 

them to covalently bind to unrelated targets (Figure 1.7) (70). The irreversible binding to the target 

overcomes the efflux from the MDR pumps, resulting in increased drug penetration and 

accumulation into the cells. Prodrug antibiotics were discovered in 1950 in an attempt to eliminate 

antibiotics without specific targets, but screening tests eliminated them from being used (70). For 

instance, metronidazole, which was overlooked as an antibiotic, is an ideal prodrug with broad 

spectrum activity because it becomes non-specific after activation by binding to different targets 
(proteins and DNA) (71). Fleck and co-workers investigated three new nitrofuran prodrugs 

(ADC111, ADC112, ADC113) which all showed sterilizing capability and broad-spectrum activity 

(72). 

 

Figure 1.7: Mechanism of pro-drug platform, reproduced by Kim Lewis (70). The prodrug enters 
the cell and is converted into the reactive drug by a bacteria-specific enzyme (E). Inside the cell, 
the reactive compound covalently binds to unrelated targets, T1, T2 and T3, which causes cell 
death. This mechanism kills not only dividing cell but also dormant cell. 

1.6 Formulation approaches for antimicrobials to overcome 

resistance 

1.6.1 Cyclodextrin-drug complexes 

Cyclodextrins, also known as cyclomaltodextrins and cycloamyloses, were first identified as a 

bacterial digestion product of starch (73,74). Three native cyclodextrins have been isolated: α-

cyclodextrin (αCD), β-cyclodextrin (βCD) and γ-cyclodextrin (γCD). They are cyclic 

oligosaccharides containing 6 (αCD), 7 (βCD) or 8 (γCD) (α-1,4)-a-D-glucopyranose units 
respectively. Due to the chair configuration of the glucopyranose unit, cyclodextrins are toroidal 

molecules with a truncated cone structure having a lipophilic inner cavity and hydrophilic outer 

surface (Figure 1.8) (75).  
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Figure 1.8: Native cyclodextrin structures for α-, β- and γ-cyclodextrin (CD). 

Despite the presence of numerous hydroxyl groups on the exterior of the CD molecule, natural 

CDs have limited water solubility. Both αCD and γCD have higher solubility (145 and 232 mg/mL 

respectively) than βCD (18 mg/mL at 25 °C) (76). The low water solubility is a result of CD self-

association in an aqueous environments, which is concentration-dependent (73,77,78). CDs form 

channel-type aggregates, which are connected through hydrogen bonding between the 

cyclodextrin molecules (79). The geometry and axial symmetry of the intermolecular hydrogen 
bonded aggregates possibly affects their interaction with the surrounding water structure. The 7-

fold symmetry of βCD creates perturbations in the water structure resulting in their abnormally 

low water solubility (80). 

Advances in biotechnology have led to the synthesis and modification of CDs, enhancing their 

water solubility. Substitution of any hydroxyl group (primary and/or secondary) yields a dramatic 
increase of their water solubility (81). Methylated or hydroxypropyl derivatives of βCD and γCD 

are of pharmaceutical interest (73). The solubility in water of hydroxypropyl-βCD (HPβCD) and 

randomly methylated βCD (RAMEB) is more than 600 and 500 mg/mL compared to 18 mg/mL 

of the native βCD (82,83). The same behavior applies for HPγCD (>500 mg/mL) (82,83). 

Optimum aqueous solubility is achieved when the number of methyl groups reaches 13-14; and 

above that threshold the solubility decreases (83). 

All the native cyclodextrins are classified as “Generally Regarded As Safe” (GRAS) by the FDA 

(84). Hydroxypropyl β- and γ-Cyclodextrin (HPβCD and HPγCD) and sulfobutylether β-

cyclodextrin (SBE-β-CD) are listed in the FDA’s compiled list of inactive formulation ingredients 

(85). Alfadex (α-CD), Betadex (β-CD), γ-cyclodextrin, SBE-β-CD, HPβCD, randomly methylated 

β- cyclodextrin (RAMEB) are listed in the updated guidelines on the ‘Excipients in the labelling 

and package leaflet of medicinal products for human use’ (SANTE-2017-11668) (86). The most 

pharmaceutically appropriate β-CD derivatives are RAMEB with a 1.8 average number of 

0.57 nm

1.37 nm 1.53 nm

0.78 nm

1.69 nm

0.95 nm

6 glucose units 7 glucose units 8 glucose units
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substituents per repeated glucose unit and HPβCD with 0.65 (73,87). All the aforementioned 

cyclodextrins have been approved and marketed by the European Pharmacopoeia, Japanese 

Pharmaceutical Codex and the US Pharmacopoeia/National Formulary. Particularly, αCD can be 
found in intravenous alprostadil solution (Carveject® Dual from Pfizer). Native β- cyclodextrin 

(βCD) can be found in numerous marketed oral, topical, buccal and rectal drug formulations: 

notable examples are Nicorette® (sublingual tablets, Pfizer) and Nimedex® (tablets, Novartis). 

Hydrocortisone solution (Dexocort, Actavis), indomethacin eye drop solution (Indocid, Chauvin) 

and itraconazole oral and i.v. solutions (Sporanox®, Janssen) contain HPβCD and insulin nasal 

sprays which contain RAMEB. Voltaren® Ophthalmic (Novartis) is an eye drop solution containing 

diclofenac sodium salt and HPγCD (73).  

Cyclodextrins have long been known for their ability to increase the water solubility of 

hydrophobic drugs by entrapping them into their non-polar cavity (88). Long before that, the 

purpose of using CDs in the pharmaceutical industry has been to protect drugs from oxidation 

and heat, prolong their shelf-life and masking unpleasant flavours and odours (89).  

Cyclodextrins have been investigated for the treatment of infectious diseases by formulating 

them with anti-infective drugs. Their unique structure enables cyclodextrins to fully or partially 

incorporate hydrophobic drugs in the cavity providing the drug with improved solubility properties 

and enhanced biological activity. Table 1.3 shows a summary of antibiotic-cyclodextrin 

complexes that have been studied and how the complex improved drug efficacy. In 2003, a US 

patent was filed for improved growth inhibition of several Gram negative bacteria by HPβCD and 
RAMEB complexes with chlorhexidine, gentamycin, tobramycin and tetracycline via improved 

permeation through the bacterial cell envelope (90). The inventors claimed that this patent was 

of great interest for a wider range of antibiotics: penicillin derivatives, cephalosporins, 

aminoglycosides, macrolides, rifamycin, chloramphenicol, imipenem, vancomycin, tetracyclines, 

fusidic acid, novobiocin, neomycin, bacitracin, polymyxin, colistimethate, colistin and gramicidin. 

Over the last few years, the interest in using drug-CD complexes to enhance antibiotic efficacy 

is not based only on their enhanced permeation but also on improving drug water solubility, 

stability and dissolution. For instance, native βCD and γCD protected penicillins from β-
lactamase hydrolysis in E. coli and improved the cell permeation in vitro (91). Cyclodextrin 

complexes have been investigated as drug release modifiers for sustained and prolonged drug 

delivery, such as in the case of rifampicin, tobramycin and meropenem (92–95).  
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Table 1.3: Summary of antibiotic-cyclodextrin complexes investigated by research groups to 
achieve sustained drug release, better bioavailability, increased antimicrobial activity and 
enhanced drug solubility. 

Cyclodextrin Drug Outcome Bacteria used Ref 
β-CD or γ-CD Penicillins Protection against β-

lactamase hydrolysis in 
vitro/ internalization into 

cells 

E. coli (91) 

b-CD modified 
with 

crosslinkers 

rifampicin, 
novobiocin, 
vancomycin 

Sustained drug release/ 
Increase bioavailability 

S. aureus (92) 

modified CDs rifampicin, 
tobramycin 

Sustained drug release for 
hip-prosthesis 

 (93) 
 

HPβCD fluoroquinolones Increased drug solubility by 
two to five times and 

increased stability 

 (96) 

βCD meropenem Enhance stability in 
aqueous solutions and in 

the solid phase 
Sustained transfer/Constant 
drug concentration/greater 

inhibition (bactericidal 
action) 

P. aeruginosa, 
Rhodococcus 
equi, Listeria 

ivanovii 

(94) 

HPβCD 
RAMEB 

chlorhexidine, 
tetracycline, 
tobramycin, 
gentamicin 

Improved biological activity 
(inhibit microbial growth/ 
eliminated toxic effects/ 

improved the dosing 
treatment) 

P. gingivalis 
B. forsythus 
B. cereus 

 

(90) 
 

Triacetyl α-, β-
, or γCD 

vancomycin Prolonged drug release and 
maintained the antimicrobial 
activity of delivery systems 
for parenteral site-specific 

administration 

Staphylococcus 
aureus or 

Enterococcus 
hirae 

(95) 

1.6.2 Liposomal carriers 

The use of liposomal carriers has been regarded as a promising tool to enhance antibiotic activity, 
reduce drug toxicity and overcome bacterial resistance mechanisms (97,98). Liposomes are 

universal carriers for both hydrophilic and hydrophobic compounds and offer a biocompatible, 

biodegradable and non-immunogenic delivery system. Their unique physicochemical properties, 

such as small and controllable size, large surface area and potential to target a specific site of 

action via surface functionalization, enables them to improve drug pharmacokinetics and 

biodistribution.  

A wide variety of promising liposomal carriers for antimicrobial agents have been reported, which 

are classified according to their lipid composition, membrane rigidity, surface properties and 

ability to trigger drug release. These classes are: conventional, fusogenic and surface-modified 

liposomes. Conventional liposomes are comparatively rigid carriers composed of phospholipids 
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with or without cholesterol, while fusogenic liposomes, also known as fluidosomes, are 

characterized by more fluid lipid bilayers and their ability to fuse with other lipid membranes. 

Table 1.4 presents several examples of how liposomes have been investigated and the outcome 
of the research in Gram negative antibacterial activity.  

Liposomes can enhance the activity against both intracellular (Brucella melitensis, Salmonella 

enterica serovar Typhimurium and Francisella tularensis) and extracellular (Pseudomonas 

aeruginosa, Escherichia coli, Klebsiella pneumoniae and Burkholderia cepacia) pathogens (99). 

Liposomal carriers designed for the eradication of intracellular pathogens are taken-up by cells 
of the mononuclear phagocyte system. For instance, conventional liposomes encapsulating 

gentamicin lead to drug accumulation in the liver and spleen as a result of MPS cell phagocytosis, 

resulting in decreased bacterial number in these tissues (99). Liposomes designed for targeting 

extracellular pathogens can function in two main ways to aid drug delivery. Firstly, they can 

entrap, dissolve or encapsulate the active ingredient or, secondly, they can attach, conjugate or 

absorb the active substance. These properties can be applied to facilitate the administration of 

antimicrobial drugs, thereby overcoming some of the limitations of antimicrobial drug uptake.  

Table 1.4: Several liposomal carriers investigated against Gram negative bacteria. 

Liposome composition Drug Bacteria Outcome Ref 
DPPC/Chol/SA, 

DPPC/DPPG, DPPC/PI, 
DPPC/Chol/DDAB 

Chlorhexidine P. vulgaris Enhanced bactericidal 
activity 

Diffusion mechanism 

(97) 

DPPC/Chol (2:1) Amicacin P. aeruginosa Superior activity of 
inhaled liposomes 
than to free drug 

(100) 

DPPC/DMPG in several 
molar ratios (15:1, 18:1, 

10:1) 

Tobramycin P. aeruginosa 
B. cepacian 

E. coli 
S. maltophilia 

Superior activity of 
fluidosomes than free 

drug 
Fusion mechanism 

 

(101–
103) 

DPPC/DMPG (1:1) Gentamicin-
gallium 

P. aeruginosa Eradication of biofilm (104) 
 

PC(60 mg/mL)/Chol Rifampicin  High encapsulation 
and nebulization 

efficiency 
Good stability 

(105) 

1.7 Aims and scope of this project 

Most of the antimicrobial drugs in the current clinical pipeline are modified versions of existing 

classes of antibiotics which are likely to offer only short-term solutions to the current AMR crisis 

(106). A novel antimicrobial agent, PPA148 (belonging to the byrrolobenzodiazepine (PBD) 

group of anticancer and antimicrobial drugs), has shown very promising activity against Gram 

negative bacteria, and was synthesized at King’s College London (107). Among other 

antimicrobial agents, PPA148 was included in a patent filed by Rahman et al. regarding its activity 
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against both Gram positive and negative bacteria (107). Its inhibitory concentration (MIC) in the 

presence and absence of the efflux pump inhibitor PAβN (107,108) revealed promising activity 

against Gram negatives amongst the ESKAPE pathogens. A possible drug efflux from the 
bacterial membrane was also observed because the MIC decreased in all bacterial strains tested 

in the presence of the pump inhibitor (107). The focus of this project is on Gram negative bacteria 

because of their increasing contribution to the incidence of ventilator-associated pneumonia 

(VAP) (109), low OM permeability and high activity of multiple efflux pumps (29), which facilitate 

resistance. Therefore, the aim of this project has been to develop a suitable carrier to overcome 

the drug efflux and increase drug efficacy against Gram negative bacteria. Taking into account 

the physicochemical properties of PPA148, the challenges of drug uptake across bacterial 
membrane and multi-drug resistance in Gram negative bacteria, a formulation based on a drug-

cyclodextrin complex incorporated into fluidosomes was selected.  

1.7.1 Drug-in-Cyclodextrin-in-Liposomes 

The system described as drug-in-cyclodextrin-in-liposomes allows delivery of hydrophobic, 

insoluble and membrane-destabilizing drugs by combining the unique properties of liposomes, 

with those of cyclodextrins (110). As mentioned above, each delivery system individually 
enhances drug bioavailability and stability (chemical and physical) and reduces toxicity; but their 

combination offers a superior formulation (111). 

This formulation was first introduced by McCormack and Gregoriadis to enhance the delivery of 

dehydroepiandrosterone, retinol and retinoic acid (111). This approach has also been used in 

the food industry to increase the stability and water solubility of natural molecules, decrease their 
volatilization, allowing controlled release, while maintaining the biological effects (antioxidant 

activity) of free ones (112). Nerolidol, which is a natural sesquiterpene with antibacterial activity, 

exhibited prolonged release and increased photostability when encapsulated as a complex with 

HPβCD-in-liposomes, making it a strong candidate for a natural preservative use in the food 

industry (113). Recent reviews reveal that a number of drugs have been encapsulated in 

liposomes as inclusion complexes with cyclodextrins (CDs) (110,114). Particularly, this type of 

formulation was tried with anti-inflammatory drugs (115,116) and anesthetics (117) to improve 
their encapsulation efficiency and membrane permeation; with anti-cancer drugs to improve their 

solubility and prolonged retention (118,119); with Ca2+ channel blocker drugs to increase 

entrapment and liposome stability (120); and with immunosuppressants to improve solubility, 

drug uptake and penetration (121). 

While there are reports of antibiotics solubilized by either inclusion complexes with CDs (Table 
1.3), or encapsulated in liposomes (Table 1.4), we are not aware of any publication on antibiotics 

formulated in CD complexes encapsulated into liposomes.  
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1.7.2 Plan of the study and techniques used 

This work is an attempt to increase the water solubility and enhance the antimicrobial activity of 

the novel antimicrobial agent, PPA148, against Gram negative bacteria by formulating it with 
cyclodextrins and liposomes. The first experimental chapter (Chapter 2) introduces the novel 

antimicrobial compound, its synthetic pathway and presents the efforts used to enhance its water 

solubility by using two types of modified βCD, HPβCD and RAMEB. The binding constant of a 

1:1 complex is measured through the band shift method using fluorescence spectroscopy. 

Fluorescence was studied as a function of host (CD) concentration at fixed guest (drug) 

concentration. The increase in fluorescence intensity and blue shift in the spectra indicates the 

formation of the host-guest inclusion complexes of drug with cyclodextrin. The overall 

stoichiometry of the complex was better investigated measuring changes in the proton 
resonances using NMR.  

The objective of Chapter 3 is to develop a robust method for the fabrication of the drug-in-

cyclodextrin-in-liposome formulation and compares its microbial activity with that of the free drug. 

The encapsulation efficiency and loading capacity of the carrier is determined by spectroscopic 

techniques. The formulated drug was used to challenge live bacteria to assess its antimicrobial 
efficacy and compare it with the efficacy of the unformulated drug.  

Chapter 4 investigates the diffusion through lipid membranes of pure PPA148, PPA148/CD 

complex and empty liposomes separately using interfacial techniques. Model lipid monolayers 

are used to mimic the lipidic content of IM and OM of the Gram negative bacterial envelope, to 

assess their interaction with drug and carrier components using the Langmuir trough technique. 
An asymmetric model Gram negative bacterial outer membrane is used to investigate the 

interaction of the liposomal carrier with the lipidic content of the OM. Details on the interfacial 

techniques used throughout this work is given in the next section (1.7.3). 

Throughout this study, rifampicin and gentamicin sulfate were used as positive and negative 

controls for the novel PP-A148 in the membrane interaction studies using monolayers at the 
air/liquid interface, whilst in bilayer studies chlorhexidine digluconate (CHD) was used as a 

control drug (Table 1.5, Figure 1.9). Rifampicin and gentamicin are both broad spectrum 

antibiotic agents against a series of Gram negative bacteria. The former passively diffuses 

through the cell envelope, while gentamicin follows a self-promoted diffusion across the OM and 

active transport across the IM (32,33,122). Chlorhexidine is known for its ability to damage 

membranes (123).  
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Table 1.5: Physicochemical properties of PPA148, rifampicin, gentamicin and chlorhexidine. 

Physicochemical 
properties 

PPA148 Rifampicin Gentamicin Sulfate CHD 

Molecular weight 
(g/mol) 

698.25 822.41 477.6 897.76 

LogP 0.76 2.7 -3.1 6.2 
logS -7.461 - - - 

S (mg/mL) - 2.5 100 50%w/v 
tPSA ( Å2) 142.11 217 200 455 

 

Figure 1.9: Chemical structure of rifampicin, gentamicin and chlorhexidine. 

1.7.3 Interfacial techniques used to investigate drug-membrane interactions 

In the current work, the interaction of pure PPA148 and its formulated form with OM and IM Gram 

negative bacterial membranes was investigated using two interfacial techniques: subphase 

injection techniques using Langmuir monolayers and neutron reflectivity (NR) on substrate-

supported asymmetric bilayers. In both techniques, phospholipids and glycolipids (specifically 
lipopolysaccharides), were used to mimic the lipidic component of the IM and the OM, 

respectively. 

PE and PC possess zwitterionic headgroups and PG and CL are acidic lipids (Figure 1.3). The 

relative proportions of these lipids and their generalized molecular shapes affect the way in which 

they pack together in a membrane. PE has a conical shape (Figure 1.3) which imparts a large 
negative curvature to the membrane, CL also favors negative curvature, whilst PG and PC have 

Rifampicin Gentamicin sulfate

Chlorhexidine
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cylindrical shapes and are considered as low curvature lipids (124–126). E. coli lipid extract, 

DPPC/DPPG and POPC/POPG mixtures were used to simulate the lipidic component of the 

Gram negative IM. The composition of the lipid extract was 67% PE, 23.2% PG and 8.9% CL. 
White and co-workers (127) analyzed the same E. coli extract as the one used in this research 

and determined the composition of fatty acids as well (Table 1.6).  

Table 1.6: Fatty acid composition of E. coli lipid extract as it was found by White et al. (127). 

R1 or R2: Fatty Acid Molecular Formula w/w% (127) 
C14:0 CH3(CH2)12CO- 1.5 
C16:1 CH3(CH2)5CH=CH(CH2)7CO- 4.2 
C16:0 CH3(CH2)14CO- 37.3 
C17:0cyclo CH3(CH2)5CHCH2CH(CH2)7CO- 18.2 
C18:1 CH3(CH2)5CH=CH(CH2)9CO- 31.1 
C18:0 CH3(CH2)16CO- 0.9 
C19:0cyclo CH3(CH2)5CHCH2CH(CH2)7CO- 6.7 

Glycolipids and lipopolysaccharides (LPS) in particular, are a different category of lipids and were 

used in this work to mimic the outer leaflet of the OM. In this study, we have used three different 

types of LPS as shown in Figure 1.10 with different lengths of oligosaccharide chain. Rc J5 and 

Ra EH100 LPS are extracted from the J5 and EH100 E. coli bacteria, respectively, while Re Lipid 

A is extracted from R595 S. minnesota. Rc J5 LPS and Re Lipid A were used in the interaction 
studies on monolayers at the air/liquid interface of a Langmuir trough. The Ra EH100 LPS was 

used to form the outer leaflet of a model asymmetric bilayer, which was used to examine the 

interaction of fluidosomes with the model membrane by neutron reflectivity.  

1.7.3.1 Langmuir trough isotherms 

The Langmuir trough technique is used to form planar monolayers at the air-liquid interface and 
measure the partitioning properties and kinetics of molecules binding to biomimetic model 

membranes. The most important indicator of the monolayer properties of an amphiphilic material 

is given by measuring the surface pressure as a function of the area of water surface available 

to each molecule. This is carried out at constant temperature and is known as a surface pressure 

- area isotherm or simply Langmuir isotherm. Usually an isotherm is recorded by compressing 

the film (reducing the area with the barriers) at a constant rate while continuously monitoring the 

surface pressure (Figure 1.11). When the available area for the monolayer is large, the distance 

between adjacent molecules is large and their interactions are weak. The monolayer can then 
be regarded as a two-dimensional gas (2D). Under these conditions, the monolayer has little 

effect on the surface tension of water. If the available surface area of the monolayer is reduced 

by a barrier system, the molecules start to exert a repulsive force on each other. This two- 
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Figure 1.10: Structure of Ra LPS derived from E. coli EH100, Rc LPS derived from E. coli J5 and 
Re LPS derived from S. minnesota. 

dimensional analogue of a pressure is called surface pressure. At low surface pressures the 

monolayers exist in the gaseous state (G) and upon compression might undergo a phase 

transition to the liquid-expanded state (L1) (128). Upon further compression, the L1 phase 

undergoes a transition to the liquid-condensed state (L2), and at even higher pressure the 

monolayer finally reaches the solid state (S) (Figure 1.11). If the monolayer is further compressed 

after reaching the S state, it will collapse into three-dimensional structures. The collapse is 

generally seen as a rapid decrease in the surface pressure or as a horizontal break in the 
isotherm if the monolayer is in a liquid state. 

The advantage of using such films is that they are of defined lipid composition and controlled in 

terms of their surface area (129). P-Area isotherms show the relationship between the molecular 

area of a film occupied on the liquid surface and the surface pressure observed. Langmuir films 
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were used as a convenient platform for studying the interaction of the novel compound with the 

lipid monolayers at the air/liquid interface at 30 mN/m, which is widely accepted as a monolayer 

surface pressure yielding lipid packing with molecular areas most accurately corresponding to 
those in biological membranes (130). 

 

 

Figure 1.11: Langmuir trough lipid monolayers and their transition stages upon compression as 
described by changes in the Surface Pressure-Area isotherm. The illustration depicts the packing 
or the lipid alcyl chain upon compression from its 2D gas state until the collapse of the monolayer 
and the formation of 3D structures. 

1.7.3.2 Neutron reflectivity 

Neutron reflectivity is a more sophisticated way of investigating the composition and the relative 
location of molecules within and at the interface of supported asymmetric bilayers. Neutrons are 

neutral particles which are characterized by their non-destructive nature, sensitivity to light 

elements (hydrogen/deuterium, carbon, nitrogen and oxygen) and long penetration depths into 

matter (131,132). Neutrons interact directly with the nuclei of molecules in a sample and are 

scattered due to the presence of the strong nuclei observed in classical optics. 

Neutrons behave as particle waves and thus follow in principle the quantum-mechanic rule 

described by Planck and de Broglie (Appendix A). The kinetic energy of a neutron beam is related 

to the wavelength of the periodic neutron wave by its momentum (particle mass and velocity, 

EquationA1. 4). Modifications of neutron momentum p and their energy (E) indicate changes in 

the neutron track (Figure 1.12). 
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Figure 1.12: The classic optics of a beam, hitting a planar surface, related to the geometry of this 
process with the wavevector transfer. The wavevector is the “spatial” frequency of the neutron 
wave and is described by the |𝑘| = @A

B
 , where k is the wavevector and λ is the neutron 

wavelength.  𝑘CDDD⃗ , 𝑘FDDDD⃗  and 𝑘GDDDD⃗  are the wavevectors of incident, reflected and refracted neutron beam, 
respectively. 𝑄D⃗  is the wavevector transfer (𝑘CDDD⃗ − 𝑘FDDDD⃗ ), 𝜃HI, 𝜃JKL and 𝜃G are the incident, outgoing 
and refracted angle of the neutron beam. 

In an ideal simple scattering experiment, the scattering is elastic and, therefore, there is no 

energy transfer to be considered. The scattering event is restricted to the wavevector transfer 

(𝑄 = |𝑘H	| − |𝑘F|) (Figure 1.12). The condition of “no energy exchange” (𝐸H = 𝐸F) between the 

neutron and the sample implies that there is no modification of the wavelength of the neutron 

(|𝑘H	| = |𝑘F|). Based on elementary trigonometry (Figure 1.12) leads to the following wavevector 

transfer formula: 

𝑄 = OA PQRSTU
B

     Equation 1.1 

, where Q describes the wavevector transfer position in reciprocal space in the z direction (Figure 

1.13B), 𝜃HIis the incident angle and λ the wavelength of the neutron bean. Reflected neutrons 

from a thin film may undergo strong interference depending on the wavelength of the neutron, 
their state of polarization, the thickness of the layer and the neutron refractive indices of the 

media involved (Figure 1.13). The scattering length densities (SLD) reflects the magnitude of 

scattering by each molecules in the sample, and is similar to a refractive index in light scattering. 

The relative values of SLDs of the constituting molecules is of major importance for the analysis 

of complex structures. 

A standard multilayer method is used to calculate the reflectivity profile. Neutrons travel through 
the matter at different speeds and, thus, penetrate the layers to different depths (Figure 1.13A). 

The difference between the wavevector transfer of the two ejected neutrons (k), which appears 

as interference fringes in the reflectivity profile (Figure 1.13A), is directly related to the thickness 

of the interfacial layer by:  

𝑘 = 𝑄@ − 𝑄V =
@A
W

     Equation 1.2 

, where 𝑄@ − 𝑄V describes the separation of between the interference fringe and d is the thickness 

of the interfacial layer. Although the wavevector transfer (Q) links the magnitude of momentum 
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transfer with the scattering angle, it does not capture all the spatial aspects. The scattering of a 

neutron occurs in a three-dimensional system; therefore the position of the scattered wavevector 

𝑘F is defined by a second angle φ (Figure 1.13B), which is required for the measurement of 

rotation about 𝑘H. The angles θ and φ determine the direction of the outgoing neutron, the same 

way as longitude and latitude give the position of a point on the surface of the Earth. 

 

 
Figure 1.13: (A) The oscillations in the reflectivity profile resulting from the interference which 
depends on the thickness (d) of the layer (in terms of the position) and the difference in scattering 
contrasts between the respective interfaces (in terms of the amplitude). 𝑘LDDD⃗   is the wavevectors of 
the incident neutron beam and 𝑘FVDDDDDD⃗  and 𝑘F@DDDDDD⃗  the outgoing neutron beam from the top and bottom 
of the interfacial layer, respectively. 𝑛V and 𝑛@ are the refractive index of light while SLD1 and 
SLD2 are the refractive indexes of neutrons in two different bulk phases. 𝜃HI, 𝜃J and 𝜃G are the 
incident, outgoing and refracted angle of the neutron beam. (B) The scattering geometry in both 
Cartesian and spherical polar coordinates with ϕ and θ are angles determining the direction of 
the outgoing neutron beam. 𝑘FDDDD⃗  is the wavevectors of reflected neutron beam and λ is the neutron 
wavelength. 

The SLD profile is directly related to the distance along the z axis and gives information about 

the thickness, roughness and solvation of a particular layer. The use of contrast variation is 

essential in NR experiments in order to obtain as much information as possible about each layer. 
A way to achieve this is the use of isotopic substitutions in the whole molecule or part of a 

molecule, to manipulate contrast (neutron refractive index). The SLD is related to the refractive 

index by the following formula (133): 

𝑛 ≈ 1 − YBZ

@A
     Equation 1.3 

 , where n is the refractive index, ρ is the SLD and λ is the neutron/light wavelength. The 

possibility to selectively labelling a molecule with isotopes of different SLD allows the neutron 
beam to highlight or mask specific regions of the molecule. One of the most extensively used 

contrast variations is between hydrogen and deuterium (134,135), since the scattering length 

densities of these two isotopes are markedly different.  

Examples of contrast variation are described in Table 1.7. If tail-deuterated lipids are spread on 

the air/D2O interphase in pure D2O, the total scattering intensity is given by the lipid headgroup 
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(135). It is possible to match the SLD of an H2O and D2O mixture to the scattering length density 

of specific biological molecules and materials. For instance, a mixture of approximately 38% D2O 

in H2O (v/v) matches the SLD of silicon, whereas a mixture of 13% D2O in H2O (v/v) would match 
the SLD of hydrogenated lipids. The matched molecules would not contribute to the neutron 

scattering and the scattering profile contains no information regarding these molecules. In 

air/water Langmuir interface experiments, it is convenient to use 8% D2O in H2O (v/v) solution 

which has no scattering (SLD=0) (136). The SLD is identical to that of air and, therefore, the 

solution is called null reflected water (NRW). In contrast, in supported lipid bilayers on a silicon 

surface, a mixture of 32% D2O and 62% water matches the SLD of silicon and is called silicon 

matched water (SMW). 

Table 1.7: Potential isotopic contrasts and main information content of a monolayer on an 
air/water interface or a deposited lipid bilayer on a silicon surface consisting for tail deuterated 
phospholipids. NRW and SMW stand for null reflective water (8.2% D2O) and silicon match water 
(38% D2O) respectively and are used to cancel out the background of the two mediums and 
highlight the interface. 
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SLDD2O = 6.35×10−6  Å −2 
SLDNRW = 0 Å −2 

SLDH2O = -0.56×10−6  Å −2 
SLDSMW = 2.00×10−6 Å −2 

All these advantages have made neutrons an ideal tool for studying the composition and 
structure of supported model lipid membranes by measuring the diffracted neutron beam. In this 

study, specular neutron reflectivity is used to characterize the in- plane model asymmetric 

membranes and study changes in their structure caused by exposure to a liposomal drug carrier. 

Ra-EH100 LPS and DPPC, which account for the lipidic component of the outer and inner leaflet 

respectively of the OM, were deposited on a flat silicon surface forming a model asymmetric 

membrane as presented in Figure 1.14.  
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Figure 1.14: Asymmetric lipid bilayer formed of Ra-EH100 LPS and DPPC and deposited on a 
silicon surface. The red arrows show the neutron path when the bean hits the surface. 

A highly collimated beam of neutrons hits the flat surface and the neutrons travel through the 

individual layers of the membrane. The intensity of the reflected radiation is measured as a 

function of angle or neutron wavelength and plotted against neutron momentum. This reflectivity 

data sets (all three contrasts) are then transformed into SLD vs distance and these data are fitted 

to a mathematical layered model, providing a real space distribution of the data sets.  
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characterization and solubility of 
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2.1 Introduction 

Pyrrolobenzodiazepine (PBD) drugs are a family of natural anticancer-antibiotics isolated from 

various Actinomycetes bacteria. They are a class of sequence-selective DNA minor-groove 

agents. The first PBD monomer, anthramycin, was originally discovered as a metabolite of 

Streptomyces refuineus (137). Since then, several natural PBDs have been isolated from 

Streptomyces, Micrococcus (138) and Klebsiella (139) bacteria and various PBDs have been 
chemically synthesized (140). A tricyclic scaffold is the basic skeletal structure of the PBD 

molecules (Figure 2.1) (107,108,141,142). The system consists of a substituted aromatic A-ring, 

a diazepine B-ring and a pyrrolidine C-ring (Figure 2.1). Their biological activity is facilitated via 

covalent binding of the imine moiety at position N10-C11 to the C2-amino group of guanine. The 

imine moiety at N10-C11 is the electrophilic center responsible for DNA binding (142). It has 

been reported that PBDs have antimicrobial activity against Gram positive and Gram negative 

bacteria. However, their high degree of toxicity has hindered their use as antibiotics (108). 
Derivatization and the use of different synthetic routes from several research groups have 

attempted to decrease their toxicity while maintaining their antibacterial activity (108). 

 

Figure 2.1: Mechanism of tricycle PBD core binding to the N2 of guanine in the DNA minor groove 
reproduced from Brucoli et al. (143). 

A novel series of modified PBD biaryl hybrids with lower cytotoxicity against eukaryotic cells 
compared to the monomer was chemically synthesized at King’s College London (108). The 

chemical structure of this class is described as a tricycle PBD scaffold linked to a lateral 

polyamidic tail in position 8 via a 4-carbon aliphatic chain. PPA148 is the lead antimicrobial 

compound of this novel class of molecules. Its tail comprises three units linked with an amide 

bond, an N-methyl-pyrrole-4-amino methyl ester, a benzofuran unit and a thiomorpholine unit 

(Figure 2.2). Three building blocks have been proven to give optimum antibacterial activity (108). 

A screening of the physicochemical properties was performed using ChemDraw software to 
obtain a first indication of the lipophilicity and polarity of PPA148. Based on the structure, drug 

family and physicochemical properties estimated by ChemDraw (Mw = 698.25 g/mol, clogP = 

2.09 and logP = 0.76) (Table 2.1), PPA148 is a large and non-ionic lipophilic molecule, whose 

bactericidal activity is attributed to its binding onto bacterial DNA. According to O’Shea et al. (12) 
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and Brown et al. (144), antimicrobial agents have distinct properties, which often violate Lipinski’s 

rule of five (Table 1.1) (12,13)  and depend on their activity against Gram positive and/or Gram 

negative bacteria due to differences in the constitution of the bacterial cell envelope as presented 
in Table 2.1. Based on these findings, PPA148 seems to have a similar lipophilicity (clogP) to 

antimicrobials acting against Gram positive, and similar polarity (tPSA) to those acting against 

Gram negative bacteria (Table 2.1). Nevertheless, measurements of the minimum inhibitory 

concentrations (MIC) showed that PPA148 is active against both types of bacteria (Appendix B, 

Table B 1; Table B 2) but present reduced permeability in Gram negative. In fact, MIC 

experiments were conducted in the presence of the efflux pump inhibitor, PAβN, which showed 

significantly reduced MIC values, thus indicating that PPA148 is affected by the efflux pump. The 
low water solubility and the results from the microbiological assay suggest that enhancing the 

solubility of the drug may improve its uptake and thus help increase its antimicrobial activity 

against Gram negative bacteria.  

 

Figure 2.2: Chemical structure of PPA148. 

Table 2.1: Comparison of the physicochemical properties of PPA148 estimated by ChemDraw 
compared (the experimental values are presented in parenthesis) with the generic optimal 
properties of antibacterial drugs for oral or parental administration as calculated by O’Shea et al. 
(12) based on data collected from the literature and drug data bases. 

Physicochemical 
properties PPA148 Optimal properties 

against Gram negative 
Optimal properties 

against Gram positive 

Mw (g/mol) 698.25 414 (cutoff of 600) 813 
LogP 0.76 - - 
cLogP  2.09 -0.1 2.1 
LogS -7.461 (-4.37)  - 
tPSA ( Å2) 142.11 165 243 

 Mw: Molecular weight 

The approach to enhance water solubility is to use cyclodextrins, which are well-known 

pharmaceutical excipients, capable of forming inclusion complexes with a wide range of poorly 
soluble molecules (72,144) (Figure 2.3). Cyclodextrins are cyclic oligosaccharides containing 6 

(αCD), 7 (βCD) or 8 (γCD) (α-1,4)-a-D-glucopyranose units, respectively. All hydroxyl groups are 

oriented to the cone exterior with the primary hydroxyl groups at the narrow side of the toroid 
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cone and the secondary on the opposite (wider) side (145) (Figure 2.3). The hydrogens of the 

skeletal carbons at position 1, 2 and 4 are mainly located on the exterior side of the toroid 

molecule and the hydroxyl groups at position 2, 3 and 6 are oriented toward the exterior of the 
cone. The central cavity includes the hydrogens at position 3 and 5 and the ring of glycosidic 

ether oxygen is present with H-6 located near the cavity (145) (Figure 2.3). This central cavity 

has a polarity similar to ethanol (146). Due to this unusual structure, cyclodextrins are able to 

encapsulate (partially or wholly) a wide variety of guest molecules of suitable size, shape, 

structure and physicochemical properties, resulting in a stable association without the formation 

of covalent bonds (77,87). In an aqueous environment, the hydroxyl groups form hydrogen bond 

with water molecules, creating a hydration shell around the CD molecule.  

This capability of CDs to form water-soluble complexes with (lipophilic) poorly soluble drugs has 

been used extensively to increase their solubility (73,147). Two types of complexes can be 

formed: inclusion and non-inclusion. With inclusion complexes, the central cavity provides a 

lipophilic microenvironment to the molecule; the guest (drug) and host (CDs) are in dynamic 

equilibrium with the complex (Equation 2.1). Non-inclusion complexes are formed by hydrogen 
bonds between the outer surface of the CDs (hydroxyl or another substituted group) and the drug 

(73). It is possible that both types of complexes can co-exist (148,149). 

 

Figure 2.3: Different representations of the structure and conformation of β-cyclodextrin, showing 
the orientation of the hydrogens and hydroxyl groups. Native βCD contains hydroxyl groups, 
while its derivatives can be substituted by different functional groups. RAMEB contains either 
hydrogens or methyl groups, while HPβCD has either hydrogens or hydroxypropyl groups.  

The complexation process is characterized by the equilibrium or binding constant (K) (Equation 

2.2). The binding constant provides a measure of the affinity between the guest and the host. 

The following equations describe the interaction and the stoichiometry of the complexes formed.  

𝑚𝐶𝐷	 + 𝑛𝐷 ⟷	𝐶𝐷_𝐷I   Equation 2.1 

𝐾 = abcbU
abc×bU

     Equation 2.2 
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, where m and n describe the stoichiometry of the CD/drug complex. For instance, a 2:1 CD/drug 

complex would have m of 2 and n of 1. Binding constants for cyclodextrin lie between 50 and 

2000 M-1 (73) and inconsistencies among the methods used to determine the binding constant 
have been reported (75). 

In this chapter we report the synthesis of a novel antibiotic, PPA148, its characterization and the 

formation of inclusion complexes with either HPβCD or RAMEB to increase its solubility. A 

convergent synthetic route was applied based on the separate synthesis of the tricyclic PBD 

scaffold and the lateral polyamidic tail (107,108). The two final pure core and tail molecules were 
linked via an amidic bond to form the final PPA148. Following the synthesis, the physicochemical 

characteristics, such as solubility, of this novel antimicrobial agent were measured. Finally, the 

drug was formulated with HPβCD and RAMEB and drug/CD binding constants measured using 

fluorescence spectroscopy. Given the low solubility of the drug, this was the first step towards 

potentially enhancing its efficacy by forming inclusion complex with a βCD derivative. 

Enhancement of water solubility will help to optimize the drug for local use to the lungs by 

avoiding precipitation and side effects (150). The second step for achieving increased 
antibacterial activity was to prepare a liposomal carrier to help PPA148 breach the bacterial cell 

envelope and bind to the chromosomal DNA (Chapter 3).  

2.2 Materials 

Reagents and chemicals used for the synthesis: (Diacetoxyiodo)benzene (BAIB), 3,4-

dihydro-2H-pyran (DHP), 4-(dimethylamino)pyridine (DMAP), ptoluenesulfonic acid 

monohydrate (PTSA) (≤ 100%, sulphuric acid 1 - 5%), 2,2,6,6-tetramethylpiperidinooxy 

(TEMPO), tetrakis(triphenylphosphine)palladium(0), triphenylphosphine and N-(3-

dimethylaminopropyl)-N’-ethylcarbodiimide hydrochloride (EDCI) were purchased from Sigma-

Aldrich, UK. Dichloromethane (DCM), dioxane, N,N-dimethylformamide (DMF), methanol, 

acetone, ethyl acetate (EA), acetonitrile (ACN) and thiomorpholine were purchased from Sigma-

Aldrich, UK. LC/MS grade water was supplied by Merck, UK. Ethyl-5-amino-1-benzofuran-2-

carboxylate and 4-tert-butoxycarbonylamino-1-methyl-1H-pyrrole-2-carboxylic acid were 
purchased by Fluorochem Ltd (Hadfield, UK). Citric acid, sodium chloride (NaCl), brine and 

sodium bicarbonate (NaHCO3) were purchased from Sigma-Aldrich, UK. Formic acid for use in 

LC/MS was purchased by Fisher Scientific UK. Silica was purchased from Sigma-Aldrich, UK, 

and TLC silica gel 60 F254 aluminium sheets (20 cm) were supplied by VWR International, UK. 

Deuterated water, chloroform and DMSO were purchased by Sigma-Aldrich, UK.  

Cyclodextrins: Hydroxypropyl-β-cyclodextrin (HPβCD), randomly methylated β-cyclodextrin 

(RAMEB) and heptakis (2,6-di-O-methyl)-β-cyclodextrin (DIMEB) were purchased from Sigma-

Aldrich, UK  
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Active Pharmaceutical Compounds: Rifampicin, gentamicin sulfate and chlorhexidine 

digluconate were purchased by Sigma-Aldrich, UK. 

Buffer preparation: Trizma(R) hydrochloride (BioUltra, for molecular biology, >=99.0%) and 

HEPES (>=99.5%) purchased from Sigma-Aldrich, UK. Sodium chloride (NaCl), calcium chloride 

(CaCl2) and magnesium chloride (MgCl2), supplied from Sigma-Aldrich, UK. The ultrapure water 

at 18.2 MΩ was produced by a Purelab Ultra machine from ELGA process water (Marlow, UK). 

2.3 Methods 

This section describes the methods applied for the synthesis and characterization of all 
intermediate and final compounds. All the compounds were tested with TLC (2.3.2), LC/MS 

(2.3.3), proton and carbon NMR (2.3.4) and FTIR (2.3.5). The conditions of these tests are stated 

in separate sections from that of the synthetic pathway (2.3.1). Methods used for further 

characterization of the final compound (aqueous solubility) and complex formation for enhancing 

water solubility will be described at the end of this section (2.3.6: Adsorption assay using the 

Langmuir trough, 2.3.7: Ultra Violet Spectroscopy, 2.3.8: Turbidimetric Assay, 2.3.9: Water 

Solubility Test, 2.3.10: Quantification of drug binding affinities to Cyclodextrin (Fluorescence 

Binding constant assay), 2.3.11: Phase solubility diagram, 2.3.12: Continuous method variation 
(Job’s plot)) 

2.3.1 Synthetic pathway of PPA148 

The complete reaction sequence is shown in Scheme B 1, Appendix B (107). In the present work, 

the synthetic route was performed according to Scheme 2.1. It is separated into 3 sections. The 

first (Scheme 2.1A) describes the core synthesis, the second (Scheme 2.1B) the tail and the last 
(Scheme 2.1C) shows the coupling of the two parts to form the final compound #12 (PPA148). 
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Scheme 2.1: Synthesis of C8-linked pyrrolobenzodiazepine-carboxylate conjugate (A: PBD 
corecarboxylate, B: Tail conjugate and C: final core and tail coupling and deprotection steps) 

Synthesis of core compound #7 (IUPAC name: allyl 11-hydroxy-7-methoxy-8-(4-methoxy-4-

oxobutoxy)-5-oxo-2,3,11,11a-hexahydro-1H-pyrrolo[2,1-c][1,4]benzodiazepine-10(5H)-
carboxylate) was achieved by the following method. Compound #6 (1.73g, equi. 1) underwent a 

mild aerobic oxidation by adding TEMPO (65.85 mg, equiv. 0.11) and diacetoxyiodobenzene 

(BAIB, 1.48 g, equiv. 1.2) in dichloromethane (88 mL). The reaction was left under stirring for 12 

hours with regular TLC monitoring (EA as mobile phase). The reaction mixture was washed with 

saturated sodium metabisulphite (44 mL) followed by saturated aqueous NaHCO3 (2 × 44 mL), 

water (44 mL) and finally brine (44 mL). The resulting solution containing crude #7 was dried 

over MgSO4 and the solvent was removed by rotary evaporation under reduced pressure. The 

crude product was purified using flash chromatography (EA/DCM). 
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The synthesis of core compound #8 (IUPAC name: allyl 7-methoxy-8-(4-methoxy-4-oxobutoxy)-

5- oxo-11- (tetrahydro-2H -pyran -2 -yloxy)- 2,3,11,11a hexahydro 1H-pyrrolo [2,1c] [1,4] 

benzodiazepine-10(5H) -carboxylate) was carried out by the following method. The N10-alloc 
protected carbinolamine #7 (1.3 g, equiv. 1) was added to a solution of DHP (2.6 mL, 10 

equivalents) and a catalytic amount of PTSA (11 mg, equiv. 0.06) in ethyl acetate (24 mL). After 

two hours of stirring, TLC analysis (DCM/EA (90:10) as mobile phase) showed completion of 

reaction and the reaction mixture was diluted with ethyl acetate (23 mL). The resulting solution 

was washed with saturated aqueous NaHCO3 (20 mL), followed by brine (20 mL). The ethyl 

acetate layer was then dried (MgSO4) and evaporated using a rotary evaporator (RC 600 with a 

SC920 G vacuum pump system and a C 900 chiller, KNF Lab (Oxford, UK), under reduced 
pressure. Product #8 was purified by flash chromatography (DCM:EA 90:10).  

Core compound #9 (IUPAC name: 4-(10-(allyloxycarbonyl)-7-methoxy-5-oxo-11(tetrahydro-2H-

pyran-2-yloxy)2,3,5,10,11,11a-hexahydro1H pyrrolo[2,1c][1,4]benzodiazepine-8-yloxy)butanoic 

acid) was synthesized using the following steps. Excess NaOH 0.5M was added to a solution of 

#8 in dioxane at room temperature. The reaction mixture was left under stirring for 4 hours at 
which point TLC showed completion of the reaction. Dioxane was evaporated under vacuum and 

the residue was diluted with water. The resulting solution was acidified with 1 M citric acid 

followed by extraction with ethyl acetate (2 × 100 mL). The combined organic layers were washed 

with brine (100 mL), dried over MgSO4 and finally concentrated using a rotary evaporator under 

reduced pressure. Product #9 was purified by flash chromatography (DCM:EA 90:10). 

The synthesis of the tail compound is a series of three amide coupling reactions. The tail 

compound #10 (IUPAC name: 4-((tert-butoxycarbonyl)amino)-1-methyl-1H-pyrrole-2-

carboxamido)benzofuran-2-carboxylic acid) was synthesized according to the following 

procedure. 4-((tert-butoxycarbonyl)amino)-1-methyl-1H-pyrrole-2-carboxylic acid (900 mg, 

equiv. 1.2)  was dissolved in DMF (4-5 mL). EDCI (598 mg, equiv. 2.5) and DMAP (558 mg, 

equiv. 3) were added to the solution and was left under magnetic stirring in a pure N2 atmosphere 

for 20 minutes. At this point, ethyl 5-amino-1-benzofuran-2-carboxylate (300 mg, equiv. 1) was 

added to the reaction and left under magnetic stirring pure N2 atmosphere overnight. EA was 
added (30 mL) and then the organic phase (DMF and EA) was extracted with citric acid 0.1 M 

aqueous solution (15 mL), saturated NaHCO3 (15 mL) and brine (15 ml).  The collected organic 

phase was dried with MgSO4 and subsequently evaporated under reduced pressure using a 

rotary evaporator giving the crude compound #10. The crude was purified by column 

chromatography using silica as a stationary phase and DCM/EA as a mobile phase to give the 

final pure compound #10. 

The next intermediate tail compound, #11, (IUPAC name: 1-methyl-5-((2-(thiomorpholine-4-

carbonyl)benzofuran-5-yl)carbamoyl)-1H-pyrrol-3-yl)carbamate) was made following the steps 

described below. Compound #10 (369 mg, equiv. 1) was dissolved in MeOH/dioxane. Excess 

NaOH 1M (equiv. at least 5) was added to the mixture and left under magnetic stirring at room 
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temperature overnight. Disappearance of the starting material, shown by TLC, led to completion 

of hydrolysis. MeOH/dioxane was evaporated under reduced pressure using a rotary evaporator. 

Citric acid 1M was added until pH became acidic (~2) causing formation of precipitate (acid). The 
precipitate was extracted with EA, the organic phase was collected and the solvent was 

evaporated using rotary evaporator. The acid produced (equiv. 1.2) was dissolved in DMF (4-5 

mL). EDCI (equiv. 2.5) and DMAP (equiv. 3) were added to the solution which was left under 

magnetic stirring (in N2 atmosphere) for 20 minutes. At that point, thiomorpholine (equiv. 1) was 

added to the reaction and left under magnetic stirring overnight. EA was added (30 mL) and then 

the organic phase (DMF and EA) was extracted with citric acid 0.1 M aqueous solution (15 mL), 

saturated NaHCO3 (15 mL) and brine (15 ml). The collected organic phase was dried with MgSO4 
and subsequently evaporated using a rotary evaporator giving the crude compound #11. The 

crude compound was purified by column chromatography using DCM:EA (90:10) as a mobile 

phase to give the final pure compound #11. 

The synthesis of the final compound #12, also called PPA148, included the first amide coupling 

of compound #9 and #11 followed by the deprotection of the diazepine B-ring of the PBD scaffold 
with the formation of the imine bond. Pure compound #11 (100 mg) was de-protected by being 

dissolved in MeOH (6 mL) and HCl 4M in dioxane (6 mL) at a ratio of 50:50 and left under stirring 

for 2 h. The reaction was monitored with TLC. The reaction mixture was evaporated using a 

rotary evaporator and the intermediate de-protected #11 was formed. The protected PBD 

derivative (compound #9, equiv. 1.2) was dissolved in DMF and EDCI (equiv. 2.5) and DMAP 

(equiv. 3) were added to the solution. The mixture was left under magnetic stirring (in N2 

atmosphere) for 20 minutes. At that point, the de-protected compound #11 (equiv. 1) was added 

to the reaction and left under magnetic stirring overnight (in N2 atmosphere). EA was added (30 
mL) and then the organic phase (DMF and EA) was extracted with citric acid 0.1 M aqueous 

solution (15 mL), saturated NaHCO3 (15 mL) and brine (15 ml). The collected organic phase was 

dried with MgSO4 and subsequently evaporated using a rotary evaporator giving the intermediate 

crude compound #12. The crude was purified by column chromatography using DCM:Acetone 

(90:10 to 60:40) as a mobile phase.  

The final compound was formed by de-protecting the pure intermediate compound #12. This 

intermediate (equiv. 1) was dissolved in DCM. Tetrakis Pb (equiv. 0.05), triphenylphosphine 

(equiv. 0.25) and pyrrolidine (equiv. 1.2) were added and the reaction kept under stirring for 20 

min. The completion of the reaction was monitored with TLC. At that point the solvent was 

evaporated using a rotary evaporator and high vacuum giving the crude of the final compound 

#12. The crude was purified by column chromatography using DCM:Acetone (90:10 to 60:40) as 

mobile phase. 
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2.3.2 Thin Layer Chromatography (TLC) 

TLC is a planar chromatographic technique extensively used in synthetic organic chemistry as a 

rapid and straightforward tool to determine each compound’s purity and a means of following the 
progress of a reaction. It was performed for all intermediates and the final compound. As a mobile 

phase a mixture of organic solvents was used depending on the nature and affinity of each 

compound (DCM:EA at different ratios for the intermediate and DCM:Acetone for the final 

compound). Silica gel-coated aluminium sheets were used as a stationary phase. The mobile 

phase travels through the stationary phase and carries the components of the mixture with it. 

The movement of the analyte can be seen under the UV light and expressed by the retardation 

factor (Rf). Rf depends on the distribution coefficient (K) and is the relation between the distance 

travelled by the analyte from its origin (Kα) to the distance travelled by the solvent from its origin 
(Ks) using the following formula: 

𝑅F =
fg
fh
	     Equation 2.3 

If the analyte spot is not UV visible, a number of solutions can be applied on the dried TLC plate 

and produce colored products. Potassium permanganate (KMnO4) was used for all compounds 

that can be oxidized such as phospholipids and cyclodextrins. UV radiation at 254 nm was used 

for all samples.  

2.3.3 Liquid Chromatography-Mass Spectrometry (LC/MS) 

LC-MS was conducted with the triple quadrupole Agilent Infinity Automated LC/MS Purification 

System to identify the purity and mass of the compounds at every step of the synthetic route. 

The physical separation was performed on a OnyxTM monolithic C18 column with dimensions 

of 50mmx4.60mm and pore size of 130 Å. The mobile phase was a mixture of HPLC grade water 

with 0.1% formic acid (Solvent A) and HPLC grade ACN with 0.1% formic acid (Solvent B). The 

gradient was ramped from 95% A at t = 0min to 50% A at 2 min, then to 10% at 2.5 min, and kept 

it until 4.5 min and finally ramped to 95% at 4.6 min and keep there for 5 min. The injection 
volume was 10 µL, the flow rate was 1 mL/min and minimum/maximum flow ramp up/down was 

100 mL/min2. The LC detector was an Agilent 1260 Infinity II Diode Array Detector (DAD) G7115A 

and the detection wavelength range was 220-400 nm. The UV absorbance was recorded at 260 

nm with a slit width of 4 nm at 0.8 °C. The LC was coupled with the mass spectrometer via an 

electrospray ionization (ESI) interface operating in both positive (ESI+) and negative (ESI-) 

modes. The nebulization pressure was 50 psig, the gas used N2 and the quadrupole temperature 

set at 0 °C. The voltage capillary was 4000 V and 3500 V for ESI+ and ESI- respectively and the 
drying gas temperature and flow were 350 °C and 13 L/h. The sample cone (skimmer) voltage 

and ion energy was set at 8 and 5 V respectively for both ionization modes. Lens1, Lens2, IRIS 

lens and HED were set at 2.4, 23, -400 and 10000 V for the ESI+ and -4, 23, 400 and 10000 V 

for the ESI-.  
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For all the compounds, the relative purity was assessed based on the LC chromatogram because 

there were no analytical standards to assess their absolute purity. Therefore, it was calculated 

based on the relative area of each intermediate and final compound as a percentage of all other 
peak areas in the chromatogram. For the purpose of this research, the term relative purity will be 

referred to as purity or RP. 

2.3.4 Nuclear Magnetic Resonance (NMR) spectroscopy 

Liquid state NMR spectroscopy was carried out on an AscendTM 400 MHz spectrometer 

equipped with a SampleXpress autosampler system (Bruker, UK) for all intermediates and the 
final compound of the synthetic procedure to identify their molecular content and purity. 1-

dimentional (1D) proton (1H) and carbon (13C) NMR were performed to assign the resonances. 

The spectra were recorded using TOPSpin software for data acquisition and MestReNova 

software for data analysis. 1H NMR parameters included sweep width of 8012.82 Hz, acquisition 

time of 4.09 sec and 16 scans and were collected with a zg30 pulse program. 13C NMR used a 

sweep width of 24038.46 Hz, acquisition time of 1.36 sec and 1024 scans. The solvent used was 

either deuterated chloroform (CDCl3) or deuterated DMSO, depending on the solubility of the 

compound. 

2.3.5 Fourier Transform Infra-Red (FTIR) Spectroscopy 

FTIR was carried out to confirm the presence of the basic functional groups of newly synthesized 

compounds. It is an additional technique to NMR to confirm the structure of each intermediate 

and the final compound. A Perkin Elmer, UK, Frontier FTIR (serial number 95462) with a LiTa03 

detector, IR-laser wavenumber of 15798 cm-1 and a zinc selenide (ZnSe) crystal was used to 
analyze the samples in their solid state. For a better contact of the sample with the crystal, the 

DATR 1 bounce diamond accessory with a pressure arm force indicator (part number L1250240, 

Perkin-Elmer Ltd, UK) was attached to the main piece of equipment. All spectra were produced 

using 16 scans and collected at a scan speed of 0.2 cm-1/min and spectral resolution of 2 cm-1. 

The data were analyzed using Spectrum One software (version 10.03.06, Perkin-Elmer Ltd, UK). 

Each spectrum was scale-base normalized by dividing the absorbance of each point with that of 

the C-H stretch at around 2950 cm-1 (internal standard) to minimize the errors caused by the 

amount of sample used. 

2.3.6 Adsorption assay 

The adsorption of the drugs chlorhexidine digluconate, rifampicin, gentamicin and PPA148 at the 

air/water interface was recorded by measuring changes in surface pressure after subphase 

injection. A Langmuir trough (NIMA Technologies Ltd., Coventry, UK) equipped with a calibrated 

NIMA PS4 pressure sensor and a Wilhelmy plate (Whatman, grade 1, chromatographic paper), 
connected to a controlling computer with the NIMA IU4 interface unit. For all the experiments a 

50 mm diameter perfluoroalkoxy (PFA) petri dish (Saint-Gobain Performance Plastics) with a 20 
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mL volume capacity, was placed over a magnetic stirring plate and referred to as the “small 

trough”. A dust and contaminant free subphase (approximately 20 mL filtered ultrapure water 

containing 0.9% w/v NaCl) was poured into the petri dish and a clean Wilhelmy plate was 
suspended from the NIMA PS4 pressure sensor and partially submerged into the subphase. The 

subphase surface was cleaned by sweeping and suction using a pressure pump (Aspirator A-

3S, EYELA, Tokyo Rikakikai Co, Ltd) in order to remove any remaining dust and contaminants 

from the surface (Π = 0± 2 mN/m). 

Drug solution was injected (0.1 μL) below the surface directly into the subphase using a 1 mL 
disposable plastic syringe (fitted with a 25 G x 25 mm needle) of 1 mL volume (BD biosciences 

UK, Oxford, UK) whilst continuously stirring. Chlorhexidine digluconate (CHD) and gentamicin 

sulfate were dissolved in water whilst rifampicin and PPA148 were dissolved in DMSO. In each 

case, the final drug concentration in the trough was 2 μg/mL. The adsorption of the drug on the 

surface causes changes in surface pressure which are recorded over time whilst maintaining a 

constant surface area (21.3 A2/m) at 23 °C. Each sample was run in triplicate (n=3) and the 

changes in surface pressure were plotted against time (Π and A-Time isotherm). Nonlinear 
regression was applied to estimate the kinetics of the Pressure-Time isotherm curves. The 

isotherm was fitted with a sigmoidal model (Hill plot with 3 parameters) using GraphPad Prism 

7.03 software (USA). The Hill plot model explained approximately 99% of the pressure variability 

in time for all individual data and is described by the following formula: 

𝑓(𝑥) = (k∗mn)
(onpmn	)

     Equation 2.4 

, where a is the maximum difference in surface pressure reached at the plateau (ΔΠmax), b is the 

hill coefficient of sigmoidicity (hill slope at its midpoint) and c is the time for which 50% of 

maximum pressure is obtained (t50%).  

2.3.7 Ultra Violet Spectroscopy 

The UV spectrum of PPA148 was recorded on a Lamda 2 spectrophotometer (Perkin Elmer, 
UK), at 25 ˚C using a quartz cuvette (Hellma 114-QS) with a pathlength of 1 cm and volume 

capacity of 1400 μL. The absorbance was recorded within a wavelength range of 200-550 nm 

with spectral slit width of 2 nm and scan speed of 60 nm/min. The drug concentration was 20 

μg/mL and it was measured in DI water, ethanol and ethanol/water (80:20). 

The linearity of this method was determined by analysing the solutions of PA148 in the range of 
2-200 μg/mL. For quantification purposes, the Limit of Detection (LOD) and Quantification (LOQ) 

were established by regression analysis of the linear part (calibration curve). Both values were 

calculated using the standard error mean (se) and slope (S) taken from the regression line. The 

linear regression assumes that the errors between observed and predicted values, i.e. the 

residuals of the regression, should not fall outside the straight line (normal distribution) and its 
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variance should be equally distributed (homoskedasticity) (Appendix B, Figure B 4). Otherwise, 

the residuals are not constant and normally distributed, leading to false estimations. All the 

formulas are as follows: 

𝐿𝑂𝐷 = s.s×tu
v

     Equation 2.5 

𝐿𝑂𝑄 = Vw×tu
v

     Equation 2.6 

2.3.8 Turbidimetric Assay 

Turbidimetric assay is a preliminary screening test to rapidly evaluate the enhancement of water 

solubility of compounds at their early stage of development. Initially, a stock solution of PPA148 

(5 mM) in DCM was used to produce a range of concentrations (0, 5, 10, 15, 20, 25, 30, 40, 50, 

60, 70, 100, 130 and 160 μg/ml) in water or aqueous buffer. DCM was evaporated before the 

addition of the water to a final volume of 4 mL. The samples were left under mild stirring (290 
rpm) for 7 days and changes in the light scattering of the samples were tracked using two 

techniques. Photon correlation spectroscopy (PCS), also known as dynamic light scattering 

(DLS), was the first technique used at 25 °C. A Malvern Zetasizer, Nano-ZS (Malvern 

Instruments, UK) was used with a laser of wavelength 623.8 nm and backscatter detection angle 

of 173°. The value of the viscosity of water (as the dispersant) and refractive index were used, 

respectively 0.889 cP and 1.33211. The samples were placed in disposable semi-micro dynamic 

light scattering cuvettes with volume capacity of 1.5 mL (VWR International, UK). The linear 

derived count rate (DCR) was recorded and plotted against drug concentration.  

UV/Vis spectroscopy was also used as an additional technique to measure the scattered light at 

a wavelength of 620 nm at 25 ˚C. Solutions were placed a quartz cuvettes (Hellma 114-QS) with 

a pathlength of 1 cm and measured on a spectrophotometer (Perkin Elmer, UK) with slit width 

set at 2 nm. The absorbance value at 620 nm was recorded and plotted as a function of drug 

concentration. 

In the absence of aggregates, scattering from the samples is nearly zero; the onset of 

aggregation is denoted by a break in the slope, with scattering (or turbidity) increasing linearly 

with concentration. The intersection of the two linear profiles is used as an estimation of the 

aggregation concentration.  

2.3.9 Water Solubility Test 

An excess amount of PPA148 (1 mg) was added to deionized water and 20 mM HEPES, 2 mM 

CaCl2, 145 mM NaCl (pH =7.2) buffer (1 mL). The samples were left under mild stirring (290 rpm) 

for 7 days. After incubation, samples were centrifuged (5 min at 10,000 rpm) and the supernatant 

was freeze-dried overnight and resuspended in ethanol: water (4:1). The saturated concentration 
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was assayed by UV/Vis spectroscopy using a calibration curve as described in the corresponding 

methods section (2.3.7). 

2.3.10 Quantification of drug:cyclodextrin binding constant by fluorescence 

spectroscopy 

The increase in aqueous solubility of the antimicrobial agents (PPA148 and rifampicin) obtained 

by their incorporation into cyclodextrins was measured by fluorescence spectroscopy. Two types 

of modified -βcyclodextrins were used: HPβCD and RAMEB and the binding constant was 

measured as reported by Valero et al. (151). Specific volumes of either PPA148 in DCM, or 

rifampicin in ethanol were transferred into separate vials and the solvent evaporated. CD 

solutions (0, 1, 2, 3, 4, 5, 6, 10, 15, 20, 25 and 30%) in HEPES (20 mM) buffered saline, pH 7.2, 

or 50 mM Tris buffer pH 9 were then added to achieve a final drug concentration of 10 µg/mL. 
The samples were left under mild stirring overnight. The fluorescence intensity of the drug was 

measured as a function of concentration. The fluorescence intensity of the drug increases upon 

complexation with CDs until the drug is fully complexed with the CD and a plateau is reached. 

The fluorescence intensity from PPA148 was measured with a Luminescence spectrometer LS 

50 B (Perkin Elmer, UK), and was conducted with an excitation wavelength of 300 nm, and an 
emission wavelength scan range of 340-530 nm, with emission/excitation slit widths of 5 nm. 

Shifts in the fluorescence drug peak at 422 nm for PPA148 and the ratio of 338/419 nm for 

rifampicin are due to inclusion complex formation. Assuming that the drug forms a 1:1 complex 

with CD, the binding constant (K) was determined by fitting the data with the following equation 

(152): 

𝐼 = yzpy{	f[ab]
Vpf[ab]

     Equation 2.7 

, where 𝐼w, 𝐼 and 𝐼L are the fluorescence intensity from the drug in the absence of cyclodextrin, 

at intermediate and infinite cyclodextrin (excess) concentration, K is the binding constant and 

[CD] is the molar concentration of free cyclodextrin. A non-linear least squares method was used 

to fit the experimental results to Equation 2.7. The differences between the calculated solubility 

and the experimentally derived data were minimized by varying the values of the binding constant 

(the iterative approach of Nelder–Mead) using the Microsoft Excel Solver function (153). 

2.3.11 Phase solubility diagram 

Complex formation between cyclodextrin (solubilizer) and drug was also investigated by studying 

phase solubility (147). Twelve vials containing an excess of drug, i.e. 1 mg (1.4 mM) for PPA148 

and 10 mg (12 mM) for rifampicin, were prepared. The aqueous solution used for PPA148 was 

HEPES buffered saline including CaCl2 at pH 7.2; for rifampicin, Tris buffer at pH 9 was used. 

Each vial contained varying amounts of cyclodextrin (0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 4, 6, 10 and 
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15% w/v). The mixtures were left under stirring for 7 days at room temperature (23 °C). For 

rifampicin, a photosensitive drug, the vials were covered with aluminum foil to avoid drug 

degradation. The undissolved drug was separated from the mixture by centrifugation (Heraeus™ 
Pico™ 21 Microcentrifuge, UK) at 5000 rpm for 5 min. The supernatant was freeze-dried (ALPHA 

1-2 LD plus freeze drier with chemistry hybrid pump RC6). PPA148 was resuspended in 

EtOH:H2O (80:20), rifampicin in Tris buffer pH=9 and assayed by fluorescence spectroscopy 

(Luminescence spectrometer, LS 50 B, Perkin Elmer, UK). Each sample was scanned over the 

range 340-550nm, the excitation wavelength was set at 300 nm, and the scan speed at 120 

nm/min. The measurements were performed at 25 °C and the final spectrum was an average of 

10 scans. Excitation and emission slit widths were set to 5 mm. A calibration curve for each drug 
was prepared in the same solvent and measured under the same instrument settings for each 

drug on the same day. The molar drug concentration, which was determined from the calibration 

curve, was plotted against the CD molar concentration.  

The phase solubility diagram is classified into “A” and “B” type depending on the type of complex 

formed. Type “A” curves indicate the formation of soluble complex, while “B” types represent the 
formation of insoluble complexes (147,154). Type “A” curve is obtained when the solubility of a 

drug increases with increasing ligand concentration. Negative or positive deviation of linearity 

produce the “AL” and “AP” or “AN” curve, “BS” describes complex of limited solubility and “BI” 

illustrates the formation of insoluble complex (Figure 2.4) (154). 

 

Figure 2.4: Types of phase solubility diagrams (“A” and “B”) and their deviations (“AP”, “AN”, “BS” 
and “BI”) (154). 

In the “A” type curve, the binding constant (𝐾F), assuming a 1:1 complex and the overall complex 

stoichiometry is estimated by using the linear region of the diagram, which is fitted with a linear 

model. The slope of the linear regression, the y-intercept representing the drug solubility in the 

absence of cyclodextrin (𝑆HIL, the intrinsic solubility) and the solubility in the presence of 

cyclodextrin (𝑆w) is used in the following equations: 
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𝐾F =
t�J�u

vTU{	(V�t�J�u)
	    Equation 2.8 

𝑔𝑢𝑒𝑠𝑡: 𝐶𝐷 = 1: Vpvz
(V�vz	)

    Equation 2.9 

Due to poor water solubility of hydrophobic drugs, the y-intercept is not always equal to the 

intrinsic solubility because of the presence of dimers, trimers or other water-soluble oligomers, 

which render the formation of the complexes (147). Therefore, complexation efficiency (CE) is a 

more accurate method to determine the solubilizing effect of cyclodextrins. CE is the 

concentration ratio between cyclodextrin in the complex and its free form in the system (155). CE 

is calculated based on the slope of the linear part of the phase solubility diagram.   

𝐶𝐸 = 𝑆w × 𝐾F =
t�J�u
V�t�J�u

    Equation 2.10 

The Gibbs free energy of transfer ∆𝐺LGJ  is the energy needed for the drug to be transferred from 

the aqueous environment to the cyclodextrin cavity and is calculated using the function: 

∆𝐺LGJ = −𝑅𝑇𝑙𝑜𝑔(vTU{
vz
)    Equation 2.11 

, where R is the gas constant (8.314 JK-1mol-1), T is temperature in Kelvin, 𝑆HIL and 𝑆w are the 

molar solubility of the drug in the absence (y-intercept of the linear part of the phase solubility 

diagram or intrinsic solubility) and presence of CD, respectively.  

2.3.12 Continuous method variation (Job’s plot) (156) 

The molecular association of the drug and CD was also studied by NMR spectroscopy. Equimolar 

solutions (1mM) of drug and CD in D2O were prepared and mixed in varying volume fractions 

while keeping the total concentration constant (1 mM). DIMEB was used instead of RAMEB as it 
provides a high resolution spectrum from which all protons can be assigned, unlike RAMEB and 

HPβCD, which are randomly substituted and therefore lead to spectra with broad peaks (157). 

Rifampicin and DIMEB solutions were mixed in volume fractions ranging from 0 to 1 mL with an 

increment of 0.1. The inclusion of rifampicin into the DIMEB cavity is evidenced by changes in 

the chemical shift observed with selected protons of the cyclodextrin. The spectral peaks of 

cyclodextrin hydrogens were assigned according to the literature (158). The settings were the 

same as those described in the NMR method section (2.3.4). The resonances of the DIMEB 
interior hydrogens (in positions 3 and 5) and exterior (position 1) were selected as changes in 

those hydrogens indicate inclusion of drug into the cyclodextrin cavity (159). The chemical shifts 

of H1 was presented as a doublet at 5.19 and 5.18 ppm, that of H3 was observed as a triplet at 

3.90, 3.92 and 3.94 ppm and of H5 as a doublet at 3.84 and 3.86 ppm. The stoichiometry of the 

complex was obtained by normalizing the variations of the chemical shifts of the host by its mole 

fraction (XCD) and plotting them against cyclodextrin mole fraction (XCD) (160). The shift of CD’s 



Synthesis, characterization and solubility of PPA148 

 

 
44 

hydrogen resonance depends on the mole fraction of pure drug, pure CD and drug/CD 

complexes. A 1:1 complex presents a maximum signal at 0.5 CD mole fraction.  

2.4 Results 

2.4.1 Synthesis 

PPA148 is a novel modified biaryl PBD hybrid analogue and its synthesis is based on a 

convergent strategy. The PBD tricyclic scaffold and the lateral polyamidic tail were synthesized 

separately and the two pure compounds (#9 and #11) were coupled to give the final PPA148 

(#12). The synthesis of PPA148 was performed according to Scheme 2.1, starting from the 

intermediate core compound #6 which was previously synthesized by another group member. 

The complete synthetic route can be found in Appendix B, which is the one described in the 

patent (107). Each reaction was monitored with TLC and upon completion the compounds were 
characterized with LCMS, both 1H and 13C NMR, TLC and FTIR to verify their structure and the 

mass.  

The PBD core followed a retrosynthetic pathway. The pro-imine bond was formed on N10C11 

via intramolecular oxidative cyclization of the protected amino-alcohol compound #6. Compound 

#7 was obtained with a 74.6% yield and 76.2% relative purity (RP). In order to control the final 
bonding site of the core and tail coupling, the -OH group of compound #7 was protected (93% 

yield and 71.2% RP) prior to the saponification reaction (83% yield, 85.9% RP) of the terminal 

methyl ester group. Proton NMR revealed all the differences in magnetic environment during the 

series of reactions (Figure 2.5, Figure 2.6).  

Compound #6 was the starting material for this project. Its 1HNMR generated a signal at 8.73 
ppm which was assigned to the amide hydrogen (Figure 2.5). This signal disappeared in 

compound #7 which indicated that the pro-imine bond had formed. All proton NMR spectra 

contained several overlapping signals due to the similar magnetic environment of the 

hydrocarbon chains. The tetrahydropyran protective group added more hydrocarbon chains to 

compound #8 which increased dramatically the signal of the protons at 1.63 ppm. The two sharp 

peaks in compounds #6, 7 and 8 were assigned to the two methyl groups (Figure 2.5). Although 

compound #6 generated the signals at 3.68 and 3.89 ppm, there was a slight shift in signal 

towards higher frequencies in #7 and 8. Compound #9 generated only one signal for the methyl 
hydrogens which validates the hydrolysis of the methyl ester to create the equivalent acid (83% 

yield and 85.9% RP) (Figure 2.5). In all spectra traces of solvent signals might be present or 

hidden. 13C NMR was performed for all molecules and it showed all the different carbon 

environments (Appendix B, Figure B 2).  

The tail consisted of three constitutive units at the C8 position which were sequentially connected 
via an amide bond (Scheme 2.1). The Boc-protected pyrrole-2-carboxylic acid (first unit) was 

bonded with the benzofuran carboxylate (second unit) to give the intermediate compound #10 
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which was derivatized with the cyclic secondary amine, i.e. thiomorpholine (third unit), after being 

hydrolysed. 

The series of amide couplings for the tail formation were successful (Figure 2.6). Compound #10 

was formed with a 65.4% yield and 99.4% purity. The final tail was obtained with 56.3% yield and 

89.4% purity. The signals at 4.39-4.34 ppm (quadruplet) and 1.36-1.32 (triplet) assigned to the 

ethyl group in compound #10 disappeared while the thiomorpholine hydrocarbon chains 

appeared at both higher and lower frequencies depending on the neighboring atom (3.93, 3.88 

and 2.72 ppm (Figure 2.6). This was an indication that there was no starting material left because 
if both compounds were present all peaks would be observed in the final spectrum. The four 

methyl groups generated from the Boc-protection and the tertiary amine were assigned in the 

final spectrum, too, at 1.46 and 3.82 ppm respectively. This was another indication that the 

coupling of compound #10 and thiomorpholine succeeded.  

 

Figure 2.5: 1NMR of sequential reaction monitoring for the synthesis of the final PBD core 
compound (#9). 
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Figure 2.6: 1NMR of sequential reaction monitoring for the synthesis of the final tail compound 
(#11). 

The conversion of compound #10 to the intermediate acid is a crucial step. Citric acid was used 

for precipitation of the acid which was formed during hydrolysis with methanol and dioxane. 

However, if traces of citric acid remain in the precipitant, it prevents the final amide coupling. The 
intermediate product with molecular weight of 555 g/mL was formed but it did not interact with 

thiomorpholine to give the expected tail product (Scheme 2.2). An attempt to overcome this issue 

was to increase the concentration of reagents. Unfortunately, that was not the case, even after 

doubling the amount of EDCI and DMAP.   

  

Scheme 2.2: A detailed scheme presenting the second amide coupling of the tail synthesis. When 
citric acid is present, the reactions did not go to completion and instead only the intermediate 
product was formed.  

The final amide coupling of the PBD core (#9) and tail (#11), de-protection and purification were 

successful with 82% yield and 78.1% RP. The proton NMR of PPA148 contained overlapping 

signals for the secondary amides, giving a “W” shaped peak instead of two singlets (Figure 2.7). 
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For the hydrogens being involved in double bonds, 9 different signals were generated for each 

different environment (Figure 2.7). 

In Figure 2.8, there is evidence of the rest of the structure. The hydrogens in the alkyl 

hydrocarbon chain were generated at 3.92, 2.72 and 2.04 ppm which agrees with the equivalent 

hydrogens in compound #9. The signal of the methyl moieties overlapped as it may be seen in 

Figure 2.8. Thiomorpholine group was present at 2.66 and 3.33 ppm because there are 2 different 

magnetic environments. The signal of pyrrole of the PBD tricyclic moiety was generated at 2.33 

ppm as a multiplet. There are several similar magnetic environments but the signals were not 
strong. 13C NMR was performed for all molecules and it showed all the different carbon 

environments (Appendix B, Figure B 3 and Figure B 4). 

 

Figure 2.7: 1NMR signals for the secondary amide and double bond hydrogens of the final de-
protected compound (#12), PPA148. 

 

Figure 2.8: 1H-NMR signals for the hydrocarbon chain, methyl moieties, thiomorpholine and the 
pyrrole group of the PBD tricyclic core of the final compound, PPA148.  
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Additional information on the structure and functional groups of each compound were collected 

by FTIR. The product of each reaction was analyzed as a tool for monitoring each step of the 

synthetic route.Figure 2.9, Figure 2.10 and Figure 2.11 outline the changes in functional groups 
of the PBD core (#9), tail (de-protected #11) and the final compound (#12, PPA148) as they 

progress through every synthetic step. This technique reveals the hydroxyl groups which are 

difficult to observe in the NMR spectra. 

FTIR confirmed the functional groups within the structures of each compound (Figure 2.9, Figure 

2.10, Figure 2.11). Particularly, in compound #6 the band at 3328 cm-1 is associated with the -
OH and NH stretching vibration bands, which overlap in the spectrum (Figure 2.9). The bands 

between 2900-1860 cm-1 result from the asymmetric and symmetric stretching vibration bands 

of -CH, -CH2, -CH3 and the band at 1726 cm-1 is generated by the carbonyl group of the ester. 

Amide I absorption originates from the C=O stretching of the amide group (coupled to in-phase 

bending of the N–H bond and stretching of the C–N bond), which gives rise to bands in the region 

between 1660-1560 cm–1. Amide II comes from the N–H bending and C–N stretching vibrations 

which generate a band at 1520 cm-1. Amides III is a very complex band resulting from mixtures 
of several coordinate displacements (-H-N-C bend, -CC stretch and -NH bend). The band at 1263 

cm-1 possibly arises from the amide III. The aromatic -C-C- stretches and the C-H deformation 

bands of the phenyl ring are generated at 1452-1406 cm-1, 872-768 cm-1 respectively. 

 

Figure 2.9: FTIR monitoring of the core synthesis. 

Upon oxidative cyclization, the amide converted into amino-alcohol. Unfortunately, this change 
was not depicted in the FTIR spectrum because the two peaks were overlapping in #6. However, 

the ester, amide I and II bands changed position, which indicated change in the hydrogen 

bonding of the molecule (Figure 2.9). This reaction was followed by the protection of the -OH 

group of #7 by tetrahydropyran which led to marked changes in the v(OH), amide III v(C-N) and 

saturated ether v(C-O-C) region of the spectra. The last step is the hydrolysis of the ester. The 

PBD carboxilate (#8) was transformed to the equivalent acid, as indicated by the presence of the 

-OH band of the acid. 
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Figure 2.9 shows the spectra of the two-step tail synthesis. The sharp peaks indicate the 

formation of crystalline compounds. In compound 11, the absorption band at 1710 cm-1 is 

associated with the stretching vibrations of the ester carbonyl group, which disappeared in the 
spectrum of compound 12 due to the amide coupling with thiomorpholine at that site. The bands 

between 1500-1700 cm-1 relates to the -C=O and -H-C-N stretching (amide I), N-H bending, C-

N and C-C stretching (amide II). The bands between 3500-3200 cm-1 result from the NH 

stretching vibrations; and that between 3000-2800 cm-1 arise from the CH, CH2 and CH3 

stretching. 

 

Figure 2.10: FTIR monitoring the tail synthesis. 

The final amide coupling resulted in an amorphous material because the peaks are broad and 

not well defined. However, the functional groups were established within the spectrum (Figure 

2.11). The final compound is the deprotected #12 which means less -CH, -CH2 and CH3 bonds. 
This is presented in Figure 2.11 with a change in the band shape at the corresponding region. 

 

Figure 2.11:  FTIR monitoring of the final protected and de-protected PPA148. 

Table 2.2 presents the mass to charge ratio (m/z) of each compound, estimated by ChemDraw® 

and calculated by LC/MS. The experimental m/z was calculated from samples that were 

assessed by positive mode ESI. It can be seen that the mass of the parent ion [M+H]+ was as 

predicted for all the products. TLC was used to monitor the reactions and become a fast and 

straightforward means of identification. The retardation factor (𝑅F) was calculated from the 

distance travelled by the solvent and the individual spots created by the compounds (Table 2.2). 
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All compounds travelled up the plate at different rates depending on their affinity with the solvent. 

Compound #9 stayed on the baseline because the mobile phase, used (100% ethyl acetate) was 

not polar enough to carry the compound with it. That was a way of observing whether the 
hydrolysis had been completed since compound #8 was able to travel. It was observed that 

PPA148 decomposed in methanol and at temperatures above 65 °C (data not shown), by 

changing color from light yellow to orange which was confirmed by LC/MS.  

Table 2.2: Chemical characteristics of each intermediate and the final compound. 

Compound # Estimated M/Z Measured M/Z by 
LCMS Rf (cm) 

6 
(C22H30N2O8) 

450.4 451.2 0.34 

7 
(C22H28N2O8) 

448.4 449.2 0.38 

8 
(C27H36N2O9) 

532.2 532.6 0.45 

9 
(C26H34N2O9) 

518.5 519.2 N/A 

10 
(C22H27N3O6) 

429.2 429.1 0.44 

11 
(C24H30N4O5S) 486.2 485.2 0.75 

12 
(C36H38N6O7S) 698.2 699.3 0.23 

 

2.4.2 Physicochemical characteristics 

2.4.2.1 Adsorption at the air/water interface 

PPA148’s water solubility (logS = -7.461) and logP (0.76) estimated by ChemDraw suggest a 

very hydrophobic drug with low water solubility (Table 1.5). The adsorption of PPA148, rifampicin, 

gentamicin sulfate and chlorhexidine digluconate (CHD) at the clean air/water interface were 
measured in order to present the hydrophilic and/or hydrophobic character of each antimicrobial 

agent and to use it as a control in the interaction studies (Section 4.3.3; Section 4.3.4; Figure 

4.6; Figure 4.7; Table 4.2) with model lipid membranes presented in Chapter 4. The concentration 

of the drug in the small trough was 2 μg/mL. Changes in surface pressure due to the adsorption 

of the molecules at the air/water interface were recorded. Figure 2.11 shows the changes in 

surface pressure over time after injection of PPA148. 

PPA148 reached a maximum surface pressure of 12.34 ± 0.77 mN/m with a Hill slope of 1.03 ± 
0.22 (Figure 2.12). The time needed to reach half of the adsorption equilibrium surface pressure 
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was 0.33 ± 0.15 h, which reflects a rather slow kinetic profile. This was probably a result of the 

co-solvent (0.5% of DMSO) in the small trough since PPA148 is barely soluble in water and thus 

DMSO was used to prepare the stock solution and avoid drug precipitation in water. The data for 
gentamicin sulphate, rifampicin and chlorhexidine digluconate are not shown here because no 

increase in surface pressure was observed. All three drugs are soluble in water at the 

concentration used and they did not adsorb at the air/liquid interface.  

 

Figure 2.12: A representative adsorption profile of PPA148 at the air/liquid interface at 23 °C. 
The drug was injected below a 0.9% NaCl subphase and changes in surface pressure were 
recorded until a plateau was reached. The representative curve was fitted (red line) based on a 
3-parameter Hill equation (Equation 2.4), R2=0.99 (P≤0.0001). The mean and std of maximum 
surface pressure (12.34 ± 0.77 mN/m), Hill slope (1.03 ± 0.22) and t50% (0.33 ± 0.15 h) was 
calculated from a set of 3 runs.  

2.4.2.2 Solubility and UV profile of PPA148 

The UV absorbance spectrum of PPA148 was measured in ethanol/water mixtures (0, 80 and 

100% ethanol) over a range of drug concentrations. The experimental data were fitted by linear 

regression and met the assumptions regarding the normal distribution and homoscedasticity of 

data as described in section 2.3.7 (Appendix B, Figure B 4). The absorbance intensity of the drug 

in water was lower than in ethanol, which, in turn, was slightly lower than in ethanol/water (80:20) 
(Figure 2.13). The shape of the peak was broader in water and better separated in the other two 

solvents (Figure 2.13). Figure 2.14A presents the effect of increasing concentration on the 

linearity of the UV/Vis method and thus in the Beer-Lambert’s law. For concentrations between 

1-15 µg/mL, the drug absorbance in water is proportional to concentration. However, it deviates 

at higher concentrations, which is an indication of the presence of molecular aggregates. Visual 

observation of the samples showed cloudiness and turbidity for 40-70 µg/mL and drug 

precipitation was pronounced for 100-200 µg/mL (Figure 2.15). In ethanol and ethanol/water, the 

linearity was extended up to 30 µg/mL, at which point the absorbance reached the highest value 
regarding the sensitivity of the instrument Figure 2.14A. 
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Figure 2.13: Representative UV/Vis spectra of PPA148 in three solvents: EtOH, H2O, 
EtOH/H2O (80:10) at 25 °C.  

The first derivative of the spectroscopic spectra was used to enhance the separation of 

overlapping absorbance peaks at around 290 and 255 nm (Figure 2.14B, C, D). It was observed 

that the peak at around 290 nm shifts towards higher wavelength with increasing drug 

concentration, whereas the one at 255 nm remains stable. This bathochromic shift occurs at 

stages when PPA148 is in water and presents a hyperbolic shape when in ethanol and 

ethanol:water (80:20).  

UV/Vis spectroscopy was used for the quantification of PPA148. The limits of detection and 

quantification in two different systems (100% ethanol and 80:20 ethanol:water) were initially 

calculated by a regression analysis of the calibration curve. The assumptions of linear regression 

were met and, thus, the results are reliable (Figure 2.14A-inset, Figure B 4). It was found that the 

LOD/LOQ (Equation 2.5 and 2.6) for 100% and 80% ethanol were 2.23/6.76 µg/mL and 2.97/8.99 

µg/mL, respectively. Once these limits were established, the thermodynamic solubility (𝑆w) was 

investigated in water and HEPES buffer (pH=7.2). The experimental S0 was 30.3 ± 1.8 µg/mL 

and 60.7 ± 15.6 μg/mL in water and HEPES buffered saline, respectively, after equilibration for 

one week. 
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Figure 2.14: (A) Effect of solvent and drug concentration on the absorbance profile. Inset: 
concentration range where the Beer-Lambert law is followed (𝑦 = 0.04𝑥 + 0.02, 𝑅@ = 0.98 for 
EtOH/H2O, 𝑦 = 0.04𝑥 + 0.06, 𝑅@ = 0.75 for EtOH, 𝑦 = 0.03𝑥 + 0.05, 𝑅@ = 0.98 for H2O). First 
derivative of UV/Vis spectrum of a series of PPA148 concentrations in: (B) H2O; (C) EtOH; and 
(D) EtOH:H2O (80:20). The peaks and troughs of the spectrum profile is presented with zero first 
derivative. The insets show the changes of λmax with increasing drug concentration. 

2.4.2.3 Aggregation and solubility studies 

The solubility of PPA148 in aqueous media was further investigated with dynamic light scattering. 

DLS is a sensitive technique to detect the presence of small aggregates based on temporal 

fluctuations in the intensity of scattered light, as a result of Brownian motion. The derived count 

rate (DCR) is a measure of the count rate (average scattering intensity) and is useful to compare 

the signal strength in different samples. Figure 2.16 presents the changes in DCR against 

increasing drug concentration in water at room temperature (25 °C). The results show that 
PPA148 generates aggregates at drug concentrations above ~20 μg/mL with an average size of 

1µm and high polydispersity index (0.7). Precipitation of the drug was visually observed at 

concentration higher than ~30 μg/mL (Figure 2.15).  
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Figure 2.15: Increasing concentration of PPA148 in water 7 days under mild stirring at 25 °C. 
Visual observation of the precipitation point is at 50 μg/mL. 

Cyclodextrins were used as a means of increasing the water solubility of the drugs and avoiding 

its self-association. As explained above, the increased scattered light or turbidity reflects the 

onset of aggregation (Figure 2.16). In the presence of cyclodextrin (HPbCD), the onset of 

aggregation takes place at higher drug concentrations, as seen from a shift in the intersection 

point between a flat region and a linear region. The values obtained are 51.1 ± 2.6 µg/mL (PCS) 

and 53.9 ± 12.1 µg/mL (UV scattering) (Figure 2.16, Table 2.3).  

 
Figure 2.16: Turbidimetric assay: Effect of cyclodextrin concentration in the aggregation of 
PPA148 using dynamic light scattering (A) and UV/Vis spectroscopy (B).  

Solubility of PPA148 in pure water and HEPES buffered saline pH 7.2 was determined using 
different techniques. The results are summarized in Table 2.3. 

Table 2.3 Solubility values and aggregation concentration of PPA148 in water, HEPES buffered 
saline pH 7.2 and HPβCD or RAMEB in HEPES obtained by different techniques. 

Solvent 
Solubility (µg/mL) using: Aggregation concentration 

(µg/mL) 
Thermodynamic 

solubility 
Phase solubility 

diagram 
Turbidimetric 
assay (PCS) 

Turbidimetric 
assay (UV) 

H2O 30.3 ± 1.8 - 18.1 ± 4.7 16.3 ± 11.1 
HEPES 60.7 ± 15.6 153.8 ± 52.9 - - 
HPβCD/HEPES - 938.8 51.1 ± 2.6 53.9 ± 12.1 
RAMEB/HEPES - 966.8 - - 
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2.4.2.4 Drug/Cyclodextrin inclusion complex formation: binding constant 

The formation of an inclusion complex between CD and drug was examined by two methods: 
binding constant determination by fluorescence spectroscopy (161) (section 2.3.10) and phase 

solubility diagram (section 2.3.11) (147). Rifampicin was used as a positive control to evaluate 

and establish the method because it is known to form an inclusion complex with CDs (158,162–

164). With the spectroscopic method, the binding of the drug to the CD is reflected by a hyperbolic 

function in UV absorbance as the concentration of CD is increased while the total drug 

concentration is held constant. The addition of increasing cyclodextrin (either RAMEB or HPβCD) 

from 0 to 30 % w/v to a fixed concentration of 10 µg/mL PPA148 and 50 µg/mL rifampicin 
produces a hyperchromic effect (Figure 2.17, Figure 2.18) reflecting an interaction between the 

drug and HPβCD or RAMEB. For both types of cyclodextrin, a good fit (Equation 2.7) of the 

experimental data was obtained by assuming a 1:1 stoichiometry. Higher affinity of PPA148 to 

RAMEB (102 ± 26 M-1) over HPβCD (63 ± 20 M-1) could be attributed to the different 

hydrophobicity of the methylated and hydroxypropyl substitutions. The data were fitted using a 

1:2 PPA148:CD complex (data not shown) but the root mean squared error between the 

experimental and the fitted data was better when a 1:1 complex was assumed, which illustrated 

a better fitting. The binding constants of rifampicin to RAMEB and HPβCD at 50 mM Tris buffer 
pH 9 were found to be 38 ± 9 M-1 and 22 ± 2 M-1 (Figure 2.18) respectively, which are lower than 

values from the literature,  namely, 73.4 ± 8.2 M-1 and 68.5 ± 5.2 M-1 for RAMEB and HPβCD, 

respectively in sodium tetraborate buffer, pH 9 (162). A much higher binding constant (209.0 M-

1) was found  for HPβCD at pH 6 (164) and with DIMEB at PBS buffer pH 5.7 (300 M-1) (158). 

Chadha et al. obtained the binding constant using solution calorimetry and the reported values 

are 1564 ± 8 M-1 for RAMEB and 1038 ± 11 M-1 for HPβCD in PBS (163). The difference in the 

binding constants may be the different methods used and buffer used during the experiment. 

 
Figure 2.17: Changes in the fluorescence intensity of PPA148 with increasing cyclodextrin 
concentration (HPβCD or RAMEB) at 25 ˚C (A). The lines represent the non-linear regression fit 
(Equation 2.7) of the experimental data points assuming a 1:1 complex. The phase solubility 
diagram (B) was built by adding an excess of drug to solutions of cyclodextrin to measure drug 
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solubilisation. In both experiments, the solution used was HEPES buffered saline including CaCl2 
at pH 7.2. 

 

 

Figure 2.18: Changes in the fluorescence intensity of rifampicin in increasing cyclodextrin 
concentration (A) show the drug’s affinity to HPβCD and RAMEB at 25 ˚C. The lines represent 
the non-linear regression fit of the experimental data points assuming a 1:1 complex. The phase 
solubility diagram (B) was built to observe the approximate amount of drug that can be solubilized 
with CDs and gave an indication of the complex stoichiometry and affinity. In both experiments, 
the solution used was Tris buffer pH 9. 

The phase solubility diagram was constructed by measuring the apparent drug solubility (of 

rifampicin and PPA148) as a function of increasing CD concentration. It was used as a tool to 

identify the drug behavior and its solubility profile based on the shape of the diagram (147). The 

phase solubility diagram obtained for rifampicin agrees with published data in terms of shape, 
binding constant and complex stoichiometry (164). Rifampicin presents an increase in 

solubilization as the amount of CD is increased, up to ca. 34 mM (5% w/v) HPβCD (Figure 2.18B). 

In the plateau region, the concentration of the drug is 13.6 ± 1.0 mM (11.2 ± 1.2 mg/mL). 

Additional quantities of CD do not alter the diagram, suggesting that saturation has been 

reached. The intercept of the phase curve with the y-axis (Sint) should reflect the intrinsic drug 

solubility. Here a value of 4.9 ± 0.4 mM (4.0 ± 0.3 mg/mL) was obtained, which is higher than the 

water solubility given by the manufacturer (2.5 mg/mL or 3 mM). The linear region of the diagram 

suggests the formation of a 1:1 complex with a binding constant of 349 ± 75 M-1, which is higher 

than the value found using the fluorescence spectroscopy method (Figure 2.18A). The ratio of 
cyclodextrin concentration in complex over free form (CE) found from the phase solubility 

diagram is CE = 1.7 ± 0.4 which is higher than that found by Tewes et al. (CE = 0.3) (162). Similar 

solubility behaviour was observed for PPA148 with both RAMEB and HPβCD (Figure 2.17B). 

However, the phase solubility test was performed only once because of the large quantities of 

drug needed to perform the experiment, thus, only qualitative results are presented. PPA148 (1 
mg) was completely solubilized (0.99 mg/mL or 1.4 mM) with 6 mM (0.8%) RAMEB and 15 mM 

(2.0%) HPβCD. In the solubility diagram with RAMEB, the intercept of the linear part gives 𝑆HIL = 
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153.8 µg/mL (0.2 mM), whereas in that with HPβCD to 191.3 µg/mL (0.3 mM) (Table 2.3). As in 

the case of rifampicin, the solubility obtained from the phase solubility diagram is around double 

the thermodynamic concentration.  

Table 2.4: Binding constant of PPA148 and rifampicin as obtained by two different techniques. 

CD 

Binding Constant (M-1) 

PPA148 Rifampicin 
Rifampicin 

(reported values) 
 

Binding 
assay 

Phase 
solubility 
diagram 

Binding 
assay 

Phase 
solubility 
diagram 

Phase solubility diagram 

HPβCD 63 ± 20 71.2 22 ± 2 349 ± 74 18* 120/125** 68.5 ± 5.2*** 
 

RAMEB 102 ± 26 161.1 38 ± 9 - - - 73.4 ± 8.2*** 
*The buffer used in the experiment was 10 mM Tris pH 6.9 and ionic strength of 10 mM. 
** The buffer used in the experiment was 30 mM citrate/10 mM Tris pH 6.9 with ionic strength of 0.8 mM. 
*** The buffer used in the experiment was 50 mM sodium tetraborate pH 9. 

Gibbs free energy change (∆𝐺��w ) values for the process of transferring a drug from pure water 

to aqueous cyclodextrin solution were calculated based on Equation 2.11 and presented in Table 

2.3. ∆𝐺��w  values were found to be negative at all concentrations of CD in all cases, indicating 

the spontaneous nature of complex formation. The values were negative upon increasing CD 

concentration, indicative of more favorable solubilization reaction as the concentration of CD 

increased. 

Table 2.5: Gibbs free energy of transfer of rifampicin and PPA148 from pure water to aqueous 
CD solutions at room temperature calculated using Equation 2.11. 

HPβCD or 
RAMEB (%) 

∆𝑮𝑻𝑹𝟎  
RIF: HPβCD 

∆𝑮𝑻𝑹𝟎  
PPA148: HPβCD 

∆𝑮𝑻𝑹𝟎  
PPA148: RAMEB 

 

0.2 N/A -67 N/A 

0.4 N/A N/A -491 

0.5 -443 N/A N/A 

0.6 N/A -29 -700 

1 -627 -420 N/A 

1.5 -860 N/A -704 

2 -1066 -690 N/A 

4 N/A -480 -562 

5 -1091 N/A N/A 

10 -1160 -672 -672 

15 -1131 -691 -685 
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2.4.2.5 Stoichiometry of drug/CD complexes 

The stoichiometry of the complex was examined using the Job’s plot method from NMR data 
(section 2.3.12, Figure 2.19). The normalized NMR signal is plotted against the mole fraction of 

one reactant (molar fraction of cyclodextrin in this case), while the total reactant concentration is 

kept constant (1 mM). Figure 2.19 presents changes in protons at position 1 (external) and 5 

(internal) in a series of cyclodextrin molar fraction for rifampicin and PPA148, respectively. The 

Job’s plot of H1 for rifampicin and DIMEB reflects the formation of a 1:1 inclusion complex, with 

a maximum at XCD=0.5. This stoichiometry is in agreement with published data (158).  

 

Figure 2.19: Job’s plot for rifampicin/DIMEB (A) and PPA148/DIMEB (B) complexes. In the case 
of rifampicin, the normalized chemical shift (Δδ*XCD) of the H1 protons of DIMEB were plotted 
against the molar fraction of DIMEB (XCD). For, PPA148, protons at position 5 of the cyclodextrin 
structure.  

In order to build a Job’s plot, PPA148 was used at very low concentration (20 µg/mL, or 0.03 

mM) because of its poor solubility in water (Table 2.3). The spectra were noisier, due to the low 

concentration, but the chemical shift of H5 shows a skewed Job’s plot with a maximum around 

XCD=0.6, thus revealing a dominating 1:2 PPA148/DIMEB complex, namely, the drug is 

encapsulated by two cyclodextrins in two different positions.  

2.5 Discussion 

A novel biaryl pyrrolobenzodiazepine (PBD) hybrid analogue, PPA148, was successfully 

synthesized based on the reported synthetic route (107). Specifically, a convergent synthetic 

strategy was used, based on the separate synthesis of the PBD tricyclic scaffold (core) and the 

lateral polyamidic tail. The two constituents of the final core and tail molecules were coupled to 

give the final PPA148 with 82% yield and 78.1% relative purity. Based on the ICH guidelines, the 

purity of new compounds should be calculated based on an analytical standard (165). Here, the 

purity was calculated based on PPA148’s peak areas as a percentage of all other peak areas in 
the LC/MS chromatograms because there was no analytical standard. The drawback of this 

approach is that any non-UV active impurities present in the sample are not detected.  



Synthesis, characterization and solubility of PPA148 

 

 
59 

Affinity for the air/water interface, a measure of amphiphilicity, was investigated at the molecular 

level using the Langmuir trough technique (Figure 2.12). PPA148 adsorbed at the air-water 

interface and reached a surface pressure of 12.3 ± 0.7 mN/m. It was expected that the adsorption 

would be instantaneous because of the properties estimated by ChemDraw (logP = 0.76 and 

logS = -7.461). However, PPA148 reached half of the maximum pressure within 20 min and from 

that point it took another 2 h to reach the final maximum. This slow kinetic profile can be explained 

by two possible transport-limiting steps. The drug was injected below the air/water interface 

under mild stirring in order to mix the drug with the subphase. The initial adsorption was delayed 
due to the diffusion of the co-solvent (0.5% DMSO) in the aqueous subphase of the trough. 

DMSO is miscible with water and forms strong hydrogen bonding interactions with 3 water 

molecules (166). It was introduced into the aqueous system as a solvent for the drug via injection 

which possibly affected the kinetic profile of the drug absorption process (167). The second stage 

was due to the saturated surface after 40 min (Figure 2.11). In the early stages of adsorption, i.e. 

after drug injection, the surface is relatively empty and molecules adhere as fast as they reach 

the surface. However, as the surface gets saturated by drug molecules, the diffusion at the 

interface might be slowed down before the pseudo-steady equilibrium is reached (168).  

PPA148 is a hydrophobic antibiotic with low water solubility. It presented a water solubility of 30.3 

± 1.8 µg/mL and aggregation occurred at concentrations above 18 µg/mL (Table 2.3). 

Sedimentation arose by attraction forces between drug molecules and repulsion forces between 

drug and water, which are responsible for low-concentration agglomeration, possibly leading to 

drug sedimentation at around 50 μg/mL (Figure 2.15). (169). In addition, the fact that the 

absorption intensity of PPA148 decreased with increasing water content in the EtOH/H2O 

mixture (Figure 2.13) and in 100% water deviated from linearity with increasing amount of drug 

(Figure 2.14A and Figure 2.16) indicated the formation of agglomerates/aggregates. The 

thermodynamic water solubility (30.3 ± 1.8 µg/mL) was higher than the aggregation concentration 

(Table 2.3), which implies the presence of both monomers and small aggregates  (169). The 

aggregates were not optically visible at 30 µg/mL which implies that the aggregates might have 

been dimers, trimers or other water-soluble oligomers whose size is below the visible light 

wavelength range (400-700 nm) (110,155). 

Drug aggregation can have a negative impact on antimicrobials, because their bioavailability is 

reduced and less substance is available to interact with microorganisms (170). Cyclodextrins 

were successfully used to improve the solubility of the drug through inclusion complex formation. 

RAMEB and HPβCD were shown to solubilize PPA148 up to approximately 50 µg/mL in HEPES 

buffered saline pH 7.2 (Table 2.3) in HEPES buffered saline (pH 7.2) by delaying the formation 

of aggregates. Rifampicin and PPA148 possess hydrophobic moieties (Figure 1.9, Figure 2.2) 

capable of entering the apolar CD cavity through inclusion complex formation (171). One of the 
aims of this project was to avoid the formation of aggregates and improve drug water solubility 

by forming cyclodextrin inclusion complexes, as a way to improve bioavailability and as a first 
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step in the formulation, which would then involve encapsulation in liposomes (Chapter 3). 

Rifampicin, an antimicrobial agent that would benefit from an optimized formulation, was used as 

a control drug because it is hydrophobic and is known to form complexes with cyclodextrins 
(162). The data obtained from fluorescence spectroscopy was fitted by a 1:1 binding constant 

both for rifampicin and PPA148 with RAMEB and HPβCD. Based on the calculated binding 

constant for a 1:1 complex from the fluorescence intensity, PPA148 present a higher affinity for 

RAMEB (102 ± 26 M-1) than HPβCD (63.3 ± 20.3 M-1) (Figure 2.17A, Table 2.4). The method 

based on phase solubility showed a lower value for the PPA148/RAMEB complex (161.1 M-1) 
but a similar value for PPA148/HPβCD (71.2 M-1) (Figure 2.17B, Table 2.4). In the spectroscopic 

method, the total drug concentration is kept constant at a low value but the free (soluble) drug 

decreases due to inclusion into the CD cavity, up to a plateau value. Instead, in the phase 

solubility diagram, an excess of drug is added, which is solubilized by increasing amounts of 

cyclodextrin (73). In contrast to the binding constant and phase solubility methods, NMR (Job’s 

plot) showed that a 2:1 PPA148/DIMEB complex was formed. Both the phase solubility diagram 

and fluorescence spectroscopy illustrated higher affinity for both drugs towards the randomly 

methylated cyclodextrin (RAMEB). This is also observed for rifampicin (162,163) and 
hemisuccinate ester, prodrug of Δ9-Tetrahydrocannabinol, (172). The methylation of βCD 

creates a more hydrophobic environment and enhances molecular flexibility, which allows an 

increased adaptability of the cyclodextrin towards the guest molecule (163).  

Although the findings on the complex stoichiometry for rifampicin agree with the literature, the 

binding constant values differ slightly from previous reports (158,162,164). Rifampicin has three 
ionization states (Figure 1.9) with a maximum water solubility at pH between 6-9 because the 

predominant state is anionic. In this study, the binding constant between rifampicin and 

cyclodextrin was determined at pH = 9 using two methods, a phase solubility diagram and the 

shift in fluorescence intensity, with slightly different results (Table 2.4). The binding constants for 

rifampicin with RAMEB or HPβCD reported in the literature vary between 500 and 5000 M-1 

depending on the pH, temperature, buffer solution and calculation method. The binding constant 

K for a 1:1 rifampicin/HPβCD complex calculated from the phase solubility study was 349.4 ± 

74.8 M-1 and it approaches the value reported by He et al. (164) (227.3 M-1). However, the binding 

constant determination by fluorescence spectroscopy (assuming a 1:1 complex) resulted in lower 

K values (22.5 ± 1.7 M-1 for HPβCD and 38.4 ± 8.6 M-1 for RAMEB in Tris buffer pH 9), compared 

to those found by the phase solubility diagram under the same experimental conditions, and to 

those published by Tewes et al. (68.5 ± 5.2 M-1 for HPβCD and 73.4 ± 8.2 M-1 for RAMEB in 

sodium tetraborate pH 9) (162). Overall, the interaction with RAMEB was stronger compared to 

HPβCD, which is in agreement with Chadha et al., who found binding constants of 1038 and 

1564 M-1 using solution calorimetry (163). Job’s plot actually showed that a 1:1 rifampicin/DIMEB 

complex was formed, which confirms the binding constant and phase solubility assumption of the 
calculations. It has been reported that it is the piperazine moiety of rifampicin that inserts into the 
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CD cavity with both types of CD used in this study (Figure 2.20). This postulated structure of 

rifampicin/CD complex is established by using 1H and 13C-NMR and 15N-NMR (173). 

 

Figure 2.20: Schematic representation of rifampicin/CD inclusion complex as it was found by 
molecular simulation by He et al. and Tewes et al. (162,164). 

Another measure of solubilizing efficiency is to determine the molar concentration ratio of 

cyclodextrin in a complexed form to the free cyclodextrin; this is referred to as complexation 
efficiency (CE). According to Loftsson and Brewster (155), CE is a better measure of efficiency 

because it is less sensitive to errors related to the estimation of the intrinsic solubility. The 

aggregation of highly hydrophobic drugs in aqueous solutions may affect the slope obtained in 

the phase solubility diagram and may cause deviations in the value of the y-intercept (𝑆HIL) from 

𝑆w, leading to possible inaccuracies and over-estimation of the binding constant (73). The CE 

calculated for rifampicin was 1.8 at pH 9 (Figure 2.18B) which is higher than values cited in the 
literature using the same method at pH 9 (0.347) (174). This means that one in two cyclodextrin 

molecules are forming a water-soluble complex with rifampicin, compared to the cited one in four. 

The values of CE for PPA148/HPβCD and PPA148/RAMEB were found to be 0.05 and 0.1, 

respectively (Figure 2.17B). CE is correlated with drug hydrophobicity and S0 (155). Hydrophobic 

drugs with S0 higher than 0.01 mg/mL possess a high CE (175). For example, it has been found 

than clotrimazole (𝑆w = 0.037 mg/mL) has a CE of 0.05 with HPβCD in water, hydrocortizone (𝑆w 

= 0.4 mg/mL) has a CE of 1.3 with HPβCD at pH 7 and fluoxetine HCl (𝑆w = 12.6 mg/mL) has a 

CE of 4.7 at pH 3.6 (175).  

The driving force for complex formation is a combination of electrostatic interactions, van der 

Waals forces, hydrogen bonding and charge-transfer interactions (146,175,176). The binding 

process can be separated into 3 steps (146). The first step is the exclusion of cavity-bound high 

energy water molecules into the gas phase, accompanied by changes in CD conformation 
energy. The second is the solvent (water) rearrangement and transformation of the excluded 
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gaseous water molecules into a liquid phase which is accompanied with a negative enthalpy and 

entropy change. The third step is the fit of the hydrophobic guest molecule into the nonpolar CD 

cavity accompanied by host-guest intermolecular interactions and a change in the conformation 
energy of the host (176). Therefore, van der Waals forces and hydrophobic interactions constitute 

the basic driving force for complex formation and hydrogen bonding, and electrostatic interaction 

can affect the conformation of complexes (146). 

The estimated Gibbs free energy of transfer for both rifampicin and PPA148 were negative, 

indicating that the complexation is spontaneous, as expected. The interaction of both drugs with 
RAMEB were found to be sterically favored compared to other CDs, because the methyl 

substitution creates a more hydrophobic microenvironment compared to the hydroxypropyl 

substitution (163).  

2.6 Conclusion 

The novel antimicrobial agent was successfully synthesized and characterized. It was found that 

PPA148 is barely soluble in water (30.3 ± 1.8 µg/mL) and self-associates when dispersed in an 

aqueous environment above its water solubility level. To enhance water solubility and avoid 

aggregation, cyclodextrins (RAMEB and HPβCD) were used to form an inclusion complex with 

PPA148. Water solubility increased 6-fold through the incorporation of PPA148 into 

cyclodextrin’s cavity and a higher affinity was obtained with RAMEB compared to HPβCD. 

Enhancing water solubility was the first step towards developing a formulation for PPA148 to 

enhance its antibacterial efficacy against Gram negative bacteria. The next two chapters focus 

on incorporating the PPA148/RAMEB complex into fluid liposomes (fluidosomes) to improve its 
antibacterial activity and drug uptake, which are assessed using biophysical approaches. 
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Chapter 3 Liposomaly 

encapsulated drug/cyclodextrin 

inclusion complexes 
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3.1 Introduction 

The development of new antimicrobial agents and the understanding of their mechanism of 

action is a pressing need because of the widespread proliferation of drug resistance, especially 

in Gram-negative bacteria, the most common cause of nosocomial infections in Europe and USA 

(177,178). Antimicrobials are losing their effectiveness at an increasing rate, resulting in growing 

difficulty in treating bacterial infections. The World Health Organization (WHO) has developed 
the global priority pathogen list, which includes critical, high and medium risk pathogens for public 

health (Table 1.2) (44). Among the critical and high-risk pathogens are Enterococcus faecium, 

Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas 

aeruginosa and Enterobacter spp, also known as the ESKAPE pathogens, which cause hospital 

acquired infections (57). In the same report in 2017 (57), the WHO stated the need to support 

R&D, and furthermore, discover and develop new antibiotics against multi- and extensively drug-

resistant Gram negative bacteria. 

The objective of this work was to develop a suitable carrier to increase drug uptake and drug 

efficacy against Gram negative bacteria. This chapter describes our attempt at developing and 

characterizing a formulation for the newly discovered antimicrobial PPA148, combining 

cyclodextrins and liposomes, based on their respective characteristics which were considered 

advantageous to achieve criteria of improved efficacy and higher solubility. The rationale behind 

this formulation is that the liposomal carrier (fluidosomes) will enhance the permeation of PPA148 
through the Gram negative OM, while cyclodextrins enhance its water solubility and permeation 

through the IM. 

Fluidosomes are fluid liposomes composed of DPPC/DMPG (18/1), which are characterized by 

their ability to fuse into lipid membranes (179). Beaulac and co-workers were the first to evaluate 

the efficacy of tobramycin encapsulated into several types of liposomes against Pseudomonas 
aeruginosa (102,103). Their results showed antibacterial efficacy of the encapsulated 

tobramycin, and that the most efficient carriers were the fluid (fluidosomes) rather than the more 

rigid liposomes. Sachatelli et al.  then published encouraging results on fluidosomes, using 

immunoelectron microscopy and Gram staining techniques to show that fluidosomes may fuse 

with the bacterial cell envelope and release tobramycin in the cytoplasm (179). Until now, only a 

few antibiotics encapsulated in fluidosomes have been examined for their increased efficacy 

(Table 1.4).  

Molecules with poor water solubility, such as PPA148, are mainly loaded in the hydrophobic tail 

region of the bilayer, leading to limited drug loading and immediate drug release (180). Therefore, 

the first step of this work was to increase the water solubility of PPA148 by using 

pharmaceutically acceptable βCD derivatives, as we showed in Chapter 2. Water solubility 

increased 5-fold by incorporating PPA148 into the cavity of cyclodextrins (Figure 2.16, Table 
2.3). 
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In addition to the higher solubility achieved, RAMEB was also chosen because of its expected 

permeation through the phospholipid bilayer of the IM (181). RAMEB has been reported to induce 

phospholipid exchange (181), which could be of great assistance for the transport of drug through 
the IM. Phospholipids with longer alcyl chains are difficult to extrude from liposomes because in 

complexing with CD, their chain may protrude into the aqueous environment, which is not 

energetically favorable (181). There is also a limit on the chain length that can be fully complexed 

with β-cyclodextrins: phospholipids with 14 carbons can be fully incorporated into the CD cavity 

but not those with 16 carbons (182,183). DPPC (Figure 3.1) was found to interact with CDs less 

than other phospholipids, due to its chain length and its high phase transition temperature (Tm at 

41°C), thus forming a tightly packed gel phase lipid film at room temperature (181,181).  

 

Figure 3.1: Structure DPPC (16:0) and DMPG (14:0). 

In this chapter, PPA148/RAMEB complexes (presented in Chapter 2) were incorporated into 

fluidosomes to enhance the antimicrobial efficacy of the novel compound. Empty fluidosomes 

were initially used to develop a robust manufacturing method. The thin film hydration method 

was used to form the fluidosomes, followed by extrusion for size reduction to ~100 nm. 

Fluidosomes encapsulated within the drug/CD complex were separated from unloaded vesicles 

using size exclusion chromatography. The elution profile of the lipids and drug through the size 

exclusion column was quantified by UV spectroscopy. The aliquot containing most of the loaded 
fluidosomes was used to determine, spectroscopically, the encapsulation efficiency and loading 

capacity of the formulation. A microbiological assay (Kirby Bauer or disk diffusion assay) 

(184,185) was carried out to examine the efficacy of PPA148 alone, PPA148/RAMEB complex 

and PPA148/RAMEB in fluidosomes. The inhibition zones created by PPA148 (both alone and 

formulated) were compared with that of rifampicin (positive control) and gentamicin (negative 

control). For this assay, a disk preparation method was developed to generate valid results 

comparable to commercially available disks. 
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3.2  Materials 

Lipids: 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0 PC) and 1,2-dimyristoyl-sn-

glycero-3-phosphoglycerol, sodium salt (DMPG, 14:0 PG) were obtained from Avanti polar lipids 

(Alabama, USA) and supplied by Stratech Scientific (Newmarket, UK).  

Microbiological Assay: Blank, rifampicin (30 μg) and vancomycin (30 μg) susceptibility disks, 

agar powder and Muller Hinton broth for microbiology were purchased from Oxoid (UK). LC/MS 

grade water was supplied by Merck, UK. E. coli bacteria DH5α were obtained from Invitrogen 

Life Science Technology (Thermo Fisher Scientific, UK). 

Salts used for buffer and reagent preparation: Sodium chloride (NaCl), magnesium chloride 

(MgCl2), monosodium phosphate (NaH2PO4), sodium hydroxide (NaOH) Ammonium 

thiocyanate, ferric chloride and HEPES (>=99.5%) were supplied by Sigma-Aldrich, UK. 

Cyclodextrins: Hydroxypropyl-β-cyclodextrin (HPβCD), randomly methylated β-cyclodextrin 

(RAMEB) supplied from Sigma-Aldrich, UK.  

Solvents: Dichloromethane (DCM), chloroform and deuterated water were purchased by Sigma-

Aldrich, UK. The ultrapure water at 18.2 MΩ was produced by a Purelab Ultra machine from 

ELGA process water (Marlow, UK). 

3.3 Methods 

3.3.1 Formation of Large Multi-Lamellar Fluidosomes 

Fluidosomes consisted of DPPC/DMPG in a molar ratio of 18:1 and were manufactured by the 
thin film hydration method (186). The mixture of lipids (10 mg) was dissolved in 1 mL of 

chloroform in a round-bottom flask and sonicated in a sonicating bath (Fisherbrand®, FB11203, 

Fisher Scientific, UK) at 25°C  for approximately 1 min until achieving a clear solution. The solvent 

was evaporated using a rotary evaporator (Rotavapor® RII, Büchi, Switzerland) attached to a 

vacuum pump (KNF Lab, UK). The temperature of the water bath was set to 40°C and the rotation 

speed to approximately 190 rpm. The resulting thin lipid film was kept under reduced pressure in 

a pyrex vacuum desiccator for 12 h to further remove traces of organic solvent. The lipid film was 

then solvated by adding 4 mL of phosphate buffer pH 7.4 (50mM PBS, 40mM NaH2PO4 and 26 
mM NaCl) or 20 mM HEPES buffered saline pH 7.2 (145 mM NaCl and 10 mM CaCl2) under 

vigorous stirring and bath sonication (Fisherbrand®, FB11203, Fisher Scientific, UK) at 40°C to 

facilitate vesicle formation. The lipid suspension was dipped into an ice bath (4°C) for 1 min and 

then placed in the water bath (40°C) for another minute. This temperature changing sequence 

was repeated 5 times followed by a 1 h resting period at 4°C before using them for size reduction.  
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Empty liposomes of the desired size were used to validate the separation method of free 

molecules from the drug-in-CD encapsulated liposomes using a PD10 G25 Sephadex column 

(GE Healthcare, UK). The method is described in section 3.3.5.  

3.3.2 Size reduction methods for the manufacture of Fluidosomes 

Size reduction of fluidosomes was carried out by two different methods: probe sonication and 

extrusion, to manufacture homogeneous lipid dispersions with unilamellar vesicles. Following the 

probe sonication, the lipid suspension was vortexed (Cyclone-Vortex mixer CM-1, Nickel-Electro 

Ltd) for 60 sec at 2800 rpm, sonicated (Soniprep 150 Plus ultrasonic disintegrator 120V 60Hz, 
London, UK) for 5 min with a microprobe at an amplitude of 10 microns and left at room 

temperature for one hour prior to further use.  

The second method was extrusion, which was carried out by placing 1 mL of suspension in a 

tight gas syringe on a mini-extruder (Avanti Polar Lipids) thermostated at 55 °C and manually 

extruded through a 0.1 μm polycarbonate membrane 11 times. The extruded liposomes were 
kept at 4°C and were extruded again under the same experimental set up after 12 hours. The 

double extruded liposomes were stored for further use. 

The SUVs vesicles formed with the two different methods were compared in terms of 

hydrodynamic diameter using photon correlation spectroscopy. 

3.3.3 Preparation of drug-cyclodextrin inclusion complexes 

A 1:1 complex of drug and RAMEB was used for its encapsulation into liposomes. Drug and 

cyclodextrin were mixed in a 1:1 molar ratio in HEPES buffered saline at pH 7.2. The mixture 

was left under stirring (190 rpm) for 24 hours.  

3.3.4 Incorporation of drug/cyclodextrin complexes into liposomes 

For the entrapment of drug/CD complexes into fluidosomes, 20 mg of DPPC/DMPG mixture 

(molar ratio of 18:1), 0.7 mM PPA148 and 0.7 mM RAMEB were used. The 1:1 PPA148/RAMEB 

complex was prepared as described above in 20 mM HEPES buffered saline, pH 7.2, and was 

used to hydrate the lipid film as described in section 3.3.1. Extrusion or sonication was applied 

for size reduction of liposomes (section 3.3.2) and the separation of the liposomes from the 

unentrapped drug/CD was carried through size exclusion chromatography (section 3.3.5).  

3.3.5 Size Exclusion Chromatography 

A Sephadex™ G-25 PD-10 column (GE Healthcare, UK) (packed bed dimensions of 1.45 x 5 cm 

and particle size range 85-260 μm) was equilibrated with 15 mL (3 washes of 5mL) of 20 mM 

HEPES buffered saline, pH 7.2. The flow through the column was driven by gravity. Each 

liposome mixture (1 mL) was allowed to penetrate the gel entirely and the eluted volume was 
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discarded. Then, aliquots of HEPES buffered saline (1 mL) were added to the column 

sequentially (8 times) to elute various fractions which were collected separately. Each fraction 

was characterized for its hydrodynamic diameter, derived count rate, lipid and drug concentration 
so as to investigate which aliquot contained the majority of the loaded liposomes. Zeta (ζ)-

potential was used to measure the electrokinetic potential properties of liposomes.  

3.3.6 Photon Correlation Spectroscopy (PCS) 

PCS, also known as Dynamic Light Scattering (DLS), was used to investigate the presence of 

particles dispersed in a liquid medium and to determine their average hydrodynamic diameter, 
zeta-potential and derived count rate. This method measures the scattering of light coming from 

the Brownian motion of the suspended particles. The particles’ movement is related to the particle 

size, which can be measured using the Stokes–Einstein relationship as follows: 

𝑑� =
��

sA�b
     Equation 3.1 

where 𝑑� is the hydrodynamic diameter, k is the Boltzman’s constant, T is the absolute 

temperature, η is the solvent viscosity and D is Brownian motion diffusion coefficient.  

The sample was placed into a disposable semi-micro dynamic light scattering cuvettes (VWR 

International, UK) and the size and derived count rate was measured by a Malvern Zetasizer 

(Nano-ZS, Malvern Instruments, UK) at 25 ˚C with a laser wavelength of 623.8 nm, backscatter 

detection angle of 173°, viscosity of dispersant of 0.889 cP (water) and refractive index 1.590. 
Placing detectors at 173° enables scattered light signals of low intensity originating from smaller 

particles to be revealed and excludes excess scattered light (187). 

The Malvern Zetasizer (Nano-ZS, Malvern Instruments, UK) was also used for measuring the ζ-

potential by electrophoretic light scattering spectroscopy. It provides information on the 

electrokinetic charge of Fluidosomes and the effect of PBS, pH 7.4 (40 mM NaH2PO4 and 30 mM 
NaCl) on their stability. A folded disposable capillary cell (Malvern Panalytical, UK) was used to 

measure the voltage signal at 25 ˚C with the dielectric constant set at 78.5. The dispersant 

refractive index and viscosity were set as per the light scattering experiments. The equilibration 

time for both size and zeta-potential measurements was 120 sec and the appropriate attenuator 

position was automatically determined by the Nano software. All measurements were carried out 

in triplicate. 

3.3.7 Stewart assay 

The determination of lipid concentration in the final formulation was achieved using the 

colorimetric Stewart assay (188). This assay is based on the fact that DPPC forms a complex 

with a reagent comprising of ferric chloride hexahydrate (0.17 M) and ammonium thiocyanate 
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(0.4 M) in DI water. The ferrothiocyanate reagent is insoluble in chloroform unless it forms a 

complex with DPPC.  

A calibration curve was established from standard DPPC solutions in chloroform. All standard 

samples were prepared by vigorously mixing the aqueous solution (2mL) containing the reagent 

and the chloroform (2mL) containing increasing concentration of lipids (0-0.05 mg/mL). In order 

to ensure the full partition of the complex into the organic phase, the mixture was vigorously 

mixed and then centrifuged (AllegraTM X-12 centrifuge, Beckman Coulter, UK) for 10 min at 

1000 rpm to separate the two phases. The lower layer (organic phase) was collected and its 
absorbance measured at 467 nm. A linear relationship was observed between the absorbance 

and the DPPC concentration in the complex and used as a calibration curve. 

For the test samples, the suspension before separation and the 8 eluted aliquots from the PD10 

column were used to determine the lipid content in the starting and purified liposomes to detect 

any material loss during the process. The samples were lyophilized in an Alpha 1-2 LDplus freeze 
dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Germany), connected with a Chemistry 

hybrid RC 6 pump (Vaccubrand GMBH, Germany) and then re-suspended in chloroform. A 

volume of 2 mL was transferred in chloroform (2 mL) which was added into the reagent solution 

to form the biphasic system. All tubes were vortexed as the standard samples and the DPPC 

concentration of the test tubes was interpolated from the calibration curve. All measurements 

were carried out in triplicate. 

3.3.8 Drug quantification 

Drug quantification was carried out using UV/Vis spectroscopy to determine the encapsulation 

efficiency (EE) and the drug loading (DL) of liposomes. Measurements of the LOD and LOQ were 

reported in Chapter 2, section 2.3.7. The UV spectrum of PPA148 was recorded on a Lamda 2 

spectrophotometer (Perkin Elmer, UK), at 25˚C using a 1 cm pathlength quartz cuvette (Hellma 

114-QS). The spectra were recorded within the wavelength range 200-550 nm, with spectral slit 

width of 2 nm and scan speed of 60 nm/min. PPA148 was extracted from all 8 aliquots collected 
from the size exclusion chromatography used to purify the formulation. Each aliquot was washed 

with DCM 5 times and the organic phase was collected, dried with magnesium sulfate (MgSO4) 

and evaporated using a rotary evaporator (Rotavapor® RII, Büchi®, Switzerland) attached to a 

vacuum pump (KNF Lab, UK). The resulting dry sample was re-suspended in ethanol:water 

(80:20) and the unknown drug concentration was calculated by interpolating from a linear 

calibration curve, which was determined under the same experimental conditions. The area 

under the curve (AUC) of all samples was used for drug quantification and calculated using 
GraphPad Prism 7.03 software (GraphPad software Inc., USA). The number of test and 

calibration curve sample measurements was 4 and 3, respectively. The Encapsulation Efficiency 

(EE) and Drug Loading (DL) were calculated using the following the equations, 
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𝐸𝐸	(%) = a��a�
a�

	× 100%   Equation 3.2 

𝐷𝐿	(%) = a��a�
a�pa��a�

× 100%   Equation 3.3 

, where 𝐶K is the un-entrapped drug concentration, 𝐶� and 𝐶� are the concentration of lipids and 

drug added into the liposome system, respectively. 

3.3.9 Kirby Bauer assay 

The Kirby Bauer method, also known as the disk diffusion assay, is used for testing the resistance 

or susceptibility of bacteria to drugs and chemicals (184,185). It is a well-established assay by 

the World Health Organization (WHO) and widely accepted by many clinical laboratories. 
Escherichia coli (E. coli) was cultured in a Mueller-Hinton (MH) agar (21 g/L MH broth and 17 g/L 

agar) plate from a gel-bead for 24 h at 37 ˚C. A few bacterial colonies were taken with a loop 

from the cultured disk, placed in MH broth and shaken while incubating for 24 h at 37˚C. The 

growth of the bacterial culture was monitored by measuring the optical density (OD) of the 

bacterial suspension at 600 nm using a single beam JENWAY 6300 Visible Spectrophotometer 

(Staffordshire, UK) with resolution of 1 nm and spectral bandwidth of 8 nm. An OD600 of 1, which 

was achieved for this experiment, means that there are ~8´108 cells/mL in the suspension. To 

stop bacterial growth, 1 mL of the suspension was centrifuged at 10,000G for 5 min and the 

bacterial pellets were re-dispersed in sterile physiological saline (0.9% NaCl). An aliquot of this 

suspension (100 μL) was swabbed on an MH agar plate, and filter disks impregnated with 

antibiotic were placed on top. The plates were incubated for 24 h at 37˚C and the diameter of the 

inhibition zones was measured after incubation.  

Commercially available disks for rifampicin (30 μg) and vancomycin (30 μg) were used as positive 

and negative controls based on their ability to inhibit bacterial growth. However, the filter disk for 

the novel antibiotic (PPA148 1 μg) as well as for the complex and final formulation, were prepared 

in-house. All stock solutions (PPA148 5 mM in DCM, 1:1 complex (0.5 mg/mL) and encapsulated 

Fluidosomes (0.5 mg/ml) were sterilized using a UV lamp (Spectroline®, ENF-24C/FE, 

Spectronics corporation, Westbury, New York, USA) at 254 nm (ultraviolet germicidal irradiation). 
A volume equivalent to PPA148 1 μg was placed on the plate, absorbed and evaporated under 

reduced pressure. Each disk can absorb a maximum of 10 μL per deposition. Thus, for the 

complex- and liposome-impregnated disks the process had to be repeated 5 times because the 

stock solution/suspension was not concentrated enough. To validate the preparation method of 

the in-house disks, disks containing 30 μg of rifampicin were prepared and the result was 

compared to that of the commercially available disk. 
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3.3.10 Dispersion stability of empty fluidosomes 

Fluidosomes prepared with the probe sonicator were tested for their stability in terms of 

hydrodynamic size. Dynamic light scattering was measured using the experimental parameters 
described in section 3.3.6. The stability of the dispersion was investigated by measuring their 

size over a period of 60 days as a concentrated suspension (1 mg/mL) and diluted in PBS buffer, 

pH 7.4 (dilution factor of 2, 4, 8 and 16). The effect of adding HPβCD (0.1, 1, 2.5 and 5%) on the 

size of the liposomes (1 mg/mL) was also examined. All samples were kept at 4˚C between the 

measurement intervals and were measured in triplicates. 

3.3.11 Statistical analysis 

All error values were expressed as their mean ± standard deviation (SD). Statistical analysis of 

the data was performed using GraphPad Prism 7. The non-parametric Mann-Whitney U-test was 

used to detect differences between the empty and loaded liposomes. Statistically significant 

differences were assumed when P ≤ 0.05. For the disk diffusion assay, simulations of each data 

set were computed to tabulate 100 runs based on a Gaussian absolute scatter and the standard 

deviation of each experimental data set. The Brown-Forsythe variability test was conducted to 

ensure all sample group data was of acceptable distribution (P > 0.05) before statistical 
significance between the groups was assessed by one-way analysis of variance (ANOVA) tests 

with post-hoc Tukey analysis for multiple comparison. Statistically significant differences were 

assumed when P ≤ 0.05 for the experimental analysis and the simulated observations. P-value 

style is based on GraphPad Prism 7 and the asterisks symbolize the significance as follows: 

0.1244 (ns), 0.0332 (*), 0.0021 (**), 0.0002 (***), <0.0001 (****). 

For the Kirby Bauer microbiological assay, Monte Carlo simulation was performed for the data 

sets because the number of observations was small, and any outlier could affect the final result. 

A number of 100 simulated observations were generated based on the mean and standard 

deviation of the experimental data set. These simulated data were used to perform one-way 

ANOVA analysis in addition to Tukey’s test as described above, which give an estimation of the 

result if we had 100 experimental observations. 

3.4 Results 

3.4.1 Characterization of empty/control Fluidosomes 

Liposomes consisting of DPPC/DMPG in a molar ratio of 18:1 were manufactured using the thin 
film hydration method. Size reduction was performed by either probe sonication of the lipid 

suspension or extrusion of iced/thawed lipid suspension through a polycarbonate membrane of 

100 nm pore size. The lipid suspension was applied to a gravity column, washed 8 times and the 

eluted aliquots were collected. The column fractions were tested for the presence of liposomes 
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by measuring the derived count rate and the lipid content by the Stewart assay. The aliquot 

containing liposomes was further characterized for liposome size and zeta potential.  

Dynamic light scattering was initially used to verify the presence of liposomes after the 

manufacturing and purification process. The derived count rate (DCR) represents the average 

intensity scattered and is directly related with the number of photons detected and, thus, the 

concentration and number of particles present in the eluted samples from the PD10 column 

suspension. The development of the Fluidosome preparation began in parallel with the synthesis 

and characterization of the drug, described in Chapter 2. During this period, small unilamellar 
vesicles (SUVs) were prepared by probe sonication and to test their stability over time and 

dilution. This method produced liposomes (1 mg/mL) with size of 56.30 ± 0.50 nm and PdI of 

0.21 ± 0.01 (Figure 3.2A). The size of the 1 mg/mL liposomes was also tested over time (Figure 

3.2A). The shift of the intensity distribution towards higher hydrodynamic size reflects an increase 

in liposomal size of 27.3 ± 2.5% during a period of 2 months (Figure 3.2A), which suggests some 

aggregation of the liposomes (189).  

The effect of PBS on the stability of Fluidosomes was examined by diluting the initial lipid 

suspension up to 16 times from its original concentration (1 mg/mL). The size of all 4 diluted 

liposomal suspensions was measured and compared over time (Figure 3.2B). Between 

measurements, the samples were stored at 4 ˚C and the measurements were performed at 25 

˚C. The least concentrated suspension (0.0625 mg/ml) displayed a 16.0 ± 3.1% and 55.3 ± 2.6% 

increase 4 days and 2 months after fabrication, respectively (Figure 3.2B). The liposome size in 

the rest of the samples exceeded the original size by 10%, 11 days after preparation. Their overall 

size increase ranged between 19 and 29% 1 month after preparation (Figure 3.2B). The results 

on the stability of liposomes are in agreement with studies on DPPC liposomes at the same 

concentration (1 mg/mL) (191). 
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Figure 3.2: Empty Fluidosomes (SUVs, 1mg/mL) were manufactured with the thin film hydration 
method and probe sonication for size reduction. (A) Effect of liposome integrity in terms of size 
and intensity distribution profile of liposomes at a concentration of 1 mg/mL and temperature of 
25 ̊ C, measured by dynamic light scattering, over a period of 2 months. The samples were stored 
at 4 ˚C and tested between measurement intervals. All samples presented a polydispersity index 
of approximately 0.2 ± 0.01. (B) Effect of PBS buffer pH 7.4 on the size of a series diluted SUVs 
(1, 0.5, 0.25, 0.125 and 0.0625 mg/mL) over time. 

Since the objective was to produce drug/CD inclusion complexes-in-liposomes, the stability of 

the fluidosomes in the presence and absence of cyclodextrin (HPβCD) over time was also 
investigated. Liposomes, made in the presence of 0.1, 1, 2.5 and 5% w/w HPβCD, produced 

particles with a size of 67.70 ± 0.40, 54.10 ± 0.50, 56.50 ± 0.50 and 53.00 ± 0.10 nm, respectively 

(Figure 3.3A). It is important to mention that liposomes were not purified, therefore, cyclodextrin 

was present both in the bulk and encapsulated in the liposomes. The addition of cyclodextrin did 

not affect the size of the original fluidosomes (56.30 ± 0.50 nm). It can be seen from Figure 3.3 

that fluidosomes exhibited a higher stability when HPβCD was present. The size increase did not 

exceed 5% of the initial size over the period of 2 weeks studied. However, the polydispersity 

index was high (approximately 0.30 for all samples), compared to empty fluidosomes (0.21 ± 

0.01), and did not change by increasing the amount of cyclodextrin. Despite the narrowing of the 

size distribution by adding 5% HPβCD, the polydispersity index remains high (0.26 ± 0.01). It is 

observed that the 0% HPβCD in Figure 3.3A presented a broader and not a unimodal distribution 

compared to the equivalent 1mg/mL empty fluidosome sample in Figure 3.2A. The probe 

sonication as a size reduction method did not present reproducible liposomal size distribution. 
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Figure 3.3: Fluidosome (1 mg/mL SUVs) encapsulated with a series of HPβCD solutions in PBS 
buffer pH 7.4 (0.1, 1, 2.5 and 5% w/w) manufactured with thin film hydration method and probe 
sonication for size reduction. (A) Effect of HPβCD on the size and polydispersity of Fluidosomes 
in terms of the intensity distribution profile of liposomes at 25 ˚C, measured by dynamic light 
scattering. All samples presented a polydispersity index of approximately 0.3 ± 0.01. (B) 
Comparison of size changes in the absence and presence of HPβCD.  

Despite the fact that SUV DPPC liposomes are inherently unstable compared to LUVs (190,191), 

the liposomal size distribution was not reproducible, the polydispersity index was often high and 

the frequent release of titanium particles into the lipid suspension from the probe-sonicator led 

us to a new approach for size reduction of liposomes with improved size distribution: the extrusion 

method, which uses polycarbonate membranes of 100 nm pore size, and produces liposomes 

with sizes of 100-130 nm (large uni-lamellar vesicles, LUVs). It is also expected that liposomes 
around 100 nm in diameter are optimum for drug delivery into bacterial cell membranes, since 

they can trap higher volumes, while preserving high surface tension required to fuse with bacterial 

membrane (192–195), a size double the one we obtained with probe sonication. The extrusion 

of liposomes was performed twice with an incubation time of 12 hours in between. After the first 

extrusion, the light scattering data showed a multimodal size distribution. This profile was 

transformed into a monomodal distribution as presented in Figure 3.4B and Table C 1 when the 

already extruded lipid suspension was extruded again after 12 hours. Liposomes of desired size 

(100 nm) were successfully formed and passed through the size exclusion column. The majority 

of the particles were eluted in the third fraction with a hydrodynamic size diameter of 148 ± 19 

nm and a polydispersity index of 0.33 ± 0.07 (Figure 3.4B). Even though the polydispersity index 

remains high, the size distribution is narrower and uniform (Figure 3.4B) when compared to that 
resulting from probe sonication (Figure 3.2A).  
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Figure 3.4: Method development for the separation of unentrapped material from fluidosomes.  
Empty liposomes (2.5 mg/mL), prepared with thin film hydration method and extrusion through a 
100 nm polycarbonate membrane for size reduction, were passed through a Sephadex PD10G25 
size exclusion chromatography column, washed 8 times and the eluted volumes (8 fractions) 
were collected and analyzed. (A) Elution pattern of empty fluidosomes (2.5 mg/mL). The derived 
count rate profile and lipid content in each aliquot were measured to investigate the elution of 
liposomes. (B) Representative intensity distribution of empty fluidosomes in HEPES buffered 
saline at pH 7.2 (aliquot #3). 

The Stewart assay was performed to determine the lipid concentration in each aliquot, which 

confirmed that liposomes were eluting in the third aliquot, as also shown from the DCR data 

(Figure 3.4A). In the third fraction, 1.39 ± 0.02 mg/mL lipids were measured, which represents 

55 ± 2% of the initial lipid suspension concentration (2.5 mg/mL). Overall, there was a 29.4 ± 

3.7% loss of lipids due to the separation column because the initial lipid concentration agrees 

with the amount of lipids used to make liposomes.  

3.4.2 Characterization of drug-CD inclusion complexes in the Fluidosomes 

For the fabrication of fluidosomes encapsulated with the drug/CD complex, RAMEB was used 
because PPA148 showed a higher affinity towards this type of cyclodextrin (Chapter 2). From 

this point on, RAMEB was used for complex formation in the experiments. A 1:1 complex of 

PPA148/RAMEB was incorporated into the fluidosomes, and the elution profile of the loaded 

liposomes (Figure 3.5A) was the same to the one with the empty liposomes (Figure 3.4A, Table 

C 1). The majority of fluidosomes eluted in the third fraction were of a size of 129 ± 10 nm, which 

was not significantly different from that of the empty liposomes (P = 0.14). A low polydispersity 

index (0.14 ± 0.03, compared to 0.33 ± 0.07 for the empty liposomes) was observed, indicating 

that the encapsulated drug/cyclodextrin complex improved the monodispersity after the second 

extrusion. The guidelines for manufacturing liposomes given by AVANTI Polar Lipids additionally  

recommend to keeping the lipid suspension overnight (aging process) prior to downsizing 

because it improves the homogeneity of the size distribution (190).  
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Figure 3.5: (A) Elution pattern of PPA148/RAMEB encapsulated fluidosomes (2.5 mg/mL). The 
derived count rate profile and lipid content in each aliquot were measured to investigate the 
elution profile of loaded liposomes. (B). Representative intensity distribution of drug/RAMEB 
encapsulated fluidosomes in HEPES buffered saline at pH 7.2 (aliquot #3). 

The third fraction contained liposomes with ζ-potential close to neutrality (+3.4 ± 0.3 mV), and 

held 77 ± 22% of the initial lipid concentration (10 mg/mL), with an overall lipid loss of 13 ± 9%, 

as assessed by the Stewart assay. Lipid loss due to the extrusion process was not observed (the 
amount of lipids in the liposomes before separation matches the starting lipid concentration for 

all batches tested). 

3.4.3 Encapsulation Efficiency and Drug Loading 

The eluted aliquots of the loaded fluidosomes were tested for their drug content. Each aliquot 

was lyophilized and re-suspended in EtOH/H2O (80/20), which was shown in Chapter 2 to be 

the best solubilizing solvent mixture for PPA148 (Figure 2.13). Their UV/Vis spectrum was 
recorded. The separation of free drug from the formulation was carried out using size exclusion 

chromatography as mentioned in section 3.3.5. The drug quantification profile of the eluting 

fraction is shown in Figure 3.6A. It was performed using the area under the curve (AUC) of the 

spectra ranging from 250-400 nm. This approach was chosen because the spectra of the 

extracted PPA148 did not present reproducible spectra in terms of peak shape and position. In 

Figure 3.6B, the UV spectrum of pure PPA148 in ethanol/water is compared to that of extracted 

PPA148 from aliquot 3, lyophilized and resuspended in ethanol/water. Pure PPA148 presents 
two peaks at 295 and 275 nm (Figure 3.6B). PPA148 from aliquot 3 produced either sharper 

peaks and a shift in λmax, or one obscure broad peak instead of two and a high baseline even 

after subtracting the solvent spectrum (Figure 3.6B). The hyperchromic shifted baseline at the 

red end of the spectrum probably reflects the presence of scattered light which may be a result 

of incomplete drug extraction leading to the presence of aggregated cyclodextrin and/or lipid 

particles. Any remaining lipid and CD in the test samples introduced a variety of artefacts and it 
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was difficult to quantify the drug based on λmax. In total, four batches were prepared and tested 

and three had the version 2 profile shown in Figure 3.6B.  

The alternative method of the area under the absorbance-wavelength curve (AUC) was 

considered, as described by Zhang et al. (81). This approach was investigated by building a 

calibration curve and it was verified that the AUC is proportional to drug concentration (inset of 

Figure 3.6A) which provided a robust method for the drug quantification.  

Based on the separation of the fluidosomes from the unentrapped drug/CD, liposomes (empty 

and containing the drug/CD complex) eluted in the third fraction of the column. The highest drug 

content (280 ± 120 μg/mL) was found in the same fraction with encapsulation efficiency (EE) of 

67 ± 11% and drug loading (DL) of 5 ± 1%, which were calculated based on Equating 3.2 and 

3.3. The EE and DL values of the DPPC/DMPG liposomes employed in this work were consistent 

with those previously reported using different drugs but similar preparation methods (196,197). 

The total drug concentration (590 ± 113 μg/mL) obtained from the total eluted volume from the 

Sephadex column is in agreement – within experimental error - with the initial drug concentration 
(500 μg/mL) which was used to hydrate the lipid film. 

 

Figure 3.6: (A) Drug quantification profile of the eluted fraction from the PD10G25 size exclusion 
chromatography column with the inset being the calibration curve (y=0.7937+5.717,R^2=0.9966) 
is presented as a function of the area under the curve (AUC). (B) The UV spectra of pure and 
extracted drug in ethanol/water (80:20). Version 1 and 2 and the two UV spectra of extracted 
PPA148 from aliquot 3, which present changes in drug peak shape.  

3.4.4 Kirby Bauer assay 

The efficacy of the encapsulated drug/RAMEB complex in liposomes was tested by using the 

disk diffusion assay. Commercially available disks of rifampicin and vancomycin were used as 

positive and negative controls against E. coli DH5a. Rifampicin causes inhibition of bacterial 

growth, while vancomycin does not affect the growth, resulting in the absence of an inhibition 

zone. Disks impregnated with PPA148 (1 μg/mL), rifampicin (1 and 30 μg/mL), RAMEB, 
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PPA148/RAMEB complex, empty fluidosomes, and encapsulated fluidosomes with 

PPA148/RAMEB were prepared in-house. In-house rifampicin disks (30 μg/mL) were compared 

with the commercially available disks of the same concentration to validate the preparation 
method (data not shown). Figure 3.7 presents the inhibition zone caused by the different systems 

studied. Rifampicin (30 μg) caused inhibition of bacterial growth, as expected, and was used as 

a positive control, while vancomycin (negative control) did not affect it.  

 

Figure 3.7: Kirby-Bauer assay for measuring the growth inhibition of Escherichia coli DH5α. The 
inhibition zone diameter was measured for PPA148 as a pure substance and as a formulated 
drug (in a 5% RAMEB complex and incorporated into 0.1 mg fluidosomes as a complex with 5% 
RAMEB) after 24 hour incubation at 37 °C. Rifampicin and vancomycin were used as positive 
and negative control samples. The asterisks denote the level of significance going from lower to 
higher (as follows) and four asterisks indicate the highest level: 0.1244 (ns), 0.0332 (*), 0.0021 
(**), 0.0002 (***), <0.0001 (****). All samples were tested in triplicate apart from the final 
formulation (PPA148-in-RAMEB-in-fluidosomes) which was tested 5 times. 

One-way ANOVA test showed that, overall, the groups were statistically different (P=0.0007) at 

90% confidence interval. The multiple comparison showed a clear picture within each group. 

There was a statistically significant difference between the free drug, RAMEB/PPA148 complex 

(P=0.0041) and PPA148-in-RAMEB-in-liposomes(P=0.0006). However, the difference between 

the means of the drug/CD complex alone and those encapsulated within liposomes was not 

statistically significant (P=0.5483,) (Figure 3.8A). Tukey’s test compares the means of all groups 

to the mean of every other group and is considered the best available method when confidence 
intervals are desired or if sample sizes are unequal (Figure 3.8B). The interval of PPA148-in-CD 

and PPA148-in-CD-in-liposome contains the number zero which indicates that the means of 

those groups is likely to be the same (Figure 3.8A). The residuals denote the difference of each 

observation of the mean (Figure 3.8B). They are evenly distributed, indicating a good and reliable 

set of data. 
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Figure 3.8: Tukey’s test of experimental data (n=3,5) with confidence interval of 95%. (A) Zero is 
included in the interval of PPA148-in-CD and PPA148-in-CD-in-liposome which indicates that 
their mean is not statistically significant. Residuals distribution of experimental observations for 
each group (B). 

However, the number of observations is too small (n = 3 or 5) and any outliers may affect the 

result. Therefore, Monte Carlo simulations were conducted. A large number of observations (100) 
was generated for each group based on the experimental mean and standard deviation. The 

data sets generated were then used to perform one-way ANOVA analysis and Tukey’s test. The 

simulation resulted in a statistical difference among all sets with a confidence interval of 95% 

(Figure 3.9A). The P-values for drug vs PPA148-in-RAMEB, PPA148 vs PPA148-in-RAMEB-in-

fluidosomes and PPA148-in-RAMEB vs PPA148-in-RAMEB-in-fluidosomes were <0.0001, 

<0.0001 and 0.0002 respectively. This model predicts that more replicates should give a 

statistical difference between the intermediate (complex) and final (drug-in-CD-in-liposome) 
formulation, too. 

 

Figure 3.9: Monte-Carlo simulation was carried out based on the standard deviation of the 
experimental data. 100 observations were generated by the simulation and one-way ANOVA and 
Tukey’s test was carried out with 95% confidence interval (A). All sets of groups have statistical 
difference. Residual distributions of simulated data (B). 
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In summary, PPA148 inhibited bacterial growth, as expected from the MIC results (107). Both 

formulations developed, either simply as an inclusion complex with RAMEB or the same complex 

in liposomes (DPPC/DMPG, 18:1), which increased the efficacy of this novel agent. 

3.5 Discussion 

In this chapter, PPA148 was formulated with cyclodextrins and a liposome mixture 

(DPPC/DMPG) to enhance its efficacy against Gram negative bacteria. The rationale behind this 

formulation is that cyclodextrins (RAMEB and HPβCD) enhance drug aqueous solubility, as 

shown in Chapter 2, and potentially enhance transport through the IM, while the liposome is the 

drug carrier which will provide an improvement in drug transport through the OM, thus increasing 

drug efficacy. Fluidosomes were successfully manufactured using the thin film hydration method, 

followed by either probe sonication or extrusion for size distribution. The probe sonication 

produced small unilamellar vesicles, because their size is less than 100 nm (56.30 ± 0.50 nm) 

and presented low polydispersity index (0.21 ± 0.01) in PBS. A stability study of the SUVs, in 

terms of size, showed that the hydrodynamic diameter of the liposomes underwent an increase 
in size over a two-month time period, with the highest increase being 50% for the most diluted 

sample (0.0625 mg/mL) (Figure 3.2). Due to their small size, i.e. high degree of lipid curvature, 

DPPC small unilamellar vesicles are inherently unstable and are expected to spontaneously fuse 

to form larger vesicles when stored below their phase transition temperature because they are 

in their gel-like state (190), which would be the case for the fluidosomes because they were 

stored at 4°C in between the measurement intervals.  

Apart from the curvature, liposomal stability is dependent on the presence of ions seeing that 

they affect the hydration state of lipids and, therefore, their packing. There are two hydration 

centers in phospholipids, namely, the phosphate and the carbonyl groups, which determine the 

intermolecular lipid interactions (129). Ions and water organization near the different groups 

esterified in the phosphate group (choline, ethanolamine or glycerol) affect the hydrophobic and 

repulsive forces between the lipid head-groups at the interface (198,199). Sodium (Na+) and 

potassium (K+) bind to the carbonyl groups of POPC, which become slightly more accessible to 
hydration (200) with the first having a stronger binding compared to the latter, due to their smaller 

size (201). Although Na+ and K+ (0.15 M) bind to the carbonyl group, they cause almost no effect 

on the POPC packing (202). In this study, small unilamellar DPPC/DMPG (18:1) liposomes were 

formed in PBS containing Na+ at concentration of 0.2 M, which possibly did not provide size 

stability over time (Figure 3.2B).  

When a series of HPβCD solutions (1-5% w/w) were used to hydrate the lipid film, the 

hydrodynamic size diameter did not change and the stability of the liposomes was higher, as no 

significant change in size occurred over a period of two weeks (Figure 3.3). Native and synthetic 

cyclodextrins have been reported to interact with lipids and have indeed been used in 

pharmaceutical and food products to either stabilize or solubilize bioactive lipids (203). Generally, 
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cyclodextrins interact with phospholipids mainly though the inclusion of fatty acid chains into their 

cavity since the polar headgroup interaction with the CD cavity is limited and weak (203). Native 

CDs have been reported to form complexes of low solubility with phospholipids while their 
derivatives present a higher degree of interaction (203). RAMEB (45 mM) has been shown to 

solubilize phospholipids (181), while non-methylated CD derivatives and in particular HPβCD do 

not increase the permeability of DPPC liposomes for concentrations up to 125 mM (17% w/w) 

(181,203–205). In this study, we found, from the evolution on size (Figure 3.3), that HPβCD (up 

to 5%) stabilized the fluidosomes rather than solubilizing the lipids as also found by other groups 

(181). The interaction of both RAMEB and HPβCD with lipid monolayers (DPPC/DPPG and 

POPC/POPG in molar ratio of 3:1) have been studied by surface pressure measurements in a 

Langmuir trough and are described in Chapter 4. Our results (Chapter 4) show a weak interaction 

between HPβCD and the DPPC/DPPG monolayer, while RAMEB displays a stronger interaction 
(Figure 4.9).  

The instability of SUVs, due to their small size, high curvature and choice of buffer, led us to 

explore an alternative approach to manufacturing large unilamellar vesicles (LUVs) using 

extrusion, to achieve sizes above 100 nm. LUVs display higher stability and retain the large 

encapsulation efficiency of SUV (115,190). LUVs of a hydrodynamic diameter of 148 ± 19 nm 

and a polydispersity index of 0.33 ± 0.07 (Figure 3.4A) were prepared in HEPES buffered saline 

containing 20 mM CaCl2. Ca2+ were added into the saline (145 mM) because they tend to stabilize 

unilamellar lipid PC vesicles at a concentration range of 1-60 mM by forming Ca2+ bridges 
between lipids (206). Ca2+ ions at low concentration (1-5 mM) adsorbs deeply into POPC and 

POPS bilayer (202) and they bind more strongly to the carbonyl, phosphate and carboxylate 

groups of both PC and PG, compared with Na+ ions, causing partial dehydration, conformational 

change and immobilization of the phosphodiester groups (200,207). The influence of 1 mM CaCl2 

is comparable to the one obtained with 150 mM NaCl, which shows the different affinity of each 

ion to the lipid headgroup (202).  The increased size of LUVs, along with the presence of Ca2+, 

creates a more stable environment for fluidosomes. The total ionic strength of HEPES buffered 
saline containing CaCl2 was 211 mM which is of the same magnitude as PBS used in the SUV 

preparation. According to Lapinski et al. (208), if the ionic strength of the two buffers is the same, 

experimental data on bilayer lipid membranes formed by sonication (SUVs) can, in fact, be 

compared directly to data on bilayer systems formed by extrusion (LUVs). Based on that finding, 

the presence of HPβCD could possibly stabilize LUVs as found in the case of SUVs (Figure 

3.3B).  

The LUVs were encapsulated with the PPA148/RAMEB complex and it was observed that the 

size of the encapsulated liposomes (129 ± 10 nm) was not statistically different from that of the 

empty liposomes (148 ± 19 nm). The stability of the loaded liposomes depends on the competitive 

binding of either the lipids or the drug (PPA148) to the CD cavity. This may happen because 

inclusion complexes in solution are in equilibrium with the free molecules (209) and have been 
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found to extract phospholipids and cholesterol from membranes by forming complexes (181). In 

Chapter 2 (Figure 2.17A), the affinity of PPA148 to RAMEB was calculated by measuring the 

binding constant using fluorescence spectroscopy. The binding constant of DPPC/RAMEB 
complexes has not been measured and no reference was found in the literature. Instead, the 

binding constant for a 1:1 cholesterol/DIMEB complex is characterized by a binding constant of 

102 M-1 (210), which is similar to the binding constant of drug/RAMEB (102 ± 26 M-1) found in 

Chapter 2. As cholesterol has higher affinity towards cyclodextrin methyl-derivatives than DPPC, 

it can be speculated that DPPC undergoes weaker binding with RAMEB than PPA148. The 

presence of drug/CD complex improved the polydispersity index of the lipid suspension, 

indicating the formation of a more monodisperse system. RAMEB was used at low concentration 
(0.7 mM) as it is known to solubilize phospholipids above 10-15 mM membrane (181,182). Below 

this cut-off concentration, RAMEB retains the ability to facilitate lipid exchange without disturbing 

the membrane (181,182).  

The next step was to separate the loaded liposomes from the unentrapped material using size 

exclusion chromatography and characterize the system in terms of encapsulation efficiency and 
loading capacity. The separation method was first validated using unloaded empty fluidosomes 

to develop a robust eluting pattern of the fluidosomes. The lipids were eluted from the Sephadex 

column by 8 successive additions of HEPES buffered saline pH 7.2 after equilibrating the column 

with 15 mL of buffer. After the separation, an overall loss of lipids of 29.4 ± 3.7% and 13 ± 9% 

was observed for the empty and encapsulated liposomes, respectively. The third aliquot of the 

eluted empty fluidosomes contained 55 ± 2 % lipids of the initial amount used, as assessed by 

the Stewart assay (Figure 3.5). The rest (29% lipid loss) was probably retained in the column 

because lipid loss was not observed during the extrusion stage. When using the liposomes 

prepared in the presence of the drug/RAMEB complex, the loss of lipids after the separation 

process was lower, at only 13 ± 9% (Figure 3.5). The loss of lipids may be a result of poor column 

condition before elution. It has been reported elsewhere (211) that pre-saturation of the column 

with empty liposomes helps to avoid material loss during size exclusion chromatography. The 

binding and release of liposomes on the dextran stationary phase of a Sephadex column is a 

dynamic equilibrium process between the free and entrapped liposomes. However, pre-

saturation of the column can be problematic as it may contaminate the test sample. Further 

investigation needs to be done in order to clarify the cause of lipid loss during the size exclusion 
chromatography. 

The high encapsulation efficiency of drug in the liposomes, assessed by the area under the 

absorbance-wavelength curve (67 ± 11%) showed that the drug/RAMEB complex was 

successfully incorporated into the liposomes. Drug quantification was performed after extracting 

PPA148 from the carrier and cyclodextrin, by washing with DCM. The extracted PPA148 

displayed a UV spectra with λmax shifted compared to the pure drug in ethanol/water and change 

in the shape of the peak (Figure 3.6B). Based on these data and the findings in Chapter 2 of a 
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PPA148/RAMEB complex, it was assumed that the extracted PPA148 from the formulation was 

not pure or had undergone structural conformation changes, leading to an altered UV profile 

(Figure 3.6B). It is possible that the extraction was incomplete because of incomplete dissociation 
of the PPA148/RAMEB complexes, the presence of cyclodextrin dimers or even RAMEB/lipid 

complexes that had not been removed from the mixture. Yamamoto and coworkers investigated 

the dissociation of cholesterol/βCD complexes and cholesterol recovery was found to be 44% 

(212). They found that dissociated and undissociated cholesterol was present in the mixture, 

along with βCD dimers. The encapsulated fluidosomes with PPA148/RAMEB complexes is a 

very complex system and during the drug extraction several types of aggregates may have been 

formed, affecting the final drug absorbance. RAMEB may associate with lipid headgroups while 
being complexed with PPA148 as found with mono–(N-n-alkyl,N,N-dimethylamino)-β-

cyclodextrin, which can associate with the bilayer of DPPC:cholesterol (7:3) liposomes, while 

having the adamantoyl moiety of the adamantoylglucose molecule included into the cavity (213). 

Since the size of the encapsulated fluidosomes did not change and the encapsulation efficiency 

is high, possibly PPA148 may be inserted into the CD cavity from one side and RAMEB can be 

attached from the other side with the headgroups of the inner leaflet of the liposomes (Figure 

3.10). Although there is no evidence concerning such an arrangement, it may explain the poor 

drug extraction because of the complexity and difficulty in separating the individual molecules. 

The efficacy of PPA148-in-RAMEB-in-liposomes was assessed against live bacteria (E. coli, 

DH5α) (Figure 3.7). The disk diffusion assay revealed a statistically significant increase in the 

inhibition zone of the drug-CD complex on its own and when it is incorporated into liposomes. 

Due to the small number of observations (n=3-5) the difference between the PPA148/RAMEB 

complex and the encapsulated liposomes was not significant (Figure 3.8). Based on the fact that 
cyclodextrin enhance the antimicrobial activity of drugs (171) and the lack of significance 

between the PPA148/RAMEB complex and the encapsulated fluidosomes, Monte Carlo 

simulations were conducted in order to investigate this result further. A higher number of 

simulated observations (100) were generated based on the standard deviation of the 

experimental data sets and tested using one-way ANOVA. The results showed a statistical 

difference between the drug/RAMEB and the drug/RAMEB incorporated into liposomes (Figure 

3.9). The increased efficacy of antibiotics by encapsulation into liposomes was first reported by 

Beaulac and co-workers in 1998 and later by Sachetelli et al. in 2000 (102,179). They showed 
that DPPC/DMPG (18:1) liposomes encapsulated with tobramycin showed a decrease in the 

bacterial counts in a sub-MIC concentration (102,179). Other reports regarding increased 

efficacy of antibiotics with fluidosomes and other types of liposomes have been published up to 

the present time (98). Interestingly, there have been publications regarding the increased efficacy 

of drugs in the form of cyclodextrin complex or encapsulated into liposomes (Table 1.3, Table 

1.4) (90,214), but there is only one report about a drug-in-CD-in-liposomes formulation in the 

food industry (113), with nerolidol, a sesquiterpene with antibacterial activity and under 
investigation for its potential as a natural preservative in the food industry. In the next Chapter, 
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we use lipid monolayers representing the inner and outer bacterial membrane and a model Gram 

negative bacterial outer membrane to elucidate the mechanisms responsible for the increased 

activity of this novel antimicrobial agent by using interfacial techniques (Langmuir trough 
monolayer interaction studies and neutron reflectivity). 

 
Figure 3.10: Schematic representation of the possible organization of PPA148/RAMEB complex 
incorporated into Fluidosomes. The electrophilic center of PPA148 is presented inside the CD 
cavity while the headgroup of DPPC is associated with the exterior hydrogens of the narrow side 
of RAMEB molecules. 

 

3.6 Conclusion 

Fluidosomes encapsulated with PPA148/RAMEB complex were successfully manufactured with 

a size of 129 ± 10 nm, polydispersity index of 0.14 ± 0.03 and high encapsulation efficiency (67 

± 11%). The separation method of unentrapped material from loaded liposomes was developed 

using empty liposomes. The final formulation was tested against E. coli DH5α and presented a 

significant increase in drug efficacy. In the next chapter, PPA148 in its pure form and 

cyclodextrins (HPβCD and RAMEB) are assessed over a series of lipid monolayers. The effect 

of fluidosomes on the outer membrane is tested on a model Gram negative bacterial membrane, 
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which was developed at the ISIS neutron source (Didcot, Oxfordshire) and neutron reflectivity is 

used to assess the interaction. 
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Chapter 4 A biophysical 

investigation into the uptake 

mechanism of PPA148 and its 

delivery system  
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4.1 Introduction 

The uptake of drugs and their delivery systems across the bacterial cell envelope is a complex 

process, which is difficult to elucidate because of its dynamic nature. The envelope of Gram 

negative bacteria possesses two membranes, acting as discrete permeability barriers which 

drugs and nutrients need to cross so as to enter the cytoplasm. The outer membrane (OM) of 

Gram negatives consists of an asymmetric lipopolysaccharide (LPS) and phospholipid bilayer 
spanned by porin proteins which play an important role in nutrient and drug uptake (Figure 1.2). 

The β-barrel porins are transmembrane proteins, which regulate the uptake of nutrients and 

hydrophilic compounds. The OM also provides protection against environmental stressors and 

inhibits the uptake of some antibiotics. The second permeability barrier, the inner membrane 

(IM), consists mostly of intrinsic proteins and phospholipids. The uptake of compounds by the 

bacterial cell is divided into passive and active processes. The former is characterized by either 

drug penetration through the lipids or transport through general or specific transporter proteins. 
The latter requires energy input for the transport of compounds through the proteins. The 

transmembrane proteins (porins), located in the OM, can act as both passive and active 

transporters for the influx of beneficial compounds and efflux of unwanted molecules, such as 

antibiotics. The nature of LPS and the presence of porins challenge the antibiotic uptake by Gram 

negative bacteria and there is a real need to find means of overcoming these drug permeability 

obstacles.  

In Chapter 3, a drug-in cyclodextrin-in liposome formulation was evaluated, which showed an 

enhancement of PPA148’s solubility and antimicrobial efficiency. The rationale behind this 

formulation is based on two factors: the results from the microbiological assay (Table B 1; Table 

B 2) of pure PPA148; and PPA148’s physicochemical properties, in particular water solubility 

and lipophilicity, as calculated by ChemDraw software (Table 1.5). The results from the 

microbiological assays (minimum inhibitory concentration or MIC) in the presence and absence 

of the efflux pump inhibitor phenylalanine-arginine-β-naphthylamide (PAβN) (107,108) revealed 
difficulties in the transport through the cell envelope and a possible synergistic effect between 

PPA148 and PAβN either by inhibiting the efflux pumps or by PAβN's permeabilizing effect on 

both OM and IM  (69). The MIC, in the absence of the pump inhibitor, was relatively high (2 μg/mL 

against A. baumannii, 0.25-32 μg/mL in K. pseumoniae and 16-128 μg/mL in P. aeruginosa) but 

decreased dramatically in all bacterial strains tested in its presence (107). In this work, a 

liposomal carrier was used to overcome PPA148’s uptake challenges. The microbiological assay 

described in Chapter 3 showed an enhanced inhibition of E. coli DH5α bacteria when the 

drug/RAMEB complex was incorporated into liposomes (Figure 3.7; Figure 3.8; Figure 3.9). 
Fluidosomes were selected to enhance the transport of PPA148 through the OM because they 

have been found to fuse through bacterial membranes (179). It was, therefore, hypothesized that 

the fluidosomes would fuse into the OM while releasing their core content into the periplasmic 

space. Based on the lipophilicity of PPA148, it was also hypothesized that the novel drug might 
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partition into the IM in order to reach its site of action inside the cell. The low water solubility of 

PPA148 may lead to drug precipitation when entering the periplasm, leading to ineffective 

antimicrobial action. For this reason, RAMEB was successfully used as a solubilizing agent for 
PPA148 (Chapter 2), which is barely soluble in aqueous solvents as a pure substance. It has 

also been reported that β-cyclodextrins and their derivatives, such as RAMEB and HPβCD, not 

only enhance water solubility of poorly soluble drugs but also increase their internalization into 

cells and improve their biological activity against Gram negative bacteria (90,91,94). RAMEB has 

been found to cause cell lysis and inhibit the growth of the Gram positive Bacillus strains (185). 

While the mechanism of bacterial growth inhibition by RAMEB has not been investigated, native 

βCD has been found to adhere to the peptidoglycan surface of Gram positive bacteria via 
hydrogen bonds (215) and to be transported with facilitated diffusion via specific channels 

(CymA) in the outer membrane of the Gram negative bacterium, Klebsiella oxytoca (31). In Gram 

negative bacteria, increased electrostatic interactions have been observed between the inclusion 

complex of chlorhexidine/native-βCD and the LPS of Aggregatibacter actinomycetemcomitans, 

whose structure is similar to that of E. coli (216,217). Therefore, we hypothesized that 

cyclodextrin may also help the passive transport of PPA148 through the IM via the formation of 

phospholipid-cyclodextrin complex by releasing pure PPA148 inside the cytoplasm where the 

site of action (DNA minor groove) is located. 

Based on the results from Chapters 2 and 3, this chapter investigates the mechanism of uptake 

of this novel antimicrobial agent and assesses the effectiveness of a drug-in-cyclodextrin-in-

liposome formulation to increase OM and IM permeability. The investigation of the drug-

membrane interactions and possible drug penetration was carried out by using interfacial 

techniques (Langmuir trough and neutron reflectivity) with both monolayer and bilayer model 
membranes. Passive diffusion can occur either via diffusion across the lipid bilayers for 

antibiotics with a high degree of lipophilicity and some degree of polarity or via the OM proteins, 

which can either be specific transporters or general water channels, for small hydrophilic 

compounds (218). Based on the possible fusion mechanism of fluidosomes, the cyclodextrin-

phospholipid complex formation and the high lipophilicity of PPA148, simplified artificial 

membrane systems were used to mimic the lipidic component of the relevant biological 

membranes in order to examine the passive diffusion across lipid layers.  

In the monolayer studies, lipids representing the outer leaflet of OM and IM of the Gram negative 

bacterial envelope were used to model the membranes. There are two types of LPS: rough and 

smooth, which differ by the presence or absence of O-antigen. Mutations into the bacterial 

genome produces LPS without or with truncated O-antigen which are called rough or semi-rough 

LPS chemotypes. Within the rough chemotypes, further modifications and mutations lead to the 

expression of LPS with shorter oligosaccharide, divided into Ra, Rb, Rc, Rd and Re subgroups, 
depending on the length of their core region (Figure 1.10). Ra LPS has the longest and Re LPS 

has the shortest core. In this study, the focus is on a Ra-EH100 and Rc-J5 LPS extracted from 

E. coli and Lipid A extracted from the Re-R595 S. minessota. In addition, Rc LPS was used to 
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form stable planar monolayers because of its short headgroup. This type of LPS and Lipid A 

extracted from Re LPS were also used to test the influence of the OM steric barrier. The bilayer 

studies were conducted on a model asymmetric Gram negative bacterial membrane consisting 
of Ra LPS as the outer leaflet. Ra LPS is a substitute for LPS molecules containing O-antigen 

because smooth LPS is less hydrophobic than truncated LPS and, thus, Ra LPS does not form 

water soluble aggregates. It has been found that truncated rough LPS can be deposited as 

insoluble monolayers (219,220) while smooth LPS act as surfactants by forming micelles in 

solution (221). The more truncated rough mutant LPS was used to form more stable monolayers 

and compare the drug-membrane interaction in the presence (Rc LPS) and absence (Re Lipid 

A) of steric hindrance. 

The phospholipids in the OM are zwitterionic and negatively charged and their distribution within 

the individual OM and IM is inhomogeneous (222). The predominant phospholipids are 

phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL), while some 

species, such as P. aeruginosa, can also produce phosphatidylcholine (PC) (223). It has been 

shown that PE and PG are mostly located in the inner and outer leaflet of the plasma membrane 
(IM) respectively, while CL is evenly distributed in both leaflets of IM (224). E. coli polar lipid 

extract has been extensively studied and its phospholipid composition has been found to be 67% 

PE, 23.2% PG and 8.9% CL (127). The anionic phospholipids (PG and CL) of the IM represent 

18% of the total IM lipids, while they constitute only 9% of the OM lipids. The remaining 

phospholipid lipid fraction (>98%) in both the inner leaflet of the OM and the whole IM  is PE 

(222). 

The structural complexity of LPS and the small size of bacteria make it difficult to obtain detailed 

molecular information on the interactions between drug molecules and the OM and IM (225). 

However, biophysical studies of isolated phospholipid and LPS monolayers and bilayers provide 

an insight into these interactions.  

In this work, monolayers composed of the phospholipids or rough mutant LPS were deposited at 
the air/liquid interface and examined in the presence of PPA148 and cyclodextrin using a 

Langmuir trough. These experiments provided useful insights into the molecular interactions of 

the drug on the membranes, either at the level of the polar region when they are in contact with 

the outer leaflet of the OM or IM of the cell envelope, or at the level of the hydrophobic domain 

of the lipid bilayer in which they can be partitioned and inserted.  

To complement these monolayer studies, a model Gram negative bacterial asymmetric 

membrane consisting of Ra LPS and DPPC as the outer and inner leaflet of the OM was used to 

examine the interaction between the liposomal carrier and the OM. This model membrane has 

been extensively studied and validated by a group of scientists working in collaboration with the 

Science and Technology Facilities Council (STFS), Rutherford Appleton laboratory in Chilton, 

UK (225–227). Neutron reflectivity (NR) was used to characterize the structural changes in this 
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model membrane when put in contact with the formulation. In particular, NR can give information 

on the relative location of fluidosomes within and at the interface of a supported asymmetric 

model OM, thus giving clues on the mode of interaction, namely either fusion into the OM or a 
possible partitioning into the membrane’s hydrophobic core and diffusion across the membrane. 

4.2 Materials 

Lipids: The phospholipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, 16:0 PC), 1,2-

dimyristoyl-sn-glycero-3-phosphoglycerol, sodium salt (DMPG, 14:0 PG), E. coli polar lipid 

extract (E. coli B), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, 16:0-18:1 PC) and 

1-palmitoyl-2-oleoyl-sn-glycero-3- phospho-(1'-rac-glycerol) (sodium salt) (POPG, 16:0-18:1 PC) 

powders were manufactured by Avanti Polar Lipids (Alabama, USA) and supplied by Stratech 

Scientific (Newmarket, UK). Rc LPS from E. coli J5 (purity: protein 1.4%, nucleic acid 0.340%, 
phosphate 7.3%, Kdo 5.9%), Ra LPS from E. coli EH100 and Re Lipid A from S. minnessota 

R595 containing containing ≤0.3% proteins was obtained from Sigma-Aldrich, UK. and were used 

without further purification.  

Cyclodextrins: Hydroxy-propyl-beta-cyclodextrin (HPβCD) and randomly methylated 

cyclodextrin (RAMEB) were purchased from Sigma-Aldrich, UK. 

Chemicals and material used in the microbiological assay: Blank, rifampicin (30 ug) and 

vancomycin (30 ug) susceptibility disks, agar powder and Muller Hinton broth for microbiology 

were purchased from Oxoid (UK).  

Solvents: Dichloromethane (DCM) and chloroform (CHCl3) were purchased from Sigma-

Aldrich, UK. LC/MS grade water was supplied by Merck, UK. The ultrapure water at 18.2 MΩ cm 

was produced by a Purelab Ultra machine from ELGA Process Water (Marlow, UK). 

Salts used for buffer preparation: Sodium chloride (NaCl), magnesium chloride (MgCl2), 

monosodium phosphate (NaH2PO4), sodium hydroxide (NaOH) and HEPES (>=99.5%) were 
purchased from Sigma-Aldrich, UK.  

Devices and tubes: Disposable semi-micro dynamic light scattering cuvettes (volume capacity 

of 1.5 mL) purchased from VWR International, UK. Silicon crystal (50 * 80 * 20 mm) polished with 

silicon oxide and a customized cell made of PTFE was kindly provided by the ISIS facility (Chilton, 

UK). 

4.3 Methods 

4.3.1 Surface Pressure-Area isotherms at the air-liquid interface 

Pressure-area measurements were carried out at a constant temperature of 23°C on a Nima 

602A Langmuir trough (Nima Technologies Ltd., Coventry, UK) equipped with a Nima PS4 
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surface pressure microbalance (0-240 mN/m range, 0.1 mN/m resolution) controlled by a PC via 

a Nima IU4 computer interface unit. The microbalance was calibrated with a 10 mg standard 

weight and the area enclosed by the barriers was also calibrated. Prior to use, the PTFE surface 
of the trough was thoroughly cleaned with ethanol and chloroform in order to remove any 

impurities. A clean Wilhelmy plate (chromatographic paper roll, Whatman Grade 1, 10 mm width, 

GE Healthcare life sciences UK, Little Chalfont, UK) was attached to the microbalance, 

suspended and partially submerged in the subphase (0.9% w/v NaCl or 1 mM MgCl2). The 

subphase surface was examined for dust and contaminants prior to commencing the experiment 

by repeated compression of the barriers and suction of the surface using a vacuum pump. The 

subphase was considered clean when, upon compression, the change in surface pressure did 
not exceed 0.2 mN/m.  

Solutions of DPPC/DPPG and POPC/POPG mixtures (in a molar ratio of 3/1), Lipid A from S. 

minnessota (R595 Lipid A) and LPS J5 from E. coli (Rc J5 LPS) were prepared in pure chloroform 

at a total lipid or LPS concentration of 2 mg/mL. To form air/liquid interface monolayers, 30-70 

µL of lipid solution were deposited dropwise on the subphase surface using a Hamilton syringe 
(Hamilton Co. Europe, Bonaduz, Switzerland), with the barriers open at their maximum. Before 

compressing the barriers at a constant rate of 35 cm2/min, 10 min were allowed for the solvent 

to evaporate. During the compression, changes in the surface pressure were recorded until the 

monolayer reached its collapse point. Each sample was run in triplicate. The molecular area for 

each monolayer was determined at the pressure of 30 mN/m and compared for their changes in 

molecular size. In addition, the compressibility modulus (Es or Cs-1), which is the reciprocal of the 

area compression modulus of the monolayer (Cs) (228) , was calculated using the following 

formula: 

𝐸t =
V
ah
	= −𝐴 × ∆�

��
     Equation 4.1 

, where A is the area per molecule and ΔΠ/ΔA is the slope of the isotherm at a defined surface 

pressure (229). The compressibility modulus (Cs-1) of phospholipid and glycolipid monolayers 

was calculated at 30 mN/m, which is considered as the approximate lateral pressure of a lipid 
bilayer (130). The compressibility modulus is an indication of the packing elasticity of the lipid 

monolayer and the equilibrium among the lipids. In the liquid expanded film, the compressibility 

modulus ranges between 12.5 and 50 mN/m and in for the liquid intermediate takes values bellow 

100 mN/m (228).  The liquid condensed phase is characterised by a compressibility modulus of 

100-250 mN/m while the condensed state, which is described as closely packed lipids in the 

equilibrium state, is denoted by values above 250 mN/m (230). 

4.3.2 Drug - monolayer interaction  

A variation of the adsorption isotherm method (Chapter 2, section 2.3.6) was adopted to 

investigate the interaction of drugs and the lipid monolayer. The set-up of the reduced area 
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custom-made Teflon® petri dish was as described in the adsorption studies in Chapter 2 (section 

2.3.6). On the clean subphase surface (0.9% NaCl or 1 mM MgCl2) a lipid solution (total lipid 

mixture) was spread dropwise until the surface pressure reached 30-35 mN/m, while stirring the 
subphase with a 4.5×15 mm magnetic stirrer bar. A period of time (40-60 min) was allowed for 

the solvent to evaporate and for the monolayer to reach equilibrium (stabilization of the surface 

pressure). Thereafter, the drug solution in DMSO was injected below the surface using a small 

disposable plastic syringe with a hypodermic needle (BD biosciences UK, Oxford, UK). The 

following drug concentrations were used in the trough: 2, 20, 40 and 60 μg/mL when it was tested 

with DPPC:DPPG (3:1) monolayer; and 20 μg/mL when it was tested with Rc J5 LPS and Re 

595 Lipid A. HPβCD and RAMEB were tested against DPPC/DPPG (3/1), DOPC/POPG (3/1) 
and Re 595 Lipid A monolayers while fluidosomes were tested at 0.1 mg/mL against J5 LPS 

only. The changes in surface pressure were recorded at constant slow stirring of the subphase, 

with the magnet speed set at its minimum to avoid a variation of pressure greater than 0.2 mN/m.  

The difference in surface pressure change was plotted against time and the binding isotherms 

produced were fitted with a sigmoidal model, specifically a Hill plot with 3 parameters as it is 
displayed in GraphPad, Prism to obtain the kinetic parameters as follows: 

𝑦 = ∆�cg�m�

L�z%
� pm�

     Equation 4.2 

,where ΔΠmax is the maximum difference in surface pressure, h is the hill slope, and t50% is the 

time needed to achieve half ΔΠmax. 

4.3.3 Drug - lipid bilayer interaction using fluorescence spectroscopy 

4.3.3.1 Preparation of E. coli B liposomes encapsulating 5(6)-carboxyfluorescein 

Liposomes were prepared by the thin film hydration method. A sample of E. coli B lipid extract 

(10 mg) was dissolved in chloroform. The solution was placed in a vacuum desiccator overnight 

to let the organic solvent evaporate, resulting in the formation of a dry lipid film. The dried film 
was then hydrated with 2.5 mL of 40 mM 5(6)-caboxyfluorescein (CF) solution (pH = 7.4) at 30 

°C. The mixture was vortexed (Cyclone-Vortex mixer CM-1, Nickel-Electro Ltd) for 60 sec at 2800 

rpm, sonicated (Soniprep 150 Plus ultrasonic disintegrator 120V 60Hz, London, UK) for 5 min 

with an exponential microprobe and amplitude 10 microns and left at room temperature for one 

hour prior to further use.  

The separation of the liposomes from the unentrapped dye was carried out using size exclusion 

chromatography. A Sephadex™ G-25 PD-10 column (GE Healthcare, UK) (packed bed 

dimensions of 1.45 × 5 cm and particle size range 85-260 μm) was equilibrated with 15 mL (3 

washes of 5 mL) of 70 mM sodium chloride. The liposome mixture (1 mL) was then eluted through 

the column and washed with 1 mL of sodium chloride 5 times. The eluted fractions were collected 

separately. The fourth fraction contained the liposomes and was used for the CF-release study.   
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A sodium chloride solution of 70 mM (135 mOsm) was used to match the osmolality of the 

entrapped CF solution (129 mOsm measured with the advanced MICRO-OSMOMETER, Vitech 

Scientific Ltd, West Sussex, UK) which should not differ significantly from that of the sodium 
chloride solution outside of the liposomes (234). 

4.3.3.2 5(6)-carboxyfluorescein (CF) release profile 

 Fluorescence spectroscopy was used to evaluate the ability of chlorhexidine digluconate (CHD) 

and PP-A148 to disrupt the bilayers of vesicles composed of E. coli lipids. In each experiment 50 
μL of CF-loaded liposomes were added to 2350 µL of NaCl (70 mM) in a cuvette (10 × 10 mm) 

and the fluorescence intensity was measured using a Varian Cary Eclipse fluorimeter (Agilent, 

USA) at 25 °C.  Antimicrobial solutions (3.15 mM) were added (0.1 ml) after 60 s and the 

fluorescence intensity of the mixture was again measured at an excitation/emission wavelength 

of 490/510 nm and a slit width of 2.5 nm for both processes. The fluorescence was monitored at 

hourly intervals, and at the end of the experiment the total concentration of CF was determined 

after lysing the liposomes with 100 μL of Triton X-100 (10 w/v%). CF-liposomes in sodium 
chloride (70 mM) were also monitored hourly, to determine their integrity. The data was 

normalized against controls designed to compensate for the effects of dye photobleaching over 

the duration of the experiment. The percentage dye release was calculated using the following 

formula: 

𝐶𝐹% = ¡{�¡z
¡��¡z

× 100, 𝑓𝑜𝑟	𝑡 ∈ [0, 𝑇]	   Equation 4.3 

, where 𝐹L is the fluorescence intensity of each sample at time t, 𝐹w is the fluorescence intensity 

prior to the addition of the drug (liposomes in NaCl) of each time point, and 𝐹� is the intensity of 

each sample after the addition of Triton X-100, which corresponds to 100% dye release.  

4.3.4 Neutron reflectivity of asymmetric bilayer of DPPC and LPS and interaction 

with fluidosomes 

4.3.4.1 Asymmetric bilayer deposition 

The lipid components of model Gram negative bacterial membranes were deposited on a 

piranha-cleaned (SiO2) surface of single silicon crystals (50×80×20 mm), using a Langmuir-

Blodget (LB) trough (KSV-NIMA, Biolin Scientific, Finland) (Figure 4.1). The LB technique was 

used to deposit the inner leaflet of the membrane (d62DPPC) on the 50×80 mm polished surface 
of the crystal, and the Langmuir-Schaefer (LS) deposition used for the outer leaflet of the 

membrane (Ra LPS) (Figure 4.1). Three isotherm cycles were conducted prior to deposition to 

examine the stability of the monolayers. For the LB deposition, the silicon block was submerged 

into the ultrapure non-buffered water subphase (containing 5 mM CaCl2), cooled to 10°C. A 

solution of d62DPPC in chloroform was deposited dropwise (50 uL of 2.5 mg/mL) on the subphase 

surface and compressed slowly to a constant surface pressure of 38 mN/m. The block was lifted 
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through the air-water interface at a speed of 4 mm/min at a constant surface pressure at 38 

mN/m. The LB trough was then cleaned and the air-liquid interfacial monolayer of Ra LPS (2.5 

mg/mL) was deposited (from 60% chloroform, 39% methanol and 1% water v/v) on to the same 
clean non-buffered interface, cooled at 10°C, with a surface pressure of 38 mN/m. The LS 

deposition was achieved by placing the silicon block covered with a homogeneous d-DPPC 

monolayer (with the headgroup to the silicon block and the hydrophobic tails facing the 

environment) to a holder above the water surface with the alcyl chains pointed downward, toward 

the interface. The surface of the crystal was made parallel with the interface by adjusting the 

angle of the crystal using a built-in automatic levelling device. The silicon block was lowered at 

a speed of 3 mm/min through the interface in order to allow the lipid monolayer on the block to 
match the LPS monolayer on the subphase via the hydrophobic chains, producing a bilayer. The 

block was then allowed to continue moving downwards until the bottom of the trough was reached 

where a customised PTFE sample cell was placed. The sample cell and silicon block were placed 

in a custom-made metal holder to ensure the bilayer was fully contained and sealed inside the 

small water chamber of the sample cell, whose total volume was 3 mL. 

 

Figure 4.1: Langmuir-Blodget and Langmuir-Schafer deposition on a silicon crystal to 
manufacture the assymetric model outer membrane of Gram negative bacteria. 

4.3.4.2 Neutron reflectometry measurements and data analysis 

Specular neutron reflectometry (NR) measurements were carried out using the INTER 

reflectometer at the ISIS neutron source, Rutherford Appleton Laboratory (Oxfordshire, UK), 

using neutron wavelengths from 1 to 16 Å. The reflected intensity was measured at two incident 

angles of 0.7° and 2.3° as a function of the momentum transfer Q (𝑄 = OA PQRS
B

, where λ is the 
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wavelength and θ is the incident angle). The purpose-built flow cells of the silicon-liquid interface 

were placed on an anti-vibration sample stage and the inlet of the cell was connected to a L7100 

HPLC pump (Merck, Hitachi, Germany). The pump allowed the easy exchange of the isotopic 
contrast solutions within the cell (3 mL) at a flow rate of 1.5 mL/min. The membrane was 

measured at a temperature of 25°C and then at 38°C but the challenge with liposomes was 

measured only at 38°C. Temperature was kept constant throughout the experiment by using a 

circulating water bath. Empty fluidosomes were manufactured following the thin film hydration 

method as described in Chapter 3 (section 3.3.1). Lipid film was re-dispersed using ultrapure 

water and fluidosomes (0.1 mg/mL) were injected into the sample cell and allowed to equilibrate 

for 1 h. The excess fluidosomes were flushed out of the cell chamber before data acquisition so 
as to measure the possible changes caused by their interaction with the model OM. 

Each sample was examined under three different isotopic contrast conditions, i.e. 100% H2O, 

100% D2O and silicon matched water or SMW (38% D2O, 62% H2O), all containing CaCl2, to 

highlight the different components of the bilayer structure. 

4.3.4.3 NR data and Statistical analysis 

The three contrasts produced three reflectivity profiles which were simultaneously fitted using 

models describing the interfacial structure based on Adele’s, and Born and Wolf’s matrix 

formulism using the RaScal software (231,232). In this approach, the interface is described as a 

series of slabs and the software fits a layered model to the structure by calculating common 
parameters, i.e. scattering length density (SLD), thickness, roughness and hydration state of 

each layer.  

Table 4.1: Summary of scattering length densities of the lipid components studied, and the 
solution subphases.  

Lipid/Solvent Neutron Scattering Length 
Density (SLD)/(× 10-6 Å-2) 

Silicon 2.07 
Silicon Oxide 3.41 
DPPC headgroup 1.98 
d-DPPC tails 7.45 
Ra-LPS headgroup  
(core oligosaccharide)/D2O 4.28 

Ra-LPS headgroup  
(core oligosaccharide)/H2O 2.01 

For the model membrane consisting of chain-deuterated d62DPPC and hydrogenous rough Ra-

LPS (E. coli, EH100), the calculated scattering length density (Table 4.1) and the fitted 

parameters were used to examine the asymmetry of the bilayer. The lipid coverage in each leaflet 

was calculated from the volume fraction of bilayer defects across the surface by calculating the 

water volume fraction and the deuterated PC tail fraction (225). The water volume fraction can 
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be determined by the difference in SLD of the DPPC and LPS tails in the three solvent contrasts. 

In the tail region, both lipid tails do not possess labile hydrogens and, therefore, do not undergo 

changes in SLD (ρ). The mathematical model uses the following formulas to calculate the water 
volume fraction from the raw data, and the parameter is called “Tail-hydration”.  

𝜌FHLLuW = 𝜌b¤¤a𝜑b¤¤a + 𝜌�¤v𝜑�¤v + 𝜌�@¦𝜑�@¦ Equation 4.4	

𝜑�@¦ =
YTUU§¨	{gT©	ª«U{¨gh{	¬�YTUU§¨	{gT©	ª«U{¨gh{	Z

Yª«U{¨gh{	¬�Yª«U{¨gh{	Z
  Equation 4.5 

where 𝜌FHLLuW is the fitted SLD value of the bilayer, 𝜌b¤¤a , 𝜌�¤v, 𝜌�@¦ are the calculated SLD of 

the deuterated DPPC tails, hydrogenous LPS tails and water, respectively, 𝜑b¤¤a , 𝜑�¤v and 

𝜑�@¦ are the volume fractions, 𝜌HIIuG	LkH�	oJILGktL	V, 𝜌HIIuG	LkH�	oJILGktL	@, 𝜌oJILGktL and are the 

experimental SLD values of the inner tails in two contrast solutions (for example H2O and D2O) 

and the experimental SLD of the two chosen contrast solvents. Based on Equation 4.4 and 

Equation 4.5, the volume fraction of deuterated DPPC tails was calculated using the following 

formula: 

𝜑b¤¤a	LkH�t =
Y�YZ®¯Z®�¯�°±	{gT©h(V�¯Z®)

Y²³°°´�Y�°±	{gT©h
  Equation 4.6 

, where 𝜌 is the fitted SLD, 𝜌�@¦,	𝜌Wb¤¤a  and 𝜑�¤v	LkH�t is the SLD of the water, DPPC and LPS 

are the experimental values. The PC-tail volume fraction 𝜑b¤¤a	LkH�t was calculated before taking 

into account the hydration of the bilayer tail region, which is a separate fitted parameter of the 

mathematical model. Therefore, the volume fraction of the LPS tails 𝜑�¤v	LkH�t was reduced by the 

following formula: 

𝜑�¤v	LkH�t = 1 − (𝜑b¤¤a	LkH�t + 𝜑�@¦)   Equation 4.7 

All three samples (RT, 38°C before and after liposome introduction) shared the same silicon 

substrate because the same model membrane was measured in different conditions. The models 
were fitted to the data using a Bayesian Markov Chain Monte Carlo (MCMC) algorithm (227,233). 

In addition to the model parameters, the backgrounds, scale factors and instrument resolutions 

were also fitted. A Bayesian approach was followed for the fitting, with prior probability distribution 

(priors) chosen according to already known information prior to the analysis, posteriors obtained 

using a Delayed Rejection (DR) algorithm and the best fit parameters taken as the distribution 

maxima.  DR is a way of modifying the standard Metropolis-Hastings (MH) algorithm to improve 

the efficiency of the resulting MCMC estimators and decrease the asymptotic variance (234). 

The idea is that upon rejection in an MH algorithm, instead of advancing the run time and 
retaining the same position, a second stage is proposed with improved distribution. This process 

can be iterated for a fixed or a random number of stages, and higher stage proposals depend on 

the proposed and rejected fits. The error analysis was run at 95% confidence intervals for each 

distribution. 
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4.4 Results 

4.4.1 Surface Pressure-Area isotherms of Langmuir monolayers at the air-liquid 

interface  

Pressure-area isotherms were used to determine the physical state and mechanical properties 

of the E. coli polar lipid extract, DPPC/DPPG [3/1], POPC/POPG [3/1], Rc LPS J5, Ra LPS 

EH100 and Lipid A monolayers. E. coli B lipid extract and both PC/PG monolayers were used to 

mimic the Gram negative IM. Rc J5 LPS J5 and R595 Lipid A, both of which were used to model 

the outer leaflet of the OM. The average molecular weight of each mixture was used to plot the 

surface pressure-area isotherms (Figure 4.2) which showed the phase transitions of each 
monolayer during compression. Changes in the slope and shape of the curves during 

compression resulted from changes in the orientation, packing and arrangement of phospholipids 

at the interface. 

4.4.1.1 Inner membrane model monolayers 

All pressure-area isotherms in (Figure 4.2A, C, E) are representative curves chosen from 

triplicate measurements for each lipid monolayer. The isotherm obtained from pure DPPC 

monolayers (Figure 4.2C) nearly reached the solid state because the slope was almost 

perpendicular to the y-axis (235,236), whereas from E. coli B, POPC, POPG and POPC:POPG 

(3:1) (Figure 4.2A, E) displayed typical expanded monolayers. 

DPPC (hydrogenous and deuterated) and DPPC/DPPG undergo an L1/L2 transition, marked by 

a plateau (or pseudo plateau) in the isotherm and a corresponding minimum in the compression 

modulus plot (Figure 4.2C and D). The transition began at approximately 4 mN/m for h-DPPC 

and the mixture (237,238), while for d-DPPC it started at 9mN/m (239). The DPPC/DPPG 

monolayer reached its liquid condensed phase just below 20 mN/m with a maximum Es of 197 

mN/m. For POPC/POPG, the transition to liquid condensed state was initiated around 25 mN/m, 

making it less compressible than the DPPC/DPPG monolayer (Figure 4.2E, F). The E. coli B 

display areas of liquid-expanded phases before turning into the coexistence of L1/L2 phase at 
surface areas of ~ 15 mN/m, and remained until the collapse of the monolayer (Figure 4.2A, B). 
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Figure 4.2: A, C and E present the Surface Pressure-Area (P-A) isotherms generated at 23 °C 
for a series of pure or mixtures of phospholipids (E. coli extract, DPPC, DPPG, POPC, POPG). 
All phospholipids were suspended in chloroform apart from d62DPPC which was prepared in 
chloroform:methanol:water (6:4:1) before deposition. The subphase used was 1mM MgCl2 for all 
monolayers apart from d62DPPC which was 5 mM CaCl2. The E. coli B monolayer was deposited 
either on ultra pure water or 0.9% NaCl The subphase for hydrogenous DPPC/DPPG and 
POPC/POP mixtures monolayers was MgCl2. E. coli isotherm was measured on ultra pure water 
and isotonic saline. The red arrows show the L1/L2 and the L2/S transition of the lipids where 
applicable. B, D and F show the calculated compressibility modulus derived from P-A isotherms 
at 23 °C. The red arrows show transition phases of the lipids which are more pronounced than 
in the P-A isotherm. 
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Figure 4.3: Collapse surface pressure (A), area per molecule (B) and compressibility modulus 
(C) at 30 mN/m of all the phospholipid lipid monolayers 

Figure 4.3B presents the area per molecule at 30 mN/m, which is the equivalent lateral pressure 

of the bacterial inner membrane (130), and the collapse pressure of each lipid monolayer (3 

Figure 4.3C). E. coli B present an average area per molecule of 52.0 ± 4.0 Å2 in water and 62.6 

± 9.1 Å2 in the presence of 0.9% NaCl, which was not statistically different from that in water at 

a confidence interval of 95% (P=0.6). The collapse pressure of the monolayer is very low 

considering that 30 mN/m is the equivalent pressure of a bacterial membrane (35.4 ± 5.6 and 

31.1 ± 0.1 mN/m in water and saline respectively) (130). This monolayer caused overflow at the 

edges of the trough, probably due to the PE shape and orientation.  

The structural difference between POPC (C16:0-18:1) and DPPC (16:0) affects their packing and 

orientation. The average molecular area of POPC, POPG was 58.0 ± 0.9 Å2 and 62.7 ± 0.5 Å2, 

respectively, with slightly higher collapse pressure (Figure 4.3A). The average area per molecule 

(A) of an ideal mixture was calculated by the additivity relationship considering the molar fraction 

X of each component (244): 
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𝐴 = 𝑋V𝐴V + 𝑋@𝐴@    Equation 4.8 

Based on this rule within a mixed monolayer and the experimental values of the single 

components (POPC and POPG), the resultant area per molecule would be 59 Å2, which in 

agreement with the experimental value (60.2 ± 0.9 Å2), assuming an ideal mixing of lipids. DPPC 

based monolayers (h- and d-) exhibited similar area per molecule (approximately 40 Å2) at 30 

mN/m. Based on the experimental molecular area of h-DPPC from this experiment and that of 
DPPG published in the literature (40 Å2) (240), the mixed monolayer should have an average 

molecular area of 42 Å2, which is in favorable agreement with the experimental value (44.72 Å2). 

The mixture DPPC:DPPG display high collapse pressure at 51.4 ± 0.5 mN/m, while h-DPPC 

collapses at 41.4 ± 3.9 mN/m, both of which lie within the normal collapse pressure range 

(235,241). 

4.4.1.2 Outer membrane model monolayers 

The initial suspension of Rc J5 LPS, Ra EH100 LPS and R595 Lipid A were used to model the 

outer membrane under the same experimental procedure. Rc-LPS J5 and Ra EH100 LPS 

presented a typical expanded isotherm because their compressibility modulus did not exceed 50 

mN/m with increasing surface pressure (Figure 4.4). Two plateaus (or pseudo-plateaus) were 

observed for Rc J5 LPS at a surface pressure of approximately 4 and 25 mN/m, which reflect 
changes in the lipid packing, while remaining in the L1 phase (Figure 4.4). Re Lipid A from R595 

showed a coexistence of L1 and L2 at around 15 mN/m, which changed into a more ordered and 

tightly bound state upon further compression (242–244). A sudden drop in the surface 

compressibility modulus profile indicates the collapse of the monolayers, which is pronounced 

for Lipid A (Figure 4.4B). 

 
Figure 4.4: (A) Surface Pressure-Area (P-A) isotherms generated at 23 °C for a series of 
glycolipids: Ra EH100 LPS, Rc J5 LPS and Lipid A. The subphase for Rc-LPS and Lipid A 
monolayers was MgCl2 while CaCl2 was used for Ra-LPS. The red arrows show the L1/L2 and 
the L2/S transition of the lipids where applicable. (B) Compressibility modulus derived from P-A 
isotherms at 23 °C. The red arrows show transition phases of the lipids which are more 
pronounced than in the P-A isotherm. 
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The onset of pressure increase upon compression (Figure 4.4A), also known as the lift-off area, 

appear over a much larger area per molecule for the Ra-LPS (400 Å2) than the corresponding 

value for the Re-Lipid A (200 Å2) and Rc-LPS (269 Å2) monolayers, which can be explained by 
the bulkier head group of LPS Ra, followed by Rc-LPS, and lastly Re-Lipid A. 

 
Figure 4.5: Collapse surface pressure (A), area per molecule (B) and compressibility modulus 
(C) at 30 mN/m of three types of glycolipid monolayers. The Ra-LPS did not reach its collapse 
pressure and it is excluded from the figure. 

Rc-J5 LPS exhibited a molecular area of 102.0 ± 2.6 Å2 at 30 mN/m at a surface pressure of 30 

mN/m with a high collapse pressure (45.0 ± 0.5 Å2) while the Ra-EH100 LPS presented larger 

area (164.0 ± 43.0 Å2) but did not  reach the collapse point (Figure 4.4A, Figure 4.5A, B). Re 

Lipid A had a molecular area of 95.66 Å2 at 30 mN/m and collapse pressure of 44.1 which 

conform with the results of Garcia-Verdugo et al. and Jeworrek et al. (219,242). They used a 

different subphase solution (150 mM NaCl, 5 mM Tris-HCl pH 7.4, 150 μM CaCl2) which resulted 

in a more expanded headgroup with a size of approximately 300 Å2.  

4.4.2 Drug interactions with model inner membranes 

The interaction studies of the monolayers and bilayer with antimicrobial agents and liposomes 

were carried out at 30-35 mN/m. A comparison of the compressibility modulus at lateral bacterial 

membrane pressure (Figure 4.3C and Figure 4.5C) revealed differences between the 

monolayers in terms of orientation and packing, which may have affected the drug-membrane 
interaction. DPPC/DPPG (Es = 151.8 ± 18.7 mN/m) exhibited a more ordered and closely packed 

monolayer than POPC:POPG (Es = 104.2 ± 7.9 mN/m). E. coli B monolayer displayed a liquid 

expanded state. As for the OM model monolayers, Lipid A (Es = 99.9 ± 16.9 mN/m) presented a 

liquid condensed state at 30 mN/m compared to Rc-LPS (51.4 ± 4.3 mN/m) which remained fluid 

and less ordered. 

The Langmuir monolayer interfacial technique was applied to examine the interaction of drug 

and cyclodextrin with the lipid monolayers representing the IM and the outer leaflet of the OM. 

The lipid monolayers were formed on an aqueous subphase at 23°C and a PFA petri dish (50 

mm diameter, 20 mL volume capacity) was used to spread the lipids up to the desired surface 

pressure (30-35 mN/m) before the antibiotic and cyclodextrin solutions were injected below the 
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surface. The surface pressure was plotted against time and the curve was fitted to a non-linear 

mathematical model (Hiil equation), where applicable, to examine the kinetics of the interaction. 

The parameters gave an insight into the affinity of the studied molecules towards the monolayers 
(Hill-slope), the rate of change in surface pressure (t50%), and the efficiency of the interaction in 

terms of the maximum change in surface pressure (ΔΠmax). 

Chlorhexidine, rifampicin and gentamicin were used as reference drugs to judge the efficiency of 

the interaction and investigate the uptake mechanism for the novel antimicrobial agent, PPA148. 

Chlorhexidine is known as a membrane active drug which breaches the cell envelope and causes 
leakage of cellular content leading to bacterial death (250). Rifampicin is transported into the cell 

membrane (OM and IM) by passive diffusion, while gentamicin follows a self-promoted pathway 

through the OM and needs energy input for its transfer inside the IM by specific porins 

(32,33,122). The controls will be compared with PPA148’s interaction profile to investigate its 

passive transport and whether the novel drug disrupts the model membranes or diffuses through 

them. 

4.4.2.1 Interaction with E. coli polar lipid monolayer 

E. coli B is a natural lipid extract which was used to model the Gram negative inner membrane. 

The monolayer presented an liquid expanded phase at 30 mN/m, as found from its isotherm and 

compressibility profile (Figure 4.3C). The surface pressure-time isotherm clearly shows the 

disruption effect of CHD on the monolayer (Figure 4.6A). CHD penetrated the monolayer and 
adsorbed at the air-water interface causing a large increase in surface pressure (ΔΠmax = 11.9 ± 

1.7 mN/m) within seconds (Figure 4.6A).  

The interaction between the novel antibiotic PPA148 and the E. coli B monolayer was examined 

by increasing drug concentrations (Figure 4.6C, Table 4.2). The isotherms of 20 and 60 μg/mL 

(Figure 4.6C) were fitted with the Hill equation to investigate the kinetics of the interaction. 
PPA148 at 2 μg/mL presented a negative change in surface pressure, possibly indicative of a 

propensity to cause membrane damage within 8 hours. By increasing PPA148’s concentration, 

the interaction profile showed a positive change in surface pressure with ΔΠmax of 14.0 ± 3.8 

mN/m and 9.2 ± 2.9 mN/m for 20 and 60 μg/mL (Figure 4.6C, Table 4.2). ΔΠmax was reached 

within 4 hours and the drug’s affinity towards the lipid monolayer was higher at 20 μg/mL PPA148. 

The magnitude of ΔΠmax might indicate that PPA148 penetrated the monolayer. Due to poor 

water solubility of PPA148 (30 ± 1 μg/mL as ascertained in Chapter 2), drug precipitation was 

observed after injecting 60 μg/mL into the subphase, possibly explaining the weaker affinity 
(ΔΠmax) of the drug towards the E. coli model membrane.  
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Figure 4.6: Representative surface pressure – time isotherms at 23°C of chlorhexidine 
digluconate (A), rifampicin (B), gentamicin (B), PPA148 (C) and DMSO (0.5, 1 and 1.5 % v/v) (D) 
against E. coli B monolayer using 0.9% NaCl as a subphase. The black lines are the fitted curves 
based on the mathematical model, Hill curve, when it was applicable. 

Table 4.2: Kinetic parameters obtained from the fitting of the binding isotherms of rifampicin, 
gentamicin and PPA148 and the E. coli B monolayers at 23°C on water sub-phase containing 
isotonic saline.  

Drug Concentration 
(μg/mL) 

ΔΠmax 
(mN/m) Hill slope 

t50% 
(sec or h) 

 

CHD 2 11.9 ± 1.7 4.6 ± 2.4 19.8 ± 5.8 sec 
 

Rifampicin 2 -3.7 ± 1.6 N/A 3.6 ± 1.1 h 
Gentamicin 2 -6.6 ± 1.5 N/A 2.4 ± 1.1 h 

PPA148 2 -5.1 ± 2.7 N/A 3.7 ± 1.3 h 
PPA148 20 14.0 ± 3.8 1.2 ± 0.5 2.8 ± 2.2 h 
PPA148 60 9.2 ± 2.9 0.8 ± 0.1 1.3 ± 0.3 h 

The injecting solution for PPA148 was 100% DMSO, which is known to affect lipid membranes. 
Therefore, aliquots of DMSO in 0.5%, 1% and 1.5% v/v (0.001, 0.003 and 0.005 mole fraction of 

DMSO in the trough) were injected into the subphase below the monolayer (Figure 4.6D). The 

fractions tested correspond to the injected drug sample volumes (0.1, 0.2 and 0.3 mL). Figure 

4.6D shows that DMSO at 0.5 or 1% v/v elicit a maximum change in surface pressure of 2 mN/m 

or less indicating a very weak or zero interaction of DMSO molecules with the lipid headgroup. 
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However, at the highest concentration tested (1.5 % v/v), the interaction with lipid molecules was 

more pronounced, reaching ΔΠmax of 7.0 ± 1.3 mN/m. 

The profile of the two other control drugs (gentamicin and rifampicin) (Figure 4.6B) are 

incompatible with their established mechanisms of uptake. Gentamicin sulfate, which was used 

as a negative control, interacted with E. coli monolayer by inducing a negative change in surface 

pressure, thus appearing to solubilize the monolayer (Figure 4.6B). However, rifampicin, the 

positive control, did not show any sign of interaction. These results suggest this planar monolayer 

is an unsuitable model for the E. coli B lipids. The interaction of non-membrane active compounds 
might be artefactual due to the monolayer’s packing inconsistencies and loosely packed lipids 

on a planar surface. Therefore, in the next section, fluorescence spectroscopy was used to 

examine whether PPA148 can really damage a membrane, by measuring the release of a dye 

from E. coli B liposomes. 

4.4.2.2 Interaction of PPA148 with E. coli B liposomes using fluorescence spectroscopy 

The interaction experiments with E. coli B monolayer was used as an indication as to whether 

PPA148 might passively diffuse into the model membrane. The monolayer experiment showed 

possible damage of the E. coli B membrane caused by PPA148. However, the results were 

inconsistent for rifampicin and gentamicin, and thus further experiments were carried out to gain 

a better understanding of the interaction. Challenging liposomes with drugs and monitoring the 

release of carboxyfluorescein illustrates whether a drug can disrupt a membrane. Lipids from the 
E. coli B extract tend to form non lamellar structures and unstable planar monolayers, due to the 

presence of PE and its negative curvature (Figure 1.3). These lipids are likely to form a more 

stable configuration when are organized in liposomes. The dye self-quenches inside the 

liposomes; but when it is released into the bulk solvent it is no longer quenched, resulting in a 

significant increase in fluorescence intensity (245). Therefore, increase in fluorescence intensity 

indicates a release of the dye by disruption of the lipid bilayer caused by the antimicrobial agents 

tested. 

 
Figure 4.7: CF release from liposomes, manufactured from natural E. coli lipid extract, after 
administration of PPA148, chlorhexidine digluconate and gentamicin at 25°C.  
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In this experiment chlorhexidine digluconate (CHD) and gentamicin were used as positive and 

negative control respectively, since the former is known to be a membrane active compound and 

to damage membranes, while the latter enters the bacterial cells via active transport. The 
partitioning of CHD proved to be disruptive to the E. coli bilayer since the drug caused 65.7 ± 

9.5% dye release, whereas the detergent effect of PPA148 apparent in the Langmuir isotherm 

(Figure 4.6C) was not confirmed by the dye release study (Figure 4.7). The novel antimicrobial 

only elicited a limited degree of dye release (4.2 ± 2.2%) one hour after the addition of the drug, 

without any further increase over the next 3 hours. This profile does not describe the solubilizing 

effect observed using E. coli B monolayer. This fact is evidence that the E. coli B monolayer is 

not a good model to study interactions, despite being extracted from bacteria. Therefore, the 
other interaction experiments using model monolayers at the air/liquid interface were carried out 

using only DPPC/DPPG lipids, which form a more stable planar monolayer. 

4.4.2.3 Interaction with DPPC:DPPG monolayer 

A mixture of DPPC/DPPG lipids was used as an alternative IM model to the E. coli B monolayer. 
Rifampicin at 2 μg/mL interacted slowly (t50% = 4.8 ± 0.9 h) with the DPPC:DPPG monolayer by 

reaching a maximum pressure of 6.7 ± 2.0 mN/m after 10 hours (Figure 4.8A). By increasing the 

drug concentration from 2 to 20 μg/mL, the Hill slope decreased from 2.5 ± 1.0 to 0.8 ± 0.2 and 

ΔΠmax increased to 15.8 ± 5.3 mN/m, indicating a faster and more efficient interaction (Figure 

4.8A, Table 4.3). Rifampicin at 30 μg/mL induced ΔΠmax of 3.4 ± 0.6 and t50% of 1.1 ± 0.5 h, 

reflecting a weaker and slower binding capacity.  

 

Figure 4.8: Representative surface pressure – time isotherms at 23°C of rifampicin (A), PPA148 
(B), against DPPC/DPPG monolayer using 1 mM MgCl2 as a subphase. The black lines are the 
fitted curves based on the mathematical model when it was applicable. 

PPA148 at 2 μg/mL gave rise to a ΔΠmax of 8.8 ± 3.4 mN/m within 10 hours with a Hill slope of 
1.7 ± 0.3 and t50% of 5.5 ± 1.54 h, reflecting an efficient but slow interaction with the DPPC/DPPG 
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monolayer (Figure 4.8B). At higher drug concentrations, the slope of the isotherm was steeper, 

which indicates an increased affinity towards the lipid monolayer. At 20 μg/mL, the extent of the 

surface pressure modification was lower and ΔΠmax reaches only 3.3 ± 0.7 mN/m, compared to 
the ΔΠmax obtained with 2, 40 and 60 μg/mL which were, respectively, 8.8 ± 3.4, 9.4 ± 1.3 and 

6.4 ± 1.4 mN/m (Table 4.3). This might have been a result of drug aggregation, which started at 

~20 μg/mL and visible aggregates was seen above 30 μg/mL, as found in the turbidimetric assay 

(Figure 2.15) in Chapter 2 detected by dynamic light scattering. 

Overall, the rate of interaction at concentrations above 2 μg/mL indicated a faster process, as 
observed from the t50%. At concentrations above 20 μg/mL, drug precipitation was observed after 

injecting PPA148 in the trough which agrees with the water solubility (30 ± 1 μg/mL) found in 

Chapter 2, Table 2.3. Overall, the affinity and kinetics of the interaction between PPA148 and 

DPPC/DPPG is concentration-dependent, with the kinetics having a threshold of 20 μg/mL. 

Table 4.3: Kinetic parameters obtained from the fitting of the binding isotherms of rifampicin and 
PPA148 and the DPPC/DPPG monolayers at 23°C on water sub-phase containing1 mM MgCl2. 

Drug Concentration 
(μg/mL) 

ΔΠmax 
(mN/m) Hill slope t50% 

(h) 

PPA148 

2 8.8 ± 3.4 1.7 ± 0.3 5.5 ± 1.54 
20 3.3 ± 0.7 1.2 ± 0.7 0.7 ± 0.4 
40 9.4 ± 1.3 1.1 ± 0.4 0.9 ± 0.2 
60 6.4 ± 1.4 0.6 ± 0.0 1.3 ± 0.2 

Rifampicin 
2 6.7 ± 2.0 2.5 ± 1.0 4.8 ± 0.9 
20 15.8 ± 5.3 0.8 ± 0.2 3.2 ± 2.4 
30 3.4 ± 0.6 1.2 ± 0.6 1.1 ± 0.5 

 

4.4.2.4 Interaction between cyclodextrins and IM model membranes 

One of the hypotheses of this project is that cyclodextrin will enhance not only PPA148’s water 

solubility but also its transport through the inner bacterial membrane. Therefore, the effect of 

HPβCD and RAMEB on the IM was tested using phospholipid model monolayers. Both types of 
cyclodextrins showed a solubilization effect on all lipid monolayers by eliciting a negative change 

in surface pressure. DPPC/DPPG (3:1) monolayers underwent a significant loss of molecules 

from the surface when challenged with HPβCD and RAMEB (Figure 4.9A, B). However, RAMEB 

had a stronger effect against POPC/POPG than HPβCD by producing a greater drop in surface 

pressure. The curves therefore indicate damage to the phospholipid monolayer rather than 

partitioning of the cyclodextrins. 
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Figure 4.9: Representative surface pressure – time isotherms at 23°C of HPβCD (A) and RAMEB 
(B), against DPPC/DPPG (3:1) and POPC/POPG (3:1) monolayers using MgCl2 as a subphase. 

4.4.3 Drug interaction with model outer membranes 

4.4.3.1 Interaction between PPA148, fluidosomes, and model OM monolayers 

Lipid A and Rc-LPS J5 monolayers were used to investigate the effect of steric barrier from the 

OM on PPA148, rifampicin and fluidosomes. Lipid A constitutes the innermost compartment of 
LPS and lacks the polysaccharide chain region. In this experiment rifampicin was used as a 

positive control because it shows a very good correlation with PPA148 when tested against 

model IM lipid monolayers (Figure 4.8). Rifampicin (20 μg/mL) did not affect the packing of the 

Lipid A monolayer and the surface pressure remained constant for 2 h (Figure 4.10B). Instead, 

PPA148 produced an increase in surface pressure of 6.9 ± 0.7 mN/m, reaching a plateau in less 

than an hour with a high binding affinity (Hill slope = 1.3 ± 0.2) (Figure 4.10A).  

When PPA148 was used to challenge Rc-LPS J5 monolayers, it revealed low efficiency (ΔΠmax 

= 3.7 ± 2.1 mN/m), weak binding capacity (Hill slope = 3.7 ± 2.6) but a fast rate of t50% = 0.2 ± 0.1 

h (Figure 4.10A). The presence of the polysaccharide chain hindered the interaction of PPA148 

with the J5 LPS monolayer, probably due to a steric effect. The affinity (Hill slope) and efficiency 

(ΔΠmax) of PPA148 towards J5 LPS was non-reproducible (Table 4.4).  
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Figure 4.10: Interaction isotherm of 20 μg/mL PPA148 (A), 20 μg/mL rifampicin (B) and 0.1 
mg/mL fluidosomes (C) against different types of OM lipid monolayers (Lipid A and Rc-LPS J5) 
at constant surface area at 23 °C. The profile was fitted, when applicable, to specific binding Hill 
slope model to investigate the kinetics and affinity of the interaction. The black lines are the fitted 
curves based on the mathematical model. 

Fluidosomes were tested against J5 LPS monolayer and showed a linear decrease in surface 

pressure (Figure 4.10C). A ΔΠmax of 2 ± 0.4 mN/m was reached 3 h after injection of the final 

formulation below the monolayer, without any sign of reaching a plateau, suggesting removal of 

the lipids from the surface. 

Table 4.4: Kinetic parameters obtained from fitting the binding isotherms of rifampicin and 
PPA148 and the Rc J5 LPS and R595 Lipid A monolayers at 23°C on a water sub-phase 
containing1 mM MgCl2. 

Drug Parameters Rc J5 LPS Re R959 Lipid A 

PPA148 

ΔΠmax (mN/m) 3.7 ± 2.1 7.9 ± 0.7 

Hill slope 3.7 ± 2.6 1.3 ± 0.2 
 

t50% (h) 0.2 ± 0.1 0.3 ± 0.1 

Rifampicin 
ΔΠmax (mN/m) - 0.0 ± 0.0 

Hill slope - N/A 
t50% (h) - N/A 
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4.4.3.2 Interaction between cyclodextrins and model OM monolayers 

Although cyclodextrins were primarily used in this study to enhance PPA148’s water solubility 
(Figure 2.17, Table 2.3) and help its transport through the IM, they were also examined for their 

interaction with OM LPS. Lipid A and Rc-LPS J5 remained largely undisturbed by HPβCD, as 

reflected by the minimal surface pressure change (within ± 2 mN/m), whereas RAMEB induced 

a weak interaction with a more important change in surface pressure (approximately -5% mN/m) 

(Figure 4.11). These findings show that there was no significant interaction between the two 

cyclodextrins and the OM model membranes. 

 

Figure 4.11: Pressure-time interaction isotherm of HPβCD (A) and RAMEB (B) with 2 monolayers 
under constant surface area at 23°C.  

4.4.3.3 Interaction between fluidosomes and model OM using neutron reflectivity (NR) 

NR was used to further explore the effect of fluidosomes on a model bilayer representing the 

Gram negative OM. The structure of the model membrane was characterized at room 

temperature and at 38 °C prior to being challenged with the liposomal carrier (hydrogenated 

DPPC/DMPG at a molar ratio of 18:1) at 38 °C. Each contrast variation (H2O, D2O and SMW) 

was fitted by mathematical models, describing the various layers of the membrane. The interface 

has been described as a series of slabs, each characterized by its SLD, thickness, hydration and 
roughness. This model membrane has been extensively studied by other research groups and 

the preparation process gives robust results with minor differences among samples 

(135,225,226). 

Figure 4.12 shows the reflectivity and SLD profile of the model outer membrane at room 

temperature. The NR data were fitted to a five-layer model, thereby seeing the minimal number 
of layers with which the reflectivity data could be fitted. The interference fringe observed in the 

D2O contrast (Figure 4.12A) reflects the presence of the bilayer. The layers, presented as a 
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background to the fitted SLD curves, are the silicon, silicon oxide, inner d-DPPC headgroups, 

inner d-DPPC tails, outer Ra-LPS tails, Ra-LPS core region (headgroup) and bulk solution.  

 

 

Figure 4.12: Neutron reflectivity profile (A) and model data fits with their scattering length density 
profiles (B) for an assymetrically deposited DPPC (inner leaflet) and Ra-LPS (outer leaflet) model 
membrane at room temperature. The sample was measured at three isotopic contrasts (100% 
D2O, 100% H2O and SMW). The model membrane was fitted into five-layered mathematical 
model: Silicon oxide (SiO2), DPPC headgroup (Inner HG), DPPC tails (Inner tails), Ra LPS tails 
(Outer tails) and Ra LPS headgroups (Core). 

The results reveal that a highly asymmetric lipid bilayer was formed on the silicon oxide-coated 

surface of the substrate with an average lipid coverage of 99%, derived from the combined 

volume fractions of d-DPPC and LPS (Table 4.5). The results have shown a mixing of DPPC and 

LPS within the bilayer because the DPPC composition in the inner and outer leaflet was found 
to be 77% and 20% respectively (Table 4.5). This is in good agreement with published values 

(226). A total of 1.3% water was found within the tail layers with a bilayer roughness of 4.15 Å. 

(Table 4.6)  

Table 4.5: Volume fractions of deuterated DPPC tails, hydrogenous LPS tails and water within 
the bilayers of Ra-LPS/d-DPPC at room temperature (25 °C). 

Layer 𝝋𝑫𝑷𝑷𝑪 𝝋𝑹𝒂𝑳𝑷𝑺 𝝋𝒘𝒂𝒕𝒆𝒓 
SiO2 n/a n/a 0.16 

(0.15, 0.17) 
Inner Headgroup 0.77 

(0.75, 0.78) 

0.22 
(0.21, 0.24) 
 0.013 

(0.012, 0.013) 
 

Inner Tails 

Outer Tails 
0.20 
(0.19, 0.21) 

0.79 
(0.77, 0.80) Outer 

Headgroup/Core 
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At 38 °C the membrane displayed a similar reflectivity profile and the data were fitted using the 

same five-layer model (Figure 4.13). However, the structural parameters changed slightly (Table 

4.6; Table 4.7). The d-DPPC volume fraction did not change in the inner leaflet (0.78) whilst 
increasing (0.14) in the outer leaflet. The thickness of the inner and outer headgroups decreased 

from 7.66 Å and 28.35 Å at 25 °C to 7.41 Å and 23.06 Å at 38 °C respectively. Moreover, the 

hydration of the inner headgroup decreased from ~50 % to ~28 ± 1 % and the bilayer roughness 

increased by ~ 2 Å, which was expected due to the increase in fluidity of the bilayer.  

Table 4.6: Structural parameters, thickness, hydration and roughness, of the Ra-LPS/DPPC 
membrane at room temperature and 38 °C as obtained from the fitting of the neutron reflectivity 
data. The numbers in parentheses are the 95% confidence interval error. 

Layer 

Asymmetric bilayer at: 

RT 38 °C 

Thickness 
(Å) 

% 
water 

Roughness 
(Å) 

Thickness 
(Å) 

% 
water 

Roughness 
(Å) 

SiO2 
20.13 

(19.58, 
20.72) 

16.27 
(15.56, 
16.90) 

4.61 
(4.39, 4.86) 

20.13 
(19.58, 
20.72) 

16.27 
(15.56, 
16.90) 

4.61 
(4.39, 4.86) 

 

Inner HG 
7.66 

(7.346, 
7.98) 

50.10 
(47.86, 
52.38) 

4.15 
(4.02, 4.30) 

7.41 
(7.03, 7.80) 

28.27 
(27.13, 
29.48) 

6.35 
(5.99, 6.70) 

 

Inner 
Tails 

14.94 
(14.35, 
15.6) 1.26 

(1.22, 
1.30) 

14.7 
(14.32, 
15.10) 1.26 

(1.22, 
1.30) Outer 

Tails 

16.87 
(16.70, 
16.99) 

14.84 
(14.44, 
15.29) 

Outer 
HG/Core 

28.35 
(27.66, 
28.98) 

53.59 
(51.42, 
55.97) 

23.06 
(22.36, 
23.68) 

51.77 
(49.61, 
54.06) 

 

HG: Headgroup 
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Figure 4.13: Neutron reflectivity profile (A and model data fits with their scattering length density 
profiles (B) for an assymetrically deposited DPPC (inner leaflet) and Ra-LPS (outer leaflet) model 
membrane at 38 °C. The sample was measured in three isotopic contrasts (100% D2O, 100% 
H2O and 38% D2O/SMW). The model membrane was fitted into a five-layered mathematical 
model: Silicon oxide (SiO2), DPPC headgroup (Inner HG), DPPC tails (Inner tails), Ra LPS tails 
(Outer tails) and Ra LPS headgroups (Core). 

Table 4.7: Volume fraction of deuterated DPPC tails, hydrogenous LPS tails and water within the 
bilayers of Ra-LPS/d-DPPC 38 °C before and after the challenge by the fluidosomes. 

Layer 
Asymmetric bilayer at 38 °C  

Before challenge After challenge 
𝝋𝑫𝑷𝑷𝑪 𝝋𝑹𝒂𝑳𝑷𝑺 𝝋𝒘𝒂𝒕𝒆𝒓 𝝋𝑫𝑷𝑷𝑪 𝝋𝑹𝒂𝑳𝑷𝑺 𝝋𝒘𝒂𝒕𝒆𝒓 

SiO2 n/a n/a 
0.16 

(0.15, 0.17) 
n/a n/a 

0.16 
(0.16, 0.17) 

Inner 
Headgroup 0.78 

(0.77, 0.79) 
0.21 

(0.21, 0.20) 
0.013 

(0.012, 
0.013) 

0.65 
(0.64, 0.67) 

0.35 
(0.34, 0.31) 

0.0003 
(0.0003, 
0.0003) 

Inner Tails 

Outer Tails 
0.14 

(0.13, 0.16) 
0.85 

(0.85, 0.83) 
0.21 

(0.20, 0.22) 
0.79 

(0.77, 0.78) Outer 
Headgroup 
(Core) 
 

Next, the reflectivity profile of the model membrane after interaction with fluidosomes was 

studied. The damaging effect of fluidosomes on the Rc J5 LPS, which had been seen in the 

air/liquid interface experiments (Figure 4.10C) was further investigated by measuring changes in 

the structure of the fully characterised d-DPPC:h-Ra-LPS bilayer after being challenged with 0.1 

mg/mL empty fluidosomes for 1 h. The reflectivity profile of the system was measured after 
flushing out excess fluidosomes, composed of hydrogenated lipids (DPPC:DMPG). Most of the 

structural changes occurring following the addition of fluidosomes involved the tail and outer 

headgroup regions. The exposure of the bilayer to fluidosomes resulted in the addition of a fringe 



A biophysical investigation into the uptake mechanism of PPA148 and its delivery system 

 

 
113 

in the reflectivity profile, reflecting the presence of two lipid bilayer, one being the model OM and 

the second being described as floating bilayer (7th layer) in the SLD profile (Figure 4.14B).  

 
Figure 4.14: Neutron reflectivity profile (A) and model data fits with their scattering length density 
profiles (B) for an assymetrically deposited DPPC (inner leaflet) and Ra-LPS (outer leaflet) model 
membrane after being challenged with 0.1 mg/mL fluidosomes (DPPC/DMPG, 18:1) at 38 °C. 
The sample was measured in three isotopic contrasts (100% D2O, 100% H2O and 38% 
D2O/SMW). The model membrane was fitted into a seven-layered mathematical model: Silicon 
oxide (SiO2), DPPC headgroup (Inner HG), DPPC tails (Inner tails), Ra LPS tails (Outer tails) 
and Ra LPS headgroups (Core), Bridge and Floating bilayer. 

Mixing of lipids within the bilayer region occurred, as derived from the lipid composition in the 

model membrane, with the inner leaflet consisting of 65% d-DPPC and 34% h-Ra LPS, while the 

outer leaflet of 21% d-DPPC and 78% LPS (Table 4.7). It can be observed that the contribution 

of hydrogenous phospholipids in the inner leaflet layers, which might be either h-Ra LPS or h-

phospholipids from fluidosomes, had increased from 21% to 34% after adding the fluidosomes. 
In addition, the fitting parameters in Table 4.8 showed an increase of the model OM roughness 

from 6.3 Å to 7.1 Å, before and after the challenge, respectively, which illustrates structural 

changes of the membrane. A thinner inner headgroup region (5.7 Å) with higher hydration levels 

(48.44 %) and a thicker outer headgroup region (21.0 Å) with lower hydration (35.95 %) were 

also observed, compared to the unchallenged membrane (Table 4.6) under the same conditions.  

Of the two additional layers formed, the one adjacent to the membrane is a solvent layer (99.94% 

water content) with an SLD of 1.78×10-7 (1.7224×10-7, 1.8266×10-7) Å-2, thickness of 34.6 and 

roughness of 3.4 Å. The outermost layer has high water content (75.80%) with an SLD of 2.6×10-

8 (2.4608×10-8, 2.7494×10-8) Å-2. If liposomes were intact on the membrane surface, their tail 

SLD would have been similar to the reported SLD of h- or d-DPPC tails (-0.4 or 7.4 ×10-6 Å-2 

respectively) as published by Clifton and coworkers (226). The thickness of the additional layers 

was found to be 35 and 46 Å for the 6th and 7th layer, respectively.  
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This profile may reflect fusion of liposomes in the membrane because of the close to zero SLD 

of the bridge layer and the increase of hydrogenous lipid tails within the bilayer (Figure 4.15, 

Table 4.7). 

Table 4.8: Structural parameters, namely, thickness, hydration and roughness, of the challenged 
Ra-LPS/DPPC membrane at 38 °C as obtained from fits to the neutron reflectivity data shown in 
Figure 4.14. 

Layer 

Asymmetric bilayer at 38 °C  

Before challenge After challenge 

Thickness 
(Å) 

% 
water 

Roughness 
(Å) 

Thickness 
(Å) 

% 
water 

Roughness 
(Å) 

SiO2 
20.13 

(19.58, 
20.72) 

16.27 
(15.56, 
16.90) 

4.61 
(4.39, 4.86) 

 

20.13 
(19.58, 
20.72) 

16.27 
(15.57, 
16.89) 

4.61 
(4.39, 4.86) 

Inner HG 
7.41 

(7.03, 7.80) 

28.27 
(27.13, 
29.48) 

6.35 
(5.99, 6.70) 

 

5.75 
(5.51, 
5.95) 

48.44 
(47.04, 
49.65) 

7.15 
(6.84, 7.54) 

 

Inner Tails 
14.7 

(14.32, 
15.10) 1.26 

(1.22, 
1.30) 

15.28 
(14.81, 
15.71) 0.03 

(0.03, 
0.03) 

Outer Tails 
14.84 

(14.44, 
15.29) 

16.76 
(16.50, 
16.97) 

Outer HG/Core 
23.06 

(22.36, 
23.68) 

51.77 
(49.61, 
54.06) 

21.05 
(20.16, 
22.07) 

35.97 
(34.49, 
37.55) 

Bridge - - - 
34.59 

(33.43, 
35.74) 

99.94 
(99.85, 
99.99) 

3.36 
(3.26, 3.47) 

Vesicles/Bilayer - - - 
45.82 

(44.89, 
46.882) 

75.80 
(75.02, 
76.73) 

16.62 
(15.91, 
17.34) 
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Figure 4.15: Representation of the possible structural changes in the model OM system after 
being challenged by fluidosomes. 

4.5 Discussion 

In this chapter, the uptake mechanism of PPA148 and its carrier were investigated in terms of 

their biophysical interaction with model systems mimicking the lipidic components of the two 

membranes of the Gram negative cell envelope. The main hypothesis of this project was that a 

drug-in-cyclodextrin-in-liposome formulation would enhance PPA148’s efficiency against Gram 

negative bacteria by fusion with the OM, releasing the drug/CD complex. Cyclodextrin increased 

PPA148’s water solubility by inclusion complex formation (Chapter 2), but it was hypothesized 

that it could also enhance the drug’s transport through the IM. Fluidosomes were selected as the 
carrier of the drug-CD complex because it is known that they can fuse into the bacterial OM and, 

thereby release their payload into the periplasmic space. 

The ability of PPA148 to passively diffuse through a model OM was investigated using Rc J5 

LPS and Re R595 Lipid A monolayers in a Langmuir trough at the air/liquid interface (Figure 

4.10A). PPA148 has been found to interact weakly with Rc J5 LPS and showed a high affinity 
towards the R595 Lipid A monolayer. Although the J5-LPS monolayer was in a mixed liquid 

expanded/liquid condensed state at 30 mN/m (Figure 4.5C), it produced the cross-link of the 

anionic molecules in the presence of Mg2+. The steric barrier produced hindered the interaction 

which presented significant deviation in terms of the affinity towards the lipids (ΔΠmax) and the 

speed of the interaction (Hill slope). Hydrated oligosaccharide chains in Rc J5 LPS prevent the 

entrance of hydrophobic or surface-active molecules and make the hydrophobic bilayer 

inaccessible as was found by Clifton and co-workers using X-ray and neutron reflectivity 

techniques (225). R595 Lipid A underwent a more condensed state at 30 mN/m owing to the 
absence of oligosaccharide chain, leading to a higher drug affinity observed in the pressure/time 

isotherm. The smaller headgroup allows the R595 Lipid A monolayer to have more closely 
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packed molecules (Figure 4.5C), presenting a weaker steric hindrance to PPA148. Although 

PPA148 interacted with R595 Lipid A, rifampicin did not show any interaction (Figure 4.10B), 

which was unexpected based on its proposed mechanism of uptake. This can be explained by 
the topological polar surface area (tPSA), a parameter predicting the passive drug permeation 

through the Gram-negative (tPSA of 165 Å2) and Gram-positive (tPSA 243 Å2) bacterial envelope 

(12). It was estimated by ChemDraw that PPA148 has a tPSA of 141 Å2 (Table 2.1), which 

indicates a less polar compound than rifampicin (tPSA of 217 Å2). Thus the novel drug is more 

likely to interact with the R595 Lipid A, as found in the air/liquid monolayer experiments.  

We also obtained evidence that PPA148 interacts with the IM lipid monolayers (Figure 4.6C, 

Figure 4.8B). Despite some stability difficulties with the E. coli B monolayer (Figure 4.6C, Figure 

4.7), it was found that PPA148 interacted with phospholipids, but it did not cause membrane 

damage as happened with chlorhexidine (Figure 4.7). E. coli B lipid monolayer is a poor model 

of the membrane because it contains a diverse mixture of lipids (Table 1.6), which, in live 

bacteria, would form an asymmetric bilayer, with the lipids which impart negative curvature 

localized on the inside (124,125). Instead, in a monolayer, these lipids are forced to adopt a 
planar configuration and, thus, the monolayer presents packing discontinuities without a 

reproducible interaction profile (Figure 4.6C).  

Using a monolayer model, composed of DPPC/DPPG (3:1), it was observed that PPA148 and 

rifampicin presented a similar interaction profile (Figure 4.8). The findings for rifampicin are in 

agreement with its mechanism of transport: that it partitions in DPPC monolayers by establishing 
ionic bonds with the head groups of DPPC in an acidic environment of pH=5 (255). Since the 

kinetic profile of PPA148 was similar to that of rifampicin, it is suggested that PPA148 is likely to 

enter the cell via diffusion through the membrane. However, PPA148 cannot be ionized (Figure 

2.2) and, thus, the possibility of this type of interaction occurring with phospholipids was 

discounted. It is more likely that PPA148 is partitioning into the membrane because of its 

hydrophobicity.  

As PPA148’s solubilizers, HPβCD and RAMEB were examined separately for their interaction 

with both model OM and IM monolayers (Figure 4.9; Figure 4.11). It was found that HPβCD did 

not affect the OM monolayer, while RAMEB presented a weak interaction with it, possibly 

resulting from the different substituted groups (Figure 4.11). RAMEB is a methyl substituted βCD 

derivative with high hydrophobicity which makes it more likely to partition into LPS. It has been 

reported that complexes of drug-β-cyclodextrin and its derivatives, such as RAMEB, improve 

antibiotic potency but the mechanism has not been clarified yet. It is hypothesized that β-CD may 
drive internalization of the β-CD-antibiotic complex via (i) the OM protein CymA (cyclodextrin 

metabolism A), (ii) enhanced adhesion to the bacterial surface with potential local release of the 

antibiotic, and (iii) destabilization of the bacterial envelope (215,216,246). The transport through 

the CymA channels is a controversial issue seeing that some scientists have found that α-CD 

and β-CD bind and can transported into the cell via those porins but others have found that only 
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the permeation of α-CD can be mediated by CymA (247) due to the channels’ cut-off size of 

950Da. In the current work, porin channels have not been investigated as a mechanism of 

uptake, so, based on our results, RAMEB might just enhance the adhesion to the OM. 

The interaction of HPβCD and RAMEB with model IM resulted in a drop of surface pressure to 

negative values (Figure 4.9), suggesting a lipid solubilizing effect of both DPPC/DPPG and 

POPC/POPG monolayers. It was found that upon cyclodextrin-membrane interaction, the 

packing of phospholipids at the air/liquid interface and the type of βCD derivative (hydroxy-propyl- 

and methyl- substituted groups) affect the efficiency of the interaction (Figure 4.9). POPC/POPG 
formed a liquid condensed monolayer at 30 mN/m (Figure 4.3C) which favours the drug 

membrane interaction because the lipids have lateral and rotational mobility, promoting the 

molecular process of binding (Figure 4.16). Both types of cyclodextrin resulted in ΔΠmax of -20 

mN/m, which suggests strong interaction with POPC/POPG by removing lipids from the surface. 

DPPC/DPPG monolayer produced a condensed film at the air/liquid interface, with which HPβCD 

interacted weakly. The tight packing of lipids and the saturated hydrocarbon chains hindered the 

interaction. RAMEB shows a high affinity towards the DPPC/DPPG monolayer, which was 
expected because RAMEB has been reported to induce phospholipid exchange more efficiently 

than HPβCD (181). In addition, it has also been reported that RAMEB forms soluble complexes 

with DPPC (210), which might explain the negative surface pressure of the isotherm, but it was 

not examined further in the current work. 

 

Figure 4.16: Schematic representation of the movement of phospholipids within a membrane: 
transpose diffusion (1), rotation (2), swing (3), flexion (4) and transverse diffusion or “flip-flop” 
movement (248). 

Fluidosomes (DPPC/DPMG, 18:1) were used as a carrier to overcome the barrier of the OM 

because monolayer interaction studies showed that PPA148 cannot diffuse through the OM 

model membranes (Figure 4.10A). It was hypothesized that fluidosomes could release their 

content (drug-in cyclodextrin) by fusion into the OM membrane as found by Wang et al. for a 

DPPC/DMPG (9:1) system by lipid mixing assay (249). The air/liquid monolayer interaction 

experiment revealed a strong interaction between fluidosomes and Rc J5 LPS (Figure 4.10C). 
The interaction isotherm revealed a lipid solubilizing effect upon fluidosome injection in the 

subphase, containing 1 mM MgCl2. Wang et al. reported that the aggregation and fusion of 

fluidosomes with Gram negative bacterial membrane is promoted by the presence of Ca2+ or 

other divalent cations by inducing the neutralization of the negatively charged Lipid A part and 

dehydration of phospholipids of the membrane (249).  
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To further investigate the interaction between fluidosomes and OM, neutron reflectivity was used 

on an asymmetric model Gram negative bacterial membrane consisting of Ra-EH100 LPS and 

DPPC in the outer and inner leaflet, respectively. Before introducing fluidosomes into the system, 
the model membrane was characterized in terms of structural properties at room temperature 

(25 °C) and 38 °C (Figure 4.12; Figure 4.13). At 38 °C lipids become more flexible (250,251) as 

found in this work. The thickness of all the individual compartments of the model membrane 

decreased as the temperature increased (Table 4.6). Membrane rigidity was modulated 

thermodynamically by changes in temperature and decreased with increasing temperature. 

Changes in orientation and hydration of lipids upon increasing temperature caused thinning of 

lipid bilayers (250) because the hydrocarbon lipid chains became more flexible (Figure 4.17). 
The roughness of the membrane increased with increasing temperature which indicated a liquid 

crystalline phase of the lipids, allowing a less rigid structure of the membrane (Table 4.6). In a 

liquid crystalline membrane, lipids can simply transpose with neighboring molecules (transpose 

diffusion), rotate quickly around their axis, swing from side to side, following contraction 

movement or, less frequent, undergo flip-flop movement (transverse diffusion) (Figure 4.16; 

Figure 4.17) (248). The lipid movement creates a more favorable environment for interaction with 

the membrane.  

 

Figure 4.17: Schematic representation of the effect of temperature change on membrane 
structure and behavior of lipid bilayers adapted from Los and Murata (250). Low temperatures 
cause “rigidification” of membranes, whereas high temperatures cause “fluidization” of 
membranes. 

The effect of fluidosomes on the assymetric model OM was observed at 38 °C (Figure 4.14; 

Figure 4.15). The NR profile of the membrane after addition of fluidosomes revealed a lipid mixing 

profile with an additional bilayer associated with the deposited membrane. The roughness of the 

model OM increased compared to the membrane before being challenged by the fluidosomes, 

and the volume fractions of deuterated and hydrogenous tails of the inner and outer leaflets 

changed, revealing a mixing of the lipids (Table 4.6; Table 4.7; Table 4.8). More specifically, the 
volume fraction of d62DPPC increased in the outer leaflet, while hydrogenous lipids increased in 
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the inner leaflet of the membrane. Based on the fitted parameters, the SLD of the additional layer 

adjacent to the membrane was close to zero, indicating that it is composed of both deuterated 

and hydrogenous material to adjust the SLD at 0.18×10-7 Å-2. The outermost additional layer 
presented a similar thickness (46 Å) to a DPPC bilayer (50 Å) in the presence of CaCl2 (206). 

This strongly suggests that fluidosomes fused into the OM membrane by creating a Ca2+ bridge 

layer between the outer leaflets of the membrane and liposome at the contact site (Figure 4.15). 

Ca2+ is able to keep fluidosomes attached to the model membrane by interacting with both 

liposomes and LPS accompanied by local dehydration, lowering the free energy and creating 

local packing defects on the outer leaflet of both systems (Figure 4.15). Moreover, fluidosomes 

tend to destabilize thermodynamically at 38 °C which also aids their fusion with the bacterial OM 
(252). Vesicle fusion with bacterial membranes, promoted by divalent cations, requires fluidity 

which is achieved at a temperature higher than the phase transition temperature of fluidosomes 

(approximately 35°C ) (249). The thinning of the model OM and increased flexibility of lipids at 

38 °C (Table 4.6) facilitate the fusion of fluidosomes with the model Gram negative bacterial 

membrane. 

After considering both the air/liquid interface interaction and the NR experiment, it is suggested 

that both fluidosomes and model OM underwent conformational changes, leading to their 

collapse and fusion at the point of contact (Figure 4.15).  

4.6 Conclusion 

In the current study, the uptake mechanism of PPA148 and its formulation was studied using 

biophysical interfacial techniques. The monolayer studies suggest that PPA148 slowly diffuses 

through the lipidic components of the PC/PG model IM while it presents weak interaction with the 

model OM consisting of DPPC and Ra-EH100 LPS as the inner and outer leaflet, respectively. 

When compared to the pressure-time isotherm profile of chlorhexidine, rifampicin and 
gentamicin, whose mechanism of uptake is known, PPA148 showed a similar profile with that of 

rifampicin, indicating that PPA148 passively diffuses through the IM. The interaction of PPA148 

with the LPS monolayer, characterized by slow kinetics, suggests that the main mechanism of 

PPA148’s transport through the OM is dependent on non-specific or self-promoted diffusion or 

even active transport. In this chapter, it was found that cyclodextrins might act as permeation 

enhancers through the IM, in addition to increasing the drug’s water solubility. The structural 

changes occurring in the model membrane upon being exposed to fluidosomes were examined 
by neutron reflectivity and suggest that fluidosomes enter into the LPS leaflet of the OM through 

a fusion mechanism.  
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Experience has demonstrated that bacteria are quick to develop resistance to new antibiotics. 

This predictable resistance is essentially related to the mechanism of action of traditional 

antibiotics with five main specific targets in the cell: cell wall synthesis, DNA-gyrase, DNA-
directed-RNA-polymerase, protein synthesis and enzymes (253), and the speed at which 

mutation may facilitate target alteration. The development of new classes of antibiotics with 

specificity towards bacteria, but which act non-specifically against novel targets, needs to be 

pursued as a possible method to delay the onset of resistance. 
At King’s College London, an antimicrobial compound, PPA148, was synthesized, which is active 
against Gram-negative bacteria with a novel antimicrobial mechanism of action. PPA148’s 

bactericidal activity is attributed to its binding onto the minor-groove of bacterial DNA. It showed 

promising activity against the Gram negative members of the ESKAPE organisms, and little 

toxicity to human cells (107,108). Nevertheless, in some clinical strains, difficulties in drug 

uptake, due to the bacterial semi-permeable OM and/or the efflux mechanisms, was observed. 

It is known that intracellular drug accumulation is a complex process including drug uptake into 

the cell, retention and distribution in the cell, and efflux from the cell. At any given time, the 
accumulation of a drug in cells is dependent upon the different rates of drug uptake and efflux 

(254). Overexpression of efflux mechanisms leads to a decrease in drug accumulation resulting 

in drug-resistant cells.  
Based on our knowledge of the physicochemical properties of PPA148, reducing particle 

aggregation and enhancing water solubility was the first step towards developing a formulation 
to enhance its antibacterial efficacy against Gram negative bacteria. The solubility increased 6-

fold by incorporating PPA148 into cyclodectrin’s cavity (Table 2.3; Table 2.4). Fluorescence 

spectroscopy was used to determine the binding constant of a 1:1 complex with HPβCD and 

RAMEB, which was found to be 63 ± 20 M-1 and 102 ± 26 M-1, respectively (Table 2.4). Evidence 

of the formation of inclusion complex include NMR spectroscopy, which presented a shift of the 

DIMEB proton at position 5 protruding towards the CD cavity (Figure 2.19). The results revealed 

the formation of a 1:2 PPA148/DIMEB complex.  

The next step was to incorporate the 1:1 PPA148/RAMEB complex into fluidosomes 

(DPPC/DMPG, 18:1) and test the efficacy of the drug in its pure and formulated form. The 

entrapment of the water-soluble inclusion complex into fluidosomes led to accommodation of the 

insoluble PPA148 in the aqueous phase of neutral vesicles with a size of 129 ±10 nm and high 

encapsulation efficiency (67 ± 11%). Loaded fluidosomes presented a more monodisperse 

system than the empty fluidosomes (Figure 3.4; Figure 3.5), indicating that the presence of the 
complex created structures with increased integrity. Generally, in liposomes, cyclodextrin 

complexation competes with liposomal membrane binding, which in our case led to a more intact 

system because the affinity of the drug towards CD is higher than that of lipids. The LT 

experiment showed weak interaction of RAMEB with a DPPC/DPPG monolayer (Figure 4.9), 

which describes interrelation with the lipid headgroups without causing any damage to the 
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membrane. PPA148 might be inserted into the CD cavity from one side while the other side of 

RAMEB can be attached with the headgroups of the inner leaflet of the liposomes, thus forming 

more stable vesicles (Figure 3.10). 

The efficacy of PPA148 against the E. coli DH5α (PPA148-in-RAMEB-in-fluidosomes) increased 

when it was complexed with RAMEB. Pure PPA148 created an inhibition zone of 1.6 ± 0.2 cm, 

while the complex generated a 2.4 ± 0.1 cm inhibition zone (Figure 3.7). The difference was 

statically significant (Figure 3.8), thus showing that the efficacy of PPA148 was enhanced. 

Therefore, RAMEB has a dual role in (1) increasing the solubility of the PPA148 and (2) 
transporting drug molecules across membranes (intrinsic antimicrobial activity). The efficacy was 

also enhanced when the complex was incorporated into fluidosomes with an inhibition zone of 

2.7 ± 0.2 cm which was statistically significantly different from the pure drug; but the difference 

between the inhibition zone of the complex and the final formulation (Figure 3.8) was not 

statistically significant, which might be a result of the small number of experimental observations 

To further elucidate the efficiency of the final formulation, Monte Carlo simulation was performed 

by building a probability distribution and creating a substituted set of data (100 observations) 
based on the experimental observations. Predicted data were analyzed, and it was estimated 

that the difference between the efficacy of the final formulation and the complex would be 

statistically significant (Figure 3.9). This preliminary microbiological test presented in this thesis 

has some statistical limitations due to the small number of observations, nevertheless it shows 

that the final formulation increased the antimicrobial activity of the novel compound.  

Following the microbiological assay, a biophysical approach was pursued to investigate the 

mechanism of uptake of PPA148 and its carriers. Knowing the physicochemical properties of 

PPA148, passive diffusion through lipid monolayers was hypothesized as a possible mechanism 

of uptake. The LT experiments at the air/liquid interface revealed that PPA148 slowly diffuses 

through both the IM (DPPC/DPPG) (Figure 4.8B) and OM (Rc J5 LPS and R595 Lipid A) (Figure 

4.10A) model monolayers. The use of Lipid A and LPS revealed the steric barrier created by the 

oligosaccharide chains which hinders the permeation of PPA148 through the OM. These results, 

in combination with the inhibition caused in live bacteria, reveal that the main mechanism of 
PPA148’s transport is dependent on non-specific or self-promoted diffusion or even active 

transport.  

HPβCD and RAMEB presented a strong interaction with POPC/POPG monolayers but a weak 

interaction with those formed from DPPC/DPPG (Figure 4.9). Neither was cyclodextrin able to 

interact strongly with the OM model membrane (Figure 4.11), yet it enhanced the antimicrobial 
efficacy of the drug when tested against E. coli DH5α live bacteria. These results reveal that 

RAMEB is able to potentiate the transport of PPA148 by improving the adhesion to the bacterial 

surface with potential local release of the antibiotic through the IM, without causing any damage 

to the membrane.  
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It is suggested that fluidosomes act as drug carriers, releasing their content via fusion with the 

bacterial OM. Langmuir trough experiments at the air/liquid interface presented a strong 

interaction between fluidosomes and Rc J5 LPS (Figure 4.10C), revealing the removal of lipids 
from the surface. This behaviour was investigated in depth using neutron reflectivity, which 

provides a better insight into the mechanism of action of fluidosomes focusing at the molecular 

level on the localization of vesicles interacting with membrane models. Fluidosomes challenged 

an assymetric Gram negative bacterial OM, consisting of Ra EH100 LPS and d62-DPPC as the 

outer and inner leaflet, respectively (Figure 4.14). The results suggested the mixing of lipids 

induced by fluidosomes because the volume fraction of d62-DPPC increased in the outer leaflet, 

while hydrogenous lipids increased in the inner leaflet of the membrane (Table 4.7). The NR 
profile presented two additional layers attached to the model membrane, the one describing a 

water layer connecting the membrane with fluidosomes and the other being the bilayer of the 

fluidosomes (Figure 4.14; Figure 4.15).  

Overall, the data gathered in this thesis has shown that drug-in-RAMEB-in-fluidosomes is a 

promising formulation for antimicrobial applications and should be tested in a range of Gram 
negative bacterial membrane. This work has demonstrated that fluidosomes fuse into the model 

bacterial OM, facilitating the release of its core content (Figure 4.15) and derivatives of βCD 

(HPβCD and RAMEB) enable possibly the transport through the IM. This work is also the first 

characterization of the novel antimicrobial compound, PPA148, in terms of solubility, 

environmental stability (temperature and pH) and spectroscopic profile.   

5.1.1 Future Work 

This thesis was an attempt to characterize a novel antimicrobial compound, and enhance its 

water solubility and efficacy against Gram negative bacteria. The hypotheses of this project were 

driven by PPA148’s predicted physicochemical properties and its MIC against a range of 

bacterial strains. The MIC of pure PPA148 presented a drop in the presence of PAβN, which 

may have been either due to its efflux pump inhibitory action or its bacterial membrane 

permeabilizing behavior. Therefore, future work should include the assessment of the integrity of 

bacterial cell membranes using the fluorescent probe, 8-anilino-1-naphthylenesulfonic acid 
(ANS). ANS is a neutrally charged, hydrophobic probe that fluoresces weakly in aqueous 

environments, but exhibits enhanced fluorescence in non- polar/hydrophobic environment (255). 

This will give an insight on the effect of PAβN on PPA148’s antibacterial activity which in turn will 

provide invaluable information about the drug’s mechanism of action. The interaction studies  

would provide structural insights on the complexes and the spherical morphology of the loaded 

liposomes (110). Future work should also include a drug release profile of PPA148, or any other 

antimicrobial compound encapsulated in cyclodextrin/liposome formulation to determine the 

degree of drug leakage over time. The dialysis method is applied widely and drug analysis with 
UV/Vis spectroscopy will identify the released drug concentration. Stability of the drug in the 
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formulation over time is another important aspect that needs to be defined using mass 

spectroscopy to detect any possible decomposed products. 

In this study, the fusion of fluidosomes with the lipidic component of a model assymetric Gram 

negative bacterial membrane was observed using neutron reflectivity. Development of advanced 

models of Gram negative membranes containing proteins are in progress (256). Using these 

advanced model membranes to investigate the fusion will give an insight on whether proteins 

affect this mechanism of action. For a more realistic approach, in vitro experiments on live 

bacteria should be applied using spectroscopic techniques to localize the formulation within the 
bacterial cell. Even though the lipid composition in eukaryotic and prokaryotic cells is different 

(223,224), the toxicity profile of fluidosomes should also be investigated with human epithelial 

cells to ascertain whether there are any possible side effects for host cells. 

Disk diffusion assay was used to assess the susceptibility of bacteria to PPA148-in-RAMEB-in-

liposomes. The microbiological assay was focused only on one bacterial strain (E coli DH5α) yet, 
to obtain more conclusive data regarding the efficacy of the final formulation on Gram negative 

bacteria, it must be tested across a wide range of antibiotic-resistant bacteria, such as P. 

aeruginosa. In this test, which is qualitative, the diameter of the inhibition zone is related to the 

susceptibility of the isolate and to the diffusion rate of the drug through the agar medium. The 

drawback of this method is that the category of susceptibility is derived from the test rather than 

from the minimum inhibitory concentration (MIC). That being the case, the MIC of the final 

formulation needs to be determined in the different types of bacteria used. Formulation with other 
antibiotics, whose target is in the cytoplasm, i.e. rifampicin, and have become ineffective due to 

the rise of antimicrobial resistance, should also be tested to elucidate the effectiveness of the 

drug-in-cyclodextrin-in-liposomes formulation. Collecting all the aforementioned data will help to 

elucidate the antibacterial activity of a drug-in-cyclodextrin-in-fluidosomes.  
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Appendix A 
Quantum-mechanic rule 

According to Planck’s hypothesis, an oscillating wave of frequency, ν, is directly proportional to 
a defined energy, E (’quantum’), via Planck’s constant, h (EquationA1. 1). The velocity of the 

periodic waves is related to the frequency, f, and the wavelength, λ, according toEquationA1. 2. 

Therefore, Planck’s equation is transformed as in Equation 1.3 

𝐸 = ℎ𝑓  Equation A1. 1 

𝑣 = 𝜆𝑓   Equation A1. 2 

𝐸 = ℎ Ä
B
  Equation A1. 3 

De Broglie connected the particle properties (mass and velocity) with a length scale by 

proposingEquationA1. 4. 

𝜆 = Å
�
  Equation A1. 4 

, where p is momentum of the particle is defined by the vectorial factor between the mass mn 

and velocity v of the neutron.  

𝑝 = 𝑚I𝑣  Equation A1. 5 

Taking into accountEquationA1. 4 and EquationA1. 5, the particle-like behaviour of the neutron 

is linked to its kinetic energy E by the following equation: 

𝐸 = V
@
𝑚I𝑣@

V
@

ÅZ

_UBZ
 Equation A1. 6 

The kinetic energy of a beam of neutrons is thus related to the wavelength of the periodic neutron 

wave. The energy of the neutron is also dependent upon the temperature T by a simplified 

relationship: 

𝐸 = 𝑘Ç𝑇 Equation A1. 7 

, in which k_B is the Boltzmann’s constant.  
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Appendix B 
Table B 1: Minimum Inhibitory concentrations (MIC) of PPA148 against Gram-negative bacteria 

in the absence and presence of the efflux pump inhibitor PaβN. 

Compound 

MIC (μg/mL) 

Acinetobacter baumannii K. pseumoniae P. aeruginosa 

ATTCC 
17978 AYE M6 NCTC 

13368 PA01 NCTC 
13437 

PP-A148 2 2 0.25-0.5 16-32 128 
16 
 

PP-A148 
with PAβN 0.125-0.5 0.125-0.5 0.125-0.25 2-8 4-8 0.25-2 

 

Table B 2: Minimum Inhibitory concentrations (MIC) of PPA148 against Gram-positive bacteria 
in the absence and presence of the efflux pump inhibitor PaβN. 

Compound 

MIC (μg/mL) 

VRE VSE MRSA MSSA 

NCTC 
12201 

NCTC 
12204 

NCTC 
775 

EMRSA 
15 

EMRSA 
16 

ARCC 9144 

PP-A148 0.25-0.5 0.01  1 2 2 
 

0.5 

PP-A148 with 
PAβN <0.125 <0.125 <0.125 <0.125 <0.125 <0.125 

 

Scheme B 1: Complete synthetic route of PPA148. 
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Figure B 1: 13CNMR of intermediate compounds of the PBD core synthesis. The samples were 
suspended in deuterated chloroform. 

 

Figure B 2: 13CNMR of intermediate compounds of the tail synthesis. The samples were 
suspended in deuterated DMSO. 
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Figure B 3: 13CNMR of the final compound, PPA148. The sample was suspended in deuterated 
chloroform. 

 

Figure B 4: The linear regression (A) met the assumptions that the residuals follow a normal 
distribution (B) and their variance is constant (B). 
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Appendix C 
Table C 1: Number and Volume distribution of empty and loaded fluidosomes. 

Empty 

  

Loaded with PPA148-RAMEB complex 

  

   

 

 


