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Abstract—Quantum key distribution (QKD) ensures two indi-
viduals to establish a secret key by exchanging photon quantum
states, which ensures the security and can be promising to
assist future wireless communications. In this paper, we investi-
gate a quantum-assisted wireless communication system, where
QKD is first performed to generate secure key, and wireless
communication is conducted for data transmission via non-
orthogonal multiple access (NOMA). To guarantee user fairness,
the aim is to maximize the minimal secure rate among all users.
To solve this nonconvex problem, an iterative algorithm with
low complexity is proposed, where the closed-form solution is
obtained in each iteration. Simulation results are illustrated to
show the superiority of the proposed algorithm.

Index Terms—Secure communication, NOMA, QKD distribu-
tion, resource allocation.

I. INTRODUCTION
Security has become an essential requirement in modern

communication systems [1], [2]. Due to the broadcasting
feature of wireless links, wireless communication systems are
inherently vulnerable to eavesdropping and security can not
be absolutely guaranteed [3]. However, in quantum commu-
nication, the security can be theoretically guaranteed based
on the quantum no-cloning theorem [4] and the fundamental
postulate of quantum physics that every measurement perturbs
a system [5]. Due to this advantage, quantum communication
gains its popularity in applications of secure key distribution
[6]–[11].

Quantum key distribution (QKD) [6] is a method to generate
a secret key between two individuals (usually named as Alice
and Bob) by transmitting non-orthogonal quantum states.
After the transmission, Alice and Bob generate a secure key
according to measurement of these quantum states. To prevent
attack, Alice and Bob need to authenticate the key message in
classical channels.

Theoretically, an experimental demonstration of QKD was
conducted over a short distance of 32 cm on an optical
cable [7]. Since then, there has been continuous progress
on both theoretical and technological sides of QKD in fiber-
based systems. For free space, QKD has been successfully
implemented in [10], [11]. The maximum distance has re-
cently been pushed up to 400 km [8]. The authors in [9]
have demonstrated the feasibility of QKD through satellite
communications. Despite the absolute security of quantum
communication so far as we know, there lacks contribution
in applying QKD to conventional wireless communications.

With superposition coding and successive interference can-
celation (SIC), NOMA achieves higher spectral efficiency than

conventional time division multiple access (TDMA) [12]–[15].
Since the QKD guarantees high security with high complexity
in implementation an the conventional NOMA can ensure high
data rate with low complexity and low security, this motivates
us to combine the QKD and NOMA together, where the
QKD is used for key generation to ensure the security and
conventional NOMA is employed for transmitting data with
high rate.

In this paper, we consider a quantum-assisted wireless
communication system with one base station (BS) serving
multiple legitimate users. The security against an eavesdropper
is investigated in this paper. The main contributions of this
paper are summarized as follows:

1) We formulate the minimal secure rate maximization
problem for NOMA downlinks with QKD, where the
QKD transmission is first performed to generate secure
key between the BS and users and NOMA is then
conducted.

2) To solve the nonconvex minimal secure rate maximiza-
tion problem, a low-complexity algorithm is proposed,
where the closed-form solution is obtained in each step.

The rest of the paper is organized as follows. In Section
II, we introduce the system model and formulate the problem.
Section III provides an iterative algorithm. Some simulation
results are shown in Section IV and conclusions are finally
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION
We consider a downlink single-cell network with one BS,

K legitimate users and an eavesdropper, as shown in Fig. 1.
The set of all K users are denoted by K = {1, · · · ,K}. To
perform QKD, the BS is configured with a photon emitter and,
correspondingly, the user is equipped with a photon detector.
For ensuring the security, the two-stage secure transmission
protocol is adopted in Fig. 2. In the first stage of time trans-
mission, QKD transmission is performed through quantum
channel, where multiple users are allocated with secure key
via time division and the time period of QKD transmission
for user k is tk. Using the secure key obtained in the first
stage, data transmission is conducted in the second stage
through conventional wireless broadcast channel during the
time period, tK+1.

A. QKD Transmission

To obtain the secure key for user k, we exploit the efficient
QKD scheme with non-maximally entangled states [5]. As
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Fig. 1. A quantum-assisted wireless communication system.
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Fig. 2. Two-stage secure transmission protocol.

depicted in Fig. 3, the QKD scheme consists of three phases:
photon transmission, measurement, and announcement and
comparison.

In the first phase, the BS prepares pairs of photons with
non-maximally entangled state

|AB〉 = α |H〉A |H〉B + β |V 〉A |V 〉B , (1)

where |α|2 + |β|2 = 1, A and B stand for two entangled
photons, and |H〉 and |V 〉 respectively represent the horizonal
and vertical linear polarization. Then with probability 1

2 , the
state |AB〉 is randomly transformed into its equivalent sate

|AB〉′ = β |H〉A |H〉B + α |V 〉A |V 〉B . (2)

Next, a sequence of photons B of each pair are transmitted to
user k, while photons A are correspondingly left at the BS.

QKD (tk)  

Photon Transmission Announcement and Comparison  Measurement

Fig. 3. Three-phase QKD scheme.

In the second phase, the BS and user k independently mea-
sure the photons A and photons B, respectively. Specifically,
the BS performs the measurement in one of the two bases,
obtained by rotating the rectilinear bases by angles 0 and π/4
with probabilities 1− εk and εk, respectively. User k takes the
measurements in one of the three bases, obtained by rotating
the rectilinear bases by angles 0, θ , tan−1(β/α), and −θ,
with probabilities 1 − εk, εk/2, and εk/2, respectively. The
probability εk is publicly known to both the BS and user k.
After performing the measurements, both the BS and user k
record the measurement results with their bases.

After having exchanged enough photons, user k announces
in the third phase on the public channel the sequence of used

bases. The BS compares this sequence with the bases that the
BS measured. For example, as shown in Table I (0, π/4, θ
and −θ means rotating the rectilinear bases by angles 0, π/4,
θ and −θ, respectively), if user k uses base 0, the BS utilizes
base 0, the obtained bits at the BS and user k are the same,
i.e., user k utilizes the correct base. For the case, when user
k uses base θ, the BS chooses base 0, the obtained bits at the
BS and user k are not absolutely the same, i.e., user k uses
the incorrect base in this situation. Then, the BS tells user k
on the public channel on which occasions its measurements
were done in the correct bases. When the BS and user k utilize
the compatible basis, they should get perfectly correlated bits.
However, due to imperfections in the setup, there will be some
errors to a potential eavesdropper. To ensure security of the
key, the BS and user k randomly pick a fixed number, mk, of
photons and publicly compare their results.

The BS and user k divide up their obtained data into 12
cases according to the actual used states, bases and bit values
yielded, as shown in Table I.

For each photon, the eavesdropper does not know which
non-maximally entangled state it is chosen from. A biased
eavesdropping attack is performed at the eavesdropper, i.e.,
the eavesdropper takes the measurements in one of the three
bases, obtained by rotating the rectilinear bases by angles 0,
θ, and −θ, with probabilities p1, p2, and p3, respectively. For
a biased eavesdropping attack, the average error rate 1 is [5]

ek=
2|α|2|β|2[2(1−εk)2(p2+p3)+ε2kp1+2ε2k(|α|2−|β|2)(p2+p3)]

(1− εk)2 + ε2k/2
.

(3)
Since the eavesdropper has no prior knowledge of the used
base of user k, it is assumed that the eavesdropper always
eavesdrops only along the rectilinear base (i.e., p1 = 1, p2 =
p3 = 0) for simplicity. Further applying p1 = 1 and p2 =
p3 = 0, equation (3) is simplified as

ek =
4|α|2|β|2ε2k

2(1− εk)2 + ε2k
. (4)

To calculate the value of error rate ek, there should be
enough photons for an accurate estimation. Denote Nk as the
number of entangled pairs chosen by the BS for user k, i.e.,
Nk photons are transmitted from the BS to user k. For each
state of |AB〉 and |AB〉′, the probability that the BS uses base
π/4 and user k chooses a base θ or −θ is

qk = ε× εk
2
× 1

2
× 1

2
=
ε2k
8
, (5)

where εk is the probability that the BS uses base π/4, εk
2 is

the probability that user k chooses the base θ or −θ, the first
1
2 is the probability that the BS measures 0 or 1 under each
base, and the last 1

2 is the probability for state |AB〉 or |AB〉′.
As a result, there are

Nkqk =
Nkε

2
k

8
(6)

1Error rate means that the secure key of the user is obtained by the
eavesdropper.



TABLE I
MEASUREMENT COMPARISON [5].

The BS base 0 0 0 0 0 0 π/4 π/4 π/4 π/4 π/4 π/4
The BS bit value 0 0 0 1 1 1 0 0 0 1 1 1

User k base 0 θ -θ 0 θ -θ 0 θ -θ 0 θ -θ
User k bit value 0 0/1 0/1 1 0/1 0/1 0/1 0 0/1 0/1 0/1 1

Correct base? yes no no yes no no no yes no no no yes
Key 0 1 0 1

Probability 1
2
(1− εk)2 1

2
(1− εk)2 1

4
ε2k

1
4
ε2k

photons for the case the BS uses the base π/4 and user k
chooses a base, i.e., θ or −θ under a state, i.e., |AB〉 or |AB〉′,
which should be larger than a fixed number mk to ensure the
refined error analysis for user k [5]. It yields

Nkε
2
k

8
≥ mk. (7)

Since the quantum channel resource is always precious, we
only need to set the minimal value Nk satisfying (7), i.e.,
Nk =

⌈
8mk/ε

2
k

⌉
, where operator d·e means round up.

It is assumed that only one photon is transmitted in the
quantum channel in each time. Since there are Nk photons
to be transmitted for user k, the required period QKD can be
evaluated as2

tk =
Nkdk
c

=
dk
c

⌈
8mk

ε2k

⌉
, (8)

where dk is the distance between the BS and user k, and c is
the constant speed of the light.

B. NOMA Transmission

After the QKD transmission for generating secure key,
NOMA scheme is used for data transmission in the second
stage. The channel gain between the BS and user k is denoted
by hk. Without loss of generality, the channels are sorted as
h1 ≤ · · · ≤ hK . According to [12], the achievable rate of user
k can be given by

rk = B log2

(
1 +

hkpk

hk
∑K
l=k+1 pl + σ2

)
, (9)

where B is the system bandwidth, pk is the transmit power of
the BS for user k, and σ2 is the noise power. According to (9),
user m can decode the message of weaker user i ( i < m) and
remove it from the received signal such that the interference
of user m is only from user l (l > m) [16]–[18].

Given the data transmission time is tK+1 and average error
of QKD transmission is ek for user k, the average secure rate
for user k is

Rk(tK+1, εk, pppk) =
tK+1

T
(1− ek)rk

=
tK+1

T
(1− ek)B log2

(
1 +

hkpk

hk
∑K
l=k+1 pl + σ2

)
, (10)

where T is the total transmission time including both QKD
and data transmissions, pppk = [pk, pk+1, · · · , pK ], and ek is
the average QKD error rate defined in (3).

2For measurement and announcement and comparision time, it can be
modelled as a linear function of the photons similar to (8).

C. Problem Formulation
To guarantee user fairness and improve the secure rate,

we formulate the problem to maximize the minimal average
secure rate among all K users (i.e, max-min rate optimization
problem). Now, it is ready to formulate the problem of minimal
secure rate maximization problem as

max
ppp,εεε,ttt

min
k∈K

Rk(tK+1, εk, pppk) (11a)

s.t. tk =
dk
c

⌈
8mk

ε2k

⌉
, ∀k ∈ K (11b)

K+1∑
k=1

tk ≤ T (11c)

K∑
k=1

pk ≤ Pmax (11d)

0 ≤ εk ≤ 1, tk ≥ 0, ∀k ∈ K (11e)
pk ≥ 0, ∀k ∈ K (11f)

where ppp = [p1, p2, · · · , pM ], εεε = [ε1, ε2, · · · , εM ], ttt =
[t1, t2, · · · , tM+1], Rk(tK+1, εk, pppk) is the average secure rate
of user k defined in (10), and Pmax is the maximal trans-
mission power of the BS. Constraints (11b) show the QKD
transmission time. The maximal transmission time constraint is
given in (11c) and the maximal power constraint in presented
in (11d).

III. PROPOSED ALGORITHM

Since problem (11) is nonconvex due to nonconvex objec-
tive function (11a), it is general hard to obtain the globally op-
timal solution. In the following, we propose a low-complexity
algorithm via iteratively optimizing power control ppp with fixed
probability εεε and time ttt, and updating probability εεε and time
ttt with optimized power control ppp.

A. Optimal Power Control

Denote R0 as the minimal average secure rate among the K
users. Introduce a new variable R0, problem (11) with given
εεε and ttt can be rewritten as

max
ppp,R0

R0 (12a)

s.t. Rk(tK+1, εk, pppk) ≥ R0, ∀k ∈ K (12b)
(11d), (11f). (12c)

Before solving problem (12), we present the following two
lemmas of the optimal conditions.

Lemma 1: For the optimal solution (ppp∗, R∗0) of prob-
lem (12), constraints (12b) always hold with equality, i.e.,



R1(tK+1, ε1, ppp
∗
1) = · · · = RK(tK+1, εK , ppp

∗
K) = R∗0, where

ppp∗k = [p∗k, p
∗
k+1, · · · , p∗K ].

Proof: Please refer to Appendix A. �
Lemma 2: For the optimal solution (ppp∗, R∗0) of problem

(12), maximal power constraint (11d) holds with equality, i.e.,∑K
k=1 p

∗
k = Pmax.

Proof: Please refer to Appendix B. �
Lemma 1 shows that even with different average QKD error

rates, it is always max-min rate optimal for all users to transmit
with the same secure rate [19]–[21]. According to Lemma 2,
it is always rate improving to increase transmission power.

Theorem 1: The optimal solution of problem (12) is

p∗k =
Pmax(2bkR

∗
0 − 1)

2
∑k−1

l=1 blR
∗
0

+
(2bkR

∗
0 − 1)σ2

2bkR
∗
0hk

−
k−1∑
l=1

(2blR
∗
0 − 1)(2bkR

∗
0 − 1)σ2

2
∑k−1

j=l bjR
∗
0hl

, ∀k ∈ K, (13)

and R∗0 is the solution of

Pmax

2
∑K

l=1 blR0
−

K∑
l=1

(2blR0 − 1)σ2

2
∑K

j=l bjR0hl
= 0, (14)

where bk = T
tK+1(1−ek)B for all k ∈ K.

Proof: Please refer to Appendix C. �
Since the right hand of (14) is strictly decreasing with R0,

the unique solution R∗0 can be effectively obtained by using
the bisection method.

B. Optimal Probability and Time Allocation

Using new variable R0, problem (11) with given power
control ppp becomes

max
εεε,ttt,R0

R0 (15a)

s.t. (11b), (11c), (11e), (12b). (15b)

For problem (15), we have the following lemma about the
optimal solution.

Lemma 3: For the optimal solution (εεε∗, ttt∗, R∗0) of problem
(15), we always have Rk(t∗K+1, ε

∗
k, pppk) = R∗0 if 0 < ε∗k < 1;

otherwise ε∗k ∈ {0, 1}.
Proof: Please refer to Appendix D. �
Lemma 3 presents the structure of the optimal probability

εk, which helps us obtain the optimal solution of problem (15)
with fixed tK+1 in closed form.

Theorem 2: Given NOMA transmission time tK+1, the
optimal probability and time allocation of problem (15) is

ε∗k = 1−

√
4|α|2|β|2tK+1rk

2(tK+1rk −R∗0T )
− 1

2

∣∣∣∣∣
1

0

, ∀k ∈ K, (16)

t∗k =
dk
c


8mk(

1−
√

4|α|2|β|2tK+1rk
2(tK+1rk−R∗

0T ) −
1
2

∣∣∣1
0

)2

 , ∀k ∈ K,

(17)

and R∗0 is the unique solution of

K∑
k=1

dk
c


8mk(

1−
√

4|α|2|β|2tK+1rk
2(tK+1rk−R∗

0T ) −
1
2

∣∣∣1
0

)2

 = T − tK+1.

(18)
where a|cb = min{max{a, b}, c}.

Proof: Please refer to Appendix E. �
Theorem 2 shows the optimal solution of problem (15) with

fixed time tK+1. To obtain the optimal solution of problem
(15), we can use the one-dimensional search method to find
the optimal t∗K+1.

C. Iterative Algorithm

The iterative power control, probability and time allocation
algorithm is given in Algorithm 1, where ξ is the stepsize
of the one-dimensional search method. Since the optimal
solution is obtained in each step, the objective value of the
proposed Algorithm 1 is non-decreasing, i.e., Algorithm 1
always converges.

Algorithm 1 Iterative Power Control, Probability and Time
Allocation

1: Set the initial solution (ppp(0), εεε(0), ttt(0)) of problem (11) and
the iteration number n = 0.

2: Obtain the optimal ppp(n+1) of problem (11) with given
(εεε(n), ttt(n)) according to Theorem 1.

3: repeat
4: for tK+1 = 0 : ξ : T do
5: Obtain the optimal (εεε∗, t1∗, · · · , t∗K) of problem (11)

with given ppp(n+1) and tK+1 according to Theorem
2.

6: end for
7: Denote the optimal solution of problem (11) with given

ppp(n+1) by (εεε(n+1), ttt(n+1)).
8: Set n = n+ 1.
9: until the objective value (11a) converges

The complexity of Algorithm 1 in each iteration lies in
solving problem (11) with given power control ppp. According
to (16)-(18), the complexity of solving problem (11) with
given ppp and tK+1 is O(K+ log2(1/κ)), where O(log2(1/κ))
is the complexity of solving equation (18) by using the
bisection method with accuracy κ. Thus, the complexity of
solving problem (11) with given ppp is O(L1K+L1 log2(1/κ)),
where L1 = T/ξ is the number of times by the one-
dimensional search method to obtain the optimal tK+1 As
a result, the total complexity of solving problem (11) s
O(L1L2K +L1L2 log2(1/κ)), where L2 denotes the number
of outer times for Algorithm 1.

IV. SIMULATION RESULTS

There are K = 2 users uniformly distributed in a square
area of size 1 km × 1 km. The system bandwidth is B = 1
MHz and the noise power spectrum density is σ2 = −104



dBm. The total transmission time T = 1 s, and the constant
speed of the light is c = 3 × 108 m/s. The large-scale path
loss is L(d) = 17 + 30 log(d), and the small scale fading
follows exponential distribution with one. We set m1 = · · · =
mK = m. Unless otherwise specified, m = 10, |α||β| = 1

2
and Pmax = 30 dBm.

We compared the proposed algorithm with the exhaustive
search method to obtain a near globally optimal solution of
problem (11) (labelled as ‘EXH’), which refers to running the
proposed algorithm 1 with 100 initial starting points, and the
TDMA, which refers to the data transmission is performed via
TDMA instead of NOMA in stage 2

Fig. 4 illustrates the secure rate versus maximal transmission
power of the BS. It is shown that the proposed algorithm
yields better secure rate than TDMA. This is due to the fact
that users can simultaneously transmit data in NOMA, which
result in longer data transmission time for each user in NOMA
than that in TDMA. Moreover, the EXH algorithm yields
the best performance at the sacrifice of high computational
capacity. The gap between the proposed algorithm and EXH
is small especially for low maximal transmission power, which
indicates that the proposed algorithm can approach the near
globally optimal solution.

The secure rate versus photon numbers m (the minimum
photon number to ensure the refined error analysis for all
users) is presented in Fig. 5. It is seen from this figure that
the secure rate decreases with the photon numbers. This is
due to the fact that large photon numbers requires long QKD
transmission time, which can reduce the secure rate according
to (11a). It is also found that the secure rate decreases with
|α||β|.
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Fig. 4. Secure rate versus maximal transmission power Pmax.
V. CONCLUSION

The minimal secure rate maximization problem was studied
for a quantum-assisted wireless communication system. It was
shown that there is a trade-off between the QKD transmission
and conventional wireless transmission via power control,
probability and time allocation. To maximize the minimal se-
cure rate, it is recommended to choose small state probability
|α||β| in QKD scheme.

APPENDIX A
PROOF OF LEMMA 1

Assume that constraints (12b) do not always hold with
equality for all k ∈ K in the optimal solution (ppp∗, R∗0)
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Fig. 5. Secure rate versus photon numbers m.

of problem (12). Without loss of generality, we can further
assume that R1(tK+1, εk1, ppp∗1) 6= R2(tK+1, ε2, ppp

∗
2) and R∗0 =

min{R1(tK+1, εk1, ppp∗1), R2(tK+1, ε2, ppp
∗
2)}.

If R1(tK+1, εk1, ppp∗1) > R2(tK+1, ε2, ppp
∗
2) = R∗0, we can

slightly decrease power p∗1 to p′1 = p∗1− δ and increase power
p∗2 to p′2 = p∗2 + δ, where δ > 0 is a small positive constant
such that

R1(tK+1, εk1, ppp∗1) > R1(tK+1, ε1, [p
′
1, p
′
2, p
∗
3, · · · , p∗K ])

≥ R2(tK+1, ε2, [p
′
2, p
∗
3, · · · , p∗K ])

> R2(tK+1, ε2, ppp
∗
2) = R∗0. (A.1)

The first and last inequalities in (A.1) follow from
the fact that secure rate Rk(tK+1, εk, ppp) in (10)
monotonically increases with pk. Based on (A.1), we
can construct a new solution (p′1, p

′
2, p
∗
3, · · · , p∗K , R′0 =

R2(tK+1, ε2, [p
′
2, p
∗
3, · · · , p∗K ])), which meets all the

constraints of problem (12) and yields better objective
value than solution (ppp∗, R∗0). This contradicts the fact that
(ppp∗, R∗0) is the optimal solution of problem (12).

If R2(tK+1, ε2, ppp
∗
2) > R1(tK+1, εk1, ppp∗1) = R∗0, we can

slightly increase p∗1 and decrease p∗2 to construct a new feasible
solution with higher objective value than (ppp∗, R∗0).

As a result, Lemma 1 is proved by contradiction.
APPENDIX B

PROOF OF LEMMA 2
Assume that the optimal solution (ppp∗, R∗0) of problem (12)

satisfies
∑K
k=1 p

∗
k < Pmax. We can construct a new solution

(p̄pp = [p̄1, p̄2, · · · , p̄K ], R̄0)

p̄k =
Pmax∑K
k=1 p

∗
k

p∗k, R̄0 = min
k∈K

Rk(tK+1, εk, p̄ppk). (B.1)

Since Pmax∑K
k=1 p

∗
k

> 1, we can show that Rk(K+1, εk, p̄ppk) >

Rk(K+1, εk, ppp
∗
k) from (10) and consequently
R̄0 > min

k∈K
Rk(K+1, εk, ppp

∗
k) = R∗0. (B.2)

Thus, (p̄pp, R̄0) is a feasible solution with higher objective value
of problem (12) than (ppp∗, R∗0), which contradicts that (ppp∗, R∗0)
is the optimal solution, i.e, Lemma 2 is proved.

APPENDIX C
PROOF OF THEOREM 1

Denote

ak=

K∑
l=k

pl, bk=
T

tK+1(1−ek)B
, aK+1 =0, ∀k ∈ K. (C.1)



Setting Rk(tK+1, εk, ppp) = R0 from Lemma 1, equation (10)
becomes

bkR0 = log2

(
hkak + σ2

hkak+1 + σ2

)
. (C.2)

According to (C.2), we can obtain

ak+1 =
ak

2bkR0
− (2bkR0 − 1)σ2

2bkR0hk
. (C.3)

Using the recursive formulation (C.3) and a1 =
∑K
k=1 pk =

Pmax from Lemma 2, we have

ak =
Pmax

2
∑k−1

l=1 blR0

−
k−1∑
l=1

(2blR0 − 1)σ2

2
∑k−1

j=l bjR0hl
. (C.4)

Setting aK+1 = 0 from (C.1) to (C.4) results in (14). Based
on (C.1), we have

pk = ak − ak+1. (C.5)
Further applying (C.4) and (C.5) yields (13).

APPENDIX D
PROOF OF LEMMA 3

We first show that ek increases with εk. According to (4),
average QKD error rate can be rewritten as

ek =
4|α|2|β|2
2
ε2k
− 4

εk
+ 3

. (D.1)

Since(
2

ε2k
− 4

εk

)′
=

4εk − 4

ε3k
≤ 0, ∀0 ≤ εk ≤ 1, (D.2)

the denominator of ek is decreasing. Thus, ek is increasing
with εk and Rk(tK+1, εk, pppk) decreases with εk from (10).

Then, assume that Rk(t∗K+1, ε
∗
k, pppk) > R∗0 if 0 < ε∗k < 1.

Since Rk(tK+1, εk, pppk) decreases with εk, we can increase ε∗k
to ε′k such that Rk(t∗K+1, ε

∗
k, pppk) > Rk(t∗K+1, ε

′
k, pppk) = R∗0 if

Rk(t∗K+1, 1, pppk) < R∗0; otherwise, we increase ε∗k to ε′k = 1.
According to (11b)-(11c), it is found that ε′k is also feasible.
Since the objective value is not decreased with new feasible
solution ε′k, Lemma 3 is proved.

APPENDIX E
PROOF OF THEOREM 2

According to (4) and Rk(tK+1, εk, ppp) = R0 from Lemma 3,
equation (10) becomes

R0 =
tK+1rk
T

(
1− 4|α|2|β|2ε2k

2(1− εk)2 + ε2k

)
. (E.1)

Solving (E.1) and considering constraints (11e) can result in
(16). Further substituting (16) into (11b) yields (17). Based on
(17) and the maximal time constraint (11c), we have

K∑
k=1

dk
c


8mk(

1−
√

4|α|2|β|2tK+1rk
2(tK+1rk−R0T ) −

1
2

∣∣∣1
0

)2

 ≤ T − tK+1.

(E.2)
Since the left term of (E.2) increases with objective value R0,
the maximal R0 is achieved when (E.2) holds with equality.
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