
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1016/j.neubiorev.2019.07.010

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
Wolfers, T., Floris, D. L., Dinga, R., van Rooij, D., Isakoglou, C., Kia, S. M., Zabihi, M., Llera, A., Chowdanayaka,
R., Kumar, V. J., Peng, H., Laidi, C., Batalle, D., Dimitrova, R., Charman, T., Loth, E., Lai, M.-C., Jones, E.,
Baumeister, S., ... Beckmann, C. F. (2019). From pattern classification to stratification: towards conceptualizing
the heterogeneity of Autism Spectrum Disorder. Neuroscience and biobehavioral reviews, 104, 240-254.
https://doi.org/10.1016/j.neubiorev.2019.07.010

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1016/j.neubiorev.2019.07.010
https://kclpure.kcl.ac.uk/portal/en/publications/0f561bfe-344a-44ba-a5df-c7c3fa6c107a
https://doi.org/10.1016/j.neubiorev.2019.07.010


1 
 

From pattern classification to stratification: towards conceptualizing the heterogeneity 

of Autism Spectrum Disorder 

 

Thomas Wolfers1,2, Dorothea L. Floris1,2, Richard Dinga3, Daan van Rooij1,2, Christina 

Isakoglou1,2, Seyed Mostafa Kia1,2, Mariam Zabihi1,2, Alberto Llera1,2, Rajanikanth 

Chowdanayaka4, Vinod J. Kumar5, Han Peng1,20, Charles Laidi6, Dafnis Batalle7,8, Ralica 

Dimitrova7,8, Tony Charman9, Eva Loth7, Meng-Chuan Lai10,11,12, Emily Jones13, Sarah 

Baumeister14, Caroline Moessnang14, Tobias Banaschewski14, Christine Ecker15,7, Guillaume 

Dumas16, Jonathan O'Muircheartaigh7,8,17, Declan Murphy7,8,17, Jan K. Buitelaar1,2,18 #, Andre 

F. Marquand1,2,19 #, Christian F. Beckmann1,2,20 # 

#shared last authors 

 

1 Donders Center for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands  

2 Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The 

Netherlands  

3 Department of Psychiatry, Amsterdam UMC, Amsterdam, The Netherlands. 

4 Department of Genetics and Genomics, University of Mysore, Mysuru, India. 

5 Max Planck Institute for Biological Cybernetics, Tübingen, Germany. 

6 Institut National de la Santé et de la Recherche Médicale (INSERM), U955, Institut Mondor de Recherche 

Biomédicale, Pôle de Psychiatrie, Assistance Publique–Hôpitaux de Paris (AP-HP), Faculté de Médecine de 

Créteil, DHU PePsy, Hôpitaux Universitaires Mondor, Créteil, France. 

7 Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology & Neuroscience, 

King’s College London, London, United Kingdom. 

8 Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King’s College 

London, London, United Kingdom. 

9 Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom. 

10 Centre for Addiction and Mental Health and The Hospital for Sick Children, Department of Psychiatry, 

University of Toronto, Toronto, Ontario, Canada. 



2 
 

11 Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom. 

12 Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan. 

13 Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.  

14 Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, 

Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany. 

15 Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital 

Frankfurt am Main, Goethe-University, Frankfurt am Main, Germany. 

16 Human Genetics and Cognitive Functions, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, 

CNRS UMR3571 / USR 3756, Paris, France. 

17 MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom. 

18 Karakter Child and Adolescent Psychiatry University Center, Radboud University Medical Center, 

Nijmegen, The Netherlands 

19 Department of Neuroimaging, Institute of Psychiatry, King’s College London, London, United Kingdom 

20 Centre for Functional MRI of the Brain (FMRIB), University of Oxford, Oxford, United Kingdom    

 

 

 

 

 

 

 

 

 

 

 

  



3 
 

Abstract  

Pattern classification and stratification approaches have increasingly been used in research on 
Autism Spectrum Disorder (ASD) over the last ten years with the goal of translation towards 
clinical applicability. Here, we present an extensive scoping literature review on those two 
approaches. We screened a total of 635 studies, of which 57 pattern classification and 19 
stratification studies were included. We observed large variance across pattern classification 
studies in terms of predictive performance from about 60% to 98% accuracy, which is among 
other factors likely linked to sampling bias, different validation procedures across studies, the 
heterogeneity of ASD and differences in data quality. Stratification studies were less prevalent 
with only two studies reporting replications and just a few showing external validation. While 
some identified strata based on cognition and intelligence reappear across studies, biology as a 
stratification marker is clearly underexplored. In summary, mapping biological differences at 
the level of the individual with ASD is a major challenge for the field now. Conceptualizing 
those mappings and individual trajectories that lead to the diagnosis of ASD, will become a 
major challenge in the near future.  
 

Keywords 

Autism Spectrum Disorder, Machine learning, Pattern Recognition, Classification, Clustering, 

Stratification, Biotypes, Precision Medicine 
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Introduction 

Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder with 

an estimated worldwide prevalence of about one percent (Elsabbagh et al., 2012). The 

diagnosis of ASD is based on behavioral symptoms such as impairments in social 

communication and interaction, and restricted and repetitive behaviors, interests and activities. 

The most recent DSM-5 (American Psychiatric Association, 2013) revision of the diagnostic 

criteria has dropped previously defined subtypes. Today, we have no effective pharmacological 

treatments for the core symptoms of ASD and most clinical trials fail (LeClerc and Easley, 

2015). Two of the major reasons for this are that the biology(ies) of ASD are poorly understood 

(i.e. we lack treatment targets), and prior trials used an ‘all comers’ approach (i.e. gave the 

same treatment to all ASD individuals - though they likely vary considerably). Hence there has 

been increasing focus on the identification of biologically meaningful subcategories within the 

ASD phenotype (Amaral et al., 2008; Coleman, 2005; Ecker et al., 2015; Lombardo et al., 

2019; Masi et al., 2017; Simonoff et al., 2008; Tang et al., 2018). There are three main types 

of heterogeneity that impact studies. First, different clinical symptom profiles can lead to the 

diagnosis of ASD (clinical heterogeneity). Second, different biological mechanisms may 

converge onto a common set of symptoms for ASD (biological heterogeneity). Third, different 

environmental factors, may modulate the expression of ASD (environmental heterogeneity). 

Largely due to these forms of heterogeneity, no current theory captures all aspects of ASD 

based on biological processes (Sanders, 2015). Therefore initiatives are essential, comprising 

increasingly larger cohorts of individuals with ASD to capture the variation in the biological 

and clinical characteristics across individuals (Di Martino et al., 2014; Loth et al., 2017; 

Szatmari et al., 2007). 

In order to take advantage of increasingly large datasets, pattern recognition and 

machine learning methods are gaining more importance. Generally speaking these approaches 
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can be summarized under the umbrella terms supervised and unsupervised learning. In the 

former, labels -for instance clinical diagnoses- are known and utilized to find an optimal 

decision rule. In the latter, the algorithm infers a decision on class membership by relying 

exclusively on the inherent structure of the unlabeled input data (Bishop, 2007; Hastie et al., 

2009). Here, we use the term pattern classification to refer to supervised approaches that 

integrate biological and/or behavioral measures in order to extract a predictive pattern 

corresponding to the diagnosis of ASD. In contrast, we use the term stratification to refer to 

unsupervised approaches that use different sources of information to find meaningful 

substructures within the ASD phenotype.  

 A number of reviews on mental disorders have focused on one of these two approaches 

-pattern classification or stratification- (Andrews et al., 2018; Arbabshirani et al., 2017; Hahn 

et al., 2017; Huys et al., 2016; Marquand et al., 2016b; Orrù et al., 2012; Varoquaux, 2017; 

Wolfers et al., 2015). However, none has synthesized the utility of both approaches 

systematically. Therefore, we surveyed the literature on pattern classification and stratification 

methods in ASD using our previously published methods (Marquand et al., 2016b; Wolfers et 

al., 2015). In this scoping review, we contribute to the literature by focusing on pattern 

classification studies based on behavioral, neuroimaging, and other biological readouts in ASD. 

Earlier work mostly focused on one modality, usually brain imaging. In addition, we also 

included stratification studies and compared the two approaches on their utility to shape the 

future of ASD research. In doing so we i) provide an in-depth review of both approaches, ii) 

identify important common outcomes, iii) outline opportunities and shortcomings, and iv) 

present potential future directions for pattern classification and stratification approaches in 

ASD research and clinical practice. 

 

 



6 
 

 

Methods 
 

Scoping review 

 We conducted a literature search on all studies that used pattern classification as well 

as stratification approaches in ASD. We defined pattern classification studies as those that 

predict ASD clinical diagnostic status either cross-sectionally or longitudinally on the basis of 

biology, cognition and/or behavior. Importantly, we only included studies that report out-of-

sample predictions. In other words, a predictive model was trained on one part of the data and 

tested on another. Other statistical approaches that are validated within the same sample may 

describe biological factors underlying ASD but are not predictive at the individual level. 

Stratification studies were defined as those that aimed to identify meaningful clusters within 

ASD on the basis of biological, cognitive, behavioral or symptom measures. The search 

terms12, inclusion criteria and the number of studies that were reviewed are depicted in Figure 

1. The search was concluded on the 10th of April 2019. 

 

[insert Figure 1] 

 

Pattern classification and stratification 

Pattern classification approaches on the basis of quantifiable biological readouts and 

behavior started gaining prominence in the ASD literature about 10 years ago. Since then many 

studies have been performed with the goal to predict ASD diagnosis. Similarly, stratifications 

on the basis of primarily behavior have gained more attention in the ASD literature in the last 

                                                        
1 Search term - pattern classification:  
(Autism OR Autism spectrum disorder) AND (pattern classification OR machine learning) 
2 Search term - stratification:  
(Autism OR Autism spectrum disorder) AND (subtyping OR stratification OR clustering) 
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decade. In this section, we briefly introduce the main categories by which we described and 

classified the existing literature. This classification scheme is kept throughout the text, tables, 

and figures.  

 

Modality and features 

In the present review, we classified studies based on the modalities they used to extract 

features from for their predictions. Modality refers to the type of biological readout. We cannot 

easily measure brain structure or function directly. Therefore, we rely on indirect measures, 

such as electroencephalography (EEG), magnetoencephalography (MEG), magnetic resonance 

imaging (MRI), cognitive and behavioral assessments and genetic measures. All these 

measures have unique advantages and disadvantages in assessing biological or psychological 

states. While, for instance, functional MRI allows us to image the brain even in deep subcortical 

nuclei of the brain, it has a poor temporal resolution (Dale and Halgren, 2001). In contrast, 

EEG has exceptional temporal, but poor spatial, resolution.  

A feature is a characteristic that can be extracted from the data generated with a certain 

measurement modality and is used as input to any kind of algorithm. In the last decade, the 

predominant measures used for classification were biological features while stratification was 

primarily based on symptoms and cognition. Importantly, while most clustering algorithms 

require the measurements to be continuous or ordinal, some algorithms can deal with different 

types of variables measured on different kinds of non-continuous scales (Bishop, 2007). The 

engineering of novel features that can be extracted from all kinds of biological measurements 

is an important research topic as the biological relevance and reliability of this step often 

determines the predictability of ASD more substantially than the classifier itself.  

 

Classifiers and stratification algorithms  
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Classifiers used for pattern classification range from simple linear models to more 

sophisticated nonlinear variants such as multilayer neural networks or Gaussian processes 

(Bishop, 2007). All these approaches were used in the reviewed literature. In simple terms, a 

classifier learns a rule, which separates the classes. The algorithms thus differ with regard to 

the method that determines this rule. In the following we shortly introduce the main algorithms. 

A Linear Discriminant Classifier (LDC), a classical linear model, is used to separate classes by 

maximizing the ratio of between-class to within-class variance. A Logistic Regression 

Classifier (LRC) is a probabilistic discriminant model that aims to learn an optimal decision 

rule by modelling the log-odds ratio as a linear combination of predictor variables. Under the 

Gaussian assumption (assuming that individuals within each class are distributed according to 

a Gaussian distribution), LDC and LRC are equivalent (Hastie et al., 2009). Both methods yield 

probabilistic predictions that a new case corresponds to a particular class and can be 

transformed into a class label. The Support Vector Machine (SVM) is an algorithm designed 

for binary classification that maximizes the margin between classes in a high dimensional 

space. Mathematically, the discriminant function is defined by a weight vector orthogonal to 

the decision boundary, which can be uniquely specified by the samples that lie closest to the 

decision boundary, referred to as support vectors. The decision boundary represents the rule 

for classification of new examples. A Gaussian Process Classifier (GPC) is a Bayesian 

extension of LRC, a probabilistic model often described as a distribution over functions. In 

contrast to SVM, the predicted class is augmented by an estimate of the certainty of the 

prediction. Based on Bayes’s rule, the posterior distribution of functions on the training data is 

found by maximizing the negative log-likelihood. This posterior distribution is then used to 

classify new examples according to the rules of probability. Previous approaches typically 

utilize linear techniques for class boundary definitions, though non-linear extensions are 

possible. For example, Artificial Neural Networks (NN) are a broad class of algorithms that 
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are inspired from biological neural networks (Rosenblatt, 1958). Generally, NNs consist of a 

set of artificial neurons that are trained by adjusting the weights connecting them and can be 

used for a range of pattern recognition tasks including classification. The learned relation of 

these artificial neurons represents the decision rule which is applied to make predictions for 

new examples. Deep learning is one prominent extension of the neural networks theory, which 

is characterized by many layers of artificial neurons (Lecun et al., 2015). In many fields, these 

networks outperform other algorithms (Silver et al., 2016), provided that sufficient training 

data is available (Jia Deng et al., 2009). This is a problem in neuroscience in which big-data is 

just emerging as the acquisition of a large number of samples is very challenging and costly 

(Miller et al., 2016). 

With regard to stratification, there are two related types of approaches that have been 

used in ASD research, i) clustering and ii) finite mixture models (FMM). Clustering methods 

explore the data with the goal to identify clusters or subtypes within a dataset. The goal is to 

identify a partitioning of the data such that the samples comprising each cluster are more similar 

to one another than to samples assigned to the other clusters. Given this goal, these algorithms 

require a measure of similarity or distance to be defined (Xu and Tian, 2015). A simple 

clustering algorithm is the iterative ‘K-means’ approach (MacQueen, 1967). It involves two 

steps: (i) for each data point, find the closest cluster center according to for example the squared 

Euclidean distance and (ii) replace each cluster center with the coordinate-wise mean of all 

points assigned to it. These steps are iterated until the cluster assignments do not change. K-

means is just one of the many methods that have been used in the literature (Hartigan and 

Wong, 1979). Generally, these algorithms differ in the way they operationalize class similarity 

or class difference (Xu and Tian, 2015; Xu and Wunsch, 2005). It is important to note that the 

results of the clustering method heavily depend on the assumptions of the algorithm chosen 

and the particular notion of similarity or distance that each algorithm implies (von Luxburg et 
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al., 2012). Unfortunately, despite a proliferation of different algorithms for clustering, there is 

no way to tell unambiguously whether an algorithm performs better than any other as there is 

no universal metric that can adjudicate this. Finite mixture models are a broad class of 

probabilistic stratification approaches (Bishop, 2007). The models partition the data into a 

mixture of a given number of parametric distributions. For instance, a Gaussian mixture model 

describes the input data as a mixture of Gaussians (Bishop, 2007). Generally, these models 

work by estimating the number of components that are represented by a certain probability 

distribution and the algorithm estimates the mixing coefficients that determine the proportion 

that each component contributing to the mixture along with the parameters of each component 

distribution. A number of different models belong to the class of finite mixture models 

(Bratchell, 1987; Jobson, 1992; Vermunt and Magidson, 2002), that all have their own 

advantages and disadvantages. The performance evaluation of pattern classifications and 

stratification is generally quite different. Therefore, we discuss both approaches separately in 

the following two sections.  

 

Performance evaluation for pattern classification 

  To estimate model performance on unseen data, usually, some form of data splitting is 

performed. The simplest, but least efficient way (Steyerberg et al., 2007), is to split the data 

into two parts, a training set used to develop a model, and a test set that is used for model 

validation. However, this limits the number of available samples for evaluation and the results 

are too dependent on the initial split.  Hence, cross-validation is usually performed. As part of 

this, data are split into a number of parts, and the training and validation steps are repeated, 

each time leaving a different partition out as a test set. A special case where one subject is left 

out each time is called leave-one-out cross-validation. This method has an intuitive appeal 

(since most of the subjects can used for model training).  However, it is less reliable than 
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alternatives and so it is now not recommended (Varoquaux, 2017). Another method, that is less 

common in psychiatry research, is called bootstrapping. Here, the training samples are 

repeatedly selected with replacement from the original data. 

   In medicine, it is recommended that both diagnostic and prognostic models are 

probabilistic and are evaluated based on their calibration and discrimination (Collins et al., 

2015). Calibration is defined as degree of agreement between the predicted probabilities of an 

event and its observed frequency (e.g. good calibration means that events that are predicted 

with 0.6 probability, if they happen 60% of the time).  In contrast, discrimination is usually 

evaluated using the area under the receiver operating characteristic curve (ROC), where we 

compare the false-positive rate of a classifier relative to the true positive rate and which is 

equivalent to concordance probability in the case of a binary outcome. It can therefore be 

interpreted as the probability that a randomly selected participant from a specific group will be 

predicted to belong to this group with higher probability than a randomly selected person from 

another group. Evaluating models based solely on thresholded categorical predictions (i.e. 

accuracy, balanced accuracy, sensitivity, specificity), is usually not recommended, because 

categorical predictions are very crude and hide potentially clinically important information. It 

also moves the decision making from ‘stakeholders’ (e.g. clinicians or patients) to the data 

analyst - thus assuming that the appropriate decision threshold is known and constant across 

all situations the model can be applied to. It is important to note, however, that measures like 

ROC and balanced accuracy are not affected by relative class frequency or disease prevalence.  

Therefore, it is possible to have what is seemingly a high performing model that still produces 

a high number of false positive predictions. The reported performance measures varied across 

articles we have reviewed here. Despite its problems, accuracy was the most commonly 

reported performance measure.  Therefore, we focused our review on accuracy. In studies 

where accuracy was not reported, we report the area under the curve. 
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Performance evaluation for stratification 

Generally, stratification requires the user of most clustering algorithms to determine the 

number of clusters or components a priori. This has a substantial effect on the outcome of the 

algorithm as it determines its flexibility. Therefore, different heuristics and test procedures 

have been developed that can be used to determine whether a certain cluster solution is better 

than another, or if it is appropriate in the first place (Bratchell, 1987; Jobson, 1992; Vermunt 

and Magidson, 2002). However, all these methods rely on assumptions on the nature of 

similarity and they apply heuristics that can (and often do) fail. Therefore, there is no way of 

determining the optimal number of clusters with certainty (Bratchell, 1987). Consequentially, 

it is essential that identified stratifications are replicated (e.g. to assess the stability of the cluster 

solution) and validated (e.g. to assess clinical plausibility) to be meaningful. This is not 

straightforward and specific steps need to be taken.  Moreover, it is important to note that those 

steps (while important) might not be sufficient for all kinds of stratification(s). First, the 

number of clusters should be replicated in an independent dataset that includes the same kind 

of variables. If this replication is successful, the clusters should then be validated against 

variables that are of interest but have not been part of the clustering procedure. In the case of 

clinical validation, one would be interested in a certain outcome measure that is predictive of 

long-term assessment of quality of life for instance. In an ideal world emerging clusters boil 

down to reliable subtypes and are externally validated against those clinical measures. In the 

real world, however, this is often impossible (as the number of datasets available with identical 

measures is limited). In the present article we reviewed the literature on those validation 

criteria.  

 

Results 
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Pattern classification of ASD 

 For the section of this review, we characterized the pattern classification literature on 

ASD in detail based on biological, cognitive and behavioral factors. We included a total of 57 

ASD studies for detailed review and condensed the most salient features of those studies in 

Figure 2. In the following, we review some of the most prominent findings of those studies. 

 One of the first studies in which ASD was predicted was based on structural brain 

measures, used a SVM approach, and reported promising results with accuracies of up to 86% 

(Ecker et al., 2010b, 2010a). Subsequently, several other studies also reported accuracies that 

were up to 90% and higher, and these were based on structural MRI, resting state MRI, and 

other imaging modalities (Ahmadlou et al., 2010; Jiao et al., 2010; Uddin et al., 2011). These 

initial results were also backed up by follow-up publications showing similarly high accuracies, 

indicating that it was possible to discriminate ASD from healthy individuals (Table1), and in 

some cases from those with other neurodevelopmental disorders (such as ADHD). After about 

three years, the sample size of pattern classification studies increased from around 50 

individuals with ASD to more than 300. One study that represents a shift in the literature 

performed a classification of 325 individuals with ASD using structural MRI (Sabuncu and 

Konukoglu, 2014). They reported, however, that ASD could only be predicted with an accuracy 

of 60%. Since this was a multisite study, scanner ‘noise’ might be an important factor 

influencing the lower accuracies. Nonetheless, the prior smaller studies might have been prone 

to cross-validation failure (Varoquaux, 2017) and a stronger publication bias. For example, a 

non-surprising finding in a small sample is less likely to find its place in the literature than the 

same finding in a large sample. Furthermore, larger samples also imply that more of the 

intrinsic heterogeneity of both non-autistic and individuals with ASD is sampled. This results 

in a larger overlap between groups and lower accuracies during classification. In one of the 
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largest multi-site studies on ASD to date (using the ABIDE sample) showed that with 

increasing sample sizes, inter-site prediction approached intra-site predictions with the highest 

accuracies of around 67% (Abraham et al., 2017). Therefore, increasingly larger sample sizes 

may allow for the identification of more robust decision functions. While diagnostic 

predictions were important in determining the predictability of ASD on the basis of biological 

measures, there are increasing reports from longitudinal studies of ‘at-risk’ infants (Hazlett et 

al., 2017; Shen et al., 2017) with promising (but mixed) predictive accuracies ranging from 

94% and 69% for the development of ASD. Although, this performance is too low and 

unreliable for clinical translation at this stage, those studies hold the potential for the 

identification of signatures indicative for the development of ASD very early in life.  

In summary, predictive accuracies are variable across studies from about 60% to 98% 

dependent on features, cross-validation, and sampling. Structural and functional MRI 

predictions of ASD are over-represented in comparison with diffusion MRI, EEG, behavior 

and multimodal data-based classifications (Figure 2). The accuracies dropped with sample size 

and the predictions are usually not calibrated by the base-rate of the diagnosis with ASD. Cross-

sectional prediction studies are the most prevalent, and only recently have longitudinal 

prediction studies allowed the assessment of ASD trajectories.  

 

[insert Figure 2] 

[insert Table 1] 

 
Stratification of ASD 
 
 For this section of this review, we inspected the stratification literature on ASD in detail 

based on biological and behavioral factors. We included a total of 19 studies and reported the 

most salient features of those studies in Figure 2. In the following, we review some of the most 

prominent findings of those studies. 
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 About ten years ago the first research on stratification of ASD was performed (Bitsika 

et al., 2008; Munson et al., 2008). One of the most prominent clustering approaches is 

hierarchical clustering. Generally, the number of identified clusters was independent of the 

respective features on which stratification was based and ranged from three to six across all 

papers reviewed (Table 2, Figure 2). There was no clear association between the applied 

stratification method and the number of resulting subgroups. The sample size ranged from 

about 100 participants to studies that included more than 4000 individuals with ASD (Table 

2). The measures that were mostly used for stratification were either symptom scores or 

cognitive measures, while only a few included sensory processing or biological variables (Lane 

et al., 2010; Sacco et al., 2012). While the etiology of ASD is likely in large parts biological 

(Abrahams and Geschwind, 2008) the inclusion of biological information for stratification 

appeared in 2018 for the first time. Some studies also included a range of different measures 

for the purpose of stratification; however, in general this did not include biological information 

such as genetic or brain imaging measures. Of the 19 reviewed studies only two studies 

replicated the identified clusters in independent samples (Lombardo et al., 2016; Veatch et al., 

2014) and about half of the studies did not validate the identified clusters externally. While it 

is difficult to synthesize common results across stratification studies due to the factors 

discussed above, there are a few common outcomes. First, a large proportion of the reviewed 

studies show at least one subgroup that is characterized by decreased cognitive performance or 

intelligence (Table 2). More importantly, there are only a few studies that report biological 

subtypes and these subtypes do not seem to converge (Table 2). This highlights the need for 

more systematic investigation into biological subtypes of ASD. Further, while many samples 

include individuals with comorbidities on top of a primary diagnosis with ASD, the majority 

of studies neglected other disorders. This is a limitation for the identification of transdiagnostic 

clusters that may map better onto biology than clusters constrained by boundaries due to current 
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psychiatric classification which is mostly based on symptoms. Finally, while with increasing 

sample size the accuracy reported in pattern classifications studies decrease, in stratification 

studies the reported number of clusters increase. With increasing sample size, one is more 

likely to sample the large variety of individuals with ASD, so that in larger samples the number 

of strata or subtypes would increase. This review provides first evidence for this observation 

(Figure 2).  

 In summary, the body of literature on stratification approaches is considerably smaller 

than that on pattern classification approaches on ASD. While the number of identified 

subgroups differs between studies, the measures utilized for stratifications focused primarily 

on symptom scores or cognition. Biological measures were largely neglected. Most studies did 

not independently replicate their findings and about half did not validate their results externally 

(Figure 2). While these limitations are the core theme across studies, a large proportion of 

studies also report a subgroup of individuals with ASD characterized by low cognitive 

performance or intelligence. In line with the debate on heterogeneity of the ASD phenotype we 

provide first evidence that with increasing sample size the number of clusters reported for ASD 

increases. 

 

[insert Table 2] 

Discussion 

In this scooping review, we surveyed the literature on pattern classification and 

stratification studies on ASD. With increasingly larger samples being made available for 

analysis, these methods will determine whether we can eventually translate ‘big data 

approaches’ into clinical practice. We observed variable accuracies across studies dependent 

on the selection of features, cross-validation strategy, sampling and differences in data quality. 

Structural and functional MRI predictions are overrepresented in comparison with diffusion 
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MRI, EEG, behavior, and multimodal classifications. Cross-sectional prediction studies are the 

most prevalent, and only recently longitudinal studies on high-risk samples allow for the 

assessment of ASD trajectories in a predictive framework. With respect to stratification 

methods applied to ASD, the number of identified ASD subgroups differ substantially and 

symptom scores or cognition were usually the basis of these approaches. This may be a 

consequence of the high heterogeneity of the ASD phenotype or sensitivity of resulting clusters 

on arbitrary user-defined clustering parameters. Therefore, clustering methods require further 

development and need to be more user independent. Generally, the sample size of most 

stratification studies is large, suggesting that the intrinsic clinical, biological and environmental 

heterogeneity of the ASD phenotype was captured. That said, biological measures gained 

momentum in those studies only very recently. This is important, as a stratification on the basis 

of symptoms in the case of ASD is not sufficient. The emerging subgroups are too 

heterogeneous and often not reproducible. Therefore, we need to be able to identify clusters 

that map better onto biology. Cluster approaches based on genetics are being adapted for the 

stratification for ASD and are expected to gain importance as they did in other medical 

disciplines (Hofree et al., 2013; Kim et al., 2018). In the following, we discuss in detail the 

evolution of those two approaches and what we can learn from for the past and present for the 

future of these approaches in the context of ASD research.  

The past of pattern classification and stratification in ASD research 

ASD has been investigated using both approaches. Especially, in the early days pattern 

classification approaches received a lot of attention when on the basis of biological measures, 

the prediction of ASD was possible with relatively high accuracies of more than 80% (Table 

1). Considerable resources have since been spent on identifying biological signatures. 

However, over time it has become increasingly apparent that earlier studies may have 

overestimated the ‘real’ predictability of ASD. This was likely largely due to (for example) 
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sampling biases (Wolfers et al., 2015), cross-validation failures (i.e. cross-validation 

overestimates the generalizability of an algorithm in comparison to using a test set (Varoquaux, 

2017), less heterogeneity in smaller studies, and potentially also publication bias. With 

increasing sample size, the reported performance drops across studies (Figure 2). Nonetheless, 

a recent study reported an increase samples size that led to better learning (Abraham et al., 

2017) - suggesting that larger samples will allow for the estimation of more complex decision 

functions that allow us to capture the complex phenotype of ASD with a single decision 

function. While this debate is not over, we suggest that the more important challenge is to parse 

the heterogeneity within ASD.  

While pattern classification algorithms have been applied to ASD for more than ten 

years, stratification studies are much less prevalent in ASD research. This may be due to the 

fact that stratification is a more difficult problem. For instance, replication and external 

validations become more important in unsupervised learning problems (Marquand et al., 

2016b; Schwenker and Trentin, 2014). In other words, subgroups must be validated against an 

external estimate such as the course of ASD and these variables are usually not readily 

available. Furthermore, many studies were simply not similar enough in terms of acquisition 

procedures, protocols, and variables to allow for replication. Last, the biology of potentially 

emerging subtypes needs to be mapped. While pattern classification was often based on 

biological factors, stratification studies largely neglect this information. Instead, symptom 

counts or cognitive measures were fed into a clustering schema. This is in line with the long-

standing stratification efforts of ASD based on symptom profiles, which however has shown 

limited success. Therefore, it may be possible to improve clustering efforts by including 

biological variables into the stratifications and at the same time using a more systematic way 

of replicating and validating emerging subgroups. Generally, these improvements require the 
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acquisition of large samples which can be validated against external measures such as course 

and developmental outcomes.  

In summary, i) pattern classification approaches show promise but clinical applicability 

has not been reached, ii) stratification approaches have not yet robustly detected subgroups for 

ASD and/or shown how well they map onto underlying biology(ies).  

 

The present of pattern classification and stratification in ASD research 

 Pattern classification and stratification approaches for ASD are affected by general 

trends in the field today. In the following, we discuss major developments and how pattern 

classification and stratification approaches can contribute.   

The analysis of increasingly larger samples is a general mantra across different fields. 

Therefore, we expect the acquisition of even larger samples and pooling of data across studies 

(Van Rooij et al., 2018). In genetics, for instance, this has led to the identification of common 

risk variants for many major mental disorders, among others ASD (Lee et al., 2013). While 

those studies report robust group level differences with small effect sizes, it is unclear if those 

differences translate toward individual predictions. After all we treat and care for individuals, 

not averages or groups. Piling up data and building more advanced classifiers, might allow for 

the learning of very complex decision functions potentially resulting in more optimal 

classifications of individuals with ASD (Abraham et al., 2017). Therefore, we see considerable 

investments into more advanced classification approaches based on, for instance, deep learning 

(Lecun et al., 2015). Earlier studies using deep learning with neuroimaging data have shown 

good classification accuracy in small samples (Heinsfeld et al., 2018; Vieira et al., 2017), 

however, there is no confirmed benchmark in large datasets. A recent prediction challenge of 

the complex phenotype intelligence suggests that the benefit of deep learning on neuroimage 
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data for improving performance is marginal or non-existent3, pointing towards a degree of 

overfitting in smaller imaging studies on complex traits such as ASD. Considering that we are 

predicting a highly heterogenous and comorbid disorder, predicting diagnostic status is not 

sufficient. Therefore, the prediction of the course of ASD which is clinically more meaningful 

gains further momentum. Research on neonates at risk for development of ASD (Hazlett et al., 

2017; Shen et al., 2017) might in particular benefit from applications of pattern classification 

approaches that can predict their developmental trajectories. 

While these developments will remain important, we anticipate that the larger challenge 

concerns the heterogeneity of ASD. We can clearly observe that classification of ASD tends to 

decrease with increasing sample size (Figure 2), although the reasons for it are not entirely 

clear. It may be that the biological overlap of ASD with a healthy population increases when 

both are sampled more representatively. Therefore, we expect that stratification approaches 

become more important. The identification of meaningful subgroups within the ASD diagnosis 

is a very challenging task and requires larger samples that optimally reflect the biological 

diversity of patients. While this is an important step, it is still only the first, replication of 

emerging strata is equally important as is validation. Today, most studies do not provide 

replications, especially when the identified strata are based on biology. Only one study has 

successfully replicated the cognitive subgroups of ASD (Lombardo et al., 2016) in an 

independent sample. Note that biology did not play any role in this study. Therefore, we 

anticipate that replications and biological stratifications of ASD will become important.  

We identified three major trends today: i) increasingly larger samples might allow for 

the training of more complex algorithms. ii) Pattern classification is more focused on predicting 

the course of individuals at risk for ASD rather than the diagnosis itself. iii) Stratification 

methods are gaining more importance in comparison with pattern classification. While 

                                                        
3 https://sibis.sri.com/abcd-np-challenge/ 
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systematic replication of potentially emerging subtypes is still ahead of us, we anticipate that 

the identification of meaningful subtypes will gain much more momentum in the near future 

as well as assembling appropriate datasets for replication and validation.  

 

The future of pattern classification and stratification in ASD research 

Here, we outline major trends in the field that might shape our understanding of ASD 

suggesting potential novel applications for pattern classification and stratification approaches.  

First, increasingly larger samples are and have been acquired with the goal to improve 

our understanding of ASD. For instance, longitudinal large-scale studies are emerging that 

capture the heterogeneity of the ASD phenotype to a fuller extent (Di Martino et al., 2014; Loth 

et al., 2017). These samples contain biological and behavioral readouts acquired with novel 

methods and provide information across a large number of individuals and biological layers. 

In order to integrate all this information in a meaningful way, novel methods that are geared 

toward big-data will become more important (Calhoun and Sui, 2016; Groves et al., 2011; 

Wolfers et al., 2017). In a recent study, we show that such an integration approach can identify 

multimodal brain structures relevant to describe complex behaviors biologically (Arenas et al., 

under review), which are relevant in ASD. Generally, the field is characterized by the 

emergence of novel methods that allow us to extract features across biological readouts. In this 

context deep learning might gain more prominence as it allows for the automatic construction 

of features (Lecun et al., 2015). We expect that those techniques introduce features that have a 

clearer biological foundation and, therefore, might shape a better understanding of ASD in the 

near future.  

Second, we expect that the limitations of clustering approaches become more apparent 

and that novel approaches such as normative modelling (Marquand et al., 2016a; Wolfers et 

al., 2018; Zabihi et al., 2019) will gain more momentum. As mentioned earlier, clustering of 
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the ASD phenotype is primarily based on behavioral data, symptom profiles and only recently 

includes genetics, and/or brain imaging data as the basis to identify subgroups. All reported 

studies have similar limitations, such as the predefined number of clusters, which is usually an 

arbitrary choice, or a lack of external validation of the prospective subtypes. Further, clustering 

algorithms always give a result, and they usually do not test the null hypothesis that there may 

be no clusters in the data at all (Liu et al., 2008). Only a few studies have performed extensive 

out-of-sample validations. One study that generated considerable attention mapped symptom 

counts on resting state data (Drysdale et al., 2017) in depression. In this way, the researchers 

identified two dimensions, which formed the basis for hierarchical clustering. The researchers 

identified four subgroups for depression, which were subsequently validated extensively. 

While the number of external validations was impressive, the clusters identified seem arbitrary, 

as individuals might simply be described along two identified continuous dimensions without 

utilizing clustering at all. In a recent attempt to reproduce the main results of the paper in an 

independent sample, limitation of this approach became apparent (Dinga et al., 2019). Those 

pertain the utilization of clustering and the application of statistical methods as well as the 

replicability of the cluster solutions. In line with this observation, our results, obtained on ASD, 

ADHD, Bipolar Disorder and Schizophrenia (Wolfers et al., 2019, 2018; Zabihi et al., 2019), 

show that inter-individual differences between patients with the same diagnosis are extreme. 

With respect to ASD, we mapped its heterogeneity in terms of brain structure at the level of 

the individual (Zabihi et al., 2019). In this way we showed that ASD is more variable than 

anticipated and that many individuals with this disorder have patient-specific deviations from 

the healthy range, suggesting that each person with this diagnosis is quite different from one 

another. Note that only a subset of patients showed deviations from an expected normal pattern, 

and many other patients had a neuroanatomical profile that overlapped with the healthy range. 

The deviating participants were in many cases quite extreme, which suggests a possible reason 
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for inconsistencies in case-control studies (Bethlehem et al., 2018). Therefore, the description 

of patients on the group level is certainly not sufficient, a cluster level description may not be 

refined enough to capture the complexity of ASD, which may, in fact, be relatively patient 

specific. For these reasons, we expect that approaches which can describe the individual patient 

will gain moment in the near future. 

Third, in line with the previous arguments, we expect that research initiatives, which 

suggest an approach to investigate ASD through systematic research across cognitive domains 

and levels of biological description will gain further relevance. A prominent approach would 

be the Research Domain Criteria (RDoC) approach (Insel et al., 2010). While RDoC has a 

number of problems (Weinberger and Goldberg, 2014), we think that a systematic 

characterization of individuals across different behavioral, cognitive and biological domains is 

important in addition to moving beyond a classical clustering and subtyping approach. 

Concretely, we expect that phenotypic instruments capturing different aspects of biology from 

large populations cohorts will be used to describe biological processes in the general 

population. These processes can subsequently be captured in a normative modelling framework 

to build reference panels across biological, cognitive and behavioral domains to map individual 

differences in ASD. Provided that it makes sense to stratify ASD based on biology, we can 

chart variation in brain systems. For this effort to be successful we need to acquire samples of 

patients that captures the full heterogeneity of the ASD and related disorders and that can be 

placed with respect to variation in population reference samples. If clinical studies included 

only individuals with ASD without co-occurring psychiatric disorders/symptoms these 

stratification efforts would inherently be limited by the categorial divisions that are imposed 

through the current psychiatric (i.e. DSM) classification scheme. Therefore, stratification 

studies might miss biologically meaningful groups, because they start off with categorical 

boundaries that may have limited biological relevance as can also be observed in large scale 
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cross-disorder work, showing considerable biological overlap across disorders (Lee et al., 

2013). A way forward would be to analyze individuals with multiple different disorders 

together by circulating those individuals, thus not groups, around a population reference 

(Marquand et al., 2019). In this way we do not preselect any group neither the healthy nor the 

disordered to uncover biologically meaningful strata independent of current psychiatric 

classifications. We expect that these developments will take effect in the near future. 

In summary, we expect that the future of ASD research with respect to pattern 

classification and stratification approaches will be characterized by a few main developments. 

Pattern classification approaches remain very important for the integration of information in 

order to extract novel predictive biological signatures. This is important especially for outcome 

predictions in babies and toddlers at risk for ASD and the prediction of the developmental 

course of the individual. While studies will further increase in sample size we anticipate that 

clinical utility of diagnostic predictions based on biology will not be reached and instead 

stratification approaches will gain further importance. Furthermore, we foresee that the field 

will move beyond stratification approaches towards the conceptualization of heterogeneity 

within ASD and across other cooccurring disorders at level of the individual. 

 

Conclusion 

Pattern classification approaches have extensively been used in research on ASD in the 

last ten years. While initial studies showed promising results, it has not been possible to predict 

ASD to a degree that translated to clinical practice. This is probably at least partly due to its 

heterogeneity. While larger samples might allow us to improve our predictions further, we 

foresee that the predictions at the individual level will remain challenging. Instead, in the 

future, we will see more efforts to disentangle the heterogeneity of ASD. Further, we expect 

that it will become increasingly important to predict the developmental trajectories of 
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individuals with ASD, especially in preverbal infants who are at risk of developing ASD. 

Therefore, there will be more effort directed to those at-risk populations. We anticipate that the 

biological foundations even in those restricted groups are large and that stratification 

approaches will be vital here as well. Based on recently emerging work we think that ASD is 

going to be best described mechanistically at the level of the individual. Therefore, we expect 

that mapping individual differences using, for instance, normative models will be an important 

step toward precision medicine in ASD research and eventually clinical practice. 
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Tables 
 

Table 1: Pattern classification studies of ASD 

Study N Age - 
years 

Sex - 
male 

Modality Features Classifie
r 

Validation Design Accuracy # 

(Ecker et 
al., 2010b) 

TDC = 
22; 

ASD = 
22 

27.00 
+- 7.00 

100% Structural 
MRI 

Voxel-based 
features 

SVM L2out-CV cross-
section

al 

86.00 % 

(Ahmadlo
u et al., 
2010) 

TDC = 
9; 

ASD = 
8 

10.8 
+- n.s. 

n.s. EEG (rest) All frequency 
bands 

NN 1/5-CV cross-
section

al 

90.00 % 

(Jiao et al., 
2010) 

TDC = 
16; 

ASD = 
22 

9.20 
+- 2.10 

84% Structural 
MRI 

Region-based 
features 

multiple 1/10-CV cross-
section

al 

87.00 % 

(Ecker et 
al., 2010a) 

TDC = 
20; 

ASD = 
20 

33.00 
+- 

11.00 

100% Structural 
MRI 

Region-based 
features 

SVM L1out-CV cross-
section

al 

85.00 % 

(Uddin et 
al., 2011) 

TDC = 
24; 

ASD = 
24 

13.2 
+- 0.60 

91% Structural 
MRI 

Voxel-based 
features 

SVM 1/10-CV cross-
section

al 

90.00 % 

(Anderson 
et al., 
2011) 

TDC = 
40; 

ASD = 
40 

22.70 
+- 7.40 

100% Functional 
MRI (rest) 

Region-based 
features 

not-
specified 

L1out-CV cross-
section

al 

79.00 % 

(Ingalhalik
ar et al., 
2011) 

TDC = 
45; 

ASD = 
30 

10.50 
+- 2.50 

75% Diffusion 
MRI 

Region-based 
features 

SVM L1out-CV cross-
section

al 

80.00 % 

(Calderoni 
et al., 
2012) 

TDC = 
38; 

ASD = 
38 

4.40 
+- 1.50 

0% Structural 
MRI 

Voxel-based 
features 

SVM L2out-CV cross-
section

al 

80.00 AUC 

(Ahmadlo
u et al., 
2012) 

TDC = 
9; ASD 

= 9 

10.80 
+- n.s. 

n.s. EEG (rest) All frequency 
bands 

NN n.s. cross-
section

al 

95.50 % 

(Duffy and 
Als, 2012) 

TDC = 
554; 

ASD = 
430 

n.s. 88% EEG (rest) Coherence 
measures 

LDC n.s. cross-
section

al 

87.20 % 

(Murdaug
h et al., 
2012)  

TDC = 
14; 

ASD = 
13 

21.40 
+- 3.90 

100% Functional 
MRI (rest) 

Region-based 
features 

LRC L1out-CV cross-
section

al 

96.00 % 

(Wang et 
al., 2012) 

TDC = 
29; 

ASD = 
29 

n.s. 83% Functional 
MRI (rest) 

Region-based 
features 

LRC L1out-CV cross-
section

al 

82.80 % 

(Uddin et 
al., 2013) 

TDC = 
20; 

ASD = 
20 

9.90 
+- 1.50 

80% Functional 
MRI (rest) 

Network-
based features 

LRC n.s.-CV cross-
section

al 

78.00 % 

(Lim et al., 
2013) 

ADHD 
= 29; 

ASD = 
29 

14.90 
+- 1.86 

n.s. Structural 
MRI 

Voxel-based 
features 

GPC L1out-CV cross-
section

al 

89.30 % 

(Deshpand
e et al., 
2013) 

TDC = 
15; 

ASD = 
15 

21.10 
+- 0.90 

n.s. Functional 
MRI (task) 

Region-based 
features 

SVM 1/10-CV cross-
section

al 

95.90 % 
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(Ingalhalik
ar et al., 
2014) 

TDC = 
42; 

ASD = 
57 

10.40 
+- 2.50 

n.s. MEG (task)/ 
Diffusion 

MRI 

All frequency 
bands/ 

Region-based 
features 

ensembl
e 

1/5-CV cross-
section

al 

83.30 % 

(Eldridge 
et al., 
2014) 

TDC = 
30; 

ASD = 
19 

8.46 
+- 1.30 

15% EEG (task) Event-related 
potentials 

SVM/ 
LRC/ 
NBC 

L1out-CV cross-
section

al 

79.00 % 

(Sabuncu 
and 

Konukogl
u, 2014) 

TDC = 
325; 

ASD = 
325 

17.80 
+- 7.40 

88% Structural 
MRI 

Region-based 
features 

SVM 1/5-CV cross-
section

al 

60.00 % 

(Wee et 
al., 2014) 

TDC = 
59; 

ASD = 
58 

10.80 
+- 4.00 

76% Structural 
MRI 

Region-based 
features 

SVM 1/2-CV cross-
section

al 

96.30 % 

(Segovia 
et al., 
2014) 

TDC = 
40; 

ASD = 
52; 

ASD-
sibs = 

40 

14.40 
+- 1.70 

67% Structural 
MRI 

Voxel-based 
features 

SVM n.s.-CV cross-
section

al 

80.00 % 

(Just et al., 
2014) 

TDC = 
17; 

ASD = 
17 

25.60 
+- 6.70 

94% Functional 
MRI (task) 

Voxel-based 
features 

NBC L1out-CV cross-
section

al 

97.00 % 

(Zhou et 
al., 2014) 

TDC = 
153; 

ASD = 
127 

13.50 
+- 6.00 

86% Structural 
MRI/ 

Functional 
MRI (rest) 

Graph-based 
features 

RFC multiple-
CV 

cross-
section

al 

70.00 % 

(Gori et 
al., 2015) 

TDC = 
20; 

ASD = 
21 

4.10 
+- 0.80 

n.s. Structural 
MRI 

Voxel/Region-
based features 

SVM L2out-CV cross-
section

al 

74.00 AUC 

(Chen et 
al., 2015) 

TDC = 
126; 

ASD = 
126 

14.80 
+- 1.60 

85% Functional 
MRI (rest) 

Region-based 
features 

SVM/ 
RFC 

TsetV cross-
section

al 

91.00 % 

(Plitt et al., 
2015) 

TDC = 
59; 

ASD = 
59 

17.70 
+- 2.70 

100% Functional 
MRI (rest) 

Region-based 
features 

LRC/ 
SVM 

L1out-CV cross-
section

al 

95.19 % 

(Iidaka, 
2015) 

TDC = 
328; 

ASD = 
312 

13.20 
+- 3.10 

84% Functional 
MRI (rest) 

Region-based 
features 

NN L1out-CV cross-
section

al 

90.00 % 

(Crippa et 
al., 2015) 

TDC = 
15; 

ASD = 
15 

3.50 
+- 7.70 

80% Behavior Motor task SVM L1out-CV cross-
section

al 

96.70 % 

(Libero et 
al., 2015) 

TDC = 
18; 

ASD = 
19 

27.10 
+- 1.30 

78% Structural 
MRI/ 

Diffusion 
MRI/ MRS 

Voxel/Region/
Concentration

-based 
features 

NN L1out-CV cross-
section

al 

91.90 % 

(Liu et al., 
2016) 

TDC = 
29; 

TDC-
IQ = 
29; 

ASD = 
29 

[4.0-
11.0]* 

86% Behavior Face-
perception 

task 

SVM L1out-CV cross-
section

al 

88.51 % 
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(Ghiassian 
et al., 
2016) 

TDC = 
458; 

ASD = 
430 

17.30 
+- 8.40 

89% Structural 
MRI/ 

Functional 
MRI (rest) 

- - 1/5-CV cross-
section

al 

75.00 % 

(Chen et 
al., 2016) 

TDC = 
128; 

ASD = 
112 

14.80 
+- 1.70 

85% Functional 
MRI (rest) 

Network-
based features 

SVM L1out-CV cross-
section

al 

79.17 % 

(Chanel et 
al., 2016) 

TDC = 
14; 

ASD = 
15 

28.60 
+- 1.70 

86% Functional 
MRI (task) 

Voxel-based 
features 

SVM L1out-CV cross-
section

al 

92.30 % 

(Yahata et 
al., 2016) 

TDC = 
107; 

ASD = 
74 

31.40 
+- 8.50 

82% Functional 
MRI (rest) 

Network-
based features 

LRC L1out-CV cross-
section

al 

85.00% - 
CV; 75% - 

TsetV 

(Emerson 
et al., 
2017) 

HR = 
48; 

ASD = 
11 

2.00 
+- 0.0 

69% Functional 
MRI (rest) 

Network-
based features 

SVM L1out-CV longitu
dinal 

98.00% 

(Hazlett et 
al., 2017) 

HR = 
145; 

ASD = 
34 

0.50 
+- 0.00; 

1 
+- 0.00 

63% Structural 
MRI 

Region-based 
features/ 

Demographics 

NN 1/10-CV longitu
dinal 

94.00% 

(Shen et 
al., 2017) 

HR = 
174; 

ASD = 
47 

0.50 
+- 0.00 

62% Structural 
MRI 

Cerebrospinal 
fluid 

NN 1/25-CV longitu
dinal 

69.00% 

(Guo et 
al., 2017) 

TDC = 
55; 

ASD = 
55 

12.70 
+- 2.40 

76% Functional 
MRI (rest) 

- NN 1/4-CV cross-
section

al 

86.36% 

(Xiao et 
al., 2017) 

DDC = 
39; 

ASD = 
46 

2.25 
+- 0.30 

88% Structural 
MRI 

Region-based 
features 

SVM/ 
RFC/ 
NBC 

1/3-CV cross-
section

al 

75.60% 

(Li et al., 
2017) 

TDC = 
16; 

ASD = 
14 

32.70 
+- 7.69 

n.s. Behavior Motor task SVM L1out-CV cross-
section

al 

66.67% 

(Sadeghi 
et al., 
2017) 

TDC = 
31; 

ASD = 
29 

20.00 
+- 6.16 

n.s. Functional 
MRI (rest) 

Region-based 
features 

SVM/ 
NN 

1/5-CV cross-
section

al 

92.00% 

(Grossi et 
al., 2017) 

TDC = 
10; 

ASD = 
15 

10.40 86% EEG (rest) - multiple L1out-CV cross-
section

al 

92.80% 

(Jahedi et 
al., 2017)  

TDC = 
126; 

ASD = 
126 

17.31  
+- 6.00 

86% Functional 
MRI (rest) 

Region-based 
features 

- TsetV cross-
section

al 

71.00% 

(Wang et 
al., 2017) 

NYU: 
TDC = 

58; 
ASD = 

54; 
Stanfor
d: TDC 
= 20; 

ASD = 
20; 

UM_1: 
TDC = 

31; 
ASD = 

34; 
Yale: 

site-
specific 

site-
specif

ic 

Structural 
MRI 

Region-based 
features 

ensembl
e 

- cross-
section

al 

NYU: 
76.51%; 
Stanford: 
68.26%; 
UM-I: 

68.40%; 
Yale: 67.04% 
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TDC = 
22; 

ASD = 
20 

(Subbaraju 
et al., 
2017) 

TDC = 
530; 

ASD = 
505 

site-
specific 

site-
specif

ic 

Functional 
MRI (rest) 

Region-based 
features 

SVM - cross-
section

al 

77.30% 

(Abraham 
et al., 
2017) 

TDC 
=530; 
ASD = 

505 

site-
specific 

site-
specif

ic 

Functional 
MRI (rest) 

Region-based 
features 

SVM L1SITEout
-CV 

cross-
section

al 

67.30% 

(Heinsfeld 
et al., 
2018) 

TDC = 
530; 

ASD = 
505 

site-
specific 

site-
specif

ic 

Functional 
MRI (rest) 

Region-based 
features 

NN L1SITEout
-CV 

cross-
section

al 

70.00% 

(Wan et 
al., 2018) 

TDC = 
37; 

ASD = 
37 

4.6 +- 
0.7 

89% Behavior Eye tracking SVM 1/5-CV cross-
section

al 

85.10% 

(Sen et al., 
2018) 

TDC = 
530; 

ASD = 
506 

site-
specific 

site-
specif

ic 

Functional 
MRI (rest) 

Network-
based features 

SVM 1/5-CV cross-
section

al 

62.25% 

(Soussia 
and Rekik, 

2018) 

TDC = 
186 

ASD =  
155 

16.9 90% Functional 
MRI (rest) 

Low order 
morphological 

networks 

Multiple Multiple-
CV 

cross-
section

al 

61.69% 

(Simões et 
al., 2018) 

TDC = 
17 

ASD =  
17 

16.4 +- 
0.6 

100% EEG (task) Visual 
stimulation 

task  

SVM 1/5-CV cross-
section

al 

81.00% 

(Tariq et 
al., 2018) 

TDC = 
74 

ASD =  
119 

- - Behavior Video 
watching 
features 

Multiple 1/10-CV cross-
section

al 

89,00% 

(Jun et al., 
2019) 

TDC = 
171 

ASD =  
121 

14 +- 
5.8 

84% Functional 
MRI (rest) 

Network-
based features 

Multiple 1/10-CV cross-
section

al 

75.86% 

(Ghafouri-
Fard et al., 

2019) 

TDC = 
455 

ASD =  
487 

10 +- 
0.53 

83% Genetics Single 
nucleotide 

polymorphism
s 

NN 1/10-CV cross-
section

al 

73,67% 

(Cheng et 
al., 2019) 

TDC = 
22 

ASD =  
25 

9.3 +- 
1.4 

72% EEG (rest) - SVM Bootstrap cross-
section

al 

92.70% 

(Payabvas
h et al., 
2019) 

TDC = 
33 

ASD =  
14 

8-12* 100% Diffusion 
MRI 

Connectome 
edge density 

Multiple - cross-
section

al 

75.3% 

(Parikh et 
al., 2019) 

TDC = 
430 

ASD =  
421 

16.8 +- 
7.7 

88% Behavior  - Multiple 1/25-CV cross-
section

al 

62.00% 

(Kazemine
jad and 
Sotero, 
2019) 

 

TDC & 
ASD = 

816 

- - Function MRI Region-based 
features 

SVM 1/10-CV cross-
section

al 

95,00% 

Note: TDC = typically developing controls. ASD = Autism spectrum disorder. ASD-sibs = siblings of individuals with Autism spectrum 
disorder. age-years: we report the age in years and its standard deviation. sex-male: the percentage of males with male-sex. *age range 
instead of mean and standard deviation are reported. # the reported accuracy. 
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Table 2: Stratification studies of ASD 

study N Features Stratification 
algorithm 

Number of 
clusters/ 

components 

Cluster descriptions External 
validation 

(Munson et 
al., 2008) 

245 ASD IQ scores Latent class 
cluster analysis 

and 
taxonometric 

analysis 

4 low IQ; low verbal IQ, 
medium nonverbal; 
medium IQ; high IQ 

symptom 
scores 

(Bitsika et 
al., 2008) 

53 ASD cognition, adaptive 
behaviors, 

Ward's method 3 communication; social 
skills; adaptive behavior 

cognition; 
symptom 

scores 
)(Rapin et al., 

2009) 
62 ASD expressive 

phonology, 
comprehension, 

hierarchical 
clustering/ 

Ward's method 

4 low phenology and 
comprehension; low 

phenology and normal 
comprehension; normal 

phenology and low 
comprehension; normal 

phenology and 
comprehension 

none 

(Hu and 
Steinberg, 

2009) 

1954 ASD symptom scores K means/ 
hierarchical 
clustering/ 

PCA; 

4 severer language deficits; 
mild; savant skills; 

none 

(Lane et al., 
2010) 

54 ASD sensory processing unclear 3 taste and smell 
sensitivity; movement 

related behavior; 
movement sensitivity; 
under responsive/seeks 

sensations; auditory 
filtering; low 
energy/weak; 

visual/auditory 
sensitivity; 

symptom 
scores 

(Sacco et al., 
2012) 

245 ASD demographic, 
clinical, case 

history, physiologic 
variables 

K means 4 immune, circadian, non-
sensory; circadian, 
sensory; stereotypic 

behaviors; mixed 

none 

(Fountain et 
al., 2012) 

6795 ASD symptoms Latent class 
growth 
analysis 

6 high functioning; 
bloomers (substantial 

improvement); medium-
high functioning; 

medium functioning; 
low-medium 

functioning; low 
functioning 

demographics; 
autism risk 

factors 

(Georgiades 
et al., 2013) 

391 ASD symptom scores Factor mixture 
modeling 

3 social communication (-
), repetitive behaviors 

(+); social 
communication (+), 

repetitive behaviors (-); 
social communication (-
), repetitive behaviors (-

); 

demographics; 
cognitive 
measures 

(Doshi-Velez 
et al., 2014) 

4927 ASD electronic medical 
records 

Ward's method 4 seizures; multisystem 
disorders; auditory 

disorders and infections; 
psychiatric disorders; not 

otherwise specified; 

none 

(Veatch et 
al., 2014) 

1261 ASD; 
2563 

(replication 
= 2563 
ASD) 

symptoms, 
demographics, 

somatic variables 

Ward's method 2 severe, less severe genomic data 

(Kim et al., 
2016) 

100 ASD-
timepoint1; 
100 ASD-
timepoint2 

symptom scores hierarchical 
clustering/ 

Ward's method 

4 symptom severity; 
nonverbal and verbal 

skills; adaptive 
functioning; 

none 

(Ausderau et 
al., 2016) 

1307 ASD-
timepoint1; 
884 ASD-
timepoint2 

sensory processing latent profile 
transition 
analysis 

4 mild; sensitive-
distressed; attenuated-
preoccupied; extreme-

mixed; 

adaptive 
behavior 
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(Cholemkery 
et al., 2016) 

463 ASD symptom scores hierarchical 
clustering/ 

Ward's method 

3 Impairments are social 
interaction; impairments 
in communication and 
language; restricted, 

repetitive and 
stereotyped behaviors 

none 

(Lombardo et 
al., 2016) 

378 ASD 
(replication 

= 123) 

cognition hierarchical 
clustering 

5 mentalizing task; read 
complex emotions and 
mental states from the 
eyes; tapping ability; 

none 

(Hong et al., 
2017) 

107 ASD brain structure hierarchical 
clustering 

3 cortical thickness, 
intensity contrast; 

geodesic distance - 
decrease; geodesic 
distance - increase 

symptom 
scores 

(Feczko et 
al., 2018) 

47 ASD brain function community 
detection 

3 stop accuracy task; BK 
span; Facial affect RT 

symptom 
scores; 

adaptive 
behavior  

(Easson et 
al., 2018) 

145 ASD brain function K means 2 connectivity pattern symptom 
scores; 

cognitive 
measures  

(Tomchek et 
al., 2018) 

400 ASD core development; 
sensory features 

latent cluster 
analysis 

4 degree and quality of 
sensory information; age; 
differential presentation 
of developmental skills 

none 

(Duffy and 
Als, 2019) 

430 ASD Electrophysiology  hierarchical 
clustering 

2 Coherence measure of 
EEG signal 

Demographics  

Note: ASD = Autism spectrum disorder. 
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Figures 

Figure 1 

 
The selection process of the studies, inclusion criteria, the number of studies screened and 
selected, the search term and the date of the search are depicted. 
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Figure 2 

 
A: The classification accuracy for Autism Spectrum Disorder (ASD) on the y-axis and the 
number of patients in the study on the x-axis. We observe a trend towards decreasing accuracy 
with increasing sample size. B: The number of studies that base their predictions on different 
data modalities. C: The number of studies that made cross-sectional versus longitudinal 
predictions. D: The number of identified clusters for Autism Spectrum Disorder (ASD) on the 
y-axis and the number of patients in the study on the x-axis. We observe a trend towards 
increasing number of clusters with increasing sample size. E: The number of studies that base 
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their stratifications on different data modalities. F: The number of studies replicate and validate 
their cluster solutions.  
 


