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We find a nonlinear dependence between an indicator of the degree of multiscaling of log-price time
series of a stock and the average correlation of the stock with respect to the other stocks traded in the
same market. This result is a robust stylized fact holding for different financial markets. We investigate
this result conditional on the stocks’ capitalization and on the kurtosis of stocks’ log-returns in order
to search for possible confounding effects. We show that a linear dependence with the logarithm of the
capitalization and the logarithm of kurtosis does not explain the observed stylized fact, which we interpret
as being originated from a deeper relationship.
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1. Introduction

Financial time-series are characterized by the presence of so called stylized facts. The most famous
ones are: power law tails (Mantegna and Stanley 1995), volatility clustering (Ding et al. 1993),
multiscaling (Mantegna and Stanley 1995, 1999, Lux and Marchesi 1999, Dacorogna et al. 2001,
Calvet and Fisher 2002, Lux 2004, Di Matteo et al. 2005, Di Matteo 2007, Jiang et al. 2018) and the
presence of a dependency structure between stocks (Mantegna 1999, Borghesi et al. 2007). Stylized
facts deserve attention due to the hidden data information they provide to risk and asset managers.
Power law tails, volatility clustering and multiscaling refer to univariate properties of financial time
series while the dependency structure between stocks is a multivariate property. The multiscaling
property of financial time series has been widely studied in the last two decades. The research on
this topic developed either on the theoretical side (Mandelbrot et al. 1997, Bacry et al. 2001, Calvet
and Fisher 2002, Bacry and Muzy 2003, Bacry et al. 2012) or on the empirical one (Mantegna and
Stanley 1995, 1999, Dacorogna et al. 2001, Calvet and Fisher 2002, Di Matteo 2007, Zhou 2008,
Liu et al. 2008, Morales et al. 2012, Gu and Zhou 2010, Kristoukek 2012). On the other hand,
the dependency structure of the markets has been observed across different industries and asset
classes (Mantegna and Stanley 1999, Musmeci et al. 2015). The study of stocks dependence became
widespread since the introduction of Markovitz’s modern portfolio theory (Markowitz 1952), in
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which the optimization method focuses on the role of the covariance (or correlation) matrix of
stock returns.
From an empirical point of view, one may be interested on the portfolio construction basing the
optimization algorithm not only on the observed dependency structure but also the degree of
multiscaling each stock shows. In this case, one can either try to retain stocks with low level of
multiscaling relying on the theoretical aspects of Brownian motions or to exploit the multiscaling
feature of some stocks. This would lead to a new way of building portfolios, putting together
multiscaling and dependency between stocks. However, despite the paramount importance of those
two key stylized facts, no research has been produced to investigate the relationship between
them. In this paper we find a new stylized fact showing a robust statistical relationship between
the multiscaling property of log-prices time series of a stock and the average correlation of the
stock with respect to the other stocks traded in the same financial market. We verify that this
relationship holds in several leading stock markets and we investigate about its origin, providing
empirical evidence that the result is not explained by the capitalization of the stocks or by its
kurtosis coefficient, but rather from a deeper, intrinsic relationship. Theoretical attempts in similar
directions can be found in Muzy et al. (2001) and Morales et al. (2014). However, empirical evidence
has been lacking so far. It is worth noting that Miccichè (2013) goes in the same spirit of this
paper. In fact, the author observes a relationship between the volatility clustering in time and the
correlation of volatility of each stock with volatility of other stocks traded in the same market.

The paper is organized as follows: in Sec. 2 we describe the tools and the dataset we use to
perform the analysis, in Sec.3 we present main results and in Sec.4 we draw our conclusions.

2. Methods and dataset of analysis

In this section we describe the methods used to estimate the univariate and multivariate properties
of the time series and the dataset we use to perform our empirical analyses. Let us first fix the
notation by defining the prices time series as p(t) and the log-returns1 over a τ time aggregation
as

r(t) = ln [p(t+ τ)/p(t)]

where τ is expressed in days in this paper. In what follows we work with log-returns time-series of
zero mean obtained by removing the sample mean.

2.1. Multiscaling and correlation proxies

The multiscaling property of a financial time series (Di Matteo 2007) is detected by quantifying the
non-linearity of the scaling exponents of the q-order moments of the log-returns’ absolute value. In
particular, the process ln[p(t)] is said to be multiscaling if

E [|r(t)|q] = K(q)τ qH(q), (1)

where K(q) is the q-moment for τ = 1, H(q) is the so called Generalised Hurst Exponent which is
a function of q and the function qH(q) is concave (Mandelbrot et al. 1997) and codifies the scaling
exponents of the process. A process is uniscaling when the function H(q) does not depende on q,
i.e. H(q) = H (Di Matteo 2007), while multiscaling otherwise. In light of Eq.1 a possible way to
define a multiscaling proxy is by quantifying the degree of non-linearity of the function qH(q). In

1In the text we refer to log as the natural logarithm.
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order to do so, first the scaling exponents qH(q) have to be computed, which is done via a linear
regression in log-log scale of Eq.1, which reads as

ln (E [|r(t)|q]) = qH(q) ln(τ) + ln (K(q)) , (2)

where τ in our analysis is taken in the range τ = [τmin, τmax] = [1, 19] (Di Matteo 2007). A
multiscaling proxy can be obtained by fitting the measured scaling exponent with a second degree
polynomial (Buonocore et al. 2016) of the form

ζ(q) = qH(q) = Bq2 + Cq +D. (3)

To be consistent with the prescription of (Mandelbrot et al. 1997, Buonocore et al. 2017), Eq.3
must satisfy some conditions, in particular:

ζ(0) = 0

ζ(2) = 1

ζ(q)′′ < 0.

(4)

The first condition is a consequence of the definition of scaling exponent. The second one comes
from the fact that returns are expected to be uncorrelated at daily frequency. The third condition
is a concavity requirement. Solving for these conditions, Eq.3 becomes:

qH(q) = Bq2 +

(
1

2
− 2B

)
q = Bq2 +Aq. (5)

In this statistical setting, B̂ represents the non-linearity proxy. If B̂ = 0, the process is uniscaling,
while if B̂ 6= 0, the process is multiscaling (cfr. (Buonocore et al. 2016)). Together with B̂, also Â

gives information about the analysed process. In particular, when B̂ < 0, we expect, by Eq.5, that
Â > 0.5 for concavity. When B̂ ≈ 0, we expect Â ≈ 0.5.
As explained in the introduction, we are going to associate the multiscaling property (through
the multiscaling proxy B) with a multivariate quantity which provides information regarding the
interrelation between stocks movements. Co-movements between stocks is a fundamental concept
in Finance. It helps understanding the behaviour of stocks and building efficient portfolios. Fur-
thermore, in specific financial conditions, like distress periods, association between stocks reveals
more information about risk variations than other standard measures, eg. variance. Various forms
of association between stocks are available from the statistical toolbox. In financial economics, the
reference measure for association is the Pearson’s correlation. Given its easiness of interpretation
and popularity to quantify the dependency structure between stocks, we consider the average of
the Pearson’s correlation coefficient ρ̄i between the ith stock and all the other stocks traded in the
same financial market. Taking the Pearson’s correlation coefficient between stock i and j as:

ρij = Corr [ri, rj ] =
E[rirj ]− E[ri]E[rj ]√
V ar[ri]

√
V ar[rj ]

, (6)

the average Pearson’s correlation coefficient, ρ̄i is defined as:

ρ̄i =
1

N − 1

N∑
j 6=i=1

ρij , (7)

3
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where N is the number of stocks in a given financial market. This measures a proxy on how a stock
relates to all the other stocks in the market and, in combination with the scaling property, it can
give valuable information to the risk and asset managers.

2.2. Dataset

The data we use for our analyses is made of six different sets of stocks. In particular we investigate
time-series of the London Stock Exchange (LSE), Frankfurt Stock Exchange (FWB), Tokyo Stock
Exchange (TSE) and Hong Kong Stock Exchange (HKSE). To these four sets of data we add another
set of data obtained by merging stocks traded at the New York Stock Exchange, at the Nasdaq Stock
Market, and at the NYSE MKT LLC. We name this dataset as NYSE17. For these five sets of data,
we consider the closure price of stocks recorded on a daily basis from the 03/01/2000 up to the
12/05/2017. A last dataset comprises the closure price recorded on a daily basis of the stocks traded
at the New York Stock Exchange from the 02/01/1985 to the 31/12/1999. We identify this dataset
with the acronym NYSE99. Within the former (latter) time period we chose to consider only the
stocks traded throughout the whole period of time, with an Initial Public Offer date earlier than
the 03/01/2000 (02/01/1985) and traded at least up to the 15/07/2016 (31/12/1999). Moreover,
since our aim is to perform a correlation analysis, our dataset cannot be used as it is. Indeed, price
time series are not always present for all stocks due to the fact the some stocks have not been
traded on certain days. In order to overcome this issue we apply a data cleaning procedure which
allows to retain as many stocks as possible. The pre-processing procedure is based on dragging the
last available value when the following one is missing. Details of this procedure can be found in
Appendix A, while a summary of the number of stocks which are included in the dataset of each
market after the pre-processing is presented in Tab.1. As for the capitalization, we consider the

Market # of stocks
NYSE17 1202

LSE 144
FWB 126
TSE 724

HKSE 340
NYSE99 313

Table 1. Summary of the number of stocks of each set of data obtained after the application of the pre-processing
procedure described in Appendix A.

capitalization time series for each stock and we take the median capitalization of each stock over
the considered time interval. We chose the median and not the mean because we want to keep
the most representative value of the capitalization over the given time period. For few stocks the
capitalization was not available in the source database. In this case, when a capitalization analysis
is involved we simply remove stocks without information about it.

3. Multiscaling and average correlation

3.1. Empirical evidence

In this section we present the empirical evidence of a new stylized fact. We find an empirical
relationship between the scaling property of a financial time series and the average correlation of
stock with other stocks traded in the same market. Specifically, Fig.1 shows the scatter plot of B̂
with respect to ρ̄. The range of the parameter τ over which the scaling is computed is chosen to be
τ = [τmin, τmax] = [1, 19] (Di Matteo et al. 2003, 2005), since an approximate linearity is present

4
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Market Kτ
NYSE17 0.30

LSE 0.65
FWB 0.74
TSE 0.46

HKSE 0.54
NYSE99 0.53

Table 2. Kendall τ (Kτ) correlation between the multiscaling proxy B̂ and ρ̄. All the p-values are less than 0.01.

in this region. The range of q is set as q ∈ [0.1, 1], with steps of 0.1, following the prescription used
in (Buonocore et al. 2016). The analysis has been performed for different values of τmax and q for
which the results remains stable. In Fig.1, the colour of the dots indicates the capitalization with
increasing value ranging from dark blue to red in a log scale. since the interval in capitalization
between the most capitalized stocks and the lowest capitalized one is covering many orders of
magnitudes. As it can be seen from the scatter plots of Fig.1, a nonlinear relationship between B̂
and ρ̄ emerges across all markets.1 To display the capitalization we use a log value. It is also worth
pointing out that there is a monotonic relationship between the market capitalization and both the
average correlation and the degree of multiscaling B̂. In order to make a quantitative assessment
about these (nonlinear) relationship, we use the Kendall τ (Kτ) rank correlation (Hollander et al.
2013) between the two variables. For a generic set of variables x and y, Kτ is defined as

Kτx,y =
2

n(n− 1)

∑
k<w

sgn(xk − xw)sgn(yk − yw), (8)

where k and w are the rank positions of the variables and sgn(z) is the sign function which equals
1 if the sign of z is positive and −1 if the sign of z is negative. This measure is particularly useful
for nonlinear relationships since it computes the similarity based on the ranks of the data. Results
of the analysis are reported in Tab.2 and reveal a positive and significant relationship between
the two stylized facts, confirming quantitatively the pattern shown in Fig.1. The next section is
dedicated to the investigation of the robustness of this result.

3.2. Robustness of empirical results

Buonocore et al. (2016) found that the scaling of the moments at a low aggregation horizon is
strongly affected by bias with respect to the expected asymptotic behaviour. The bias comes either
from the presence of the power law tails of log-returns probability density function or from the
presence of the memory of the log-return time series. Hereafter, we want to understand whether
the behaviour displayed in Fig.1 is primarily due to the power law tails or to the time memory
of log-returns. In order to uncover the origin of the multiscaling property reported in Fig.1, we
employ two different procedures to generate surrogate data, namely:

1. Shuffle the r(t) time-series in every market in a synchronous way across different stocks;
2. Use the normalization methodology of Zhou (2009) to change the shape of the distribution.

The first transformation is used so that the autocorrelation structure of each time series is
destroyed whereas the correlation structure is preserved. In Fig.2 we show the relationship between
B̂ and ρ̂, computed on shuffled time series. In Tab.3 we report the Kendall τ correlation up to

1We carried out the analysis also using MFDFA (Jiang et al. 2018), and the results are qualitatively equivalent, suggesting the

analysis is not method dependent.
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b)LSE

(e)HKSE

Figure 1. Empirical evidence of the dependence between the degree of multiscaling measured by the proxy B̂ of the
log-price financial time series and its average correlation ρ̄ with the other stocks traded in the same market. The
colours from blue to red represent an increasing capitalization.

two significant digits between the two quantities. It appears evident, from both a graphical and
quantitative analysis, that the relationship still holds almost unchanged after shuffling.

In order to preserve the memory structure of the time series but removing the effect of the shape
of log-returns distribution, we use the normalization technique discussed in (Zhou 2009, Buonocore
et al. 2016). It consists of

1. Ranking the empirical returns according to their values;
2. Recording the sequence of ranks;
3. Extracting random numbers from the desired unconditional distribution;
4. Ordering them following the sequence or ranks of the empirical one.

We employ this procedure by using as desired unconditional distribution the Normal one. We
limit ourself to report here that, once the shape effects are removed, the dependence is completely

6
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b)LSE

(e)HKSE

Figure 2. Empirical evidence of the dependence between the degree of multiscaling measured by the proxy B̂ of the
log-prices financial time series when the log-returns are shuffled and its average correlation ρ̄ with the other stocks
traded in the same market. The colours from blue to red represent the increasing capitalization.

Market Kτ
NYSE17 0.30

LSE 0.66
FWB 0.74
TSE 0.58

HKSE 0.59
NYSE99 0.52

Table 3. Kendall τ (Kτ) correlation between B̂ and ρ̄ when the log-returns are shuffled but preserving the
correlation. All the p-values are less than 0.01.
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Market Kτ
NYSE17 −0.31

LSE −0.64
FWB −0.34
TSE −0.43

HKSE −0.54
NYSE99 −0.49

Table 4. Kendall τ (Kτ) correlation between the multiscaling proxy Â and ρ̄. All the p-values are less than 0.01.

destroyed.
Since those results suggest that fat tails are the main contribution to the multiscaling indicator

we empirically find, we should observe that the value of Â (cfr. Eq.3) converges to 0.5 for stocks

with B̂ ≈ 0 for consistency. This observation is confirmed by plotting the scatter plot of Â against
ρ̄ as we report in Fig.3. In fact, this figure shows that Â tends to 0.5 when B̂ assumes values near
zero, i.e. for highly capitalized stocks.

3.3. Role of the capitalization

As pointed out in Subsec.3.1, the scatter plots of Fig.1 suggest that B̂ and ρ̄ depend on the
logarithm of capitalization, ln(mktcap). To confirm this observation and to quantify the effect, we

plot in Figs.4 and 5 the logarithm of capitalization with respect to ρ̄ and to B̂ respectively, for
the six datasets. We report in Tab.5 the Pearson’s correlation ρ between B̂ and the logarithm of
capitalization and in Tab.6 the Pearson’s correlation between ρ̄ and the logarithm of capitalization.
Tabs.5 and 6 show that the correlation is quite pronounced in both cases. Given this result, we want

Market ρ
NYSE17 0.29

LSE 0.73
FWB 0.48
TSE 0.45

HKSE 0.47
NYSE99 0.53

Table 5. Pearson’s correlation coefficient
between the multiscaling proxy B̂ and the

logarithm of capitalization. All the p-values
are less than 0.01.

Market ρ
NYSE17 0.69

LSE 0.83
FWB 0.74
TSE 0.58

HKSE 0.67
NYSE99 0.77

Table 6. Pearson’s correlation coefficient
between the average correlation ρ̄ and the

logarithm of capitalization. All the p-values
are less than 0.01.

to verify if the dependence between the average correlation and the multiscaling proxy is driven
only by the logarithm of capitalization. In order to assess this we compute the partial correlation
(Baba et al. 2004) between ρ̄ and B̂ using as control variable the logarithm of capitalization. Partial
correlation between two generic variables X and Y controlling for variables in Z writes ρX,Y |Z and
can be calculated following a two steps approach. In the first step, we run a linear regression
between each variable of interest against Z, which reads

X = β0 + β1Z + εX

Y = γ0 + γ1Z + εY ,
(9)

where the βs and γs are parameters and εX and εY are the regressions residual, which account
for the information not explained by Z. In the second step of the computation, the Pearson’s
correlation of Eq.6 is calculated between εX and εY , i.e.:

8
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b)LSE

(e)HKSE

Figure 3. Empirical evidence of the dependence between the multiscaling properties, represented by the proxy Â of
a time-series and its average correlation ρ̄. The colours from blue to red represent the increasing capitalization.

ρX,Y |Z = ρεXεY =
E[εXεY ]− E[εX ]E[εY ]√

V ar[εX ]
√
V ar[εY ]

, (10)

where ρX,Y |Z is the correlation between X and Y removing the effect of Z from both variables.

In our analysis, X = B̂, Y = ρ̄ and Z = ln(mktcap).
We report in Tab.7 the results of this analysis along with the R2, which is the coefficient of

determination (Kmenta 1971) of the linear fit between ρ̄ and B̂ and the logarithm of the capital-
ization, defined as the amount of variation of the dependent variable explained by the independent
variables, which is an estimate of the goodness of the fit. As we can see the correlation remains
significant even after the removal of the control variable, meaning that the interplay between scal-

9
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ing and correlation has a deeper origin than just a linear relationship between the two variables
and the logarithm of capitalization.

Market ρpar R2
ρ̄ R2

B̂
NYSE17 0.34 0.47 0.22

LSE 0.25 0.69 0.57
FWB 0.68 0.54 0.30
TSE 0.52 0.33 0.33

HKSE 0.50 0.45 0.32
NYSE99 0.44 0.60 0.46

Table 7. Partial Pearson’s correlation ρpar = ρB̂,ρ̄| ln(mktcap) between the average correlation ρ̄ and B̂. All the

p-values are less than 0.01. The coefficients of determination R2
ρ̄ and R2

B̂
are also reported for the linear fit between

the logarithm of the capitalization and ρ̄ and B̂ respectively.

In order to be able to directly compare the results depicted in Tab.2 regarding relationship
between ρ̄ and B̂ measured by Kτ with the level of association of the two variables conditional to
the capitalization, we also computed the Kτ correlation between the two variables after the linear
relationship between the two variables and the capitalization is filtered out. We name this linear-
partial Kτ correlation in order to discriminate from the partial Kτ correlation which implies a
different type of partialling out. This is equivalent to compute the Kendall correlation Kτ between
the residuals found in Eq.9.

The results are reported in Tab.8 and show that the relationship, even if attenuated, is still
present. In order to better control for non-linear relationships between capitalization and the two
variables, we also conditioned the correlation between ρ̄ and B̂ on the squared values of the log-
arithm of capitalization. The results of this further analysis show that the statistical significance
of the partial correlation remains virtually unchanged.1 This result suggests that the relationship
between multiscaling and average stocks correlation has a deeper origin.

3.4. Role of the Kurtosis

From an empirical perspective, as for the role of capitalization, it is possible to question if the
kurtosis is playing a key role in this sort of analysis, leaving almost nothing to the multiscaling
feature of the data. Kurtosis plays a key role in financial statistics. It is commonly used to analyse
extreme events regarding the unconditional distribution of returns and to build risk assessment
models, such as VaR and stress testing. Kurtosis of stock i’s log-returns is defined as:

1Filtering out both linear and non-linear dependence via second degree polynomial regression, the dependence structure remains
statistically significant in all markets apart the London Stock Exchange.

Market Kτpar R2
ρ̄ R2

B̂
NYSE17 0.25 0.47 0.22

LSE 0.13 0.69 0.57
FWB 0.50 0.54 0.30
TSE 0.38 0.33 0.33

HKSE 0.34 0.45 0.32
NYSE99 0.28 0.60 0.46

Table 8. Linear-partial Kτ correlation Kτpar = KτB̂,ρ̄| ln(mktcap) between the residuals of average correlation ρ̄ and

B̂ when they have been regressed against the logarithm of capitalization. All the p-values are less than 0.01 apart
LSE, which is 0.03. The coefficients of determination R2

ρ̄ and R2
B̂

are also reported for the linear fit between the

logarithm of the capitalization and respectively ρ̄ and B̂.

10
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b) LSE

(e) HKSE

Figure 4. Empirical evidence of the dependence between the logarithm of the capitalization ln(mktcap) of stocks
and the average correlation ρ̄ for the six markets.

K(ri) = E

[(
ri − µ
σ

)4]
=

E[(ri − µ)4]

E[(ri − µ)2]2
, (11)

where ri is the i-th observation of the time series and µ and σ are the mean and the standard
deviation of the time series. Given its common use to detect extreme events, kurtosis is generally
referred to as a measure of the fatness of the tails of a distribution, but having fatter tails is
just one of the source of higher kurtosis. This is because kurtosis depicts two different aspects
of a distribution, namely the peakedness and taildeness. The first one refers to the fact that a
distribution is more peaked on the centre while the second refers to the fatness of the tails. In
order to have a higher kurtosis one needs to have a leptokurtic distribution, i.e. more peaked and

11
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b) LSE

(e) HKSE

Figure 5. Empirical evidence of the dependence between the logarithm of the capitalization ln(mktcap) of stocks
and the multiscaling proxy B̂ for the six markets.

with fatter tails (DeCarlo 1997, Moors 1986). Although other researchers pointed out that the
kurtosis coefficient is substantially more influenced by taildeness than by peakedness (Ruppert
1987, Westfall 2014), this double feature of kurtosis makes this measure not perfectly suitable to
be used for tails and scaling analysis.

In Fig.6 we report the relationship between ρ̄ and B̂ where the colour of the points are, in this
case, function of the kurtosis.1 As it is possible to notice, a clear pattern is not depicted in the
majority of markets. However, it is worth noting that in different cases, high level of kurtosis is
matched with an high level of multiscaling.

As done in Subsec.3.3, we analyse the role of kurtosis in the observed stylized fact found in
Subsec.3.1. We investigate this relationship in three different ways. The first one is to check if the

1We use the logarithm of the kurtosis since the range of the measure across each market covers many orders of magnitudes.
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(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b)LSE

(e)HKSE

Figure 6. Empirical evidence of the dependence between the multiscaling properties, represented by the proxy B̂ of
a time-series and its average correlation ρ̄. The colours from blue to red represent the increasing kurtosis.

kurtosis exhibits the same clear stylized pattern with the average correlation as the multiscaling
proxy does. The second one is to compare the multiscaling proxy with the kurtosis, to check for
empirical overlapping information, stressing the fact that the two quantities reflect different aspects
of the data, one being a feature of the unconditional distribution, while the other being related
to the scaling exponent of the q-order moments when different time aggregations τ are taken into
consideration. The third analysis we perform is, as we did with the capitalization in the previous
subsection, to compute the linear-partial Kτ between ρ̄ and B̂ after removing the linear relationship
of the kurtosis from the two variables.2

Results for the first analysis are showed in Fig.7. From the graphs some conclusions can be
drawn. In particular, the clear pattern we got from the relationship between average correlation of

2Filtering out the non-linear effect and both the linear and non-linear effect does not change the results.
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the stocks and their multiscaling proxy is not present here. The relationship is slightly negative in
some market and negligible in some others. In addition, it is possible to notice that the relationship
between the two variables is very noisy. This gives us two different interpretations. The first one is
that for the markets in which the relationship is slightly negative, stocks with higher kurtosis turn
out to have a lower average correlation with respect to the other stocks in the same market, while
in the second case, no sensible conclusion can be made. This evidence suggests that the kurtosis is
not a proper measure to put in relation with the average correlation for the markets under analysis.

(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b) LSE

(e) HKSE

Figure 7. Empirical evidence of the dependence between the logarithm of kurtosis ln(K) of a log-returns time-series
and its average correlation ρ̄.

The second analysis regards the relationship between multiscaling proxy and the kurtosis coef-
ficient of the log-returns’ unconditional distribution. This analysis is carried out to understand if
the two measures depict the same information of the data, leaving no point in measuring multi-
scaling. We report the scatter plots between the kurtosis coefficient and the multiscaling proxy in
Fig.8. As it is possible to notice from the graphs, the two measures do not evidence a clear pattern

14



April 6, 2019 Quantitative Finance uni˙multi˙properties˙final˙version

among the six markets. This is in line with the fact that kurtosis is only a part of the multiscaling
measurements, giving rise to the bias found in Buonocore et al. (2016) when stocks with very high
kurtosis are analysed.

(a) NYSE17

(f) NYSE99

(d) TSE(c) FWB

(b)LSE

(e) HKSE

Figure 8. Empirical evidence of the dependence between the logarithm of kurtosis ln(K) of a time-series and its
multiscaling proxy B̂.

The last investigation regards a quantitative assessment of what we presented in this subsection.
In particular, we will rely on the linear-partial Kτ correlation between ρ̄ and B̂ after the linear
relationship between the kurtosis and the two variables is filtered out. Results of this analysis are
reported in Tab.9. As it can be noticed, the relationship remains strong and statistically significant
at any level of significance for all the markets analysed.
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Market Kτpar R2
ρ̄ R2

B̂
NYSE17 0.28 0.11 0.01

LSE 0.55 0.36 0.17
FWB 0.56 0.25 0.30
TSE 0.39 0.31 0.20

HKSE 0.49 0.32 0.11
NYSE99 0.53 0.01 0.01

Table 9. Linear-partial Kτ correlation Kτpar = KτB̂,ρ̄| ln(K) between the residuals of average correlation ρ̄ and B̂
when they have been regressed against the logarithm of kurtosis. All the p-values are less than 0.01. The

coefficients of determination R2
ρ̄ and R2

B̂
are also reported for the linear fit between the logarithm of the kurtosis

and respectively ρ̄ and B̂.

4. Discussion and conclusion

We find an empirical relationship which links a univariate property, i.e. the degree of multiscaling
behaviour of a time series, to a multivariate one, i.e. the average correlation of the stock log-returns
with the other stocks traded in the same market. Since the scaling measured for low aggregation
horizon is biased by the presence of log-return tails and time autocorrelation (Buonocore et al.
2016), we investigated which of the two gives the major contribution to the degree of multiscaling
behaviour. In order to do so we used the shuffling technique to isolate the tails contribution and the
normalization technique to isolate the autocorrelation contribution (see for example (Zhou 2009,
Buonocore et al. 2016)). It turns out that the dependence found is due almost exclusively to the

tails of log-returns distribution. However, we also found that either ρ̄ and B̂ are correlated with
the logarithm of capitalization of the analysed stocks. In order to understand if the dependence
from the logarithm of capitalization is fully explaining the stylized fact we discovered, we inves-
tigated the partial correlation between ρ̄ and B̂ using the logarithm of capitalization as a control
variable. It turned out that removing the contribution due to the linear relation with the logarithm
of capitalization of the two variables does not fully explain the non-linear dependence observed
between ρ̄ and B̂. We also reproduced the same analysis by removing the non-linear dependence of
the logarithm of capitalization from ρ̄ and B̂. We performed this by conditioning on the squared
values of the logarithm of capitalization and by removing both the linear and non-linear effect
of the logarithm of capitalization by a second order polynomial regression. In the first case, we
find that the relationship remains statistically unchanged while in the second case, removing both
linear and non-linear dependence, the result obtained for LSE market becomes statistically not
significant, while the others, even if decreased in their strength, remain statistically significant at
1% significance level.

We completed our set of robustness checks analysing the role of kurtosis in the same fashion we
did with capitalization. We found that the role of kurtosis is marginal on the relationship between
multiscaling and average correlation. We interpret these findings as an evidence of the fact that
the observed relationship must have a deeper origin.

According to the observations in (Buonocore et al. 2016, 2017), a shuffled empirical log-returns
time series should scale asymptotically as a Brownian Motion due to the Central Limit Theorem
(Buonocore et al. 2016, 2017). The reason why the scaling at small aggregation regimes for discrete
time series is not aligned to the asymptotic one has been found in the instability under aggregation
of the empirical distribution of log-returns (Buonocore et al. 2017). We thus interpret the stocks

with a value of B̂ near to zero as more stable under aggregation, since the transient of the scaling
differs less from the asymptotic one. Since the only stable distribution with finite variance is the
Gaussian distribution, we find that the most capitalized and most correlated stocks are those which
are less volatile. This observation gives a statistical motivation to the fact that highly capitalized
stocks are those which are less risky from an investor point of view. In particular, if a stock is
characterized by B̂ tending to 0 and Â tending to 0.5, it means that the stock’s behaviour differs
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less from the behaviour of a Brownian motion than stocks with negative values of B̂ and values of
Â larger than 0.5. These results can be analysed in the spirit of portfolio construction, where asset
managers build portfolios exploiting this stylized fact of the markets in terms of multiscaling and
dependency structure. In particular, the portfolio builder would have to trade-off low correlation
which means diversification with the multiscaling of the stocks, which renders each stock less stable
at different investments horizon. On the other hand, low multicaling (or uniscaling) stocks are the
ones more stable to aggregation, but at the cost of lower diversification. The results of this paper
clarify the interplay between multiscaling and average correlation and calls for further investigation
on the multiscaling of portfolios at different investment horizons.
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Appendix A: Data pre-processing procedure

In this appendix we describe the data pre-processing procedure applied to our dataset. The main
reason to apply a pre-processing procedure to the dataset is that we do not want to remove a stock
just because it was not traded on few days during the investigated time interval. The pre-processing
procedure fills gaps by dragging the last available price and by assuming that a missing record in
the price time series corresponds to a zero log-return. At the same time we do not want to drag
too many prices because a time series filled with many zeros would not be informative. In light of
this we remove from our dataset the time series that are too short. The detailed procedure goes as
follows:

(i) Remove from the dataset the price time series with length less than k times the longest
one;

(ii) Find the common earliest day among the remaining time series;
(iii) Create a reference time series of dates when at least one of the stocks has been traded

starting from the earliest common date found in the previous step;
(iv) Compare the reference time series of dates with the time series of dates of each stock and
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fill the gaps dragging the last available price.

In this paper we chose k = 0.90, however the results do not change if we pick a higher value of k
thus trying to keep as much as possible unprocessed time series.
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