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Cellular/Molecular

Transcriptional Regulation of the Glutamate/GABA/Glutamine
Cycle in Adult Glia Controls Motor Activity and Seizures in
Drosophila
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The fruitfly Drosophila melanogaster has been extensively used as a genetic model for the maintenance of nervous system’s functions.
Glial cells are of utmost importance in regulating the neuronal functions in the adult organism and in the progression of neurological
pathologies. Through a microRNA-based screen in adult Drosophila glia, we uncovered the essential role of a major glia developmental
determinant, repo, in the adult fly. Here, we report that Repo expression is continuously required in adult glia to transcriptionally regulate
the highly conserved function of neurotransmitter recycling in both males and females. Transient loss of Repo dramatically shortens fly
lifespan, triggers motor deficits, and increases the sensibility to seizures, partly due to the impairment of the glutamate/GABA/glutamine
cycle. Our findings highlight the pivotal role of transcriptional regulation of genes involved in the glutamate/GABA/glutamine cycle in glia
to control neurotransmitter levels in neurons and their behavioral output. The mechanism identified here in Drosophila exemplifies how
adult functions can be modulated at the transcriptional level and suggest an active synchronized regulation of genes involved in the same
pathway. The process of neurotransmitter recycling is of essential importance in human epileptic and psychiatric disorders and our
findings may thus have important consequences for the understanding of the role that transcriptional regulation of neurotransmitter
recycling in astrocytes has in human disease.
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Introduction
Glial cells constitute a significant part of the nervous system and
are devoted to a variety of functions of essential importance for

the correct functioning of neurons, including a fundamental role
in uptake and recycling of neurotransmitters (Rae et al., 2003).
Therefore, glial cells remain of paramount importance through-
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Significance Statement

Glial cells are an essential support to neurons in adult life and have been involved in a number of neurological disorders. What
controls the maintenance and modulation of glial functions in adult life is not fully characterized. Through a miR overexpression
screen in adult glia in Drosophila, we identify an essential role in adult glia of repo, which directs glial differentiation during
embryonic development. Repo levels modulate, via transcriptional regulation, the ability of glial cells to support neurons in the
glutamate/GABA/glutamine cycle. This leads to significant abnormalities in motor behavior as assessed through a novel auto-
mated paradigm. Our work points to the importance of transcriptional regulation in adult glia for neurotransmitter recycling, a
key process in several human neurological disorders.
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out life to allow proper homeostasis of the nervous system, as
evidenced by the association of glial functions’ failures with neu-
rological pathologies (Lynch et al., 2010; Furrer et al., 2011).

Glia in Drosophila provides many of the same functions as in
mammals, including regulation of neurotransmitter uptake and
recycling (Rival et al., 2004; Chaturvedi et al., 2014). We have
performed a genetic screen to identify genetic elements required
for glial function by specifically deregulating gene expression
only in the adult Drosophila glia to avoid any developmental ef-
fect, and have used miRNAs to uncover key regulatory modules.
The promiscuous nature of miRNAs allows to target and fine-
tune the expression of several target genes (Lim et al., 2005; Bar-
tel, 2009; Kozomara and Griffiths-Jones, 2011). In specific cell
types and at specific time points, one or more of the miRNAs
targets acquire special importance and can be singled out as the
cause for the phenotype elicited by specific miRNAs (Silver et al.,
2007; Bejarano et al., 2012).

Behavioral activity is the outcome of neural interactions me-
diated by different circuits. We hypothesized that glia manipula-
tions will lead to a variety of behavioral consequences and
structured our approach in three steps that allow detection of the
progressive contribution of the genetic manipulations to differ-
ent behavioral manifestations. First, we used fly lifespan as an
unrefined readout. We then characterized endogenous and exog-
enous behavioral activity by simple motor readout (negative geo-
taxis) and, further, by adapting video-tracking methodology with
control of mechanical stimulus. Using this novel approach allows
detection of the progressive contribution of the genetic manipu-
lations to different behavioral manifestations.

Here, we report that overexpression of miR-1 in adult glial
cells shortens the fly lifespan, partially through the downregula-
tion of Repo, a key transcription factor for the development of
almost all Drosophila glia (Xiong et al., 1994; Halter et al., 1995).
This led to the identification of a major regulatory module in
Drosophila adult glial cell function maintenance, which points to
the importance of transcriptional regulation of neurotransmitter
recycling in glia with possible consequences for human neurolog-
ical and psychiatric disorders.

Materials and Methods
Drosophila stocks and husbandry. Flies were maintained at either 18°C
or room temperature on standard cornmeal agar medium (0.8% w/v
agar, 2% w/v cornmeal, 8% w/v glucose, 5% w/v Brewer’s yeast, 1.5%
v/v ethanol, 0.22% v/v methyl-4-hydroxybenzoate, 0.38% v/v propi-
onic acid). All of the following lines were obtained from the Bloom-
ington collection: w 1118 (RRID:BDSC_3605), repoGal4 (RRID:
BDSC_7415), dEAAT1Gal4 (RRID:BDSC_8849), NP2222Gal4
(RRID:DGGR_112830), MZ0709Gal4, moodyGal4, GMRGal4 (RRID:
BDSC_9146), Actin5cGal4 (RRID:BDSC_4414), elavGal4 (RRID:
BDSC_8765), ubiGal80 ts, tubGal80 ts (RRID:BDSC_7019), UAS-
dEAAT1 (RRID:BDSC_8202), UAS-iGluSnFRA184S (RRID:
BDSC_59610), and UAS-repo IR 2 (TRiP.JF 02974 RRID:

BDSC_28339). alrmGal4 (RRID:BDSC_67031) and UAS-Gat were
kindly provided by M. Freeman. UAS-repo IR 1 (GD 10424, RRID:
FlyBase_FBst0450092) was obtained from the VDRC collection, UAS-
repo-myc was described previously (Matsuno et al., 2015), UAS-repo
was also described previously (Yuasa et al., 2003), and repo-nGFP was
generated by C. Diebold. UAS-miR-1 was generated by E. Lai for the
miRNA library (Bejarano et al., 2012). UAS-EGFP-Gs2 was kindly
provided by R.W. Ordway.

Lifespan. Lifespan analysis was performed as described previously (Ni-
soli et al., 2010). Briefly, all crosses were maintained at 18°C during the
developmental stages of the progeny. Newly eclosed adult flies were col-
lected within 5 d at 18°C. Females and males were pooled together and
equally distributed within three vials. Sixty flies were assessed unless
specified otherwise. All lifespan analysis was done in a controlled envi-
ronment of 29°C and 60% humidity or 25°C when specifically stated.
Using CO2 to anesthetize the live flies, those dead and alive were counted
and live ones transferred into fresh vials three times per week. For the
lifespans done with only 3 d at 29°C before being transferred to 18°C, flies
were still counted 3 times per week but were transferred into a fresh vial
only once a week.

Climbing assay. Flies were collected from the same cross used for the
lifespan experiment to assess their negative geotaxis reaction. Ten female
flies from each genotype were transferred into 70 mm tubes. The tubes
containing compared genotype were assessed at the same time using a
custom-made array. Four sessions were recorded to evaluate the vertical
position of each fly after 1 min. The scores from the 10 females were
averaged for each repeat and the average of the four repeats calculated.

Automatic motor behavioral assay. Single fly tracking was performed as
described previously (Faville et al., 2015). In each experiment, �20 fe-
male flies per genotype were anesthetized on ice and individually placed
into glass tubes. All of the genotypes were positioned on the same plat-
form, with two shaftless motors placed under each subplatform contain-
ing each one genotype. The flies were allowed to recover for 30 min at
25°C before the start of the procedure. The protocol used for the stimuli
response is presented with a schematic in Figure 7A. In summary, 6
stimuli events were equally split during a period of 2 h and 15 min, the
first one starting after 30 min of recording and the last one 30 min before
the end of the protocol. Each stimuli event was composed of five vibra-
tions of 200 ms spaced by 500 ms. The x/y position of each single fly was
tracked and analyzed using Drosophila ARousal Tracking (DART) soft-
ware (Faville et al., 2015) to evaluate the relative speed and activity be-
fore, during and after the stimuli event. The speed analysis is used for the
“stimuli response trace” and the general activity was used to deduce
“active speed,” “mean bout length,” and “interbout interval” (for details,
see Kottler et al., 2017) using a custom-made modification of the DART
software (Faville et al., 2015). The DART-derived graphs were edited
with Adobe Illustrator CC2017 (RRID:SCR_010279).

Heat-induced seizure assay. The heat-induced seizure assay was
adapted from one described previously (Sun et al., 2012). Ten flies per
genotype were isolated into plastic vials with food 3 h before the assay.
They were then allowed to accommodate into new plastic vials without
food for 10 –20 min before immersion in a 40°C water bath for 2 min.
Each tube was video recorded during and after immersion and seizures
were defined as a period of brief leg twitches and failure to maintain
standing posture. The mean of the time to recover from seizure was
calculated for each genotype. The experiment was repeated five times
independently and averaged.

Adult brain staining. Adult brain staining was performed as described
previously (Baron et al., 2017). Briefly, flies were anesthetized on ice.
Brains were dissected and put straight into 4% paraformaldehyde (PFA)
for 45 min of fixation. They were then washed in phosphate buffer saline
solution with 0.1% Tween (PBS-T) for 30 min before blocking in 5%
bovine serum albumin (BSA) in PBS-T for 1 h at room temperature (RT)
in a 96-well plate. Primary and secondary antibodies were diluted in
blocking solution and incubated overnight at 4°C. After three washes of
15 min, brains were mounted in Vectashield on a slide surrounded by
two coverslips on each side before being covered by another coverslip on
top (to prevent the brains from being crushed). The antibodies were used
as follows: anti-GFP (1/100, mouse, Roche, RRID:AB_390913), anti-

Association pour la Recherche sur le Cancer (A.G.), Agence Nationale de la Recherche (A.G.), and by Grant ANR-10-
LABX-0030-INRT, a French State fund managed by the Agence Nationale de la Recherche under the frame program
Investissements d’Avenir ANR-10-IDEX-0002-02. E.C.L. was supported by the National Institutes of Health (Grant
R01-NS083833 and MSK Core Grant P30-CA008748). We thank M. Freeman, R. Ordway, A. Delogu, M. Meyer, the
VDRC, the DSHB, and the BDSC for fly stocks and reagents; Alix Gaultier De La Ferriere for technical assistance; and R.
Sousa-Nunes and O. Baron for comments on this manuscript.

B.K. is cofounder of BFK Lab. The remaining authors declare no competing financial interests.
Correspondence should be addressed to Manolis Fanto at manolis.fanto@kcl.ac.uk.
https://doi.org/10.1523/JNEUROSCI.1833-18.2019

Copyright © 2019 Mazaud et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution License

Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in
any medium provided that the original work is properly attributed.

5270 • J. Neurosci., July 3, 2019 • 39(27):5269 –5283 Mazaud et al. • Transcriptional Regulation of the Glu/GABA/Gln Cycle

https://scicrunch.org/resolver/BDSC_3605
https://scicrunch.org/resolver/BDSC_7415
https://scicrunch.org/resolver/BDSC_8849
https://scicrunch.org/resolver/DGGR_112830
https://scicrunch.org/resolver/BDSC_9146
https://scicrunch.org/resolver/BDSC_4414
https://scicrunch.org/resolver/BDSC_8765
https://scicrunch.org/resolver/BDSC_7019
https://scicrunch.org/resolver/BDSC_8202
https://scicrunch.org/resolver/BDSC_59610
https://scicrunch.org/resolver/BDSC_28339
https://scicrunch.org/resolver/BDSC_67031
https://scicrunch.org/resolver/FlyBase_FBst0450092
https://scicrunch.org/resolver/SCR_010279
https://scicrunch.org/resolver/AB_390913
mailto:manolis.fanto@kcl.ac.uk
https://creativecommons.org/licenses/by/4.0


GFP (1/500, chicken, kindly provided by M. Meyer), anti-Repo (1/100,
mouse DSHB 8D12, RRID:AB_528448), anti-Elav (1/500, rat, DSHB
758A10, RRID:AB_528218 or 1/2000 mouse, DSHB, 9F8A9, RRID:
AB_528217), and anti-GABA (1/1000, Sigma-Aldrich A2052, RRID:
AB_477652 kindly provided by A. Delogu).

iGluSnFRA184S imaging. Flies expressing the glutamate sensor
iGluSnFRA184S were anesthetized on ice. The flies developed at 18°C
and were transferred to 29°C for 7 d once they reached the adult stage.

Brains were dissected into Schneider’s medium and transferred directly
into a dish filled with Schneider’s medium to be imaged. Confocal pic-
tures of each brain were taken within 20 min after dissection. Z-stacks of
1 �m sections were taken for each genotype. The microscope settings
were established using control flies to have a GFP signal below saturation
and kept unchanged throughout all acquisitions. These photographs
were taken with a Nikon Spinning Disc confocal microscope and ana-
lyzed with ImageJ Fiji software (RRID:SCR_002285). A square of 166 �

Figure 1. Effect of miRNA expression in adult Drosophila glia. All aging in this figure was performed at 29°C. A, Examples of short-lived (UAS-miR-9c and UAS-miR-1) and long-lived (UAS-miR-100)
miRNA lines overexpressed in adult glial cells compared with the screen median lifespan. Each lifespan was done with 60 flies (30 females and 30 males; see Materials and Methods). Log–rank
(Mantel–Cox) test p � 0.000000000001 for all. For a full screen report, see Figure 1-1 (available at https://doi.org/10.1523/JNEUROSCI.1833-18.2019.f1-1). B, Summary of the miRNA screen. Each
line is compared with the median lifespan of the library (256 lines from 133 miRNAs). C, Comparison of the median from 6 w 1118; ubi-Gal80 ts/�; repoGal4/� lifespan with the median lifespan of
the screen w 1118; (ubi-Gal80 ts; repoGal4)/ UAS-miR-X. Log–rank (Mantel–Cox) test p � 0.0001 (D) Lifespan of female flies expressing UAS-miR-1, from an autosomal insertion (7091) and from an
insertion on the X chromosome (7090) compared with female median w 1118 controls. Both display a dramatic reduction in lifespan. Log–rank (Mantel–Cox) test p �0.0001 for both. E, Western blot
analysis of Repo protein level upon miR-1 overexpression in adult glia. There is a strong reduction of Repo protein compared with control, quantified on the right panel (Mann–Whitney, n � 3, p �
0.049). The genotypes were w 1118; ubi-Gal80 ts/�; repoGal4/� and w 1118; ubi-Gal80 ts/�; repoGal4/UAS-miR-1 (7091). F, Rescue of UAS-miR-1 short lifespan by coexpression of UAS-repo-myc
(log–rank Mantel–Cox test p � 0.000000000001), which by itself displays instead a mildly decreased lifespan compared with controls. Conversely, the coexpression of a mutated dominant-
negative repo transgene, UAS-repo�HD-myc, enhanced the shortening of lifespan due to miR-1 overexpression (log–rank Mantel–Cox test p � 0.0001), ruling out any weakening of the UAS-miR-1
effect due to a second UAS-based transgene, whereas it had no effect of its own when expressed alone. The driver used was repoGal4, ubi-Gal80 ts. Between 80 and 180 female flies were assessed.
*p � 0.05, ***p � 0.001, ****p � 0.0001.

Table 1. Oligos and UPLs used for qPCR

Gene CG no. UPL probe no. Left oligo Right oligo

loco CG5248 116 CTGGTTTATCAACGCCTATGAA GAGTGCGGAAGGAAGACTGT
Gliotactin CG3903 69 CGAATCGTCCAATTACAGAGC GAAAAATTCCAGGAGAAACTGG
Gs2 CG1743 127 GCACCCTCGACTTCATTCC GCACGAGCTTCCATCGTAGT
Pointed CG17077 63 CTTTCTGTCCAGCCTAGTTGAGT TGCACAGATCCTTGCATCC
dEAAT1 CG3747 30 GAATAAATTTGCTTGACATCCTTTT AAAGCACGATTGGCAGTCA
wg CG4889 81 GGCAAAATCGTTGATCGAG GCAGGACTCTATCGTTCCTTCA
Gat CG1732 31 TTCTTTATGTCGATGAGAGCAGA CCTTTCATATTGACTGACACAGTTG
Gapdh CG12055 18 AAAAAGCTCCGGGAAAAGG AATTCCGATCTTCGACATGG
eIF4A CG9075 104 CGTGAAGCAGGAGAACTGG CATCTCCTGGGTCAGTTGGT

Shown are sequences of oligos used for qPCR and probe numbers from the Universal Probe Library given for each gene tested.
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166 pixels was drawn around the calyx region and the intensity was
measured. The three highest values of each z-stack were averaged. At least
three different calyx regions were measured per genotype.

TUNEL assay. Fly brains were dissected in cold PBS and fixed for 45
min in 4% PFA at RT. After three washes of 10 min in PBS, the brains
were incubated 10 min in 50 �l of proteinase K (20 �g/ml in PBS) and
then washed twice for 10 min in PBS (to stop the permeabilization). For
the positive control, a 10 min incubation in DNase I buffer was followed
by a 10 min incubation in DNase I (7 U/ml in DNase I buffer) and then
washed three times in double-distilled water (ddH2O). The brains for all
the conditions were then immersed for 30 min in equilibration buffer
and incubated 1 h at 37°C with a solution containing 44 �l of equilibra-
tion buffer, 5 �l of marked nucleotide mixture, and 1 �l of TdT enzyme
(Promega). The reaction was stopped for 15 min in 2� SSC solution
(diluted in ddH2O) and washed three times in PBS. The brains were then
mounted in Vectashield (Vector Laboratories).

RNA extraction. RNA was extracted as described previously (Napole-
tano et al., 2011). Briefly, 50 heads were cut and placed into a 1.5 ml
microfuge tube followed by a snap freeze in liquid nitrogen. The heads
were then homogenized in 100 �l of TriZOL (Invitrogen), after which an
additional 200 �l of TriZOL was added. The mixture was incubated for
10 min at RT before adding 60 �l of chloroform. The tubes were vigor-
ously mixed for 20 s and then incubated 2 min at RT before 15 min of
centrifugation at 4°C and 12,000 rpm. Next, 200 �l of the aqueous phase
(containing the RNA) was transferred into another 1.5 ml microfuge
tube and 150 �l of isopropanol was added. A pellet of RNA appeared after
10 min of centrifugation at 4°C and 12,000 rpm. The pellet was washed
three times with 75% EtOH and air-dried before the addition of 40 �l
RNase-free ddH2O with 1 �l of Rnasin (Promega). The quality of the

RNA extraction was assessed on a 1.5% agarose gel and the concentration
and �280/260 and �260/230 ratios were measured with a Nanodrop.

qPCR. A 1.5 �g sample of each RNA was sent to the King’s College
London Genomic Centre Facility for processing. qPCR was done using
Universal Probe Library (UPL) probes and primers designed by the Uni-
versal Probe Library software (Roche) for quantification. Three indepen-
dent biological replicates were measured for each genotype at each time
point. Gapdh and eIF4A were used as controls. Details of oligos and UPL
are given in Table 1.

Western blot. An equal number of flies per genotype was decapitated
with a scalpel, snap-frozen, and homogenized using a pestle in 1� sample
buffer (0.05 mM Tris-HCl pH 6.8, 2.5% SDS, 10% glycerol, 0.0025%
bromophenol blue) with 5% �-mercaptoethanol freshly added. The tube
was centrifuged at 12,000 rpm at 4°C for 5 min. The supernatant was
transferred into a new tube. The volume equivalent to five heads was
loaded on 10% or 12% w/v polyacrylamide gel using a Bio-Rad gel elec-
trophoresis apparatus. After separation in the gel, proteins were trans-
ferred onto a nitrocellulose blotting membrane (0.2 �m, Protran; GE
Healthcare) for 1 h at 60 V and kept cold. The membrane was then
blocked for 1 h in 5% BSA or 5% milk in TBS with Tween (TBS-T) at RT
before incubation in primary antibody diluted in blocking buffer
overnight at 4°C. The membrane was washed 3 times for 15 min in
TBS-T at RT and then incubated 1 h at RT in secondary antibody.
After three washes in TBS-T, the membrane was washed again in TBS.
Enhanced chemiluminescence (ECL) reagent was mixed according to
the manufacturer’s instructions (SuperSignal WestPico or ECL West-
ern blotting substrate; Pierce) and spread onto the membrane. After 2
min of incubation, the ECL liquid was removed and the membrane
placed into a cassette with a film (Fujifilm) and developed. The film

Figure 2. Repo protein levels influence Drosophila lifespan and behavior. All aging in this figure was performed at 29°C. A, Lifespan of two different RNAi lines against repo and the rescue of the
RNAi 1 by coexpression of a UAS-repo transgene (log–rank Mantel–Cox test p � 0.0001). B, Climbing assay of the two RNAi lines against repo and the rescue of the RNAi 1 by UAS-repo as assessed
just before death (respectively 7 for RNAi 1, one-way ANOVA, Tukey’s multiple-comparisons test p � 0.0001 and p � 0.0001, respectively, and 12 d for RNAi 2 at 29°C, Mann–Whitney, n � 3, p �
0.049). C, Western blot analysis of Repo levels after 7 d at 29°C. D, Sixty flies (30 females and 30 males) were used for each genotype. Only repo knock-down by the ubiquitous Actin5cGal4 or the
mosaic dEAAT1-Gal4 achieved a significant detrimental effect on fly lifespan, supporting the composite nature of the effect on lifespan. The specificity of each driver is as follows: repoGal4 (pan-glial),
alrmGal4 (astrocyte-like glia), NP2222Gal4 (cortex glia), moodyGal4 (subperineurial glia), MZ0709Gal4 (ensheathing glia), Actin5cGal4 (ubiquitously expressed), dEAAT1Gal4 (astrocyte-like glia,
cortex glia and some subperineurial glia), and GMRGal4 (eye, used as negative control, not expressed in glial cells). ***p � 0.001.
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was then scanned and processed using Adobe Photoshop version 7.0.1
(RRID:SCR_014199) and the bands were quantified using Image Stu-
dio Lite version 4.0 software (RRID:SCR_013715). Antibodies were
used as follows: anti-Repo (mouse, 1/200 in 5% BSA, DSHB 8D12,
RRID:AB_528448), anti-Gat (rabbit, 1/10000 in 5% milk-TBS-T,
RRID:AB_2569706, gift from Marc Freeman), anti-�-actin (rabbit,
1/3000 in 5% BSA, SAB 21338), anti-myc (mouse, 1/1000 in 5% BSA,
Roche 9E10, RRID:AB_439694), and anti-GFP (mouse, 1/1000 in 5%
BSA, Roche, RRID:AB_390913).

Statistical analysis. All statistical analysis was performed with Graph-
Pad Prism software (RRID:SCR_002798). For all lifespans, the statistical
analysis was performed using the log–rank test of the Kaplan and Meier
method. For the climbing assay in Figure 2B and behavioral experiments
(DART), the statistical analysis was done by one-way ANOVA using Dun-
nett’s multiple-comparisons post hoc test. For the analysis of experiments

performed over time (climbing of Fig. 6A,F,H; seizure in Fig. 8B; and behav-
ior in Fig. 8A) a two-way ANOVA was used with a Tukey’s or Dunnett’s
multiple-comparisons test. All quantifications for Western blots and climb-
ing assay with only two genotypes were analyzed at high stringency using a
nonparametric Mann–Whitney test. The qPCR statistical analysis was per-
formed using DataAssist software (RRID:SCR_014969) as a two-tailed t test.
Significance is shown by asterisks in all figures as follows: *p � 0.05, **p �
0.01, ***p � 0.001, and ****p � 0.0001.

Results
miR overexpression screen in adult glial cells
Using the repoGal4,ubiGal80 ts inducible system of expression, we
have triggered expression in all adult fly glia of several Drosophila
miRNAs from a library of �250 lines (Bejarano et al., 2012) and

Figure 3. repo expression is continuously required. A, Lifespan of repo IR 1 flies and their rescue after 3 d of transgene expression at 29°C followed by a block of transgene expression with a transfer
at 18°C (indicated by an arrow on the graph). B, Climbing assay of the same genotypes as in A using the same paradigm. The assay was done after 7 d at 18°C, prior to death of the repo IR 1 flies
(one-way ANOVA, Fisher’s LSD p � 0.0001, p � 0.0448 and p � 0.0007, respectively). C–E, Western blot analysis of Repo expression after 3 d at 29°C (C). Note the evident overexpression of Repo
from an exogenous transgene, which partially counteracts Repo knock-down by the RNAi, after a further 7 d at 18°C (D), representing the levels of Repo at the same time point as the climbing assay.
Note the absence of Repo overexpression by the UAS-repo transgene compared with controls. After 3 d at 29°C and 20 more days spent at 18°C (E), the Repo levels in UAS-repo IR 1 � UAS-repo
condition remains very low even after a long period of transgene expression blockage. The driver used was ubiGal80 ts; repoGal4. F, Analysis of nGFP protein levels from the repo-nGFP transgene after
7 d of UAS-repo IR 1 expression. The driver used was ubiGal80 ts; repoGal4. *p � 0.05, ***p � 0.001.
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Figure 4. Repo knock-down in the adult does not trigger cell death or change of fate. A, Maximum projections of confocal images of w 1118 and UAS-repo IR 1 brains after 7 d at 29°C.
Glial cells were labeled in green using the repo-nGFP transgene used for previous Western blot (Fig. 3F ). Quantification was done in the optic lobes of three independent brains for each
genotype. No significant difference was observed between control and RNAi conditions. B, TUNEL assay using the same genotypes and the same conditions as previously. A positive
control for the assay was done by treating control brains with DNase prior to labeling. No difference could be observed between control and RNAi conditions. See Materials and Methods
for detailed protocol. C, Immunostaining of the brain and VNC of w 1118 and UAS-repo IR 1 flies after 7 d at 29°C. In green is nGFP from the repo-nGFP transgene and in gray is the
pan-neuronal marker Elav. The images represent confocal sections at the level of the antennal lobes for the brains and abdominal segment for the Ventral Nerve Cord (VNC). Bottom
panels represent higher magnification of the UAS-repo IR 1 condition in the brain (top) and in the VNC (bottom). Arrowheads indicate presumptive glial cell nucleus. There was no overlap
between GFP and Elav staining in either case. The driver used was ubiGal80 ts; repoGal4. Scale bar, 30 �m.
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Figure 5. Analysis of Repo targets and effect on GABA and glutamate levels. All aging in this figure was performed at 29°C. A, qPCR analysis of known Repo transcriptional target genes and of Gat
after 5 h or 7 d at 29°C in w 1118; tubGal80 ts, repoGal4/� (control) and w 1118; UAS-repo IR 1/�; tubGal80 ts, repoGal4/� flies. Each condition was measured with three independent biological
replicates. No statistically significant difference was observed between control and the expression of UAS-repo IR 1 after 5 h at 29°C (before the RNAi can downregulate repo). After 7 d, loco, dEAAT1,
Gs2, and Gat were significantly downregulated at the mRNA level. Asterisks represent significance before [red, two samples, two-tailed t test, n � 3 from left to right p � 0.0289 (loco), p � 0.0013
(dEAAT1), p � 0.0197 (Gs2), p � 0.0029 (Gat)] and after [black, p � 0.013 (dEAAT1), p � 0.0143 (Gat)] false discovery rate (FDR) correction. B, Western blot analysis of Gat expression and its
quantification. The expected molecular weight of Gat is 57 kDa. The quantification was done with four independent biological replicates. Mann–Whitney, n � 4, p � 0.0143. C, Immunostaining
using a specific anti-GABA antibody (green) of Drosophila brains after 7 d at 29°C. The images represent the maximum projection of z-stacks of the central brain taken with a 40� oil-immersion
objective. The quantification is the average of the pixel intensity given for the area around each antennal lobe for three brains per genotype (unpaired t test, two-tailed, p � 0.0001). The
measurements were done using ImageJ Fiji software. The image of a Repo-RNAi brain with a higher brightness (brightness parameter brought from 255 to 80) shows the presence of the cells and
their localization, barely visible under the conditions used for the control brains. A schematic of the brain region observed is highlighted below. D, Fluorescence intensity generated in the adult brain
by the glutamate sensor UAS-iGluSnFRA184S expressed alone or in combination with UAS-repo IR 1 after 7 d at 29°C. The images were taken in the brain area highlighted (Figure legend continues.)
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recovered a number of miRNAs that shorten or extend the fly
lifespan compared with the screen median lifespan (Fig. 1A,B
and Fig. 1-1, available at https://doi.org/10.1523/JNEUROSCI.
1833-18.2019.f1-1).

Although not isogenic, the library was generated in the w 1118

background. We therefore ran a number of additional controls by
crossing repoGal4,ubiGal80 ts to w 1118 throughout the screen to
compare their F1 with the median lifespan of our screen. Given
the significant difference (Fig. 1C), we decided to focus on miR-
NAs that shorten lifespan because this class appears more robust
compared with both controls.

miR-1 expression in adult glia shortens the fly lifespan by
repressing the expression of repo
Two independent UAS-miR-1 insertions displayed a potent re-
duction in fly lifespan when expressed in the adult glia (Fig. 1A,D
and Fig. 1-1, available at https://doi.org/10.1523/JNEUROSCI.
1833-18.2019.f1-1). miR-1 is known to be expressed in the meso-
derm during embryogenesis (Sokol and Ambros, 2005) and has
been involved in setting up the repression of nonmuscle cell genes
(Lim et al., 2005). In analyzing the predicted mRNA targets for
miR-1 in the TargetScan and microRNA.org databases, we no-
ticed that the pan-glial marker repo was predicted to be a target
for miR-1. In agreement, specific adult expression of miR-1 in
glia leads to a strong downregulation of the Repo protein expres-
sion in adult flies (Fig. 1E). We have reported previously that this
effect is likely to be direct (Trébuchet et al., 2019). An exogenous
UAS-repo-myc lacking the repo 3	-untranslated region and there-
fore resistant to repression by miR-1 (data not shown) signifi-
cantly rescues the effect of miR-1 on lifespan (Fig. 1F).
Conversely, a UAS-repo�HD-myc lacking the homeodomain
failed to rescue the miR-1 lifespan phenotype (Fig. 1F), high-
lighting the requirement for a functional Repo protein and ruling
out that the rescue by UAS-repo may be nonspecific due to the
addition of a second UAS transgene.

Repo is continuously required in adult glial cells for fly
survival and motor behavior
The regulation of Repo by miR-1 is physiologically relevant dur-
ing the developmental stages for hemocyte and glial cell specifi-
cation (Trébuchet et al., 2019). Here, we used miR-1 ectopically
as a discovery tool in the adult. Our results suggest that Repo may
be specifically required in adult glial cells. It was previously
shown that some repo alleles lead to neurodegeneration (Xiong
and Montell, 1995); however, the use of genetic mutations does
not allow us to exclude that neurodegeneration arises as a second-
ary consequence of developmental abnormalities. The inducible
system of expression that we use here allows us instead to specif-
ically investigate functions in adult nervous system maintenance.
Adult-specific repo RNAi led to dramatic shortening of the fly
lifespan (Fig. 2A) and progressive loss of motor activity (Fig. 2B).
Both phenotypes were partially rescued by an exogenous UAS-
repo (Fig. 2A,B), which had no effect per se (data not shown).
This transgene is still sensitive to the RNAi effect, probably

explaining the mild degree of phenotypic rescue and of Repo
protein expression achieved (Fig. 2C). Downregulating repo in
different subsets of glial cells using other glial Gal4 drivers
(astrocyte-like/alrmGal4, cortex/NP2222Gal4, ensheathing/
MZ0709Gal4, and subperineural/moodyGal4 glia) did not mark-
edly affect lifespan (Fig. 2D). Only dEAAT1Gal4 (expressed in
astrocyte-like glia, cortex glia, and some subperineurial glia; data
not shown) and the ubiquitous Actin5cGal4 elicited a more ro-
bust phenotype in this assay, suggesting that this phenotype re-
sults from a combination of factors rather than one single
function in a specific glia subset.

We next tested whether repo expression is continuously re-
quired in the adult fly. At 18°C, repo RNAi and an exogenous
UAS-repo transgene are efficiently repressed by ubiGal80 ts (data
not shown). We have induced repo RNAi for the first 3 d of adult
life only at 29°C, followed by phenotypic analysis back at 18°C,
when transgenes are no longer transcribed. The effects of just 3 d
at 29°C on lifespan and motor activity were dramatic (Fig. 3A,B)
and in both cases could be partially rescued by an exogenous
UAS-repo transgene. At the protein level, 3 d at 29°C led to an
efficient knock-down (Fig. 3C), but there was no recovery back at
18°C (Fig. 3D,E). The dramatic effect of a temporary knock-
down is therefore likely due to the requirement for the Repo
protein to maintain repo gene expression. Accordingly, a trans-
genic repo-nGFP was also dramatically reduced by the repo RNAi
(Fig. 3F), confirming the presence of a regulatory sequence
within the 4.5 kb repo promoter (Lee and Jones, 2005; Flici et al.,
2014).

Expression of genes involved in GABA and glutamate
recycling requires Repo in adult glia
The data collected so far indicated a continuous requirement for the
Repo protein in adult glia to maintain its own expression, which in
turn supports fly lifespan, endogenous locomotor activity, and
response behavior to an exogenous mechanical stimulation.

Investigating the possible biological cause for the dramatic
phenotype in the repo-KD flies, we did not find any evidence for
glial cell loss (Fig. 4A), apoptotic cell death (Fig. 4B), or fate
switch of glia to neurons (Fig. 4C), all of which take place during
development (Trébuchet et al., 2019). We also did not detect
gross morphological alterations to the shape of glial cells and of
the major nerve fiber tracts (data not shown).

To obtain an indication of the processes that could be dis-
rupted in repo-KD flies, we monitored by qPCR the expression of
several genes (Gliotactin, loco, dEAAT1, Gs2, pointed, and wing-
less), recently established as direct targets of Repo (Kerr et al.,
2014). loco and Gliotactin are genes involved in the signaling
pathway setting up the fly “blood– brain barrier” (Auld et al.,
1995; Schwabe et al., 2005). pointed and wingless are important
for glial specification and development (Klaes et al., 1994; Kerr et
al., 2014). In addition, we have examined the expression of the
only Drosophila glial GABA transporter gene, Gat, to comple-
ment, together with dEAAT1 and Gs2, the key components of the
glutamate/GABA/glutamine cycle (Roth and Draguhn, 2012;
Rowley et al., 2012). After 7 d, loco, Gs2, Gat, and dEAAT1 mRNA
levels were significantly downregulated (Fig. 5A). Using a specific
antibody (Stork et al., 2014), we have confirmed the downregu-
lation of Gat also at the protein level (Fig. 5B).

Interestingly, the downregulation of Gat, dEAAT1, and Gs2
suggested that the glutamate/GABA/glutamine cycle may be se-
verely compromised in repo-KD flies. This cycle in glia has been
shown to be of major importance in the maintenance of the gluta-
mate and GABA pool in neurons (Rae et al., 2003). Indeed, antibody

4

(Figure legend continued.) in the schematic below the pictures. The settings of the micro-
scope were adjusted with the first control brain analyzed and kept unmodified. Quantifi-
cations were done using ImageJ Fiji software, drawing a square around each calyx region,
measuring the intensity of the brightest slices of the stack, and then averaging (unpaired
t test, two-tailed, p � 0.0001). The genotypes used were as follows: elav-Gal4;
tubGal80 ts, repoGal4/UAS-iGluSnFRA184S as control and elav-Gal4; UAS-repo IR 1/�;
tubGal80 ts, repoGal4/UAS-iGluSnFRA184S.
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Figure 6. Effect of Gat, Gs2 and dEAAT1 levels on behavioral and lifespan deficits caused by repo knock-down. All rescue experiments in this figure and in the related Figures 7 and 8, were
performed at 25°C and genotypes used were w 1118; UAS-repo IR 1/�; tubGal80 ts, repoGal4/tubGal80 (negative control) // w 1118; UAS-repo IR 1/UAS-lacZ; tubGal80 ts, repoGal4/UAS-eGFP // w 1118;
UAS-repo IR 1/UAS-Gs2; tubGal80 ts, repoGal4/UAS-dEAAT1 // w 1118; UAS-repo IR 1/UAS-Gs2,UAS-Gat; tubGal80 ts, repoGal4/� // w 1118; UAS-repo IR 1/UASeGFP; tubGal80 ts, repoGal4/UAS-repo //
w 1118; UAS-repo IR 1/UAS-Gs2; tubGal80 ts, repoGal4/UAS-repo // w 1118; UAS-repo IR 1/UAS-Gat; tubGal80 ts, repoGal4/UAS-repo // w 1118; UAS-repo IR 1/UAS-dEAAT1; tubGal80 ts, repoGal4/UAS-repo.
A, Evolution over time of the negative geotaxis response. Ten to 15 flies were assessed three times at different time points at 25°C. Coexpression of UAS-Gs2 and UAS-Gat delays the decrease in
climbing ability over time compared with the positive control, whereas coexpression of UAS-Gs2 and UAS-dEAAT1 transiently aggravates the phenotype. Blue asterisks indicate significance compared
with the positive control (two-way ANOVA, Tukey’s multiple-comparisons test p � 0.0001 and p � 0.0011, respectively). B, Fly lifespan was assessed with control flies carrying the tubGal80
transgene (not temperature sensitive) to block the Gal4 activity. The positive control flies expressing control proteins in a repo-KD background display a significantly shorter lifespan compared with
the negative control. Coexpression of UAS-Gs2 and UAS-dEAAT1 further shortens the lifespans of repo-KD flies, whereas coexpression of UAS-Gs2 and UAS-Gat displays (Figure legend continues.)
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staining for the GABA neurotransmitter revealed a striking reduc-
tion in GABA levels in neurons (Fig. 5C). A similar effect was ob-
served for glutamate as monitored by the iGLUSnFRA184S
glutamate sensor (Marvin et al., 2013; Stork et al., 2014). The
iGLUSnFRA184S signal was stronger in the calyx and mushroom
body regions, which are known to have high levels of glutamate
(Daniels et al., 2008; Sinakevitch et al., 2010), and was dramati-
cally decreased in repo-KD flies (Fig. 5D).

Therefore, repo expression in the adult glia is necessary for the
maintenance of neurotransmitter homeostasis, likely via the
transcriptional regulation of components of the glutamate/
GABA/glutamine cycle.

Gat overexpression in adult glia delays the emergence of
motor dysfunction and decreases the sensibility to seizures
Rescue experiments to analyze the causal role of the downregu-
lation of genes controlling the glutamate/GABA/glutamine cycle
for the repo-KD phenotypes were performed at 25°C instead of
29°C to allow slower progression of defects. As negative control
for the phenotypes analyzed, we have used tubGal80 to inhibit
expression of all transgenes while maintaining all common
genomic elements than all other stocks analyzed (repoGal4,
tubGal80 ts, and UAS-repo IR 1). The positive controls were
repo-KD flies expressing control proteins LacZ and GFP. These
flies were not included in all assays because they become immo-
bile or die too early for meaningful comparison at the late stages.
Gal4/UAS mediated overexpression of only one of the genes
tested (Gat, Gs2, and dEAAT1) was unable to rescue either motor
defects or lifespan in repo-KD flies (data not shown). However, a
mild but significant rescue was detected upon Gs2 and Gat, but
not Gs2 and dEAAT1 co-overexpression in climbing assays (Fig.
6A). The coexpression of Gs2 and dEAAT1 was rather transiently
detrimental in this assay and in lifespan analysis (Fig. 6B). At the
level of lifespan, the coexpression of Gs2 and Gat only displayed a
trend toward rescue, but was not significantly different from the

positive control (Fig. 6B). To determine the individual contribu-
tion of single genes involved in the glutamate/GABA/glutamine
cycle, we expressed them separately in synergy with an exogenous
repo transgene in repoGal4, ubiGal80 ts�UAS-repo IR, UAS-repo
(hereafter rescued-repo-KD) flies. When aged at 25°C, the
rescued-repo-KD flies still display a downregulation of Repo to
�1/3 of control levels (Fig. 6C,D) and a milder but significant
downregulation of Gat expression at �2/3 of control levels (Fig.
6E). Therefore, this represents an ideal background in which to
assess the effect of exogenous expression of each of the three
components of the glutamate/GABA/glutamine cycle analyzed
here. Coexpression of UAS-dEAAT1 in rescued-repo-KD flies
rather resulted in a detrimental effect both in the negative geo-
taxis climbing assay (Fig. 6F) and in lifespan (Fig. 6G) similar to
what observed in combination with Gs2 (Fig. 6A,B). In contrast,
coexpression of UAS-Gat significantly improved the climbing
ability in rescued-repo-KD flies (Fig. 6H). At the level of lifespan,
a mild but significant rescue was detected (Fig. 6I), but resulted
from a consistent biphasic effect. The reasons for the biphasic
lifespan of rescued-repo-KD flies coexpressing UAS-Gat are un-
known and were not present when Gat was expressed alone or in
combination with Gs2 (Fig. 6B).

Given the pleiotropy of lifespan effects, we reasoned that a
different assay was necessary to effectively determine all compo-
nents involved in the regulation of the glutamate/GABA/glu-
tamine cycle by Repo. Therefore, we focused our analysis on
specific behavioral deficits in the repoGal4, ubiGal80 ts�UAS-
repo IR flies (hereafter repo-KD). For refined and unbiased inves-
tigations, we established a novel DART paradigm (Faville et al.,
2015). This allows automated video-assisted motion tracking and
stimuli response to mechanical shock to investigate endogenous
and exogenous locomotor activity (Fig. 7A; see Materials and
Methods for detailed protocol). After 7 d at 29°C, whereas
control flies (that carry all relevant transgenes, however re-
pressed by tubGal80) respond to the series of vibrations by a
sudden transient increase in speed (represented by a peak in
relative speed), the repo-KD flies did not respond to the
stimuli provided (Fig. 7B). This defect was also partially but
significantly rescued by the expression of an exogenous UAS-
repo. Therefore, our novel DART setup is capable of robust
and sensitive analysis of motor behavior.

Using our DART setup, we analyzed the effect of UAS-Gat in
more detail. Indeed, whereas all tested genotypes are indistin-
guishable after 3 d at 25°C, after 11 d at 25°C (a stage when
climbing defects are not yet observed in rescued-repo-KD flies),
this setup is able to detect a dramatic reduction in the response to
the given stimuli. At this stage, coexpression of UAS-Gat signifi-
cantly improves the amplitude of response to the level of the
control flies, in which all transgenes are silenced and this im-
provement is still present after 17 d at 25°C (Fig. 7C).

Surprisingly, the defects in stimuli response by rescued-
repo-KD flies do not arise because the flies are slower when active.
Indeed, their speed while active was comparable to control unaf-
fected flies at days 11 and 17 and, if anything, even faster at day 3
(Fig. 8A). Consistently, the rescue operated by UAS-Gat was not
due to an increase of this parameter.

Interestingly, when analyzing the overall activity of these flies
for the whole 2 h of the assay paradigm, not limited therefore to
the sole response to stimulus and more representative of endog-
enously generated motor activity, it is apparent that the rescued-
repo-KD flies display a tendency to decrease the length of their
actions (mean bout length) while at the same time increasing the
pauses in between actions (interbout interval), with both param-

4

(Figure legend continued.) a trend toward rescue but no significant difference. Black asterisks
indicate significance compared with the negative control; blue asterisks indicate significance
against the positive control (log–rank Mantel–Cox test p � 0.0207, p � 0.0001 and p �
0.0134, respectively). C, Western blot showing the downregulation of Repo protein in rescued-
repo-KD compared with control flies. Actin is used as a loading control. D, Quantification of Repo
protein expression. Mann–Whitney, n � 6, p � 0.0022. E, UPL qPCR assay for Gat (as per-
formed in Fig. 5A). Values are normalized using eIF4A as control. Unpaired t test, two-tailed,
n � 3 p � 0.024. F, Evolution over time of the negative geotaxis response as in A. Coexpression
of UAS-dEAAT1 and UAS-repo accelerates the decrease in climbing ability over time. Black as-
terisks indicate significance compared with the negative control (two-way ANOVA, Tukey’s
multiple-comparisons test, p � 0.0068, p � 0.0001, and p � 0.0003, respectively). G, Fly
lifespan was assessed as in B. Similar to the climbing assay, the coexpression of UAS-dEAAT1
beside UAS-repo does not rescue and rather aggravates the lifespan phenotype. Asterisks indi-
cate significance compared with UAS-repo alone (log–rank Mantel–Cox test p �
0.000010383935). H, Evolution over time of the negative geotaxis response as in A. The flies
coexpressing UAS-Gat and UAS-repo display a significantly improved climbing abilities com-
pared with UAS-repo alone or UAS-repo and UAS-Gs2. Black asterisks indicate significance in
genotype/time interactions compared with UAS-repo alone in two-way ANOVA (Tukey’s
multiple-comparisons test p � 0.0001, p � 0.0009, p � 0.0001, and p � 0.0001, respec-
tively). Colored asterisks indicate significance between the different genotypes and UAS-repo
alone at a specific time point (main genotype factor in two-way ANOVA, Tukey’s multiple-
comparisons test p � 0.0408, p � 0.0001 and p � 0.0207, respectively). I, Conditions of the
lifespan similar to G, but with the addition repo-KD flies as a positive control genotype (w 1118;
UAS-repo IR 1/�; tubGal80 ts, repoGal4/�). The coexpression of UAS-Gs2 does not affect the
lifespan, whereas UAS-Gat mildly but significantly increases the lifespan of 70% of the flies.
Surprisingly, �30% of the flies in this condition die within 10 d, whereas 25–30% of the
population have a strong increase in lifespan. Asterisks indicate significance compared with
UAS-repo alone (log–rank Mantel–Cox test p � 0.000000018838).
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Figure 7. Novel DART paradigm for sophisticated analysis dissects the role of Gat and Gs2 in exogenous motor activity. A, Schematic summary of the hardware and behavioral protocol used for
the DART stimuli response. See Material and Methods for details of the setup. B, Behavioral analysis of the repo-KD flies using an automated setup recording the response to a stimulus at a single fly
level. After 7 d at 29°C, the repo-KD flies fail to respond to given stimuli (provided by shaft-less motors placed underneath the behavioral platform) and the effect is significantly rescued by the
coexpression of a UAS-repo transgene (one-way ANOVA, Dunnett’s multiple-comparisons test p � 0.0001 for both). Twenty flies were assessed per genotype. The (Figure legend continues.)
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eters being significantly different from the other genotypes at day
17 (Fig. 8A). Therefore, in addition to a dramatic decrease in
response capability, these flies display also a trend toward endog-
enous inactivity that was highly significant after 17 d and rescued
by UAS-Gat.

Interestingly, coexpression of UAS-Gs2 improved the endoge-
nous mode of activity, with flies coexpressing Gs2 and repo display-
ing similar mean bout length and interbout intervals to control flies
and flies rescued by repo-Gat coexpression (Fig. 8A). However, com-
pared with UAS-Gat, coexpression of UAS-Gs2 failed to provide any

4

(Figure legend continued.) genotypes were as follows: w 1118; UAS-repo IR 1; repoGal4,
tubGal80 ts crossed with either: w 1118; tubGal80 (negative control for the phenotype), w 1118 or
w 1118; UAS-repo. C, Behavioral analysis of stimuli response (exogenous motor activity) of the
same genotypes as in Figure 6E, at 3, 11, and 17 d at 25°C. Twenty flies were analyzed for each
genotype at each time point. The histograms represent the amplitude of the peaks. The coex-
pression of UAS-Gat and UAS-repo significantly improved the flies’ performance compared with
UAS-repo alone or UAS-repo and UAS-Gs2 (one-way ANOVA, Dunnett’s multiple-comparisons
test p � 0.0001 for both at day 11 and p � 0.0006 and p � 0.0001 at day 17.). ***p � 0.001,
****p � 0.0001.

Figure 8. Effect of Gs2 and Gat on endogenous motor activity and recovery from seizures. A, Constant tracking of the flies allows the analysis of the endogenously generated motor activity
represented here by the three functions active speed, mean bout length, and interbout interval (see Materials and Methods). The flies and data used are the same as in Figure 7C. Although the active
speed does not seem to be strongly affected, the flies expressing only UAS-repo beside UAS-repo IR 1 have a significant reduction in mean bout length after 17 d and a strong increase of the interbout
interval also after 17 d. These changes are not present when either UAS-Gat or UAS-Gs2 is coexpressed. For simplicity, statistical comparisons represented are between UAS-repo vs UAS-Gat �
UAS-repo and UAS-repo vs UAS-Gs2 � UAS-repo only (two-way ANOVA, Tukey’s multiple-comparisons test p �0.0004, p �0.0002, p �0.0077, p �0.0300, and p �0.0001, respectively). B, Time
to recovery analysis of epileptic-like features at 3 and 11 d at 25°C. Ten flies were analyzed for each genotype at each time point, repeated five times independently, and averaged. UAS-repo and
UAS-Gat co-overexpression significantly rescued the seizure phenotype due to repo knock-down. Black asterisks indicate significance in genotype/time interactions compared with UAS-repo alone
(two-way ANOVA, Dunnett’s multiple-comparisons test p � 0.0029). Colored asterisks indicate significance between the different genotypes and UAS-repo alone at a specific time point (two-way
ANOVA, Dunnett’s multiple-comparisons test p � 0.0545, p � 0.0248, and p � 0.0001, respectively).
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significant rescue in the response-triggered behavior in the climbing
assay and in lifespan (Fig. 6H,I), as well as in the DART setup (Fig.
7C), indicating a more limited effect for Gs2.

In mammals, the orthologes of dEAAT1, Gs2, and Gat are
involved in sensitivity to seizures (Pirttimaki et al., 2013; Stein-
häuser et al., 2016; Boison and Steinhäuser, 2018) and, recently, a
role of dEAAT1 has been reported also in Drosophila (Cho et al.,
2018). To test the effect on this important glial function for the
same genotypes, we measured the time to recovery using a well
established procedure to trigger seizures in flies (Sun et al.,
2012). Similar to stimuli–response, we did not observe any
significant differences in 3 d adult flies between all the geno-
types assessed (Fig. 8B). However, after 11 d, the rescued-
repo-KD flies developed very long-lasting seizures of up to
25–30 min, with an average time to recovery of 9 min, com-
pared with control flies, which have average seizures of 12 s,
similar to the early time point (Fig. 8B). Interestingly, the
coexpression of UAS-Gat improved this defect, whereas UAS-
Gs2 and UAS-dEAAT1 did not significantly modify its pro-
gression with aging. When considering only the time point at
11 d, UAS-Gat coexpression decreased significantly the time
to recovery to 3 min, whereas UAS-Gs2 or UAS-dEAAT1 only
mildly affected the phenotype (Fig. 8B).

Together, these data suggest that the downregulated expres-
sion of Gat is, at least partially, specifically responsible for the
strong behavioral defects due to the loss of Repo, likely through
the alterations of the glutamate/GABA/glutamine cycle and the
resulting dramatic reduction in GABA and glutamate levels in the
brain.

Discussion
Repo is specifically needed throughout Drosophila adult life
Repo, the key glia determinant in Drosophila, has been mostly
studied in embryonic and larval stages, where it is involved in
terminal glial differentiation and migration, activating the ex-
pression of several genes, some specific to glial cells. Even
though constantly expressed in almost all glial cells through-
out life and a recognized association of some alleles with neu-
rodegeneration (Xiong and Montell, 1995), its specific role in
the adult has largely been neglected, with the exception of a
recent study concerning its role in learning and memory (Mat-
suno et al., 2015).

Here, starting from an miRNA screen, we identified an addi-
tional form of regulation of Repo levels through miR-1, having
demonstrated in a separate study that this regulation is physio-
logically relevant in hemocyte development (Trébuchet et al.,
2019). Here, we use it ectopically as a discovery tool that validates
the ability of miRNA-based screens to inform on the specific
relationship with one target gene, even via ectopic miRNA
expression.

We show next that repo is continuously required to maintain a
viable and fully functional organism because, once its expression
is abolished or strongly decreased, repo does not manage to rein-
state its initial levels. Indeed, a 3 d downregulation was enough to
irreversibly stop repo expression. Therefore, Repo is continuously
required to maintain itself and, thus, a functional nervous system.
A model for the molecular basis for this always-ON/always-OFF
autoregulation has been proposed in development (Lee and
Jones, 2005); however, the simultaneous effects on glial cell fate
and number made it difficult to distinguish loss of transcription,
from loss of cells. Because such confounding effects are not pres-
ent in the adult, we provide here unequivocal evidence for repo
autoregulation.

Transcriptional regulation of neurotransmitter recycling in
adult glial cells affects Drosophila motor activity and recovery
from seizures
During glial differentiation, repo triggers the expression of genes
such as dEAAT1 and Gs2, both involved in neurotransmitter re-
cycling. Moreover, downregulation of the glial glutamate trans-
porter dEAAT1 and GABA transporter Gat during larval stages
triggers dramatic motor defects (Rival et al., 2004; Muthukumar
et al., 2014). Here, we show that the transcription of two estab-
lished direct Repo target genes, dEAAT1 and Gs2 (Kerr et al.,
2014), require Repo also during adulthood. Furthermore, we
demonstrate for the first time that Repo is also necessary to main-
tain the expression of the only Drosophila glial GABA transporter,
Gat, both at the mRNA and protein levels. However, in the case of
Gat, it is likely that its levels are regulated by Repo via an indirect
mechanism. No Repo binding sites are present in its promoter
and gene sequence, in contrast to dEAAT1 and Gs2. Additional
unidentified factors may therefore mediate the effect of Repo on
Gat, possibly also through the effect on neurotransmitters levels.
Although additional factors may mediate glial subtype specificity,
considering that not only astrocytes but also ensheathing glia
regulate glutamate homeostasis in Drosophila (Otto et al., 2018),
our data strongly suggest that repo is a strictly required top-
controller of the highly conserved glutamate/GABA/glutamine
cycle in the Drosophila adult nervous system, governing directly
and indirectly the expression of key components.

Consistent with these data, the glial expression of UAS-Gat
significantly enhanced the partial rescue by an exogenous UAS-
repo of the motor defects and epileptic-like features caused by
knock-down of the endogenous repo. Althouh neither dEAAT1
nor Gs2 coexpression could rescue all these defects, our genetic
setup combining different tools cannot rule out a possible con-
tribution of these two genes to the control of the glutamate/
GABA/glutamine cycle orchestrated by Repo in glia.

To reach these conclusions, we have used a combination of
approaches that, from a coarse lifespan analysis, progressed
through negative geotaxis responses and to the development of a
sophisticated behavioral monitoring system. The key advantage
of this approach is that it has allowed us to separate progressively
the effect of gene level dysregulation at different levels of refine-
ment, being able to detect events not evident through lifespan
analysis or detected much earlier than in simple negative geotaxis
assays. This novel behavioral paradigm can therefore be applied
successfully to handle more subtle effects in the increasingly pop-
ular Drosophila models for neurological disorders.

The precise role of glial GABA transporters in glia is still un-
clear, considering their potential of clearing GABA from the syn-
apse, but also releasing it extrasynaptically to the postsynaptic
neuron as tonic inhibition (Héja et al., 2012). Moreover, even
though the glutamate/GABA/glutamine cycle has been exten-
sively studied in mammalian models (Héja et al., 2012; Shameem
and Patel, 2012; El-Khoury et al., 2014; Pehrson and Sanchez,
2015; Zheng et al., 2016), the transcriptional regulation of its key
genes has been poorly addressed despite its importance in epi-
lepsy, Huntington’s disease, and psychiatric disorders (Eid et al.,
2013; Huyghe et al., 2014; Cvetanovic et al., 2015; Karki et al.,
2015; Boison and Steinhäuser, 2018). This resonates with a wider
gap in knowledge of the glial cell functions that contribute to the
regulation of neuronal activity via recycling of neurotransmitters.
The implication of glia in disease conditions such as epilepsy or
psychiatric disorders, where neurotransmitter balance is known
to be impaired, has only recently been investigated, particularly
for the astrocytic GABA transporters. Indeed, Gat levels in Dro-
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sophila astrocytes are modulated throughout development via
metabotropic GABA receptor signaling and Gat regulation can
modulate seizure activity (Muthukumar et al., 2014). In addition,
TRP channels act on the astrocyte-specific mammalian ortholog
GAT-3, regulating its membrane trafficking and/or recycling rate
through calcium signaling (Shigetomi et al., 2011). However,
nothing is known on transcriptional regulation of GABA trans-
porter genes in mammals. Given their role in epilepsy (Pirttimaki
et al., 2013; Schousboe and Madsen, 2017), it is essential to better
understand the full extent of their regulation at all levels. The
discovery of the importance of repo in maintaining the neu-
rotransmitter balance in the glutamate/GABA/glutamine cycle
point toward the importance of understanding the transcrip-
tional regulation, and could provide a useful and tractable model
to unravel the glial contribution in human disease with neu-
rotransmitter imbalance.
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