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Abstract:  
Spectrometers with ever-smaller footprints are sought after for a wide range of applications where 

minimized size and weight is paramount, including emerging in-situ characterization techniques. 

We report on an ultra-compact micro-spectrometer design based on a single compositionally 

engineered nanowire. This platform is independent of the complex optical components or cavities 5 

that tend to constrain further miniaturization of current systems. We show that incident spectra can 

be computationally reconstructed from the different spectral response functions and measured 

photocurrents along the length of the nanowire. Our devices are capable of accurate, visible-range 

monochromatic and broadband light reconstruction, as well as spectral imaging from centimeter-

scale focal planes down to lensless, single-cell-scale in-situ mapping.  10 

 
One Sentence Summary: An ultra-compact spectrometer based on a single, compositionally-
engineered nanostructure is demonstrated 
 
  15 
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Main Text:  

Optical spectroscopy is one of the most ubiquitous, versatile characterization techniques 

across industrial processes and fundamental scientific research (1). A variety of miniaturized, 

portable spectrometers have been developed for applications where reduced footprint and weight 

takes precedence over high resolution (2). These micro-spectrometers have typically been inspired 5 

by conventional bench-top spectrometers, centering around interferometers or gratings, with 

miniaturized or integrated optics (3-5). When minimizing physical dimensions towards sub-

millimeter scales desired in, for example, lab-on-a-chip systems, such designs are inherently 

limited by adverse effects associated with scaling their optical components or path lengths. Micro-

spectrometers that use computational spectral reconstruction circumvent these constraints by 10 

addressing a full range of spectral components simultaneously at multiple detectors (6, 7). 

However, they have thus far been based on complex millimeter-scale arrays of individually 

prepared filters arranged over CCD or CMOS detectors, which are challenging to miniaturize.  

Here, we demonstrate that a single compositionally-engineered nanowire can form the basis 

of an ultra-compact computational micro-spectrometer design, where the previously distinct 15 

elements which separate and detect light have been combined into an individual, micrometer-scale 

component grown in a single bottom-up process. These semiconductor nanowires are alloyed such 

that the composition, and thus the spectral response, varies along their length, given that photon 

absorption can only occur at energies above the bandgap of the respective nanowire segment (8-

11). By electronically probing the photocurrent and cross-referencing with a pre-calibrated 20 

response function for each of a series of points along the nanowire, it is possible to computationally 

reconstruct incident light signals. With a sufficient number of points, and through careful 

optimization of the measurement stability, along with the development of a bespoke algorithm, 
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both monochromatic and broadband spectra can be accurately reconstructed. In this way, the entire 

active element of the spectrometer is scaled down to a footprint of just hundreds of nanometers in 

width and tens of micrometers in length, in a system that functions without the need for any 

complex or dispersive optics. The incorporation of our design into a mapping system allows 

spectral imaging from centimeter-scale image planes down to lensless, single-cell scale in-situ 5 

measurements.  

Whilst epitaxial growth of thin-films with wide spatial compositional gradients is 

fundamentally difficult due to lattice mismatch with the substrate, the nanowire growth interface 

is independent of the substrate once nucleated (12). As such, nanowires can afford an almost 

arbitrary number of material systems to be alloyed into the same nanostructure through adjusting 10 

source vapors during growth (13, 14). This makes our spectrometer design highly versatile; the 

growth of nanowires with different composition-engineering straightforwardly realizes systems 

that could operate across any wavelength range from the infrared to ultraviolet (11, 15, 16).  

Fig. 1. Nanowire spectrometer design. (A) Real-color photoluminescence (PL) image of a typical 
compositionally-graded CdSxSe1-x nanowire and corresponding spectra collected from marked 15 
representative regions (spot size ∼5 µm). Scale bar: 20 µm. (B) Fluorescent micrograph (top) of a typical 
nanowire spectrometer, incorporated into a packaged chip. Scale bar:10 µm. (C) I-V curves measured 
between two typical neighboring electrodes at the red (CdSe) end of the nanowire, illuminated with 
different intensities of 490 nm light. (D) Time response of the same photodetector unit under pulsed incident 
light (490 nm, 0.3 mWcm−2) under 0.5 V bias. Dotted lines indicate 10 % and 90 % of peak value, as used 20 
for calculating the rise (1.5 ms) and fall time (3.5 ms). (E) Normalized spectral responses Ri(λ) of each 
constituent unit in a typical spectrometer, with cut-off wavelengths varying continuously along the 
nanowire. (F) Operational schematic of the nanowire spectrometer. (G) Simulated spectral response Ri(λ) 
and photocurrent Ii. Photocurrent is equal to the red area which indicates the integral responses to the 
incident light. (H) Mathematical description of the relation between F(λ), Ri(λ) and Ii. (I) Spectral 25 
reconstruction via solving the equation set. (J) Reconstructed spectrum of the simulated incident light F(λ). 

 
The active element in our spectrometer is a compositionally-graded semiconducting CdSxSe1-

x nanowire (17, 18), in which one end is composed mainly of elements Cd and S, and the other 

mainly of Cd and Se [(19), section MM1]. This corresponds to a continuous gradient of bandgaps 30 

spanning from 1.74 to 2.42 eV along their length (Fig. 1A). After transfer to a Si/SiO2 substrate, 
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electron-beam lithography is used to fabricate an array of parallel In/Au electrodes on the nanowire 

(Fig. 1B) [(19), section MM2]. To achieve stable electrical contacts, the nanowires are treated 

under nitrogen plasma, followed by immersion in ammonium sulfide solution immediately prior 

to metallization. The device is then encapsulated in Al2O3 via atomic layer deposition, to further 

enhance measurement stability [(19), section ST1]. Typical photodetector units, defined as 5 

between two neighboring electrodes, exhibit photoresponsivities of up to ∼1.4  104 AW−1 (Fig. 

1C and Fig. S10) with a fast response and recovery time (∼1.5 and ∼3.5 ms, respectively, Fig. 

1D). After fabrication, the spectrometer is calibrated by measuring the photocurrent as a function 

of wavelength for each of the n units [(19), section MM3]; these spectral response functions, Ri(λ), 

where (i = 1, 2, … n), exhibit cutoff wavelengths that vary along the length of the nanowire (Fig. 10 

1E). 

During operation of the spectrometer (Fig. 1F) incident light represented by an unknown 

function, F(λ), illuminates the device. Due to the small physical dimensions of the nanowire, we 

consider that the flux is spatially uniform across the device (Fig. S6). A data selector scans the 

photocurrent generated between each electrode pair, followed by signal processing. The measured 15 

photocurrent data, together with the pre-calibrated response functions are then processed (Figs. 

1G-J) to reconstruct F(λ) by solving a system of linear equations: 

∫ 𝐹(𝜆)𝑅𝑖(𝜆)
𝜆2

𝜆1

𝑑𝜆 = 𝐼𝑖         (𝑖 = 1,2,3 … , 𝑛)                                          (1) 

where λ1 and λ2 define the spectrometer’s operational wavelength range. Note that the 

reconstruction is only possible for incident light wavelengths within this range. The photocurrent 20 

Ii is the integral of F(λ)Ri(λ) over the wavelength range (Fig. 1G, right-hand panels). For a 

spectrometer with n photodetector units, there are n sets of equations. Solving these equations by 

ordinary non-iterative methods is liable to breakdown because measurement errors in both Ri(λ) 
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and Ii make the equations ill-posed (6, 20, 21). In this case, the reconstructed target spectrum is 

fully distorted at the existing system noise level (Fig. S11). Further to minimizing measurement 

instabilities through optimizing fabrication, we introduce an adaptive Tikhonov regularization 

scheme to reduce the influence of these errors during the reconstruction [(19), section MM4 and 

Fig. S12]. The algorithm uses a linear combination of Gaussian basis functions with different 5 

amplitudes to fit the target spectrum (Fig. 1J). 

Fig. 2. Characterization of nanowire spectrometers. (A) Measurement and reconstruction of a single 
spectral peak at 560 nm using a 30- and 38-unit device, relative to the same signal measured by a 
conventional spectrometer (Thorlabs CCS100, 0.5 nm wavelength accuracy). Arrows indicate FWHM. (B) 
Two mixed narrow-band signals, with peaks separated by 15 nm, are resolved by the devices from A. 10 
(C),(D) Spectrum of a broadband light signal (C) and spectra of a range of monochromatic peaks across the 
operational wavelength span (D) as measured and reconstructed using the 38-unit device. 

 
We demonstrate the capability to reconstruct varied incident light spectra using two different 

nanowire spectrometers containing 30 and 38 photodetector units (Fig. 2). In resolving 15 

monochromatic light (Fig. 2A), the minimum reconstructed FWHM is equivalent to the optimal 

bandwidth of basis functions, which are ∼8.5 nm and 7 nm for the 30-unit and 38-unit 

spectrometer, respectively. The spectrometers can resolve two peaks around 570 nm separated by 

15 nm (Fig. 2B); peaks become indistinguishable once the separation is decreased to 10 nm (Fig. 

S13). Despite a reduction in footprint of ~2-3 orders of magnitude, such resolution is comparable 20 

to that of other visible-range spectral reconstruction microspectrometers, and commercially-

available centimeter-scale systems (Table S1). Continuous broadband spectra can also be 

measured and reconstructed (Fig. 2C).  

A number of routes exist to improve the resolution and reconstruction accuracy [(19), section 

ST2], through either collecting a greater quantity of measured data (Ri(λ) and Ii), or reducing the 25 

prevalence and impact of measurement errors. The former can be achieved by increasing n, as 

demonstrated through comparison of the 30- and 38-unit devices (Figs. 2A, B) as well as device 
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simulations (Fig. S14), or by increasing the sampling resolution in Ri(λ). Addressing the latter, 

photocurrent magnitude and stability could be enhanced through further optimization of the 

nanowire growth or device fabrication and passivation. Additionally, at the calibration stage a light 

source with a narrower linewidth would reduce errors arising in Ri(λ), whilst advancing the 

algorithm could enable more intelligent dampening of errors during the reconstruction process.  5 

Monochromatic reconstruction performance remains consistent across the spectrometer’s 130 

nm bandwidth (Fig. 2D). Note that the spectral range is primarily limited by the material 

composition used in our nanowires. This could be readily increased by choosing other material 

compositions such as ZnxCd1-xSySe1-y (1.74-3.54 eV) (15), InxGa1-xN (0.7-3.43 eV) (16) and Si1-

xGex (0.66-1.12 eV) (11), enabling devices with spectral responses spanning from UV to infrared. 10 

Furthermore, in defining a bespoke set of spectral responses for each spectrometer, the calibration 

procedure acts to negate uncontrolled nanowire growth defects or minor fabrication variations 

between devices. This presents a significant advantage in the device manufacturability, taken 

alongside the scalability of all fabrication processes involved [(19), section ST4]. 

Correspondingly, reconstruction accuracy is reproducible across two devices with the same unit 15 

number (Fig. S15). Additionally, potential failure of individual units can be recognized and 

mitigated by the algorithm with minimal loss of reconstruction accuracy (Fig. S16). Performance 

of the spectrometers remains stable over two months, maintaining peak positional accuracy within 

1 nm without recalibration (Fig. S17). 

Fig. 3. Scanning spectral imaging at the macroscale. (A) Schematic of spectral imaging by our nanowire 20 
spectrometer. A bandpass filter is used to remove signals outside the detectable range of the spectrometer. 
Spectral imaging is conducted by scanning the nanowire spectrometer on the focal plane in a serpentine 
pattern. (B) Each pixel contains a photocurrent value from each photodetector unit, forming an initial data 
cube. (C) A spectral data cube is computationally reconstructed from the photocurrent data cube. (D) A 
series of reconstructed images at selected wavelengths. The intensity range of these images is normalized. 25 
(E) Pseudo-colored spectral image converted from the spectra according to CIE color matching functions. 
(F) Spectra of points A and B in (E), measured by a nanowire spectrometer and a conventional spectrometer. 
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In many fields, such as astronomy (22), precision agriculture (23) and nanophotonics (24), 

spectral imaging [(19), section ST3] is in high demand to cross-analyze spectral and spatial 

information. We demonstrate spectral imaging using our 38-unit nanowire spectrometer via a 

spatial point-scanning strategy. An image is focused by a lens onto the device, which is then 5 

scanned across the focal plane on centimeter scales (Fig. 3A). In this scheme, the resolution is 

defined by the mapping step used, which can be equal to or larger than the device footprint; here 

we use a step of 0.3 mm. Photocurrents measured at each mapping step are recorded in a 3D (x, y, 

Ii) data cube (Fig. 3B). This initial cube is then converted to a spectral data cube (x, y, λ) by the 

reconstruction algorithm (Fig. 3C). Cross sections of this cube in the x-y plane are equivalent to 10 

single-wavelength spatial mapping (Fig. 3D). Applying standardized (International Commission 

on Illumination) color matching functions to the spectral cube produces a pseudo-colored image 

which is consistent with the original photograph (Fig. 3E). In addition, the reconstructed spectra 

are in good agreement with conventional spectrometer measurements of the same points (Fig. 3F).  

Fig. 4. Spectral imaging at the micron scale. (A) Schematic illustrating the shift register scanning strategy 15 
used when required pixel size is less than the spectrometer length. (B) Initial photocurrent data cube; each 
layer is shifted as each pixel is scanned by each unit in turn. (C) Schematic of the operation of cell mapping. 
(D) Photograph of the cell mapping apparatus. (E) Micrograph of a naturally pigmented red onion cell 
surrounded by transparent cells. Scale bar: 50 µm. (F) Absorption spectral images of the onion cell at 
selected wavelengths. Pixel intensity range of these images is normalized. (G) Reconstructed absorption 20 
spectra from different parts of the red onion cells. 
 

Furthermore, we demonstrate in-situ, micrometer-scale spectral imaging using our nanowire 

spectrometer, which has long been a great challenge across fields such as cytobiology and 

biomedicine (25, 26). Given the typical footprint of the spectrometers is between 50-100 µm, the 25 

scanning method above must be adapted to achieve these resolutions. We adopt a shift register 

strategy, which sequences the measured photocurrent data with the measurement location for each 

unit (Fig. 4A). The spectral image data cube is reconstructed from the overlapping register region 
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of the initial photocurrent data cube (Fig. 4B). The scanning step can be any integer multiple of 

the electrode array’s pitch, meaning the maximum resolution is limited by the width of one unit 

(~1 µm for current devices).  

A red onion cell membrane, featuring naturally colored cells surrounded by transparent 

cells, is mounted onto the holder and positioned over the nanowire spectrometer with a gap of 5 

several µm (Fig. 4C, D). During imaging, the nanowire spectrometer scans across the x-y plane 

beneath the membrane surface, under illumination by white light through the aperture, with a fixed 

mapping step (Fig. 4E). In this case, a step size of 10 units is chosen to shorten imaging time and 

avoid the cell membrane drying out during the measurement. Constrained by our stage setup, 

imaging time is currently limited by the movement and adjustment between points. More 10 

sophisticated scanning or imaging technologies [(19), section ST3] would allow higher resolution 

scans within the same timeframe. High-speed measurement could also be achieved through the 

development of a snapshot spectral imaging system based on a 2-dimensional spectrometer array.  

The intensity maps at fixed wavelengths and reconstructed absorption spectra for different points 

on the onion cells (Figs. 4F, G) illustrate the potential of these spectrometers to obtain spectral 15 

images at the cellular level.  

The use of single compositionally-engineered nanowires enables an entire spectroscopy 

system to be miniaturized down to a scale of tens of micrometers, which could open new 

opportunities for almost any miniaturized spectroscopic application, including lab-on-a-chip 

systems, drones, implants, and wearable devices. Our proof of concept demonstrates a simple, 20 

versatile platform that can be expanded upon through a number of avenues by altering either the 

hardware or software of the system. Our study offers a practical step forward for other light 
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sensitive nanomaterials to be directly exploited for customized design of ultra-miniaturized 

spectroscopy systems.  
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