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ABSTRACT: Aortic stenosis is a heterogeneous disorder. Variations in 
the pathological and physiological responses to pressure overload are 
incompletely understood and generate a range of flow and pressure 
gradient patterns, which ultimately cause varying microvascular effects. 
The impact of cardiac-coronary coupling depends on these pressure and 
flow effects. In this article, we explore important concepts concerning 
cardiac physiology and the coronary microcirculation in aortic stenosis and 
their impact on myocardial remodeling, aortic valve flow patterns, and 
clinical progression.

“There is a form of cardiac lesion, not infrequent in occurrence, which has 
a clinical picture so characteristic that it deserves more frequent recognition 
than it commonly receives.”

Henry A Christian, 18th July 19311

Severe symptomatic aortic stenosis (AS) has a bleak prognosis2,3 and no medi-
cal treatment exists. As the population ages, the clinical importance and bur-
den of AS are increasing, yet its diagnosis and management are multifaceted, 

especially in the era of percutaneous interventions. AS is characterized by progres-
sive valve narrowing, which clinically manifests as dyspnea, syncope, and angina 
despite normal coronary arteries, and patients have a truncated life span of around 
2 years without intervention. However, symptomatology is subjective and con-
founded by comorbidities (particularly in the aging population), and assessment of 
transvalvular pressures is heavily flow dependent. The clinician is therefore faced 
with the challenge of evaluating discordant parameters and balancing the poten-
tial risks and benefits of valve intervention.

In 1616, William Harvey was the first to propose that blood circulates because 
of pulsatile cardiac force.4 Interactions between the cardiac cycle and coronary 
circulatory flow were described in 1696 by Scaramucci who suggested that the 
coronary vasculature is filled in diastole and squeezed empty during systole.5 
Cardiac-coronary coupling is pertinent in AS because alterations to the coronary 
microcirculation are synonymous with the pathophysiology of progressive disease. 
Disruption to the coronary circulation by ventricular hypertrophy, high left ven-
tricular pressure, low coronary perfusion pressure, and extravascular forces (among 
many other factors) reduce physiological reserve. The ominous symptom of angina 
correlates with impaired myocardial perfusion reserve and is strongly associated 
with increased ventricular mass index.6 The fact that clinical symptoms occur at 
the end of the ischemic cascade (whereas perfusion abnormalities can be detected 
earlier) places great expectation on the physiological evaluation of AS.7 https://www.ahajournals.org/journal/
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Patients with aortic stenosis and an aortic valve 
area (AVA) < 1 cm2 exhibit distinct pathophysiological 
responses to pressure overload. The ventricle remodels 
in response to pressure overload in different ways, gen-
erating a range of flow and pressure gradient patterns 
which ultimately cause varying microvascular effects. 
Detailed understanding of the pressure-flow relation-
ship in this setting is important in fully understanding 
a patient’s symptoms and the complex relationship 
between disrupted coronary flow, left ventricular 
mechanics, and surrogate markers of ischemia.

CARDIAC-CORONARY COUPLING IN 
HEALTH
Normal resting coronary blood flow comprises around 
4% of total cardiac output,8 and both oxygen extrac-
tion and the myocardial metabolic rate are high when 
compared with skeletal muscle. During the cardiac cycle, 
cardiac contraction cyclically increases intramural tissue 
and microvascular pressures to impede systolic flow. 
This contraction induces greater subendocardial resis-
tance and blood displacement in comparison with the 
subepicardium.9,10 Once the aortic valve closes and left 
ventricular (LV) relaxation ensues, the coronary vessels 
embedded in the myocardium recoil and blood flow 
accelerates. Coronary flow is dictated by this effect of 
cardiac contraction—the intramyocardial pump—which 
pushes blood backward and draws it in during systole 
and diastole, respectively,11 (Figure 1)12,13 but is also mod-
ulated by aortic and LV pressure, and inotropic state.

The waterfall model14 proposes that external hydro-
static vascular pressure causes temporary partial col-
lapse of the lumen. Distal luminal pressure therefore 
becomes similar to external (or intramyocardial) tissue 
pressure. This external pressure is presumed to result 
from intraventricular cavity pressure, creating a force 
against the myocardial walls that reduces from sub-
endocardium to subepicardium. The intramyocardial 
pump model15 expands on this further to allow phase-
lag between arterial and venous flows and the role of 
vascular compliance. Subendocardial vulnerability to 
ischemia in normal hearts therefore reflects changes in 
2 main factors16:

1. Increased tension because of systolic compression 
and increased subendocardial wall stress, accom-
panied by increased myocardial oxygen require-
ments.17 Both invasive and noninvasive studies 
have demonstrated increasing intramyocardial 
pressure from the epicardial to the endocardial 
surface of the ventricular wall.18–20

2. Decreased subendocardial perfusion, secondary to:
(a)  Systolic backflow from endocardial to epi-

cardial vessels causing preferential epicardial 
blood flow.21

(b)  Thinned subendocardial vessel walls relative 
to their respective subepicardial counter-
parts22,23 making them more prone to external 
pressure and stress.

(c)   Greater subendocardial vascular volume 
density24—although, with fewer (but larger) 
perfusion territories, the subendocardium 
is perfused by a small subset of penetrating 
arteries (Figure 2).25,26

According to Laplace law, circumferential wall tension is 
equal to the product of the vessel pressure and radius, 
divided by wall thickness (T=P.r/Th) meaning that the 
diameter-to-thickness ratio of the vessel or chamber 
plays an important role. Wall tension and extravascular 
compressive forces are therefore greatest in the inner-
most layers of the LV wall. Supporting intramyocardial 
pressure as a strong determinant of subendocardial 
blood flow, an early study on anesthetized dogs dem-
onstrated a flow gradient favoring the subendocardium 
during hyperemia in cardiac arrest (thereby minimiz-
ing intramyocardial pressures). However, when tissue 
pressures were maximized by rapid pacing and coro-
nary perfusion maintained through autoperfusion, the 
gradient of flow favored the subepicardium.27 At low 
preload, intramyocardial pressure shuts off systolic cor-
onary blood flow across the entire LV wall.28 Conversely, 
there is preferential subepicardial blood flow at high 
preload.29 Coronary blood flow is therefore a balance 
between intravascular arterial and extravascular tissue 
pressure.30

MYOCARDIAL BLOOD SUPPLY IN 
HEALTH
The coronary vascular bed acts as the primary gate-
keeper to myocardial blood supply. Resting myocardial 
blood flow (MBF) is the greatest in the subendocardium 
(endocardial/epicardial flow ratio 1.29–1.3511,31), but 
subepicardial MBF is augmented during adenosine-
induced hyperemia to a greater extent. During sys-
tole, there is significant subendocardial underperfusion 
because of the aforementioned physical determinants 
(transmural perfusion endocardial to epicardial ratio 
0.3811). After a period of ischemia, reactive hyperemia 
is earliest in the subepicardium,9 and this delayed sub-
endocardial response is thought to be because of slug-
gish reopening of the coronary vasculature embedded 
in ischemic, poorly compliant myocardium.

Among many other mechanisms, the gradient in 
coronary perfusion pressure (difference between aor-
tic and LV end diastolic pressure) facilitates coronary 
perfusion, and flow is determined by the product of 
the net velocity-time integral and cross-sectional arte-
rial area (Q=VA). The largest cross-sectional area exists 
in the microvasculature where reduced velocity allows 
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adequate time for capillary bed gas transfer. In normal 
hearts, aortic and LV pressures are coupled during sys-
tolic ejection and higher perfusion pressure gradients 
enable coronary perfusion during diastole. There is a 
nonlinear connection between cross-sectional area and 
transmural pressure because vascular tone is influenced 
by metabolic/neurohormonal mediators and physical 
forces. According to Ohm’s law, flow through a vascular 
bed is equal to the perfusion pressure gradient divided 

by vessel resistance, 8ηl/πr4 (Hagen-Poiseuille equation, 
where η is blood viscosity, l is vessel length, and r is ves-
sel radius). Microvascular resistance is therefore primar-
ily determined by lumen diameter and vasodilatation is 
the principle means of microcirculatory autoregulation.

During maximal coronary vasodilatation, coronary 
flow depends on the relative duration of diastole.32 This 
diastolic time fraction (the length of diastole/length 
of cardiac cycle) has an inverse relationship with heart 
rate and is also determined by other modulators of sys-
tolic duration (such as altered myocyte contraction). 
Decreased coronary perfusion pressure induces an 
increase in diastolic time fraction, which in turn reduces 
the duration of intramyocardial vessel compression.

CORONARY WAVE INTENSITY 
ANALYSIS
Studies of wave intensity analysis have identified 4 main 
coronary waves within the cardiac cycle in health and 
disease33 (Figure 3).

Quantification of net wave intensity through the 
product of changes in pressure and flow velocity makes 
it possible to segregate components of coronary flow 
into forward or backward traveling waves from the 
aorta or microcirculation, and those caused by suction 
(expansion) or compression—blood can be pushed into 
or pulled out of the coronary circulation. Flow from 
the coronary circulation to the myocardium is largely 
determined by the prominent backward expansion 
wave (BEW), originating at the onset of LV relaxation. 
The decelerating backward compression wave and for-
ward expansion wave impede coronary flow, while the 
BEW and forward compression wave are accelerating 
waves. Information concerning the size, direction, and 

Figure 1. Myocardial contraction results in muscle shortening and 
thickening to cause extravascular coronary compression.  
The mechanism of myocardium-vessel interaction is a collective effect of 
contraction-induced intramyocyte pressure and LV pressure-derived interstitial 
pressure.12 Adapted from Westerhof et al13 with permission. Copyright 
©2006, The American Physiological Society.

Figure 2. Structural and functional coronary and myocardial changes during the cardiac cycle and vasodilator stress.  
A, Diagrammatic representation of the extravascular forces and intraluminal pressures affecting myocardial layers, demonstrating greater subendocardial contrac-
tion during systole. B, Perfusion quantification map in a patient with AS (rows from top to bottom are basal, mid, and apical slices, respectively, with stress, rest, 
and myocardial perfusion reserve [MPR] in columns left to right). Global endocardial-epicardial gradient 0.9, MPR 2.0. PINTRAMURAL indicates intramural pressure; 
PLUMEN, pressure in the left ventricular lumen; and PPERICARDIUM, pressure in the pericardial space. Adapted from Duncker and Bache and Bell and Fox25,26 with permis-
sion. Copyright ©2008, The American Physiological Society.
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duration of coronary waves throughout the cardiac 
cycle has helped us understand coronary flow in normal 
hearts, in AS,19 and transcatheter aortic valve implanta-
tion (TAVI),34,35 hypertrophic cardiomyopathy36 and sev-
eral other settings.33,37–42

CARDIAC-CORONARY COUPLING IN AS
The pathophysiology of calcific degenerative AS has 2 
distinct phases: initiation and propagation.43 The for-
mer overlaps with the development of atherosclerosis, 
centered around endothelial disruption and activation 
of inflammatory responses. Progressive AS induces left 
ventricular hypertrophy (LVH) to increase contractile 
force and reduce wall stress44 in response to progressive 
and eventually insurmountable afterload. Compressive 
forces resulting from rising intracavitary pressure deter-
mine coronary perfusion pressure and limit coronary 
circulatory response to increased myocardial demand—
an association related to the extent of LVH.45 Oxygen 
requirements increase while perfusion through the 
small perforating coronary network is compromised 
by fixed elevated systolic wall stress46,47 and reduced 
relative capillary density,48,49 creating supply-demand 
mismatch. These structural changes of vascular rarefac-
tion, compressive forces, and perivascular fibrosis and 
functional changes, such as reduced diastolic perfusion 
time (DPT, defined as [RR interval]−[S1-S2 interval]×heart 
rate) and endothelial and smooth muscle dysfunction, 
all exert adverse effects.

Preferential coronary flow shifts from the endocar-
dium to epicardium resulting in a significant decrease 
in subendocardial (but not subepicardial) MBF.50 This 
reversal of normal endocardial-epicardial blood flow 
ratio51 at rest is fundamental to the pathophysiology of 
AS, resulting in subendocardial ischemia,52 apoptosis,47 
and fibrosis—clinically manifest as angina despite nor-
mal epicardial coronary arteries. Noninvasive detection 

of this shift in resting endocardial-epicardial ratio could 
be used to guide timing of valve intervention.

Severe AS exhibits an array of flow parameters, but 
there is significant LV outflow tract obstruction in all 
forms, typically accompanied by LVH,53 which may cause 
dynamic obstruction in late systole with systolic anterior 
motion of the mitral valve. Unlike hypertrophic cardio-
myopathy, where there is a strong linear relationship 
between peak-to-peak gradient and peak instantaneous 
gradients, significant scatter exists in AS patients.54

One study demonstrated that severity of AS and 
parameters of LV workload (but not LVH or diastolic 
indices) have important roles in determining coronary 
flow reserve (CFR).55 Another study, however, correlated 
impaired perfusion reserve with valve stenosis, myocar-
dial fibrosis, and strongly with LVH.45 Cardiac amyloid is 
common in this population and may confound results.

There are strong similarities in the pathogenic mani-
festations of AS and hypertension, that is, interstitial 
and perivascular fibrosis, cardiomyocyte hypertrophy, 
reduced DPT, increased diastolic filling pressure (com-
pressing the endocardium) and diastolic dysfunction, 
capillary rarefaction,51 and arteriolar remodeling.56 
However, key differences exist. The BEW is the most 
important contributor to coronary blood flow and a 
measure of microcirculatory function—it is increased at 
rest in AS34,35 but reduced in isolated LVH,33 probably as 
a result of lower wall stress and slower isovolumetric 
LV relaxation (dP/dtmin). Furthermore, there is a direct 
relationship between systolic coronary velocity and sys-
tolic perfusion pressure in hypertensive patients with no 
AS—extravascular compressive forces which normally 
impede systolic coronary flow may be overcome in the 
setting of higher perfusion pressure.57

After TAVI or surgical aortic valve replacement, there 
is restoration of myocardial perfusion, oxygenation, 
energetics, and contractility, accompanied by improved 
microcirculatory function as a result of the relief of 

Figure 3. The 4 dominant coronary waves 
during the cardiac cycle in relation to hemo-
dynamic indices (not to scale).  
BCW indicates backward compression wave; 
BEW, backward expansion wave; FCW, forward 
compression wave; and FEW, forward expansion 
wave.
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mechanical obstruction and wall stress, and even-
tual LVH regression.58,59 Indexed stroke volume drops 
sharply (41±8 to 33±10 mL/m2; P<0.001) as a result 
of increased systemic vascular resistance (P<0.0001), 
despite no clear difference in global afterload mea-
sured by valvulo-arterial impedance (Zva).60 Hyperemic 
microvascular resistance (hMR) decreases after TAVI, 
independent of resting hemodynamics.61 Remaining 
hypertrophy continues to influence coronary physiology 
with improved (but not normalized) CFR.

DISRUPTED CORONARY FLOW IN AS
Microcirculatory autoregulation induces vasodilation 
to minimize microvascular resistance and increase 
total resting MBF, resulting in reduced CFR62,63 and 
MPR64 because of paired inability to further vasodilate 
(Figure 465). Low coronary perfusion pressure,66 extra-
vascular compressive forces,67 and reduced DPT46,56,61 all 
seem to play a role. Reduced DPT because of prolonged 
systole in AS supports the maldistribution theory.68

In contrast to normal physiology, the relative con-
tribution of accelerating waves to total wave intensity 
decreases with exercise and hyperemia in AS.19 The con-
trary is true for decelerating waves: the backward com-
pression wave increases with exercise and hyperemia, 
thereby hampering flow and driving ischemia. Davies 
et al34 analyzed wave intensity in the left main stem at 
programmed heart rates before and after TAVI (albeit 
without inducing hyperemia) and demonstrated pro-
gressive reduction (rather than the expected increase) in 

the BEW with increasing heart rate. This paradoxically 
blunted microvascular response normalized after TAVI 
where induced tachycardia caused the BEW to increase 
rather than decrease, probably because of a sharp 
reduction in afterload. A chronological summary of rel-
evant coronary physiology and aortic stenosis studies is 
displayed in Table I in the Data Supplement.

Before valve intervention, forward flow is delayed, and 
peak systolic flow and velocity-time integral reduced.69 
In comparison to normal hearts, the aortic-ventricular 
diastolic relationship impairs coronary perfusion.34,70 
After TAVI, however, all coronary waves augment (apart 
from the backward compression wave35), inducing an 
immediate increase in coronary flow.71 In particular, 
the forward compression wave improves and its onset 
is shortened.35 Increased aortic diastolic pressure (with 
consequent forward pressure at the coronary ostia) 
accompanied by decreased LV end diastolic pressure 
and increased DPT causes an elevated driving pressure 
across the coronary bed. In part, improved forward flow 
may be because of the resolution of abnormal helical 
and eccentric vertical flow patterns seen in AS,72 which 
reduce high fluid pressure and the associated Venturi 
effect in the proximal aorta and coronary ostia.

LV systolic wall stress index and peak systolic flow 
velocity73 are tightly knit, suggesting that extravascu-
lar compressive forces change systolic flow, although 
these changes are independent of LV mass. This may 
explain why CFR may not respond immediately to relief 
of valve obstruction but improves after 1 year.74 Other 
studies have also demonstrated improved subendocar-
dial blood flow at 2 weeks,50 CFR at 6 months,75 and 
indexed myocardial perfusion reserve at 8 months45 
after valve replacement. The evidence is strong for 
structural and hemodynamic effects as the cause of 
myocardial ischemia in AS.

The pathophysiological and clinical manifestations 
of coronary microvascular dysfunction, described as 
heightened sensitivity to vasoconstrictor stimuli associ-
ated with limited vasodilator capacity, have been previ-
ously classified56 (Table).66

Coronary physiological response to hyperemia can 
also be grouped into 4 categories, depending on the 
presence of normal or abnormal CFR (>2.0 and <2.0, 
respectively) and normal or abnormal hMR (<1.7 and 
>1.7 mmHg/cm per second, respectively).76 The refer-
ence standard of microvascular dysfunction is invasive 
measurement of coronary vascular resistance using 
pressure and flow during hyperemia,77 where hMR is 
calculated by dividing the mean distal coronary pres-
sure (Pd) by the hyperemic average peak Doppler flow 
velocity. However, hMR does not determine global 
microvascular dysfunction but minimal static resistance 
which is strongly dictated by microcirculatory remodel-
ing—either intrinsic (arteriolar remodeling or capillary 
rarefaction) or extrinsic to the vascular tree.

Figure 4. Impairment of coronary flow reserve in progressive aortic 
stenosis (AS): simulated resting and hyperemic mean coronary blood 
flow as a function of the severity of AS and estimated orifice area.  
Induced hyperemia is fundamentally important during circulatory assessment 
in AS because adaptive hyperemia is already established at baseline—several 
well-cited studies are flawed in this respect. AVA indicates aortic valve area. 
Adapted from Garcia et al65 with permission. Copyright ©2009, The American 
Physiological Society.
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Two reasons for reduced CFR in AS have been 
proposed. The first hypothesis is that inherent micro-
vascular dysfunction elaborates ischemia, as initially 
proposed by Ahn et al6 who demonstrated reduced 
myocardial perfusion reserve in patients with AS and 
angina using perfusion cardiac magnetic resonance 
imaging (without reporting hemodynamic or micro-
vascular mechanisms).77 The second is that ischemic 
signs and symptoms result from high wall stress and 
mechanical effects in response to AS, supported by 
improvement of coronary physiological indices imme-
diately after TAVI.

Transmural CFR and subendocardial-to-subepicardial 
perfusion ratio fall directly with decreased hyperemic 
DPT in AS (measured using positron emission tomog-
raphy) and improve with increased hyperemic DPT 
and increased AVA after surgical aortic valve replace-
ment,46,74 supporting a prominent role for hemody-
namic conditions in determining CFR—microvascular 
disease would be expected to yield uniformly reduced 
transmural perfusion without a gradient.77 Equally, 
myocardial perfusion reserve may be low in AS patients6 
because of the resting increase in perfusion (rather 
than reduced stress perfusion) because since myocar-
dial perfusion reserve is a relative ratio of stress-to-rest 
of the magnetic resonance signal,77 and independently 
associated with exercise capacity.64 Intrinsic endothe-
lial dysfunction does not correlate convincingly with 
hemodynamic factors that are promptly corrected after 
TAVI61—proposed mechanisms impacting disrupted 
microvascular function are illustrated in Figure 5.

Lumley et al19 found that perfusion efficiency during 
exercise in patients with AS was reduced when com-
pared with normal patients, as a result of augmented 

early systolic deceleration waves (backward compression 
wave) and attenuated rise in systolic acceleration waves 
(forward compression wave). Importantly, further assess-
ment found that AS patients and those with normal 
hearts are able to reduce microvascular resistance to the 
same extent.19 Decreased hMR after TAVI independent 
of resting hemodynamics has also been demonstrated 
in patients with severe AS (not differentiated into flow 
or pressure gradient status).61 Clearly, both intra- and 
extra-myocardial pressures dictate coronary supply and 
a combination of factors is likely to be responsible for 
the distortion of coronary flow and impaired CFR in AS.

AORTIC VALVE FLOW AND PRESSURE 
GRADIENTS
The adaptive compensatory response to AS ultimately 
become maladaptive and results in cardiac decompen-
sation, yet there are several guises with distinct ana-
tomic and physiological characteristics (Figures  6 and 
7).78 Normal-flow high-gradient AS usually provokes 
concentric hypertrophy, whereas paradoxical low-flow 
low-gradient (pLFLG) AS patients demonstrate concen-
tric remodeling.79

The ventricular adaptive response to high afterload 
in combination with valve obstruction is poorly under-
stood and may be more varied than is currently appre-
ciated. Flow and stroke volume can both be reduced or 
normal in patients with preserved and reduced LV ejec-
tion fraction (LVEF).80 While there is clear consensus 
that symptomatic AS with AVA <1cm2, peak velocity 
(Vmax) >4 m/s, and mean pressure gradient >40mmHg 
warrants intervention, diagnostic ambiguity exists in 
patients with a small AVA and lower pressure gra-
dients (despite preserved LVEF) where lower stroke 
volumes contribute significantly to discrepancies.81 
Aging, hypertension, diabetes mellitus, and dyslipid-
emia are associated with microvascular dysfunction 
and impaired CFR, and there is a higher proportion of 
diabetes mellitus and hypertension in pLFLG cohorts. 
These, in turn, are associated with an intrinsic likeli-
hood of impaired CFR,82–84 arising as a consequence 
of nonendothelium-dependent disorders of nitric oxide 
metabolism, dysregulation of inflammatory cytokines, 
estrogen, or adrenergic receptors, and alterations in 
expression or production of local vasoactive substances 
such as angiotensin II and endothelin.66

Low-gradient groups may be more susceptible to 
microvascular disturbance, as evidenced by a higher 
burden of subendocardial fibrosis on cardiac magnetic 
resonance.85 Since the first description of pLFLG AS by 
Hachicha et al,86 there have been conflicting reports 
and evidence concerning the underlying pathophysiol-
ogy. Accounting for up to 35% of severe AS cases (with 
a female preponderance), many are undiagnosed and 
surgical referral is frequently delayed or overlooked. 

Table. Classification of Coronary Microvascular Dysfunction66

Clinical Setting
Main Pathogenetic 

Mechanism

Type 1 

Absence of 
myocardial or 
obstructive coronary 
artery disease

Risk factors

Microvascular angina

Endothelial dysfunction

Smooth muscle cell 
dysfunction

Vascular remodeling

Type 2

Myocardial disease

Hypertrophic 
cardiomyopathy

Dilated cardiomyopathy

Anderson-Fabry disease

Amyloidosis

Myocarditis

Aortic stenosis

Vascular remodeling

Smooth muscle cell 
dysfunction

Extramural compression

Luminal obstruction

Type 3

Obstructive coronary 
artery disease

Stable angina

Acute coronary 
syndrome

Endothelial dysfunction

Smooth muscle cell 
dysfunction

Luminal obstruction

Type 4

Iatrogenic

Percutaneous coronary 
angioplasty

Coronary artery grafting

Luminal obstruction

Autonomic dysfunction
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The syndrome entails the perfect storm of valve, ven-
tricular, and vascular abnormalities, with valve steno-
sis, concentric LV remodeling (culminating in restrictive 
physiology), and high Zva with markedly lower systemic 
arterial compliance and higher arterial resistance.85–90

A low-indexed stroke volume predicts mortality and 
risk increases sharply when it is <35 mL/m2.91–93 Although 
still controversial, the bulk of evidence suggests that 
patients with AS and SVi <35 mL/m2 have markedly 
worse outcomes.82,86–88,92,94–106 Some discrepant stud-
ies (which include a high proportion of asymptomatic 
patients or fail to account for stroke volume)107–110 have 
been criticized for imprecise data analysis and misclas-
sification.111 The phenomenon of distinct remodeling is 
poorly understood, and there is a paucity of invasive 
data to characterize the cohort and understand factors 
that predict poor outcome and the response to valve 
intervention.

European112 and American113 guidelines provide a 
Class IIA indication for aortic valve intervention in symp-
tomatic pLFLG AS but only after careful confirmation 
of clinical, hemodynamic, and anatomic data (in the 

normotensive setting), and exclusion of pseudo-steno-
sis, where the myopathic ventricle fails to generate ade-
quate force. Although survival is improved when it is 
treated,80,99,105,106,114,115 these patients have adverse out-
comes during and after valve intervention when com-
pared with other AS cohorts,82,100,106 perhaps related 
to the burden of myocardial fibrosis.116,117 This fibrosis 
also impacts on myocardial perfusion reserve owing to 
reduced arteriolar and capillary density.

STRUCTURAL REMODELING IN LOW-
GRADIENT AS
The complex collagen weave is responsible for much of 
the ventricle’s passive diastolic stiffness,118 and remodel-
ing in response to pressure overload causes fibroblast 
proliferation and collagen I accumulation.119 Myocardial 
collagen deposition is a common end point of many 
pathologies and accompanies advanced aging.120 
Myocardial hypertrophy is detrimental to overall sur-
vival121–123 and correlates with fibrosis, impaired longitu-
dinal shortening, and worsening diastolic function. This 
fibrosis associated with AS124–127 is a crucial determinant 
of cardiac dysfunction and prognosis,116,124,125,128,129 
and replacement fibrosis may be the result of myocyte 
apoptosis accounting for progression to heart failure.130 
Interstitial, subendocardial, and mid-wall patterns of 
fibrosis have been demonstrated in patients with AS 
and normal coronary arteries.85,116,117,123,131–137

While endomyocardial biopsy is the gold standard 
for confirming fibrosis,138 cardiac magnetic resonance 
imaging has been widely used in its detection, either 
using T1 mapping to calculate extracellular volume frac-
tion or late gadolinium enhancement. Extracellular vol-
ume fraction can detect extracellular volume expansion 

Figure 5. Factors implicated in disrupted coronary flow and reduced coronary flow reserve in aortic stenosis.  
Compensatory mechanisms fail because of structural and mechanical effects on the ventricle and coronary circulation. There is reduced physiological reserve as a 
result of inadequate myocardial oxygen supply and increased oxygen demand. BEW indicates backward expansion wave; CBF, coronary blood flow; DPT, diastolic 
perfusion time; and VTI, velocity-time integral.

Figure 6. Classification of aortic stenosis according to flow (low-flow 
<35 mL/m2, normal-flow >35 mL/m2) and gradient (low-gradient mean 
pressure gradient [MPG] <40 mmHg, high-gradient MPG >40 mmHg).  
Low-flow low-gradient can be further subdivided into classical and paradoxi-
cal according to the presence or absence of impaired left ventricular function. 
LFHG indicates low flow-high gradient;  LFLG, low flow-low gradient; NFHG, 
normal flow-high gradient; and NFLG, normal flow-low gradient.
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with diffuse fibrosis, whereas late gadolinium enhance-
ment only identifies replacement fibrosis.139

Patients with pLFLG AS typically have more profound 
impairment of LV longitudinal function98,114,140–142 and 
more florid myocardial fibrosis, predominantly located 
in the subendocardium.85 In comparison to circumfer-
ential fibers located in the mid-wall, longitudinal suben-
docardial fibers (responsible for long-axis function)143–146 
are particularly vulnerable to microvascular ischemia 
and wall stress.85,131 Impaired longitudinal function as 
a consequence of subendocardial injury, small LV cav-
ity size, and increased wall thickness lead to reduced 
stroke volume and lower flow-dependent valve gradi-
ents.147 Reduced stroke volume is primarily because of 
deficient LV filling (rather than emptying),95 and pre-
served LVEF should not be construed as normal systolic 
function. Consistent with this theme, a recent study 
demonstrated that indexed AVA, female sex, an abnor-
mal exercise ECG and myocardial perfusion reserve (but 
not valve gradients or LV function) were independent 
predictors of event rates in moderate-severe AS.148

This distinct remodeling may be explained by 
decreased cardiac reserve resulting from chronic expo-
sure to high afterload, eventually exceeding the limit 
of compensatory mechanisms with resulting LV impair-
ment and reduced cardiac output.86 It is also possible 
that these patients have a coexisting or secondary heart 
failure syndrome, akin to heart failure with preserved 
ejection fraction,149 the cause of which is complex and 
poorly understood. Importantly, these 2 pathologies 
(which are both relatively common in older age) are 
not mutually exclusive and exhibit significant similari-
ties, including impaired LV relaxation and microvascu-
lar abnormalities.46,73,150–153 Indeed, galactin-3, a novel 

marker of myocardial fibrosis, has prognostic value in 
heart failure with reduced or preserved ejection frac-
tion154,155 and is associated with adverse outcomes after 
TAVI156—despite the lack of any association with AS 
severity.157 Patients with elevated galactin-3 before TAVI 
have lower valve gradients and reduced LVEF (although 
data were not divided into AS cohorts).156 Similarly, 
1 study revealed that low flow (but not low LVEF or 
low gradient) is an independent predictor of early and 
late mortality after TAVI in high-risk AS patients.100 
Comparable to patients with heart failure, LVEF does 
not correlate with outcomes.

Equally, the peril of low flow does not correlate with 
aortic valve calcification. There is less aortic valve calci-
fication but higher global afterload in pLFLG than other 
types of AS,80 suggesting a coexistent ventricular disease 
entity that may explain why these patients have reduced 
survival benefit after valve intervention than other sub-
groups. This would support the theory that pLFLG AS 
is not end-stage normal-flow high-gradient AS158 but a 
distinct and separate entity.159–161 Furthermore, the con-
cept of pLFLG AS as a transition stage from nonsevere 
to severe80 is undermined by a preponderance of myo-
cardial injury and adverse outcomes.

CLINICAL IMPLICATIONS OF IMPAIRED 
CORONARY FLOW
Reduced capacity to augment myocardial oxygenation in 
response to stress is a physiological hallmark of AS and 
manifest by angina, dyspnea, and syncope. Up to 40% 
of patients with AS experience angina despite normal 
coronary arteries162 and are at increased risk of sudden 
death.163 These patients have reduced MBF, impaired 

Figure 7. Patterns of cardiac remodel-
ing based on normal or increased mass 
to volume ratio (concentric remodeling 
and concentric hypertrophy) and normal 
left ventricular wall thickness (concentric 
remodeling) or hypertrophy (concentric and 
eccentric).  
Adapted from Gjesdal et al78 with permission. 
Copyright ©2011, Springer Nature.
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CFR, and increased apoptosis47 and are more likely to 
have impaired reserve6,162 and diminished exercise capac-
ity.64 One study found that low CFR was the only inde-
pendent predictor of future cardiovascular events in AS 
patients.164 Exertion accentuates the imbalance between 
supply and demand, and rising LV end diastolic pres-
sure blunts the pressure gradient required to achieve 
adequate coronary perfusion. Any rise in LV end diastolic 
pressure or fall in AVA has a deleterious effect on coro-
nary supply,35,46 and there is a strong association between 
ventricular load (measured by LV rate-pressure product) 
and decreased CFR, particularly affecting the subendo-
cardium.46 Stuttering ischemia yields subclinical LV dys-
function and apoptosis, which is linked with myocardial 
fibrosis165—an independent predictor of mortality.116

Biomarkers have an emerging role in the assessment 
of asymptomatic AS.166 High-sensitivity troponin I corre-
lates with LVH, fibrosis, and clinical event rates,134 while 
cardiac myosin-binding protein C correlates closely with 
LV mass, fibrosis, and all-cause mortality (but not valve 
gradient).167 BNP (NT-pro B-natriuretic peptide) levels 
are significantly higher in paradoxical and classical low-
flow low-gradient AS,85 and correlate with CFR ≤2.5 and 
parameters of diastolic function168—use of BNP in asymp-
tomatic AS is endorsed by recent European guidelines.112

CONCLUSIONS
Patients with AS host a caustic environment where 
impaired microvascular responses are compounded 
by high wall stress and hemodynamic load; those 
with angina (and impaired CFR) are at increased risk 
of sudden death. Progression of AS is characterized 
by discrepancies between blood supply and metabolic 
demand. There is an array of abnormalities in myocar-
dial remodeling, stroke volume, pressure gradients, 
and disordered coronary flow, which contribute to 
the signatures that determine varying AS phenotypes. 
These distinctions, which correlate with clinical out-
comes, should prompt a directive path of physiological 
research. All patients with AS are not equal and the 
optimal timing and modality of treatment might differ 
according to phenotype. Relying on peak velocity to 
determine severity is now obsolete. Timing of interven-
tion is crucial in avoiding irreversible myocardial fibrosis 
and a burnt out ventricle. Assessment of microcircula-
tory function may hold the key.
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