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ABSTRACT

The deep learning technologies have transformed many research areas with accuracy
levels that the traditional methods are not comparable with. Recently, they have received
increasing attention in the structural health monitoring (SHM) domain. In this paper,
we aim to develop a new deep learning algorithm for structural condition monitoring
and to evaluate its performance in a challenging case, bolt loosening damage in a frame
structure. First, the design of a one-Dimensional Convolutional Neural Network (1D-
CNN) is introduced. Second, a series of impact hammer tests are conducted on a steel
frame in the laboratory under ten scenarios, with bolts loosened at different locations
and quantities. For each scenario, ten repeated tests are performed to provide enough
training data for the algorithm. Third, the algorithm is trained with different quantities
of training data (from one to seven test data for each scenario), and then is tested with
the rest test data. The results show that the proposed 1D-CNN with three convolutional
layers provide reliable identification results (over 95% accuracy) with sufficient training
data sets. It has the potential to transform the SHM practice.

INTRODUCTION

Bolted connections are widely used in steel structures, such as bridges and build-
ings. Recently, they become a popular choice for the off-site construction, e.g. public
buildings, schools, and social buildings. The conditions of the connections are impor-
tant for the overall structural performance of the steel frames [1]. However, it is not
easy to assess their conditions once built, because they are normally not accessible or
”hidden”. To identify structural conditions, vibration-based structural health monitoring
(SHM) methods are most mature, compared with other non-destructive evaluation meth-
ods [2]. However, the interpretation of vibration-based monitoring data remains a major
challenge in many practical scenarios.

The vibration data interpretation methods can be generally classified into either physics-
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based or data-driven. The former has been studied predominantly in the last 20-30 years.
Despite their popularity, physics-based methods face two main challenges: first, it is of-
ten difficult to find a feature that is sensitive to structural conditions while insensitive to
the noise and uncertainties from different sources, such as materials, geometry, environ-
ment, and model. Second, such methods suffer from relatively low computational effi-
ciency due to their reliance on refined simulation models. To address these challenges,
efforts have switched into data-driven approaches in recent years, which transform the
structural condition identification problem into pattern recognition. Using such meth-
ods, the features can be generated automatically through machine learning algorithms
and thus the computational costs can be significantly reduced. Further, since the features
can be created and optimised based on the sensitivity, they may achieve better structural
condition identification results than traditional methods. The main challenge for the ex-
isting data-driven condition identification methods is that they often lack the complexity
embedded in numerous and diverse scenarios in real structures, considering different
possible conditions, environmental factors, and loading histories.

Recently developed deep learning methods [3] has enabled the modelling of com-
plexity by using multiple learning layers. Since they were introduced, they have at-
tracted significant scientific interest from different domains, and achieved revolutionary
results [3, 4], e.g. image understanding, language processing, and the game of Go. In
the SHM domain, the application of deep learning algorithms has gained increasing yet
still limited research attention [5–8]. The existing studies can be categorized into two
groups. The first group is a direct adaptation from computer vision application, i.e. de-
tecting different structural conditions based on image analysis [5, 8]. The second group
is to construct a machine learning algorithm based on a training set of vibration data
under different scenarios [6, 7]. These methods are mainly adapted from the algorithms
in image and video recognition domains, i.e. auto-encoder method and convolutional
neural networks (CNN), which classify the input data by computing the features of these
data and comparing them with those of existing data.

The network architecture of the deep learning algorithm controls its performance of
structural condition identification. Generally speaking, with deeper and wider convo-
lution layers, the network will provide more accurate training results, however, it may
lead to over-fitting problems. Therefore, how to optimise the network architecture is a
challenge in this field. Further, the quality and quantity of the available training data sets
significantly affect the identification results.The question on how many training data are
needed for the reliable training of a deep learning algorithm needs to be answered.

To address above issues, in this study, we develop a novel deep learning algorithm for
structural condition identification, and perform a challenging case study to determine the
optimal number of training samples. A series of impact hammer tests on a steel frame
with different levels of bolt connection damage, as small as just one bolt loosening, are
performed in the laboratory. The collected time-domain acceleration data from the mid-
dle point of the beam are directly used to train the developed algorithm. The results
on the performance of the algorithm are presented, with different numbers of convolu-
tional layers and different quantities of training samples. The paper will conclude with
conclusions and future recommendations.



Figure 1. Structural condition identification framework

METHODOLOGY

From the machine learning perspective [9,10], SHM is based on a hypothesis that the
monitoring data embody various patterns under different structural conditions. There-
fore, with sufficient training data sets (monitoring data X(x1, ..., xn) and their associated
structural conditions Y (y1, ..., yn)), the distances between a particular monitoring data
set xi and the existing vectors in X can be calculated. The label of xi will be assigned
to the one with the least distance.

In this paper, time domain vibration data from a single accelerometer under different
scenarios are used directly as the training data. The reason is that this kind of data contain
all the vibration information, including non-linear and transient effects which are often
missed by the frequency domain data. Further, the process is more straightforward,
because there is no need for domain transformation. The flowchart of the structural
condition identification framework is shown in Figure 1.

Since the vibration monitoring data are intrinsically time-series, i.e. one-dimensional
(1D), we constructed a 1D-CNN by adapting an existing two-dimensional (2D) CNN
model. Considering better performance and efficient training and testing, we constructed
the 1D-CNN based on the idea of the popular Alex-Net [11], which achieved revolution-
ary results in computer vision. Specifically, we adjusted all the 2D layers to 1Dmodified
the parameters and convolutional layers based on empirical results, and selected the
Adam method [12] for optimisation. The architecture of the proposed 1D-CNN algo-
rithm and its initial parameter settings are detailed in [13]. The network contains two
main parts: feature extraction and classification. The feature extraction part consists of
three 1D convolutions layers with kernel size 7, 5 and 3, each followed by a rectified
linear unit (ReLU) activation [14], and max pooling with kernel size 3 and stride of 2.
The program is written in PyTorch (https://pytorch.org).

With deeper and wider convolution layers, it is expected that the accuracy of training
will increase, but whether the test accuracy will increase will depend on whether the
network has the over-fitting problem. Therefore, we modify the classification part from
three (original) to five or more convolutional layers to address the challenging case in
this study. This helps to optimise the network architecture for this case.



Figure 2. The laboratory test set-up

LABORATORY CASE STUDY

A single bay single storey steel frame is considered in this study. The experimental
test set-up, including the geometric details of the frame and bolted connection details
with specified bolt numbers, is shown in Figure 2. The beam is connected to the columns
with the help of gusset angles and pre-tensioned bolts. A total of eight bolts with 10 mm
diameter are used with a pretension torque of 55 Nm. The pretension torque is applied
using a torque wrench. The columns are welded to the base plates which are then bolted
to the strong floor using 16 mm bolts. All the bolts used in this study are high tensile
bolts of grade 8.8.

The modal test was carried out using an instrumented impulse hammer, and six ac-
celerometers. The maximum impulse capacity of the instrumented hammer is 35584 N,
with a sensitivity of 0.023 mV/N. The instrumented hammer and the accelerometers were
manufactured and supplied by Meggitt. The accelerometers are rated at 100 mV/g with
an acceleration measurement range of 50 g. They (the impact hammer and accelerome-
ters) were connected to a National Instruments sound and vibration module, PXIe-4492,
within the National Instruments compact data acquisition module, cDAQ-9174.

The impact point was selected close to but not at the exact quarter point of the beam,
to avoid the vibration node locations. The locations of the accelerometers were esti-
mated using the algorithm of damage measurability (reference). In this study, only the
data from Accelerometer 4, which is located at the middle point of the beam, are used
as training data. Since this location is a vibration node, the vibration responses from all
the even number modes will be ignored. This increases the difficulty of structural condi-
tion identification significantly. However, in many practical scenarios, the middle point
may still be used. So this study aims to test the developed algorithm in this extremely
challenging condition.

In this study, the damage scenarios are designed to serve as challenging cases. As
listed in Table I, ten damage scenarios plus the intact scenario are considered. For each



damage scenario, ten repeated tests were performed, and the modal parameters were
identified from the average of these ten repeated tests. For scenarios 1-3, we examine
the conditions with only one bolt loosened at different location. For scenarios 4-6, we
consider the conditions with two bolts loosened with different combinations. For sce-
narios 7 and 8, we address two bolts loosened on both sides of the beam. For scenario 9,
we examine the condition with three bolts loosened. Therefore, the first nine scenarios
address the conditions that only a part of bolted connections are loosened. Indeed, most
existing studies deal with the identification of the whole connection loosened, which is
represented as scenario 10 in this work.

The identified natural frequency results is shown in Table I. Based on the results,
it can be seen that the changes of natural frequencies between the intact structure and
damaged structure up to scenario 9 are very small, and this is the same as those of mode
shapes (not presented here). Particularly, only damage scenario 10 shows approximately
5 percent change. For the rest damage scenarios, the maximum frequency changes for
all three modes are around 1 percent, except that for the second mode for scenario 9
being around 3 percent. These small changes can be easily smeared by noise and/or
other uncertainty factors. Therefore it is very challenging to identify these conditions
using the traditional modal parameter based methods.

RESULTS AND DISCUSSIONS

In this work, we first examine the effects of the number of convolutional layers on
the structural condition identification results. Our previous work [13] on the condition
identification of the whole connection demonstrated that at least three or four repeated
test data are needed for training data. Since this case addresses the condition identifi-
cation of a single bolt, which is more challenging, five repeated test data are used as

TABLE I. DAMAGE SCENARIOS AND THEIR ASSOCIATED MODAL PARAMETERS

Description
Damage
scenario

Bolts
loosened

Natural frequencies (Hz)
1st 2nd 3rd

Intact 0 All tight 82.43 258.80 563.20

One bolt loosened at one end at
different locations

1 1 83.34 254.3 563.3
2 3 83.34 254.70 564.60
3 2 82.92 254.70 563.30

Two bolts loosened at one end
at different locations

4 1 and 2 81.63 251.70 560.70
5 1 and 3 82.92 254.70 562.5
6 1 and 4 83.34 254.30 563.70

Two bolts loosened at both ends
at different locations

7 1, 2, 5 and 6 81.63 251.70 560.70
8 1, 3, 5, and 7 82.92 255.20 561.60

Three bolts loosened at one end 9 1, 2, and 3 81.21 250.90 559.00
Four bolts loosened at one end 10 1, 2, 3 and 4 78.64 245.30 550.10



Figure 3. The comparative study on different numbers of convolutional layers

Figure 4. The train accuracy using 1-7 sets of repeated test data

training data, and the rest five are used for testing. We used 1000 epochs for training.
The training and testing accuracy results are shown in Figure 3. As can be seen,

the training accuracy results using both three convolutional layers and five layers can
achieve 100%. However, the test accuracy results differ to a large degree. Specifically,
the accuracy using three layers is 96%, while that using five layers is only 89%. These
mean that with more layers, the test accuracy does not increase as expected. Further, the
network using three layers converges much quicker than that using five layers. Based on
these, we can conclude that the network with five convolutional layers has the over-fitting
problem, and therefore the one with three layers is more suitable for this case.

Secondly, we examine how many training data can deliver reliable networks for
structural identification for this case. We trained the developed 1D-CNN algorithm with
three convolutional layers for seven times, with 1-7 experimental data sets as training
data and the rest as testing data. Figure 4 shows the evolution of training accuracy re-
sults. It can be seen that the training speeds using different numbers of data sets are
almost identical. In contrast, the testing accuracy using different numbers of data sets



Figure 5. The testing accuracy using 1-7 sets of repeated test data

are quite different, as shown in Figure 5. Specifically, based on the trained network, the
best testing accuracy results using 1-7 data sets are 63, 72, 78, 89, 96, 97, 96, respec-
tively. Further, the testing accuracy results using 1-3 data sets decline over the epochs.
This means that to train a suitable network, at least four repeated test data are needed.
To achieve better testing results, five repeated test data are needed for training. With
more training data, the testing accuracy does not improve. This is reasonable, because
the location of accelerometer 4 is at the middle point of the beam, which is a vibration
node. Using sensor data at other locations than the vibration nodes will lead to better
testing results. This will be reported in our future papers.

CONCLUDING REMARKS

This paper developed a novel 1D-CNN framework for structural condition identifi-
cation, and evaluated it with a challenging case on bolt loosened damage identification.
A steel frame with eight bolts was constructed in the laboratory. Ten damage scenarios
were designed to test the performance of the algorithm under very subtle structural con-
dition changes. Ten repeated impact hammer tests were performed for each scenario.
The training and testing results demonstrate:

1) The proposed 1D-CNN framework is very effective in structural condition identi-
fication, achieving over 95% accuracy under challenging conditions, e.g. the sensor at a
vibration node.

2) By increasing the number of convolutional layers, the performance of the algo-
rithm may not improve, because of the over-fitting problem. It demonstrated that three
convolutional layers are the optimal setting in this case.

3) With fewer training data, the structural condition identification performance in-
evitably degrades. For the case being studied, four repeated test data are the minimum
requirement for reliable structural condition identification. And five repeated test data
will be ideal.



ACKNOWLEDGEMENT

This work was supported by the Engineering and Physical Science Research Council,
UK [Grant: EP/R021090/1]. The authors also want to thank NVidia for the GPU grant.

REFERENCES

1. Lacey, A. W., W. Chen, H. Hao, and K. Bi. 2018. “Structural response of modular buildings–
an overview,” Journal of Building Engineering, 16:45–56.

2. Wang, T., G. Song, S. Liu, Y. Li, and H. Xiao. 2013. “Review of bolted connection monitor-
ing,” International Journal of Distributed Sensor Networks, 9(12):871213.

3. LeCun, Y. A., Y. Bengio, and G. E. Hinton. 2015. “Deep learning,” Nature, ISSN 0028-0836,
doi:10.1038/nature14539.

4. Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and
D. Hassabis. 2016. “Mastering the game of Go with deep neural networks and tree search,”
Nature, ISSN 14764687, doi:10.1038/nature16961.
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