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ABSTRACT 

Purpose: To develop a free-running (free-breathing, retrospective cardiac gating) 3D 

myocardial T1 mapping with isotropic spatial resolution. 

Methods: The free-running sequence is inversion recovery (IR)-prepared followed by 

continuous 3D golden angle radial data acquisition. 1D respiratory motion signal is extracted 

from the k-space center of all spokes and used to bin the k-space data into different respiratory 

states, enabling estimation and correction of 3D translational respiratory motion, whereas 

cardiac motion is recorded using ECG and synchronized with data acquisition. 3D translational 

respiratory motion compensated T1 maps at diastole and systole were generated with 1.5mm 

isotropic spatial resolution with low-rank inversion and high-dimensionality patch-based 

undersampled reconstruction. The technique was validated against conventional methods in 

phantom and nine healthy subjects.  

Results: Phantom results demonstrated good agreement (R2=0.99) of T1 estimation with 

reference method. Homogeneous systolic and diastolic 3D T1 maps were reconstructed from 

the proposed technique. Diastolic septal T1 estimated with the proposed method (1140±36ms) 

was comparable to the saturation recovery single-shot acquisition (SASHA) sequence 

(1153±49ms), but was higher than the modified Look-Locker inversion recovery (MOLLI) 

sequence (1037±33ms). Precision of the proposed method (42±8ms) was comparable to 

MOLLI (41±7ms) and improved with respect to SASHA (87±19ms). 

Conclusions: The proposed free-running whole heart T1 mapping method allows for 

reconstruction of isotropic resolution 3D T1 maps at different cardiac phases, serving as a 

promising tool for whole heart myocardial tissue characterization.   

Keywords: myocardial T1 mapping, free-running, inversion recovery, 3D radial 

 



INTRODUCTION 

Cardiovascular magnetic resonance has been increasingly used to diagnose and monitor 

different cardiac diseases (1,2). Quantitative mapping of tissue parameters has demonstrated 

the potential to characterize subtle pathological changes of the myocardium and is especially 

valuable in detecting both focal and diffuse fibrosis (3,4). T1 is sensitive to the changes of 

myocardial tissue properties, such as fibrosis, fat and water content, and thus is considered a 

promising novel biomarker to characterize myocardium and assess various cardiomyopathies 

(5-8). In addition, extracellular volume fraction, which is important to detect diffuse 

myocardial fibrosis, can be estimated from native and post-contrast myocardial T1 mapping 

(9). Myocardial T1 mapping has been recognized as one of the most valuable quantitative 

mapping techniques to support diagnostic, therapeutic and prognostic decision making in 

ischemic and non-ischemic cardiomyopathies (4).  

The Modified Look-Locker Inversion recovery (MOLLI) (10) and saturation recovery single-

shot acquisition (SASHA) (11) are commonly used cardiac T1 mapping techniques. They 

acquire multiple images with different T1 contrasts and estimate pixel-wise T1 by fitting the 

acquired signal to an exponential recovery model. Respiratory and cardiac motion may result 

in blurring artefacts in each T1-weighted image and can cause misalignment between different 

images, influencing the T1 mapping accuracy (12). Therefore, breath-holding or respiratory 

gating and electrocardiography (ECG) triggering are usually required during cardiac imaging. 

However, besides the requirement of patient compliance, a single breath-hold limits acquisition 

time and results in low spatial resolution and limited coverage as typically only one image is 

acquired per cardiac cycle (10,11). Multiple breath-holds may allow longer acquisition time, 

but may result in different breath-hold positions, which can lead to mis-registration artefacts 

and inaccuracy of T1 estimation (13). Respiratory gating has been used to limit respiratory 

motion during free-breathing imaging, but has low imaging efficiency and may lead to 

unpredictable long acquisition time (14). ECG triggering is usually used to gate the acquisition 

only at diastole in each cardiac cycle, which has low acquisition efficiency and can be 

challenging in arrhythmic patients who have shortened diastolic phase. 

Recently, the magnetic resonance multitasking technique using 2D radial acquisition has been 

proposed for motion-resolved quantitative myocardial T1 and T2 imaging without breath-

holding or ECG triggering (15,16). 2D myocardial mapping is typically performed with thick 

slices to avoid the influence of through-plane motion (13) and low signal-to-noise ratio (SNR). 



3D acquisitions can overcome these limitations and provide whole heart coverage for 

comprehensive characterization of diffuse diseases of myocardium (17). However, 3D T1 

mapping is technically challenging, since respiratory gating and ECG-triggering together with 

the requirement of whole heart coverage, may lead to very long scan time. To cover the whole 

heart in an acceptable scan duration, current 3D T1 mapping techniques (14,18) acquire only a 

few slices in the short-axis view with a slice thickness of > 8mm, which require complex scan 

planning and may suffer from partial volume effect along the slice direction.  

To address the current technical challenges of myocardial T1 mapping, we propose a free-

running (free-breathing, retrospective cardiac gating) 3D whole heart T1 mapping technique 

with high isotropic spatial resolution (1.5mm3), which is able to provide images in any desired 

orientation. The proposed sequence consists of an inversion recovery (IR)-prepulse, followed 

by an efficient 3D golden angle radial acquisition (19) to sample the T1 relaxation curve. The 

k-space center is repeatedly sampled within each spoke and used to estimate 1D respiratory 

motion. ECG signal is recorded and synchronized with data acquisition. Respiratory binning is 

performed based on the estimated 1D respiratory signal, enabling estimation and correction of 

3D translational respiratory motion.  For the reconstruction, a recently proposed algorithm that 

combines dictionary-based low-rank inversion (20) and high-dimensionality 3D patch-based 

undersampled reconstruction (HD-PROST) (21) is used. The proposed approach allows for 

respiratory motion compensated 3D myocardial T1 mapping at different cardiac phases. The 

feasibility, accuracy and precision of the proposed technique was validated against 

conventional T1 mapping methods in a standardized T1 phantom and nine healthy subjects.   

METHODS 

Free-running 3D T1 Mapping Sequence 

The proposed IR-prepared 3D radial sequence is shown in Fig.1A. IR-preparation is used to 

generate T1 contrast, after which a spoiled gradient-echo (SPGR) readout is performed with 

small flip angle (𝜃). Spatial-spectral pulse for selective water excitation is adopted for fat 

suppression. To achieve pseudo-uniform distribution of radial spokes for retrospective cardiac 

and respiratory binning, the continuously acquired radial spokes conform to the 3D golden 

angle distribution (19). Specifically, the azimuthal angle and polar angle increments (∆𝜐, ∆𝜏) 

between adjacent spokes are defined as: 

 



Δ𝜐 = acos(𝜙1) ,   Δ𝜏 = 2π ∙ 𝜙2                                                [1] 

 

where 𝜙1=0.4656, 𝜙2=0.6823 are the 2D golden angle means (19).  

Motion Extraction and Retrospective Sorting 

The flowchart of retrospective processing, including motion extraction, respiratory motion 

correction and data sorting for T1 mapping of a given cardiac phase is shown in Fig. 1B. 

Independent component analysis (ICA) was performed on the k-space center of all spokes from 

all coils to extract the signal component that is most relevant to the 1D superior-inferior 

respiratory motion. This approach has been previously validated for cardiac cine and coronary 

artery MRI using either radial or spiral trajectory (22,23). To extract the self-navigated 

respiratory signal from the k-space center, coil compression is firstly performed using principle 

components analysis. ICA is applied to the k-space center amplitudes from the compressed 

coils to obtain 5 independent components (IC). Example of the extracted ICs and the 

corresponding spectral power are shown in Fig. 2A, B. The harmonic corresponding to the 

contrast change due to IR preparation is removed from the ICs based on the IR repetition time 

(IRTR in Fig. 1A). Then, the IC with the highest spectral power in the respiratory frequency 

range (0.1-0.5Hz) is selected (IC 4 in Fig. 2A) and band-pass filtered to get the 1D respiratory 

signal, based on which the k-space data is binned into five equally populated respiratory phases 

from end-inspiration to end-expiration. An example of the estimated respiratory signal 

validated against the corresponding respiratory bellow signal is shown in Fig. 2C. Cardiac 

motion synchronization is achieved by logging the ECG time stamps, from which the temporal 

occurrence of each spoke relative to the most recent cardiac R-wave preceding the spoke is 

calculated and termed as cardiac delay. 

After retrospective respiratory binning and cardiac gating, 3D translational respiratory motion 

is estimated via registration from the intermediate reconstruction of low-resolution respiratory 

bin images at diastolic cardiac phase by using central part of selected k-space data. 

Representative diastolic bin images of 5 respiratory motion states and the difference images 

with the end-expiratory bin are shown in Fig. 2D. A rectangular volume of interest for motion 

estimation is selected around the heart at the end-expiratory bin and propagated to other 

respiratory bins. Respiratory motion correction is performed by correcting the phase of the k-

space data using the estimated 3D translational motion parameters. The respiratory motion 



corrected k-space data can then be binned according to the cardiac delay and inversion recovery 

time (TI) for T1 mapping at a given cardiac phase. 

Image Reconstruction 

HD-PROST Algorithm 

For 3D T1 mapping at a given cardiac phase, spokes for the corresponding cardiac delay and 

acquisition window are selected, which are then sorted into a time series of T1 contrasts 

according to TI and a given temporal window for each T1 frame. After data selection, the 

highly undersampled 3D radial data is reconstructed over multiple T1 contrasts by combining 

a dictionary-based low-rank inversion (20) to efficiently reduce the number of T1 contrasts to 

be reconstructed with a recently proposed high-dimensionality 3D patch-based undersampled 

reconstruction (HD-PROST), exploiting local (within a patch), non-local (between similar 

patches) and contrast redundancies (21). The reconstruction for the proposed technique can be 

formulated as the following unconstrained Lagrangian (21):  

𝐿(𝐼, 𝑇, 𝑌) = ‖𝐸𝐼 − √𝐷 𝐾‖
𝐹

2
+ 𝜆 ∑ ‖𝒯𝑝‖

∗𝑝 + 𝜇 ∑ ‖𝒯𝑝 − 𝑃𝑝(𝐼) − 𝑃𝑝(𝑌)‖
𝐹

2
𝑝               [2] 

where ‖∙‖𝐹  and ‖∙‖∗ denote the Frobenius norm and nuclear norm respectively; 𝐼  is the 

compressed T1 image series to be reconstructed; 𝐸 = √𝐷𝐴𝑈𝑟𝐹𝑆 is the encoding operator, with 

𝑆 being sensitivity maps, 𝐹 being Fourier Transform, 𝑈𝑟 being the low-rank operator obtained 

by truncating the singular value decomposition (SVD) of a dictionary generated by Bloch 

simulation (20), 𝐴 being the convolutional gridding operator, transforming Cartesian data back 

to 3D radial, and 𝐷  being the non-Cartesian density compensation function; 𝐾  is the 

undersampled data; 𝑃𝑝(∙) is the patch selection operator at pixel 𝑝 of a 3D multi-contrast image 

set. This operator selects patches on local (patch for a given pixel location and contrast), non-

local (similar patches within a neighbourhood for a given contrast) and contrast (patches from 

all the contrasts) scales and 𝒯𝑝 is a 3D tensor built by the selected patches centered at pixel 𝑝; 

𝑇 represents the denoised multi-contrast images constructed by folding and aggregating the 

tensors 𝒯𝑝 for each pixel p (see the step 2 below); 𝑌 is the Augmented Lagrangian multiplier; 

𝜆 is the sparsity-promoting regularization parameter and 𝜇 is the penalty parameter. Equation 

[2] can be efficiently solved by operator-splitting via alternating direction method of 

multipliers (ADMM), which divides the optimization process into the following three steps: 

Step 1: Joint reconstruction update 



The first step is a joint reconstruction of the compressed TI image series (i.e. singular images) 

𝐼 by incorporating the denoised multi-contrast images 𝑇 obtained at the end of step 2 as prior 

information: 

𝐿𝐽𝑜𝑖𝑛𝑡(𝐼) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝐼
‖𝐸𝐼 − √𝐷 𝐾‖

𝐹

2
+ 𝜇‖𝑇 − 𝐼 − 𝑌‖𝐹

2                        [3] 

The above equation can be efficiently solved using the conjugate gradient (CG) algorithm.  

Step 2: High-order singular value decomposition based denoising 

With obtained 𝐼 and 𝑌 from step 1 and step 3 separately, the second step is to minimize the 

following equation regarding to the high order tensor 𝒯𝑝: 

𝐿𝑇𝑒𝑛𝑠𝑜𝑟(𝒯𝑝) =
𝑎𝑟𝑔𝑚𝑖𝑛

𝒯𝑝
∑ ‖𝒯𝑝 − 𝑃𝑝(𝐼) − 𝑃𝑝(𝑌)‖

𝐹

2
𝑝 +

𝜆

𝜇
∑ ‖𝒯𝑝‖

∗𝑝                          [4] 

The details to solve the above equation can be found in (21). Generally speaking, 𝒯𝑝  is 

obtained by thresholding the singular values obtained via high-order singular value 

decomposition of the 3D tensor built by the patches selected from the multi-contrast images. 

The thresholding parameter is defined by 
𝜆

𝜇
. The denoised 𝒯𝑝 is then rearranged to form the 

denoised image patches. This process is repeated for all the pixels in the singular images, and 

aggregation is then performed to generate the final denoised singular images 𝑇. 

Step 3: Lagrangian multiplier update 

Finally, with the optimized 𝐼 and 𝑇 from step 1 and step 2, the Lagrangian multiplier is updated 

by 𝑌 = 𝑌 + 𝐼 − 𝑇. The above 3 steps are iteratively interleaved in the reconstruction process 

to improve the reconstructed image quality.  

Implementation Details 

The sequence was implemented on a 1.5T MRI scanner (Ingenia, Philips Healthcare, The 

Netherlands) for cardiac imaging. The following scan parameters were used for both phantom 

and in-vivo experiments: FOV = 200×200×200mm3, spatial resolution = 1.5×1.5×1.5mm3, 

TR/TE = 11.6ms/5.1ms, flip angle = 6°, IRTR=2200ms, number of readouts after IR=175, 

𝑇𝑔𝑎𝑝=9.5ms (minimum value allowed on the available scanner), 𝑇𝑒𝑥=160.5ms, scan duration = 

9.5min. 

For the retrospective data selection for a given cardiac phase, the cardiac acquisition window 

was set to 186 ms, similar to the acquisition window of conventional 2D MOLLI and SASHA 



imaging (10,11). The temporal window per T1 frame was also set to 186ms, resulting in ten T1 

frames to be reconstructed. A dictionary-based low-rank compression (20) was performed 

along the T1 contrast dimension to further reduce the number of T1 frames to be reconstructed 

(Eq. [2]). The dictionary was generated using Bloch simulation for T1 in the range of 100ms 

to 3000 ms, with an increment of 1% with respect to the previous T1. The contrast of a specific 

TI frame is given by the average of all the radial spokes binned into the corresponding frame. 

The signal of each radial spoke is calculated using Bloch equation, which has been previously 

described for 3D radial-based carotid quantitative mapping (24,25), and is also provided in the 

Supporting file. The singular values by SVD of the dictionary are shown in Fig. 3A. The low-

rank operator 𝑈𝑟 in Eq. [2] was obtained by keeping the three largest singular value vectors, 

resulting in three singular images to be reconstructed (Fig. 3B). The first singular image, with 

the highest signal-to-noise ratio, was used for patch selection in the step 2 of HD-PROST (Eq. 

[4]). 

In this study, the maximum number of CG iterations in the joint MR reconstruction (step 1) 

was set to 15, and the regularization parameter 𝜇, balancing the contribution of the prior term, 

was empirically set to 0.01. Coil sensitivity maps were estimated by using spokes of TI larger 

than 1000ms and reconstructed in low resolution by using only the central half of k-space to 

reduce noise. The regularization parameter λ  of HD-PROST was optimized by visual 

inspection of the reconstruction quality on one subject and used for all other dataset. For the 

patch-based denoising step in HD-PROST (21), the following parameters were used: patch size 

= 5×5×5; search window = 10×10×10; patch offset = 3; number of selected similar patches = 

15. The number of ADMM iterations was set to 5. Example singular images after HD-PROST 

reconstruction are shown in Fig. 3B. T1 maps were generated by a dot product matching 

between the reconstructed singular images and the dictionary. 

Phantom Experiments 

To test the T1 mapping accuracy of the 3D T1 mapping sequence, a standardised T1 phantom 

(26) consisting of 9 agarose-based vials with T1 values ranging from about 250ms to 1600ms 

was imaged using a 28-channel cardiac coil. To obtain reference T1 values of the phantom for 

validation, a 2D inversion recovery spin echo (IR-SE) sequence was performed with the 

following imaging parameters: FOV = 140 × 140mm2, in-plane spatial resolution = 

1.5×1.5mm2, slice thickness = 8mm, TR/TE = 10000/5.8ms, 13 TIs = 50, 100, 200, 300, 400, 



500, 700, 900, 1200, 1500, 2000, 2500 and 3000ms. Standard T1 values were determined by a 

3-parameter non-linear least square fitting algorithm. 

For the proposed 3D radial T1 mapping sequence, the ECG signal used for the retrospective 

binning was generated by physiological simulation with heart rate varying between 50bpm and 

70bpm during the acquisition. The acquired 3D radial data was retrospectively binned into ten 

T1 contrasts for a simulated diastolic phase with cardiac delay of 650ms. The phantom T1 map 

acquired with the 3D imaging sequence was generated using the HD-PROST reconstruction as 

explained above. 

In vivo Experiments 

The study was approved by the local institutional review board and 9 healthy subjects (5 males, 

31.8±3.5 years) were imaged using a 28-channel cardiac coil. All volunteers provided written 

informed consent before inclusion into this study. Firstly, standard breath-hold 2D cine images 

were acquired in the mid ventricular short-axis view with retrospective gating to 16 cardiac 

phases, based on which the cardiac delays for systole and diastole were determined. The T1 

mapping reference consisted of the clinically adopted breath-hold 2D MOLLI (3-3-5) (27) and 

2D SASHA (11) sequences which were performed in diastole. The imaging parameters of 

MOLLI were TR/TE = 2.6/1.3ms, flip angle = 35°, FOV = 288×288 mm2, in-plane resolution 

= 2×2 mm2 and slice thickness = 8.0 mm. The SASHA sequence was performed with TR/TE 

= 2.6/1.3 ms, flip angle=70° and the same FOV and spatial resolution as used for MOLLI. 

Parallel imaging with SENSE acceleration factor of 2 in the phase-encoding direction was used 

in the 2D MOLLI and SASHA mapping acquisitions, resulting in a mid-diastolic acquisition 

window of about 187ms. MOLLI and SASHA images were acquired in the same short-axis 

location as the cine scan and reconstructed to an in-plane resolution of 1.5×1.5mm2. The 2D 

T1 maps for MOLLI and SASHA were obtained by fitting the corresponding standard 3-

parameter models (10,11). 

The proposed free-running 3D T1 mapping sequence was also acquired in short-axis 

orientation covering the entire heart and centered around the slice location of the 2D MOLLI 

and SASHA scans. Besides diastole, T1 mapping was also reconstructed for systole using the 

proposed framework, considering that systolic T1 maps may find applications in patients with 

thin myocardium or arrhythmias (28,29).  

Image Analysis 



For phantom data, circular region-of-interests (ROIs) were drawn for each vial and the mean 

and standard deviation (SD) of T1 values were calculated for each vial. The accuracy of the 

proposed 3D T1 mapping technique was evaluated by comparing the estimated T1 values to 

the 2D IR-SE method using Pearson’s linear correlation and Bland-Altman analyses.   

For the analysis of in vivo images, the diastolic T1 map in the mid short-axis view that was 

most similar to the MOLLI and SASHA geometry was selected from the 3D T1 maps of the 

proposed approach for each subject. Septal ROIs with the same size were drawn for the three 

T1 mapping methods. The mean and SD of T1 values in the septum were measured and 

compared between the proposed 3D method and 2D MOLLI and SASHA separately using the 

Wilcoxon rank-sum test with Bonferroni Correction to evaluate the in vivo accuracy and 

precision.  

For the analysis of 3D in vivo T1 maps, 3 slices from base, mid to apex were selected from the 

diastolic and systolic T1 maps. T1 values of the myocardium were measured according to the 

myocardial segments model defined by the American Heart Association (AHA) (30), with 6 

segments in the base and middle slices and 4 segments in the apical slice. The mean T1 values 

were calculated for all segments to evaluate the spatial T1 distribution of the proposed method. 

The T1 value in each segment was compared between diastole and systole using the paired t-

test. Then the diastolic and systolic T1 values for each segment were determined by averaging 

across all the volunteers and visualized with bull’s-eye plots. 

All image reconstruction and analysis were performed using MATLAB (The MathWorks, 

Natick, MA) on a server with a dual 16-core CPU, and 256GB RAM. Statistical analysis was 

carried out in GraphPad Prism 7 (La Jolla, CA). A P value of less than 0.05 was considered 

statistically significant.  

RESULTS 

Phantom Study 

Phantom T1 maps with the proposed approach and 2D IR-SE are shown in Fig. 4A, B, and the 

mean and SD of T1 values of all vials are shown in Fig. 4C. The linear correlation indicates 

good agreement of T1 estimations between the proposed 3D technique and the 2D IR-SE 

reference (R=0.99). Bland-Altman plot demonstrates no correlation between the difference and 

average of T1 measurements of the two methods (Fig. 4D). Compared with 2D IR-SE, the 



percentage error of the T1 measurements with the proposed approach was 1.2±0.7%, ranging 

from 0.3% to 2.1%. 

In vivo Study 

All volunteers completed the scans, and the diastolic and systolic 3D T1 maps were 

successfully reconstructed for each subject with recorded heart rates of 62±8 bpm, ranging 

from 45 to 73 bpm. For reconstruction of the 3D T1 map, each ADMM iteration in HD-PROST 

takes about 34.9min consisting of 26.3min for the joint reconstruction step and 8.6min for the 

patch-based denoising step, resulting in a total reconstruction time of 174.5min with 5 ADMM 

iterations. T1 mapping results at diastole from a representative healthy subject are shown in 

Fig. 5, consisting of 8 representative short-axis slices and a reformatted long-axis slice. As can 

be seen, the spatial distribution of myocardium T1 was uniform over the whole left ventricle.  

Diastolic T1 mapping results from another 2 subjects are shown in Fig. 6, including the mid 

short-axis and long-axis slices from the 3D T1 mapping approach and a middle short-axis slice 

from 2D MOLLI and SASHA techniques. Diastolic T1 maps reconstructed by the proposed 

technique were visually comparable to the reference 2D methods with improved depiction of 

the right ventricle. The mean and standard deviation of septal T1 derived from 2D MOLLI, 2D 

SASHA and the proposed 3D technique are compared in Fig. 7 for all subjects. The mean septal 

T1 measured with the proposed approach is 1140±36 ms and is comparable to that of SASHA 

(1153±49 ms) (P = 0.68), but is higher than that of MOLLI (1037±33 ms) ( P< 0.01). The SD, 

indicating the precision of septal T1 measurements, was 42±8 ms with the proposed approach, 

which is much lower than the SD of SASHA (87±19 ms) (P < 0.01) and similar to that of 

MOLLI (41±7 ms) (P = 0.79).   

Representative systolic and diastolic T1 maps from 2 subjects are shown in Fig. 8, where three 

short-axis slices (base, mid and apex) are included. The systolic T1 maps also demonstrated a 

uniform T1 distribution with thicker myocardium compared with diastole. The diastolic and 

systolic T1 values of each AHA segment are shown in the bull’s-eye and box plots in Fig. 9. 

The comparison of T1 values in diastole and systole for all myocardium segments are 

summarized in Table 1. No significant differences were found between the diastolic and 

systolic T1 values estimated with the proposed technique in most of the AHA segments, except 

for the inferior segments in the apical and mid ventricular slices, and the inferoseptal segment 

in the basal slice, with significantly longer T1 values in diastole than in systole. 



DISCUSSION 

In this study, free-running 3D whole heart myocardial T1 mapping with 1.5 mm3 isotropic 

spatial resolution has been successfully achieved with predictable 9.5min scan time. The 

proposed sequence features free-breathing, retrospective cardiac gating and continuous data 

acquisition, so T1 maps can be compensated for 3D translational respiratory motion and 

reconstructed at different cardiac phases by retrospective data binning. Using combined 

dictionary-based low-rank inversion (20) and high-dimensionality 3D patch-based 

undersampled reconstruction algorithm (HD-PROST) (21) to reconstruct the highly 

undersampled 3D radial data, feasibility of myocardial T1 mapping was demonstrated in vivo. 

Myocardial T1 measurements with the proposed 3D technique were comparable to 

conventional breath-hold, cardiac-gated 2D MOLLI and SASHA.  

In the phantom study, T1 values estimated with the proposed technique showed good accuracy 

for T1 ranging from 250ms to 1600ms as compared with the reference 2D IR-SE. Septal T1 

values at diastole with the proposed technique were comparable to SASHA and were 

significantly larger than those for MOLLI, which has been reported to underestimate T1 (12). 

In this study, the dictionary was simulated with a linear T1 increment of 1%, resulting in 10-

12ms increments in the myocardial T1 range of 1000-1200ms, which are small compared with 

the measured septal T1 SD (42±8ms).  The precision of septal T1 was similar to MOLLI and 

significantly higher than SASHA. The results indicate that the proposed 3D T1 mapping 

technique improves accuracy compared to MOLLI and precision compared to SASHA. 

Therefore, the proposed technique may be a promising tool for myocardial T1 mapping with 

the advantages of both high accuracy and precision. In addition, with the proposed 3D high 

resolution T1 mapping technique, visualization of the right ventricle was improved, which may 

facilitate fibrosis quantification in the thin wall of the right ventricle. Nevertheless, T1 values 

of the thin right ventricle should be interpreted carefully, considering that there may be partial 

volume effects resulting from residual fat caused by the imperfection of the water selective 

excitation pulse. 

In this study, respiratory motion was addressed by correcting the phase of k-space data using 

motion parameters estimated from 3D translational image registration of images acquired at 

different respiratory states. More sophisticated registration methods, such as affine and non-

linear transforms could be considered in future work to account for more complex respiratory-

induced cardiac movement. To extract reliable cardiac trigger signal to account for cardiac 



motion, ECG signal was logged and synchronized with data acquisition for retrospective data 

selection. Previous studies have proposed several approaches for cardiac self-navigation using 

radial or spiral trajectories (22,23). Thus, cardiac self-navigation, besides respiratory self-

navigation, could be also investigated in future studies to achieve free-breathing, ECG-free 3D 

myocardial T1 mapping.     

T1 mapping at systole has special diagnostic value when the diastolic T1 map cannot be reliably 

obtained, such as in patients with thin myocardium, where partial volume effects may corrupt 

myocardial T1 estimation, and in patients suffering from frequent arrhythmias, where the 

diastolic onset and duration are changing (28,29). In this study, systolic T1 maps were 

reconstructed along with diastolic T1 maps for each subject. The AHA segment analysis 

showed good spatial uniformity of the myocardial T1 values measured across the left ventricle 

in both diastole and systole. In general, the systolic myocardium T1 was comparable to the 

diastolic myocardium T1. The shorter T1 in the inferoseptal segment of the basal slice and 

inferior segments of the mid and apical slices may be explained by increased myocardial 

thickness and thus reduced partial volume effects from blood during systole compared to 

diastole (29). The acquisition window for T1 mapping was set to about 186 ms, which was 

adequate for diastole, but may not be optimal for systole. In spite of this, radial data acquisition 

is less sensitive to motion than Cartesian sampling, and no obvious motion artefacts were 

observed in the systolic T1 maps. 

Systolic and diastolic T1 maps were reconstructed for each subject separately in our 

experiments. Instead of separate reconstruction for each cardiac phase, cardiac-resolved T1 

maps can be reconstructed simultaneously, by which additional redundancy along cardiac 

phases can be exploited and improved reconstruction performance can be expected at the 

expenses of memory requirement and computational times. Furthermore, 3D cardiac cine 

reconstruction from the free-running sequence should be also possible. This could be done by 

sorting the respiration motion compensated k-space data with a small temporal window along 

the cardiac phase (e.g., 50ms) and a large temporal window along contrast. After binning, the 

undersampled k-space data of different cardiac phases could be reconstructed simultaneously 

for example by adding a total variation constraint along the cardiac phase direction (31) to the 

reconstruction Equation [2]. This approach will be investigated in future studies.  

SPGR readout with low flip angle instead of balanced steady-state free precession (bSSFP) 

readout was used in the proposed sequence. Although bSSFP readout may have SNR benefits, 

the low flip angle SPGR readout is less sensitive to B1 and B0 field inhomogeneities which 



will influence T1 estimation and may cause banding artefacts in the image. The proposed 

technique was investigated at 1.5T in this study, but has potential to be extended to 3T. 

Furthermore, benefits of higher SNR, and thus shortened scan time or improved spatial 

resolution can be expected at 3T. 

Several limitations of the proposed technique need to be mentioned. Firstly, the proposed T1 

mapping technique cannot estimate T1 of flowing blood accurately. This is because the signal 

model used for T1 mapping assumes that the tissue of interest is static and experiences all the 

inversion and excitation pulses in the sequence, which may not be true for flowing blood. When 

measurement of myocardial extracellular volume is needed, estimation of blood T1 could be 

performed using a free-breathing rapid low spatial resolution (enough to only define a region 

of interest within the blood pool) T1 mapping sequence acquired in a mid-ventricular slice. 

Secondly, in this study the proposed technique was only tested for native myocardial T1 

mapping. However, post-contrast myocardial T1 mapping using this technique should be also 

feasible. Furthermore, considering the reduced T1 after contrast injection, shorter IRTR could 

be adopted and shorter scan duration can be expected. Thirdly, in the free-running sequence 

with retrospective binning, although inter-bin respiratory and cardiac motion has been carefully 

addressed, compared with breath-hold images, there may still be some remaining intra-bin 

respiratory motion and cardiac motion that result in some blurring of the reconstructed images. 

Future studies will investigate the performance of the proposed sequence in a cohort of patients 

with cardiovascular disease. Lastly, the current implementation of HD-PROST reconstruction 

is suboptimal and it takes about 3 hours to reconstruct a whole heart 3D T1 map. GPU 

implementation will be investigated in the future for the non-uniform Fourier Transform (32) 

and the patch-based denoising process to accelerate the reconstruction.  

CONCLUSIONS 

In this study, a free-running 3D myocardial T1 mapping technique with whole heart coverage 

and high isotropic spatial resolution is proposed. 3D T1 mapping was shown to have good 

accuracy and precision in comparison to reference sequence in phantom and conventional T1 

mapping methods in in vivo experiments. Based on retrospective data selection and combined 

dictionary-based low-rank inversion and patch-based reconstruction, high resolution 3D T1 

maps could be obtained for different cardiac phases. Future studies will investigate the clinical 

value of the proposed technique.  
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FIG. 1 A: Schematic diagram of the proposed free-running myocardial 3D T1 mapping 

sequence. After inversion recovery (IR) preparation, spoiled gradient echo (SPGR) readout 

with low flip angle (θ) was performed using 3D golden angle radial trajectory. Tgap is the time 

between the IR pulse and the first excitation and Tex is the time interval between the last 

excitation in the SPGR readout and the next IR pulse. IRTR is the IR repetition time. B: Data 

sorting process for reconstruction of multiple T1 contrasts for a given cardiac phase, which 

includes three steps: 1D respiratory motion estimation from k-space center of all radial spokes 

and cardiac motion extraction from ECG log; respiratory motion correction of k-space using 

motion parameters estimated by 3D translational image registration of respiratory bin images 

at diastole; binning the respiratory motion corrected k-space into different T1 contrasts for a 

given cardiac phase.  

 

FIG. 2 A: The 5 independent components (IC) extracted from the k-space center of all spokes 

using independent component analysis. B: The spectral power of the signal components in A. 

C: The IC (IC 4) with highest spectral power in the respiratory frequency range (0.1-0.5Hz) is 

selected and band-pass filtered and compared with respiration bellow. D: Example of low-

resolution self-navigated images of 5 respiratory bins from intermediate reconstruction for 3D 

translational respiratory motion estimation. Setting bin 5 as the reference, its difference with 

other respiratory bins are shown in the second row to demonstrate the extent of respiration-

induced motion of the heart in this subject. The difference images are demonstrated with the 

same gray level range.  

 

FIG. 3 A: The singular values obtained by singular value decomposition of the dictionary 

simulated according to the imaging and reconstruction parameters of the proposed 3D T1 

mapping technique using Bloch simulation. B: The singular value images corresponding to the 

three largest singular values in A reconstructed by direct back projection and HD-PROST 

(high-dimensionality 3D patch-based undersampled reconstruction) algorithm. 

 

FIG. 4 A, B: Phantom T1 maps of 2D inversion recovery spin echo (2D IR-SE) and the 

proposed 3D T1 mapping approach. C: Linear correlation of phantom T1 estimation with the 

proposed 3D method in comparison with reference 2D IR-SE sequence. D: Bland-Altman plot 

showing the difference between the two methods and their average. The grey solid line 

indicates the mean difference, and the grey dotted lines indicate the 95% confidence intervals 

of limits of agreement. 

 

FIG. 5 Proposed 3D T1 mapping technique at diastolic cardiac phase for a representative 

healthy subject. Eight short-axis slices, from apex to base of the left ventricle and the 

reformatted long-axis view are shown. Uniform T1 distribution across the myocardium can be 

observed.     

 



FIG. 6 Short-axis 2D MOLLI (modified Look-Locker inversion recovery), 2D SASHA 

(saturation recovery single-shot acquisition) and the proposed 3D T1 mapping results at 

diastolic cardiac phase for two healthy subjects. Long-axis view is also included for the 

proposed 3D T1 mapping technique. 

 

FIG. 7 A: Mean septum T1 values of all nine healthy subjects measured with 2D MOLLI 

(modified Look-Locker inversion recovery), 2D SASHA (saturation recovery single-shot 

acquisition) and the proposed free-running 3D T1 mapping technique. B: Standard deviations 

of the septal T1 measurements from all the subjects for the three methods. The mean ± SD 

(standard deviation) across all the subjects are shown on top of each method (**P < 0.01).   

 

FIG. 8 Representative diastolic and systolic T1 maps of basal, mid and apical short-axis views 

using the proposed 3D T1 mapping sequence from two healthy subjects (A, B). Uniform 

myocardial T1 distribution can be observed on the T1 maps, both in diastole and systole.  

 

FIG. 9 A: AHA bull’s eye plots showing the myocardium T1 distribution across the left 

ventricle at diastole and systole with the proposed free-running 3D T1 mapping technique. The 

mean values obtained by averaging across all the subjects are shown in each segment (*P < 

0.05, **P < 0.01). B: Box plots showing the median, 25 and 75 percentiles, and range of the 

diastolic and systolic T1 in each AHA segment. (A: anterior; AS: anteroseptal; IS: inferoseptal; 

I: inferior; IL: inferolateral; AL: anterolateral; S: septal; L: lateral). 

 



 

Table 1 The P value of paired t-test comparison of diastolic and systolic T1 values in each 

AHA segment with the proposed free-running 3D T1 mapping technique 

 A 
S 

I 
L 

AS IS IL AL 

Base 0.30 0.06 0.02* 0.10 0.57 0.73 

Middle 0.57 0.25 0.13 <0.01** >0.99 0.36 

Apex 0.25 0.20 <0.01** 0.13 

*P < 0.05; **P < 0.01; A: anterior; AS: anteroseptal; IS: inferoseptal; I: inferior; IL: 

inferolateral; AL: anterolateral; S: septal; L: lateral 

 


