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Abstract

Lineage specification was long thought to be an irreversible developmental process. However,

with the advent of cell reprogramming and the discovery of induced pluripotent stem cells (iP-

SCs), it was shown that differentiation is in fact reversible. Cell reprogramming has mainly been

studied experimentally, with no universally accepted theory explaining the phenomena. The pur-

pose of this thesis is to drive forward our understanding of cell biology, by introducing analytical

models for the interaction between genes and studying the transitions between the emergent cell

types. This is done by appealing to key concepts from biology and employing tools commonly

used in the field of statistical physics. Inspired by models of neural networks, a model for cell

reprogramming is introduced in which cell types are hierarchically related dynamical attractors

corresponding to cell cycles. Stages of the cell cycle are fully characterised by the configuration

of gene expression levels, and reprogramming corresponds to triggering transitions between such

configurations. Two mechanisms were found for reprogramming in a two-level potency hierar-

chy: cycle specific perturbations and a noise-induced switching. The former corresponds to a

directed perturbation that induces a transition into a cycle-state of a different cell type in the po-

tency hierarchy (mainly a stem cell) whilst the latter is a priori undirected and could be induced,

e.g. by a (stochastic) change in the cellular environment. The reprogrammingmodel is governed

by the interaction between gene expression levels, as originally hypothesised by Waddington

in his Epigenetic Landscape analogy. To further develop the biological significance, a detailed

mechanism for these interactions between genes, in the form of regulation through transcription

factors, is studied. This consists of constructing a bipartite graph framework for gene regulatory

networks. A technique that integrates the genome and transcriptome into a single regulatory net-

work. With this perspective, we are able to deduce important features of the regulatory network

that exists in every cell type, such as the typical interactions required to sustain a net gene expres-

sion profile and how regulatory interactions must change to support multicellular life.
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1
Introduction

The 2012 Nobel Prize for physiology or medicine was awarded to John Gurdon and Shinya Ya-

manaka, “for the discovery that mature cells can be reprogrammed to become pluripotent” [1].

That is, cells that have reached a terminal fate (cell-type) after development were converted to

cells thathave the ability todifferentiate intomanyother cell types. Gurdonpioneered themethod

of somatic cell nuclear transfer in the 1960s, whilst Yamanaka and colleagues recently introduced

the method of cell reprogramming. The latter technique relies on the introduction of genes, that

encode transcription factors (TFs), which are highly expressed in the target cell type, viz. em-

bryonic stem (ES) cells, using a retrovirus. These cellular reprogramming experiments convert
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CHAPTER 1. INTRODUCTION

somatic cells into induced pluripotent stem cells (iPSCs), which strongly resemble ES cells in

both morphology and gene expression profiles.

This discovery contradicted the accepted scientific viewof the time. Developmentwas thought

to be an irreversible process, with lineage specification directing the arrow of time and potency

levels dropping after successive differentiation events. However, an increasing body of litera-

ture is showing evidence that a given cell can be converted to any other cell type, either directly

by trans-differentiation or via guided differentiation from an iPSC. Like other stem cells, iPSCs

have the ability to both self renew and differentiate into multiple different cell types (i.e. they are

pluripotent). Thus, cell reprogramming opens upmany possibilities with applications in person-

alised and regenerative medicine, disease modelling and drug development [2–6]. An increased

understanding of cell reprogramming could also improve our understanding of developmental

biology, in which cell fate decisions play an important role [7–10].

Although it has been more than a decade since the discovery of cell reprogramming, the un-

derlying processes remain relatively elusive. This PhD project aims to bridge the gap between

the experimental results and our understanding of molecular biology. Much of the current the-

oretical work treats cell types as static entities, however, cells are dynamic bodies with every cell

undergoing its own cell cycle. Thus, any biologically realisticmodel of cell reprogramming should

also produce cell cycle dynamics. This is the main goal of my PhD - to create a model that can

describe howcell types emerge from the underlyingmolecular biology and explain transitions be-

tween distinct cell types, that is built upon key biological facts, using quantitative methods from

fields such as physics, mathematics and informatics.

The remainder of this thesis is organised as follows: The rest of this chapter is dedicated to

a brief review of cell reprogramming and the motivation for a statistical physics modelling ap-

proach. Chapter 2 will introduce a model for cell reprogramming as transitions between dynam-

ical attractors that represent the gene expression profiles across cell cycles. This model is then

tested on real data, with parameters for the model inferred and its assumptions tested, in chapter
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CHAPTER 1. INTRODUCTION

(a) Waddington Landscape (b) Underpinning gene interactions

Figure 1.1.1: Waddington’s Epigenetic Landscape metaphor for development. A complex
landscape is shaped by the interactions in a gene regulatory network. A cell’s lineage is
tracked by following a ball rolling down the landscape from a state of pluripotency. Succes-
sive valleys in the landscape represent different cell types with increasing levels of specificity
(decreasing levels of potency). Each cell fate decision is a binary choice represented by the
fork junctions of intersecting valleys. Each panel for this figure is taken separately from [11].

3. Chapter 4 delves deeper into the interaction between gene expression levels in models for cel-

lular identity. Finally, chapter 5 summarises the main results of the thesis and outlines directions

where future work may be most beneficial.

1.1. A brief overview of cellular reprogramming

In the 1950s, Waddington introduced a metaphor of a ball rolling down an Epigenetic landscape

to describe cell fate decisions during development [11]. Initially, the ball starts high up the land-

scape in a state of pluripotency. As it traverses down the landscape, it is funnelled into different

valleys (see figure 1.1.1) which represent different cell types. Each of these cell fate decisions is

a binary choice, with the ball rolling into either one of the valleys. The number of cell types and

their specificity increases the further they are located down the landscape. Although Wadding-

ton’s landscape was a metaphor, he postulated that the landscape could be shaped by the interac-

tion between genes. Imagine the epigenetic landscape as a rubber sheet and the genes as weights.

Taut strings between the weights and the landscape will govern its topology. These strings, and

their tensions, then represent the interactions between the genes, such as the regulation of ex-

13



CHAPTER 1. INTRODUCTION

pression levels due to transcription factors. Thus, Waddington postulated that the interaction

between sets of genes creates the valleys (cell types) and the barriers in the epigenetic landscape.

With littlemathematical training, and pre-dating the discovery of transcription factors,Wadding-

ton’s landscape remained nothing more than an elegant metaphor.

The first formal theoretical proposal for cell types as emergent properties of a genetic network

came from Kauffman in the 1960s. He attempted to model different cell types as dynamical be-

haviours, i.e. attractors, of random boolean networks [12]. Nodes in the network corresponded

to binary gene expression levels and the edges between them correspond to their interactions.

A gene was then said to be expressed, or not, depending on a randomly chosen logical function

of the inputs from other genes. Distinct cell types emerge in the network as attractors of the

dynamics. The number of cell types scaled with the size of the networks in a manner that was

qualitatively in line with the observed number of cell types in different organisms, as a function

of the number of their genes. Differentiation was modelled as a Markov process between differ-

ent modes of behaviour in the network, with replication times accurately predicted as a function

of the size of the gene network in a cell.

Kauffman’s work was then extended byWolpert in the 1970s. He considered cells as automata

whose state is described by a set of binary gene expression levels [13]. He proposed a model

for development in terms of changes in this state and asked how turning on/off individual genes

affected the state of the system. Wherehiswork truly differed fromKaufman’swas in the inclusion

of external cues in an attempt to model morphogenesis.

Whilst these theories were being produced, the successful retrieval of a pluripotent state was

first demonstrated experimentally by John Gurdon. In his seminal work, he showed that it was

possible to reprogram a cell using a technique known as somatic cell nuclear transfer (SCNT)

[14]. This technique involves transferring thenucleusof a somatic cell into anenucleated embryo.

The result is that the environment of the host cell alters the behaviour of the donor nucleus. The

donor nucleus eventually expresses the same genes as the embryo’s nucleus would have and thus
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CHAPTER 1. INTRODUCTION

loses its specificity.

Dormant gene expressionpatternswere also shown tobe reactivated in cell fusionexperiments,

in the 1980s [15, 16]. In these experiments, a somatic cell is merged with a pluripotent cell re-

sulting in a hybrid that maintains some aspects of each of the original cell types. However, unlike

somatic cell nuclear transfer, these experiments result in cells which have an increased ploidy level

due to the presence of two nuclei. Thus, if the aim is to convert one cell type directly into another,

cell fusion is less successful than somatic cell nuclear transfer. However, the hybrid cells can be-

come diploid once more if one of the nuclei is removed after the fusion process.

Three decades later, cell reprogramming via retroviral transduction was reported by Yamanaka

andTakahashi [17]. Theyhypothesised that embryonic stemcells andoocytes contain the neces-

sary signals for promoting and sustaining pluripotency, because of the success of SCNT and cell

fusion experiments. Genes that were considered to be important for pluripotencywere identified

as thosewhich are highly expressed in embryonic stemcells. It was hypothesised that introducing

large quantities of products of these genes to a cell would encourage them to recover the property

of pluripotency. These experiments were successful, first with mice [17] and then human [18]

fibroblast cells being reprogrammed to the iPSC state in 2-3 weeks. The iPSCs reprogrammed

from mice cells were shown to contribute to chimera formation when inserted into developing

mice embryos, further establishing their status as stem cells, along with their gene expression

profiles and morphology. Remarkably, the authors were able to narrow down the initial concoc-

tion of 24 genes, thought to be important for pluripotency, to just 4 reprogramming ingredients:

Oct3/4, Sox2, Klf4 and c-Myc. These factors are now commonly known as the OSKM or Ya-

manaka factors. Despite the success of these experiments, reprogramming was very inefficient.

The reprogramming of cells to iPSCs in these original experiments took approximately 2-3weeks,

with only around 0.001% of cells successfully reaching the iPSC state.

The inefficiency of cell reprogramming raised a debate about whether only certain cells in a

population had the capacity to be reprogrammed. JacobHanna quashed this idea by showing that
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CHAPTER 1. INTRODUCTION

almost all cells have the potential to reprogrammed using the Yamanaka factors, given sufficient

time and culture conditions [19]. This result suggests that the potential for pluripotency must

be common to all cells. Because it is the same in every cell type, the genome of an organism is a

strong candidate for the source of pluripotency, as first predicted by Waddington. Furthermore,

SCNT, cell fusion and cell reprogramming are all consistent with the idea that the mechanisms

converting cells to a pluripotent state occur in the nucleus, not the cytoplasm. It is now widely

accepted that cell reprogramming arises from a change in gene expression patterns within a cell.

Since the discovery of iPSCs many protocols have been found for cell reprogramming using

small molecules (such as mRNA) in place of the Yamanaka factors [20, 21]. Protocols are also

consistently being developed to implement trans-differentiation. Previously, if a conversion be-

tween two terminally differentiated cell typeswas requiredonewould first need to generate iPSCs

and then guide their differentiation to the desired final cell type using specific culture conditions.

The “omics” revolution and big data have dramatically changed the field of biology. Informat-

ics and data analysis are becoming increasingly valuable tools due to the large data sets that are

collected from experiments. Historically, different cell types were classified in a qualitative man-

ner based on morphology, by studying individual molecular components (such as proteins or

RNA molecules) using biofluorescent markers, or a combination of the two. However, the big

data methodologies have improved the classification of cell types on a molecular level [22, 23].

In recent years, technologies have improved to the stage at which individual cells can have their

entire gene expression profile analysed using sequencing techniques [24–26]. Furthermore, by

tracking the transcriptomics of a single cell, it is possible to follow molecular changes during lin-

eage specification (analogous to mapping the ball’s trajectory down the Waddington landscape)

or identify components that could be crucial for cell fate decisions [27–32].

Enabled by these improved technologies, Sui Huang et al. were the first to demonstrate ex-

perimental evidence that cell types are high dimensional attractors in a gene expression space,

as originally hypothesised by Waddington. By tracking the gene expression profile of differenti-
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CHAPTER 1. INTRODUCTION

ating neutrophil cells under a variety of conditions, they showed that differentiation trajectories

converge from many different directions to give the same expression profile in the final cell state

[33]. This work paved the way for a new wave of dynamical systems approaches to modelling

cell fates on complex gene interaction networks. Since this experimental result was published,

the Huang group has continued to model cell fates using a complex systems approach. Typically,

they consider cell fate decisions during development as a hierarchy of binary switches that repre-

sent developmental branching points [34–37].

Other thangene regulation, there is evidence to show that epigenetics plays an important roll in

cell reprogramming. The changes in chromatin structure due to epigeneticmodifiers allow differ-

ent genes to be accessed by transcription factors [38, 39]. This structural change could facilitate

the activation (or inhibition) of genes that are important for pluripotency (or specificity). Arty-

omov et al. developed a computational model in an attempt to capture the interplay between

gene expression and epigenetic marks across the cell cycle, in order to predict pathways for re-

programming [40]. They model each cell cycle as a two-stage process. Gene expression levels

and epigenetic marks are updated separately in a two-phase cell cycle. The genetic and epige-

netic networks are able to interact in the sense that the epigenetic state provides feedback for the

gene expression levels and vice versa. In their model, the authors assume that each cell type is

defined by the expression of very few genes, referred to as amodule, whilst the rest of the genome

is inactive. However, this approach does not allow for any overlap in the gene expression profiles

of different cell types. Furthermore, they use these distinct modules to explain the cell potency

hierarchy. This implies that each module also has a potency level associated with it, i.e. the po-

tency hierarchy of different cell types is defined in theDNA sequence of the genome and is not an

emergent property of the interactions between gene expression levels. Despite some shortcom-

ings in their model, this work is the only theoretical model for cell reprogramming that includes

cell cycle dynamics that I am currently aware of.

The cell cycle may play a more important role than that suggested by Artyomov. There are

17



CHAPTER 1. INTRODUCTION

specific stages of the cell cycle in which many molecular components, including the genome, are

duplicated. These stages use broadly the same molecular mechanisms across the different cell

types of an organism, and thus represent some level of molecular uniformity. Furthermore, dur-

ing asymmetric division two daughter cells are produced with different fates, so the checkpoints

of the cell cycle ought to be capable of distinguishing between the components required for dif-

ferent cell types. Whether or not the cell cycle plays an important role in cell reprogramming

remains an open question. However, technologies are now reaching a stage where it is possible

to sequence cells during specific cycle phases [41, 42] opening the door to study correlations be-

tween cell cycle and reprogramming events. Unsurprisingly protein concentrations vary during

the cell cycle, and hence it is reasonable to expect gene expression levels do so too. Therefore,

regardless of any relation to reprogramming, any accurate model that defines a cell type as the

combined effect of gene expression levels should be able to reproduce the variability that arises

during the cell cycle.

There is no current accepted theory for the mechanisms behind cell reprogramming, that ac-

curately predicts transitions between cell types in a quantitatively meaningful manner. Such a

theory would clearly be hugely significant to fundamental molecular biology as well as develop-

ment and biomedicine. This is partly due to the complexity of gene regulation and the role that

noise plays in gene expression. Ordinary differential equation models of gene regulation can be

cumbersome from an analytic point of view even when modelling a simple feedback loop [43].

Recent studies have also shown that the logic in gene regulatory networks is highly susceptible

to even low levels of noise [44]. Thus, amplification of the transcription level noise may be a

mechanism through which a cell can de-differentiate from a robust terminal state [45]. Noise is

also thought to play key roles on a cell population level. Variations in gene expression levels in

populations of cells (of a single cell type) may allow cells to rapidly respond to environmental

changes [46]. This heterogeneity across many cells of a single type may also result from individ-

ual cells approaching differentiation at different rates [34], with variation in expression levels due

18



CHAPTER 1. INTRODUCTION

to preparation for differentiation or the events of the cell cycle.

Undeterred by the uncertainty surrounding cell reprogramming, iPSCs have already entered

the medical world with the first clinical trials involving iPSCs occurring in the recent past [47].

Thus, it is vital that the theoretical models catch up with the fast-paced experimental develop-

ments.

There are various mathematical and computational models for gene regulation, cell fate de-

cisions, and cell reprogramming, other than those touched on above. For an overview of these

models the reader is directed to references [7, 34, 48–52]. Many of these works oversimplify

the problem or take Waddington’s metaphor too seriously, by trying to define a developmental

landscape in terms of incomplete network entropies or pseudo-potentials [53–55]. Not only is

the latter case too literal an interpretation of a metaphor, but both of these types of models typi-

cally result in nomeaningfulmeasurable quantities for experimental biologists to investigate. The

most significant theoretical work on cell reprogramming comes in the formofMogrify, a software

tool to predict the most efficient transcription factors for direct reprogramming between human

cell types [56]. Mogrify combines gene expression data with regulatory network information

to predict the most effective transcription factors to induce a cell conversion. It has successfully

identified known, and predicted new, reprogramming factors for trans-differentiation in human

cells. Despite being a powerful predictive tool for reprogramming, Mogrify does not explain the

mechanisms behind cell reprogramming transitions.

Parallel to the improvedunderstandingofmolecular biology that camewith experimental tech-

nologies, there was the birth of complex systems theory which arguably originates as far back

as the Ising model in statistical physics. Initially, many of the models in complex systems were

developed independently in different fields, but have culminated in the recent development of

predictive models that have had success in capturing the emergent properties of cells from the

underlying interacting genes - as originally hypothesised byWaddington. In the next section, the

origins of themost significant of thesemodels are discussed to set the scene for many of the tech-
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niques that are used in the remainder of this thesis. For a direct comparison between the models

touched on in the next section, and their relation to models in the field of machine learning, the

reader is pointed to the review by Fierst and Phillips [57].

1.2. From the Ising model to gene regulation via neural networks

The Ising model is a statistical mechanics model for (ferro)magnetism, invented in the 1920s by

WilhelmLenz [58]. It is named after his student, Ernst Ising, who solved it in onedimension [59]

and can be found in many modern undergraduate physics courses. The model consists of binary

variables, σi ∈ {±1}, that represent the magnetic dipole moments of atomic spins in a material.

The spins are arrangedon a lattice or network, and each spin is able to interactwith its neighbours.

The state of the system at any time is fully characterised by the configuration of spins σ(t) =

(σ1, . . . σN), where N is the number spins in the system. Although, a very simplified model, it

captures the behaviour of ferromagnetic materials that are able to maintain their magnetisation

long after they are exposed to an external magnetic field (unlike paramagnetic materials that lose

theirs when the external field is removed). The dynamics of the Ising model is governed by the

interactions between spins Jij, where i and j are used to denote the site labels of the spins. If Jij >

0, the interaction is said to be ferromagnetic and spins prefer to have their magnetic moments

aligned. If Jij < 0, the interaction is antiferromagnetic and spinswill prefer to have theirmagnetic

moments oriented in opposing directions. If Jij = 0 the spins i and j do not interact. Similarly,

the sign local field hj of each site governs how each spin reacts to an external field.

In the 1940s, McCulloch and Pitts developed a model for logic processing in the brain [60].

They developed a model for artificial biological neurons. Each neuron has a set of inputs with

weights determining the output of the neuron. The inputs can either be excitatory or inhibitory.

If the inhibitory inputs are activated then the neuron is repressed, otherwise, its output is calcu-

lated by summing across all excitatory inputs and comparing this value with some threshold. The

model can be viewed as a network of interacting neurons that are connected via their inputs and
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outputs. Each neuron in the network can be in one of two states, either repressed “0” or activated

“1”. Thenetworkof neurons is able to reproduce gated logic systems that canperformBooleanop-

erations. The threshold used in the interactions is justified as many biochemical reactions appear

to behave similarly to a Hill function.

Inspired byworks of bistability in biochemical feedback switches, Kauffman created a network

model for gene regulation in which cell types are attractors of the dynamics [12]. Whilst Kauff-

man did not directly cite the Isingmodel in his original Boolean networkmodel, there are clearly

many similarities between the two. Kauffman’s Boolean network model consists of a network of

interacting nodes that represent genes. Each node can be described by a binary variable, “on”

or “off”, which describes whether a gene is activated or inhibited. The state of the system at any

time is then described by the configuration of the N binary genes. The key difference between

the Ising model and Kauffman’s work lies in the dynamics of the two models. The Ising model

updates each magnetic spin based on the sum of the interactions between neighbours, whereas

random Boolean networks assign each node, or gene, with a random Boolean function of its in-

puts. Hence, Boolean networks can reproduce logical rules (e.g. AND, OR, NAND, NOR, etc.).

Although the interactions of the Ising model can be constructed from Boolean functions, ran-

dom Boolean networks are much more general and can have high levels of non-linearity in their

dynamics. The interactions in Boolean networks can also be asymmetric because the network

is constructed by randomly assigning a gene’s inputs from the rest of the genes in the network.

Kauffman mainly studied the stability and behaviour of attractors in the dynamics, investigating

the effects of noise on the attractor lengths. Differentiation in Boolean network models corre-

sponds to transitions between two attractors either by a signal or noise. Kauffman found that the

number of attractors, or cell types, scales with the amount of DNA content (number of nodes)

with a power of 0.63. Since Kauffman’s original paper in 1969, there has been a large body of

literature investigating Boolean networks and their relationship to biological networks, such as

gene regulatory networks [61].
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Spin glasses are disordered magnetic systems, named after the positional disorder of amor-

phous structures such as glasses [62]. In a spin glass, a distribution of interactions Jij results

in irregular patterns in the configuration of atomic spins. Any opposing interactions compete

with one another to align a spin in different orientations. This “frustration” results in multiple

(meta)stable configurations compared to ferromagnetic systems. Spin glasses have been well

studied in the statistical physics community with interactions over different length scales such

as between neighbours, in the Edward-Anderson (EA) model [63], or over any length scales in

the SherringtonKirkpatrick (SK)model [64]. Spin glasses have a richbehaviour inwhich the sys-

temcan capture a number ofmagnetic properties, such as paramagnetism, hysteresis and remnant

magnetism, depending on the strength of the interactions between spins relative to the thermal

noise in the system.

The robust nature of themetastable states in spin glasses led to the theory being adapted to un-

derstand neural networks (NNs) [65]. Binary spin states were reinterpreted as firing/quiescent

neurons with synaptic interactions Jij. A popular recurrent neural network model is the Hopfield

model [66] of associativememory, that uses theHebbian learning rule to storememories or con-

figurations of neuronal activity in the synaptic interactions. These configurations are a form of

quenched disorder because they do not change with respect to the level of noise in the system.

The Hopfield model is an associative neural network because its memory retrieval capabilities

are robust to input errors and hardware failure. The Hopfield model has a relatively low storage

capacity: the number ofmemories/patterns P that can be stored in a network ofN neurons scales

as P ∼ αN, where α ≈ 0.14 [67, 68]. The model has multiple regimes of behaviour, acting as

a spin glass, paramagnetic system or capable of retrieving memories, depending on the level of

noise in the system and the storage level α [67, 68].

Another notable model for gene regulatory networks, that operates in the same manner as

some neural network models, was introduced byWagner in the 1990s [69, 70]. Similar to Kauff-

man’sBooleannetwork the state of the system is describedby the configurationof binary “on/off”
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genes, (G1, . . . ,GN), that arenodes in thenetwork. Genes interactwithone another in themodel

through the proteins that they express (P1, . . . , PN). Each gene can express a single protein or

not, i.e. Pi ∈ {0, 1}. Those proteins then determine the expression level of the genes through

activation/inhibition Si = 2Pi − 1, where Si = −1 and Si = 1 correspond to repression and

activation respectively. The state of each gene at a given time is updated by a step function of a

weighted sum of the expression states. This is analogous to the update rule used in the dynamics

of artificial neural networks, such as thosedevelopedbyMcCulloch andPitts [60]. Wagner’s gene

network model can converge to a fixed point or cycle between different expression states, from

an initial state of protein levels. Wagner focused his study on networks that converge to a stable

equilibrium. The realisation of a stable equilibrium in a networkwas later termed “developmental

stability” [71, 72], because Wagner gene networks are typically used to study the evolution of a

population due to genetic mutations, genetic drift or environmental selection [73–79].

There are clearly many parallels that can be drawn between spin glasses, neural networks and

gene regulatory networks (GRNs). Just as neural networks are robust to disruption of the synap-

tic efficacies andneuron failure, themorphological and phenotypic properties of the different cell

types that arise from distinguishable gene expression profiles are largely robust to genetic varia-

tions andDNA replication errors. The individual components interact with one another through

regulatory interactions of activation and inhibition, that encourage and suppress gene expression,

analogous to magnetic interactions aligning spin orientations. Furthermore, the number of sta-

ble cell types is just a small fraction of all possible gene expression profiles, which is similar to the

low storage capacity of neural networks. Next, external signals, such asmorphogen gradients, can

alter the expression of genes similar to spins aligning with local and external fields. Lastly, spin

systems and neural networks can be studied on complex networks that have non-trivial topolo-

gies, similar to gene regulatory networks. The fields of the statistical physics of spin glasses and

neural networks are well established. Thus, given the previously listed similarities between mag-

nets, memories and cell types in relation to the configuration of interacting units that comprises
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them, it is only logical to borrow from the library of results, tools, and techniques of statistical

physics. In fact, the similarity between cell types and spin glasses has been made before. Derrida

and Flyvbjerg first noted the similarity between Kauffman’s models and spin-glasses [80].

Neural network like models have also been applied to the problem of cell reprogramming be-

fore. Lang et al. adapted the Hopfield model to construct a complex epigenetic landscape from

a protein-protein interaction network [81]. In their model different cell types exist as attractors

in the high dimensional epigenetic landscape. They were successfully able to reproduce known

reprogramming protocols and showed that partially reprogrammed cells, commonly observed

in experiments, emerge directly from the dynamics of their model converging to a state that is a

mixture ofmultiple attractors. Despite the success of theirmodel, it lacks some key aspects of cell

biology, such as variation in gene expression levels due to cell cycles. Their model is also hard

to interpret from an experimental point of view. For example, they model the effect of culture

conditions or different transcription factors with field contributions in the Hamiltonian of their

model. Then, to model the effect of the OSKM factors during reprogramming experiments, they

send the corresponding components of the transcription factor field to infinity whilst setting all

other components to zero. Whilst their model is able to accurately capture experimental obser-

vations, it is difficult to interpret from a biological point of view.

Similarly, Szedlak et al. have used Hopfield-like networks to model the cell cycle [82] and

explore signalling patterns in cancerous cells [83]. Once more, whilst these models are capable

of capturing aspects of the behaviour that they are attempting to model, the parameters of the

models can be difficult to interpret in terms of measurable quantities. Therefore, it is also worth

emphasising that genes are not neurons or magnetic moments. Careful considerations should

be made when constructing models for the interaction of their expression levels by leaning on

known results from theoretical and experimental biology. Parameters and interactions should

have purposeful meanings that are rooted in biological facts. It is not sufficient simply to change

themeaning of variables in thesemodels to suit one’s own purpose. Thus, success relies on build-
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ing models that are motivated from molecular biology, whilst also learning lessons from known

results in statistical physics where we can.

25



2
Ahierarchical model for cell

reprogramming

2.1. Introduction

The retrieval of pluripotent cells was first pioneered by John Gurdon in the 1960s, using nuclear

transfer to clone a frog from the nuclei of somatic cells extracted from a xenopus tadpole [14].

More recently, cell reprogramming has shown that it is possible to obtain induced pluripotent

stem cells (iPSCs), which strongly resemble embryonic stem cells (ES), from somatic cells via

the introduction of just 4 transcription factors (Oct3/4, Sox2, Klf4 and c-Myc - now known as
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the Yamanaka or OSKM factors) [17, 18]. It has also been demonstrated that nearly all somatic

cells can be reprogrammed in thismanner [19], suggesting that the “code” for pluripotency lies in

the genome common to all cells of an organism. Once reprogrammed it is possible to guide iPSCs

to differentiate into a desired cell type using specific culture conditions [84]. Due to their ability

to self renew and differentiate into many different cell types, stem cells (including iPSCs) hold

great potential for both personalised and regenerative medicine [2]. Furthermore, iPSCs can act

as a model environment for studying disease and testing drug delivery mechanisms [3, 5]. Since

the original reprogramming experiments, multiple protocols have been uncovered by replacing

certain Yamanaka factors with other proteins or small molecules. For an extensive biomedical

review of iPSCs, and how they differ from other stem cells, see Takahashi 2015 [9].

However, despite the great potential of iPSCs, and the evolution of cell reprogramming exper-

iments, much is still unknown about the decisions governing the fate of a cell. Cell fate decisions

were first modelled by Waddington using his idea of an epigenetic landscape. This model de-

scribes development using the analogy of a ball rolling down a hill from states of high potency

to fully differentiated ones. Different cell types are represented as valleys in the landscape, and

a cell’s fate is determined by the valley which the ball falls into [85]. The number of valleys in-

creases the further the ball moves down the landscape, representing the increasing diversity of

cell types during development. Whilst this model provides an interesting metaphor for differ-

entiation, it lacks some key aspects of cell biology, such as cell cycles. Recent experimental work

has suggested that cell types can be considered as high dimensional attractors of a gene regulatory

network [33], paving the way for a dynamical systems approach to cell reprogramming.

Many of the current models describing cell fate decisions focus on specific small gene regu-

latory networks (GRN) that are believed to govern pluripotency or differentiation, or, they ap-

proach the problem from a cell population perspective. For further details of the current mathe-

matical and computational models of cell reprogramming the reader is directed towards the ref-

erences Morris et al. 2014 [7] and Herberg and Roeder 2015 [49] respectively.
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In this chapter, a mathematical model is presented whichmodels cell reprogramming in terms

of transitions between attractors of a high dimensional dynamical system. The attractors of the

dynamics represent the gene expression levels throughout the cell cycles of different cell types,

and they are related to one another in a hierarchical manner. The rest of this chapter is organ-

ised as follows: first, the theory behind the model is formulated by appealing to a small set of

key observations concerning cell chemistry, before being applied to a specific type of hierarchy.

Next, evidence for reprogramming in the model is presented and discussed, with the main find-

ings of the work summarised at the end of the chapter. The majority of the mathematical details

have been relegated to the appendices with the aim ofmaking this chapter accessible to interested

readers from various scientific backgrounds.

2.2. Theory

Cells are the fundamental units of structure and reproduction in most organisms [86]. They are

complex and dense building blocks which contain a rich tapestry of biochemical reactions involv-

ing a multitude of chemical species (e.g. proteins, sugars, lipids, etc.). Metabolic pathways, such

as glycolysis, involve many intermediate steps converting the product of one reaction into the

substrate for another. Enzyme reactions, like those involved in glycolysis, can be described gen-

erally by a set of differential equations, known as the Michaelis-Menten equations [87]. Thus,

to fully describe the dynamics of cell chemistry one would need to incorporate the Michaelis-

Menten equations for all possible reactions into a theory which would describe reaction and dif-

fusionmechanisms, self-organisation, biochemical signalling, etc. One component of such a the-

ory would be the transcription of theN genes of the organism’s genome, which alone represents

a vast state space. For example, even if one assumes binary gene expression levels (i.e. genes are

either expressed or not expressed), there are 2N possible configurations of gene expression lev-

els. A natural question then arises from the complex chemistry of cellular life: How do so many

reactions, of so many species, give rise to a comparably low number of different cell types? For
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example, the human genome is comprised of approximately 25, 000 genes yet only gives rise to

around 300 different cell types. A plausible realisation of this fact is to suppose that stable cell

types emerge as attractors of the full reaction dynamics of the cell.

For thepurposeofmodelling cell reprogramming, wepropose to construct a reducedmodel by

appeal to the following line of reasoning. Suppose one was able to integrate out all components

of the complete theory other than gene expression levels, the result would be a reduced model

which will have the following two features: (i) it will involve interactions between genes; (ii)

the interactions will exhibit memory effects. The interaction of genes would result in a feedback

mechanism that could explain the existence of stable attractors. In the reduced model, memory

would be a result of the interplay between genes and proteins. Transcription factors (TFs) are

proteins that regulate the expression of genes (through activation/inhibition). These proteins

are translated from RNA, which is transcribed from the genes in the cell’s nucleus. Thus, the

expression level of a gene will depend on the previous expression levels through gene regulation.

Furthermore, proteins can regulate the genes which they were synthesised from, other genes,

and/or combine with other proteins to form complexes which are transcription factors. Hence

the expression level of a given gene will depend on the previous expression levels of many (or

all) other genes. Memory is, in fact, required to create dynamic cell cycle attractors with different

durations for each of the phases of the cell cycle, in a model based on gene expression levels only.

Based on these observations, we build a minimal model that describes cell types in terms of

gene expression levels across their cell cycles. We canmake simplifications to the reducedmodel,

that do not change the intuition behind, or nature of, themodel butmake themathematics easier

to work with. One such simplification is the discretisation of time, which allows one to neglect

the effects of memory. To do this we measure time in terms of stages passed through the cell

cycle (e.g. G1, S, G2, …). This allows one to ignore the different durations of each cycle phase

by concentrating on which phase of the cycle a cell is in. Another assumption is that the gene

expression levels are binary variables, ni (with i = 1 . . .N), i.e. genes can exist in one of only
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two states: they are either expressed or are not. These states may be represented by the binary

values ni = 1 and ni = 0 respectively, hence the common terminology Boolean, or “on/off”,

genes. Again, it is important to stress that these assumptionsmake themathematics of themodel

much simpler, but can be relaxed if a more comprehensive description of cell cycle regulation is

required.

A general model for the dynamics of interacting binary genes would have the following form,

ni(t+ 1) = Θ [hi(t)− θi − Tξi(t)] , (2.1)

whereni is the geneexpression level of the ith gene,with the effectof the gene interactions encoded

in a local field, hi(t) of the form,

hi(t) =
∑
j

Jijnj(t) +
∑
j,k

Jijknj(t)nk(t) + . . . . (2.2)

Here Jij is the effect of the interaction between genes i and j, and Jijk is likewise the effect of the

triplet interactions between the 3 genes i, j and k, (there could also be higher order interactions

which are represented by the …). Any constant contributions to the local field, such as self reg-

ulation, can be absorbed into the definition of θi. The ξi are random variables with zero mean

and a suitably normalised variance, which mimic noise to represent the fundamental stochastic-

ity of reaction events. Popular noise models are Gaussian and thermal noise. We use T to vary

the strength of the noise. Anticipating our later choice of the thermal noise model, I may refer

to T as temperature or noise strength interchangeably. TheΘ [x] is the Heaviside step function:

Θ [x] = 1 for x > 0 and Θ [x] = 0 otherwise. Thus, (2.1) states that a gene will be expressed

in the next phase of the cell cycle (i.e. ni(t + 1) = 1) if the combined effect of all interactions

and stochastic noise at time t exceeds a gene-specific threshold, θi. At each time step every gene

expression level is updated according to this rule, and the state of the system is fully described at

any time t by the instantaneous configurationn(t) = (n1(t), . . . , nN(t)) of gene expression levels.
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The network of effective interacting gene expression levels one should consider is a subset of

the entire genome. Only the regulatory genes (i.e. the genes that encode for proteins that are tran-

scription factors or form complexes that are transcription factors) need to be considered. Whilst

the expression of other genes may contribute to identifying a given cell fate, their expression is

driven by that of the regulatory genes. That is the expression of regulatory genes is independent of

that of non-regulatory genes. Thus, the total number of genesN in our model should be thought

of as the total number of regulatory genes.

2.2.1. Minimal model

We restrict ourselves to consider a system involving pair interactions only, and simplify matters

further by assuming uniform thresholds, i.e. θi = θ ∀ i. Thus the dynamics of theminimal model

is given by the following simple expression,

ni(t+ 1) = Θ

∑
j

Jijnj(t)− θ − Tξi(t)

 . (2.3)

This expression is reminiscent of the models used in the field of neural networks (NNs) for as-

sociative memory, with a post-synaptic potential (PSP), hi =
∑

j Jijnj and a neuron fires (ni(t +

1) = 1) if the PSP exceeds a given threshold θ. In associative memory, configurations of neu-

ronal activity representing some memories are stored in the synaptic efficacies Jij, such that they

are attractors of the dynamics. TheNN is then said to recall a pattern when the system converges

to the corresponding configuration from some initial condition. SuchNNs are said to be content

addressable because the attractor to which they converge is given by the (content of the) initial

state. Associative NNs of this type are robust to input errors and hardware failures (such as dis-

ruption of the synaptic efficacies and thresholds). Analogously, in our model, specific configura-

tions of gene expression levels, which represent the different cell types of an organism, are stored

in the gene interactions, Jij, which therefore govern the dynamics. Using a temporal ordering of
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the cycle state specific configurations, the attractors become dynamic attractors that represent

the cell cycles of each cell type (as will be shown in detail in section 2.3). It is also desirable that

the gene interaction network is robust to variation or errors in gene expression levels, because,

despite variation in gene expression levels across human individuals andmutations in the human

genome, individuals of a population have the same set of cell types.

The analogy between associative memory and cell reprogramming has been made recently in

the context of protein interaction networks [81]. However, that work differs from that presented

here due to the absence of cell cycles and the potency hierarchy. In their work, Lang et al. extend

Waddington’s developmental landscape metaphor into an epigenetic landscape describing the

interactions between proteins. Instead, by working with gene interactions it is possible to neglect

the specific activation/inhibition nature of transcription factors, which will be encoded in the

effective interactionsbetweengenes. Thus, the interactionbetweengenes, as opposed toproteins,

is a more natural approach to model cell fates. However, in chapter 4, the combined dynamics of

geneexpression levels andTFs is studied toprovide adeeperunderstandingof thegene regulatory

dynamics encoded in the effective interactions between gene expression levels.

2.2.2. Cell cycle similarities, lineages and reprogramming

Cell reprogramming requires transitions between cell states, which can be either a trans- or de-

differentiation, i.e. either across or up the potency cascade [9]. With this idea in mind, the cell

cycles stored in themodel are related to one another in a hierarchical manner. Specifically - apart

from the stemstatewhich sits at the topof thehierarchy and thushas no ancestor (see figure 2.2.1)

- the gene expression levels of all cell types are conditionally dependent on their parents. This

set up is inspired by the storage of memories, in a Markovian hierarchy, for associative memory

NNs [88]. Parallels between the hierarchical relation of cell cycles and Waddington’s epigenetic

landscape can be made. However, the present approach does not directly model a landscape of

the cell states.
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Figure 2.2.1: A schematic diagram of the hierarchy of cell types, in terms of cell potency.
Stem cells, e.g. embryonic stem cells (ES) or iPSCs, sit at the top of the hierarchy due to
their ability to differentiate into many different cell types. The further down the hierarchy a
cell type is, the lower its level of potency (or higher its level of specialisation). Differentia-
tion corresponds to moving down one level of the hierarchy (green arrow); de-differentiation
is equivalent to moving up the hierarchy (red arrow); trans-differentiation (blue arrow) corre-
sponds to transitions between cell types of the same level.

It has been demonstrated that protein and mRNA levels vary across the cell cycle [41], thus it

is reasonable to infer that the gene expression levels of a cell also changes throughout its cycle. It is

thus plausible to conceive of a situation inwhich the global expression levels of different cell types

aremore similar in certain stages of the cell cycle than in others. For example, during the S-phase

the gene expression levels could likely be vastly reduced in all cells types (as suggested by Cho

et al. [89]), as the DNA is otherwise occupied through replication. It is also the case that most

of an organism’s cells undergo the mitotic phase via broadly the same mechanisms. Hence, there

could exist (at least) one phase of the cell cycle in which different cell types aremore similar than

others (see figure 2.2.2). These stages of the cell cycle would represent a natural target in which

it is easier to induce switches between cell types, i.e. to reprogram a cell. This is one of the main

hypotheses that we will be testing in the present study.

At the time of writing, I am aware of only one other model which includes a hierarchy of cell

33



CHAPTER 2. A HIERARCHICAL MODEL FOR CELL REPROGRAMMING

A

B

Similar Di erentDi erent

S S

M M

G2 G2
G1G1

G0
G0

Figure 2.2.2: A schematic diagram of the possible similarities between the cell cycles of
two different cell types (labelled A and B). The horizontal distances between the analo-
gous phases of the two cell cycles represent the level of similarity - the closer the phases the
more similar they are. Two different cell types could be more similar during the S- and/or
M-phases, in which the biological processes are broadly similar across different cell types of
an organism.

states and the cell cycle. In theirmodel, Artyomov et al. defined a cell type through the expression

levels of a small ensemble of master regulatory genes referred to as amodule [40]. They included

the cell cycle as an interplay between the gene expression levels of a cell and the epigenetic state

of the cell. On the other hand, here, we treat each cell type as a dynamic entity, which transitions

through different configurations of gene expression levels that correspond to stages of its cell cy-

cle. Each configuration describes the entire transcriptome of a cell in a given cycle phase. In this

work we do not directlymodel the epigenetics of a cell. However, the similarity between different

cell types, during specific phases of the cell cycle discussed above, could be a result of epigenetic

changes, such as changes in chromatin structure or the presence of histone markers.

2.2.3. Two-level hierarchy

To validate the principles of our approach we apply the neural-network-like model above to a

simplified version of the biology. This makes the mathematics easier to implement and keeps the
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corresponding ρ-phase progeny

Stem cell

Figure 2.2.3: A cell potency hierarchy for a two-level system. The stem cell sits at the top
of the hierarchy and is given by the configuration of gene expression levels ηρ, where the
superscript ρ labels the stage of the cell cycle (e.g. S-phase). The second level of the hierar-
chy consists of M daughter cell configurations. In general, the configuration of the daughter
cell is given by ηρµ, where the superscript ρ and µ label the stage of the cell cycle (e.g. S-
phase) and the type of daughter cell respectively (e.g. neuron, B-cell, etc.). A hierarchy of
this form exists for every stage of the cell cycle, so that, every cell type has the same num-
ber of cycle phases.

notation simple and transparent. Such simplified scenarios still capture themain principles of the

biology, and in practice, the mathematics can easily be extended to more realistic systems. We

therefore consider a two level hierarchy in which fully differentiated cells are direct descendants,

or daughters, of the stem cell (see figure 2.2.3). Each of the cell cycles is coarse grained into 3

stages, with a single cycle phase made more similar across the different cell types. The coarse

graining of the cell cycles was carried out purely for computational efficiency and generalisation

to 4 or 5 stage cell cycles is straightforward.

2.3. Probabilistic framework

We will now introduce a specific model which implements our generic reasoning within a prob-

abilistic framework. Consider a system ofN genes, each labelled by i = 1 . . .N, andM daughter

cell types, labelled by µ = 1 . . .M. Each cell type, daughter or stem, undergoes a cell cycle of
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lengthC andwe denote each phase of the cycle by ρ = 1 . . .C (withC+1 ≡ 1). The expression

of the ith gene, in the ρth phase of the stem cell cycle, is denoted by ηρi ∈ {0, 1}, where ηρi = 1

corresponds to that gene being expressed. Wedenote by aρ the fraction of genes expressed during

the ρth cell cycle phase, also referred to as the activity of that cycle phase. Thus, the probability of

the gene expression levels in the ρth phase of the stem cell cycle are given by

p(ηρ) =


aρ for ηρ = 1 ,

1− aρ for ηρ = 0 .

(2.4)

Then the configurationof the stemcell state, in theρth cycle phase, is givenbyηρ = (ηρ1 , . . . , η
ρ
N).

Furthermore, for every state,ηρ, of the stemcell cycle there is a corresponding set of descendants,

in the same stage of the cell cycle, ηρµ = (ηρµ1 , . . . , ηρµN ). Similar to the stem cell cycle, each

daughter cellµ has an activity given by aρµ, which governs the probability of expressing a gene in

each stage of the cell cycle

p(ηρµ) =


aρµ for ηρµ = 1 ,

1− aρµ for ηρµ = 0 .

(2.5)

We assume the gene expression levels in the stem cell, ηρi , are independent, identically dis-

tributed (i.i.d) random variables, which implies that the configurationsηρ are independent along

the cell cycle. This assumption was made to simplify the mathematics, but may be relaxed if a

more comprehensive model is desired. The configurations of the daughter cells, on the other

hand, are derived from the corresponding phases of stem cell. We define the probability of turn-

ing a gene off during the differentiation-transition from a stem cell to a daughter cell, in the same

phases of the cell cycle, with equal activities aρ = aρµ, asγρµ. Thus, the transition probability of a

gene being expressed in both the stem and daughter cell (of the same cell cycle phase) is given by

(1− γρµ) a
ρµ

aρ , i.e. the ratio of probabilities the gene is on in both states multiplied by the proba-
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bility it was not turned on in differentiation. The full transitionmatrix used to construct the gene

expression levels of the daughter cells from the same phase of the stem cell cycle can be found in

appendix 2.A. Due to this construction of the daughter cell cycles in terms of the stem cell cycle,

the different daughter cell configurations are conditionally dependent on the stem cell state.

The interactions between the gene expression levels of the system should be chosen such that

the cell cycles of the daughter and stem cells are attractors of the dynamics. To construct the

interactions of the model we combine a set of known results from the field of NNs. Hopfield

originally showed that multiple configurations can be stored in the synaptic couplings of a neu-

ral network using the Hebb rule [66]. It is known that dynamic attractors can be stored in the

couplings by adapting the Hebb rule to include a temporal order to the stored configurations, i.e

the interactions have a contribution from the current pattern and its successor [90, 91]. Thus, in

our notation of gene expression levels, a sequence of stem cell cycle phases may be stored in the

interactions in the following manner.

J(cycle)ij =
1

N

C∑
ρ=1

(ηρ+1
i − aρ+1)(ηρj − aρ)

aρ(1− aρ)
. (2.6)

This choice of interaction ensures that if the gene expression levels evolve according to (2.3) and

are initialised, at time t, in the configuration n(t) = ηρ, their configuration in the next time step

will, with high probability, be n(t + 1) = ηρ+1. To ensure the sequence of configurations re-

trieved by the system is a closed cycle, the successor of the final configurationmust be equivalent

to the initial configuration. For low activity configurations, it is required that one removes the

bias from each of the cycle phases, in order to achieve stable limit cycle attractors in the dynam-

ics. Here this is done by subtracting the average gene expression of each of the cell cycle phases,

resulting in the contributions from each cycle phase having zero mean.

Information can also be stored in the interactions in a hierarchical manner [88, 92, 93] (equiv-

alent to the structure shown in figure 2.2.3). This is done by including contributions from each
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state in the hierarchy in the interactions. Each pattern must then be weighted by a factor deter-

mined by its position in the hierarchy [94]. Combining these two ingredients, the interactions

that stabilise a hierarchy of cell cycles can be written as follows,

Jij =
1

N

C∑
ρ=1

{
(ηρ+1

i − aρ+1)(ηρj − aρ)
aρ(1− aρ)

+
M∑

µ=1

(ηρ+1,µ
i − aµ(ηρ+1

i ))(ηρµj − aµ(ηρj ))
aρµ(1− aρµ)

}
. (2.7)

Here the summations are over cycle phases, ρ, and daughter cell types, µ. We chose to remove

the bias from the daughter cell type by subtracting the conditional average of the gene expres-

sion levels, aµ(ηρ) = E [ηρµ|ηρ], i.e. the average gene expression level of the daughter cell given

the expression levels in the same cell cycle phase of the stem cell. However, the bias could also

be removed using the activity of the daughter cells, aρµ, in place of the conditional averages in

(2.7). The weights in the denominators are the variances of the gene expression levels in the cor-

responding cell cycle stage for the stemor daughter cells. Note that, if the ρ+1was replacedwith

ρ in (2.7) then this would be the standard prescription for storing a hierarchy of configurations.

Since they are included we have in fact stored a hierarchy of cell cycles.

2.3.1. Introducing the dynamics

Given the form (2.7) of the interactions, one can express the local fields hi(t), appearing in the

dynamics (2.3), concisely in terms of a set of macroscopic dynamical order parameters, namely

m̃ρ(t) = m̃ρ(n(t)) =
1

N

N∑
i=1

ηρi − aρ

aρ(1− aρ)
ni(t) , (2.8)

m̃ρµ(t) = m̃ρµ(n(t)) =
1

N

N∑
i=1

ηρµi − aµ(ηρi )
aρµ(1− aρµ)

ni(t) . (2.9)
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If we absorb the threshold θ, appearing in (2.3), into the definition of hi(t), this gives

hi(t) =
∑
ρ

{
(ηρ+1

i − aρ+1)m̃ρ(t) +
∑
µ

[
ηρ+1,µ
i − aµ(ηρ+1

i )
]
m̃ρµ(t)

}
− θ . (2.10)

The value of θ is fixed, such that the stable cell cycle attractors exist at sufficiently low noise levels.

Note that hi(t) = hi(m̃(t)), in which m̃ is the vector containing the set of all dynamical order

parameters {m̃ρ(n(t))} and {m̃ρµ(n(t))}. As a consequence, and by appeal to the law of large

numbers in the limit of a large numberN of genes, one can formulate the dynamics of our model

in closed form entirely in terms of the dynamic order parameters, giving

m̃ρ(t+ 1) =

⟨
ηρ − aρ

aρ(1− aρ)
P [ξ ≤ βh(t)]

⟩
ηρ,ηρµ

, (2.11)

m̃ρµ(t+ 1) =

⟨
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

P [ξ ≤ βh(t)]
⟩

ηρ,ηρµ

, (2.12)

provided that N ≫ M in this limit (we will see later why this condition must be satisfied). In

(2.11) and (2.12) β = 1/T is the inverse of the noise strength. The P(ξ ≤ z) in (2.11) and

(2.12) is the cumulative distribution function (CDF) for the noise probability, p(ξ) (i.e. the

probability that ξ will take a value less than or equal to z). Popular choices for the p(ξ) are

the Gaussian distribution, and the qualitatively and quantitatively similar, logistic distribution

P(ξ ≤ z) = 1
2
(1 + tanh z

2
). We will use the latter, for which (2.11) and (2.12) can be written in

the following form (for details of this calculation see appendix 2.B),

m̃ρ(t+ 1) =
1

2

⟨
ηρ − aρ

aρ(1− aρ)
tanh

(
βh(t)
2

)⟩
ηρ,ηρµ

, (2.13)

m̃ρµ(t+ 1) =
1

2

⟨
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

tanh
(
βh(t)
2

)⟩
ηρ,ηρµ

, (2.14)
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where the angle brackets, ⟨. . .⟩ηρ,ηρµ , represent the average and conditional averages over all stem

and daughter cycle states. These equations of motion are easily solved numerically by forward

iteration, starting from suitable initial conditions.

2.3.2. Signal-to-noise analysis

Models of NNs, like those that inspired the choice of interactions leading to (2.7), typically have

a finite storage capacity. That is, there is an upper limit on the number of patterns that can be

stored in the interactions. If one exceeds this storage capacity, the model will enter a spin glass

regime where it is no longer capable of accurately recalling any patterns. Here we use a signal-to-

noise analysis for (2.7), in order to assess the criteria under which a hierarchy of cell cycles can

be stored with this type of modelling procedure.

The local fields hi =
∑

j Jijnj − θi determine the evolution of the system. In a signal-to-noise

analysis the local fields are dissected into two parts that represent the contribution to the cou-

plings that arises from the condensed pattern n (i.e. the pattern the system currently finds itself

in) known as the signal, and the contribution to the couplings from all other patterns termed

the noise. Commonly, the condensed pattern n is assumed to be the only configuration that the

system has a finite correlation with in the thermodynamic limit. By studying the noise and sig-

nal contributions to the local field, we can determine the conditions under which the model is

successfully able to recall the condensed pattern [95], or, in the case of the gene expression level

dynamics, progress through the cell cycle.

If we chose the condensed pattern to be n = ηρ̄, then the local fields (in the absence of any
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gene-specific thresholds) can be decomposed as,

hi(ηρ̄) =
ηρ̄+1
i − aρ̄+1

N

∑
j(̸=i)

ηρ̄j − aρ̄

aρ̄(1− aρ̄)
ηρ̄j

+
∑
µ

ηρ̄+1,µ
i − aµ(ηρ̄+1

i )

N

∑
j(̸=i)

ηρ̄µj − aµ(ηρ̄j )
aρ̄µ(1− aρ̄µ)

ηρ̄j

+
∑
ρ(̸=ρ̄)

{
ηρ+1
i − aρ+1

N

∑
j(̸=i)

ηρj − aρ

aρ(1− aρ)
ηρ̄j

+
∑
µ

ηρ+1,µ
i − aµ(ηρ+1

i )

N

∑
j(̸=i)

ηρµj − aµ(ηρi )
aρµ(1− aρµ)

ηρ̄j

}
, (2.15)

where the top lines and bottom lines are the contribution to the local fields from the signal S and

the noise R respectively. The noise includes contributions to the local field from all cell cycle

phases different to the condensed pattern, i.e. all ρ ̸= ρ̄. In the limit of a large number of reg-

ulatory genes, N, the signal contribution to the local fields is simply (ηρ̄+1 − aρ̄+1), and acts to

progress the stem cell cycle from one phase to the next according to the dynamics (2.3) - further

details can be found in appendix 2.D. In the same limit, the contribution to the local field from

the noise is a sum of random variables, and is itself a zero-mean random variable. Thus, using the

central limit theorem, the noise distribution is a zero mean Gaussian that is completely charac-

terised by its variance. The variance of the noise is found by squaring the bottom lines of the local

field above, and averaging over all gene expression level patterns (see appendix (2.D)). It can be

shown that the variance of the noise contribution to the local fields behaves as

⟨R2⟩ ∝ (C− 1)M
N

. (2.16)

Therefore, for the signal to dominate in the local fields, allowing successful progression of the cell

cycle, ⟨R2⟩ should be small. This occurs provided that N ≫ M(C − 1) (see appendix 2.D for

full details). Remarkably, this condition is in line with what is typically observed in multicellular

organisms, e.g. for Humans N ∼ 25, 000, M ∼ 300 and C = 5. Furthermore, the same

41



CHAPTER 2. A HIERARCHICAL MODEL FOR CELL REPROGRAMMING

0 5 10 15 20

t

0

0.2

0.4

0.6

0.8

1

m

Figure 2.4.1: Numerical solutions of (2.13) and (2.14), at a low effective temperature T =
0.01, when the system is initialised with a high overlap with the daughter cell cycle. The
peaks in mρ and mρµ correspond to the system passing through states correlated with the
different cell cycle stages of the daughter and stem cell - i.e. each peak is a successive ρ,
and the dashed lines are the overlap with a single daughter type, µ, and the solid lines are
the overlap with the stem cell. The following parameters were used: C = 3, a1 = a3 = 0.7,
a2 = 0.3, a1µ = a3µ = 0.6, a2µ = 0.2, γρµ = 0.2 for all ρ and µ and θ = 0.

condition is also found when a daughter cell cycle is chosen as the condensed pattern.

2.4. Results

In the results that followa single cell cycle phasewasmademore similar between thedaughter and

stem cell cycles. This was done by having a lower value of aρ and aρµ in that particular phase. The

similarity between the cycle phases of the stemanddaughter cells canbe seen from the covariance

between their expression levels,

cov [ηρ, ηρµ] = aρµ(1− γρµ − aρ) . (2.17)

Here, the probabilities of expressing a gene in both cell cycle stages (aρµ and aρ respectively)

and the probability that a gene is not turned on during differentiation (i.e. 1 − γρµ) govern the
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similarity between the gene expression levels of the same cycle phase across the two generations

of cell types. Thus, it is possible to make certain stages of the cell cycle more similar across the

two levels of the hierarchy by tuning the parameter values used in (2.17). At this point, it should

also be noted that there are restrictions on the values that γρµ can take, in order for the transition

probability from ηρ to ηρµ to be correctly defined as a probability (for details see the appendix

2.A).

Our choice of the parameters is based on the analysis carried out in Ramskold 2009 that sug-

gests that 60-70% of all genes are expressed in human cells [22]. In addition, results in the lit-

erature suggest that the activity in stem cells is higher than its progeny [96], so we will choose

aρ > aρµ for all ρ, µ. This leads us to a choose aρ = 0.7 and aρµ = 0.6 in all cells and all phases

except for the phase ρ = 2, that we aim to make more similar between the stem and daughter

cells. In this phase, we chose the parameters aρ = 0.3 and aρµ = 0.2, which lead, via (2.17), to

a higher similarity between the stem and daughter cells. This is also consistent with the expecta-

tion that gene expression is lower in the S-phase due to the genome being occupied with other

processes, such as DNA synthesis. The value γρµ = 0.2 was used for all cell cycle phases, ρ, and

daughter cell types,µ, and the threshold valueswere set to zero (θ = 0). Unless stated otherwise,

these parameter values are used in all of the results and analysis that follow in the remainder of

this chapter.

For the presentation of the results we use the so-called overlaps, whichmeasure the correlation

between the state of the system n(t) and the gene expression patterns that are characteristic of

the cell cycle states of the stem and daughter cells, respectively. They are closely related to the

dynamic order parameters, and in fact identical for the stem cell cycles, and are defined as,

mρ(n(t)) = m̃ρ(n(t)) , (2.18)
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mρµ(n(t)) =
1

N

N∑
i=1

ηρµi − aρµ

aρµ(1− aρµ)
ni(t) , (2.19)

The overlaps are normalized to have values in the interval [−1, 1]. An overlap of mρµ = 1 (or

−1)means the system is fully correlated (or anti-correlated) with the cell typeµ, in the cell cycle

phase ρ, whereasmρµ = 0 implies that they are completely uncorrelated. The same is true for the

stem cell cycle and corresponding values ofmρ.

In figure 2.4.1 we plot the numerical solutions of (2.13) and (2.14) when the system is ini-

tialised in a daughter cell cycle, at a low noise level, T = 10−2. Peaks of the dashed line corre-

spond to the system transitioning through states with a high overlap with the daughter cell cycle

phasesmρµ. Similarly, peaks in the solid line correspond to the overlaps with different phases of

the stem cell cycle,mρ.

Because of correlations between the gene expression patterns of the same cycle phases of stem

and daughter cells, one observes non-zero mutual overlaps between them (for details see ap-

pendix 2.E). Specifically, if the system is in a (perfect) daughter cell state, ni = ηρµi ∀i, the overlap

with the corresponding stem cell state is

mρ(n(t) = ηρµ) =

⟨
ηρ − aρ

aρ(1− aρ)
ηρµ
⟩

=
cov [ηρ, ηρµ]

var [ηρ]
. (2.20)

Conversely if the system is in a stem cell state, ni = ηρi , the overlap with the daughter cell state

ηρµi is

mρµ(n(t) = ηρ) =

⟨
ηρµ − aρµ

aρµ(1− aρµ)
ηρ
⟩

=
cov [ηρ, ηρµ]

var [ηρµ]
. (2.21)

The peaks corresponding to the phase ρ = 2 in figure 2.4.1 are higher than those corresponding

to the other two phases, because the gene expression activity in this phase was chosen to have

a higher covariance, hence a higher value of the overlap (2.20), between the stem and daughter

cells. Theother twophases have identical gene expression activities, hence theyhave identical val-

ues for their overlaps. The initial value ofmρ(n(0)) in figure 2.4.1 was determined using (2.20).
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Figure 2.4.2: Left: Numerical solutions of (2.13) and (2.14), at a noise level T = 0.14.
The initial condition for the overlap with the stem cell was determined using (2.20). Right:
Monte-Carlo simulation dynamics at the same temperature for N = 25, 000 genes. The
system was initialised in a configuration with a high overlap with the ρ = 1 phase of the
daughter cell µ, but as the dynamics progress this decays and the system converges to a
high value for the overlap with the stem cell cycle. This transition takes multiple generations
of the cell cycle and the system passes through an intermediate state with equal overlap
with both stem and daughter cell cycles where the two lines intersect. Only the envelope of
the trajectories is shown, i.e. the cycle phase, ρ(t) = 1 + (t mod C), which the system is
expected to be in. For both panels the same parameter values were used as in figure 2.4.1.

2.4.1. Noise induced switching

At a low noise level, if the system is initialised in a daughter cell it will transition along that cell

cycle indefinitely. However, as T is increased above some critical value the noise will take the

system away from the daughter cell and it will fall into the attractor corresponding to the stem

cell cycle. If the noise is then reduced to a sufficiently low level, the system will become fully

correlated with the stem cell cycle. The noise-induced transition from the daughter cell cycle to

the stem cell cycle is shown in the left panel of figure 2.4.2, for a value of the temperature T at

which the daughter cell cycle is no longer stable. Monte Carlo simulations of the dynamics for

N = 25, 000 confirm the validity of our analytic solution formulated in terms of themacroscopic

dynamic order parameters in (2.13) and (2.14) - right panel of figure 2.4.2. In this figure we do

not plot all time-dependent overlaps as in figure 2.4.1 but only the “envelope” of the overlaps

defined as the overlaps mρ(t) and mρ(t)µ with the expected cycle state, given by ρ(t) = 1 + (t
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mod C).

Thede-differentiation transition takesmultiple time stepsbefore a steady state is reached,where

the system is in the stem cell cycle attractor. This kind of dynamics is in line with that seen in re-

programming experiments, which take multiple generations of the cell cycle before the iPSCs

strongly resemble embryonic stem cells [18, 19].

If, however, the noise level is too high the system quickly loses any correlation with all cell

cycles - i.e. all the overlaps become zero. To find the range of noise levels over which it is pos-

sible to retrieve the stem cell from the daughter cell cycle one can investigate the stability of the

solutions of (2.13) and (2.14) as in appendix 2.F. One can also carry out the following numer-

ical experiment: the noise level, T, was incremented from zero and at each T the equations of

motion were solved numerically, the steady state values of the overlaps (mρ(t) andmρ(t)µ) which

the dynamics converged to were then recorded. These steady state values are plotted against the

corresponding noise level in figure 2.4.3. It is clear that above some criticalT reprogramming via

de-differentiation to the stem cell occurs due to the noise in the system. The value of this critical

Twill depend on aρ, aρµ and γρµ.

The critical value of T for noise-induced reprogramming may also be found numerically, by

performing a stability analysis on the equations of motion, the details of which can be found in

appendix 2.F. The stability analysis accurately identifies the two transitions in the system - the

value of T at which the stem cell pattern is retrieved and the high value of T at which the sys-

tem loses all overlap with all cell cycle phases. The numerical values of T at which both of these

transitions occur agree perfectly with those observed in figure 2.4.3.

2.4.2. Direct perturbations

The noise induced de-differentiation is different from reprogramming experiments, in which the

de-differentiation is due to adirect perturbationusing factors that are common toembryonic stem

cells (i.e. the Yamanaka factors). Such a directed perturbation can be modelled in our system by
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Figure 2.4.3: Steady state solutions of (2.13) and (2.14), showing the overlaps with stem
and daughter cell cycle stages (mρ and mρµ respectively) as a function of noise strength,
T. The dashed and solid lines correspond to the daughter and stem cell cycle overlaps re-
spectively. At low T the phases of the stem cell cycle that have the same activity result in
identical overlaps mρµ. However, as T increases the overlaps for each phase of the daughter
and stem cell cycles become distinguishable, before reconverging at a critical T. Above this
critical T, the stem cell cycle is retrieved and all mρ(n) collapse into a single curve, whilst
the ρ = 1 and 3 curves of mρµ(n) recombine. At sufficiently high values of the overlap, the
system becomes uncorrelated with all cell cycles. The same parameter values were used as in
figure 2.4.1.
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introducing an extra contributionλi(t) to the local field, which pushes the system in the direction

of the stem cell cycle, and has the form

λi(t) = k(ηρ̄+1
i − aρ̄+1)m̃ρ̄µ(t)ci . (2.22)

Here k is the strength of the perturbation, ρ̄ is the stage of the cycle to which the perturbation is

applied, and ci is a logical variable representing whether or not the perturbation is applied to gene

i (ci = 1with probability q, and 0 otherwise).

Sinceoneof thephasesof the cell cycle ismore similar acrossdifferent cell types, it is anobvious

target forperturbationswhenattempting to reprogramacell. Theperturbations shouldbe applied

just prior to themost similar phase so as toonlyminimally disrupt theprogressionof the cell cycle.

So choosing ρ̄ as the cycle phase prior to themaximally similar one, is expected to be the optimal

reprogramming protocol at a given temperature.

In figure 2.4.4 we are carrying out the same numerical experiment as in figure 2.4.3, except the

probability, q, that a perturbation is applied, is incremented rather than the noise level,T. This ex-

periment shows that de-differentiation is possible with a directed perturbation even at low noise

levels where the daughter cell cycles are stable. The retrieval of the stem cell cycle is only possi-

ble above some critical value of the fraction of perturbed genes, that we call the reprogramming

threshold, qr. Because the ρ = 2 cell cycle stage is more similar across different cell types, per-

turbations applied to ρ̄ = 1 should have a lower qr value compared with perturbations applied to

other phases, i.e. ρ̄ = 2 or ρ̄ = 3. This is indeed borne out by the theory.

Increasing the noise level towards the critical T required for noise induced de-differentiation

candramatically changeqr, seefigure2.4.5. Thecritical valueqr has anon-monotonicdependence

on the noise level, T. This is a direct result of the non-linear nature of the system and the depen-

dence of the perturbation (19) on the dynamical order parameters m̃ρ̄µ. As expected the ρ̄ = 1

perturbations have the lowest qr values at any givenT. This is because the ρ = 2 phase was made
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Figure 2.4.4: Steady state stem and daughter cell cycle overlaps, mρ and mρµ, versus the
fraction of genes to which a perturbation of the form (2.22) is applied to, q. Here, the per-
turbations are applied prior to the most similar phase (ρ̄ = 1). The system was kept at a
low noise level of T = 0.01, whilst all other parameter values are the same as in figure 2.4.1.
The dashed and solid lines correspond to the daughter and stem cell cycle overlaps respec-
tively. At low q the phases of the stem cell cycle that have the same activity result in iden-
tical overlaps mρµ. However, as q increases, the overlaps for each phase of the daughter and
stem cell cycles become distinguishable, before reconverging at critical q. Above the critical
value of q the stem cell cycle is retrieved and the overlaps for all stem cell phases become
identical, whereas overlap with the ρ = 2 phase of the daughter cell remains separate from
the overlaps for the other phases of the daughter cell cycle.
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Figure 2.4.5: The fraction, qr, of genes that a perturbation of the form 2.22 is applied
to in order to retrieve the stem cell cycle versus noise levels, T, increasingly close to that
required for the noise induced switching (see figure 2.4.3). The different curves represent
different ρ̄ protocols for the perturbations. For each protocol a perturbation strength k = 1
was used, whilst all other parameter values used are the same as in figure 2.4.1. The rela-
tive qr values at a given T can be explained in terms of the Hamming distances between the
states involved in the perturbation (ηρ̄µ and ηρ̄+1). As this distance increases so does qr. As
expected ρ̄ = 1 is the most efficient perturbation for a single target phase - left panel. For
the perturbations applied to two phases (ρ̄ = 1 and 2) - right panel - the perturbations were
applied to each phase with an equal probability qr.

to exhibit the largest degree of mutual similarity among cell types, due to a decreased activity in

this phase. The fact that the ρ̄ = 3 perturbations have a lower qr than the ρ̄ = 2 perturbations

follows from the Hamming distance between the state in which the perturbation is applied and

the stem cell state targeted by that perturbation, which is smaller for a perturbation applied in the

3µ state than for a perturbation applied in the 2µ state. That is, d[η3µ,η1] < d[η2µ,η3], where

the normalized Hamming distance between states is defined as

d
[
ηρ̄µ,ηρ̄+1

]
=

1

N

N∑
i=1

∣∣ηρ̄+1
i − ηρ̄µi

∣∣ . (2.23)

Hence a higher fraction of genes need to be perturbed to achieve de-differentiation using ρ̄ = 2

compared with ρ̄ = 3. The Hamming distances between different cell cycle states are calculated

in terms of the activities in Appendix 2.G.

Wehave also looked at a casewhere perturbations of the form(2.22) are acting duringmultiple
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stages of the cell cycle in the reprogramming experiments. For example, during the most similar

phase and the one prior to it. In this case, the effects of each perturbation are combined and qr

may decrease compared to applying perturbations to a single phase - right panel of figure 2.4.5.

The critical fraction O(0.1) of genes that need to be perturbed to reprogram a cell, at low T,

may initially seemmuch greater than the four Yamanaka factors introduced in the reprogramming

experiments (see figure 2.4.4). However, this order of magnitude is actually in line with the ex-

perimental results, as can be seen by considering the following argument. From the 20−25, 000

genes in the human genome only around 10% are thought to be responsible for synthesising

transcription factors [97–99]. This imbalance in numbers requires each transcription factor to

interact with many more genes than is needed to synthesise it on average. If we consider the

interactions between genes and transcription factors as a bipartite graph (see figure 2.4.6), as

we will in later chapter 4, then the TFs have on average an out-degree of O(100) and the genes

have an average in-degree ofO(10) to ensure that there is a conservation in the number of inter-

actions. These numbers agree with the median in- and out-degrees for genes and transcription

factors found from a computational analysis of the human gene regulatory network [100]. As-

suming each regulatory gene contributes to the synthesis of a single transcription factor, then

perturbing 10% of the regulatory genes equates to perturbing roughly 250 genes, which could be

achieved by perturbing just 2-3 transcription factors. Thus the fraction qr = O(0.1)of perturbed

gene expression levels is perfectly in line with the number of transcription factors used to achieve

pluripotency in reprogramming experiments.

2.4.3. TheG0 phase and cell cycle arrest

The local fields defined by (2.10) can be adapted to include other plausible biological features.

The main feature discussed here is the resting phase of the cell cycle, known as the G0 phase.

Up until this point, all of the cells in the model are set-up such that they transition periodically

through a cell cycle. However, most terminally differentiated, or “adult”, cells exist in a single
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Figure 2.4.6: A bipartite graph representing the interactions between genes and transcrip-
tion factors (TFs). The number of TFs scales as P = αN where α < 1. For conservation, the
sum of in-degrees of all genes must equal the sum of out-degrees for all TFs. The number
of genes that a TF regulates could then be an order of magnitude larger than the number
of TFs that interact with a given gene. Thus introducing a small number of TFs could have
a significant effect on the gene expression state of the network. Not all of the nodes and
connections of the network are shown.

phase known asG0, which is either an extendedG1 phase with the cell unable to pass the check-

point into the S phase or a completely distinct phase from the cell cycle (see figure 2.2.2). This

phenomenon can be included in our modelling approach by adapting the form of Jij constructed

in section 2.3. A few possibilities are detailed below.

For a two level potency hierarchy in which the stem cell undergoes a cell cycle whereas its

progeny aremodelled in terms of fixed point attractors representing terminally differentiated cells

in theG0 phase, the interactions would take the form

Jij =
1

N

{
C∑

ρ=1

(ηρ+1
i − aρ+1)(ηρj − aρ)

aρ(1− aρ)
+

M∑
µ=1

(ηG0µ
i − aµ(ηG0

i ))(ηG0µ
j − aµ(ηG0

j ))

aG0µ(1− aG0µ)

}
.

(2.24)

Here, unlike (2.7), the summation over the cell cycle phases applies to only the first term corre-

sponding to the stem cell patterns. In the second term, the contribution to the interactions from

each the daughter cell pattern is given in a single phase ρ = G0. For interactions of this type
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Figure 2.4.7: The overlap for the daughter cell cycle showing activation of a cycle from a
fixed G0 phase (left) and, conversely, the arrest of a cell cycle into a fixed G0 phase (right),
at a low noise level T = 0.01. All other parameter values are the same as in figure 2.4.1.

directed reprogramming would be most efficient when targeting the stem cell cycle phases with

the smallest hamming distance, or largest overlap, with the of the initial adult cell state.

An alternative to directly reprogramming a cell fixed in theG0 phase would be to first “restart”

that cell’s cell cycle, and then going on to use one of the reprogramming mechanisms described

in the previous sections. To model this kind of behaviour would require interactions of the form

(2.7), but including a dominant contribution for the daughter cell cycles, such as,

ϵ
M∑

µ=1

(ηG0µ
i − aµ(ηG0

i ))(ηG0µ
j − aµ(ηG0

j ))

aG0µ(1− aG0µ)
(2.25)

where epsilon is a parameter that controls the depth of the fixed point G0 attractors. Then by

tuning the value of ϵ one would be able to restart or arrest the cell cycle, as shown in figure 2.4.7.

For daughter cells that are terminally differentiated into a cell cycle phase ρ = 1, i.e. ρ = 1

corresponds to the G0 phase of the cell cycle, and starting with an initially high value of ϵ, the

daughter cell cycle can be activated by decreasing the value of ϵ linearly in time towards ϵ =

0. Similarly, a cell cycle can be arrested, if the value of ϵ is increased from an initially negligible

contribution. Interactions of this type could be useful for modelling diseases related to cell cycle

arrest as well as reprogramming.
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2.5. Summary

In this chapter, we presented a general (minimal) model for cell reprogramming as transitions

between attractors of a dynamical system. The principles of the model are derived from a set of

key facts concerning cell chemistry, which suggest that cell types, and their associated cell cycles,

can be considered as attractors of the dynamics of interacting gene expression levels. The specific

form of gene interactions used to achieve this goal is inspired by combining two strands of neu-

ral network modelling: the storage of (limit) cycles and the storage of hierarchically organised

attractors.

This chapter is intended to provide a proof of concept of this type of modelling approach. We

thus decided to investigate the simplest possible hierarchy of cell types that allows us to test our

approach, viz. a two-level hierarchy consisting of the stem cell and a single layer of differentiated

cells derived from it. Furthermore, we chose to consider only interactions betweenpairs of binary

gene expression levels.

Wehave shown that cell reprogramming is possible using either anundirected approach, which

consists of increasing the noise level in the dynamics, or an approach that relies on direct pertur-

bations between specific phases of the cell cycle. Two key non-trivial results appear from our

model. Firstly, it takes multiple generations of the cell cycle for a progenitor to be reprogrammed

to a stemcell, as it transitions through intermediate stateswhich show similaritywith both the ini-

tial and final state. Also, a finite fraction of gene expression levels need to be perturbed in order

to reprogram a cell.

We assume that there are states in the cell cycle where themutual similarity in gene expression

levels between different cell types is large. These stages of the cell cycle are then natural targets

for perturbations to induce changes in cell type. The fraction of genes that need to be perturbed

in order to reprogram a cell depends on the stage of the cell cycle to which the perturbations are

applied, as well as the noise level of the system. At low noise levels, this number was in line with
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that required in the Yamanaka reprogramming experiments and was found to decrease (substan-

tially for ρ̄ = 2 & 3) with increasing noise levels. The “true” noise level of a cell is difficult to

quantify, but our model allows for reprogramming in both low and high noise regimes.

As far as the authors are aware, gene expression levels in different levels of the cell potency

hierarchy or in different phases of the cell cycle are still not well characterised. Throughout this

chapter we have used a scenario where gene expression levels in differentiated cells are slightly

lower than in a stem cell during the same phase of the cell cycle, and we have taken one of the

cycle phases to have lower levels of gene expression than the others (thereby increasing mutual

similarities of different cells during this cycle phase). We have checked that de-differentiation

along the two different routes, noise-induced and via directed perturbations, does not depend on

these specific choices, although details, such as critical thresholds for reprogramming, do change

as scenarios are modified.

At the time of writing, I am aware of only a single other study that models the cell cycle as

configurations of gene expression patterns using a cyclic Hopfield-like model [82]. However,

said work does not investigate transitions between different cell types and is not concerned with

reprogramming dynamics.

There are some limitations to the modelling approach presented in this chapter. Firstly, we

consider only pairwise interactions between regulatory gene expression levels. Including higher-

order interactions inNNmodels typically stabilise the dynamics and allow for storage of a greater

number of attractors. Incorporating higher order interactions between genes would be biologi-

cally reasonable, sinceproteins expressed frommultiple genes can formtranscription factors com-

plexes. Also, genes can often require proteins binding to promoter sites and enhancer regions be-

fore they are activated. Using discrete timedynamics excludes the possibility of variability in gene

expression levels in a given cell cycle phase. Therefore any in-cycle dynamics is missed, such as

any cell signalling cascades. Finally, we only use rough estimates for the average gene expression

levels in numerical experiments and simulations.
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One possibility for extending themodel presented in this chapter would be to relax the choice

of independent cell cycle states. Correlated cell cycle phases can be incorporated into the two-

level hierarchy by changing the way in which the cell cycles are constructed in the model. One

could achieve this using a three-level hierarchy to store all cell cycles, whilst maintaining the fea-

ture that all descendants are a single differentiation from the stem cell cycle. In this situation the

root of the hierarchywould be a template of the stemcell expression levels, the second levelwould

then be constructed from this and represent each stage of the stem cell cycle. The newly included

third level would consist of each daughter cell type branching off from the corresponding stem

cell cycle phase. Such a set upwould then be analogous to a two-level hierarchy for each cell cycle

phase with correlations in the gene expression levels along the cell cycles of each cell type.

In thenext chapter, theparameter choices used in this chapter are compared against real data, in

order to justify their choice. However, since there is still much to be learnt about cell reprogram-

ming and the decisions of cell fates in developmental biology, themodel has been presented here

under the belief that it captures aspects of cellular reprogramming both qualitatively and quan-

titatively, and it therefore represents a possible stepping-stone for developing future theoretical

models and as a motivation for experimental work to be directed towards creating a catalogue of

gene expression profiles around the cell cycle for different cell types.
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Appendices

Appendix 2.A Differentiation transition matrices

Toderive the daughter cell expression levels from the stem cell’s a transitionmatrix,W, was used.

WhenW is applied to the probability distribution of the a stem cell phase the result corresponds

to the distribution of the daughter state, i.e. W

 aρ

1− aρ

 =

 aρµ

1− aρµ

. If we define the prob-

ability that a gene is switched off during differentiation from the stem to daughter cell as γρµ, but

the activities remain equal in the same cell cycle phases after differentiation (aρµ = aρ), then we

can constructW as,

W(ηρµ|ηρ) =

W(1|1) W(1|0)

W(0|1) W(0|0)

 =

(1− γρµ)
γρµaρ

1− aρ

γρµ 1−
(
γρµaρ

1− aρ

)
 . (2.26)

Applying this transition matrix to the distribution of stem cell gene expression levels

 aρ

1− aρ


returns the same activities for the daughter cell. Thus, for different activities in the same cell cycle
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phases of the daughter and stem cells, one can easily adaptW to be of the form,

W(ηρµ|ηρ) =

 (1− γρµ)
aρµ

aρ
γρµaρµ

1− aρ

1− (1− γρµ)
aρµ

aρ
1−

(
γρµaρµ

1− aρ

)
 . (2.27)

To have (2.27) defined as a transition matrix, its columns must sum to one - as they clearly do -

with each element W(ηρµ|ηρ) ∈ [0, 1]. Then, since aρ and aρµ ∈ [0, 1] by definition, we must

obey the following constraint on γρµ for itself and (2.27) to be correctly defined as a probability,

max
[
0,

aρµ − aρ

aρµ

]
≤ γρµ ≤ min

[
1,

1− aρ

aρµ

]
. (2.28)

Appendix 2.B Derivation of the equations of motion

In each time step the state of the system is updated based on the local fields at each site. That is,

the expression level of gene i, at time t, depends on the value of the field at time t− 1, i.e.

ni(t+ 1) = Θ [hi(m(t))− Tξi(t)] , (2.29)

whereΘ(x) is the Heaviside step function (Θ(x) = 0 for x ≤ 0 andΘ(x) = 1 for x > 0), and

ξi(t) is thermal noise at the site i (with P [ξi(t) < z] = 1
2
[1 + tanh(βz/2)]).

The expected value of site i can be obtained by averaging (2.29),

⟨ni(t+ 1)⟩ = P [Θ [hi(m(t))− ξi(t)] > 0] (2.30)

= P [ξi(t) < hi(m(t))] (2.31)

=
1

2

[
1 + tanh

(
βhi(m(t))

2

)]
. (2.32)

Then using the definitions of the dynamic order parameters (2.8) and (2.9), the following ex-

pressions can be obtained, when the N → ∞ limit is taken, by making use of the law of large
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numbers:

m̃ρ(t+ 1) =
1

2

⟨
ηρ − aρ

aρ(1− aρ)
tanh

(
βh(t)
2

)⟩
ηρ,ηρµ

, (2.33)

m̃ρµ(t+ 1) =
1

2

⟨
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

tanh
(
βh(t)
2

)⟩
ηρ,ηρµ

, (2.34)

where ⟨. . .⟩ηρ,ηρµ is shorthand for an average over the statistics of (correlated) stem and daughter

cell expression levels throughout their cycles, i.e.

C∏
ρ=1

 ∑
ηρ∈{0,1}

p(ηρ)
M∏

µ=1

 ∑
ηρµ∈{0,1}

W(ηρµ|ηρ)(. . .)

 .

Amore rigorous calculation to determine these equations of motion can be done by following

the reasoning in Coolen et al [101], and is shown in Appendix 2.C.

Appendix 2.C Macroscopic dynamics for the order parameters

Here we derive the equations of motion for the dynamic order parameters from themacroscopic

dynamics. This is a more rigorous calculation that can be done to obtain the same results as in

Appendix 2.B and is thus only shown for the interested reader. Starting from the dynamics (2.3),

we know that a gene will be expressed in the next time step if the effects of all the interactions is

greater than the biological noise in the system, i.e. P[ni(t + 1)] = P[−ξi <
hi(t)
T ]. Similarly, a

gene is not expressed if its interactions with all other genes is less than the biological noise in the

system. For a symmetric noise distributionP(ξ) = P(−ξ) ∀iwe can write the probabilities that

a gene is expressed or not as

P[ni(t+ 1) = 1] = P
[
ξi <

hi(t)
T

]
=

∫ hi(t)
T

−∞
dξP(ξ) , (2.35)
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P[ni(t+ 1) = 0] = P
[
ξi ≤

−hi(t)
T

]
=

∫ −hi(t)
T

−∞
dξP(ξ) , (2.36)

which combine to give the probability

P[ni(t+ 1)] =

∫ (2ni(t+1)−1)hi(t)
T

−∞
dξP(ξ) =

1

2
+

∫ (2ni(t+1)−1)hi(t)
T

0

dξP(ξ)

= g
(
(2ni(t+ 1)− 1) hi(t)

T

)
. (2.37)

There are many choices one could make for the function g, however we choose the function

g(x) = 1
2

[
1 + tanh( x

2
)
]
, which has similar behaviour to a Gaussian distribution, but is much

easier to work with. Assuming the system undergoes parallel updates, with each gene treated

independently, the probability of the future state of the system is given by

P[n(t+ 1)] =
N∏
i=1

1

2

[
1 + (2ni(t+ 1)− 1) tanh

(
βhi(t)
2

)]
, (2.38)

where we have made use of tanh [±x] = ± tanh [x] because ni ∈ {0, 1}, and the shorthand of

β = T−1 and hi(n(t)) = hi(t).

We would like to write the stochastic dynamics in terms of the evolving microscopic proba-

bilities of state. First we introduce the notation pt(n) = P[n(t) = n] and rewrite the state

probability as,

pt+1(n) =
N∏
i

exp
[
(2ni(t)−1)βhi(t)

2

]
2 cosh

(
βhi(t)
2

) , (2.39)

where the hyperbolic tangent has been written in its exponential form, tanh(x) = ex−e−x

ex+e−x , and we

have made use of the identity 1
2
[1± tanh(x)] = e±x

2 cosh(x) .

If we do not know the exact state that the system is in but we know the probability distribution
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over all possible configurations, then we can rewrite the dynamics as a Markov process.

pt+1(n) =
∑
n′

W (n,n′) pt(n′) (2.40)

We can do this because the future state of the system only depends on the current configuration

n′. The Markov transition probability from state n → n′ is then given by

W (n,n′) =
N∏
i

exp
[
(2ni(t)−1)βhi(n′)(t)

2

]
2 cosh

(
βhi(n′)(t)

2

) . (2.41)

We know from the definition of the local fields (2.10) that the hi(t) depends on the state of the

system only through the dynamical order parameters. The order parameters are a natural can-

didate to describe the systems behaviour on a macroscopic level. The probability of the system

having values m̃ρ(n) and m̃ρµ(n) at a time t is then given by

Pt(m̃ρ(n), m̃ρµ(n)) =
∑
n

pt(n)δ (m̃ρ − m̃ρ(n)) δ (m̃ρµ − m̃ρµ(n)) (2.42)

Thus, making use of our Markov property we can rewrite the dynamics as

Pt+1(m̃ρ(n), m̃ρµ(n)) =

∫
dm̃′W̃t(m̃, m̃′)Pt(m̃′) (2.43)

with the kernel W̃t(m̃, m̃′) defined as,

∑
n,n′ δ (m̃ρ − m̃ρ(n)) δ

(
m̃′

ρ − m̃′
ρ(n

′)
)
δ (m̃ρµ − m̃ρµ(n)) δ

(
m̃′

ρµ − m̃′
ρµ(n

′)
)
W(n,n′)pt(n′)∑

n′ δ
(
m̃′

ρ − m̃′
ρ(n

′)
)
δ
(
m̃′

ρµ − m̃′
ρµ(n

′)
)
pt(n′)

.

(2.44)

Using the definition of the Markov transition probability (given above) and the local fields we

61



CHAPTER 2. A HIERARCHICAL MODEL FOR CELL REPROGRAMMING

can rewrite this kernel in the form,

W̃(m̃, m̃′) =
∑
n

δ (m̃− m̃(n))

 N∏
i=1

exp

− ln 2 cosh
(
βhi(n′)

2

)
e
β(2ni − 1)hi(n′)

2




(2.45)

where m̃ contains all dynamic order parameters, and the average over pt(n′) vanishes. This is

because the local fields depend on n′ only through m̃′
ρ and m̃′

ρµ, which have been fixed by the

δ-functions. Hence, the time dependence of the kernel can also be dropped and it can be written

as the average,

W̃(m̃, m̃′) =
⟨
δ(m̃− m̃(n))e−

∑
i ln cosh

βhi(n
′)

2 e
β
2

∑
i(2ni−1)hi(n′)

⟩
n
, (2.46)

where ⟨. . .⟩n = 1
2N

∑
n(. . .). The components of W̃(m̃, m̃′) can be rewritten by using,

δ (m̃ρ − m̃ρ(n)) = δ

(
βNm̃ρ − β

∑
i

ηρi − aρ

aρ(1− aρ)

)
,

δ (m̃ρµ − m̃ρµ) = δ

(
βNm̃ρµ − β

∑
i

ηρµi − aµ(ηρ)
aρµ(1− aρµ)

)
,

and the integral representation of the delta function, in the form

W̃(m̃ρ, m̃
′
ρ) =

βN
2π

∫
dk exp

[
N

(
ikβmρ−

⟨
βh(m̃′)

2

⟩
−
⟨
ln cosh

βh(m̃′)

2

⟩

+

⟨
ln

1 + e
−ikβ

ηρ − aρ

aρ(1− aρ)
+βh(m̃′)

⟩)] ,
(2.47)
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and

W̃(m̃ρµ, m̃
′
ρµ) =

βN
2π

∫
dk exp

[
N

(
ikβmρµ −

⟨
βh(m̃′)

2

⟩
−
⟨
ln cosh

βh(m̃′)

2

⟩

+

⟨
ln

1 + e
−ikβ

ηρµ − aµ(ηρ)
aρµ(1− aρµ)

+βh(m̃′)

⟩)] .
(2.48)

Because we are in the limit of largeN, these integrals are in a form that can be evaluated using the

saddle point method. Evaluating these integrals, one finds that at the saddle point the dynamic

order parameters are

m̃ρ(n(t+ 1)) =
1

2

⟨
ηρ − aρ

aρ(1− aρ)
tanh

(
βh(m̃′(t))

2

)⟩
ηρ,ηρµ

(2.49)

m̃ρµ(n(t+ 1)) =
1

2

⟨
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

tanh
(
βh(m̃′(t))

2

)⟩
ηρ,ηρµ

(2.50)

where ⟨. . .⟩ηρ,ηρµ is shorthand for an average over the statistics of stem and daughter cell expres-

sion levels throughout their cycles, i.e.

C∏
ρ=1

 ∑
ηρ∈{0,1}

p(ηρ)
M∏

µ=1

 ∑
ηρµ∈{0,1}

W(ηρµ|ηρ)(. . .)

 .

Thus, in the large N limit, the kernel W̃(m̃, m̃′) becomes δ (m̃− m̃∗) where m̃∗ is the saddle

point solution with the components given above. The evolution of the distribution

Pt+1(m̃ρ, m̃ρµ) =

∫
dm̃′W̃(m̃, m̃′)Pt(m̃′)

is therefore deterministic, and the dynamic order parameters will evolve according to the sad-
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dle point solutions (2.49) & (2.50). Hence, if we know the initial values of the dynamic order

parameters we can calculate their values at any future time.

Appendix 2.D Signal-to-noise analysis

Starting from the decomposition of the local fields (2.15) with the condensed pattern chosen to

be ηρ̄, in the large system limit the signal contribution to the local fields is

S = (ηρ̄+1
i − aρ̄+1)

⟨
ηρ̄ − aρ̄

aρ̄(1− aρ̄)
ηρ̄
⟩
+
∑
µ

(ηρ̄+1,µ
i − aµ(ηρ̄+1

i ))

⟨
ηρ̄µ − aµ(ηρ̄)
aρ̄µ(1− aρ̄µ)

ηρ̄
⟩

,

(2.51)

where the law of large numbers has been used to replace the sum over genes. The first average

in S can be evaluated to 1 simply by using ⟨(ηρ̄)2⟩ = ⟨ηρ̄⟩ for ηρ̄ ∈ {0, 1}. Next, the second

average term evaluates to zero for allµ, this can be seen by first averaging ηρ̄µ over the conditional

probabilityW(ηρ̄µ|ηρ̄) to get aµ(ηρ̄) by definition. Thus, forN → ∞ the signal contribution to

the local field hi is simply,

S = ηρ̄+1
i − aρ̄+1 . (2.52)

If ηρ̄+1 = 1 the signal is positive andwill result in ni(t+1) = 1 according to the gene expression

level dynamics (2.3). Contrarily, when ηρ̄+1 = 0 the signal is negative and acts to silence the

gene expression of gene i at the next time step according to (2.3). Thus, the signal acts to progress

the gene expression levels of the cell cycle and will do successfully provided that the noise from

all other contributions to the local field do not overcome it.
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The noise contribution to the local fields R is given by,

R =
1

N

∑
ρ( ̸=ρ̄)

{
(ηρ+1

i − aρ+1)
∑
j(̸=i)

ηρj − aρ

aρ(1− aρ)
ηρ̄j

+
∑
µ

(ηρ+1,µ
i − aµ(ηρ+1

i ))
∑
j( ̸=i)

ηρµj − aµ(ηρj )
aρµ(1− aρµ)

ηρ̄j

}
,

(2.53)

which is a sum of independent random variables each of which are zero mean due to the inde-

pendence of gene expression levels in different stages of the cell cycle. Therefore, R itself is a

zero-mean random variable (⟨R⟩ = 0) that will have a Gaussian distribution according to the

central limit theorem. Its variance is then roughly given by ⟨R2⟩. Hence, in order for the noise

contributions not to corrupt the progression of the cell cycle, due to S, the variance of R should

be small. Writing R out in full and then squaring it one obtains

R2 =N−2
∑
ρ(̸=ρ̄),
ρ′( ̸=ρ̄)

(ηρ+1
i − aρ+1)(ηρ

′+1
i − aρ

′+1)
∑
j(̸=i),
k( ̸=i)

(ηρj − aρ)(ηρ
′

k − aρ′)
aρaρ′(1− aρ)(1− aρ′)

ηρ̄j η
ρ̄
k+

N−2
∑
ρ(̸=ρ̄),
ρ′( ̸=ρ̄),
µ,ν,
j(̸=i),
k( ̸=i)

(ηρ+1,µ
i − aµ(ηρ+1

i ))(ηρ
′+1,ν

i − aν(ηρ
′+1

i ))
(ηρµj − aµ(ηρj ))(η

ρ′ν
k − aν(ηρ

′

k ))

aρµaρ′ν(1− aρµ)(1− aρ′ν)
ηρ̄j η

ρ̄
k

+ 2N−1
∑
ρ(̸=ρ̄),

µ

(ηρ+1
i − aρ+1)(ηρ+1,µ

i − aµ(ηρ+1
i ))

∑
j(̸=i),
k(̸=i)

(ηρj − aρ)(ηρµk − aµ(ηρk ))
aρaρµ(1− aρ)(1− aρµ)

ηρ̄j η
ρ̄
k ,

(2.54)

which should be averaged to find the variance of the noise contribution to the local fields ⟨R2⟩.

When averaging R2, the cross term (bottom line of R2 above) evaluates to zero because of inde-

pendent gene expression levels in different cell cycle stages, and by first performing the condi-

tional averaging over the daughter cell cycle gene expression levels. In fact, because of the inde-
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pendent gene expression levels, the only contribution to ⟨R2⟩ from the first two lines comes from

the scenario in which ρ = ρ′, µ = ν and j = k, giving,

⟨R2⟩ =N−2

⟨∑
ρ( ̸=ρ̄)

(ηρ+1
i − aρ+1)2

∑
j(̸=i)

(ηρj − aρ)2

(aρ(1− aρ))2
(ηρ̄j )

2

⟩

+ N−2

⟨∑
ρ( ̸=ρ̄),

µ

(ηρ+1,µ
i − aµ(ηρ+1

i ))2
∑
j(̸=i)

(ηρµj − aµ(ηρj ))2

(aρµ(1− aρµ))2
(ηρ̄j )

2

⟩
. (2.55)

Then using the following averages,

⟨(ηρ − aρ)2⟩ = aρ(1− aρ) , (2.56)

⟨(ηρ − aρ)2(ηρ)2⟩ = aρ(1− aρ)(1− aρ) , (2.57)

⟨(ηρµ − aµ(ηρ))2⟩ =
∑
ηρ,ηρµ

p(ηρ)W(ηρµ|ηρ)
[
(ηρµ)2 + aµ(ηρ)2 − 2aµ(ηρ)ηρµ

]
=
∑
ηρ

p(ηρ)
[
aµ(ηρ) + aµ(ηρ)2 − 2aµ(ηρ)2

]
=
∑
ηρ

p(ηρ)(aµ(ηρ)− aµ(ηρ)2)

= aρµ − (1− γρµ)2
(aρµ)2

aρ
− (γρµaρµ)2

1− aρ
, (2.58)
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and

⟨(ηρµ − aµ(ηρ))2(ηρ)2⟩ =
∑
ηρ

(ηρ)2
∑
ηρµ

(ηρµ − aµ(ηρ))2W(ηρµ|ηρ)

=
∑
ηρ

ηρp(ηρ)
∑
ηρµ

[
(ηρ)2 + aµ(ηρ)2 − 2ηρµaµ(ηρ)

]
W(ηρµ|ηρ)

=
∑
ηρ

ηρp(ηρ)
[
aµ(ηρ) + aµ(ηρ)2 − 2aµ(ηρ)2

]
=
∑
ηρ

ηρaµ(ηρ)(1− aµ(ηρ))p(ηρ)

= aρµ(1− γρµ)

(
1− (1− γρµ)aρµ

aρ

)
, (2.59)

one obtains

⟨R2⟩ =(N− 1)(C− 1)

N2aρ(1− aρ)
[
aρ̄(1− aρ̄)(1− aρ̄) + aρ̄aρ+1(1− aρ+1)

]
+

M(N− 1)(C− 1)

N2(aρµ(1− aρµ))2

[
aρµ − (1− γρµ)2

(aρµ)2

aρ
− (γρµaρµ)2

1− aρ

]
×

{
aρ̄µ(1− γρ̄µ)

(
1− (1− γ ρ̄µ)

aρ̄µ

aρ̄

)

+ aρ̄
(
aρ+1,µ − (1− γρ+1,µ)2

(aρ+1,µ)2

aρ+1
− (γρ+1,µaρ+1,µ)2

1− aρ+1

)}
.

(2.60)

This is of the form

⟨R2⟩ = (N− 1)(C− 1)

N2
A1 +

(N− 1)(C− 1)M
N2

A2 , (2.61)

where C is the number of cell cycle phases, M is the number of daughter cells in the potency

hierarchy and A1 & A2 are constants. For multicellular organisms, typicallyM ≫ C and we are

in the limit of largeNwhere (N− 1) ≈ N. Thus, the dominant term in the variance of the noise
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contribution to the local fields is of the form

⟨R2⟩ ∼ M(C− 1)

N
, (2.62)

which should be small to allow the cell cycle to proceed regularly. Therefore, to avoid a spin glass

regimewe requireN ≫ M(C−1). This is in linewithwhat is observed inmulticellular organisms,

e.g. for humansN ∼ 25, 000,M ∼ 300 and C = 5.

Similarly one can perform the same analysis with a daughter cell cycle configuration as the

condensed pattern ηρ̄µ̄. In this case, the signal is

S = (ηρ̄+1
i − aρ̄+1)

⟨
ηρ̄ − aρ̄

aρ̄(1− aρ̄)
ηρ̄µ̄
⟩
+ (ηρ̄+1,µ̄

i − aµ̄(ηρ̄+1
i ))

⟨
ηρ̄µ̄ − aµ(ηρ̄)
aρ̄µ̄(1− aρ̄µ̄)

ηρ̄µ̄
⟩

=
aρ̄µ̄(1− γρ̄µ̄ − aρ̄)

aρ̄(1− aρ̄)
(ηρ̄+1

i − aρ̄+1)

+ (ηρ̄+1,µ̄
i − aµ̄(ηρ̄+1

i ))

[
(1− γρ̄µ̄)aρ̄µ̄

(
1− (1− γρ̄µ̄)

aρ̄µ̄

aρ̄

)

+ γ ρ̄µ̄aρ̄µ̄
(
1− γρ̄µ̄aρ̄µ̄

1− aρ̄

)]
, (2.63)

and the sign of S will depend on the choice of the probabilities γ as well as the distributions of

the gene expression levels. If the probabilities γ are chosen appropriately the cell cycle of the

daughter cell µ̄will progress as expected. Applying the same reasoning to the noise contribution

to the local field above, but with the gene expression configurationηρ̄µ̄ as the condensed pattern,

one finds that ⟨R⟩ is a zero-mean random variable. The variance of R, is then given by

⟨R2⟩ =N−2

⟨∑
ρ(̸=ρ̄)

(ηρ+1
i − aρ+1)2

∑
j(̸=i)

(ηρj − aρ)2

(aρ(1− aρ))2
(ηρ̄µ̄j )2

⟩

+ N−2

⟨∑
ρ(̸=ρ̄),
µ( ̸=µ̄)

(ηρ+1,µ
i − aµ(ηρ+1

i ))2
∑
j( ̸=i)

(ηρµj − aµ(ηρj ))2

(aρµ(1− aρµ))2
(ηρ̄µ̄j )2

⟩
. (2.64)
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This can be evaluated using the averages,

⟨(ηρ − aρ)2(ηρµ)2⟩ =
∑
ηρ

(ηρ − aρ)2p(ηρ)
∑
ηρµ

(ηρµ)2W(ηρµ|ηρ)

=
∑
ηρ

(ηρ − aρ)2aµ(ηρ)p(ηρ)

= (1− aρ)2(1− γρµ)aρµ + (aρ)2γρµaρµ , (2.65)

and

⟨(ηρµ − aµ(ηρ))2(ηρµ)2⟩ =
∑
ηρ,ηρµ

p(ηρ)W(ηρµ|ηρ)
[
(ηρµ)4 + (ηρµ)2aµ(ηρ)2 − 2(ηρµ)3aµ(ηρ)

]
=
∑
ηρ

p(ηρ)
[
aµ(ηρ) + aµ(ηρ)3 − 2aµ(ηρ)2

]
= aρµ + (1− γρµ)2

(aρµ)2

aρ

[
(1− γρµ)

aρµ

aρ
− 2

]
+

(γρµaρµ)2

1− aρ

[
γρµaρµ

1− aρ
− 2

]
,

(2.66)

to find that

⟨R2⟩ =(C− 1)(N− 1)aρ̄µ̄

N2aρ(1− aρ)
[
1 + (1− aρ̄)2(1− γρ̄µ̄) + (aρ̄

)2γρ̄µ̄
]

+
M(C− 1)(N− 1)

N2aρµ(1− aρµ)
[
(1− aρ)2(1− γρµ)aρµ + (aρ)2γρµaρµ

]
×
[
1 + aρ̄µ

[
(1− aρ+1)2(1− γρ+1,µ)aρ+1,µ + (aρ+1)2γρ+1,µaρ+1,µ

]]
.

(2.67)

Again this is of the form

⟨R2⟩ = (N− 1)(C− 1)

N2
A1 +

(N− 1)(C− 1)M
N2

A2 , (2.68)
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implying that, in the limit of large N and M the dominant term in the noise contribution to the

local fields from all patterns other than the daughter cell cycle configuration of interest is

⟨R2⟩ ∼ M(C− 1)

N
. (2.69)

Thus, the daughter cell cycle will progress regularly provided that N ≫ M and an γ is chosen

such that the S > 0 at sites ηρµi = 1 and S > 0 at sites ηρµi = 0.

Appendix 2.E Orderparametersforspecificcellcycleconfigurations

This appendix contains the calculation of the order parameters, m̃ρ(n(t)) and m̃ρµ(n(t)), when

the system is in different levels of the cell hierarchy. First, m̃ρ(n(t)) when the system is in the

daughter cell cycle configuration. Equation (2.8) can be rewritten as follows by making use of

the law of large numbers, (N → ∞) with ni = ηρ̄µi ,

m̃ρ(n = ηρ̄µ) =

⟨
ηρ − aρ

aρ(1− aρ)
ηρ̄µ
⟩

. (2.70)

If ρ̄ ̸= ρ then the daughter cell cycle phase is independent of the stem cell cycle phase and the

expectation value factorises,

m̃ρ(n = ηρ̄µ) =

⟨
ηρ − aρ

aρ(1− aρ)

⟩
⟨ηρ̄µ⟩ , (2.71)

and m̃ρ(n = ηρ̄µ) = 0 since ⟨ηρ − aρ⟩ = 0.
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However, if ρ̄ = ρ then (2.70) can be written as,

m̃ρ(n = ηρµ) = E
[
E
[

ηρ − aρ

aρ(1− aρ)
ηρµ
∣∣∣∣ηρµ]]

=
∑
ηρ

ηρ − aρ

aρ(1− aρ)
p(ηρ)

∑
ηρµ

W(ηρµ|ηρ)ηρµ

=
aρµ

aρ

(
1− γρµ − aρ

1− aρ

)
, (2.72)

where E[x] and E[x|y] represents the expectation value of x and of x given y, respectively. Thus,

provided γρµ < (1 − aρ), there is a positive (non-zero) value for the order parameter. This

can be rewritten by noticing that the numerator is the covariance between ηρ and ηρµ and the

denominator is the variance of ηρ. Thus, for ni = ηρµi ∀i,

m̃ρ(n = ηρ̄µ) =
cov [ηρ, ηρµ]

var [ηρ]
. (2.73)

Next, m̃ρµ(n(t)) when the system is in a stem cell cycle configuration. Following similar rea-

soning to the above, (2.9) can be written as,

m̃ρµ(n = ηρ̄) =

⟨
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

ηρ̄
⟩

, (2.74)

where again it is trivial thatmρµ = 0 due to independence if ρ̄ ̸= ρ.

For the case ρ̄ = ρ,

m̃ρµ(n = ηρ) = E
[
E
[
ηρµ − aµ(ηρ)
aρµ(1− aρµ)

ηρ
∣∣∣∣ηρµ]]

=
∑
ηρ

ηρp(ηρ)
∑
ηρµ

(ηρµ − aµ(ηρ))W(ηρµ|ηρ)
aρµ(1− aρµ)

. (2.75)

Then since
∑

ηρµ W(ηρµ|ηρ) = 1 and
∑

ηρµ W(ηρµ|ηρ)ηρµ = aµ(ηρ) by their definitions,

m̃ρµ(n = ηρ) = 0. Therefore, during any phase of the stem cell cycle all of the order parameters
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for each of the daughter cell cycle phases vanish.

As the overlap between a stem cell and its progeny increases the less distinguishable are their

cellular identities, because their corresponding attractors become closer in the state space. Be-

cause of this, and that the activities in each cell cycle phase are fixed, binarized gene expression

level data of known cell types could be used to determine the probabilities γρµ for differentiation

events

m̃ρ(n(t) = ηρµ) =
aρµ(1− γρµ − aρ)

aρ(1− aρ)
(2.76)

which can be rearranged to calculate the probability that gene is suppressed during differentia-

tion ,

γρµ = (1− aρ)
(
1− aρ

aρµ
m̃ρ(η

ρµ)

)
. (2.77)

Appendix 2.F Stability analysis of equations of motion

The equations of motion (2.11) & (2.12) can be written in the general multivariate form,

m̃t+1 = F(m̃t) , (2.78)

where m̃t is a vector containing all of the order parameters for the stem and daughter cell cycle

phases {m̃ρ(t), m̃ρµ(t)}. Furthermore, because of the periodicity of each cell cycle, applying the

functionFC times to a state in one of the cell cycle configurations will return system to its initial

phase, where C is the number of stages in the cell cycle. Thus, for an attractor m̃∗ one has

m̃∗ = m̃∗
t = m̃∗

t+C = F(C)(m̃t) , (2.79)

where the notation F(C)(m̃t) indicates that the function F is applied C times to the argument,

i.e. F(C)(m̃t) = F(. . .F(F(m̃t))). If the system is sufficiently close to an attractor m̃∗ of the

dynamics, so at time t, m̃t = m̃∗
t +δt, whereδt is a small, thenwe canTaylor expand the function
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F(C) about the deviation from the attractor. Starting from,

m̃∗
t + δt = m̃∗

t+C + δt+C = F(C)(m̃t) , (2.80)

and Taylor expanding

δt+C = ▽F(C)(m̃∗
t )(m̃t − m̃∗

t ) + . . . , (2.81)

but the difference m̃t − m̃∗
t is just the distance from the attractor at time t, so this we can rewrite

this as

δt+C = ▽F(C)(m̃∗
t )δt . (2.82)

Thenusing theprogressivenatureof the cell cycle attractors, the gradient canbe rewritten in terms

of the functionF applied at the previous time step

δt+C = ▽F
(
F(C−1)(m̃∗

t )
)
δt . (2.83)

Next using the chain rule one can evaluate the gradient of the functionF to give

δt+C = ▽F
(
F(C−1)(m̃∗

t )
)
· ▽F(C−1)(m̃∗

t )δt , (2.84)

Repeating these last two steps of rewriting the functionFτ (. . .) asF
(
F(τ−1)(. . .)

)
, and evalu-

ating the gradient using the chain rule, one obtains

δt+C = ▽F(m̃∗
t+C−1) · ▽F(m̃∗

t+C−2) · . . . · ▽F(m̃∗
t )δt , (2.85)
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which can be written as the following product

δt+C =
0∏

τ=C

[
▽F(m̃∗

t+τ )
]
δt . (2.86)

Thus the fixed point will be a stable attractor provided that the eigenvalues λ of the matrixB are

less than 1, whereB =
∏0

τ=C−1

[
▽F(m̃∗

t+τ )
]
.

To find the eigenvalues of thematrixB onemust first obtain the partial derivatives of the equa-

tions of motion in order to find the Jacobian at each time step, i.e. the matrix ▽F(m̃∗
t+τ ), to be

evaluated at the attractor. The elements of the Jacobian are given by

∂m̃ρ(t+ 1)

∂m̃ρ̄(t)
=

β

4

⟨
(ηρ − aρ) (ηρ̄+1 − aρ̄+1)

aρ(1− aρ)
sech2

(
βh(t)
2

∣∣∣∣
m̃∗

t

)⟩
ηρ,ηρµ

, (2.87)

∂m̃ρ(t+ 1)

∂m̃ρ̄µ̄(t)
=

β

4

⟨
(ηρ − aρ) (ηρ̄+1,µ̄ − aµ̄(ηρ̄+1))

aρ(1− aρ)
sech2

(
βh(t)
2

∣∣∣∣
m̃∗

t

)⟩
ηρ,ηρµ

, (2.88)

∂m̃ρµ(t+ 1)

∂m̃ρ̄(t)
=

β

4

⟨
(ηρµ − aµ(ηρ)) (ηρ̄+1 − aρ̄+1)

aρµ(1− aρµ)
sech2

(
βh(t)
2

∣∣∣∣
m̃∗

t

)⟩
ηρ,ηρµ

, (2.89)

∂m̃ρµ(t+ 1)

∂m̃ρ̄µ̄(t)
=

β

4

⟨
(ηρµ − aµ(ηρ)) (ηρ̄+1,µ̄ − aµ̄(ηρ̄+1))

aρµ(1− aρµ)
sech2

(
βh(t)
2

∣∣∣∣
m̃∗

t

)⟩
ηρ,ηρµ

.

(2.90)

At each time step, i.e. phase of the cell cycle, only the diagonal part of these partial derivatives

will contribute, i.e. ρ = ρ̄ and µ = µ̄, because the gene expression levels are assumed to be

independent along the cell cycles. For each cell type, there is also only a single non-zero order
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Figure 2.F.1: The maximum eigenvalue of the B as a function of the biological noise
strength T. When max(λ) = 1 there is a transition in the dynamics between solutions of
the equations of motion for the dynamic order parameters (2.13) and (2.14). The same pa-
rameter values were used as in figure 2.4.3.

parameter, at each time and for each cell type, which is the order parameter of the cell cycle phase

that the system is expected to be in given the initial conditions.

Using the partial derivatives above one can construct a Jacobian ▽F(m̃t), which needs be

evaluated at each stage of a cell cycle to calculateB =
∏0

τ=C

[
▽F(m̃∗

t+τ )
]
. Figure 2.F.1 shows

the maximum eigenvalue ofB for different values of the noise strength T, when the system was

initialised in adaughter cell cycle. Themaximumeigenvalue takes a valueof1whenever a solution

becomes unstable. Starting at lowT, the system is initially stable with respect to the daughter cell

cycle, until the criticalT for noise induced reprogramming is reached. Above this noise level there

is a new solution that corresponds to the stem cell cycle attractor. This solution is then stable for

intermediate values of T. If T becomes too large the maximum eigenvalue reaches 1 again. This

corresponds to the transition from the stem cell cycle to a high noise state in which the system

has no overlap with any of the cell cycle patterns. The values of T at which these transitions are

found from the maximum eigenvalue are in exact agreement with those observed in figure 2.4.3.
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Appendix 2.G NormalisedHamming distance

The Hamming distance between two vectors x = (x1, x2, . . . xN) and y = (y1, y2, . . . yN) is

defined as follows,

d [x,y] =
1

N

N∑
i=1

|yi − xi| . (2.91)

In the largeN limit we can replace the sum overN using the law of large numbers to obtain,

d [x,y] = ⟨|yi − xi|⟩ . (2.92)

Thus, for the same phase of the cell cycle the Hamming distance between the stem and daughter

cell cycles is given by,

d [ηρµ,ηρ] = aρ − aρµ + 2γρµaρµ , (2.93)

where the averages were performed over the joint probability distribution, using the conditional

and marginal distributions p(ηρ, ηρµ) = W(ηρµ|ηρ)p(ηρ). Similarly, the Hamming distance

between a daughter cell cycle phase and the next phase of the stem cell cycle is given by,

d
[
ηρµ,ηρ+1

]
= aρ+1 − aρµ − 2aρµaρ+1 , (2.94)

where the average was performed over the joint probability that factorises due to the indepen-

dence of gene expression levels in different cell cycle phases, i.e. p(ηρ+1, ηρµ) = p(ηρ+1)p(ηρµ)
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3
Model validation

3.1. Introduction

Cell cycle specific gene expression profiles are, at the time of writing, incredibly rare, not least be-

cause of the difficulty involved in obtaining such data from experiments. The cell reprogramming

model introduced in the previous chapter has already been shown to quantitatively and quali-

tatively capture aspects of cell reprogramming experiments. However, in this chapter, further

attempts are made to assess the practical value of said model by using data from real experiments

to test assumptions, parameters, and the key hypothesis of themodel, i.e. there exists a single cell

cycle phase that is maximally similar across different stages of the cell cycle.
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Two data sets were used to achieve the results that follow. The first, that is publicly available,

comes fromTheHuman Protein Atlas and consists of RNA transcripts per million (TPM) for 64

different cell lines and 37 different tissue types [102, 103]. The unit TPM is a normalised unit

which implies that for every 1million RNA molecules sequenced from a sample x of them came

from that transcript/gene. The other data set, provided by the authors of [104], also includes

transcript counts normalised to TPM, and comes from a study of the mouse enteric nervous sys-

tem (ENS), i.e the system of neurons that surrounds the gut of a mouse. A summary of both

datasets is given in table 3.1.1. Each of these datasets offers different qualities from a model val-

idation perspective. In the Human data set each cell type is known and unique. The variation in

cell types is great because of the diversity of 13 tissue types available in the database. This should

give us a good estimate for ranges of individual parameters such as activities for the reprogram-

ming model. Where the human data falls short is that it is not cell cycle specific and, therefore,

could represent an average across multiple cell cycle phases.

On the other hand, the samples in the mouse data have each been labelled with a specific cell

cycle phase. The cycle phases were determined using the maximum likelihood method available

in the SCRAN package for the R programming language [105] by the authors of the study. This

assignment allows the comparison of gene expression profiles of different samples in the same

(or different) cell cycle phase. However, the mouse data is a lot less diverse, with all the cells

sequenced coming from the ENS. This means that parameters such as the activity deduced from

the data may be representative of only the ENS and not of the mouse as a whole. Furthermore,

each cell in this dataset was only given an arbitrary label before the cell cycle phase assignment.

Therefore, it is not possible to know if any two cells are of the same cell type and in different/the

same cell cycle phases, or if they are different cell types altogether.
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Source The Human Protein Atlas R. Lasrado et al. [104]
Species Human Mouse
No. of sequenced genes 19,628 9,628
No. of sequenced cells 56 120
Cell cycle specific labels N/A G1, S,G2/M

Table 3.1.1: The transcript count data from RNA-sequencing experiments used in this
chapter.

3.2. Binary gene expression levels

Before we can determine parameters, such as activities, the data first needs to be converted into

the appropriate format. One of the assumptions that wemake throughout this thesis, and a com-

mon one used in theoretical biology, is that genes have binary expression levels. The transcript

count data can be converted to binary gene expression levels using a simple conditional state-

ment, i.e. if the value of the transcript count is above a certain threshold the gene is expressed

η = 1, otherwise, the gene is not expressed. Mathematically, this is equivalent to using a Heavi-

side step function ηi = Θ[xi − x̂], where xi is the transcript count corresponding to gene i and x̂

is the threshold value above which we say a gene is expressed. We choose the value of the thresh-

old x̂ = 0 as this gives good agreement with reported values for the fraction of expressed genes

in humans [22, 23]. However, due to the small number of molecules often involved in biological

processes, evenmarginal changes to x̂ canhave a dramatic effect on the parameter values extracted

from the data (see appendix 3.A).

The activity of each cell is determined by calculating the average of the binarized gene expres-

sion levels a(η) = 1
Ngenes

∑Ngenes
i ηi, and is plotted in figure 3.2.1. The average activities are is 0.74

and 0.72 for the human and mouse cells respectively. These values are comparable to those re-

ported in [22, 23]wheredifferent human tissues typeshad∼ 70%of genes expressed. Themouse

cells have been organised into the three different cell cycle stages reported in the data set - G1,

G2/M & S. The average activity is lower for the S and G2/M cell cycle stages. However, the
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number of cells in these stages, 25 and 15 cells inG2/M& S respectively, is markedly lower than

the 80 cells in the G1 phase. This could be due to the duration of the cell cycle phases. Because

the long duration of theG1 phase, cells that are sequenced at random and labelled by their cycle

phase afterwards are much more likely to be in G1 than any other phase. Hence, the bias of the

population towards the G1 phase. The difference in average activities across the phases could be

a direct result of the smaller sample sizes forG2/M and S phases, or a true characteristic that dif-

ferentiatesG1 from the other two phases. If one believes the latter is true, then this suggests that

the G1 cell cycle phase could be the phase of maximal similarity across different cell types due

to an increased fraction of expressed genes. This opposes the line of thought in chapter 2, where

the common molecular machinery involved for processes occurring in the S andM phases were

thought to result in a high similarity across different cell types.

The bimodal nature of the distribution of activities calculated from the gene expression levels

of the mouse cells could be an artefact of the choice of the threshold used to binarize the data

(see appendix 3.A). Increasing the threshold marginally above its current value x̂ = 0 removes

the bimodal structure of the distribution (see appendix 3.A). However, we will continue to use

x̂ = 0 because it gives a good agreement for the average fraction of expressed genes with other

studies, as mentioned previously.

The activities from the human data show less structure than those of the mouse ENS. The ac-

tivities of the human tissue data fluctuate around the average activity. On the other hand, the

mouse activities have a bimodal distribution, with a sharp peak at 0.84 representing themajority

of the data and a broader peak at 0.6. Although, for the G2/M and S cells the minority have this

high gene expression level, and the majority of activities are a < 0.75. As mentioned earlier this

distinction could be down to a true difference caused by the processes involved at each stage of

the cell cycle or it may be a finite size effect caused by the low number of samples in the S and

G2/M phases.

The variance of the gene expression levels also show that, whilst the organisms’ gene expres-

80



CHAPTER 3. MODEL VALIDATION

0 10 20 30 40 50

Sample 

a(
η)

0.6

0.8

a(
η)

G1 G2/M S

0.6

0.8

Figure 3.2.1: Activities for the different cell samples taken from human (top) and the
mouse ENS (bottom). The mouse data are organised based on their maximum likelihood cell
cycle phase. The red dashed lines in both plots give the average activity across all samples
for each organism - ⟨ahuman⟩ = 0.74 and ⟨amouse⟩ = 0.72.
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sion levels fluctuate on a similar scale, the mouse data are muchmore localised about the average

compared to the human data (figure 3.2.2).

3.3. Cell cycle similarities

One of the key assumptions in the model presented in chapter 2 is that there is at least one cell

cycle phase that is maximally similar across different cell types of an organism. The labelling of

the mouse ENS data into 3 distinct cell cycle phases (G1, G2/M & S) allows us to check this

hypothesis. We have already seen that the G1 cells of the mouse ENS have on average a higher

activity than those in other cycle phases. In this section, we will study the gene expression levels

further using similarity measures. The correlation between the gene expression levels of each

cell sample of the mouse data gives a level of similarity between pairs of cells. A correlation of

cor [η, η′] = 1 indicates that twocells have identical gene expression level patterns. Generally, the

higher the correlation the greater level of similarity between any two gene expression profiles. A

heat-map of the correlations between the gene expression patterns of each of themouseENS cells

is shown in figure 3.3.3. (Correlations of gene expression patterns in the data from the Human

Protein Atlas can be found in appendix 3.B.)The gene expression patterns of cells in theG1 phase

arehighly correlatedwith thoseof themajority of otherG1 cells, whereas gene expressionpatterns

of cells in G2/M and S phases typically have lower levels of correlations with those of all other

cells. This is further evidence in support that there is, at least for the mouse ENS data, a single

cell cycle phase that is maximally similar across different cell types - theG1 phase.

The covariance between the different gene expression level profiles reveals the same informa-

tion. With the variances of the gene expression levels in each cell, they can also provide a pre-

dicted overlap between the different cell samples of the mouse ENS data using equation (2.20)

or (2.21). The covariances and the resulting overlaps are plotted in figure 3.3.4. Unlike the plots

of the correlation and covariance, the overlaps are not symmetric about the diagonal. This asym-
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Figure 3.2.2: Variances of the gene expression levels for the different cell samples taken
from the human (top) and mouse (bottom) data. The mouse samples are organised by their
maximum likelihood cell cycle phase.
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Figure 3.3.3: Correlations between the gene expression profiles of the different samples of
the mouse ENS data, grouped according to cell cycle phase. The colour of each point in the
plot gives the level of correlation between the two corresponding cell samples.

metry is caused by the choice of level of the hierarchy that the two cells are in when calculating

the overlap between them - recall from chapter 2, (2.20) and (2.21) are valid for a two-level hi-

erarchy where one cell is in a higher state of potency. Because, the samples in the mouse data

are not labelled based on cell type/developmental time, all possible overlaps are plotted in figure

3.3.4. Thus, for a pair of gene expression patterns in cells A and B, the overlap is calculated as-

suming A and B are the “stem” and “daughter” cells respectively, and then, assuming cell B is the

“daughter” cell and A is the “stem” cell. In figure 3.3.4 the vertical and horizontal axis represents

the choice of “stem” and “daughter” cells respectively, i.e. each “row” in the heatmap corresponds

to choosing that cell as the stem cell in a 2-level potency hierarchy (as in figure 2.2.3) and all other

cells (including itself and cells labelled in different cycle phases) are then in the lower level of the

hierarchy as daughter cells.

The overlaps between cells in different cell cycle phases in chapter 2 are zero. However, all

overlaps calculated from the mouse data are non-zero. This difference arises as a direct result of
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Figure 3.3.4: The covariance (top) between gene expression profiles in the mouse data and
the overlap (bottom) predicted from them using equations (2.20) and (2.21). For the over-
laps, the vertical and horizontal axes represent the choice of stem and daughter cells respec-
tively. Cells in the G1 phase have the highest level of similarity between different samples.
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Figure 3.3.5: The probability that a gene is switched off during a hypothetical differen-
tiation from one cell in the sample to another in the mouse ENS data set using (2.77). As
with the bottom panel of figure 3.3.4, the vertical and horizontal axes represent the choice
of stem and daughter cells used to calculate the probabilities respectively.

one of the assumptions in the hierarchy of cell cycles model, that is, the gene expression levels in

different cell cycle phases are independent, and therefore, cell cycle phases uncorrelated. This is

not the case for the mouse ENS data, in which all samples have some non-negligible degree of

correlation (as shown in figure 3.3.3).

Supposing that the mouse data was compatible with the assumptions within our model, in-

cluding the independent cell cycle phases, one would be able to infer the values of the probability

that a gene is switched off during differentiation from stem to daughter cell, whilst keeping the

activity constant, i.e. γρµ, from the overlaps and activities. Using (2.77), the probabilities γρµ

calculated from the activities of the mouse samples, and the overlaps between those samples, are

plotted in figure 3.3.5.
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3.4. Dynamics

With thebinarizedgeneexpression levels fromtheHumanProteinAtlas andMouseENSdatasets,

the cell sample activities and γ probabilities determined, it is possible to test the dynamics from

chapter 2 on the data. The mouse data are labelled by 3 cell cycle phases, so it easy to store the

gene expression levels into the cell cycle attractors of the model. However, because the cell types

of each sample are unknown placing the stored patterns in levels of a potency hierarchy remains

a challenge.

This challenge is not the biggest to running the dynamics with the mouse ENS data stored in

the interactions Jij though. As shown in figure 3.3.3, there are significant correlations in the gene

expression levels between all pairs of the cells in the dataset. Because of the assumption in the

model that the gene expression levels around the cell cycle are independent of one another, these

correlations result in the breakdown of the model when it comes to its dynamics, even at low

levels of the biological noise T, as can be seen in figure 3.4.6. The high correlations, and result-

ing high overlaps, between each stored gene expression level configuration result in the dynamics

rapidly becoming trapped in a mixture state that has a high non-zero overlap with all stored con-

figurations (figure 3.4.6). This behaviour is typical of themodel when the binary gene expression

levels of the mouse ENS data are stored as attractors in the interactions, regardless of the choice

of which configurations are stem or daughter cells. The inability to distinguish between stored

attractors could not only have been predicted by the high correlations between the mouse ENS

data samples, but also from the probabilities γρµ which are typically small (figure 3.3.5). How-

ever, there are methods for storing correlated patterns in Hopfield-like neural network models.

The most well known is the pseudoinverse learning rule [106]. This method adapts the storage

prescription of the Hopfield model to include the inverse of the correlation between each to the

stored patterns, i.e. Jij = 1
n

∑
µ,ν ξ

µ
i ξ

ν
j (C

−1)µν where Cµν = 1
N

∑
i ξ

µ
i ξ

ν
i is the correlation be-

tween patternsµ and ν . However, to be compatible with ourmodel would require the adaptation
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Figure 3.4.6: A typical evolution of the overlap between the gene expression levels from a
simulation with mouse ENS cell cycle configurations stored in the interactions, Jij. The sys-
tem was initialised in a randomly selected mouse ENS daughter cell cycle phase and evolved
deterministically (T = 0). The system is rapidly trapped in a state that has a constant over-
lap with each configuration of the chosen stem and daughter cell cycle phases.

of the pseudoinverse rule to work with a hierarchy of cycles. The adaptation to cycles would sim-

ply involve replacing ν with µ + 1 in Jij and has been studied for a variety of neural network

structures [107], but further adapting the rule to store a hierarchy of these cycles would require

careful considerations.

Workingwith the binary gene expression levels from theHumanProteinAtlas dataset also pre-

sented challenges. Mainly, the cell cycle phase inwhich each cell was sampled from are unknown.

One possibility would be to assign a cell cycle phase using a maximum likelihood method, sim-

ilar to the preprocessing performed on the mouse ENS data by the authors of [104]. However,

this is a large time-consuming task in itself, and thus, beyond the scope of this thesis. Instead, a

single high potency cell line (HeLa) was selected as a template to generate gene expression levels

for a synthetic stem cell cycle using aMarkov transitionmatrix, similar to the method detailed in

appendix 2.A. Then from this stem cell cycle, a set of daughter cell cycle specific gene expression

levels was also generated using a Markov transition matrix. These synthetic cells were generated

with transition matrices that maintain the activity of the HeLa gene expression profile in every

configuration, but due to themanner inwhich they are generated are compatiblewith the dynam-
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Figure 3.4.7: Simulation results using synthetic stem and daughter cells derived from the
HeLa gene expression profile. The system is initialised in one of the daughter cell cycle
phases. The parameters used for the simulation were taken from the HeLa cell, N = 19, 628,
aρ = aρµ = 0.7, apart from γρµ = 0.3 ∀{ρ, µ} which was chosen to reduce the overlap
between the stem and daughter cell cycles. Left - low noise evolution of the overlap of the
system with the stem and daughter cells shows the persistence of the daughter cell cycle.
Right - The envelope of the evolution of the dynamics at a high noise level (T = 0.12) show-
ing the noise induced reprogramming. For both plots dashed and solid lines are the overlaps
with the daughter and stem cell cycles respectively.

ics of the model in chapter 2.

When initialised in a cell cycle phase of the synthetic daughter cell, at low noise levels, the

daughter cell cycle is sustained as expected. However, at high noise levels the synthetic stem cell

cycle is retrieved from the daughter cells (see figure 3.4.7). Thus, the reprogramming model is

compatible with gene expression patterns that have the same statistics as human cells. However,

themodel should be developed further to be compatible with correlations across the cell cycle in

order to store real cell cycle specific gene expression levels, like those of the mouse ENS dataset,

as opposed to working with synthetic ones.

3.5. Summary

In this chapter, gene expression data from human and mouse ENS cells from RNA sequencing

experimentswere converted into binary gene expression levels. These gene expression levelswere
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then used to determine typical values of parameters for themodel presented in chapter 2. Param-

eters such as the average activities and the probability of silencing a gene on the differentiation

between cells with the same activity in a two-level potency hierarchy are easily determined from

the datasets and were found to lie in the ranges used in chapter 2.

The data was also used to test a number of assumptionsmade in themodel. There is significant

evidence in the mouse ENS data that there is indeed a single cell cycle phase, the G1 phase, that

is maximally similar across different cells. Cells in the G1 phase not only have high correlations

with otherG1 cells but have activities which are greater on average than cells in the S andG2/M

phases. The S and G2/M cells have low correlations with other cells in the same and different

phases. Interestingly, this goes against the original reasoning in chapter 2, where the cell cycle

phase hypothesised to be maximally similar across different cell types was argued to be the S or

M phases. This argument was based on the idea that the molecular machinery involved in the

processes of duplicating the DNA in the S phase, and separating chromatin M in the phase, are

consistent across different cell types. However, the G1 phase is a crucial phase in which cells do

not only grow, but they are prepared to enter the S phase and have to pass multiple checkpoints.

This, combined with the longer duration of the G1 cell cycle phase may result in the higher cor-

relations seen in gene expression levels of between different cell types in that phase. However,

further studies are needed to understand the difference in correlations between the gene expres-

sion levels of different cells in the same cell cycle phases. Although the analysis presented in this

chapter supports the hypothesis that there is a singlemaximally similar cell cycle phase across dif-

ferent cell types, due to the size of the cell cycle specific datasets that were studied, it is desirable

that further investigation is carried out as such data becomes more readily available. This could

reinforce the evidence for a single maximally similar cell cycle phase between different cells, as

presented in this chapter, or assist in determining if the results presented are largely due to the

limited size of the currently available data.

Trying to incorporate the human and mouse data into the dynamics of the model of the pre-

90



CHAPTER 3. MODEL VALIDATION

vious chapter has also further illuminated the need to develop that model to include correlations

between the gene expression levels between phases of the cell cycle. The strong correlations be-

tweengene expression levels of different cycle phases anddifferent cell types resulted in the attrac-

tors of a two-level hierarchy becoming indistinguishable. Often the dynamics becomes trapped

in amixture state and themodel breaks down because of its assumption of independent cell cycle

phases. Thus, whilst the model is successful in capturing some key aspects of the cell reprogram-

mingprocess, itwouldbeof great interest tobuildupon its current form. Methods exist for storing

correlated patterns in Hopfield like neural networks. The most successful of which is the pseu-

doinverse method [106], in which the Hebbian learning prescription is adapted by including the

inverse correlation matrix of the stored patterns in the interaction matrix. Adapting the inter-

actions in chapter 2 using the reasoning of the pseudoinverse rule combined with the cycle and

hierarchy storage prescriptions should allow the model to work with correlated gene expression

patterns, such as those in the human and mouse datasets presented in this chapter.

91



Appendices

Appendix 3.A Choice of threshold for binary gene expression levels

The data used in this chapter are in the form of transcription counts per million and have been

converted into binary gene expression levels using a simple conversion,

ηi = Θ[xi − x̂] (3.1)

i.e. if the transcription count, xi, is greater than some threshold value, x̂, then gene i is expressed

ηi = 1, otherwise it is not ηi = 0. Thus, the choice of the threshold x̂ plays an important role

in determining which genes are expressed and, therefore, dictates values of parameters extracted

from the data such as the activity of each cell sample. The average activity for each data set is

plotted against the threshold x̂ in figure 3.A.1.

The average activity of the mouse ENS samples is highly susceptible to the choice of x̂, as ⟨a⟩

decays rapidly to zeroover a small rangeof x̂. Changing the threshold from x̂ = 0 to x̂ = 1.5TPM

approximately halves the average fraction of genes that are expressed in the mouse ENS samples.

The change in ⟨a⟩ with x̂ for the mouse data is non-linear, with the variance of the activities also

decreasing with x̂. On the other hand, the average activity of the human cells decreases nearly

linearly, in the same range plotted, at amuch slower rate. The variation in activities for the human
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Figure 3.A.1: The average activity, ⟨a⟩, in the Human Protein Atlas (blue) and Mouse ENS
(red) data sets for different values of the threshold used to convert the transcript counts
into binary gene expression levels, x̂. The bars show one standard deviation from the average
activity.

data set remains roughly constant for the range of x̂ shown in figure 3.A.1.

For the analysis presented in this chapter, the binary threshold of x̂ = 0was used. This choice

was made because it gives good agreement with [22, 23] for the Human data. If we assume that

other organisms should have a similar fraction of expressed genes in their cells to human cells, this

choice of threshold gives similar values of ⟨a⟩ for human andmouse cells. This would also be true

for small non-zero values of x̂, however choosing a non-zero value is harder to justify. The data is

initially in the form of transcript counts from RNA-Seq. experiments, and thus naive, but at least

justifiable, assumptions to make are that there was little experimental error and each transcript

observed or not is directly due to the corresponding gene expression, or any experimental and

measurement error has already been corrected for in the data during any preprocessing.

Interestingly, increasing the threshold slightly from zero to x̂ = 0.1 also removes the strong

localisation of the the high activity mouse ENS cells around a single value as in figure 3.2.1 - see

figure 3.A.2
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Figure 3.A.2: The activity of each sample in the mouse ENS data set when a threshold of
x̂ = 0.1 is used to binarize the gene expression levels.

Appendix 3.B Human Protein Atlas data cell-cell similarities

The correlations and covariances in the gene expression levels of the different cells taken from

theHuman Protein Atlas database are plotted in figures 3.B.1 and 3.B.2 respectively. There is less

of an obvious structure in the correlation matrix of the human data, with the majority of pairs of

cells having a strong correlation cor[η, η′] ∼ 0.6− 0.7, compared to themouse ENS data whose

correlation values are dependent on the cell cycle phase of the sample. Ordering the cell lines by

the tissue type that they belong to also does not reveal any interesting patterns.
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Figure 3.B.1: Correlations between the binary gene expression levels of each pair of cells
taken from the Human Protein Atlas database.
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Figure 3.B.2: Covariances between the binary gene expression levels of each pair of cells
taken from the Human Protein Atlas database.

96



4
BipartiteGene RegulatoryNetworks

4.1. Introduction

In this chapter, the focus is moved away from the model of hierarchically stored cell cycles and

turns to the interactions between genes that drive the expression levels. Along with morpholog-

ical properties, cell types have long been characterised by the gene expression levels observed in

experiments. Furthermore, cell types have recently been shown to be high dimensional attractors

in the gene expression levels space [33] underlying their importance. However, this idea is not

new and dates back to Waddington’s metaphor of an epigenetic landscape [11] - see figure 1.1.1.

In his analogy, developmental decisions are described by a ball rolling down a hill into different

97
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valleys. These valleys represent different cell types that decrease in potency down the landscape.

Waddington speculated that the shape of the landscapewould be dictated by genes anchoring the

landscape through their interactions [11]. The exactmechanisms that shaped the landscapewere

beyond the reach of the scientific methods of Waddington’s time. However, the interactions be-

tween genes that drive expression levels has now been known for many decades - regulation via

transcription factors (TFs). In the years since Waddington’s original work, gene regulation has

been studiedmeticulously using experimental and computational techniques [108, 109], such as

gene editing [110], reporter genes and assay techniques [111], and gene regulatory network re-

construction [112, 113]. In parallel, there have been many attractor models that have attempted

to describe cell fates, including that presented in chapter 2, although, there is still no universally

accepted model explaining the mechanism behind the attractors.

Kauffman was the first to study cells as attractors of a dynamical system. He used a boolean

network approach, in which the expression level of a gene is a random boolean function of its

inputs, which are expression levels of other randomly chosen genes [12]. Whilst Kauffman net-

works have had some success in improving our understanding, because of the random nature of

the interactions, they leave mechanistic details to our imagination. More recently, neural net-

workmodels have had success in reproducing dynamics similar to those observed in experiments

[81, 82, 114]. In these models the attractor structure is encoded in the gene interactions, or pro-

tein interactions, using a coupling matrix. However, the interactions in these types of models do

not unveil any biological details beyond which genes should be co-expressed. Furthermore, the

interactions in these Hopfield-like models are dense and therefore at odds with biological obser-

vations.

Models for cell fate decisions and reprogramming typically consist of small specific gene reg-

ulatory networks, because of experimental evidence for mutually exclusively expressed genes at

branching points in development [34, 115–117] or, because they aim to model transitions be-

tween a select number of certain cell types [36, 118, 119]. Informaticians may study larger in-
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teraction networks with the advent of high throughput experiments and big data. Furthermore,

despite the fact they are deeply connected through gene expression and gene regulation, protein-

protein interaction networks and gene regulatory networks (GRNs) are typically studied sepa-

rately. It will be shown that studying a combined gene-TF network can provide better insight into

the underlying molecular biology. Specifically, providing evidence that (i) TFs should be single

proteins or small complexes that regulate many genes in order to maintain a steady state gene ex-

pression profile; (ii) multiple gene expression level attractors, or cell types, can be supported by

a rewiring of the underlying gene regulatory network or specific prescriptions of the regulatory

interactions between TFs and genes.

The rest of this chapter is organised as follows: First, a simple bipartite graph model for gene

regulation is introduced along with a general model for gene expression dynamics. Next, the role

of inhibition on the gene regulatory dynamics and the nature of gene expression level attractors

supported by the dynamics is studied. Finally, the main findings are summarised and the impli-

cations of this model for future work on gene regulation and attractor models for cell types are

discussed. Throughout this chapter, concepts and terminology from network science and graph

theory will be used. For a comprehensive review of these ideas and any definitions, in terms of a

biological setting, the reader is directed towards the comprehensive reviewbyPavlopoulos [120].

4.2. Proteins, Complexes and Transcription factors

Before the bipartite network formulation for gene regulation is introduced, the interplay between

genes, proteins and protein complexes is considered here, to motivate the reduction to a bipar-

tite graph and illustrate the simplicity of that formulation later on. Gene regulation is a complex

biochemical feedback process that controls gene expression, and therefore, the concentration of

gene products such asmRNA, proteins, and complexes, inside a cell. Gene regulation also allows

a cell to react to external signals, such as morphogen gradients and cell stress. Thus, whilst this

initial model will already seem complex, it is worth bearing in mind that it is a coarse-grained
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version of reality as there are many more players involved in the game of gene regulation, such

as multiple types of mRNA, tRNA, miRNA, enhancer regions of DNA, RNA polymerase, ribo-

somes, external signals, etc. These extra players could be included in themodel depending on the

level of detail one desires. However, because the systemwill be reduced down to a bipartite graph

later on, they need not be included at this stage.

If it is assumed that every gene in a cell codes for a single protein, that could be a transcrip-

tion factor (i.e. a protein that activates/inhibits a gene’s expression level), and these proteins can

also bind together to form protein complexes, that may also be transcription factors, then it is

possible to construct a gene regulatory network (GRN) with multiple layers, like in figure 4.2.1,

where each layer represents a different component involved in gene regulation. The network is

complex, with some interactions, like gene expression, being directed, whilst others, e.g. complex

formation/dissociation, may be undirected.

Reaction equations, in continuous time, can be written for the evolution of the concentration

of protein molecules,

ṗi = niηi − pi
∑
j

pjΠ+
ij +

∑
j

cijΠ−
ij − γipi , (4.1)

and complexes formed from 2 proteins,

ċij = pipjΠ+
ij − cijΠ−

ij − γijcij . (4.2)

Here ni is the binary gene expression level of gene i, η are the rates of protein synthesis, Π± are

association/dissociation rates for protein/complexes and the γ variables are degradation rates.

The protein-protein interaction network of a cell can be constructed from the non-zero values of

Π+
ij that details which proteins interact with one another. Assuming that the dynamics of protein

synthesis, dissociation and decay occurs at a much greater rate than that of gene expression, one
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i

j

k

Figure 4.2.1: A network representation of gene regulation (not all nodes/edges are shown).
A gene ni synthesises a protein pi, which can reversibly bind (undirected edges) to form pro-
tein complexes cij. The proteins and complexes may act as transcription factors (TFs) for
each of the genes. The activation/inhibition nature of each TF is labelled by ξ ∈ {0,±1}
- the superscripts of ξ denote which genes contribute to the transcription factors formation
whilst the subscripts denote which gene it regulates.

can apply a separation of time scales resulting in stationarity in ṗ and ċ for each time step in the

gene expression dynamics. At stationarity (4.2) gives,

cij =
Π+

ij

Π−
ij + γij

pipj , (4.3)

or

−pipjΠ+
ij + cijΠ−

ij = −γijcij , (4.4)
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which allows us to simplify (4.1) to

ṗi = niηi −
∑
j

γijcij − γipi . (4.5)

Nowusing the stationary solutionof (4.2), ṗi canbewritten in termsof theprotein concentrations

only,

ṗi = niηi −

∑
j

γijΠ
+
ij

Π−
ij + γij

pj + γi

 pi , (4.6)

which has a stationary solution at,

pi =
niηi∑

j

γijΠ
+
ij

Π−
ij + γij

pj + γi

. (4.7)

When ni = 0, protein molecules from gene i are not synthesised and (4.7) rightly gives pi = 0.

When ni = 1 expanding the right hand side of (4.7) in the limit of small protein concentration

(i.e. pj = 0) gives,

pi ≃
ηi
γi

1− 1

γi

∑
j

γijΠ
+
ij

Π−
ij + γij

pj

 , (4.8)

which can be rearranged into the following form,

γi ≃
∑
j

[
γ2
i

ηi
δij +

γijΠ
+
ij

Π−
ij + γij

]
pj , (4.9)

where the right hand side can be identified as the result of the multiplication of a matrix with the

vector of protein concentrations, i.e. one has the matrix equation

γ = Mp . (4.10)

WhereM is a matrix with symmetric and diagonal parts,M = S+D. By inverting this matrix
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equation, the the stationary solution (4.7) can be written as,

pi = ni
∑
j

M−1
ij γj . (4.11)

Then, if the gene expression levels have discrete time dynamics on a slower scale, e.g. stages of the

cell cycle, the general update rule for binary gene expression levels (2.1) can be written in terms

of the multilayer gene regulatory network parameters,

ni(t+ 1) = Θ

∑
j

ξ
j
ipj +

∑
j,k

cjkξ
jk
i + . . .+ Tzi − θi

 (4.12)

where ξ ji ∈ {0,±1} denotes the regulatory effect of the TFs. Rewriting this using the stationary

solutions for the protein and complex dynamics gives,

ni(t+ 1) = Θ


∑
j

ξ
j
i

∑
k

M−1
jk γk︸ ︷︷ ︸

Jij

nj +
∑
j,k

ξ
jk
i

∑
l,l′

Π+
jkγlγl′M

−1
jl M−1

kl′

Π−
jk + γjk︸ ︷︷ ︸

Jijk

njnk + . . .

 . (4.13)

Note that if the regulatory interactions ξ are sparse, the effective interactions Jij and Jijk between

genes are also sparse.

From the form of Jij and Jijk, it can be seen that the interaction between two genes require reg-

ulation via single proteins and the interaction between three genes requires regulation through

a complex of two proteins. Expanding this reasoning to interactions between many more genes,

one sees that effective interactions between m genes requires complexes that are transcription

factors formed from the expression ofm− 1 genes. This information is important for the attrac-

tor nature of cell types in the gene regulatory network - for 300 − 400 different cell types to be

formed from ∼ 2, 500 regulatory genes (numbers here for humans) one would expect that in-

teractions of higher order than pairs are needed to sustain the robust nature of many attractors in
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a small network.

4.3. Bipartite graph formulation

Theintricate dynamics of gene expression, protein synthesis, complex formation and activation&

inhibition can be simplified using a directed bipartite graph. From this point on much of the no-

tation used may be different from the previous chapters, however, all notation shall be explained

on introduction. In this network representation, gene regulation is modelled using two sets of

nodes (or vertices) representing N individual regulatory genes and αN transcription factors re-

spectively (see figure 4.3.2). Only regulatory genes are included in the network, i.e. those that

contribute toTF formation, because, the expression of all genes that do not contribute to the syn-

thesis of a TF are driven by this sub-network. Furthermore, because each gene does not typically

regulate every other in a cell, the set of bipartite graphs studied are restricted to those with finite

connectivity. The edges in the network are used to indicate the interactions between the genome

and transcriptome. If the TF µ regulates the gene i, then they are connected by a directed edge

ξµi ∈ {±1}, with the sign representing the activation/inhibition nature of the regulatory interac-

tion. Similarly, if the gene i expresses a protein that contributes to the formation of theTFµ there

is a directed edge ηµi , from node i to µ. The full connectivity of the gene regulatory network is

jointly defined by thematricesη and ξ. This formulation is somewhat similar to theWagner gene

networkmodel [69]. However, there is a key difference: a gene does not necessarily produce just

a single species of transcriptional regulator (i.e. a TF), as assumed in Wagner’s model, but may

contribute to several different ones through the formation of complexes that contain the protein

encoded by the gene in question.

Typically one does not know the structure of the vectors η & ξ. Thus, they are treated here

as independent random variables. The bipartite graph has 4 types of degrees: the TF in-degrees

cinµ (η) =
∑N

i=1 η
µ
i are the number of genes that express a protein that contributes to the forma-

tion of the TF µ, i.e. the size of the TF; the TF out-degrees coutµ (ξ) =
∑N

i=1 |ξ
µ
i | are the number
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of regulatory genes that the TF µ regulates, i.e. the number of DNA binding domains on the

TF multiplied by the number of occurrences of the response elements for those binding sites in

the genome; the gene in-degrees dini (ξ) =
∑αN

µ=1 |ξ
µ
i | are the number of TFs that can regulate

the gene; and the gene out-degrees douti (η) =
∑αN

µ=1 η
µ
i are the number of TFs that a protein

expressed by a given gene can contribute to. For a given bipartite gene regulatory network the

distributions of η and ξ can be defined as

p(η) =
∏
i,µ

[
cinµ douti

N⟨dout⟩
δηµi ,1 +

(
1−

cinµ douti

N⟨dout⟩

)
δηµi ,0

]
, (4.14)

p(|ξ|) =
∏
i,µ

[
coutµ dini
N⟨din⟩

δ|ξµi |,1 +

(
1−

coutµ dini
N⟨din⟩

)
δ|ξµi |,0

]
, (4.15)

where δx,y is the Kronecker delta function, defined as 1 for x = y and 0 otherwise. These distri-

butions forη& ξ assume that edges in the network are independent, hence the factorisation over

i andµ, and the likelihood that a gene i expresses a TFµ is governed by the size of the TF and the

promiscuity of the protein that the gene expresses - i.e. the number ofTFs that a protein expressed

from a gene contributes to - and the likelihood that a TFµ regulates a gene i is determined by the

number of DNA binding sites of TF and the gene’s binding site. For simplicity, if one assumes

that cinµ = c1 ∀µ, coutµ = c2 ∀µ, douti = d1 ∀i and dini = d2 ∀i, then, for large networks, N ≫ 1,

this gives Poisson distributions for the in- and out-degrees for both TFs and genes, cinµ (η) ∼ Πc1 ,

coutµ (ξ) ∼ Πc2 , dini (ξ) ∼ Πd2 , and douti (η) ∼ Πd1 .

Because genes areonly connected toTFsbyadirectededge, andvice versa, the followingequal-

ities must be true for in- and out-degrees,

αN∑
µ=1

cinµ (η) =
N∑
i=1

douti (η) ∀η , (4.16)
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αN∑
µ=1

coutµ (ξ) =
N∑
i=1

dini (ξ) ∀ξ , (4.17)

which leads to the following identities between the average in- and out-degrees,

d1 = αc1 , (4.18)

d2 = αc2 . (4.19)

Furthermore, because the degree distributions are Poisson, and thus defined completely by their

first moment, it is not necessary to know the exact structure of η & ξ to study average properties

of a gene regulatory network for a given system.

The inclusion of the transcriptome, in this bipartite image of a gene regulatory network, imme-

diately highlights an interesting property of gene regulation: the interaction between m unique

genes requires a transcription factor that is a product of m − 1 expressed genes. Also, any tran-

scription factor that is a single protein molecule will have an in-degree cinµ =
∑

i η
µ
i = 1 and is

thus synthesised by a single gene. These conclusionswere not easily drawn in the previous section

and help to highlight the explanatory power of the bipartite gene regulatory network.

Typically, experimental work focuses on the effective interactions between gene expression

levels. For example, in knock-out experiments, a gene is silenced and the effect on other gene

expression levels is monitored and compared to a control (and often the wild-type). It is possible

to reduce the bipartite nature of a network down to a gene-gene interaction network to compare

theoretical and numerical results with experiments, by simply integrating out the transcription

factors (see Appendix 4.A).
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Figure 4.3.2: A bipartite graph representation for gene-TF interactions in a system with
N genes and αN TFs (not all edges and nodes are shown). Edges η and ξ represent the
directed interactions between genes-TF and TF-genes respectively. The average in- and out-
degrees for the genes and TFs are given by (c1, c2) and (d2, d1) respectively. For conservation
of degrees αc1 = d1 and αc2 = d2.

4.4. Regulatory dynamics

With the network structure defined in the previous section our attention is now turned to the

gene regulatory dynamics. The common simplification that each gene expression level is given by

a binary variableσi ∈ {0, 1}, with i = 1 . . .N, is made. A gene expression pattern, or cell type, is

then completely defined by the vector of gene expression levelsσ = (σ1, σ2, . . . , σN) and how

this state changes in time is studied. The assumption of Boolean or “on/off” genes is used purely

to simplify the mathematics, however, it may be relaxed if a more comprehensive description of

the gene regulatory dynamics is required. The state of the transcriptome is also denoted with a

vector of TF concentrations τ = (τ1, . . . , ταN) with τµ indicating the concentration of the TF

µ.

A general model for the dynamics of binary gene expression levels has the following form,

σi(t+ 1) = Θ

[∑
µ

τµbµi ξ
µ
i − θi − Tzi

]
, (4.20)

i.e. if the combined effect of all transcription factors that regulate a gene are greater than the level

of noise in the system and a gene specific threshold θi, the gene will be expressed in the next time
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step, σi(t + 1) = 1. Here, zi is a random variable that represents the fundamental stochastic

nature of gene regulation; T is a parameter that scales the strength of that noise level; and bµi is

the binding affinity of TF µ to its target gene i. The gene specific thresholds θi represent a barrier

for which the regulatory interactions need to overcome to activate a gene and could describe, for

example, the level of accessibility of a genes promoter site resulting from the chromatin structure.

In order for a TF to be synthesised from a set of expressed genes, it is required that all of the genes

that have an out-degree connected to that TFmust be expressed at the same time. Thus, an order

parametermµ(t), is introduced to keep track of this condition for each TF:

mµ(t) =
∑

i η
µ
i σi(t)∑
i η

µ
i

, (4.21)

which takes a valuesmµ(t) ∈ [0, 1]. If none of the genes contributing to TFµ are expressed then

mµ(t) = 0 and if they are all expressed mµ(t) = 1. The concentration of each TF then evolves

according to the differential equation

τ̇µ = π+
µ δmµ(t),1 − π−

µ τµ . (4.22)

where π±
µ are the production/degradation rates for the transcription factor µ.

Assuming that the TF dynamics are much faster than the changes in gene expression levels

allows for the application of a separation of time scales. This results in the TF concentration

reaching a steady state before genes are regulated. Stationarity of the TF concentration is given

by τ̇ = 0, giving the steady state concentration

τµ =
π+
µ

π−
µ

δmµ(t),1 . (4.23)

Substituting this steady state concentration into the dynamics results in the following evolution
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of the gene expression levels,

σi(t+ 1) = Θ

[∑
µ

ξµi δmµ(t),1 − θi − Tzi

]
, (4.24)

where the ratio of production to degradation rates and the binding affinities have been set to
π+
µ

π−
µ
= bµi = 1 for all TFs purely for simplicity. Because each gene expression level depends on all

others, at every time step, through the order parametermµ(t), the dynamics for the gene expres-

sion levels are not only highly non-linear but they are coupled as well. Even when the dynamics

is “linearised” by replacing the δmµ(t),1 withmµ(t), the dynamics remains coupled and non-trivial.

However, this scenario is instructive as it will lead to a bound on the dynamics. The linearised

version of the dynamics has Hebbian-type interactions but is both asymmetric and diluted:

σi(t+ 1) = Θ

∑
j

∑
µ

ξµi η
µ
j

cinµ
σj(t)− θi − Tzi

 . (4.25)

Thus, inmodelswith effective interactions of gene expression levels [82, 114] this dynamics high-

lights a structure for the interactions with the couplings Jij =
∑

µ

ξµi η
µ
i

cinµ
.

The equations (4.24) & (4.25) shall be referred to as the “non-linear” and “linear” versions of

the gene expression dynamics from now on. In both versions of the dynamics, it is possible to

separate the interaction terms into a signal from a TF µ and the interference of all other TFs on a

gene expression level. To see this, set σi(t) = ηµi ∀i, givingmµ(t) = 1, and the dynamics evolves

as σi(t+1) = Θ
[
ξµi +

∑
ν ̸=µ ξ

ν
i − θi − Tzi

]
- i.e. a gene will be activated or inhibited by a TF

µ depending only on its regulatory nature, whilst all other TFs act (along with the noise in the

system) to interfere with that signal. To simplify matters for the rest of this chapter, unless stated

otherwise the noise and thresholds will remain fixed with T = θi = 0 to reduce the number of

parameters explored. However, they should not be forgotten as they play important roles in the

dynamics of the model. For example, the gene regulatory dynamics is deterministic for T = 0
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Figure 4.4.3: Sample trajectories of the order parameter for 10 randomly selected TFs in
a simulation using the non-linear dynamics on bipartite GRN with Poisson degree statistics
in a system with N = αN = 2, 500, T = 0 and θi = 0 ∀i (left). The average and variance
of mµ(t) (top right) and activity and autocorrelation for the gene expression levels (bottom
right) throughout that same simulation. Each transcription factor in the network were cho-
sen to be either an activator or inhibitor with equal probability.

but many biological processes are known to be stochastic.

Figure 4.4.3 shows the evolution of the order parametermµ(t), for a set of randomly selected

TFs from a simulation using the non-linear dynamics (4.24), along with the average of the order

parameter over all the TFs in that simulation and the activity, a(t) = ⟨σ(t)⟩, over a longer time

window. In this example the dynamics is deterministic (T = 0), the degree distributions are

Poisson (c1 = 1 and c2 = 10), and the TFs are activators or inhibitors with equal probability.

Because of the absence of noise, the fluctuations seen in mµ(t) and gene expression levels are

governed solely by the regulatory interactions. In the sample trajectories plotted, there are many

times at which a TF is synthesised, i.e. mµ(t) = 1. However for these TFs, genes contributing

to them are silenced within a few time steps of its synthesis and the order parameter drops. This

inhibition could be due to one of the finite fraction of TFs synthesised at each time step (⟨m⟩ =
1
αN

∑
µmµ ≈ 0.2 in the steady state) or that the synthesised TF itself has a negative feedback

loop with the gene(s) that express it. Furthermore, this simulation was set up such that all genes

are initially not expressed σ(t = 0) = 0 and there exist just a small number of TFs (10) in the

system. Despite the low initial number of TFs, the system quickly evolves to small fluctuations
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about a steady state with approximately 1/3 of the genes being expressed at every time step.

Figure 4.4.4: Average gene expression levels, a(t), and fraction of transcription factor
species, aTF(t), observed in simulations of bipartite gene regulatory networks, with the non-
linear (left column) and linear dynamics (right column), for both ferromagnetic (activating
TFs only) and spin glass (with activators and inhibitors occurring with equal probability)
regulatory interactions. The dynamics were simulated on different bipartite gene regulatory
networks with Poisson degree distributions and N = 2, 500, α = 1, c1 = 1, T = 0 and θi = 0
∀i. Each curve represents the average over 100 networks with the same connectivities c2,
ranging from c2 = 1, 2 . . . 7 (FM) and c2 = 1, 2 . . . 20 (SG). Each network reaches a steady
state from an initially silenced configuration when a small number (10) TFs are introduced.

This behaviour is typical of the gene regulatory dynamics on bipartite networks with Poisson

degree distributions (figure 4.4.4). The density of expressed genes, a(t), and synthesised TFs,

aTF(t) = (αN)−1
∑

µ τ̄µ(t) where τ̄µ(t) = Θ [τµ(t)], will evolve to reach a steady state that
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depends on the interplay between activators and inhibitors; the initial conditions; and the struc-

ture of the network; when a small number of TFs are introduced to a network. When a network

consists of only activators (i.e. the system has only ferromagnetic interactions) the system ap-

proaches a steady state in which approximately all the genes that are connected to the originally

introduced TFs (by possibly several gene expression and regulatory steps) are expressed. How-

ever, if both activating and inhibiting regulatory interactions exist in the network (i.e. spin glass

interactions), the dynamics plateaus to a lower net activity with fluctuations occurring around

the steady state, due to competing TFs.

For a given network connectivity, the linear dynamics reaches a steady state in a fewer number

of time steps than the non-linear dynamics. This is due to the constraint that requires all genes

contributing to a TF to be activated simultaneously for that TF to be synthesised in (4.24). This

is also reflected in the reduction in the fraction of unique TFs observed in simulations for the

non-linear dynamics. However, for both linear and non linear dynamics; entirely activating and

activator-inhibitor networks; there are certain network connectivities that remain in a silent state,

σ(t) = 0, indefinitely even in the absence of noise (figure 4.4.4). Thus, in the next section, our

attention turns to how the gene regulatory dynamics depends on the underlying structure of the

bipartite network.

4.4.1. Percolation thresholds

A key property of any cell is its ability to maintain a gene expression pattern, allowing it to per-

form a specific function. Without sufficiently many expressed genes a cell would be unable to

sustain itself and any biological function. A steady state gene expression level can be supported

in two possible ways: (i) There exist many small disconnected clusters in the network, that do

not interact, and the gene expression profile is the result of the sum of the activities in each clus-

ter; (ii)The network is highly connected and the regulatory interactions give rise to a stable gene

expression profile over the entire network. It is likely that the latter case is true. Cell reprogram-
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ming experiments have demonstrated that nearly any adult cell can be transformed into a stem

cell like state by introducing a small set of TFs (now known as the Yamanaka factors). Therefore,

it is likely the targets of the Yamanaka factors are hubs (or are closely connected to hubs) in a

large connected component. Furthermore, the steady state of gene expression of a cell must even

be maintained in the early stages of development, before the maternal-zygotic transition when

an embryo only translates maternally inherited mRNA. Across the transition, it is believed that

two processes must occur: (i) an increase in zygotic gene expression and (ii) degradation of the

maternal mRNA. For the former process to occur, a number of transcription factors, translated

frommaternal mRNA,must kick-start the zygotic gene expression dynamics of the GRN (which

is even present before the transition).

This kind of phenomena can be studied by thinking in terms of percolation theory - which

has been studied for directed random graphs [121] and undirected (scale free) bipartite graphs

[122]. If a small number of transcription factors are introduced into an inactive GRN, the cell

will sustain a non-trivial steady state level of gene expression only if a giant-cluster exists in the

network. Consider, for example, a network with only activating TFs: if all gene expression lev-

els in a cell are independent and the noise in the system activates and inhibits a gene with equal

probability, then in the steady state one would expect that half of all genes are expressed. Thus,

in order for a cell to sustain some non-trivial ordered state of gene expression levels the ergodic-

ity in the system must be broken. Therefore, there must be a giant component in the underlying

gene regulatory network. Hence, the percolation threshold of a bipartite GRN, i.e. the perco-

lation threshold of a random directed bipartite graph, is calculated here using an adaptation of

the cavity method [123]. To this end, the indicator variables ni and nµ are introduced, and take

value 1 if the gene i or TF µ belong to the (out component of the) giant cluster, respectively, and

are zero otherwise. If one assumes that all transcription factors are activators, i.e. ξµi ∈ {0, 1},

these indicator variables can be written in terms of the corresponding indicator variables for their
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neighbouring nodes in the gene regulatory network,

ni = 1−
∏
µ∈∂ξ

i

(
1− n(i)µ

)
, (4.26)

nµ =
∏
j∈∂η

µ

n(µ)j , (4.27)

where ∂ξ
i = {µ : ξµi = 1} represents the nodes that are the nearest neighbours of gene i that are

connected to it via one of its in-degrees, i.e. a ξµi edge, and n(i)µ is the indicator variable for TFµ in

the cavity graph - a network with gene i and all the edges connecting to it are removed. Similarly,

∂η
µ and n(µ)j are the nearest neighbours of TF µ connected to one of its in-degrees, i.e. via an ηµj

edge, and the indicator variable for gene j on the cavity graph with TF µ removed respectively

(see figure 4.4.5). These equations are constructed from the logic of the non-linear dynamics

(4.24). In (4.27), the transcription factorµ belongs to the giant cluster if and only if all the genes

contributing to its synthesis are on the giant cluster. Whereas, from (4.26), a gene i belongs to the

giant cluster if at least one of the TFs regulating it is also part of the giant cluster. This describes a

bootstrapprocess ondirectedbipartite graphs. Bootstrappercolation [124]has beenwell studied

on lattices [125–128], regular graphs [129, 130], trees [131], and complex networks [132, 133].

However, there are no exact results for bipartite graphs.

Similarly for the nearest-neighbours of i and µ, one has the cavity equations,

n(µ)i = 1−
∏

ν∈∂ξ
i\µ

(
1− n(i)ν

)
, (4.28)

n(i)µ =
∏

k∈∂η
µ\i

n(µ)k (4.29)

where the notation ∂i\µ is used to denote the set of nearest neighbours to i excluding the node µ.
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Figure 4.4.5: Cavity graph (right) for the bipartite GRN (left) with the transcription factor
µ and all its in-degrees removed. The separate branches of the network become indepen-
dent if the graph is locally tree-like. The schematic shows only a sub-network and does not
include self-regulatory interactions for clarity.

These equations are exact on tree-like graphs, and in the thermodynamic limit, will also be exact

on graphs sampled fromour ensemble, which are locally tree-like because of the sparsity ofη and

ξ. It is easy to see that one can continue constructing these equations for the neighbours of theµ

and i, their neighbour’s neighbours, and so on. In fact in the infinite system limit these equations

become a set of stochastic recursion relations. In this limit, one can average (4.29) & (4.28) over

thegraphensemble, andassuming that the edgesη andξ are independent, the following systemof

equations for the probabilities of being on the giant cluster and cavity probabilities are obtained,

g = ⟨ni⟩ =
∞∑

din=1

P(din)
[
1− (1− g̃)d

in
]
, (4.30)

ḡ = ⟨nµ⟩ =
∞∑

cin=1

P(cin)ĝc
in
, (4.31)

ĝ = ⟨n(µ)i ⟩ =
∞∑

din=1

P(din)
[
1− (1− g̃)d

in
]
, (4.32)

g̃ = ⟨n(i)µ ⟩ =
∞∑

cin=1

P(cin)ĝc
in
. (4.33)
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The cavity probabilities ĝ and g̃ are the probabilities that random edges from TFs to genes termi-

nate at genes in the giant cluster, and similarly that randomedges fromgenes toTFs lead toTFs in

the giant cluster. That is the probability that a gene or TF will belong to a giant-cluster when one

of its nearest neighbours, specifically successors, is removed from the graph. Here, the probabili-

ties for a node to be on the giant cluster are equal to the corresponding cavity probabilities, g = ĝ

and ḡ = g̃, this is a result of the directedness, sparsity and independence of η and ξ as shown

in appendix 4.B.The probabilities P(dout) and P(cin) are the gene and TF in-degree distributions

respectively. Assuming genes and transcription factors have Poissonian degree distributions, the

stability analysis of this system of equations gives rise to the following critical average transcrip-

tion factor out-degree (see Appendix 4.B),

c∗2 =
ec1

αc1
, (4.34)

above this critical value of c2 a giant-cluster will exist in the network. This is a percolation thresh-

old for a bipartite gene regulatory network with the non-linear regulatory dynamics (4.24).

One can construct a similar argument for the linear version of the dynamics (4.25) by relaxing

the constraint in (4.27). Using the logic of the linear dynamics (4.25), a gene will be part of the

giant cluster if it contributes to at least one TF on the giant cluster. Then, as before, a TF will

belong to the giant cluster if it regulates at least one gene on the giant cluster. With this reasoning

one obtains the following expressions for the indicator variables,

ni = 1−
∏
µ∈∂ξ

i

(
1− n(i)µ

)
, (4.35)

nµ = 1−
∏
j∈∂η

µ

(
1− n(µ)j

)
, (4.36)
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n(µ)i = 1−
∏

ν∈∂ξ
i\µ

(
1− n(i)ν

)
, (4.37)

n(i)µ = 1−
∏
j∈∂η

µ\i

(
1− n(µ)j

)
, (4.38)

and similarly for the probabilities

g =
∞∑

din=1

P(din)
[
1− (1− g̃)d

in
]
, (4.39)

ḡ =
∞∑

cin=1

P(cin)
[
1− (1− ĝ)c

in
]
, (4.40)

ĝ =
∞∑

din=1

P(din)
[
1− (1− g̃)d

in
]
, (4.41)

g̃ =
∞∑

cin=1

P(cin)
[
1− (1− ĝ)c

in
]
. (4.42)

The stability analysis of these probabilities, for Poisson degree distributions, result in the simpler

form for c∗2 (see appendix 4.B),

c∗2 =
1

αc1
. (4.43)

This generalises the result obtained for undirected bipartite graphs, where η = ξ and c1 = c2

[134]. Thus, this result could also have been achieved by marginalising the bipartite gene regu-

latory network over the TFs to obtain an effective gene-gene interaction network with average

degreeαc1c2 (as demonstrated in appendix 4.A), and then applying known results from directed

graphs [121].

Thepercolation thresholds, c∗2, for both the linear and non-linear dynamics are plotted in figure

4.4.6. In the non-linear dynamics, the exponential dominates, resulting in a scenario in which it
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Figure 4.4.6: The critical average transcription factor out-degree, c∗2, at which a giant
component exists in the GRN as a function of the average transcription factor in-degree c1
(for α = 1). Solid lines represent the value of c∗2 for a given c1. In the non-linear dynam-
ics a giant-component can only exist in a subset (shaded red) of the region above c2 = c1
(dashed line) due to the exponential in (4.34). Whereas, it is possible for a giant-cluster to
be present in the network, for the linear version of the dynamics with c1 > c2.

is not possible to have a giant cluster in the network if c1 > c2 (forα = 1). This is in line with the

current understanding of molecular biology [100]. Transcription factors tend to be “promiscu-

ous”, regulatingmany genes, but are also simple complexes made up of fewer proteins in compar-

ison. Contrary, for the linearised dynamics, it is possible for a giant-cluster to exist in the region

c1 > c2.

Simulations of N = 2, 500 genes and their transcription factors reveal a phase transition in

both the steady state fraction of transcription factors synthesised ⟨aTF⟩ and the steady state frac-

tion of expressed genes ⟨ass⟩ (figure 4.4.7). These transitions occur at the values of c∗2 predicted

by (4.34)& (4.43). The simulations were performed by introducing a small fraction of transcrip-

tion factors (∼ 10) to a GRN, with Poisson degree distributions, in which initially no other TFs

exist and all genes are not expressed. It is worth noting that, because the networks generated for

simulationswere constructed using Poisson degree distributions, there aremore nodes simulated

than are actually a part of the BipartiteGRN.A gene is a regulatory gene if it is regulated by at least

one TF and contributes to the synthesis of at least one TF, i.e. if dini ≥ 1 and douti ≥ 1. Similarly,

for a protein or complex to truly be a TF it must be synthesised by at least one regulatory gene,
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i.e cinµ ≥ 1, and then can regulate the expression any gene in the regulatory part of the network

or the genes outside of this sub-network coutµ ≥ 0. In figure 4.4.7, both the analytic solutions and

the simulation results take this into account and are normalised by the appropriate probabilities.

For example ḡ and ⟨aTF⟩ are normalised by P(cin > 0).

Below the percolation threshold a gene regulatory network is strongly disconnected, and thus,

introducing a small set of TFs will only activate a small number of genes. Above the percolation

thresholds, introducing a small number of TFs results in an activation “avalanche”, due to the

presence of a giant-cluster in the network. If transcription factors have a large out-degree then

they are able to activate many genes, which, in turn, increases the likelihood of new transcription

factors being synthesised. Sufficiently far above the percolation threshold, the giant-cluster en-

compasses the majority, or entirety, of the network. So introducing a small number of TFs will

result in the system equilibrating to a steady state in which all genes are expressed. Then, depend-

ing on the average transcription factor in-degree, c1, the fraction of TFs that are synthesised in the

steady states will vary. TFs with low in-degree are more likely to be activated for the non-linear

dynamics, whilst they are less likely to be activated for the linear dynamics. All of these simula-

tions were carried out deterministically (T = 0) and with no gene-specific thresholds θi = 0

∀i. Introducing noise or gene-specific thresholds would alter ⟨ass⟩ and ⟨aTF⟩. The simulations

strongly agree with numerical solutions of g and ḡ for both the linear and non-linear dynamics.

It is worth reminding the reader that up until this point in our discussion only activating TFs

have been included in the dynamics. The dynamics becomemuch richer when inhibition plays a

role too.

4.4.2. The effects of inhibition

Now consider how the dynamics are affected when TFs act as either activators or inhibitors with

equal probability, i.e. spin glass interactions are used. The critical TF out-degree c∗2 above which

a net steady-state gene expression profile is supported by a network is, no longer the percolation
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Figure 4.4.7: Steady state fraction of transcription factors for different average transcrip-
tion factor out-degrees, c2, in a bipartite GRN constructed with Poisson degree distributions,
using the non-linear (black) and linear (red) versions of the gene regulatory dynamics - Left:
c1 = 1.0 and right: c1 = 0.5. Insets show the average steady state gene expression levels
for the same simulations. Average of over simulations (data points) were carried out with
fixed N = αN = 2, 500, θi = 0 ∀i and T = 0. Curves are the probability that gene or TF
belongs to the giant cluster of the GRN and are analytical solutions of (4.30), (4.31), (4.39)
& (4.40) with α = 1. The vertical dashed lines are the percolation thresholds predicted by
(4.34) & (4.43).

threshold of the network, and cannot be calculated analytically. However, the dynamics can still

be simulated allowing for a numerical study. Frustration in the system will result in more com-

plex dynamics as TFs compete to regulate the same genes in a different manner. Thus, unlike in

the activation only networks, it may be possible for a given network to support multiple stable

gene expression level states, i.e. different σ without any rewiring of the GRN. Whilst histone

modifications and chromatin markers could effectively rewire a GRN, the possibility of having

multiple steady states in a gene regulationmodel due to just the interplay between activation and

inhibition is a desirable one. When constructing a bipartiteGRN,TFswill now activate or inhibit

their target genes with a probability P(ξ = 1) = ϵ and P(ξ = −1) = 1 − ϵ. As before, once

the network is constructed its structure will remain fixed, i.e. η and ξ are a form of quenched

disorder.

In figure 4.4.8 (left panel), the fraction of transcription factors in the steady state is shown

for simulations in which TFs are activators or inhibitors with equal probability, i.e. ϵ = 0.5.

Although these simulations are with the same number of genes (N = 2, 500), and have the
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same in- and out-degree statistics as those in figure 4.4.7, there is a notable decrease in both the

densities of synthesised TFs and expressed genes in the steady state. This is a direct result of the

presence of inhibitors. Unsurprisingly the value c∗2 above which a non-zero ⟨ass⟩ and ⟨aTF⟩ exist

is also increased when inhibition is involved in the dynamics. This is because inhibitors act to

silence genes even if they are part of a giant connected component of the GRN. Thus, above the

percolation thresholds (4.34)& (4.43) a giant cluster will still exist, but it’s existence is no longer

sufficient to support a finite ⟨ass⟩ & ⟨aTF⟩. Again, introducing noise or gene-specific thresholds

to the dynamics would further alter the steady states of the system.

To determine whether or not multiple attractors (i.e. stable gene expression level patterns) ex-

ist for a given network, the distribution of overlaps (i.e. Pearson correlation coefficients) qαβ ∈

[−1, 1], of the steady state TF trajectories is studied after running simulations of the dynamics on

the same network with different initial conditions. The difference in initial conditions is which

small set of TFs (now 4 to parallel with reprogramming experiments) are introduced to the ini-

tially dormant gene regulatory network. Theoverlap is ameasure of similarity between the steady

states of two simulation runsα and β - its formal definition is given in Appendix 4.C.The overlap

qαβ = 1 if the TFs synthesised in the steady state of two simulations are identical. Thus, the

distribution of qαβ is studied to investigate whether or not multiple cell types can emerge from a

given genetic network.

The overlap distribution P(qαβ) (right panel of figure 4.4.8) was produced for an arbitrary

point in the parameter space above c∗2, such that the network will have non-zero ⟨aTF⟩, using the

non-linear (bottom) and linear (top) versions of the dynamics. The distribution does not show

the self-overlaps (qαα = 1), in order to focus on overlaps between different simulation runs. For

both the linear and non-linear dynamics the distribution of overlaps has a single peak at qαβ = 1.

This implies, that for ϵ = 0.5, each network supports only a single attractor regardless of the

choice of dynamics.

Looking closer at the structure of the probability density function (pdf) of the overlap, near
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Figure 4.4.8: Effect of inhibition on steady state regulatory dynamics. Left - average frac-
tion of TFs in the steady state, for different TF out-degrees, with N = 2, 500, α = 1,
c1 = 1.0 and T = 0, on a bipartite GRN with Poissonian degree distributions. The his-
tograms of the overlap qαβ between 150 simulation runs using the linear (top right) and
non-linear (bottom right) dynamics for the points highlighted in the parameter space of the
left panel. Self-overlaps qαα are not plotted.

qαβ = 1, shows that the distribution is not a perfect δ-function at exactly qαβ = 1. However,

increasing the time window over which the steady state average is performed moves the mass of

the pdf towards qαβ = 1, suggesting that there could be a single limit cycle attractor for the dy-

namics that either has a long period or a short period that is traversed many times (figure 4.4.9).

In fact, it can be shown from the average deviations of values of the overlap from qαβ = 1 that

there is likely a single limit cycle with a short period (see appendix 4.D). This is supported by a

recent study on the effects of dilution on the attractors of asymmetric neural network models, in

which the effect of the sparsity and level of asymmetry of the interactions on the mean number

and mean length of limit cycle attractors was explored numerically [135]. The authors suggest

that increasing the asymmetry of interactions dramatically decreases the number of limit cycle

attractors, whilst increasing the sparsity of the interactions decreases the length of the limit cy-

cles. It is also shown that there is a dramatic decrease in the mean number of attractors as the

interactions become very sparse. However, at high levels of dilution, this may be due to a lack of a

giant component in the networks. The neural network models studied in [135] are analogous to

the linear dynamics on a gene-gene networkwhere theTFs have been integrated out of a bipartite
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GRN.

Onemight believe that the existence of a single attractor is due to the lack of short loops in the

effective gene-gene network for the choice of (c1, c2) = (1, 10). However, when c1 and c2 are

increased, with c2 ≫ c∗2, to create a higher connectivity between genes (through TFs) a network

still only supports a single attractor. Increasing the average in-degree of a TF, c1, decreases the

likelihood that each TF will be synthesised using the non-linear dynamics for any choice of ϵ.

This is because more genes need to be expressed simultaneously to produce a TF for increasing

c1. For the linear dynamics the opposite is true, increasing c1 increases the probability a TF is

expressed in the steady state. This is because, for the linear dynamics, TF synthesis requires at

least one of its gene to be expressed. This behaviour can be seen in the top panel of figure 4.4.10

where empirical cumulative distribution functions (CDF) of the steady state frequency of TF

synthesis, ⟨τ̄µ⟩ = 1
∆t

∑t′+∆t
t=t′ τ̄µ(t) are plotted.

The average TF out-degree c2 is equivalent to the average gene in-degree d2 forα = 1. There-

fore, increasing c2 increases the connectivity of the gene-gene network and the amount of TFs

that compete to regulate each gene. Not only did increasing c2 not effect the number of attrac-

tors observed, it also had no affect on ⟨τ̄µ⟩ (figure 4.4.10), because the network remains sparse

compared to the total possible number of edges. Therefore, increasing c1 and c2 does not increase

the number of attractors supported by a given network for either choice of the dynamics. Hence

for ϵ = 0.5 each network supports only a single attractor similar to the activation only networks.

The difference in the attractors for different connectivities is in the frequency with which genes

are expressed, and TFs are synthesised, in the steady state.

Increasing ϵ such that there is a bias in the network towards activation also does not affect the

number of attractors supported for a given network. Instead, for fixed (c1, c2)with a giant cluster

in the network (c2 ≫ c∗2), as ϵ increases the ratio of the number of activating to inhibiting TFs

that regulate a given gene increases on average. Thus, as ϵ increases the behaviour of the dynamics
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Figure 4.4.9: The probability density function of the overlap between the same 150 sim-
ulations of the non-linear deterministic gene regulatory dynamics on a fixed network with
c1 = 1, c2 = 10, ϵ = 0.5. The different distributions arise from different time windows
over which the steady state dynamics was averaged: ∆t = 500 (top), ∆t = 2, 000 (middle),
∆t = 4, 500 (bottom)
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Figure 4.4.10: Empirical cumulative distribution functions (CDFs) of the steady state fre-
quency that a TF is synthesised in bipartite networks with different connectivities, using the
linear (left column) and non-linear (right column) dynamics (at T = 0). The networks had
fixed statistics of c2 = 100, ϵ = 0.5 (top row) and c1 = 4, ϵ = 0.5 (bottom row). The aver-
age TF in-degree dictates the number of TFs that are always synthesised, whilst the average
TF out-degree c2 has no significant effect on F (⟨τmu⟩).
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Figure 4.4.11: Empirical CDF of the steady state frequency with which TFs are synthe-
sised, using the linear (left) and non-linear (right) dynamics on a network with (c1, c2) =
(1, 10) at T = 0. As the bias towards activation increases the number of TFs which are
always expressed increases.

tends towards the behaviour of the FM interactions (figure 4.4.11). Increasing ϵ increases the fre-

quency with which each gene is expressed, and in turn, each TF is synthesised in the steady state

- resulting in an increase in ⟨ass⟩ and ⟨aTF⟩, not in the number of attractors for a given network.

The only instance in which amultiplicity of attractors is observed is when the graph has a sym-

metric structure, i.e. ηµi = ξµi . Although, this graph is no longer a description of a bipartite gene

regulatory network, because, ηµi = −1 has no biological meaning. Instead, the graph becomes a

dilute Hopfield network - a type of dilute recurrent neural network model with symmetric inter-

actions - when the linear dynamics are used. These graphs have amultiplicity of attractors, which

can be seen from the bimodal overlap distributions in figure 4.4.12. Interestingly, both the lin-

ear and non-linear dynamics on dilute symmetric networks support multiple attractors. For the

linear dynamics, there are many attractors with a high correlation and the system occasionally

finds the same attractor. On the other hand, when the non-linear dynamics is used only 1 out of

150 simulations found a different attractor, which has a low correlation with all other simulation

runs. This implies that the basin of attraction of a single attractor dominates the phase space of

the dynamics, because of the harder constraint in the non-linear dynamics. Hence, whilst the ro-

bustness of attractors is amplified by the non-linear dynamics, the asymmetry of the interactions

126



CHAPTER 4. BIPARTITE GENE REGULATORY NETWORKS

0

10

20

0.6 0.8 1.0
qαβ

de
ns

ity

0

2000

4000

6000

0.0 0.2 0.4 0.6 0.8 1.0
qαβ

de
ns

ity

Figure 4.4.12: Probability density functions for the overlap between simulations on a dilute
symmetric network, with average degree ⟨c⟩ =

√
10 and ϵ = 0.5, using the linear (top)

and non-linear (bottom) deterministic dynamics from the bipartite gene regulatory network
model. The diversity of attractors is washed out by the non-linear dynamics.
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in the bipartite gene regulatory network all but ensures it.

Therefore, provided a giant cluster exists in the bipartite gene regulatory network, a single

steady state gene expression level profile exists for that network. The connectivity of the network,

and the ratio of activators to inhibitors in the network, govern the frequencywithwhich genes are

expressed/TFs are synthesised in the steady state (for either choice of our dynamics). The over-

lap distribution of dynamics on different networks with the same statistics shows that there are

different attractors for different networks (figure 4.4.13). However, the shape of the distribution

shows that the attractors are either the same (or very highly correlated) or completely different.

Thus, to have different attractors with a level of correlation between them, similar to those calcu-

lated from real data in chapter 3, would likely require the structure of the network to have a degree

of similarity across different cell types. Hence, multicellular life could be achieved in one of three

ways: (i) creating a specific network and then adding/removing edges to create the different cell

types; (ii) using the same network across all cell types, but genes have different gene-specific

thresholds θi for expression in different cell types; (iii) using the same network across all cell

types with different ratesπ±
µ and/or TF binding affinities, bµi (both of these have so far been kept

fixed with
π+
µ

π−
µ

= bµi = 1). The latter two of these choices would allow for a multiplicity of at-

tractors without having to re-sample graphs in simulations. On the other hand, there is biological

evidence that epigenetic markers, such as histone modifications, alter the chromatin structure to

make certain genes more (in)accessible for regulation in different cell types. Enhancer regions of

DNA are also thought tomove promoter sites toward/away from genes altering the ability of TFs

to regulate them. Furthermore, there is a significant body of literature linking the restructuring of

chromatin to changes in cell types during cellular reprogramming experiments [10, 39, 84, 136–

139]. Therefore, the more realistic approach may be to add/remove edges from a given network

to create the diversity of cell types seen in multicellular organisms. Although, it is possible that

the same behaviour could be captured using a distribution of gene-specific thresholds (and/or

binding affinities) with high values of the θi (or low values of bµi ) effectively removing edges to i
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Figure 4.4.13: The probability density function of the overlap between 150 simulations of
the non-linear dynamics each on different networks with c1 = 1, c2 = 10, ϵ = 0.5 at T = 0.

from the network.

Alternatively, a different choice of the regulatory interactions used in the model could lead to

multiple attractors in the dynamics on a single network. Previously, the linear dynamics has been

governed by the local fields hi(t) =
∑

j,µ

ξiη
µ
j

cinµ
σj(t) =

∑
µ ξ

µ
i mµ(t). If we alter these local fields

to be of the form hi(t) =
∑

µ ξ
µ
i (mµ(t) − a(t)), where a(t) = 1

N

∑
j σj(t) is the activity, and

change our choice of the ξ such that ξµi =
ηµi − cinµ

N

1− cinµ
N

, then the local fields can be written as,

hi(t) =
∑
µ

ηµi − cinµ
N

1− cinµ
N

∑
j

ηµj

cinµ
− 1

N

∑
j

σj(t)

=
∑
j

∑
µ

ηµi − cinµ
N

1− cinµ
N

N
cinµ

[
ηµj

N
−

cinµ
N2

]
σj(t)

=
1

N

∑
j

∑
µ

(ηµi − cinµ
N )(η

µ
j − cinµ

N )
cinµ
N

(
1− cinµ

N

)
σj(t) . (4.44)
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This is now in the form hi(t) = 1
N

∑
j Jijσj(t), where Jij is the coupling prescription for multiple

low activity configurations of η, i.e. (2.6) with ρ + 1 = ρ = µ and ⟨ηµ⟩ = cinµ
N . Hence, for this

choice ofη-dependent ξ, that is equivalent to picking ξµi = 1with probability cinµ
N and ξµi = − cinµ

N

with probability
(
1− cinµ

N

)
, there will exist multiple fixed point gene expression level attractors

in the dynamics. However, this choice of ξ is more difficult to understand from a molecular bi-

ology perspective, and therefore, it could prove more challenging to construct the bipartite gene

regulatory network from experimental data with this choice of ξ.

4.5. Summary andOutlook

In this chapter, a general framework for modelling gene regulation using a bipartite network was

constructed. The network structure integrates the genome and transcriptome with interactions

between genes occurring only viaTFs. However, due to the conservation of edges in the network,

if the ratio of the number of regulatory genes to TFs α is known, a representative bipartite gene

regulatory network can be constructed solely from the degree statistics of a gene-gene or protein-

protein interaction network. It was shown that when TFs are constructed from the simultaneous

synthesis of multiple gene products, they should regulate exponentially more genes on average

than they are synthesised from to sustain a non-zero steady state density of expressed genes and

synthesised TFs.

Thedegree distributions for genes andTFs govern the structure of the network, andultimately,

the steady state gene expression levels. For a fixed average TF in-degree, c1, there is a critical

average TF out-degree, c∗2, above which a net steady state gene expression profile exists. This

occurs only when a giant component exists in the bipartite gene regulatory network. The critical

value c∗2 can be calculated analytically for a network that contains no inhibitory interactions - in

this case c∗2 is also the percolation threshold of the network. When the constraint that all the genes

contributing to aTFmust be co-activated for it to be synthesised (i.e. the non-linear dynamics) is

enforced, TFs must be constructed of a small number of proteins relative to the number of genes
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they regulate, in order to sustain a steady state gene expression level. This is in line with what

is currently observed from biological experiments, i.e. TF are typically small and promiscuous.

However, for a less constrained version of the regulatory dynamics (i.e. the linear dynamics) this

requirement vanishes.

The effects of inhibition on the dynamics was studied numerically with inhibitors shown to

increase the value of c∗2, because the presence of a giant cluster is no longer sufficient to sustain a

steady state gene expression profile. Even with competing regulatory interactions, each network

capable of sustaining a net gene expression pattern gives rise to a single attractor (or cell type),

with the nature of that attractor governed by the structure of the network. The balance between

activation and inhibitionwas found to affect the steady state density of expressed genes ass, as well

as the frequency with which TFs are synthesised, by introducing frustration into the network.

Changing the fraction of activators to inhibitors changes the amount of regulatory competition.

Biasing the network towards activation increases the frequency with which genes are expressed,

the number of genes that are always expressed and, therefore, increases ass. Hence the competi-

tion between activation and inhibition only controls the timing of gene expression, rather than

facilitating multiple cell types.

Increasing the connectivity of the network also did not increase the number of attractors, but

similarly altered the frequency with which genes are expressed by increasing the average number

of target genes for each TF. Because any given network, with a giant cluster, was observed to

support a single gene expressionprofile in the steady state, this supports the idea thatmulticellular

life may require either different networks (or different rates for protein production, degradation

and TF binding affinities) for each of their cell types or a different prescription for the regulatory

interactions. The former could be done by changing the nature of the regulatory interactions

(i.e. swapping the sign of the ξ-edges) or changing the accessibility of target genes (by adding or

removing ξ-edges in the network or altering the gene-specific thresholds).

There are several pathways for future work. Firstly, only deterministic dynamics, i.e. gene reg-
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ulation in the absence of noise, has been studied in this chapter. However, because the model

allows for the inclusion of noise it can easily be extended to include this level of biological real-

ity. One would expect noise to restrict the range in parameter space in which stable attractors are

supported. Furthermore, the assumption that the connectivitiesη andξ are statistically indepen-

dent was made. This may not be true though, one might expect ⟨cin⟩ and ⟨cout⟩ to be correlated,

with the number of DNA binding sites possibly increasing with the size of a TF.Thus, it could be

worthwhile to extend this model to include correlations between the TF synthesis and gene reg-

ulation using data from knock-out experiments or known protein-protein and gene interaction

networks. Also, the model does not take into account the effects of external signals (e.g. mor-

phogen gradients and cell-cell interactions). Although, these could be included in themodelwith

additional terms in the form of local or external fields. However, the most fruitful advancement

of this model would be to investigate the nature and number of attractors supported when edges

are added/removed from a network, or by using a distribution of values for the rates of protein

synthesis and degradation, TF binding affinities and/or gene specific thresholds. Furthermore,

if such values were dependent on gene expression profiles it may be possible for the dynamics

to traverse from one attractor to another, encapsulating changes in cell state, for example, due to

differentiation.

Despite the assumptions and limitations, the general framework presented in this chapter can

be used to compare simulations with experimental data. However, the following data would be

required to do so: (i) The distributions or statistics for in- and out-degrees of genes and/or TFs,

(ii) the statistics of the number of activating and inhibiting TFs, (iii) the number of nodes in the

regulatory network. Given these data, this model should be able to accurately predict the steady

state density of expressed genes and frequency with which TFs are synthesised.
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Appendix 4.A Degreedistributionsofeffectivegene-gene interaction

network

Transcription factors act as intermediates in a GRN. If one would like to study the gene-gene in-

teractions thenwe can askwhat is the probability that they are connected by a directed edge? This

involves integrating out the transcription factors of the bipartite network. If the degree sequence

of the GRN are denoted by k = {kin,kout}, the distribution of out-degrees in the GRN is given

by,

pout(k) =

⟨
1

N

∑
i

δk,
∑

j Aij

⟩
η,ξ

(4.45)

whereAij = 1 if a directed edge from i to j exists and is zero otherwise, i.eAij = Θ
[∑

µ η
µ
i |ξµj |

]
.

In general one has,

p(ηµi ) =
douti cinµ
N⟨dout⟩

δηµi ,1 +

(
1−

douti cinµ
N⟨dout⟩

)
δηµi ,0 , (4.46)

p(|ξµi |) =
dini coutµ

N⟨din⟩
δ|ξµi |,1 +

(
1−

dini coutµ

N⟨din⟩

)
δ|ξµi |,0 . (4.47)
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Under the assumption that η and ξ are i.i.d random variables and rewriting the δ-function using

its Fourier representation, the general form of pout(k) is,

pout(k) =
1

N

∑
i

∫
dω
2π

eiωk⟨e−iω
∑

j Aij⟩η,ξ , (4.48)

(where i =
√
−1 is used to denote the imaginary number and i denotes the index of the gene i

in the regulatory network.)

One can replace theAij in the expression for pout(k)with Ãij =
∑

µ η
µ
i ξ

µ
i . This is possible because

the probability of having a connection in the network Ãij is the same as inAij toO(N−1), as shown

below.

p(Ãij) = ⟨δÃij,
∑

µ ηµi |ξ
µ
j |⟩

=

∫
dω
2π

⟨eiω(Ãij−
∑

µ ηµi |ξ
µ
j |)⟩η,ξ

=

∫
dω
2π

eiωÃij⟨e−iω
∑

µ ηµi |ξ
µ
j |⟩η,ξ

=

∫
dω
2π

eiωÃij
∏
µ

⟨ηµi |ξµj |e−iω + 1− ηµi |ξµj |⟩η,ξ

=

∫
dω
2π

eiωÃij
∏
µ

[
douti cinµ
N⟨dout⟩

dinj coutµ

N⟨din⟩
e−iω +

(
1−

douti cinµ
N⟨dout⟩

dinj coutµ

N⟨din⟩

)]

=

∫
dω
2π

eiωÃij
∏
µ

[
douti cinµ
N⟨dout⟩

dinj coutµ

N⟨din⟩
(e−iω − 1) + 1

]

=

∫
dω
2π

eiωÃije
∑

µ

douti cinµ
N2⟨dout⟩

dinj coutµ

⟨din⟩ (e−iω−1)
,

where the sparse nature of GRN was used to exponentiate in the last line. Expanding the expo-

nential and using the definition of the δ-function one can see that,

p(Ãij) = δÃij,0

[
1−

∑
µ

douti dinj coutµ cinµ
N2⟨dout⟩⟨din⟩

]
+ δÃij,1

[∑
µ

douti dinj coutµ cinµ
N2⟨dout⟩⟨din⟩

]
+O(N−2) . (4.49)
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Hence, p(Ãij > 1) is O(N−2). Thus, to order N−1, p(Ãij) = p(Aij), so one can replace the

averages over Aij with averages over the weighted edges Ãij. Therefore,

⟨e−iω
∑

j Aij⟩η,ξ = ⟨e−iω
∑

j,µ ηµi |ξ
µ
j |⟩η,ξ

=
∏
µ

⟨e−iωηµi
∑

j |ξ
µ
j |⟩η,ξ

=
∏
µ

[
1 +

douti cinµ
N⟨dout⟩

(
⟨e−iω

∑
j |ξ

µ
j |⟩ − 1

)]

=
∏
µ

1 + douti cinµ
N⟨dout⟩

∏
j

[
1 +

dinj coutµ

N⟨din⟩
(
e−iω − 1

)]
− 1


=
∏
µ

1 + douti cinµ
N⟨dout⟩

exp
{
1

N

∑
j

dinj coutµ

⟨din⟩
(
e−iω − 1

)}
− 1


=
∏
µ

[
1 +

douti cinµ
N⟨dout⟩

(
exp{coutµ (e−iω − 1)} − 1

)]

= exp

{
1

N

∑
µ

douti cinµ
⟨dout⟩

(
exp{coutµ (e−iω − 1)} − 1

)}

= e
−douti α⟨cin⟩

⟨dout⟩ e
αdouti
⟨dout⟩ ⟨c

inec
out(exp(−iω)−1)⟩

, (4.50)

where, the last average ⟨cinecout(exp(−iω)−1)⟩ is taken over the joint distribution p(cin, cout). Substi-

tuting this result into our expression for pout(k) and using the conservation of in- and out-degrees,

gives

pout(k) =
1

N

∑
i

e−douti

∫
dω
2π

eiωk exp
{
αdouti

⟨dout⟩
⟨cinecout(e−iω−1)⟩

}
=
∑
d

e−dpout(d)
∫

dω
2π

eiωk exp
{

αd
⟨dout⟩

⟨cinecout(e−iω−1)⟩
}

, (4.51)

where pout(d) is the out-degree distribution of the genes. For independent in- and out-degrees

the degree distribution of the transcription factors factorises, p(cin, cout) = p(cin)p(cout), and
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making use of the conservation of edges in the bipartite network one has,

pout(k) =
∑
d

e−dpout(d)
∫

dω
2π

eiωk exp
{
d
⟨
exp
(
cout(e−iω − 1)

)⟩}
=
∑
λ

1

λ!

∑
d

dλe−dpout(d)
∫

dω
2π

eiωk
[∑

c

pout(c) exp
(
c(e−iω − 1)

)]λ

=
∑
λ

1

λ!

∑
d

pout(d)dλe−d
∫

dω
2π

eiωk
∫

dxδ

(
x−

λ∑
r=1

cr

)

×

{ ∑
c1,...,cλ

pout(c1) . . . pout(cλ)e−x
∑
s

xs

s!
e−iωs

}

=
∑
λ

1

λ!

∑
d

pout(d)dλe−d
∑

c1,...,cλ

pout(c1) . . . pout(cλ)
∫

dxδ

(
x−

λ∑
r=1

cr

)
e−x xk

k!
,

(4.52)

Thus, the out-degree distribution in the effective gene-gene interaction network as,

pout(k) =
∫

dxe−x xk

k!
P(x) , (4.53)

where

P(x) =
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!

∑
c1,...,cλ

pout(c1) . . . pout(cλ)δ

(
x−

λ∑
r=1

cr

)
. (4.54)
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Clearly, the out-degree distribution is normalised
∑

k≥0 pout(k) = 1. The average out-degree of

the effective gene-gene interaction network would then by given by,

⟨kout⟩ =
∑
k≥0

kpout(k)

=

∫ ∞

0

dyP(x)e−xx
∑
k≥0

xk−1

(k− 1)!

=

∫ ∞

0

xP(x)dx

=
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!

∑
c1,...,cλ

pout(c1) . . . pout(cλ)
∑
r≤λ

cr

=
∑
d

pout(d)e−d
∑
λ≥0

dλ

λ!
λ
∑
c

pout(c)c

= ⟨cout⟩
∑
d

pout(d)e−dd
∑
λ≥0

dλ−1

(λ− 1)!

= ⟨cout⟩
∑
d

pout(d)d

= ⟨cout⟩⟨dout⟩ = αc1c2 (4.55)

It can be shown in a similar fashion that the in-degree distribution for the effective gene-gene

interaction network is,

pin(k) =
∫

dye−y yk

k!
P(y) , (4.56)

where

P(y) =
∑
d

pin(d)e−d
∑
λ≥0

dλ

λ!

∑
c1,...,cλ

pin(c1) . . . pin(cλ)δ

(
y−

λ∑
r=1

cr

)
. (4.57)

This is clearly normalised and gives the average in-degree in the effective gene-gene interaction

network as ⟨kin⟩ =
∫
dyyP(y) = αc1c2.

137



CHAPTER 4. BIPARTITE GENE REGULATORY NETWORKS

Appendix 4.B Percolation thresholds

4.B.1 Non-linear dynamics

Here, the critical value of the the transcription factor out-degree c∗2, above which a giant cluster

will exist in the gene regulatory network, is calculated. The critical value can be found through a

simple stability analysis.

Recall that we are using an adaptation of the cavity method to determine the probability that a

gene or TF belongs to the giant cluster. In (4.26) the gene i is connected to the TFµ via ξµi . Then

in the construction of the cavity graph for n(i)µ , in (4.29), one removes all the genes connected to

the TF µ via an η-edge. Due to the sparsity of the bipartite network, the likelihood that the gene

i contributes to the synthesis of the TF µ as well as being regulated by it isO( 1N). Therefore, all

of cinµ of the neighbours of µmust be in the giant cluster for µ to also belong to the giant cluster.

This leads to, for the non-linear dynamics, the system of equations (4.32)& (4.33) which in their

general form are:

ĝ = ⟨n(µ)i ⟩ =
∑
dout

P(dout)
dout

⟨dout⟩

∞∑
din=1

P(din|dout)
[
1− (1− g̃)d

in
]
, (4.58)

g̃ = ⟨n(i)µ ⟩ =
∑
cout

P(cout)
cout

⟨cout⟩

∞∑
cin=1

P(cin|cout)ĝcin . (4.59)

Recall, n(µ)i is the indicator variable for the gene i on the cavity graph with the TF µ removed.

Therefore, (4.58) arises from averaging (4.29) over all possible genes that have µ as a succes-

sor (i.e. have an out-degree that terminate at node µ) and their predecessors (i.e. all TFs that

have an incoming link to node i). This is done in (4.58) by taking the average over the degree

distribution of the successors of i, P(dout)dout/⟨dout⟩, and the average over the in-degree of i on

the cavity graph with µ and its in-degrees removed. A similar line of reasoning gives the general

from of (4.59) by averaging on the cavity graph with i and its in-degrees removed. Under the
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assumption of independent edges η and ξ, the in- and out-degrees for a node are independent.

Combining thiswith the sparsity anddirectednature of the bipartite gene regulatory network, the

conditional distributions are equivalent to their corresponding marginals, P(din|dout) = P(din)

and P(cin|cout) = P(cin). Then, the average over the successor degree distributions has no affect,

and the cavity probabilities become equal to the probabilities of belonging to the giant cluster, i.e.

g = ĝ and ḡ = g̃, with

ĝ = ⟨n(µ)i ⟩ =
∞∑

din=1

P(din)
[
1− (1− g̃)d

in
]
= f1(g̃, ĝ) , (4.60)

g̃ = ⟨n(i)µ ⟩ =
∞∑

cin=1

P(cin)ĝc
in
= f2(g̃, ĝ) . (4.61)

The point (g̃, ĝ) = (0, 0) is always a solution to these equations. This solution corresponds to

the situation where there is no giant cluster in the network. Thus, the point at which this solution

is no longer stable, will be the point at which a giant cluster emerges in the network. The solution

(g̃, ĝ) = (0, 0) is stable provided that,

∣∣J|(̃g,̂g)=(0,0)

∣∣ =∣∣∣∣∣∂ [f1, f2]∂ [̃g, ĝ]

∣∣∣∣
(0,0)

∣∣∣∣∣ < 1 .

Taking partial derivatives of (4.60) and (4.61) gives the Jacobian of the system evaluated at the

point (g̃, ĝ) = (0, 0) as ∣∣J|(0,0)∣∣ =
∣∣∣∣∣∣∣

0 ⟨din⟩

P(cin = 1) 0

∣∣∣∣∣∣∣ . (4.62)

Hence, for Poisson degree distributions and the stability criteria |J|(̃g,̂g)=(0,0)| < 1, a giant cluster

will exist in the network, if and only if,

αc2c1e−c1 ≥ 1 , (4.63)
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giving the percolation threshold for the bipartite gene regulatory network

c∗2 =
ec1

αc1
. (4.64)

For Poisson degree distributions, P(din) = e−d2ddin2 /din! and P(cin) = e−c1ccin1 /cin!, the aver-

ages in (4.60) and (4.61) can be performed exactly to find the probability that gene orTFbelongs

to the giant cluster, by making use of exp(x) =
∑∞

k=0
xk
k! and d2 = αc2

g = ĝ = 1− e−αc2 g̃ (4.65)

g̃ = ḡ = ec1 (̂g−1) − e−c1 (4.66)

These curves are plotted in figure 4.4.7 with ḡ normalised by the P(cin > 0) = 1− P(cin = 0) =

1− e−c1 .

4.B.2 Linear dynamics

The percolation threshold for the linear dynamics can be found following a similar line of rea-

soning to that for the non-linear dynamics. The key difference is that there is no longer the hard

constraint that all genes contributing to a TF are required to belong to the giant cluster for it to be

as well. Instead it is sufficient that at least one the genes contributing to a TF belongs to the giant

cluster. Thus, with this constraint relaxed, the equations for the indicators become symmetric

and one obtains the cavity probabilities,

ĝ = ⟨n(µ)i ⟩ =
∑
dout

P(dout)
dout

⟨dout⟩

∞∑
din=1

P(din|dout)
[
1− (1− g̃)d

in
]
, (4.67)

g̃ = ⟨n(i)µ ⟩ =
∑
cout

P(cout)
cout

⟨cout⟩

∞∑
cin=1

P(cin|cout)
[
1− (1− ĝ)c

in
]
, (4.68)
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and therefore the analysis is much simpler following the same steps as for the non-linear dynam-

ics. The point (g̃, ĝ) = (0, 0) is still a solution with the Jacobian evaluated at this point given by,

J|(̃g,̂g)=(0,0) =

 0 ⟨din⟩

⟨cin⟩ 0

 . (4.69)

Therefore, the criteria for a giant component to exist in the bipartite gene regulatory network is

αc2c1 ≥ 1 for the Poisson degree distributions. This gives rise to the percolation threshold for

the linear dynamics,

c∗2 =
1

αc1
. (4.70)

Then the probabilities that a gene or TF belong to the giant cluster, for the case of Poisson degree

distributions, are

g = ĝ = 1− e−αc2 g̃ , (4.71)

ḡ = g̃ = 1− e−c1 ĝ . (4.72)

Again, these probabilities are plotted in figure 4.4.7.

Appendix 4.C Overlap between simulations

The overlap qαβ is used as a measure of similarity of the steady state gene expression levels be-

tween two simulation runs, by comparing the TF profiles between different simulations. For-

mally it is defined as,

qα,β =
q̃αβ√
q̃ααq̃ββ

, (4.73)

with

q̃αβ =
1

αN

∑
µ

(⟨τ̄µ⟩α − ⟨τ̄⟩α) (⟨τ̄µ⟩β − ⟨τ̄⟩β) , (4.74)
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⟨τ̄⟩α =
1

αN

∑
µ

⟨τ̄µ⟩α , (4.75)

where ⟨. . .⟩α denotes the time average in the steady state of simulation run α; and τµ indicates

whether a TF has been synthesised or not with

barτµ(t) = Θ [τµ(t)]. The overlap is strictly defined in the samemanner as a Pearson correlation

coefficient with qαβ ∈ [−1, 1]. When β = α, qαα = 1 and the gene expression levels are iden-

tical. Any value of qαβ ̸= 1 indicates that there is a difference in the steady state gene expression

profiles. The distribution of qαβ is studied to determine whether or not multiple attractors exist

for the each choice of the dynamics (linear and non-linear) on a given network.

Appendix 4.D Inferred attractor length from deviations in the over-

lap distribution

In this appendix, it is demonstrated howone can infer the possible length of a limit cycle attractor

of the dynamics in a bipartite gene regulatory network. For this example the overlap distributions

in figure 4.4.9 are used along with the statistics of the network the dynamics are simulated on for

those distributions, i.e. (c1, c2, ϵ) = (1, 10, 0.5).

If we assume that the transient to the steady state is short on this network, as generally demon-

strated for increasing connectivity in figure 4.4.4, then the dynamics will converge to the limit

cycle attractor inO(1) time steps. Next, if the time window∆t used to perform the average over

the steady state is much greater than the length of the limit cycle ℓ, the limit cycle will be fully

traversedN∆t times. There can also be a fraction of the limit cycle length x traversed in each∆t

as well as theN∆t full cycles giving∆t = ℓ (N∆t + x). Overmany simulation runs the average of

xwould be expected to be ⟨x⟩ = 0.5. If the probability that any gene in the network is expressed

is given by a then the probability that a gene is expressed differently in simulations runs is given

by 2a(1− a). That is, a gene i could be expressed in simulationα and not inβ or vice versa. Then
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∆t ≈ ⟨∆q⟩ ℓ
500 2.3× 10−3 4.6
2, 000 6.3× 10−4 5.0
4, 500 2.6× 10−4 4.7

Table 4.D.1: Length of limit cycle attractors inferred from mean deviation from qαβ = 1 in
distributions of the overlap using different time windows for the steady state averaging.

the average deviation in the overlap from qαβ = 1 is given by

⟨∆q⟩ = 2a(1− a)xℓ
∆t

, (4.76)

where xℓ is the number of sites on which there is a difference in gene expression between simula-

tion runs. Using this expression for ⟨∆q⟩ and the mean values of the deviation from qαβ = 1 in

figure 4.4.9, one can infer the length of the limit cycle attractor for that network shown in the table

4.D.1. There is also anO(1/N) effect on the overlap of the initially introduced TFs hitting finite

clusters that are able to sustain a net steady state gene expression level alongside the contribution

from the giant cluster. Therefore, the network used to construct the overlap distributions in fig-

ure 4.4.9 likely has an attractor that has is a limit cycle of length ℓ ≃ 5. However, this periodicity

is difficult to identify directly from trajectories of the dynamics.
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5
Summary&outlook

In this thesis, tools from the field of statistical physics, in particular, the theories of neural net-

works and directed random graphs, and Monte Carlo simulation methods, have been employed

to explore how the expressionof genesmay lead tomulticellular life and the known transitions be-

tween different cell types. The motivation behind this thesis has been twofold. Firstly, to create

predictive models that are more biologically grounded than those currently available to under-

stand one of the biggest advancements in molecular biology - cellular reprogramming. Secondly,

to build a powerful mathematical framework that encourages communication and collaboration

between experimentalists and theoreticians interested in this field of research.
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In chapter 2, amodel for cell reprogrammingwas constructed that builds on key features of cel-

lular biology - mainly cell cycles and potencies. This level of biological realism does not currently

exist in other neural network type models for the interaction between gene expression levels. In

the model, cell types are hierarchically related dynamical attractors of the effective interactions

between gene expression levels. Stages of the cell cycle are fully characterised by the configura-

tion of gene expression levels, and reprogramming corresponds to triggering transitions between

such configurations. Two possible mechanisms for reprogramming were found: cycle specific

perturbations and a noise-induced switching. The former corresponds to a directed perturbation

that induces a transition into a cycle-state of a different cell type in the potency hierarchy (mainly

a stem cell), whilst the latter is a priori undirected and could be induced, e.g. by a (stochastic)

change in the cellular environment. These reprogramming protocols were found to be effective

in large regimes of the parameter space andmake specific predictions concerning reprogramming

dynamics that are broadly in line with experimental findings, including the number of genes that

need to be perturbed to reprogram a cell to an induced pluripotent stem cell.

More specifically, two critical points were found numerically in the phase space of the model.

Thefirst, a critical noise levelT abovewhich the dynamics of a system converges towards the gene

expression profiles of a stem cell from an initial state that has a strong correlation with a differen-

tiated cell. Next, there were a critical fraction of gene expression levels qr which could be altered

to achieve the same kind of reprogramming. These perturbations mimic Yamanaka’s line of rea-

soning for the original reprogramming experiment, by altering the gene expression level of a small

number of genes to be the same as in the cell type that one desires upon reprogramming, namely

a stem cell. At low levels of noise, this fraction of genes is in-line with the number expected to

be affected by retroviral transduction of the Yamanaka reprogramming factors. Combining these

two results it was shown how the number of perturbed genes required to transition to a stem cell

like state decreases with increasing noise. Perturbations, through direct changes in gene expres-

sion levels, are most effective when they do not act to disrupt the progression of the cell cycle
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and the desired final state is the cell cycle phase with the shortestHamming distance between the

initial and desired resultant cell type.

In chapter 3, data fromRNA sequencing experiments were used to further test the hypotheses

of the cell reprogramming model introduced in chapter 2. It was shown that there is evidence

in support of a single cell cycle phase with maximal similarity across different cell types of the

mouse enteric nervous system. Interestingly, this cycle phase appears to be the G1 phase rather

than the S or M phases as hypothesised in chapter 2. The higher level of similarity in this phase

is manifested in an increase in the number of expressed genes duringG1 leading to strong corre-

lations in gene expression profiles. Data from the Human Protein Atlas project was used to find

the average density of expressed genes and the correlation between gene expression levels from

different tissue types. The 70% of expressed genes in human cells is in agreement with previous

studies and provided a useful benchmark for calibration. However, whilst validating parts of the

reprogramming model, the current lack of available cell cycle specific data, especially for human

cells, means that conclusions drawn from the analysis in chapter 3 may evolve with experimental

technologies and increasing efforts in this area.

In chapter 4, a general framework for gene regulation was constructed as the dynamics on a

directed bipartite graph. The integration of the transcriptome and genome into a single bipartite

gene regulatory network allowed for a greater understanding of the structure and dynamics of

gene regulation compared to previous Boolean or neural networkmodels. Specifically, it demon-

strated that transcription factors should typically regulate exponentially many more genes than

those that contribute to their synthesis. Using percolation theory and an adaptation of the cavity

method analytical expressions were derived for the average out-degree of a TF required to create

a giant cluster in the gene regulatory network, whenTFs are either fully formed from theproducts

of expressedgenes andwhen theymay functionwith errors in their production. Later in this chap-

ter, numerical analysis showed that the competition between regulatory interactions controls the

frequency with which genes are expressed, rather than the number of cell types that arise from a
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gene regulatory network. With any given gene regulatory network shown to support just a single

gene expression profile, the choice of interactions in the model provides support for the hypoth-

esis that a requisite formulticellular life is a rewiring of the underlying gene regulatory network in

different cell types. This is most likely achieved in nature through chromatin (de)condensation,

or alternativeTF behaviour in different cell types, e.g. different rates of formation and/or binding

affinities for their target genes, of which there is already significant evidence for in the experimen-

tal literature. The bipartite gene regulatory network can easily be adapted to study either of these

effects due to its general ground-up construction.

Fruitful directions for future research include improving theunderstanding, andquantification

of, the level of biological noise strengthT in the gene expression level dynamics. This should not

only illustrate the meaning of the noise-induced reprogramming mechanism found in chapter 2,

but it would also allow for ameaningful level of stochasticity to be introduced to the currently de-

terministic bipartite gene regulatory dynamics studied in chapter 4. Although, developing either

model to include the levels of correlation between the gene expression profiles of an organism

seen in chapter 3, would be the most desirable advancement of this work. Suggestions on how to

achieve this are detailed in the summaries of the respective chapters.

Finally, as with any theoretical model, continued attempts should be made to fit parameter

values, test and scrutinise the hypotheses and assumptions made in the cell reprogramming and

bipartite gene regulatory networkmodels contained in this thesis. For these models, like any, are

only interesting from a mathematical perspective unless they can accurately capture and predict

the behaviour of the systems that they are based on. This will require communication and col-

laboration between theorists and experimentalists, as with any interdisciplinary research. It is the

hope of the author that this thesis will facilitate suchwork, regardless of any scrutiny that thismay

lead to in the accuracy of this thesis.
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