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Abstract

�is thesis addresses three topics in political and criminal violence. �e �rst essay is an empirical

evaluation of a broad set of homicide reduction policies implemented in the state of São Paulo, Brazil.

I employ the synthetic control method, a generalisation of di�erences-in-di�erences, to compare

these measures against an arti�cial São Paulo. �e results indicate a large drop in homicide rates in

actual São Paulo when contrasted with the synthetic counterfactual, with about 20,000 lives saved

during the period.

�e second essay o�ers a rational choice account for the Brazil’s jogo do bicho, or the ‘animal

game’, possibly the largest illegal gambling game in the world. I investigate the institutions that

have caused the jogo do bicho’s notable growth and long-term survival outside the boundaries of

the Brazilian law. I show how bicheiros or bookmakers promote social order, solve information

asymmetries, and reduce negative externalities via costly signalling and the provision of club goods.

I also explain the emergence of the informal rules that govern the game as well as their enforcement

mechanisms.

In the third essay, I employ extreme bounds analysis and distributed random forests to identify

the key determinants of state-sponsored violence. Although scholars have suggested a number of

potential correlates of mass killings, it remains unclear whether the estimates are robust to di�erent

model speci�cations, or which variables accurately predict the onset of large-scale violence. I employ

extreme bounds analysis and random forests to test the sensitivity of 40 variables on a sample of 177

countries from 1945 to 2013. �e results help clear the brush around mass killings, as few variables in
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this literature are robust determinants of atrocity. However, support for an opportunity logic persists

as greater constraints on a government limit its ability to employ barbarous tactics. It appears that

the Con�ict Trap applies to government atrocity. Atrocity breeds atrocity, while wealthy stable

democracies tend to avoid episodes of mass killing.
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Chapter 1

Introduction

�e literature on political and criminal violence has increased exponentially over the last decades.

Although interstate wars have traditionally occupied a privileged position in political science, scholars

have broadened their scope to include a myriad of hitherto understudied phenomena into their

research agendas. Civil wars (Collier and Hoe�er 2004; Fearon and Laitin 2003; Kalyvas 2006),

genocides (Mamdani 2014; Power 2013), ethnic con�icts (Kaufmann 1996; Montalvo and Reynal-

�erol 2005; Sambanis 2001), wartime sexual abuse (Cohen 2013; Wood 2006, 2009), electoral violence

(Höglund 2009; Wilkinson 2006), state-sponsored killings (Har� and Gurr 1988; Krain 1997, 2005;

Uzonyi 2014), terrorism (Bueno De Mesquita 2005; Bueno de Mesquita and Dickson 2007; Pape

2003), drug-related violence (Holmes et al. 2006; Lessing 2015; Richani 2013; Shirk 2010), street gangs

(Franzese et al. 2016; Jones 2009; Rodgers 2006; Sobel 1987), and prison gangs (Dias 2011; Freire 2014;

Skarbek 2011a, 2012, 2014) have recently moved from the margins to the centre stage of the discipline.

�e present dissertation contributes to this expanding �eld.

In order to clarify crucial aspects of my research topic, I employ an eclectic combination of

research designs. �e methods range from qualitative case studies to machine learning algorithms.

�is diversity not only re�ects the multiple aspects of organised violence, but it is also a pragmatic

response to problems which are common in this area, such as incomplete data, reporting bias, and

1



model uncertainty. By using an array of methodological tools, I hope to overcome some of these

challenges.

Regarding the geographical scope of this dissertation, two of the following chapters deal with

issues of violence in Latin America, specially in Brazil. According to the World Bank, Latin America

is home to about 8% of the global population, yet it accounts for more than 30% of the world’s

homicides.1 Moreover, the yearly ranking by the Citizen’s Council for Public Security and Criminal

Justice (Consejo Ciudadano para la Seguridad Pública y la Justicia Penal), a Mexican non-governmental

organisation, shows that 43 of the 50 most violent cities in the world are located in Latin America,

including all of the top 10.2 Given the severity of violence in the continent, Latin America was

expected to be an important part of this study.

Brazil exempli�es many of the challenges of �ghting violence in developing nations. �e country

has the highest absolute number of homicides in the world, about 56,000 per year, and it hosts 19 of

the 50 world’s deadliest cities according to the above-mentioned ranking (Waisel�sz 2014; Consejo

Ciudadano para la Securidad Pública y Justicia Penal 2014; United Nations O�ce on Drugs and Crime

2013). Homicide rates have increased markedly a�er democratisation (1985), and whereas Brazil has

tried several policies to reduce violence, the results are yet to be evaluated in a consistent fashion.

�e next chapter a�empts to address this issue. Although Brazil remains notably a�ected by civil

violence, the state of São Paulo has made signi�cant inroads into �ghting criminality. In the last

decade, São Paulo has witnessed a 70% decline in homicide rates, a result that policy-makers a�ribute

to a series of crime-reducing measures implemented by the state government (Goertzel and Kahn

2009; Kahn and Zanetic 2005). While recent academic studies seem to con�rm this downward trend,

no estimation of the total impact of state policies on homicide rates currently exists. I �ll this gap by

employing the synthetic control method (Abadie and Gardeazabal 2003; Abadie et al. 2010, 2014), a

generalisation of di�erences-in-di�erences (Angrist and Pischke 2008; Bertrand et al. 2004; Imbens
1See: h�ps://goo.gl/d2WC3V. Access: April 2017.
2For the complete ranking, see h�p://www.seguridadjusticiaypaz.org.mx/biblioteca/prensa/summary/6-prensa/

239-las-50-ciudades-mas-violentas-del-mundo-2016-metodologia. Access: February 2018.
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and Wooldridge 2009), to compare these measures against an arti�cial São Paulo. �e results indicate

a large drop in homicide rates in actual São Paulo when contrasted with the synthetic counterfactual,

with about 20,000 lives saved during the period. �e theoretical usefulness of the synthetic control

method for public policy analysis, the role of the Primeiro Comando da Capital, a local prison gang,

as a moderating variable, and the practical implications of the security measures taken by the São

Paulo state government are also discussed.

Chapter three o�ers a rational choice account for Brazil’s jogo do bicho, or the ‘animal game’,

possibly the largest illegal gambling game in the world. �e lo�ery has been running for over 120

years and according to estimations of Fundação Getúlio Vargas, a Brazilian think tank, it pro�ts up

to 800 million dollars per year.3 �e jogo do bicho has exerted a signi�cant impact on the Brazilian

society. �e lo�ery has been a major sponsor of the Carnival Parade in Rio de Janeiro, which is

among the world’s most famous popular festivals, and it has remained an important driver of state

corruption in the country (Bezerra 2009; Chazkel 2011; DaMa�a and Soárez 1999; Labronici 2012;

Magalhães 2005; Soares 1993). I investigate the institutions that have caused the jogo do bicho’s

notable growth and long-term survival outside the boundaries of the Brazilian law. I show how

bicheiros or bookmakers promote social order, solve information asymmetries, and reduce negative

externalities via costly signalling and the provision of club goods. I also explain the emergence of the

informal rules that govern the game as well as their enforcement mechanisms.

�e last chapter presents an empirical evaluation of explanations for genocides and politicides.

Although the literature on state-sponsored killings has grown signi�cantly over the last decades, it

remains unclear whether estimates are robust to di�erent model speci�cations, or which variables

accurately predict the onset of large-scale violence. I employ extreme bounds analysis and distributed

random forests to test the sensitivity of 40 variables on a sample of 177 countries from 1945 to

2013. �e results show that GDP per capita, the post-Cold War period, and stable political regimes
3See h�p://goo.gl/9kNeX8 and h�p://goo.gl/8FSAZl (in Portuguese). Access: April 2017
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are negatively associated with mass killings. In contrast, ethnic diversity, civil wars, and previous

political turmoils increase the risk of state-led violence.

4



Chapter 2

Evaluating the E�ect of Homicide

Prevention Strategies in São Paulo, Brazil:

A Synthetic Control Approach

2.1 Introduction

Brazil has long been ravaged by an undeclared civil war. According to the Citizen Council on Public

Security and Criminal Justice, a Mexican think-tank, 19 of the 50 most violent cities in the world

are located in Brazil (Consejo Ciudadano para la Securidad Pública y Justicia Penal 2014).1 �e 2014

Violence Map survey shows that 56,337 people were murdered in Brazil in 2012 alone, the highest

incidence rates of intentional homicides on the planet (Waisel�sz 2014; United Nations O�ce on

Drugs and Crime 2013). Paradoxically, the sharp rise in lethal violence has occurred during Brazil’s

longest period of political openness (Ahnen 2003; Pinheiro 2000, 2001). Murder rates have almost

doubled over three decades of democracy, jumping from 15 homicides per 100,000 people in 1985 to

roughly 29 per 100,000 in 2012 (Waisel�sz 2014).2

1�e study disregards war zones and cities with unavailable data.
2Cerqueira (2013) argues that the actual rates may be di�erent from the o�cial statistics. He states that many

homicides from 1996 to 2010 were (intentionally or not) misclassi�ed as ‘death by undetermined causes.’ A�er performing
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São Paulo has traditionally occupied a key position in Brazil’s violence statistics. It is the country’s

richest and most-densely populated state, and in the 1990s its homicide rate was roughly 50% higher

than the national average (Barata and Ribeiro 2000, 120). Some areas of the namesake capital city had

even worse numbers. Between 1996 and 1999, the ramshackle districts of Jardim São Luiz and Jardim

Ângela had respectively 103 and 116 violent deaths per 100,000 residents (Cardia et al. 2003, 8), �gures

that placed them amongst the deadliest neighbourhoods on the globe (World Health Organization

2015).

Nevertheless, the state of São Paulo has experienced a drastic reduction in homicides during the

last years (Camargo 2007). �e decline is so remarkable that some authors have called it ‘the great

homicide drop’ (Goertzel and Kahn 2009). �e city of São Paulo, which is currently home to about 11

million inhabitants, provides a telling example. Over a span of only seven years (2000–2007), the

number of annual violent deaths in the capital fell from 5,979 to 1,311, a 78% decrease.3 Signi�cantly,

São Paulo city became the safest state capital in Brazil (Waisel�sz 2011).

São Paulo’s success should be a�ributed to local factors. From 1999 onwards, the state government

created or expanded a number of policies that have arguably contributed to the decrease in criminality.

In a move coherent with the basic tenets of the economics of crime (e.g. Becker 1968; Cornish and

Clarke 2014), the administration increased the certainty and the intensity of punishment to discourage

potential o�enders. Amongst other measures, the government implemented strict gun control policies

(Goertzel and Kahn 2009), raised incarceration rates (Salla 2007), and imposed harsher sentences on

those convicted of a crime (Carvalho and Freire 2005).

But whereas several authors acknowledge the e�ectiveness of these policies, few quantitative

studies have gone beyond statistical correlations to justify their arguments. In the case of São

data correction procedures, the author estimates that the number of homicides in Brazil during that period should be
18.3% higher than the reported �gures. Recent criticism about the quality of São Paulo homicide data can also be found
at h�p://goo.gl/x0pHac (in Portuguese). Access: January, 2016. In this article, I avoid these issues by using obituary data
instead of police records.

3�e homicide statistics cited in this paragraph come from the Centre for the Study of Violence, a research group of
the University of São Paulo. �eir data set can be found at the following electronic address: h�p://nevusp.org/downloads/
bancodedados/homicidios/distritossp/num-homicidios-distritos-2000-2007.htm. Access: March, 2016.
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Paulo, a major di�culty is separating the state’s particular time trend to that of Brazil. Ideally, one

should compare São Paulo to a control case that shares the same characteristics of the existing

state, except that it has not been subjected to the speci�c set of policies implemented by the São

Paulo state government. �is thought exercise, which emulates the logic of a controlled experiment

(Angrist and Pischke 2008; Imbens and Rubin 2015; Holland 1986; Morgan and Winship 2014), would

allow practitioners to untangle the e�ects of homicide reduction programmes from other potential

confounders.

In this paper, I employ the synthetic control method (henceforth SCM) to approximate this

experimental ideal and measure the total causal e�ect of post-1999 public policies on São Paulo

homicide rates. �e method consists of creating an arti�cial counterfactual to estimate the impact of

a given intervention on a unit of interest. SCM has gained widespread acceptance in many �elds,

having been successfully applied in political science (Abadie et al. 2014; Montalvo 2011), economics

(Billmeier and Nannicini 2013; Co�man and Noy 2012; Jinjarak et al. 2013), education studies (Hinrichs

2012), and public health science (Heim and Lurie 2014). However, SCM has rarely, if ever, been used

to evaluate homicide prevention strategies in São Paulo, despite being a useful tool for this particular

type of question. SCM was speci�cally designed for situations where there is only one treated unit

of interest, no readily-available counterfactual, and no certainty as to whether the treated and the

control units follow parallel trends a�er the intervention (Abadie and Gardeazabal 2003; Abadie et al.

2010, 2014). Moreover, SCM also has some of the desirable properties of popular causal inference

tools such as di�erences-in-di�erences (Angrist and Pischke 2008; Bertrand et al. 2004) and matching

estimators (Dehejia and Wahba 2002; Ho et al. 2007; Rubin 1973; Stuart 2010).

I �nd that from 1999 to 2009, about 20,000 lives were saved in São Paulo. When compared to

a synthetic counterfactual, São Paulo’s actual homicide rates were less than 50% of what would

be expected in the absence of policy implementation (15 versus 32 homicides per 100,000 people).
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Additional tests con�rm the robustness of the results and indicate a 96.3% chance of a causal e�ect in

the intervention period.

�e article is structured as follows. Section 2.2 discusses how deterrence provides a useful

framework to understand the reduction in homicide rates in the state. I also examine an alternative

hypothesis for the drop in crime in São Paulo – the rise of the Primeiro Comando da Capital – and

argue that the prison gang should be regarded as a moderator, but probably not as an independent

cause of homicide reduction. Section 4.2 presents a justi�cation for, and a technical explanation of,

the synthetic control method. Section 2.4 describes the data used in this paper. Section 2.5 discusses

the results of the models and presents several robustness tests. Section 4.5 o�ers some concluding

remarks.

2.2 �eoretical Background

2.2.1 Deterrence, Information and the Drop in Homicides

A myriad of explanations have been proposed for the fall in homicide rates in São Paulo. Some

authors have stressed the importance of long-term factors on local levels of violence. Mello and

Schneider (2010) claim that the shrinking of the proportion of males in the 15–25 age bracket has led

to fewer violent deaths at both state and city levels. Hughes (2004) argues that São Paulo’s spatial

segregation pa�erns have had a lasting impact on murder rates. Barata and Ribeiro (2000), in turn,

posits that macroeconomic conditions, mainly inequality indicators, are positively correlated with

violent crime in São Paulo.

Structural variables have likely been important in reducing violence, but the role of public policies

should not be underestimated. �e Brazilian Social Democracy Party (Partido da Social Democracia

Brasileira, PSDB), which has ruled São Paulo since 1995, has repeatedly asserted its commitment to

reducing urban crime throughout the state (Bueno 2014). In 1998, former governor Mário Covas –
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then running for re-election – set the ambitious goal of “slashing criminality rates in half” during

his second term in o�ce (Santos 2008). �is commitment was then followed by his vice-governor

and successor, Geraldo Alckmin, who has expanded those measures and taken a notoriously tough

stance on crime (Feltran 2012a).

Methods of crime prevention have received considerable a�ention from the authorities. Firstly,

the São Paulo government signi�cantly increased incarceration rates in the past decade (Salla 2007).

�e state currently holds around 200,000 convicts in prison (35% of Brazil’s inmate population) and

adds another 15,000 inmates to the o�cial statistics every year (Brasil de Fato 2013). Furthermore,

prisoners have also become subject to harsher legal punishments. �e São Paulo administration has

also been making large use of the Regime Disciplinar Diferenciado (Special Disciplinary Regime),

which provides for up to 360 days of solitary con�nement for disobeying the law (Carvalho and

Freire 2005).

Secondly, the state government has successfully enforced a ban on gun possession in São Paulo.

Studies show that this policy has been e�ective in reducing homicides resulting from both drug-related

crimes and domestic disputes (Goertzel and Kahn 2009; Kahn and Zanetic 2005). Furthermore, the

impact of the Brazil’s 2003 National Disarmament Act was particularly pronounced in São Paulo.

Cerqueira and Mello (2013) argue that between 2005 and 2007 the enforcement of the anti-�rearm

legislation was responsible for saving between 2,000 to 2,750 lives in cities with more than half a

million inhabitants in the state of São Paulo.

�is set of policies is largely in line with the rational choice theory of crime (e.g. Becker 1968;

Ehrlich 1973; Levi� 1996, 1997; Paternoster 2010). �e rational choice school posits that criminals

are motivated by utilitarian cost-bene�t analysis. Individuals calculate what the possible trade-o�s

are between the bene�t of the commi�ing a crime and the risk of being punished for it. Criminal

o�enders, therefore, are in no way di�erent from non-criminals: the only di�erence between them
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is their choices (Nagin 2007). To reduce criminality, policy-makers have to ensure that the costs of

commi�ing a crime outweigh the eventual utility an individual derives from it.

Deterrence measures have been complemented by investments in police intelligence. In 1999, the

state administration created a new system for crime prevention, Infocrim (Risso 2014, 3) �e system

gathers geo-coded information on homicides and maps the most important ‘hot spots’ of criminal

activity in the state. �e government has also developed a new photo database, Fotocrim, to speed

up the process of facial recognition of criminals (Mello and Schneider 2010, 3).

More information improves the e�ectiveness of police strategies via two mechanisms. On the

one hand, police forces can be quickly moved to where they are most needed. �is reinforces the

role of deterrence as it increases the likelihood of punishment for criminals. On the other hand, the

system also makes clear what regions are making progress in reducing crime. �is allows police

chiefs to monitor local personnel and take measures to improve performance if required.4

Recent evidence shows that the intelligence system has e�ectively lowered the crime statistics in

São Paulo. Using a spatial di�erences-in-di�erences estimator, Cabral (2016a) argues that Infocrim has

had a large negative impact on homicide rates in the municipalities where it was implemented. �e

author also notes that the e�ect remains important even a�er accounting for possible displacement

e�ects. As expected, some criminals did take their activities elsewhere a�er the creation of Infocrim,

but this movement has not o�set the bene�ts of the system.

How well have these policies performed over time? �e results suggest a favourable outlook.

Compared to other Brazilian states, São Paulo is an outlier when it comes to homicide rates. Despite

the fact that crimes against property have declined li�le over the last decades,5 the number of violent

deaths per 100,000 inhabitants shows a steep downward trend. Figure 2.1 presents the evolution of

homicide rates in São Paulo in comparison with the Brazilian average.
4See: h�p://goo.gl/kqLhYb (in Portuguese). Access: August 2016.
5Recent data on property crimes in São Paulo can be seen at h�p://www.ssp.sp.gov.br/novaestatistica/Pesquisa.aspx

(in Portuguese). Access: July 2016.
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Figure 2.1: Homicide Rates per 100,000 Population – São Paulo and Brazil (Excluding São Paulo)

�e trends are even more striking if we consider that deterrence policies are still controversial in

the literature. Barbarino and Mastrobuoni (2014), Buonanno and Raphael (2013), Levi� (1996, 2004)

and Owens (2009) claim that incapacitation measures e�ectively reduce crime, but Eck and Maguire

(2006) and Bea�ie and Mole (2007) suggest that increases in police forces and incarceration rates in

the United States and in Canada did not lead to expected outcomes.

�ere is good evidence that incapacitation measures have worked well in São Paulo during the

last decade. Gun-related homicides have declined about 74% from 2001 to 2008 (Peres et al. 2011)

at the same time when São Paulo has experienced an increase of 770% in the arrests of repeated

murderers (Manso 2012, 36). Although there are studies that indicate possible ‘hardening e�ects’ of

imprisonment, that is, longer sentences may positively a�ect an individual’s tendency to commit

further crimes (e.g. Chen and Shapiro 2007; Glaeser et al. 1996; Western et al. 2001), the São Paulo

case appears to suggest otherwise. Moreover, violent deaths have decreased in all population strata,

but especially amongst males (-74.5%), 15 to 24 year-old men (-78,0%) and those who live in extreme

poverty (-79,3%), groups that are generally associated with criminality (Peres et al. 2011).

Nevertheless, it is di�cult to know which of the policies have contributed more to this large

homicide reduction. Not only we do not have disaggregated data to test preliminary hypotheses, but
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there may be large interaction e�ects amongst di�erent public security measures. �erefore, at the

moment it is not possible to disentangle micro-level causes from macro e�ects. But the aggregated

impact of the anti-crime policies can be correctly identi�ed if there is no other variable in the causal

path leading from the policies mentioned above to our dependent variable (state homicide rates).

I argue below that this type of estimation is feasible for the São Paulo case. To back this claim, I

suggest that a competing explanation for the homicide drop in São Paulo – the rise of the PCC –

interferes only with the direct e�ect of the policies on crime, but not with their total e�ect. In this

sense, the synthetic control method provides a plausible identi�cation strategy for my question of

interest.

2.2.2 Alternative Explanation: �e Emergence of the PCC

A recent hypothesis a�ributes the decrease in violent deaths in São Paulo to the Primeiro Comando

da Capital (First Command of the Capital, henceforth PCC) (Biondi 2010; Dias 2009a, 2011; Feltran

2010, 2012a; Willis 2015). �e PCC is a prison gang that emerged in the early 1990s as a response

to the demands of a growing prison population. �e PCC provides personal security and �nancial

assistance to their members and a�liates. �e gang’s internal statute clearly declares that “[. . . ]

those who are in liberty [must contribute] to the brothers inside prisons [PCC members] through

lawyers, money, help to family members and prison outbreak operations” (Folha de São Paulo 2001).

A group of scholars argue that the PCC signi�cantly contributed to the reduction in violence

mainly through the São Paulo prison system. At least since the mid-2000s, these authors argue that

the PCC has been able to emerge as an undisputed mediator and solve con�icts between inmates.

Dias (2009b, 83) writes that “[. . . ] when unable to constitute a universal source of regulation, the

o�cial law leaves gaps which are �lled by informal instances – such as the Primeiro Comando da

Capital (PCC), in the prisons of São Paulo.” �e gang has implemented informal courts that resemble

state institutions, and those meetings have progressively replaced other forms of popular justice such

12



as lynchings or the hiring of target killers (Feltran 2012b, 3). Moreover, the Comando has developed a

series of assertive ways to terrorise inmates. Since the PCC’s threats are credible, the group is able to

impose discipline within the São Paulo prison system (Biondi 2010; Dias 2009a).

Paradoxically, the PCC might have also helped to reduce crime in São Paulo by collaborating with

street-level police. �e Brazilian state does not hold a perfect monopoly of force in many areas of the

country (Arias 2009; Feltran 2012a; Hughes 2004; Pinheiro 2000), thus access to local knowledge may

prove vital for the success of a given operation. In this regard, the PCC and the state may collude if

the situation is bene�cial to both, and as such there is an informal–but potentially unstable–“killing

consensus” in the state (Willis 2014, 2015).

�ere has been a vigorous debate over whether the PCC has had a signi�cant impact on violence

rates. A few authors see the PCC as the su�cient condition behind the homicide rates decline across

São Paulo state (Biondi 2010; Dias 2009a, 2011), whilst others take a more nuanced view of the role of

the prison gang (e.g. Willis 2015). But both groups of scholars a�rm that, based on their �rst-hand

experience, the PCC is the key explanatory variable behind the drop in murders in São Paulo.

Recent econometric works, however, do not seem to con�rm that argument. Marcelo Nery has

found no convincing results in favour of the ‘PCC hypothesis’ using geo-referenced data for São

Paulo (BBC 2016). Biderman et al. (2016) use anonymous calls to a crime hotline as a proxy for PCC

presence in São Paulo city favelas. �e authors suggest there is some support for the idea that the

criminal syndicate reduces lethal violence in areas under its control, but PCC presence corresponds

to only a minor drop in violent crime. Although the PCC impact is not negligible, the gang is not a

su�cient condition for the homicide decline.

Another counter-argument to the PCC thesis is that homicides also decreased in areas and groups

over which the PCC does not exert control. Firstly, descriptive statistics show that the decline in

violent deaths started before the PCC’s expansion period.6 Secondly, the drop in crime was evenly
6As shown in �gure 2.1, São Paulo’s homicide rates started to drop in 1999. �e PCC consolidated their power in the

prison system only in the mid-2000s (Dias 2011).
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distributed throughout the state: urban and rural areas, small and large cities alike experienced fewer

murders.7 Finally, as noted above, Peres et al. (2011) point out that violent death rates decreased

in all age groups and social classes in the city São Paulo. Hence, cohorts that do not correspond to

typical PCC members (such as the elderly or middle-age females) are also less a�ected by violence.

It seems that the in�uence of the PCC on physical violence has been overstated. It is unlikely

that the PCC – which is underfunded for its size8 – could have achieved such deep penetration into

society and lowered the violence levels across all population groups in the whole state.

Yet, the group’s importance cannot be fully dismissed either. Data on PCC-controlled areas are

likely to contain measurement errors that may bias the coe�cients, thus caution is required before

making strong causal claims on this discussion. Despite mounting observational evidence that the

PCC may not provide a complete explanation to São Paulo’s lower crime rates, the argument could

only be comprehensively tested in a counterfactual case in which the PCC is present and the state

policies are not.9 Currently-available data do not allow us to evaluate such scenario.

2.2.3 Causal Paths, Moderators, and Total E�ects

A methodological issue remains. If we are to estimate the causal e�ect of the public measures on

the crime rates, how should we proceed? I have noted above that the speci�c impact of micro-level

policies cannot be evaluated due to lack of data. Nonetheless, it is theoretically possible to estimate

the total e�ect of policies on crime.

�e di�erence between direct and total e�ects can be understood as follows. �e direct e�ect

captures the sensitivity of a dependent variable Y to changes in X when this relationship is not

mediated by any other variables in the model. Holding all factors constant, the direct e�ect is a
7See: h�p://www.fenapef.org.br/27764/ (in Portuguese). Access: July 2016.
8A Parliamentary Commission of Inquiry has stated that the PCC earns about 16 million Brazilian Reals per month,

which amounts to approximately 60 million US dollars per year. See: h�p://goo.gl/FwhPa3 (in Portuguese). Access:
July 2016. Given the size of the organisation and its undisputed position as the leading crime syndicate in São Paulo,
the �gures are rather small. As a comparison, Mexico’s Sinaloa Cartel pro�ts about 3 billion dollars per year, a sum
comparable to the annual earnings of Net�ix or Facebook. See: h�p://nyti.ms/1B09qyV. Access: July 2016.

9I would like to thank an anonymous reviewer for highlighting this point.
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causal chain of length one (Sobel 1987, 160) and could be described simply as X → Y . In turn, the

total e�ect can be de�ned as P(Yx = y), that is, “the probability that response variable Y would take

on the value y when X is set to x by external intervention” (Pearl 2001, 1572). �e total e�ect is the

sum of direct and indirect (or mediated) e�ects.

In our case, gun control, incarceration, and police intelligence have likely had a direct e�ect on

homicides. Combined, these variables comprise a direct aggregate policy e�ect. �e omission of

a variable measuring the impact of the PCC could bias such an e�ect, but not interfere with the

total policy e�ect. �is point is worthy of further consideration. �e total policy e�ect would be

unbiased under the assumption that the PCC is in fact a moderator between the public policies and

the homicide rates, even if the gang’s impact over the violence levels is not particularly large.

Although this argument has rarely been posited in such terms, this position is largely supported

by the qualitative literature on the PCC. Fieldwork research generally traces the group’s origins and

growth to the rising incarceration rates in São Paulo and the need for protection amongst prisoners

(Dias 2011; Manso and Godoy 2014). Like other prison groups, the PCC would only mobilise resources

to provide welfare and act as an arbitrator under the condition that the certainty of punishment by

the state is high (Skarbek 2011b; Freire 2014). Had the state not increased the costs associated with

crime, the prison gang would not have expanded their reach, or even been created in the �rst place.

Hence, the impact of the PCC on street-level violent deaths – if it exists – can be safely assumed to

be a moderator e�ect.

Whereas it would be interesting for researchers to separate these types of e�ects and isolate the

PCC from the other causal outcomes, such estimation is not possible at the state level. However,

as these measures were implemented throughout São Paulo state at roughly the same time, their

combined e�ect is computable even though their individual direct e�ects are not. To do so, it is only

necessary to contrast the treated unit (São Paulo) with a counterfactual without the time-assigned

treatment (1999 onwards) and evaluate the aggregated e�ect of the public policies.
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�is analysis can be estimated in a consistent manner with the synthetic control method. In the

following sections I describe how the method creates a valid counterfactual case under a certain set

of assumptions. �e assumptions are: 1) the PCC is an outcome, not a cause, of the crime-targeting

policies; 2) the model does not include unnecessary control variables; 3) interpolation bias is not very

severe because the cases in the ‘donor pool’ are relatively similar to the treated unit.

2.3 Methods

�e synthetic control approach provides an adequate solution for two enduring problems in the

social sciences: the arbitrary selection of comparative cases and the poor estimation of causal e�ects

when few pre-treatment observations are available (Abadie and Gardeazabal 2003; Abadie et al.

2010). With respect to the �rst issue, scholars o�en resort to ambiguous criteria in their choice of

control units. �is practice ends up casting doubts over the validity of their selected counterfactual

(Abadie et al. 2011). �e synthetic method provides a reliable comparative case by adopting a purely

data-driven process in order to select a counterfactual. Also, the researcher can still specify what

control cases enter the ‘donor pool.’ In this sense, qualitative expert knowledge can be incorporated

in the estimation via the selection of cases.

Regarding the second issue, the accurate estimation of coe�cients from a small number of cases,

SCM employs a consistent statistical solution to problems of incorrect data extrapolation and model

dependence. SCM can be understood as a combination of matching with di�erences-in-di�erences.

SCM uses matching as a �exible pre-processing tool to reduce imbalance between treated and control

units (Ho et al. 2007; Rubin 1973, 2006). But unlike matching, SCM deals with only one treated

unit over time. �erefore, the method can also be interpreted as a semi-parametric extension to

di�erences-in-di�erences estimators in which both treated and control units are not required to follow

parallel trends in the whole period. (Abadie 2005). By combining semi-parametric matching with
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di�erences-in-di�erences, SCM provides a rigorous yet versatile method to evaluate time-dependent

treatment e�ects.

�e method works as follows.10 SCM starts with the assumption that one case in the sample

has received a treatment. �e treatment is de�ned as a time-delimited event that a�ects the unit of

interest, such as the implementation of a new policy or the outbreak of a con�ict. SCM also requires

a series of control cases to estimate the models, that is, units that did not receive the treatment

during the same period. �ese cases are o�en related to the treatment case in some meaningful

way, and natural choices for the donor pool are provinces within the same country, or states that

share important characteristics. �ese traits can also be more speci�cally de�ned and included as

quantitative variables in the estimation models.

SCM then selects a few cases from the donor pool to create a new, arti�cial control for the treated

unit of interest. �e main goal of SCM is to construct a counterfactual that resembles the treatment

unit more closely than any individual control in the donor pool. Cases are combined in way similar to

a weighted average, in which controls that are more similar to the treated unit receive more weights.

�e weights make explicit the contribution of each separate case to the synthetic control, what also

increases the transparency and reliability of the method (Abadie et al. 2014). �e closer the synthetic

control matches the original treated unit before the assignment of the period, the be�er the quality

of the counterfactual.

�e method uses an algorithm to minimise the di�erence between the control cases and the

treated unit before the intervention. �e authors adopt the mean squared prediction error (MSPE) as

a measure of �t (Abadie and Gardeazabal 2003). MSPE is simply the di�erence between the ��ed

and the observed trends of the treatment case. A small value means that the two lines are highly

correlated and the arti�cial control is a good approximation of the missing counterfactual in the

post-intervention period. In our case, the counterfactual would be São Paulo from 1999 to 2010

without the crime-reducing policies.
10Please refer to Appendix 2.7 for a formal presentation of the synthetic control method.
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SCM has an intuitive interpretation. Although numeric summaries and other statistics can be

obtained from the model, a simple time series graph is usually enough to assess the results. �e causal

e�ect is the di�erence between the treated and the synthetic cohort. �e larger the post-treatment

gap, the stronger the treatment impact.

As with all types of observational studies, SCM can also su�er from omi�ed variable bias. One

can never be sure whether all required confounders have been included in a given model. However,

the graphical output of the SCM helps diagnose the presence of large disparities between treatment

and control cases. If the trends follow similar paths during the control period, it provides some

indication – albeit only informally – that omi�ed variable biases are not driving the output. �is bias

can also be mitigated with expert knowledge. Econometric studies show that the inclusion of a large

number of covariates and post-treatment variables to correct for omi�ed variables bias can actually

worsen the problem (Achen 1992, 2002; Clarke 2005, 2009; Pearl 2009). �is is particularly true for

matching methods. Authors have noted that ‘over-matching’ can lead to severe statistical bias (Baser

2006; Brookhart et al. 2006; Marsh et al. 2002). In this regard, the most plausible solution seems to be

a�ention to the trends and sensible selection of control variables. As I discuss below, the covariates

included in this paper are some of the most robust quantitative predictors of homicides.

Furthermore, placebo tests can be run to test the robustness of the �ndings. For instance,

researchers can include ‘in-time placebos,’ dates under which the treatment did not occur. Results

should change only in the period when the treatment starts and not at any other point in time.

Moreover, scholars can also add ‘in-space placebos’ to their models. �is test consists of adding

di�erent members of the donor pools into the models to see if the estimation varies (Abadie et al.

2014). Finally, one can also compare the e�ects of the treatment of interest by creating a distribution

of synthetic cohorts, where every unit (treated or not) is matched with a speci�c synthetic control

case. �e parameter of interest should still be relevant. I employ all of these tests in this article and

the results can be seen in the following sections.
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2.4 Data

I build panel data for the variables Homicide Rate, State GDP per Capita, State GDP Growth, Years

of Schooling, Gini Index, Natural Logarithm of Population and Population Living in Extreme Poverty.

�ese variables are very common in the specialised literature11 and represent important social and

economic factors I wish to control for.

�e unit of analysis is State-Year. I have data from all of the 26 states plus the capital city (Distrito

Federal), ranging from 1990 to 2009. �e data for years prior to 1990 are scarce and for years a�er

2009 have not yet been published. All data used in this paper come from the same source, the Instituto

de Pesquisa Econômica e Aplicada (IPEA), a government-led research group.12

My dependent variable measures the number of homicides per 100,000 inhabitants, which is the

most commonly used unit of analysis for lethal violence. �is variable was coded by the Brazilian

Health Ministry from obituary records, therefore it is less likely than police �les to su�er from

intentional misrepresentation.

�ere are six control variables in the models. State GDP per Capita is adjusted in 2010 Brazilian

Reals (at the time 1 Brazilian Real bought roughly 0.5 U.S. dollars). State GDP Growth is measured

in constant 2010 Brazilian Reals and varies by percentage points. Years of Schooling describes the

average number of years of formal instruction at educational facilities (males and females, 25 years

old or more.) Gini Index is a measure of inequality, ranging from 0 to 1 where 0 is the most equal

and 1 the most unequal. Natural Logarithm of Population represents yearly projections of the state

population. Since Brazil only runs a census every 10 years, these projections represent the most

accurate data available. I have taken the natural logarithm of this variable to account for size e�ects.

Finally, Population Living in Extreme Poverty describes the percentage of the state population which

do not meet the minimum intake of 2,000 calories per day. �is is the only variable that I created
11For overviews of cross-national studies of homicide, see LaFree (1999), Nive�e (2011) and Trent and Pridemore

(2012).
12�e data are publicly available at h�p://www.ipeadata.gov.br/. �e original data �les have also been added to

h�ps://github.com/danilofreire/homicides-sp-synth for reproducibility purposes.
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speci�cally for this study. It was coded by simply taking the number of individuals classi�ed as

extremely poor by the IPEA and dividing this number by the state’s total population.13

2.5 Analysis

2.5.1 Main Model

I construct the synthetic cohort (Synthetic São Paulo) by imputing information from all of the Brazilian

states plus the Federal District. �e synthetic control method outputs a set of weights for states and

variables such that the treatment state is approximated optimally by these weighted components.

�is method not only provides a quantitative way of selecting comparison cases but also gives us a

much be�er baseline to compare with the treatment unit. Synthetic São Paulo is constructed using

six states, i.e., the six out of the 27 possible cases that received non-zero weights. Table 1 shows that

the states that best synthesize São Paulo are, respectively, Santa Catarina (0.274), Distrito Federal

(Brası́lia) (0.210), Espı́rito Santo (0.209), Rio de Janeiro (0.169), Roraima (0.137) and Pernambuco,

which only accounts for 0.01 of the weights. In this regard the state selection does not appear as a

complete surprise. Apart from Roraima, the other members of the federation are richer, more densely

populated and be�er schooled than the country average, thus being indeed similar to São Paulo.

Table 2.1: Synthetic Weights for São Paulo

State Synthetic Control Weights Predictor Weights
Santa Catarina 0.274 Years of Schooling 0.469
Distrito Federal 0.210 State GDP per Capita 0.275
Espı́rito Santo 0.209 Homicide Rate 0.241
Rio de Janeiro 0.169 Population Living in Extreme Poverty 0.009
Roraima 0.137 Gini Index 0.005
Pernambuco 0.001 Ln Population 0.001

Among the independent variables, only three out of six receive substantial weights. Given the

data I could obtain, the predictors that receive more weight are Years of Schooling (0.469), State
13Years of Schooling and Gini Index had a small number of missing observations (about 15 percent) and those cases

were imputed with linear interpolation. Both original and imputed variables are available online. See the supplementary
appendix for further details on how to replicate this study.
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GDP per Capita (0.275) and past Homicide Rate (0.241). �e three remaining variables are much less

relevant to the model. �ey are, respectively, the Population Living in Extreme Poverty (0.009), Gini

Index (0.005) and Natural Logarithm of the Population (0.001). Table 2 compares characteristics of

São Paulo and its synthetic control prior to policy implementation. We see that Synthetic São Paulo

has very similar coe�cients to those of the treatment unit. Moreover, the synthetic control clearly

outperforms the sample means in all of the three relevant predictors. �e worst measure is State GDP

Growth, whose mean is about 2.6 whereas the �gure for São Paulo is roughly 1.3 during that period.

However, this outcome does not a�ect the results since the variables that received zero weight were

discarded from the models.

Table 2.2: Homicide Rate Predictor Means Before Policy Implementation

Predictor São Paulo Synthetic São Paulo Sample Mean
Years of Schooling 6.089 6.110 4.963
State GDP Per Capita 23.285 23.079 11.830
Homicide Rate 32.672 32.479 21.843
Population Living in Extreme Poverty 0.054 0.082 0.185
Gini Index 0.536 0.561 0.578
Ln Population 17.335 14.838 14.867
State GDP Growth 1.330 2.585 3.528

�e results show that the synthetic control method has successfully created a valid counterfactual

to our case of interest. Figure 2.2 depicts the evolution of the dependent variable for the treatment

and synthetic control cases. We can see that São Paulo and synthetic São Paulo have very close

homicide rates series for the period ranging from 1990 until 1998. From 1999 onwards we observe the

trajectories departing sharply from each other. �e increase in homicide rates shown in the graph

is consistent with previous statistical evidence. It indeed con�rms that São Paulo had higher than

expected levels of lethal violence, which I noted in the �rst part of this text.
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Figure 2.2: Trends in Homicide Rates: São Paulo versus Synthetic São Paulo

Despite the high levels of violence in 1999 – when the new crime-reducing programme was

implemented – the number of homicides consistently declined until 2009. �e trend is indeed

monotonic and there is not a single peak in homicide rates a�er the policies have been put into

practice. I interpret that as strong evidence in favour of the public policies.
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Figure 2.3: Homicide Rates Gap between São Paulo and Synthetic São Paulo

With respect to the size of the e�ect, in 1998 the homicide rate in São Paulo was around 40 deaths

per 100,000 inhabitants. In 2009 – the last year for which data are available – the rate dropped to 15,

whereas synthetic São Paulo observed above 30 deaths per 100,000. �at means a gap of −20 deaths
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for every 100,000 people in São Paulo in 2009, as can be seen in Figure 2.3. I estimate that the new

policies implemented in São Paulo saved roughly 20,300 lives in the period from 1999 to 2009.14 It is

important to mention that the homicide rate in São Paulo continues to drop by the year, while the

same is not happening in the rest of the country.

2.5.2 Robustness Checks

To further analyse the �ndings, I run �ve robustness tests. I �rst create an ‘in-time placebo’ synthetic

control. �is test consists of creating a false starting date for the intervention period to check if one

could observe false treatment e�ects in the pre-treatment years (Abadie et al. 2014). If that were to

be the case, the validity of the main results could be put into question. �e result of this placebo test

can be seen in Figure 2.4. When I run the model with 1994 as the year when there was a supposed

policy change, the result shows that there is only a minor gap between both lines. In other words,

the method does not indicate a de�nite departure of trends between treatment and control cases.
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Figure 2.4: Placebo Policy Implementation in 1994: São Paulo versus Synthetic São Paulo

14My estimate of lives saved by the policies implemented in São Paulo is done as follows. I consider the years a�er
policy implementation (1999–2009), then I sum the number of homicides in São Paulo in that period. �is gives us 124,077
homicides between 1999 and 2009. I do the same procedure for the synthetic São Paulo; I sum the number of homicides
in each state that makes the synthetic control in the period, while adjusting the contribution of each of these states by
their respective weights in the synthesis. �e number of homicides in synthetic São Paulo between 1999 and 2009 is
144,408. Finally, I subtract the number of homicides in the control by the number of homicides in the treatment. �e
result is 20,331 lives saved.
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I also conducted a leave-one-out robustness test. In this test I drop the states composing the

synthetic control one at a time. �e main goal of this analysis is to evaluate whether a single control

state is driving the results. �is would suggest that the original synthetic control – which is composed

of �ve states at a time – is probably not a reasonable counterfactual. �e results of this analysis can

be found in Figure 2.5. We see that the synthetic control (dashed line) is a reasonable amalgam of

cases. Also, because the relative positions of treatment and controls are stable across controls, we

observe that no control state is biasing the estimates.

1990 1995 2000 2005

2
0

3
0

4
0

5
0

Year

H
o
m

ic
id

e
 R

a
te

s

São Paulo

Synthetic São Paulo

Policy Change

São Paulo
Synthetic São Paulo
Synthetic São Paulo (leave−one−out)

Figure 2.5: Leave-One-Out Distribution of the synthetic Control for São Paulo

Figure 2.6 shows the di�erence in homicide rates between the treated units and their synthetic

controls. Here I estimate a synthetic control case for São Paulo and for each of the other 26 Brazilian

states. �is test assesses whether there is any previously unobserved national or regional trend

that explains the original results. We observe that in São Paulo the homicide rate gap increases

consistently during the treatment period, whereas the lines for the other states are moving randomly.

Several lines fail to show any substantial di�erence between the state line and that of its synthetic

counterfactual case. �is indicates the results for São Paulo are unlikely to be a result of broader

trends.
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Figure 2.6: Permutation Test: Homicide Rate Gaps in São Paulo and 26 Control States

Figure 2.7 presents the same test displayed in �gure 2.6, but it uses a stricter threshold for the

simulated synthetic controls. �e graph features cases in which the mean squared prediction error, a

measure of goodness-of-�t, is no higher than twice that of São Paulo. �at is, only placebos that have

good synthetic matches were selected for the analysis (Abadie et al. 2010, 503). In this group, the

negative gap for the homicide rate São Paulo is by far the most relevant, providing further evidence

for the original �ndings.
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Figure 2.7: Permutation Test: Homicide Rate Gaps in São Paulo and Selected Control States
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Lastly, I estimate another synthetic control using a di�erent approach. I employ a Bayesian

structural time-series model to verify the stability of the previous results (Brodersen et al. 2015).

�is inference procedure is similar to that described in section 4.2 and it also consists of matching

pre-treatment values of the unit of interest, São Paulo, to other potential control states. However,

in this model only the time trends of the dependent variable are matched. In a sense, this is closer

to a traditional di�erences-in-di�erences approach, but without the restrictive assumption that the

treated and the control cases would follow parallel trends over time (Abadie et al. 2010, 494).
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Figure 2.8: Bayesian Structural Time Series Model: São Paulo and Synthetic São Paulo

�e model shows that in 2009 we should have expected São Paulo to have a homicide rate equal

to 32.3 deaths per 100,000, but we observe only 15.2. �us, the actual rate in São Paulo corresponds

to only 47% of the expected counterfactual. �e method also generates an estimate for the probability

of causal e�ect. �e calculations indicate a 96.3% chance of a causal impact in the period. In this

sense, it is unlikely that the results are a statistical �uke.

2.6 Conclusion

As I have hopefully demonstrated, when compared to a synthetic control case, homicide rates were

drastically reduced in São Paulo. Although it is not possible to estimate the treatment e�ect of each
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speci�c policy implemented during the 1990s and 2000s, I suggest that their aggregate impact is

surely not negligible. If the estimation strategy employed in this paper is correct, the state of São

Paulo o�ers an example that it is feasible to �ght crime with targeted policies. �is as an encouraging

result, as it suggests that governments can make progress in reducing crime with the resources they

already have at hand and need not rely exclusively upon structural conditions that are largely beyond

their control, such as unemployment, per capita income and inequality. Robustness tests provide

further evidence for my �ndings.

I also argue in favour of the synthetic control method as a tool to evaluate government policies.

�is approach o�ers an intuitive way to assess causality claims when there is only a single treated

unit and it can be easily applied in a great number of situations. Assuming that there is a reasonable

number of potential cases in the ‘donor pool,’ a synthetic control can be meaningfully compared

to the actual case. In this way, the technique allows the researcher to use the potential outcomes

framework even in unusual conditions.

Future research can extend the present �ndings in a number of ways. First, it would be interesting

to test whether other criminal activities have been a�ected by the state government policies I

mentioned previously. Since property crimes are pervasive in São Paulo, scholars could evaluate

the causal link (or lack thereof) between public policies and the incidence of the� or robberies.

Unfortunately, several states in Brazil do not publish time-series data for property crime, so I could

not use the synthetic control method for that dependent variable. As more data become available, this

will create an interesting opportunity for investigation. Secondly, micro-level studies are needed to

clarify the mechanisms behind São Paulo’s homicide reduction, and isolate direct from indirect e�ects

of each individual policies. Due to the shortage of data on targeted policies, qualitative research may

explain what the motivations, successes and shortcomings of São Paulo’s recent security measures

were. Finally, there are still unresolved questions with regards to the ‘PCC hypothesis’, and this is a
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promising avenue for future academic work. New research could provide insights into how public

policies work and, hopefully, help public authorities to design more e�ective policies against crime.
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2.7 Appendix

2.7.1 �e Synthetic Control Estimator

�is appendix presents a formal presentation of the synthetic control estimator. Let j = 1, . . . , J + 1

be a series of units in periods t = 1, . . . ,T . In our case, the units are the 27 Brazilian federal states and

the time period spans from 1990 to 2009. Assuming that the �rst unit, São Paulo, has been exposed

to the treatment, we have J control units to be included in the case studies donor pool, i.e. the 26

remaining states. We de�ne treatment as the series of post-1999 government anti-crime policies

implemented in the São Paulo.

Let YN
it be the homicide rate that would be observed for unit i , São Paulo, at time t with no

treatment (1990–1998). Conversely, let Y I
it be the observable outcome for unit i at time t had it been

subjected to the treatment in periods T0 + 1 to T (1999–2009). An important assumption is that the

treatment has no e�ect on unit i before the date of intervention, therefore, the values for São Paulo

with and without the policy interventions are the same for the pre-treatment period (1990–1998).

In formal terms, Y I
it = YN

it ∀t < T0. �e observed outcome is de�ned by Y I
it = YN

it + αitDit , where

αit is the e�ect of crime-reducing policies on homicide rates, and Dit is a binary variable that takes

the value of 1 if we refer to post-intervention period (a�er 1999) and 0 otherwise. �e goal of this

paper is to estimate αit , the e�ect of the treatment (homicide reduction policies), for the state of São

Paulo for all t ≥ T0, that is, from 1999 to 2009. However, we cannot observe São Paulo without those

policies, as there is no way for the state to have and not have the intervention at the same time. �is

is what Holland (1986) calls the “fundamental problem of causal inference”: only one of the outcomes

of interest is measurable at any given time.

But although we cannot accurately know how São Paulo would be without the treatment, we

can approximate it by using a weighted average of the remaining Brazilian states such that YN
it =

δt + θtZi + λtµi + ϵit . In this model, δt is an unobserved time-dependent factor common to all cases,
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Zi is a (1 × r ) vector of observed control variables not a�ected by the policy, θt is a (r × 1) vector of

unknown time-speci�c parameters, λt is a (1 × F ) vector of unknown common factors to all states, µi

is a state-speci�c unobservable variable and ϵit represents unobserved transitory shocks with mean 0

for all units (error term). Basically, what SCM tries to do is to match Zi , the control variables, and the

pre-treatment Yit of São Paulo (1990–1998) so that µi is matched as a result.

Synthetic São Paulo is the weighted average of the other 26 Brazilian states. �us, it is a (J × 1)

vector of weightsW = (w2, . . . ,w J+1)
′ with wj ≥ 0 for j = 2, . . . , J + 1 and w2 + · · · +w J+1 = 1. Each

of the elements included in W represents a speci�c weighted average of control states, that is, a

potential synthetic control for São Paulo. �e idea is to select a case that resembles São Paulo as

closely as possible. Let X1 be a (k × 1) vector of pre-1999 predictor variables for São Paulo and let X0

be a (k× J )matrix containing the predictor variables for the potential control states. Let ȲK1
i , . . . , Ȳ

KM
i

be M linear functions of pre-treatment outcomes (M ≥ F ). One can choose w∗ such that:

J+1∑
j=2

w∗j Zj = Z1,

J+1∑
j=2

w∗j Ȳ
K1
j = Ȳ

K1
1 , . . . ,

J+1∑
j=2

w∗j Ȳ
KM
j = ȲKM

1

Consequently, as noted by Abadie and his collaborators (2010), if T0 is su�ciently large when

compared to the scale of ϵit , an approximately unbiased estimator for α1t , the e�ect of public security

policies in São Paulo, can be described by:

α̂1t = Y1t −

J+1∑
j=2

w∗j Yjt

for all t ∈ {T0 + 1, . . . ,T }, that is, a�er the intervention period (1999–2009). In practice,W ∗ is

chosen non-parametrically as to minimise | |X1 − X0W | |, subject to the weight constrains. Consider

| |X1 − X0W | |v =
√
(X1 − X0W )′V (X1 − X0W ), where V is a (k × k) symmetric and semi-de�nite

positive matrix with the relative importance of each assigned homicide rate predictor. From various

possible ways of choosing V , here I follow the recommendation of Abadie and Gardeazabal (2003)
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and choose V ∗ as the value of V that minimises the root mean squared prediction error (RMSPE) for

homicide rates in the entire pre-treatment period (1990-1998).

2.7.2 R Code

�e R code below replicates all statistical analyses and graphs included in this chapter. �e original

data �les as well as the �nal data set are available at h�ps://github.com/danilofreire/homicides-sp-synth.

######################
### Data Wrangling ###
######################

# Please set your working directory to the data/ folder

# Clear the workspace
rm(list = ls())

# Load necessary packages
library(reshape2) # data manipulation

# Dependent variable:
dep <- read.csv("homicide-rates.csv", header = TRUE, skip = 1)

dep.molten <- melt(dep,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(dep.molten) <- c("abbreviation",
"code",
"state",
"year",
"homicide.rates")

dep.molten$year <- as.numeric(substring(dep.molten$year, 2))
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# Independent variables
ind1 <- read.csv("state-gdp-capita.csv", header = TRUE, skip = 1)

ind1.molten <- melt(ind1,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind1.molten) <- c("abbreviation",
"code",
"state",
"year",
"state.gdp.capita")

ind1.molten$year <- as.numeric(substring(ind1.molten$year, 2))

ind2 <- read.csv("state-gdp-growth-percentage.csv", header = TRUE, skip = 1)

ind2.molten <- melt(ind2,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind2.molten) <- c("abbreviation",
"code",
"state",
"year",
"state.gdp.growth.percent")

ind2.molten$year <- as.numeric(substring(ind2.molten$year, 2))

ind3 <- read.csv("gini.csv", header = TRUE, skip = 1)

ind3.molten <- melt(ind3,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind3.molten) <- c("abbreviation",
"code",
"state",
"year",
"gini")

ind3.molten$year <- as.numeric(substring(ind3.molten$year, 2))

ind4 <- read.csv("population-projection.csv",
header = TRUE,
skip = 1)
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ind4.molten <- melt(ind4,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind4.molten) <- c("abbreviation",
"code",
"state",
"year",
"population.projection")

ind4.molten$year <- as.numeric(substring(ind4.molten$year, 2))

ind5 <- read.csv("population-extreme-poverty.csv", header = TRUE, skip = 1)

ind5.molten <- melt(ind5,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind5.molten) <- c("abbreviation",
"code",
"state",
"year",
"population.extreme.poverty")

ind5.molten$year <- as.numeric(substring(ind5.molten$year, 2))

ind6 <- read.csv("years-schooling.csv", header = TRUE, skip = 1)

ind6.molten <- melt(ind6,
id.vars = c("Sigla",

"Código",
"Estado")

)

colnames(ind6.molten) <- c("abbreviation",
"code",
"state",
"year",
"years.schooling")

ind6.molten$year <- as.numeric(substring(ind6.molten$year, 2))

# Merges files
data.list <- list(dep.molten,

ind1.molten,
ind2.molten,
ind3.molten,
ind4.molten,
ind5.molten,
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ind6.molten)

data1 <- Reduce(function(...) merge(..., all = TRUE), data.list)

# Subset and sort
data2 <- subset(data1, year >= 1990 & year <= 2009)
data2 <- data2[order(data2$state), ]
rownames(data2) <- NULL

# Count missing observations, calculate their percentage
round(sapply(data2, function(x) length(which(is.na(x)))), 2)
round(sapply(data2, function(x) length(which(is.na(x)))/length(x)), 2)

# Linear imputation of missing values.
data2$gini.imp <- approxfun(seq_along(data2$gini), data2$gini)(seq_along(data2$gini))

data2$population.extreme.poverty.imp <- approxfun(seq_along(data2$population.extreme.poverty),
data2$population.extreme.poverty)(seq_along(data2$population.extreme.poverty))

data2$years.schooling.imp <- approxfun(seq_along(data2$years.schooling),
data2$years.schooling)(seq_along(data2$years.schooling))

# Create proportion.extreme.poverty
data2$proportion.extreme.poverty <- data2$population.extreme.poverty.imp / data2$population.projection

# Transform variables to improve interpretation
data2$population.projection.ln <- log(data2$population.projection)

# Save data as df.csv
write.table(data2,

"df.csv",
row.names = FALSE,
col.names = TRUE,
sep = ",")

#####################
### Data Analysis ###
#####################

# Load necessary packages
library(dplyr) # data manipulation
library(Synth) # models

# Load data
df <- read.csv("df.csv", header = TRUE)

# Prepare data set
df$state <- as.character(df$state) # required by dataprep()

# Plot: Homicide rates for Sao Paulo and Brazil (average)
df1 <- df %>%

mutate(homicide.sp = ifelse(homicide.rates & state == "São Paulo", homicide.rates, NA)) %>%
select(year, homicide.sp)
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df2 <- df %>%
mutate(homicide.rates1 = ifelse(homicide.rates & state != "São Paulo", homicide.rates, NA)) %>%

group_by(year) %>%
summarise(homicide.br = mean(homicide.rates1, na.rm = TRUE))

setEPS()
postscript(file = "br.eps",

horiz = FALSE,
onefile = FALSE,
width = 7, # 17.8 cm
height = 5.25) # 13.3 cm

plot(x = df1$year,
y = df1$homicide.sp,
type = "l",
ylim = c(0, 60),
xlim = c(1990, 2009),
xlab = "Year",
ylab = "Homicide Rates",
cex = 3,
lwd = 2,
xaxs = "i",
yaxs = "i"

)

lines(df2$year,
df2$homicide.br,
lty = 2,
cex = 3,
lwd = 2)

arrows(1997, 50, 1999, 50,
col = "black",
length = .1)

text(1995, 50,
"Policy Change",
cex = .8)

abline(v = 1999,
lty = 2)

legend(x = "bottomleft",
legend = c("São Paulo",

"Brazil (average)"),
lty = c("solid", "dashed"),
cex = .8,
bg = "white",
lwdc(2, 2)

)

invisible(dev.off())
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# Prepare data for synth
dataprep.out <-

dataprep(df,
predictors = c("state.gdp.capita",

"state.gdp.growth.percent",
"population.projection.ln",
"years.schooling.imp"
),

special.predictors = list(
list("homicide.rates", 1990:1998, "mean"),
list("proportion.extreme.poverty", 1990:1998, "mean"),
list("gini.imp", 1990:1998, "mean")
),

predictors.op = "mean",
dependent = "homicide.rates",
unit.variable = "code",
time.variable = "year",
unit.names.variable = "state",
treatment.identifier = 35,
controls.identifier = c(11:17, 21:27, 31:33, 41:43, 50:53),
time.predictors.prior = c(1990:1998),
time.optimize.ssr = c(1990:1998),
time.plot = c(1990:2009)
)

# Run synth
synth.out <- synth(dataprep.out)

# Get result tables
print(synth.tables <- synth.tab(

dataprep.res = dataprep.out,
synth.res = synth.out)

)

# Plot: Main model
setEPS()
postscript(file = "trends.eps",

horiz = FALSE,
onefile = FALSE,
width = 7, # 17.8 cm
height = 5.25) # 13.3 cm

path.plot(synth.res = synth.out,
dataprep.res = dataprep.out,
Ylab = c("Homicide Rates"),
Xlab = c("Year"),
Legend = c("São Paulo","Synthetic São Paulo"),
Legend.position = c("bottomleft")

)

abline(v = 1999,
lty = 2)

36



arrows(1997, 50, 1999, 50,
col = "black",
length = .1)

text(1995, 50,
"Policy Change",
cex = .8)

invisible(dev.off())

# Main model: gaps plot
setEPS()
postscript(file = "gaps.eps",

horiz = FALSE,
onefile = FALSE,
width = 7,
height = 5.25)

gaps.plot(synth.res = synth.out,
dataprep.res = dataprep.out,
Ylab = c("Gap in Homicide Rates"),
Xlab = c("Year"),
Ylim = c(-30, 30),
Main = ""

)

abline(v = 1999,
lty = 2)

arrows(1997, 20, 1999, 20,
col = "black",
length = .1)

text(1995, 20,
"Policy Change",
cex = .8)

invisible(dev.off())

## Calculating how many lives were saved during the treatment period

# Weights below retrieved form dataprep.out
# State Code State Weight State Name State Abbreviation
# 42 0.274 Santa Catarina SC
# 53 0.210 Distrito Federal DF
# 32 0.209 Espirito Santo ES
# 33 0.169 Rio de Janeiro RJ
# 14 0.137 Roraima RR
# 14 0.001 Pernambuco PB
# 35 treat Sao Paulo SP

# Get years after policy change
df.2 <- df[which(df$year >= 1999),]
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# Calculate total number of deaths in SP
num.deaths.sp <- sum( (df.2$homicide.rates[which(df.2$abbreviation == "SP")])/100000 *

(df.2$population.projection[which(df.2$abbreviation == "SP")]))

# Calculate estimated number of deaths in Synthetic São Paulo
num.deaths.synthetic.sp <- sum( (0.274 * (df.2$homicide.rates[which(df.2$abbreviation == "SC")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

+ (0.210 * (df.2$homicide.rates[which(df.2$abbreviation == "DF")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

+ (0.209 * (df.2$homicide.rates[which(df.2$abbreviation == "ES")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

+ (0.169 * (df.2$homicide.rates[which(df.2$abbreviation == "RJ")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

+ (0.137 * (df.2$homicide.rates[which(df.2$abbreviation == "RR")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

+ (0.001 * (df.2$homicide.rates[which(df.2$abbreviation == "PB")])/100000 *
(df.2$population.projection[which(df.2$abbreviation == "SP")]))

)

lives.saved <- num.deaths.synthetic.sp - num.deaths.sp
lives.saved # Between 1999 and 2009

########################
### Robustness Tests ###
########################

# Prepare data set
df$state <- as.character(df$state) # required by dataprep()

## Placebo Test -- Control ends in 1994
dataprep.out1 <-

dataprep(df,
predictors = c("state.gdp.capita",

"state.gdp.growth.percent",
"population.projection.ln",
"years.schooling.imp"

),
special.predictors = list(

list("homicide.rates", 1990:1994, "mean"),
list("proportion.extreme.poverty", 1990:1994, "mean"),
list("gini.imp", 1990:1994, "mean")

),
predictors.op = "mean",
dependent = "homicide.rates",
unit.variable = "code",
time.variable = "year",
unit.names.variable = "state",
treatment.identifier = 35,
controls.identifier = c(11:17, 21:27, 31:33, 41:43, 50:53),
time.predictors.prior = c(1990:1994),
time.optimize.ssr = c(1990:1994),
time.plot = c(1990:1998))
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# Run synth
synth.out1 <- synth(dataprep.out1)

# Get result tables
print(synth.tables <- synth.tab(

dataprep.res = dataprep.out1,
synth.res = synth.out1)

)

# Placebo test: graph
setEPS()
postscript(file = "placebo.eps",

horiz = FALSE,
onefile = FALSE,
width = 7,
height = 5.25)

path.plot(synth.res = synth.out1,
dataprep.res = dataprep.out1,
Ylab = c("Homicide Rates"),
Xlab = c("Year"),
Legend = c("São Paulo","Synthetic São Paulo"),
Legend.position = c("bottomleft"),
Ylim = c(0, 50)

)

abline(v = 1995,
lty = 2)

arrows(1994, 40, 1995, 40,
col = "black",
length = .1)

text(1993, 40,
"Placebo \nPolicy Change",
cex = .8)

invisible(dev.off())

## Leave-one-out

# Loop over leave one outs
storegaps <- matrix(NA, length(1990:2009), 4)

colnames(storegaps) <- c(14, 33, 42, 53) # RR, RJ, SC, DF
co <- unique(df$code)
co <- co[-25]

for(k in 1:4){

# Data prep for training model
omit <- c(14, 33, 42, 53)[k]

39



# Prepare data for synth
dataprep.out2 <-

dataprep(df,
predictors = c("state.gdp.capita",

"state.gdp.growth.percent",
"population.projection.ln",
"years.schooling.imp"

),
special.predictors = list(

list("homicide.rates", 1990:1998, "mean"),
list("proportion.extreme.poverty", 1990:1998, "mean"),
list("gini.imp", 1990:1998, "mean")

),
predictors.op = "mean",
dependent = "homicide.rates",
unit.variable = "code",
time.variable = "year",
unit.names.variable = "state",
treatment.identifier = 35,
controls.identifier = co[-which(co==omit)],
time.predictors.prior = c(1990:1998),
time.optimize.ssr = c(1990:1998),
time.plot = c(1990:2009)

)

# Run synth
synth.out2 <- synth(dataprep.out2)

storegaps[,k] <- (dataprep.out2$Y0%*%synth.out2$solution.w)
} # Close loop over leave one outs

# Leave-one-out: graph
setEPS()
postscript(file = "leave-one-out.eps",

horiz = FALSE,
onefile = FALSE,
width = 7,
height = 5.25)

path.plot(synth.res = synth.out,
dataprep.res = dataprep.out,
Ylab = c("Homicide Rates"),
Xlab = c("Year"),
Legend = c("São Paulo","Synthetic São Paulo"),
Legend.position = c("bottomleft"))

abline(v = 1999,
lty = 2)

arrows(1997, 50, 1999, 50,
col = "black",
length = .1)
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text(1995, 50,
"Policy Change",
cex = .8)

for(i in 1:4){
lines(1990:2009,

storegaps[,i],
col = "darkgrey",
lty = "solid")

}

lines(1990:2009,
dataprep.out$Y0plot %*% synth.out$solution.w,
col = "black",
lty = "dashed",
lwd = 2)

legend(x = "bottomleft",
legend = c("São Paulo",

"Synthetic São Paulo",
"Synthetic São Paulo (leave-one-out)"

),
lty = c("solid", "dashed", "solid"),
col = c("black", "black", "darkgrey"),
cex = .8,
bg = "white",
lwdc(2, 2, 1)

)

invisible(dev.off())

## Permutation test
states <- c(11:17, 21:27, 31:33, 35, 41:43, 50:53)

# Prepare data for synth
results <- list()
results_synth <- list()
gaps <- list()

for (i in states) {
dataprep.out <-

dataprep(df,
predictors = c("state.gdp.capita",

"state.gdp.growth.percent",
"population.projection.ln",
"years.schooling.imp"
),

special.predictors = list(
list("homicide.rates", 1990:1998, "mean"),
list("proportion.extreme.poverty", 1990:1998, "mean"),
list("gini.imp", 1990:1998, "mean")
),
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predictors.op = "mean",
dependent = "homicide.rates",
unit.variable = "code",
time.variable = "year",
unit.names.variable = "state",
treatment.identifier = i,
controls.identifier = states[which(states!=i)],
time.predictors.prior = c(1990:1998),
time.optimize.ssr = c(1990:1998),
time.plot = c(1990:2009)
)

results[[as.character(i)]] <- dataprep.out
results_synth[[as.character(i)]] <- synth(results[[as.character(i)]])

gaps[[as.character(i)]] <- results[[as.character(i)]]$Y1plot - (results[[as.character(i)]]$Y0plot %*%
results_synth[[as.character(i)]]$solution.w)

}

## Permutation test
setEPS()
postscript(file = "permutation-gaps2.eps",

horiz = FALSE,
onefile = FALSE,
width = 7,
height = 5.25)

plot(1990:2009,
ylim = c(-30, 30),
xlim = c(1990,2009),
ylab = "Gap in Homicide Rates",
xlab = "Year"

)

for (i in states) {
lines(1990:2009,

gaps[[as.character(i)]],
col = "lightgrey",
lty = "solid",
lwd = 2

)
}

lines(1990:2009,
gaps[["35"]], # São Paulo
col = "black",
lty = "solid",
lwd = 2

)

abline(v = 1999,
lty = 2)
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abline(h = 0,
lty = 1,
lwd = 1)

arrows(1997, 25, 1999, 25,
col = "black",
length = .1)

text(1995, 25,
"Policy Change",
cex = .8)

legend(x = "bottomleft",
legend = c("São Paulo",

"Control States"),
lty = c("solid", "solid"),
col = c("black", "darkgrey"),
cex = .8,
bg = "white",
lwdc(2, 2, 1)

)

invisible(dev.off())

# Permutation graph: states with MSPE no higher than 2x São Paulo's
low.mspe <- c(13, 15, 17, 21, 23, 24, 25, 31, 41:43, 53)

setEPS()
postscript(file = "low-mspe.eps",

horiz = FALSE,
onefile = FALSE,
width = 7,
height = 5.25)

plot(1990:2009,
ylim = c(-30, 30),
xlim = c(1990,2009),
ylab = "Gap in Homicide Rates",
xlab = "Year"

)

for (i in low.mspe) {
lines(1990:2009,

gaps[[as.character(i)]],
col = "lightgrey",
lty = "solid",
lwd = 2
)

}

lines(1990:2009,
gaps[["35"]], # São Paulo
col = "black",
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lty = "solid",
lwd = 2
)

abline(v = 1999,
lty = 2)

abline(h = 0,
lty = 1,
lwd = 1)

arrows(1997, 25, 1999, 25,
col = "black",
length = .1)

text(1995, 25,
"Policy Change",
cex = .8)

legend(x = "bottomleft",
legend = c("São Paulo",

"Control States (MSPE Less Than Two Times That of São Paulo)"),
lty = c("solid", "solid"),
col = c("black", "darkgrey"),
cex = .8,
bg = "white",
lwdc(2, 2, 1)

)

invisible(dev.off())

## CausalImpact
# Uncomment the lines below to install necessary packages
# install.packages(c("devtools", "dtw"))
# library(devtools)
# install_github("google/CausalImpact")
# install_github("klarsen1/MarketMatching", build_vignettes=TRUE)

# Load packages
library(CausalImpact)
library(MarketMatching)

# Prepare data
df$year2 <- as.Date(paste(df$year, sep = "", "-01-01"))

# Estimate model
mm <- best_matches(data=df,

id_variable="code",
date_variable="year2",
matching_variable="homicide.rates",
parallel=TRUE,
warping_limit=1, # warping limit=1
dtw_emphasis=1, # rely only on dtw for pre-screening
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matches=5, # request 5 matches
start_match_period="1990-01-01",
end_match_period="1998-01-01")

# View best matches
subset(mm$BestMatches, code == 35) # SP

# Results
results <- MarketMatching::inference(matched_markets = mm,

test_market = "35",
end_post_period = "2009-01-01")

# Predictions
results$Predictions

# Plot results
results$PlotActualVersusExpected +

ggtitle("São Paulo versus Synthetic São Paulo") + theme_bw() +
geom_line(aes(results$PlotActualVersusExpected$data$test_market),colour="#000099")

results$PlotCumulativeEffect

# Graph
setEPS()
postscript(file = "causal-impact.eps",

horiz = FALSE,
onefile = FALSE,
width = 7, # 17.8 cm
height = 5.25) # 13.3 cm

plot(x = (1990:2009),
y = as.numeric(results$Predictions$Response),
type = "l",
ylim = c(0, 60),
xlim = c(1990, 2009),
xlab = "Year",
ylab = "Homicide Rates",
cex = 3,
lwd = 2)

lines(x = (1990:2009),
y = as.numeric(results$Predictions$Predicted),
type = "l",
lty = 2,
cex = 3,
lwd = 2)

arrows(1997, 50, 1999, 50,
col = "black",
length = .1)

text(1995, 50,
"Policy Change",
cex = .8)
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abline(v = 1999,
lty = 2)

legend(x = "bottomleft",
legend = c("São Paulo",

"Brazil (average)"),
lty = c("solid", "dashed"),
cex = .8,
bg = "white",
lwdc(2, 2)

)

invisible(dev.off())
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Chapter 3

Beasts of Prey or Rational Animals?

Private Governance in Brazil’s Jogo do

Bicho

3.1 Introduction

In 1892, Baron João Batista de Viana Drummond came up with a new idea to fund his cash-strapped

zoo. Situated in a quiet neighbourhood in the north of Rio de Janeiro, the Jardim Zoológico, or

Zoological Garden, hosted a variety of exotic species and o�ered breath-taking views of the city, but

it lacked visitors. An experienced businessman, Drummond realised the zoo would have to provide

other kinds of entertainment to keep itself a�oat. One of his plans seemed particularly promising: a

lo�ery ra�e.

�e rules were straightforward. In the morning, the baron would choose one animal from a list of

25 beasts and put its picture inside a wooden box at the zoo’s entrance. Visitors who wanted to join

the ra�e received a ticket bearing the stamp of one of those 25 animals.1 �e lucky winner would

take home a prize worth 20 times the ticket price, an amount higher than a carpenter’s monthly

wage (Chazkel 2007, 542). �e baron called the lo�ery the jogo do bicho, or the animal game, and it

was well-received by the public. Eager to capitalise on that initial success, Drummond stated that
1At �rst, the zoo sta� distributed the tickets at random, so the game consisted in a simple ra�e. However, the zoo

soon allowed participants to choose the animals they preferred. �is small change made the game considerably more
appealing as it introduced an element of divination to the jogo (DaMa�a and Soárez 1999, 71–74).
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visitors could buy tickets not only at the zoo, but also in many stores across Rio de Janeiro. What

was once a small ra�e soon became a large gambling market of its own.

A jogo do bicho craze swept the whole city a�er independent sellers entered the marketplace.

A network of street bookmakers, called bicheiros, made the lo�ery available in every part of Rio

by scalping tickets or promoting their own versions of the numbers game (Chazkel 2011, 37). �e

lo�ery became so widespread that Olavo Bilac, a major literary �gure in nineteenth-century Brazil,

summarised the situation as follows: “Today [1985] in Rio de Janeiro, the game is everything. [. . . ]

Nobody works! Everybody plays” (Pacheco 1957, 43).2

But this tolerant state of a�airs did not last. Civil servants and police o�cers criminalised the

jogo do bicho on the grounds of public safety, and in the late 1890s they launched a country-wide

campaign against the lo�ery (Bena�e 2002). �e campaign extended for several decades and received

considerable support from the Companhia das Loterias Nacionaes do Brazil, the National Lo�ery

Company, a public-private partnership founded four years a�er, and perhaps motivated by, the

creation of the animal game (DaMa�a and Soárez 1999, 82). �e Brazilian government o�cially

banned the jogo do bicho in 1941 and the lo�ery remains illegal to this day.

Yet the game has survived. �e jogo do bicho has outlasted more than 30 Brazilian presidents

and thrived under both military regimes and democratic governments (Jupiara and Otavio 2015).

But more than an act of civil disobedience, the jogo do bicho is a very successful capitalist enterprise

(Labronici 2014; Magalhães 2005). A recent study by Fundação Getúlio Vargas, a Brazilian think

tank, a�rmed that the jogo do bicho earns from BRL 1.3 to BRL 2.8 billion per year (USD 400 to USD

850 million), making it the largest clandestine gambling game in the world (Hu�Post Brasil 2015).

Schneider (1996, 171) estimated that in the 1990s, the game furnished about 50,000 jobs in Rio de

Janeiro, almost as many as the oil giant Petrobras in 2011 (Exame 2016).3

In this article I o�er a rational choice interpretation of the jogo do bicho.4 More speci�cally, I use

an array of bibliographical sources to show how the game operators, commonly called bicheiros,5

2Unless otherwise noted, all translations from the Portuguese are my own.
3In 1966, Time Magazine wrote that the jogo do bicho was “the largest single industry in Latin America” and employed

about 1% of the total Brazilian workforce (Time Magazine 1966).
4I adopt a very broad de�nition of rationality in this paper. In contrast with stricter versions of rational choice theory,

I assume here that individuals are not only constrained by formal and informal institutions, but they also have access
only to imperfect information at the moment of their choices. �us, my analysis employs a “thin” notion of rationality
and a ‘thick’ description of social institutions, where individual action can only be understood with reference to the
social environment (Boe�ke 2001, 253).

5As I describe in the next section, the jogo do bicho structure can be broadly divided into three occupations: the rich
game �nanciers (banqueiros), mid-level managers (gerentes), and street bookmakers (bicheiros). While there are important
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have developed unique strategies to solve collective action problems and to maximise their political

strategies. �is does not mean their tactics are morally defensible; bicheiros regularly employ

intimidation and corruption to achieve their goals. Nevertheless, I argue here that such strategies are

e�ective, and while they seem counter-intuitive, they do address the long-term needs of the jogo do

bicho �nanciers.

Like any business manager, bicheiros have to run their �rm with low costs to increase pro�ts.

However, the fact that the jogo do bicho is clandestine imposes additional di�culties to its managers.

In particular, bicheiros face two main challenges to keep the lo�ery running. First, they need to

gather public support so gamblers are not discouraged to engage in the lo�ery despite it being

illegal. Second, bicheiros also have to ensure the state repression is not prohibitively costly to their

business; otherwise they would be be�er o� shu�ing it down. I argue below that the bicheiros have

succeeded in both by using carefully-designed reputation strategies and employing costly signals to

the communities they serve.

I use the case of Rio de Janeiro to illustrate how the jogo do bicho has overcome the obstacles to

its expansion. Rio is a particularly interesting case because in no other part of Brazil is the game

the �nanciers established such an e�ective patronage network. Bicheiros have sponsored political

campaigns, �nanced cultural activities and football teams, and sometimes even run in local elections

themselves. I discuss the ways by which the bicheiros have exploited fragilities of the Brazilian

political system to their advantage and how those practices have weakened Brazilian democracy.

My analysis discusses three strands of academic literature. First, this work contributes to the

scholarship on extra-legal institutions, mainly to the literature on collective action within criminal

organisations. For instance, Gambe�a (1996) examines the strategies used by the Sicilian Ma�a to

se�le disputes among their members and enforce rules in the areas they exercise control. Leeson

(2009, 2010) a�rms that pirate groups employed hard-to-fake signals to increase the pro�tability

of their operations. Skarbek (2011a, 2012, 2014), in turn, highlights the role of wri�en and implicit

norms in mitigating rent-seeking behaviour and in coordinating productive activities in California

prison gangs. I argue that bicheiros have employed reputation strategies and provided club goods to

enforce private contracts and to foster trust in the community.

hierarchical di�erences among these groups, all members of the jogo are collectively called bicheiros in Brazil. I follow the
same practice here, and only refer to their speci�c role within the animal game structure when necessary for clari�cation.
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Second, this work relates to the literature on signalling theory and asymmetric information

(e.g., Akerlof 1970; Spence 1973). I provide evidence that bicheiros were aware of their social stigma,

and as a response they devised signalling strategies to convey reliable information and to reduce

the uncertainty associated with clandestine markets. �eir main tool to increase credibility was

costly signalling (Gambe�a 2009; Kimbrough et al. 2015; Schelling 1960). Bicheiros believed that by

sacri�cing their immediate interests they could gain a reputation of honesty that would bene�t them

in the long run.

Lastly, this work connects to the literature on state capture, which is one of the most important

topics in public choice theory (Rose-Ackerman 1978; Shleifer and Vishny 2002; Tollison 1982). More

speci�cally, I use the Brazilian case to illustrate how politicians and civil servants are co-opted by

criminal groups, and how this collusion distorts the electoral process and bene�ts wealthy members

of the jogo do bicho network. �eiroz (1992) explored why bicheiros turned into patrons of the

Carnival’s samba schools and a�rmed this in�uence gave them leverage over political authorities.

Misse (2007) investigated the links between bicheiros and police o�cers, and suggested the illegal

lo�ery had been the main cause of police corruption in Rio de Janeiro until the 1970s. In a similar vein,

Jupiara and Otavio (2015) analyse the relationship between the jogo do bicho and the military regime

in Brazil (1964–1985). I supplement this literature by highlighting how asymmetrical information and

rent-seeking behaviour o�er convincing explanations to the issues presented above. Although those

concepts have a long tradition in public choice, scholars have not applied those ideas to understand

the dynamics of the jogo do bicho. By doing so, I integrate seemingly contradictory historical facts

into a single narrative that connects micro-level decisions to macro-level outcomes.

3.2 An Overview of the Jogo do Bicho

3.2.1 Historical Background: How the Bicheiros Avoided Extinction

�e late nineteenth-century Brazil had four characteristics that explain the emergence of the jogo

do bicho: 1) a growing urban population excluded from the formal labour market; 2) an in�ow of

immigrants whose extended family networks helped them engage in trade; 3) an expansion of the

monetary supply in the �rst years of the republic (1880s–1890s); and 4) a judicial system that, albeit

repressive, had only imperfect law enforcement. I discuss each of these elements below.
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I start with the impact of urban poverty on the animal game. Brazil abolished slavery in the late

1880s, a period in which the country was rapidly urbanising. Cities like São Paulo and Rio de Janeiro

o�ered a number of occupations for former slaves who wanted to move away from their former rural

masters (Andrews 1991; Skidmore 1993). Increasing numbers of Asian and European immigrants also

moved to large cities a�er arriving in Brazil, as urban areas usually provided be�er standards of living

than the countryside (Hall 1969; Lesser 2013). However, the hopes of the African-Brazilians and the

new foreign se�lers would be frustrated by a series of downturns in the Brazilian economy. Brazil’s

labour markets su�ered a severe contraction in the wake of the Encilhamento �nancial crisis of 1891,

and the economic instability aggravated the already di�cult conditions of the working classes (Topik

2014; Triner and Wandschneider 2005).

As a result, large swathes of the urban population turned to the informal economy. As Chazkel

(2011, 115) observes, there were few occupations available to lower-class women and foreigners in

the 1890s, and a large number of poor workers became street vendors. �e profession requires li�le

technical skills and has low barriers of entry, but it can be pro�table if vendors are able to quickly

identify a growing demand for a particular product. �e jogo do bicho was one such case; the game

had a surge in popularity in the 1890s, and it also o�ered a high rate of return. As the demand for

lo�ery tickets grew, the jogo comprised an important share of the Brazilian extra-legal economy.

Immigration also in�uenced the jogo do bicho via social ties. Most foreigners who moved to

Brazil came from countries such as Portugal, Spain or Italy, where extended families were the basic

form of social organisation (Lobo 2001; Trento 1989). Family and neighbourhood networks created

incentives for immigrants to establish trade relations and to enforce cooperation through community

responsibility systems (Roth and Skarbek 2014). Because of these particular social characteristics, in

the 1890s foreigners were over-represented in the Brazilian trade in general (Ma�os 1991; Oliveira

2001) and in the jogo do bicho in particular (Magalhães 2005; Villar 2008). Although kinship bonds

became less relevant over time, these links o�ered an important element of social cohesion in the

jogo do bicho’s formative years.

Next is the impact of expanded monetary supply. �e abolition of slavery and the growing

industrialisation of Brazil increased the amount of capital available in the country (Franco 1987;

Schulz 2008). Moreover, the 1888 Banking Act gave extra liquidity to local �nancial markets, which

made credit more widely available in cities like São Paulo and Rio de Janeiro. Individuals received a
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temporary boost in personal income, a part of which they spent on leisure activities such as the jogo

do bicho. Moreover, the lo�ery a�racted new entrants as it became more pro�table, and in only a few

years similar versions of the animal game were available throughout Brazil (DaMa�a and Soárez

1999, 79).

�e last necessary condition for the emergence of the jogo do bicho is weak law enforcement.

Chazkel (2011, 69–100) notes that until the 1940s, police district chiefs operated within a large margin

of discretion, so o�cial repression against bookmakers was notably inconsistent. In the early years of

jogo do bicho, lo�ery “bankers” were allowed to operate virtually free from police interference, which

surely collaborated to the game’s rapid initial expansion (Chazkel 2007, 544). Prosecution against the

bicheiros hardened in 1917 a�er the promulgation of the Civil Code, and in 1941 the animal game

was banned. Five years later, the federal government declared that all games of chance were illegal

in Brazil.6 Recent estimations show that the prohibition of the jogo do bicho prevented the state from

earning up to BRL 20 billion (USD 6 billion) per year in expected taxation revenues, aside from the

subjective utility losses for players (Folha de São Paulo 2016).

Since the mid-twentieth century, the jogo do bicho has been outlawed but it continues to be

ubiquitous in Brazil. �ere is virtually no Brazilian city that does not have its local group of bicheiros.

Cross and Peña (2006) suggest a distinction between informal and illegal markets that is useful to

understand the current “semi-legal” status of the jogo. �e animal game started as an informal activity,

in which the Baron of Drummond and his associates sold lo�ery tickets to the public. Although the

state did not regulate the lo�ery market, the product itself was not illegal or allegedly immoral. In

fact, many organisations, including the Catholic Church, sold ra�es and lo�ery tickets to sponsor

their activities (Torcato 2011, 49). Moreover, the state initially found no contradiction between the

animal game and its own lo�ery, and both coexisted for about 15 years (Chazkel 2007, 559). A�er

1941, however, selling jogo do bicho tickets became a legal o�ence a�er a long campaign asking

for its criminalisation. Since then, the jogo has moved underground and consciously evaded state

regulations. �is shi� from informal to illegal has brought important changes to the whole dynamics

of the jogo. As an example, wealthy animal game bosses have colluded with shady sectors of the

armed forces for protection, and this violence has also been used against potential competitors.

Moreover, this move to illegality enabled the game to exploit and subsidise large sectors of Brazil’s
6�e 1946 decree stated that gambling was ‘harmful to morality and the good customs’, hence ‘[. . . ] the repression

against games of chance [was] an imperative of the universal consciousness’.
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formal economy, mainly in poor urban areas. I describe the animal game organisation structure and

its impact in the Brazilian economic activity in further detail below.

3.2.2 A Hierarchical Organisational Structure

�e animal game operates with three levels of hierarchy. At the bo�om level are the bicheiros, those

in charge of selling jogo do bicho tickets (Chazkel 2007; DaMa�a and Soárez 1999). Bicheiros are

the most visible part of the jogo do bicho. �e name loosely describes all those involved in the

lo�ery organisation, yet their meaning in the jogo do bicho structure is more particular and refers

to street-level ticker sellers. �e bicheiros usually build their vending stands inside the premises of

a local shop, such as a small grocery store, and are recognisable by their chairs facing the street,

stamps and blocks of paper (Chazkel 2011, 259). �e street bookmakers usually work alone but may

employ up to 10 people depending on how busy their be�ing site is (Labronici 2014, 69).

�e gerentes (managers) oversee all jogo do bicho stands in a given area. �eir task is akin to

that of a �rm accountant. Gerentes control the cash �ow between the bicheiros and the bankers,

manage the payroll of the employees, and provide �nancial information to the top members of the

organisation. �ey also supervise individuals who carry menial tasks in the business, transfer money

to other gambling branches and double-check the balance sheets of the be�ing sites (Labronici 2012,

71; Misse 2007, 142).

�e banqueiros (Portuguese for bankers) occupy the top position in the jogo do bicho hierarchy.

�ey comprise the small �nancial elite of the game. A 2012 report by the Brazilian Federal Police

a�rmed that 10 banqueiros controlled the market throughout the country, and �ve of them were

based in the state of Rio de Janeiro (O Globo 2012b). Apart from funding the game, the bankers

provide support for the employees to undertake their activities. �e banqueiros’ a�ributions include

paying bribes to police personnel, bailing out sellers arrested by security forces, and o�ering judicial

assistance to employees in case of legal persecution (Labronici 2012, 75).

�e lo�ery bosses run their businesses from forti�ed houses in unknown locations called fortalezas

(“forts”). �e �rst fortalezas likely appeared in the 1950s, when the animal game was already

well-established across the Brazilian territory. �e period coincides with a time when the jogo do

bicho �nances had become increasingly concentrated in fewer hands (Chazkel 2011, 259). Due to the
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growing scope of the jogo do bicho economy, banqueiros decided to move their operations away from

the public to avoid police persecution and to make coordination easier.

Banqueiros solve problems of internal cooperation by providing club goods (Buchanan 1965) while

simultaneously shunning cheaters through selective punishments (Dal Bó 2005; Roth and Murnighan

1978). �e �rst club good o�ered to bicheiros by their bosses is private security. As the game is illegal,

street sellers cannot rely on o�cial institutions to protect themselves. �us, the game bankers have

built an extensive network of gunmen and bribed police o�cers to protect their employees from other

criminals (Chinelli and Machado 1993, 48; Labronici 2012, 51). “Zé” (Joe), a bicheiro interviewed by

Labronici (2012, 52), described eloquently the deterring e�ect of the jogo do bicho informal security

personnel:

Bums are scared and they don’t mess around with us; they think there’s an o�cer nearby

or something like that. Look at all this money here! [Shows the interviewer a handful

of cash.] It’s not ours [referring to street-corner bookmakers]. And if it’s not ours, it’s

someone else’s. When I worked in Penha7, the owner of a pub close by always asked me

to stay at the front door of his pub. People know that bums are afraid of bicheiros.

�e banqueiros do not use violence only against other criminals. �ey o�en employ violent

methods against competitors and their own sta�, too. Jupiara and Otavio (2015) argue that Ailton

Guimarães Jorge, a former Army o�cer, tortured and murdered rival lo�ery bosses in the late 1970s.

One of his former allies, Army Colonel Paulo Malhães, told the Rio de Janeiro State Truth Commission

that Guimarães “went on a rampage” to consolidate his power (Belém 2015). Castor de Andrade, Rio’s

most in�uential animal game banker, also employed similar methods to run his business. Andrade

kept an armed bodyguard of 23 men and allegedly murdered a number of competitors. In a famous

case, Andrade shot Euclides Ponar, an old jogo do bicho boss known as the “Grey-Headed Chinese”

(China Cabeça Branca) a�er Ponar denounced a fraud in lo�ery draws in 1976. Andrade was likely

involved in other assassination plots in the 1990s (O Globo 2017).

Despite these serious events, killings are rare in the animal game. Since the lo�ery bosses can

credibly indicate that violence is a low-cost option for them, the mere threat of punishment is enough

to discourage defectors. �is is a good strategy for the banqueiros. �e fact that they had commi�ed

violent crimes in the past reduces the need to commit them in the present, and as a result the bosses
7Penha is a low middle-class neighbourhood in the city of Rio de Janeiro.
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can spend less money on security and increase pro�ts. As it happens in many traditional markets, if a

group is able to form a cartel, they can increase the price of their services without fearing immediate

competition. �e same logic is valid for the jogo do bicho, although through unconventional means.

�e threat of violence is not the only tool the bicheiros have at their disposal. �ey balance

the use of violence with �nancial bene�ts to low-rank members of the organisation. For instance,

street bicheiros keep all tips they receive from players, o�en have small expenses covered by their

bosses, and may request interest-free loans to pay for healthcare treatment or other unexpected bills

(Labronici 2012).

�e most important �nancial mechanism implemented by bankers to help bicheiros is the descarga,

loosely translated as “the unloading”. �e descarga is the jogo do bicho’s main hedging technique and

its purpose is to insure small bookmakers against credit risk (Labronici 2012, 59; Magalhães 2005,

178). Booking agents are sometimes unable to honour expensive bets. �e top prize in the animal

game pays up to 4,000 times the amount invested; thus, bicheiros may have to raise thousands of

Brazilian Reals in a single day to pay the lucky winners. To prevent the quebra da banca (“bust of

the bank”), bicheiros and small bankers buy an insurance from wealthier �nanciers, who o�er this

service for a fee that ranges from 20% to 25% of the total selling amount (Folha de São Paulo 2006).

�e descarga guarantees that small bookmakers will not have liquidity problems, thus permi�ing

bookmakers to continue investing in the jogo do bicho.

�e descarga has signi�cantly changed the distribution of resources in the jogo do bicho, and the

richest bankers bene�ted the most from it. Simple probability dictates that a booking agent rarely

pays the highest lo�ery prize, and yet the bankers receive a commission for every game they hedge.

Over time, there is a transfer of income from the bo�om to the top of the animal game structure due

to the fees. �is accumulation of capital is one of the reasons in the 1990s bankers started o�ering

other types of entertainment such as slot machines and sports lo�eries (Estado de São Paulo 2006;

O Globo 2015; Terra 2011). �ey simply had more capital to invest, and this eventually helped to

compensate the downturn in the jogo do bicho markets in the last years (O Globo 2017). In sum, while

the descarga has made the game more resilient at the aggregated level, it increased pro�ts for the

richest �nanciers at the expense of small bookmakers.

�is has brought broad consequences to the Brazilian illegal economy. As the number of slot

machines increased in Brazil, the opportunity for criminals to use them for money laundering
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increased as well. �e scheme is easy to carry out. �e owner of a slot machine issues a ticket with

a winning prize, and the criminal declares the prize as his legitimate wealth. �en he can legally

use that money for any purpose without raising suspicion from the authorities. �e practice have

become more widespread in the last decades, and in 2009 a Federal Police task force arrested about

a dozen jogo do bicho bosses involved in the so-called “slot machine ma�a”. Relatives of Castor de

Andrade were also involved in the scheme (Estado de São Paulo 2011). In 2012, President Dilma

Rousse� sanctioned a law that considered slot machines and the jogo do bicho as money laundering

crimes (Agência Brasil 2012).

Money from the jogo also has other e�ects on the economy. Some of these e�ects are indirect.

For instance, the jogo do bicho gives a boost to the Brazilian economy by providing jobs for unskilled

workers who cannot easily join the labour market. By doing so, the jogo prevents some of the poorest

members of the Brazilian society from demanding more inclusive government policies, although they

are the ones who would bene�t the most from public assistance. Because of the income generated by

the jogo do bicho, poor workers are able to consume without resorting to government assistance, so

state o�cials can spend a larger amount of public funds on other, probably wealthier, sectors of the

population.

Another indirect economic e�ect of the jogo is the rise in inequality. While formal workers can –

at least in theory – demand higher compensations during a market upswing, the same is not true for

the animal game employees. �e threat of violence reduces the space for collective bargaining with

the lo�ery bosses, and higher pro�ts at the top of the jogo do bicho structure do not trickle down

to those at the bo�om. �is is one of the reasons why the game bankers turned the game into an

oligopoly: the use of violence guarantees new entrants will not be allowed to join the market and

pro�ts will be concentrated in the hands of very few individuals.

�e jogo do bicho’s market formation closely resembles what Fligstein (1996) calls “markets as

politics”, in which �rms create institutions to restrain the competition and organise the labour force.

At the formation of the lo�ery market, competition is �erce and participants are akin to social

movements. �ey are constantly trying to convince others of the viability of their ideas. When

markets stabilise, however, incumbents collude to impose their conditions of control to other players

and to workers. In the case of the jogo, this implies in a mix of �nancial incentives and violence

threats carried by corrupt state agents or private bodyguards.
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A more di�cult question is how the bankers elicit cooperation from external members, such as

gamblers, community leaders, or public o�cers. It is puzzling because bicheiros do not use violence

to induce individuals to play the lo�ery, nor have they ever clashed with the Brazilian government.

Precisely because violence could shun pro�ts, bicheiros devised other mechanisms to create a friendly

environment for the illegal lo�ery. I investigate two of them: costly signalling and reputation

building.

3.3 Winning Hearts, Minds, and Pockets: Illegal Market Dy-

namics

Evolutionary game theory (Axelrod 1984; Axelrod and Keohane 1985; Smith 1982) and empirical

case studies (Isaac et al. 1984; Ostrom 1990) have both demonstrated that long-term cooperation is

possible even in di�cult situations. �e main requirement for sustained cooperation is that players

believe future pay-o�s will be higher than present ones. If that condition is true, fear of retaliation

will induce individuals not to cheat.

In theory, the same should also apply to illegal organisations. Yet in practice we see that criminal

groups are generally short-term oriented, that is, they tend to discount the future more heavily than

most people. �is makes cooperative behaviour among criminal rather uncommon, and there is

substantial evidence suggesting illegal groups face serious collective action problems (e.g., Gambe�a

2009; Leeson 2010; Skarbek 2011a, 2012; Varese 2001).

�e jogo do bicho is an exception to this rule. �e game has been running for more than a century

without considerable interruption, a�esting to the fact that bicheiros have managed to solve collective

action issues in one way or another. Importantly, the jogo involves moderately low levels of violence –

at least when compared to other illegal activities such as drug tra�cking. Moreover, Brazilians widely

consider the jogo do bicho an honest lo�ery, and reports of cheating are surprisingly uncommon. �e

popular mo�o associated with the game testi�es in its favour: “Vale o escrito; ganhou, leva”, or “What

is wri�en is what counts; if you win it, you take it” (Magalhães 2005). Here I analyse two means

by which the bicheiros elicit voluntary cooperation from gamblers and members of the community:

costly signalling and reputation strategies.

57



Signalling theory predicts that when someone cannot easily observe a characteristic she is

interested in, she searches for signals that credibly conveys pieces of that required information. In

the case of an illegal lo�ery, the main signal a gambler is looking for is honesty, that is, that she will

receive her prize if she buys the winning ticket.

Legal lo�eries employ many techniques to show this is the case. For instance, the Brazilian o�cial

lo�ery, run by the federal government, are regularly audited by the Controladoria Geral da União

(Comptroller General of Brazil), the Tribunal de Contas da União (General Accounting O�ce), and by

Ernst & Young. �e balls are measured and weighted every three months by the National Institute of

Metrology, �ality and Technology (Inmetro), the Brazilian equivalent of United Kingdom’s National

Physical Laboratory or the American National Standards Institute (UOL 2016).

A clandestine lo�ery, in contrast, cannot provide the same signals. �us, the game providers

need to assure gamblers that their business is honest although it is illegal. Bicheiros addressed this

issue using a traditional commercial practice: they invested on their reputations.

�e jogo do bicho entrepreneurs have made considerable e�orts to present themselves as honest

brokers. �e �rst trust-enhancing mechanism they have employed to foster external cooperation

was the use of a �xed-multiplier formula for pay-outs. It works as follows. If a player wins the lowest

prize of the animal game, he or she receives 18 times his/her investment regardless of the size of the

bet. Bigger prizes naturally o�er higher returns; a lucky winner of the top prize wins up to 4,000

times the value of his/her bet (Labronici 2012, 89; Magalhães 2005, 20).

�is stands in sharp contrast to the common practice of sharing a prize among winners. Lo�ery

pay-outs demand high levels of interpersonal trust: players rely on unveri�able information about

the total funds collected by the lo�ery, and they can never be sure whether the payments are evenly

distributed. �e �xed-multiplier formula alleviates such problems of adverse selection (Akerlof 1970;

Cohen and Siegelman 2010; Levin 2001). As players and vendors know the prize value beforehand,

the method provides consumers with complete information about their individual prizes while also

binding the bicheiros to a contract that can be easily enforced. �is technique o�ers buyers a simple

yet e�ective screening strategy that induces bicheiros to provide honest information about the game

(Spence 1973; Stiglitz and Weiss 1981).

Bicheiros have addressed information asymmetries in another ways. Since the 1950s, when the jogo

do bicho bankers had moved their operations to the fortalezas, the public could not oversee the lo�ery
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draws (Chazkel 2011, 259). �is could lead to a decline in trust among buyers and vendors of lo�ery

tickets and, as a result, to reduced pro�ts. Bicheiros have mitigated this problem with a two-pronged

strategy. First, they started to utilise the winning numbers from the licit government-run lo�ery, the

Loteria Federal, instead of their own draws (Chazkel 2007, 546; Labronici 2012, 89; Mello 1989, 39-40).

�e federal lo�ery numbers are public information. �e media broadcasts the draws on radio and

TV, so any interested player can verify the selected numbers. �e Loteria Federal is also audited by

two independent state institutions, a private accounting �rm, and voluntary members of the public.

Hence, bicheiros can free ride on the lo�ery’s long-standing reputation of credibility.

Second, they included representatives of all major jogo do bicho bankers in every draw and

independently publicise the game results. Certain bicheiros went as far as publishing the numbers in

Rio’s newspapers. In the early twentieth century, some tabloids were entirely dedicated to the game

(Magalhães 2005, 60). Booking agents see this strategy as a credible signal from the game �nanciers,

as providing contrasting information would indicate game manipulation. Moreover, collusion can

also be spo�ed if the draws show repeated numbers or unusual pa�erns.

�ese e�orts have proved popular with the game enthusiasts. Such mutual con�dence reduces

the potential for con�ict in the game. As the public does not see the jogo do bicho as violent or

harmful, the stigma of repugnance associated with gambling becomes less pervasive. By reducing the

possibilities of cheating and pu�ing long-term interests �rst, the jogo do bicho bankers have avoided

the fate of other repugnant markets (DaMa�a and Soárez 1999, 20).

�is ability to elicit cooperation from external actors caused the jogo do bicho to last longer

than collection action theories would anticipate. In that regard, the bankers’ investments in costly

signalling and reputation has largely paid o�: the lo�ery’s continuous pro�ts are a proof of their

success. With that continuous �ow of income, banqueiros were able to extend their in�uence well

beyond the poor communities in which they operate. One of these areas is politics.

3.4 Tropical State Capture: Jogo do Bicho, Samba and Politics

�e impact of the jogo do bicho is not restricted to the Brazilian economy. Since the 1960s, bicheiros

have been the key sponsors of the country’s most important cultural festivity: the Rio de Janeiro

Carnival parade (Bezerra 2009; Cavalcanti 2006; �eiroz 1992). �e jogo do bicho accounts for such

large share of the funding of the parade that a famous banqueiro once remarked that “without the
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jogo do bicho the Carnival would have ended” (O Dia 2016). Based on that support, bicheiros have

established an extensive patronage network over samba schools and local politicians (Arguello 2012,

4641; Congresso em Foco 2007; Jornal do Brasil 2011; Misse 2011, 16). Such client network brings large

material bene�ts to their members, yet it has created perverse incentives for government o�cials

and has caused several distortions to the Brazilian democratic system.

�e jogo do bicho’s clientelism is most evident in the state of Rio de Janeiro. Historical factors

explain why this is the case. First, Rio de Janeiro city was the capital of Brazil for almost 200 years,

and despite losing the position to Brası́lia in 1960, it has remained one of the country’s main cultural

and �nancial centres. Secondly, jogo do bicho operators had historical ties with popular movements,

especially samba groups, and the animal game elites eventually exploited these connections to

their advantage. �irdly, the emergence of state-sponsored Carnival parades created a window of

opportunity for bicheiros to expand their in�uence over public authorities, either via bribing or by

funding political campaigns. In this regard, Rio provided a suitable environment for self-interested

politicians, community leaders and animal game �nanciers to collaborate. �ese illegal networks

are crucial to understand why samba and Carnival became constituent features of Brazil’s national

identity, and how the festival has contributed to Rio’s high levels of state corruption.

3.4.1 �e Medici of Samba: Bicheiros as Patrons of Carnival

In 1930, opposition leader Getúlio Vargas led a bloodless coup d’état that brought Brazil’s First

Republic to an end. During his �rst presidency (1930–1945), Vargas promoted a radical shi� in

Brazilian politics by e�ectively dismantling federalism in favour of a powerful executive branch and

an expanded federal bureaucracy (e.g. Bethell 2008; Fausto 1972; Skidmore 1967). In terms of ideology,

Vargas’s authoritarian-corporatist Estado Novo (“New State”) promoted a politicised nationalism

designed to transcend the regional aspects of Brazilian culture (Lauerhass 1972; Williams 2001).

Popular music, in turn, occupied an important place in Vargas’s project of “Brazilianing Brazil”.

Created in the late 1920s in the shanty towns of Rio de Janeiro, modern samba embodied the idea of

the multicultural, racially-tolerant country the government aspired to forge (McCann 2004; Stockler

2011).

By the late 1930s, samba reached a unique position in Brazil’s cultural identity. In a period when

civil and political rights were limited, Vargas used samba as a means to incorporate ethnic minorities
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and the new urban classes into the Brazilian mainstream (Chinelli and Machado 1993, 213). Patriotic

sambas exalted the country’s natural beauties and the �gure of the “friendly, happy, cordial and

industrious” mula�o8 (Vianna 1995, 51). �e institutionalisation of the Carnival parade in 1935,

and the subsequent increases in public funding to the festival, cemented the relationship between

politicians and samba groups (Cabral 2016b; Soihet 1998).

�e samba groups were not passive members in this process. Since the 1960s, the Rio Carnival

has expanded in scope. Stimulated by growing numbers of spectators, the parades have become more

elaborate (Cabral 2016b; Chinelli and Machado 1993, 214; Hertzman 2013, 240). Unable to cope with

the rising costs of the show, the samba schools, which are large samba groups that compete in the

Carnival, resorted to the jogo do bicho �nanciers to fund their activities (Misse 2007). �is informal

agreement between samba school organisers and wealthy bicheiros remains e�ective to this day, and

many of Rio’s most famous samba schools are o�cially presided by high-pro�le members of the jogo

do bicho elite (Bezerra 2009; Cavalcanti 2006; Misse 2011; �eiroz 1992).

�e animal game at times faced opposition by the local population. �e public o�en perceived

the game as immoral and repugnant. Bicheiros were aware of that problem. �ey decided to �nance

samba schools hoping to win the support of the population and a�ach a more positive image of the

game among urban classes. Members of the jogo do bicho had been involved in the Carnival since the

early 1920s, but in 1984, a group of rich bankers founded collectively the LIESA (Liga Independente

das Escolas de Samba, Independent League of the Samba Schools), a civil association intended to

direct and sponsor the Carnival parade in Rio de Janeiro. �e LIESA marked a shi� in the history of

the Carnival Parade. For the �rst time, the bicheiros decided to act as a group rather than individuals

who shared an interest in popular festivals. �e institution was very e�ective in expanding the

parade, but it also provided other bene�ts to the jogo do bicho bankers. �e organisation consolidated

their power over the Carnival and provided a formal mechanism for the banqueiros to solve disputes

(Cavalcanti 2006, 43; Farias 2013, 171; Labronici 2012, 55).

�e funding of the samba schools had an indirect e�ect on the animal game. �e patronage also

reduced agent-principal problems within the jogo do bicho. Bicheiros donate to samba school to gather

support of the communities, and by doing so they gain access to local information on their business.
8A mula�o is a person of mixed white and black ancestry. �e etymology of the word is originally derogatory as it

alludes to ‘mule’ (Latin: mulus), the infertile o�spring of a male donkey and a female horse. However, in the 1930s the
word loses its pejorative connotation in Brazil. Mainly due to the work of sociologist Freyre (1933), the idea of a racial
democracy becomes pervasive in the government discourse, and as a result the word gains a positive tone (Reiter and
Mitchell 2009, 4).
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Clients who have a positive image of the bicheiro may denounce fraudsters to their superiors, thus

monitoring the cost-e�ectiveness for animal game managers. �us, street bookmakers have fewer

incentives to cheat. In addition, street sellers are o�en recruited from the poor communities, so they

tend to be immediate bene�ciaries of bicheiros’ donations (BBC 2012). Hence, funds donated to samba

schools and other charitable organisations help align the interests of di�erent members of the jogo

do bicho organisation. �e patronage can be interpreted as an illegal version of “pro�t-sharing,” a

mechanism that has induced e�ectively cooperative behaviour in both small and large corporations

(Cahuc and Dormont 1997; FitzRoy and Kra� 1987; Kruse 1992).

Samba schools have pro�ted from this association too. First, they have gained autonomy from

the government. Samba schools do not need to rely exclusively on public funds to organise the

parade, and money from the jogo do bicho has permi�ed the schools to act independently (Chinelli

and Machado 1993, 209). Second, the support of the jogo do bicho has increased the political and

social clout of the samba schools. In a country where the state is not present throughout the territory

and human right abuses are frequent (O’Donnell 1993; Pinheiro 2000), jogo do bicho bankers, and

more recently drug tra�ckers, have provided private governance to poor areas of Rio de Janeiro by

enforcing property rights, mediating disputes, and preventing police abuse in the favelas (Arias 2006;

Goldstein 2013). In return for funds and protection from the bicheiros, samba schools have served

as intermediaries between the underworld and the political system. Although the banqueiros are

interested in weak law enforcement against the animal game, politicians have resorted to samba

schools to contact bicheiros and use their �nancial and electoral in�uence in the shanty towns (Misse

2011, 17). �e samba schools, therefore, have increased their bargaining power in the political sphere

and have extended their reach within Rio’s poor communities (Chinelli and Machado 1993, 215).

3.4.2 Political Support

Politicians were opposed to the jogo do bicho in the early twentieth century, but their relationship with

the animal game bankers later became more ambivalent. �e collaboration between public authorities

and bicheiros gained prominence during the military dictatorship (1964–1985) (Gaspari 2002; Jupiara

and Otavio 2015). �e regime e�ectively dismantled the few checks and balances implemented in

the Second Republic (1945–1964), and paramilitaries and police forces had considerable discretion to

repress political dissidents. Extortion of civilians was also widespread (Magalhães 1997; Misse 2009).
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But bicheiros saw the corruption of some members of the military as an opportunity to increase

pro�ts. Wealthy jogo do bicho bankers hired rogue police o�cers to work as security guards and

to threaten eventual competitors in their regions of in�uence. �e agreement between bicheiros

and corrupt members of the military was ultimately responsible for the transformation of the jogo

do bicho into a coercive oligopoly (Jupiara and Otavio 2015). When the jogo transitioned from an

informal to an illegal market, the use of violence in the game became more widespread. �e support

of the armed forces meant new groups would be prohibited from entering the market and the illegal

lo�ery could operate undisturbed by the government.

�e links between bicheiros and the public authorities changed a�er Brazil became a democracy

in 1985. In the military regime, government o�cials were mainly interested in bribes from the animal

game. But in the democratic period, votes were the most sought-a�er political resource. Bicheiros

are important in this sense as they have direct in�uence over a number of poor communities, either

because of their role as patrons, or as reliable sources of governance. �eir patronage networks

ensure that candidates supported by bicheiros receive a substantial amount of votes from areas where

campaigning is too di�cult or too costly (Misse 2011, 17).

Politicians from all spheres of government are involved with jogo do bicho bankers. Recent

investigations have shown that from local representatives to senators, politicians of every level

receive illegal money to fund their campaigns. Carlinhos Cachoeira, a famous animal game banker

from the state of Goiás established a large patronage network that included mayors, deputies,

senators, judges, and businessmen, many of them linked to the federal government. His brother

Marcos ironically noted that Carlinhos was “too dedicated to politics” and he illegally donated about

USD 300 million to political candidates in his home state (O Estado de São Paulo 2012).

�e Brazilian political system is particularly conductive to client practices. Brazil has one of the

most fragmented party systems in the world, which induces political entrepreneurs to run highly

individualised campaigns (Figueiredo and Limongi 2000; Geddes and Neto 1992). In addition, Brazil

uses an open-list proportional representation electoral system; each of the 27 states of the federation

are considered at-large electoral districts (Ames 1995; Samuels 2000, 483). �ese two elements indicate

that Brazilian politicians are o�en free from the strong requirements of political parties and can

run their campaigns with a high degree of independence. Nevertheless, that independence means
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candidates rely mostly on themselves to raise funds and mobilise potential voters. Hence, political

campaigns in Brazil tend to be expensive and personality-centred.

�e support from the jogo do bicho mitigates both problems. With respect to the �nancial costs

of campaigns, illegal donations from bicheiros help to cover advertising expenses while having the

additional bene�t of not appearing in the o�cial records of the candidates (Congresso em Foco 2007;

O Globo 2012a). �is suggests that jogo do bicho-funded politicians can circumvent spending limits

and have an electoral advantage over their competitors. As candidates do not know whether their

competitors receive funding from the jogo do bicho nor the amount each one was paid, their dominant

position is to contact the bicheiros and join their networks. �e situation is a prisoner’s dilemma in

which candidates would be be�er o� running cheaper campaigns and not being dependent on jogo

do bicho bankers, but asymmetric information prevents them from reaching a cheaper solution.

Votes from poor communities are instrumental for aspiring politicians. Brazil has an enforced

compulsory voting system; therefore, turnout rates tend to be higher than in other democracies.

Consequently, votes have high marginal utility for politicians. As elections may be decided by a

small di�erence, the bicheiros’ client ties guarantee a minimum number of votes that politicians can

rely upon on election day. Nonetheless, the patronage subverts the preferences of the public and, as

such, the democratic process per se. Individuals may be punished if the candidate does not receive

the expected number of votes, and they are o�en compelled to vote for politicians who have only

loose connections with their communities. �erefore, although voters have the right to choose their

representatives, in practice the su�rage is limited for a share of Brazil’s lower classes.

In a nutshell, the di�culty in permanently outlawing the jogo showcases how the Brazilian state

itself is deeply embedded within criminal sectors of the society. While some sectors of the Brazilian

bureaucracy may be described as “islands of excellence” and closely resemble the Weberian ideal of

public administration (Bersch et al. 2017), local politicians remain dependent of unstable, and o�en

unlawful, connections with social elites. �is system of “partial embedded autonomy” (Evans 1995)

provides the required stability for the political system to operate, yet it o�ers signi�cant opportunities

for rent-seeking behaviour. �is structure tends to perpetuate itself as it brings bene�ts for both

the animal game bankers and local politicians, such as limited competition and the ability to extract

resources from poor voters.

64



3.5 Concluding Remarks

Past research has shown that criminal organisations face considerable challenges to elicit cooperation

from their members and to establish close ties with the population. Yet, the jogo do bicho o�ers a

convincing example that it is possible for an illegal syndicate to operate with low levels of violence

for more than a hundred years. Bicheiros employ a number of strategies to obtain reliable information

from their subordinates while o�ering club goods and other selected bene�ts to workers. Furthermore,

by investing in the Carnival parade, bicheiros have been able to gather popular and government

support. Poor communities have associated with the bicheiros to receive welfare provisions, whereas

politicians have collaborated with them to reap the �nancial and electoral bene�ts the jogo do bicho’s

networks can provide.

Nevertheless, the jogo do bicho has also created negative externalities. Violence is used to punish

defectors and to constrain competitors. �e client relationship bicheiros have with local politicians

has lead to undemocratic outcomes, such as predatory political campaigning, distortions in electoral

representation, and impunity for human rights violations. �ese negative externalities have long-term

e�ects and still impact the Brazilian public sphere.

Although the jogo do bicho has received increasing a�ention from scholars, much of its inner

workings remain poorly understood. First, the relationship between bicheiros and drug dealers is a

topic that deserves a�ention. Brazil has become one of the world’s largest consumers of illicit drugs

and South America’s principal drug tra�cking transit route (Miraglia 2015; Misse 2011). �e question

whether bicheiros collaborated or opposed the emergent drug dealing business is still unclear. Second,

the extent to which bicheiros use other businesses, such as hotels or factories, to launder money has

been mentioned by members of the Brazilian judiciary (O Globo 2012a, 2015); however, there is no

reliable estimate on its size. Lastly, more research is required to clarify how bicheiros from di�erent

parts of Brazil coordinate their activities and prevent large-scale con�icts. Cases studies are usually

focused on Rio de Janeiro’s bicheiros, but scholars would bene�t from comparative analyses with a

larger number of states. �is is an important step to elucidate how bicheiros continue to in�uence

politics and the public throughout Brazil.
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Chapter 4

What Drives State-Sponsored Violence?:

Evidence from Extreme Bounds Analysis

and Ensemble Learning Models

4.1 Introduction

Since the end of World War II, mass killings, genocides, and politicides have claimed over 34.5 million

lives (Marshall et al. 2017).1 �e international community has responded with an e�ort to prevent

further state-sponsored mass murder by strengthening laws against war crimes, genocide, and crimes

against humanity. Furthermore, the United Nations established a Special Adviser on the Prevention

of Genocide and recognised its members’ responsibility to protect civilian populations within and

outside their own borders. Yet, such atrocities still occur. Recently, President al-Assad of Syria has

massacred tens of thousands of civilians during the Syrian Civil War (Goldman 2017). Similarly,

South Sudan’s President Kiir is actively starving and killing civilians from dissident and rival tribes

(Nichols 2017). While there is some evidence that such atrocities may be declining since the Cold

War (Valentino 2014), the international community has been far from successful in realising slogans

like “Never Again” and “Not on My Watch” (Cheadle and Prendergast 2007).
1Genocide and politicide are the a�empted intentional destruction of communal or political groups, respectively (see

Har� and Gurr 1988). Mass killing includes these atrocities, as well as a�acks against civilians that result in at least 1,000
deaths but are not intended to destroy a particular group (see Ulfelder and Valentino 2008). While some con�ate the
logic of these types of atrocities (e.g., Rummel 1995; Valentino et al. 2004), others claim genocide and politicide follow a
di�erent logic from other forms of government violence (Kalyvas 2006; Stanton 2015). For discussion on these important
di�erences in conceptualisation see Straus (2007) and Finkel and Straus (2012).
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Ultimately, e�ective prevention requires us to understand why these atrocities occur. In this vein,

the academic community has laboured tremendously to establish empirically-based theories as to

why governments engage in brutality against their civilian populations. Indeed, since 1995, there

have been over 45 quantitative political science articles focused on explaining government-sponsored

killing of civilians. Overall, the mass violence literature agrees that government atrocity follows an

opportunity logic: as threat increases, so does the likelihood of atrocity, if the costs to such violence

are not prohibitive. However, there is li�le consensus on what factors in�uence the level of threat or

costs a regime faces. Part of the reason for this uncertainty is that scholars use very di�erent model

speci�cations when testing their arguments, thus small changes in model parameters could in�uence

the robustness of empirical results and the inferences I draw from these �ndings.

To overcome these limitations and provide a be�er understanding of government atrocity, I

employ extreme bounds analysis and random forests to identify the most robust determinants of

state-sponsored atrocities. My approach is similar to Hegre and Sambanis’ (2006) seminal analysis

on the causes of civil war onset, but like Bell (2015), Hill and Jones (2014) and Jones and Lupu (2018),

I provide additional tests to verify whether complex interactions and nonlinearities are driving

the statistical results. More broadly, my goals are: 1) to examine whether the current quantitative

scholarship is able to identify robust explanators of mass atrocities; 2) to evaluate how those variables

compare to each other in explaining power.

While recent studies of mass killings have progressively adopted stronger identi�cation strategies,

the majority of the literature consists of cross-country regressions. While the importance of micro-

level causal designs have been largely discussed (e.g. Angrist and Pischke 2008; Imbens and Rubin

2015), large-n analyses also have strong bene�ts that are o�en overlooked. For instance, quantitative

studies allow scholars to assess the external validity of speci�c explanatory mechanisms. Additionally,

these studies provide a safeguard against the perils of selecting on the dependent variable, a bias that

can severely distort regression results (Bell 2015; King et al. 1994). Cross-national comparisons also

show how structural factors condition immediate causes of mass violence. Atrocities are multicausal

phenomena, and large-n studies can point to interactions that scholars would otherwise miss. In this

speci�c study, there is the additional advantage of running all the models with the same dependent

variable, what constitutes an e�ective method of replication of the original �ndings.

In conducting this analysis, I address three debates in the mass violence literature:
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1. Why do some governments engage in mass killings, genocides, or politicides? �is is the

primary question asked by activists, policymakers, and scholars in this �eld of research.

2. Does the logic underpinning government decision-making follow di�erent pa�erns during

peacetime and wartime? Recent research suggests that government atrocity occurs predomin-

antly during periods of civil unrest (Har� 2003) which has led some scholars to restrict their

analyses to only periods of civil war (e.g., Colaresi and Carey 2008; Valentino et al. 2004) or

concentrate on predicting both the onset of civil war and atrocity (Goldsmith et al. 2013). Yet,

others estimate models of all country-years (e.g., Krain 1997; Montalvo and Reynal-�erol

2008), raising questions of how well these studies speak to each other.

3. Is there a di�erence in logic between those atrocities labelled as genocide or politicide, compared

to other mass killings? While the Political Instability Task Force (Marshall et al. 2017) provides

the most widely used data on government atrocity, others provide data with much more lenient

inclusion criteria (e.g., Stanton 2015; Ulfelder 2012). �ese di�erences in de�nition of atrocity

have led to divergent results, raising questions about important determinants of government

behaviour (for discussion, see Straus 2007; Uzonyi 2016; Wayman and Tago 2010).

My analysis tests the sensitivity of 40 variables on a sample of 177 countries from 1945 to 2013.

My �ndings partially con�rm previous research – poor, unstable countries are more likely to witness

the regime employ atrocity (e.g., Goldsmith et al. 2013; Har� 2003; Krain 1997). However, many of

the factors scholars o�en cite as observable indicators of such instability – regime transitions, coups

d’état, the presence of militias, etc. – are not good proxies for instability. �us, policymakers may be

looking for the incorrect signs of impending atrocity when seeking to prevent its onset. Furthermore,

I �nd that the conclusions scholars draw regarding the likelihood of government atrocity largely

depend on whether they combine peace and war years or just analyse periods of civil wars, as pa�erns

in mass killings di�er dramatically across these contexts. Lastly, I �nd that genocide and politicide

follow vastly di�erent pa�erns of onset than other forms of state-sponsored mass murder. �is is

further evidence that di�erent logics govern di�erent forms of political violence (Stanton 2013).

Overall, these �ndings raise concerns about policy options for preventing violence against civilians.

If my conclusion is that poor and unstable countries are violent, then preventing atrocity likely

requires signi�cant investments of time and resources in state-building, which is o�en politically
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and practically infeasible (Doyle and Sambanis 2006). �is analysis contributes signi�cantly to the

political violence literature by highlighting the parsimonious nature of the logic behind government

atrocity and clearing away much of the empirical clu�er surrounding this conclusion.

4.2 Empirical Methods

To conduct my analysis, I began by surveying the quantitative political science literature on the

causes of government mass killing since Rummel’s (1995) seminal work on the subject. Counting

only published works, I identi�ed 45 articles which employed logit or probit models of mass killing

onset in a global sample. I then included all variables that appeared in at least two of these papers

in the data set at the country-year unit of analysis for all years from 1945 to 2013. �e appendix

provides a complete list of the articles I considered and a complete list of the variables I included in

my models. Next, I estimated an extreme bounds analysis to determine which variables were the

most robust in explaining the onset of government atrocity. �en, I estimated a distributed random

forest analysis to see which of the variables best predicted the onset of these atrocities. In this section,

I provide more detail on each of these estimation procedures before turning to the results of both

analyses in the next section.

4.2.1 Extreme Bounds Analysis

�e �rst method I employ to test the robustness of the potential determinants of state-led violence

is the extreme bounds analysis (EBA). Researchers have employed EBA to assess the sensitivity

of the determinants of civil war (Hegre and Sambanis 2006), coups d’état (Gassebner et al. 2016),

democratisation (Gassebner et al. 2013), economic growth (Levine and Renelt 1992; Sala-i-Martin

1997), nuclear deterrence (Bell 2015), and political repression (Hafner-Burton 2005). �e method is

particularly useful when there is no consensus about which covariates belong in the “true” regression

model (Sala-i-Martin 1997, 178) and scholars worry that omi�ed or unnecessary predictors can bias

the model estimates (Angrist and Pischke 2008; Clarke 2005; Elwert and Winship 2014; Spector and

Brannick 2011, 60).

More speci�cally, the main purpose of EBA is to estimate the distribution of coe�cients of

each predictor x in an exhaustive combination of regression models with y as a dependent variable.

(Leamer 1985, 308) proposed that “sturdy” variables are those whose minimum and maximum of
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their coe�cient distribution have the same sign and are situated at a distance from zero. If we are to

use the conventional value of p < 0.05, the mean of the variable coe�cients’ distribution should be

located at least 1.96 standard deviations away from zero.

Leamer’s criterion is intuitive, but other authors contend it is too strict for most social science

applications. Sala-i-Martin (1997) argued that Leamer’s EBA would increase the number of false

negatives; in other words, it would classify as fragile covariates that are truly associated with the

response. In this paper, I use Sala-i-Martin’s more �exible version of EBA and consider the whole

range of values of CDF (0). I choose to use the whole distribution because the aggregate CDF (0)

allows researchers to move away from a binary indicator of robustness and present the estimations

with their appropriate degrees of con�dence. My focus is the percentage of the variable’s cumulative

distribution function that is smaller or greater than zero. I do not assume that the CDFs are normally

distributed and use Sala-i-Martin’s generic model.2 I specify the models as follows:

Mass Killing Onsetit = βMMit + βFFit + βZZit +vit (4.1)

My main dependent variable is Mass Killing Onset, which denotes the onset of government-

sponsored killings. Ulfelder and Valentino (2008, 2) de�ne a mass killing as “any event in which the

actions of state agents result in the intentional death of at least 1,000 noncombatants from a discrete

group in a period of sustained violence”. Respectively, i and t indicate country and year. M is a set of

three covariates that are included in every model due to their prominence in the literature (Levine

1992). In my analysis, M includes the natural logarithm of the GDP per capita to control for income,

the Polity IV index to control for level of democracy, and a linear time trend since the last episode

of government-led atrocity to account for temporal dependence. F denotes a vector of variables of

interest, and Z is a vector of other control variables in addition to those included in M . v is the error

term. In practice, however, since this research is interested in the e�ect of all variables in the data

set and do not have true control variables, except from M , F and Z are interchangeable. I thus only

use this notation to help clarify the connection of my analysis to previous con�ict scholars who

employed similar extreme bounds analysis (e.g., Hegre and Sambanis 2006; Gassebner et al. 2016).

Following Hegre and Sambanis (2006, 514), I lagged the independent variables one year to reduce the

risk of endogeneity.
2�e generic model provides a be�er �t to the data. Histograms for all coe�cients are available in online appendix.
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Although the dependent variable is dichotomous, I use linear probability models in my main

analysis. Gassebner et al. (2016, 298) argue that linear probability models are less prone to convergence

problems and their results can be readily interpreted. Since the data are grouped into countries, I

also use cluster-robust standard errors.

As a precaution against collinearity, I place a limit on the Variance In�ation Factor (VIF ) of all

regression coe�cients. �e VIF estimates how much of the variance of each predictor is dependent

on the other covariates in a model. A VIF of 1 indicates that the predictor is uncorrelated with

the remaining covariates. VIF limits are o�en arbitrary (Bell 2015; O’Brien 2007), thus here I use a

moderately conservative VIF of 7. As robustness tests, I run the same models without restriction and

with di�erent cut-o�s.

Two variables were omi�ed from EBA models but included in the machine learning estimations.

�e �rst is democracy, a dummy variable that indicates whether the country has a Polity IV score

equal or higher than 5. �e second is interstate war, a binary covariate measuring if the country is

at war in a given year (Sarkees and Wayman 2010). I have decided to omit democracy because of

its evident correlation with the Polity measure and interstate war due to its correlation with the

dependent variables. EBA models do not converge otherwise.3 Since this problem does not a�ect

machine learning algorithms, the two variables were included in the second set of estimations.

Lastly, I depart slightly from Sala-i-Martin’s suggested method and do not assign weights to

EBA. Although he recommends using goodness-of-�t measures to construct regression weights, I

follow Sturm and de Haan (2002) and Gassebner et al. (2016, 299) and use the unweighted version of

the CDF instead. Goodness-of-�t indicators are not equivalent to the probability of a given model

being true (Anscombe 1973; King 1986), and the weights constructed this way are not invariant

to transformations in the dependent variable. Moreover, the data set has a number of missing

observations, so model comparison measures could be misleading (Lall 2016).

4.2.2 Random Forests

I also make use of random forest (Breiman 2001a) to evaluate whether the empirical results in the

mass killings literature are driven by parametric assumptions and model speci�cations. Random
3�is is a typical case of multicollinearity and conceptual overlap. Hlavac (2016) suggests specifying a set of mutually

exclusive variables to avoid the issue. However, as the Polity index is one of the core variables, I decided to drop the
binary democracy indicator and use the continuous measure as it provides more details about the e�ect of political
regimes on mass killings. More information available in the appendix.
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forest is a machine learning algorithm that consists of a combination of individual decision trees. In

a classi�cation problem, each decision tree uses a vector of covariates to split the dependent variable

into two increasingly homogeneous parts (Breiman 2001b). However, decision trees are prone to

over��ing, i.e., they match the original data set so closely that they tend to perform poorly with

new data (Die�erich et al. 1995; Ho 1998). Random forest, in contrast, avoids this issue by growing a

decision tree only to a bootstrap sample of the original data, selecting random features at each split,

then aggregating the di�erent trees into a single prediction. If the independent variable is continuous,

the algorithm will simply choose the average value of the predictions as the best candidate; if the

covariate is discrete, the majority class will be employed. �e simple procedure of leaving out some

data points and growing separate trees with a random subset of covariates is su�cient to eliminate

over��ing (Jones and Linder 2015, 9-10).

Random forest has many desirable properties, such as “highly accurate predictions, robustness to

noise and outliers, internally unbiased estimate of the generalisation error, e�cient computation, and

the ability to handle large dimensions and many predictors” (Muchlinski et al. 2015, 7). �us, random

forest allows the researcher to estimate very �exible models with minimal assumptions. Unlike

parametric methods such as ordinary least squares or logistic regressions, the analyst does not have

to impose any distributional form to the data-generating process. As a result, random forest is able to

e�ectively uncover complex, nonlinear interaction e�ects in the data without prespeci�cation (Jones

and Linder 2015; Jones and Lupu 2018). Random forest models complement the extreme bounds

analysis in two ways; �rst, by providing robust additional tests to the parametric estimations, and

also by pointing out eventual limitations of the widely-employed modelling techniques in the mass

violence literature.

In this paper I use distributed random forest (DRF) to model the data, a slightly modi�ed version

of the original random forest algorithm (�e H2O.ai Team 2017). �e DRF has two additional features

that are useful for the purposes of this chapter. Firstly, DRF is optimised for big data, as it grows

decision trees on separate cores to speed up computation time. Secondly, in DRF, non-observed cases

are not assumed to be missing at random, but rather as values that contain information in themselves.

�e algorithm assumes that observations are missing for a reason, what is most likely the case with
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social science data (Lall 2016). �is is a more conservative approach than assuming that missing

cases �t into an underlying parametric distribution.4

�e DRF has a series of hyperparameters that can be tuned to improve its predictive performance.

For instance, users can control the number of decision trees in each iteration, how deep trees

should grow, and many other options. �e interaction between parameters is generally complex and

may involve thousands of potential combinations. As an example, a researcher interested in four

parameters with 10 values each would have to estimate 10,000 models before deciding which is the

most e�cient one. Also, machine learning parameters are sensitive to the data at hand, that is, an

optimal solution for one problem cannot be readily implemented in another data set (Genuer et al.

2008; Goldstein et al. 2010; Jones and Linder 2015).

To address these issues, I perform a grid search to select the most accurate random forest model

(Cook 2017, 123). I estimate a model for every possible combination of the hyperparameter space to

make sure the model results are robust to di�erent speci�cations. For model selection, I follow the

literature on predictive political science and use the area under the ROC curve (AUC) as the model

evaluation metric (e.g., Hill and Jones 2014; Ward et al. 2010, 2013). Models with higher AUC values

are considered more accurate.

I add several parameters to the grid search. �e �rst is the number of independent trees to grow

in each forest. �e starting values are 256, 512, and 1024 trees. �e machine learning literature does

not provide a heuristic on how large a random forest should be, but Oshiro et al. (2012, 166) a�rm

that “from 128 trees there is no more signi�cant di�erence between the forests using 256, 512, 1024,

2048 and 4096 trees.” I employ a more conservative approach and start from a higher value that the

authors suggest as adding more trees do not reduce prediction accuracy (Breiman 2001b, 7).

�e depth of each decision tree also in�uences the algorithm performance. Deeper trees indicate

more complex models, and in general they provide a be�er �t to the data. Nevertheless, this complexity

comes at the risk of over��ing, so deeper trees are not necessarily the most adequate solution for

every model (Friedman 2001; Segal 2004, 596). In this article, I let the algorithm decide among using

10, 20, or 40 levels for each tree.

I test whether having balanced classes of the dependent variable (mass killing onset) a�ects the

predictive ability of the model. Since the response measure is heavily imbalanced, oversampling
4For more information about how the distributed random forest algorithm deals with missing observations, please

refer to: http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/drf.html (access: December 2017).
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the positive responses could potentially improve the results (Chawla et al. 2004; Del Rı́o et al. 2014;

Japkowicz and Stephen 2002). I also vary how many variables should be considered for each split

in the data. �e default option is to use √p, where p is the number of columns in the data set. As I

have 40 covariates of interest, I have selected 5, 6 and 7 variables per split. �e DRF uses a majority

voting procedure to select which variable is most important. Additionally, the algorithm chooses the

percentage of the training set to be modelled by each tree. �e default option is 63.2%, but I include

the options of using 50% and 100% of the data. Similarly, I give a range of options for choosing how

many columns will be included in each tree. �e algorithm can randomly choose among 50%, 90% or

100% of the independent variables when estimating a decision tree.

Finally, I use three types of histogram to �nd optimal split points for each independent variable.

Decision trees consider every value of a given independent variable as a potential candidate for a

split in the training data. �is process is notably time-consuming, and computation time can be

signi�cantly reduced at li�le loss of precision by taking discrete values of the predictor distribution.

�e DRF algorithm also o�ers the choice of randomly cycling through all histogram types, including

one of the types in each tree estimation. I adopt this “round robin” arrangement as it is both

computationally e�cient and methodologically parsimonious.

4.3 Results

4.3.1 Main Model

I endeavour to answer three questions in this analysis: 1) what are the robust predictors of government

mass killing, 2) do these predictors di�er when considering only cases of civil war, and 3) are genocide

and politicide di�erent than other forms of atrocity? Table 4.1 summarises the main EBA results in

answering �estion 1. �e table shows the average coe�cient estimate of all regressions for each

robust variable along with their mean standard deviations.5 �e table also displays the percentage

of regressions that are statistically signi�cant at the 90% level. CDF (0) represents the cumulative

distribution function, which is the area of the distribution that falls above or below zero.6 �is is my

main statistic of interest, and I consider a covariate to be robust if it has a CDF (0) of 0.9 or higher
5A list of all independent variables and coding rules are available in the appendix.
6I show whichever area is the largest. �e sign of the average β coe�cient indicates if most of the cumulative

distribution is located above or below zero.
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(Sala-i-Martin 1997, 181). Lastly, I report the number of estimated regressions models which included

each variable.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.0091 0.0052 76.055 0.9335 226707

Additional variables

Post-Cold War years -0.0133 0.0085 72.845 0.9472 35614

UCDP civil war onset 0.0529 0.0321 52.378 0.9441 20854

Previous riots 0.0140 0.0100 56.242 0.9216 35614

UCDP ongoing civil war 0.0172 0.0115 65.652 0.9092 20854

Ethnic diversity (ELF) 0.0184 0.0137 56.674 0.9050 35614

Polity IV squared -0.0002 0.0001 61.206 0.9031 35614

Table 4.1: Extreme Bounds Analysis – Mass Killings (Robust Variables Only)

Seven variables pass the EBA criterion and three of them decrease the likelihood of mass killings.

First, as widely suggested in the literature, the natural logarithm of GDP per capita is negatively

associated with the onset of mass killings (e.g., Besançon 2005; Easterly et al. 2006; Esteban et al.

2015). Second, the post-Cold War years are correlated with lower levels of government violence.

Indeed, this �nding is in line with several studies that point to a general decline in violence over

the last decades, including riots, civil wars, and urban crime (Pinker 2011; Straus 2012b; Valentino

2014). �e third robust variable is the squared term of the Polity IV political regime index. �is

�nding points to a nonlinear relationship between political regime and mass killings, thus providing

further evidence that democracy reduces state-sponsored violence (Rost 2013; Rummel 1995) and

that regimes that mix democratic with autocratic features have the highest risk of con�ict (Hegre

et al. 2001; Muchlinski 2014).

Four variables are robustly and positively associated with Ulfelder and Valentino’s (2008) indicator

of government-sponsored violence. Onset and continuation of civil wars are correlated with mass

killings, but only when I employ the UCDP measures of violent con�ict. I �nd no e�ect for the

variables compiled by the Correlates of War project or Cederman et al. (2010). Former instances of

political turmoil also have a positive coe�cient in the models. Moreover, countries with a previous
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history of riots are more prone to state violence, which suggests that government repression is path

dependent (e.g., Gurr 2000; Har� 2003; Krain 1997; Nyseth Brehm 2017). �e results also show that

higher levels of ethnic diversity increase the likelihood of atrocities against civilians. Nevertheless,

ethnic diversity does not pass all additional tests I implement below and the sturdiness of this �nding

remains open to question.

Overall, the EBA indicates two pa�erns in answer to my �rst question on the causes of mass

killing. Atrocity is (1) more likely when violence is already present, reducing the costs of escalating

brutality and (2) is less likely as domestic and international constraints increase, increasing the costs

of escalating violence further. �ese pa�erns support the dominant opportunity narrative in the

literature. However, several of the variables commonly used to proxy opportunity, such as military

size or regime change, are not robust predictors of atrocity. �us, this analysis helps clear away

much of the brush around the opportunity argument.

Figure 4.1 presents the ten most important predictors of state-sponsored violence in the random

forest models. In general, the machine learning estimations have a good �t, with an AUC of about

0.83 in the validation sample. �e algorithm con�rms some of the main �ndings of EBA, yet they also

show some interesting pa�erns. Only democracy and state capacity appear to be robust explanators

of mass killing in both EBA and random forest models. �ese pa�erns further support the refrain

that stable states tend to stay stable states.

Real GDP

Total trade

Polity IV

Population

Military expenditure

Military personnel

Trade dependence

% Urban pop.

Log GDP per capita

Years mass killing

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1: Distributed Random Forest – Variable Importance (Scaled)
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Interestingly, several variables that are not robust explanators of mass killing in the EBA, have

large importance in the machine learning estimates. Variables related to characteristics of the military

forces are a good example. As seen below, parametrisation and interactions likely account for this

di�erence. �e linear model imposes a parametric structure to the covariate, and the relationship

between an independent variable and the response may be a nonlinear one. Also, variables can

be relevant predictors only when in interaction with each other. In both cases, those relationships

will be captured in the machine learning estimations but not in the extreme bounds analysis. �is

provides evidence that model speci�cation is driving some of the results in the EBA.

Figure 4.2 displays the partial dependence plots for the ten variables that the distributed random

forests highlight as the most important explanators of mass killing onset. �ese graphs are akin to

marginal e�ect plots in correlation models and help clarify the directional e�ects of these variables

over their entire range. For example, one can see that the e�ects of Years since Last Mass Killings is

highly nonlinear, or that Log GDP per capita does not decrease the likelihood of mass killings a�er it

reaches values close to 9.
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Figure 4.2: Distributed Random Forest – Partial Dependence Plots

One can also infer that authoritarian and mixed political regimes are more likely to engage in

mass violence than democratic countries, a result that is also supported by both the EBA and the

specialised literature. �e number of military personnel positively a�ects the likelihood of mass

killings, yet this increase is counterbalanced by military expenditures. Taken together, these results

indicate that countries with large and poorly-funded armed forces have higher risks of mass violence.
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4.3.2 Mass Killings during Civil Wars

Table 4.2 presents the EBA results when I restrict the analysis to only civil war years to answer

�estion 2. I consider three di�erent codings of civil war: 1) the Uppsala Con�ict Database Program

2017; 2002), 2) the Correlates of War project (Sarkees and Wayman 2010), and 3) ethnic civil war

from Cederman et al. (2010). I �nd two important pa�erns. First, considering only civil war years

provides a very di�erent understanding of atrocity. Across these models, the only similarity with the

full analysis is that mass killing is less likely post-Cold War. Instead, military factors, such military

size and militias, and territorial war aims are the most robust predictors of atrocity once war begins.

However, contrary to past expectation (Koren 2017), militias have a negative impact on the likelihood

of mass killings. Second, there is wide variation in which variables are robust depending on how

scholars code civil war. Across the three codings I use here, no variable is robust to all codings and

only territorial aims and militias are robust to more than one coding. �ese results are concerning

for scholars using correlation models, as they indicate that our understanding of atrocity, from null

hypothesis testing, is largely dependent on which coding of civil war researchers use. For example,

only the UCDP data suggests that the post-Cold War years see less barbarism than during the Cold

War.
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Variable Avg. β Avg. SE % Sig. CDF(0) Models

UCDP Data

Territory aims -0.044 0.019 74.997 0.9804 17902

Post-Cold War years -0.038 0.019 66.574 0.9222 17902

COW Data

Physical integrity 0.024 0.013 66.674 0.9564 17902

Militias -0.099 0.048 73.104 0.9490 17902

Years since last mass killing 0.006 0.002 88.208 0.9472 101583

Previous riots 0.078 0.041 65.412 0.9348 17902

Ethnic diversity (ELF) 0.095 0.062 48.615 0.9000 17902

Cederman et al. Data

Territory aims -0.051 0.026 74.288 0.9167 17902

Militias -0.050 0.035 52.240 0.9101 17902

Table 4.2: EBA – Mass Killings during Civil Wars (Robust Variables Only)

When I analyse the three codings of civil war using random forest analysis, I �nd further intricacies

in the pa�erns of mass killing. First, the machine learning estimates highlight a di�erent set of

variables than the EBA when analysing the UCDP and Ethnic War data. However, the COW EBA and

machine learning analyses both highlight the importance of human rights, previous riots, and the

time since the state last engaged in mass killing. �us, the COW analysis provides the most stable

picture of atrocity during civil war. It again highlights the important pa�ern of the Con�ict Trap:

violence breeds violence. Second, though, the three codings of civil war each highlight a very similar

set of strong predictors of atrocity during con�ict. �erefore, the machine learning estimates are not

as dependent on the data set employed as are the EBA results. �is is good news for scholars of mass

killing because it indicates that while the parametric models do not produce robust �ndings across

di�erent civil war data sets, the nonlinear models are able to given us a consistent and clear picture

of which factors place a country at the greatest risk for atrocity during civil war.
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Figures 4.6–4.5 display the partial dependence plots for the variables with the highest impact in

each of the three civil war data sets.
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Figure 4.3: Partial Dependence Plots – Mass Killings during Civil Wars (UCDP Data)
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Figure 4.4: Partial Dependence Plots – Mass Killings during Civil Wars (COW Data)
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Figure 4.5: Partial Dependence Plots – Mass Killings during Civil Wars (Cederman et al. Data)

4.3.3 Mass Killings in and a�er the Cold War

Lastly, I test the heterogeneity of the main �ndings with three sets of models. First, I analyse which

factors increase the risk of mass killings during and a�er the Cold War period. Global dynamics

may in�uence the cost-bene�t calculus of state leaders, and consequently a�ect the likelihood of

large-scale responses to internal threats.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Cold War Period

Log GDP per capita -0.018 0.009 83.204 0.9678 50000

Previous riots 0.022 0.014 62.457 0.9031 8278

Post-Cold War Period

Ethnic war onset -0.024 0.011 89.608 0.9823 4850

Coup d’état -0.022 0.011 89.200 0.9822 8602

Territory aims -0.027 0.014 81.083 0.9653 8775

Displaced Population -0.048 0.027 58.689 0.9392 8695

Table 4.3: EBA – Mass Killings in and a�er the Cold War Period (Robust Variables Only)
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�e EBA models show di�erent pa�erns for both periods. In the Cold War years, Log GDP per

capita has a negative impact on mass killings, while instances of previous riots increase the likelihood

of state-led atrocities. �e results are in line with those of the pooled model. However, mass killings

seem to follow a separate logic in the post-Cold War years. Four independent variables lower the

risk of mass killings: ethnic war onset, wars fought for territorial aims, coups d’état, and the share of

discriminated population. I interpret the results as showing that ethnic wars are fought by groups

with similar capabilities, thus large-scale, one-sided violence is relatively rare. �is also explains

why atrocities are more likely to occur in countries where the share of discriminated population is

not very large. �e models show that territorial wars lead to more mass killings than governmental

con�icts, a �ndings which has been previously described in the literature (Eck and Hultman 2007,

240). Coups d’état are correlated with fewer atrocities as well, what stands in contrast with previous

research (Wayman and Tago 2010, 10).

�e random forests models also display some di�erence between the two periods, yet several

variables appear in both estimations and in the main models presented above. �e results for the

Cold War model also classify Log GDP per capita and previous riots as important predictors of mass

killings. As expected, the e�ect is negative for income and positive for past social upheavals. �e

variables that appear in the main model have similar distribution, such as the inverted-U relationship

between the Polity IV index and mass killings, and the shape decline in atrocity risk when Log GDP

per capita has a value of of 10.
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Figure 4.6: Partial Dependence Plots – Mass Killings during the Cold War Period
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Figure 4.7: Partial Dependence Plots – Mass Killings a�er the Cold War Period

4.3.4 Genocides and Politicides

To answer �estion 3, I estimate the same regressions using Har�’s (2003) indicator of genocide

and politicide. No variable appears signi�cant in the EBA models for genocide or politicide onset in

the full data set. When I limit the sample to civil war years, the Post-Cold War period is negatively

correlated with the outcome when using the Correlates of War data set. Excluded population has

a negative sign in more than 90% of the models using both Correlates of War’s and Cederman et

al’s (2010) indicators of con�ict. Displaced population also has a negative e�ect in the Correlates of

War data set. During ethnic con�icts, the dummy variable for political assassinations has a negative

impact on the onset of genocides. Overall, from these EBA analyses, one can conclude then that

the signi�cant covariates of genocide and politicide onset di�er signi�cantly from those of more

general forms of government mass violence. �ough, the opportunity story still receives some limited

support in these models. However, the machine learning models using Har�’s genocide and politicide

data are comparable to the ones I present above, with a similar set of variables appearing in the

random forest estimations. �ese results once more highlight that while the mass killing literature

struggles to identify correlates of atrocity that are robust across model speci�cation, scholars have

done a much be�er job at identifying variables that help predict both the onset of genocide/politicide

and mass killings, more broadly.
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4.4 Additional Tests

I estimate a set of additional regressions to assess the robustness of the main �ndings.7 In regard to

EBA, I include 10 variants of the original model. �ey largely con�rm the prior results. First, I varied

the number of covariates included in each regression to 3 and 5 while keeping the M set of 3 control

variables. �e results are the same as those of the main model, except that ethnic fractionalisation

and Polity IV squared become marginally signi�cant with a CDF(0) of about 0.88. Second, I place

di�erent restrictions on the variance in�ation factor (VIF) to test whether multicollinearity is driving

the results. �e two models with di�erent values of VIF are identical to the model reported here,

while in the model with no VIF restriction ethnic fractionalisation again fails to meet the threshold

by a very small margin.

I also reestimate the models using logit and probit regressions. In order to deal with the issue of

complete separation (Bell and Miller 2015; Zorn 2005) I follow Gelman et al. (2008) and add a weakly

informative prior distribution to the coe�cients. In both cases, the logarithm of GDP per capita,

post-Cold War period, previous riots, and Polity IV squared remain signi�cant.

As a last robustness test for the EBA, I ran the main model with peace years only; that is, only

country-years in which the UCDP, COW and Cederman et al’s dichotomous measures of civil con�icts

are equal to zero. Despite some issues of multicollinearity,8 the results are similar to the original

model, what indicates that the di�erence in the estimations is conditional on civil war years.

In regard to random forests, grid searches are themselves a data-driven selection of many

possible machine learning models, thus it is not strictly necessary to run a batch of additional

tests. Nevertheless, I performed a series of grid searches using three di�erent seeds obtained from

http://random.org to estimate how di�erent starting numbers in�uence the model outcomes. �e

output of those models are largely comparable. �e results of each of these analyses are available in

the appendix.
7For computational purposes, I conducted all additional tests on 50,000 random draws from EBA’s posterior

distribution. Sala-i-Martin et al. (2004, 819) argue that random draws from the full EBA models are unbiased.
8Some independent variables were dropped from the models due to problems of collinearity. �e bounds for my

indicator of “wars fought over territory” could not be estimated, and the coe�cients for “number of ba�le deaths” and
“presence of guerrillas” are unreliable due to their sample sample size. �e appendix contains the distribution of the
coe�cients.
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4.5 Conclusion

In this chapter, I apply extreme bounds analysis and distributed random forests to estimate the

robustness and predictive ability of 40 variables that have been pointed out as potential determinants

of mass killings. I �nd strong evidence that mass killings are unlikely to happen in rich, stable

countries. Nevertheless, there is considerable heterogeneity in some of the results. �e �ndings

point out that mass killings have di�erent causes according to the context in which they erupt, so a

general theory of state atrocities may obscure important details in our understanding of state killings.

Moreover, mass killings are rare events, so local factors likely play an important role in their onset

(Straus 2007, 2012a).

Yet one can see this diversity of outcomes under a positive light. �e results above suggest

new avenues for research, and they also highlight the importance of scholars moving from simple

cross-country regressions to methods that can yield more robust predictions. For instance, why are

mass killings in ethnic con�icts correlated with a di�erent set of variables than in armed con�icts in

general? Would the results remain robust had scholars decided to code ethnic con�icts in another

way? More theoretical advancement would also be welcome. Given that GDP per capita is negatively

correlated to state atrocities in virtually every model, it would be interesting to unpack the causal

mechanisms by which it operates by testing more speci�c mechanisms.

In terms of practical implications, the results indicate that democratisation and pro-growth

economic policies are the most e�cient ways to prevent mass killings. �e international community

can therefore play a role in deterring leaders from using force against their own population, either by

o�ering support for domestic opposition groups, intervening, or by fostering economic development.

Although costly in the short run, and sometimes violent during the transition, these measures would

substantially decrease the likelihood of state violence by breaking the “con�ict trap” in which past

con�icts create the condition for new ones (Collier 2003).
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4.6 Appendix

�is appendix contains all required information to replicate the numerical analyses presented in

sections 4.3 and 4.4. R code can be found in subsection � and the data are available on the following

GitHub repository: h�ps://github.com/danilofreire/mass-killings. I used R version 3.4.4 (15-03-2018)

and Ubuntu 16.04.4 LTS to perform all statistical calculations.

4.6.1 Variable Selection

I employ some criteria to select our explanatory variables. First, I included only published articles

in the sample. Although working papers and policy may also provide important insights about the

onset of mass killings, peer-reviewed research is probably be�er suited for our purposes. Also, I

included only papers that use regression methods on a global sample and were published from 1995

to 2015. �e �nal sample comprises 45 articles: Anderton and Carter (2015), Balcells (2010, 2011),

Besançon (2005), Bulutgil (2015), Bundervoet (2009), Clayton and �omson (2016), Colaresi and Carey

(2008), Downes (2006, 2007), Easterly et al. (2006), Eck and Hultman (2007), Esteban et al. (2015),

Fazal and Greene (2015), Fjelde and Hultman (2014), Goldsmith et al. (2013), Har� (2003), Joshi and

�inn (2017), Kim (2010), Kim (2016), Kisangani and Wayne Nafziger (2007), Koren (2017), Krain

(1997), Manekin (2013), McDoom (2013, 2014), Melander et al. (2009), Montalvo and Reynal-�erol

(2008), Pilster et al. (2016), �erido (2009), Raleigh (2012), Rost (2013), Rummel (1995), Schneider

and Bussmann (2013), Siroky and Dzutsati (2015), Stanton (2015), Sullivan (2012), Tir and Jasinski

(2008), Ulfelder and Valentino (2008), Ulfelder (2012), Uzonyi (2015, 2016) Valentino et al. (2004),

Valentino et al. (2006), Verpoorten (2012), Wayman and Tago (2010), Wig and Tollefsen (2016), and

Yanagizawa-Dro� (2014).

In those 45 studies, scholars made use of nearly 180 measurements to capture roughly 30 key

concepts related to threat and costs of mass killings. To be added to our models, a variable should

appear in at least two articles. �e covariates are summarised in table 4.4. A complete list of variables

is available at h�ps://github.com/danilofreire/mass-killings.
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Table 4.4: Independent Variables

Variable Coded Source

Assassination Dichotomous Banks (1999)
CINC Continuous Singer et al. (1972)
Coup d’état Dichotomous Marshall et al. (2017)
COW civil war onset Dichotomous Singer et al. (1972); Singer (1988)
COW civil war ongoing Dichotomous Singer et al. (1972); Singer (1988)
Democracy (Polity IV ≥ 6) Dichotomous Authors’ own calculations
Discriminated dummy Dichotomous Cederman et al. (2010)
Discriminated population Continuous Cederman et al. (2010)
Ethnic diversity (ELF) Continuous Fearon and Laitin (2003)
Ethnic war start Dichotomous Cederman et al. (2010)
Ethnic war ongoing Dichotomous Cederman et al. (2010)
Excluded population Continuous Cederman et al. (2010)
Interstate war Dichotomous Singer (1988); Singer et al. (1972)
Guerrilla Dichotomous Balcells and Kalyvas (2014)
Military expenditure Continuous Singer et al. (1972)
Military personnel Continuous Singer et al. (1972)
Militias Dichotomous Carey et al. (2013)
Mountainous Terrain Continuous Fearon and Laitin (2003)
Physical integrity Continuous Cingranelli and Richards (2010)
Polarisation (all groups/main group) Continuous Authors’ own calculations
Polarisation (all groups/population) Continuous Authors’ own calculations
Polarisation (included groups/population) Continuous Authors’ own calculations
Polarisation (included groups/main group) Continuous Authors’ own calculations
Polity IV Continuous Marshall et al. (2017)
Polity IV squared Continuous Authors’ own calculations
Population Continuous Gleditsch (2002)
Post-Cold War Dichotomous Authors’ own calculations
Real GDP Continuous Gleditsch (2002)
Real GDP per capita Continuous Gleditsch (2002)
Real GDP per capita (log) Continuous Authors’ own calculations
Regime transition Continuous Authors’ own calculations
Riot Dichotomous Banks (1999)
Total ba�le deaths Continuous Lacina and Gleditsch (2005)
Total trade Continuous Singer et al. (1972)
Trade dependence (total trade/real GDP) Continuous Authors’ own calculations
UCDP civil war onset Dichotomous Allansson et al. (2017); Gleditsch et al. (2002)
UCDP civil war ongoing Dichotomous Allansson et al. (2017); Gleditsch et al. (2002)
Urban population (percentage) Continuous Singer et al. (1972)
Years since last mass killing Continuous Authors’ own calculations
War with territory aims Dichotomous Allansson et al. (2017); Gleditsch et al. (2002)
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4.6.2 Descriptive Statistics

Table 4.5: Descriptive Statistics

Statistic N Mean St. Dev. Min Max

Country code 9,162 452.84 247.74 2 950
Year 9,162 1,983.56 18.77 1,945 2,013
Genocide/politicide onset 8,933 0.005 0.07 0 1
Mass killing onset 9,162 0.01 0.11 0 1

Independent Variables

Assassination dummy 8,991 0.08 0.27 0 1
CINC 8,767 0.01 0.02 0.00 0.38
Coup dummy 8,587 0.05 0.21 0 1
COW civil war onset 8,160 0.01 0.12 0 1
COW civil war ongoing 8,160 0.07 0.25 0 1
Democracy dummy 8,991 0.37 0.48 0 1
Discriminated dummy 6,981 0.35 0.48 0 1
Discriminated population 6,981 0.06 0.15 0.00 0.98
Ethnic diversity (ELF) 6,981 0.41 0.31 0 1
Ethnic war start 7,760 0.01 0.12 0 1
Ethnic war ongoing 7,760 0.11 0.31 0 1
Excluded population 6,981 0.16 0.22 0.00 0.98
Interstate war 8,159 0.04 0.19 0 1
Guerrilla dummy 714 0.81 0.40 0 1
Military expenditure 8,290 4,607,120 27,785,906 0 693,600,000
Military personnel 8,620 176.70 520.90 0 12,500
Militias 4,097 0.22 0.42 0 1
Mountainous Terrain 7,358 2.14 1.43 0.00 4.56
Physical integrity 4,499 4.73 2.31 0 8
Polarisation (all groups/main group) 6,981 0.70 0.26 0.05 1
Polarisation (all groups/population) 6,981 0.63 0.32 0 1
Polarisation (included groups/population) 5,610 0.64 0.32 0 1
Polarisation (included groups/main group) 6,981 0.23 0.35 0 1
Polity IV 8,558 0.42 7.50 −10 10
Polity IV squared 8,558 56.35 32.59 0 100
Population 8,293 32,993.61 112,886.40 118.21 1,324,353.00
Post-Cold War 8,991 0.40 0.49 0 1
Real GDP 8,293 215,317.70 804,827.20 129.68 13,193,478.00
Real GDP per capita 8,293 8,104.20 18,376.73 132.82 632,239.50
Real GDP per capita (log) 8,293 8.25 1.20 4.89 13.36
Regime transition 1,221 −4.24 41.50 −77 99
Riot dummy 8,991 0.16 0.36 0 1
Total ba�le deaths 714 6,050.86 24,404.78 100 350,000
Total trade 8,174 53,804.01 222,209.90 0.80 4,825,363.00
Trade dependence 7,670 0.26 0.69 0.0001 22.11
UCDP civil war onset 8,733 0.02 0.14 0 1
UCDP civil war ongoing 8,733 0.15 0.36 0 1
Urban population (percentage) 8,767 0.22 0.17 0.00 1.51
Years since last mass killing 9,162 23.81 17.71 0 68
War with territory aims 8,924 0.07 0.26 0 1
Note: All independent variables were lagged one year.
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4.6.3 Extreme Bounds Analysis Extensions

Main Model

I present a series of histograms with the coe�cients’ distribution of all variables in the main EBA

model. �ere are 36 variables in total, seven of which are robust: Log GDP per capita, post-Cold War

period, onset and ongoing civil wars (measured by the UCDP), previous riots, ethnic diversity and

the squared term of the Polity IV index.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.0091 0.0052 76.055 0.9335 226707

Additional variables

Post-Cold War years -0.0133 0.0085 72.845 0.9472 35614

UCDP civil war onset 0.0529 0.0321 52.378 0.9441 20854

Previous riots 0.0140 0.0100 56.242 0.9216 35614

UCDP ongoing civil war 0.0172 0.0115 65.652 0.9092 20854

Ethnic diversity (ELF) 0.0184 0.0137 56.674 0.9050 35614

Polity IV squared -0.0002 0.0001 61.206 0.9031 35614

Table 4.6: Extreme Bounds Analysis – Mass killings
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Genocides during Civil Wars

Next, I discuss genocides that occur during wartime. I use three covariates that denote ongoing civil

con�icts: one by the Uppsala Con�ict Data Program (Allansson et al. 2017; Gleditsch et al. 2002),

another by the Correlates of War (Sarkees and Wayman 2010), and a third indicating the onset of

ethnic con�ict as coded by Cederman et al. (2010). �e variables that reach signi�cance in this set of

models below are notably di�erent from those obtained in the main estimation. �is result provides

evidence that mass violence during wartime time follows a separate logic from state killings in

peacetime.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

UCDP data

Territory aims -0.044 0.019 74.997 0.9804 17902

Post-Cold War years -0.038 0.019 66.574 0.9222 17902

COW data

Physical integrity 0.024 0.013 66.674 0.9564 17902

Militias -0.099 0.048 73.104 0.9490 17902

Years since last mass killing 0.006 0.002 88.208 0.9472 101583

Previous riots 0.078 0.041 65.412 0.9348 17902

Ethnic diversity (ELF) 0.095 0.062 48.615 0.9000 17902

Cederman et al. data

Territory aims -0.051 0.026 74.288 0.9167 17902

Militias -0.050 0.035 52.240 0.9101 17902

Table 4.7: EBA – Mass Killings during Civil Wars
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Alternative Number of Variables

�e models below are based on 50,000 random draws from the full set of all possible regression

models. Sala-i-Martin et al. (2004, 819) argue that random sampling produces unbiased estimates

of the regression coe�cients with low computational time. �e models presented in section 4.3,

however, include the full set of possible regressions.

�e following table shows the results of an EBA with 3 variable combinations per model. �e

results are very similar to those reported above.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita 0.0082 0.0043 81.439 0.9504 40677

Additional variables

Post-Cold War years -0.0121 0.0069 77.804 0.9609 5064

UCDP civil war onset 0.0523 0.0292 62.561 0.9574 3304

Previous riots 0.0134 0.0084 65.936 0.9401 5064

UCDP ongoing civil war 0.0177 0.0094 72.367 0.9372 3304

Polity IV squared -0.0002 0.0001 66.035 0.9268 5064

Ethnic diversity (ELF) 0.0162 0.0110 70.794 0.9266 5064

Table 4.8: EBA – 3 Variables
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Table 4.9 presents the results for models with up 5 variables in each regressions. In contrast

with the main EBA model, the indicators of UCDP ongoing civil wars, ethnic diversity, and Polity IV

square drop out of signi�cance. �eir individual CDFs(0) are about 0.88, just marginally below our

speci�ed threshold of 0.9.

Variable Avg. β Avg. SE % Sig. CDF(0) Models
Base variables
Log GDP per capita -0.010 0.006 70.806 0.9161 50000

Additional variables
Post-Cold War years -0.014 0.010 68.496 0.9336 9532
UCDP civil war onset 0.053 0.035 44.784 0.9308 5100
Previous riots 0.015 0.012 47.988 0.9047 9569

Table 4.9: EBA – 5 Variables

97



Lo
g 

G
D

P 
ca

pi
ta

-0
.0

8
-0

.0
2

0.
04

0100

Po
lit

y 
IV

-0
.0

10
0.

00
0

0800

Po
lit

y 
IV

^2

-0
.0

02
0

-0
.0

00
5

05000

Ye
ar

s 
la

st
 m

as
s 

ki
lli

ng

-0
.0

01
0.

00
2

0.
00

5

02000

U
C

D
P 

on
go

in
g

-0
.1

5
0.

00
0.

10

030

U
C

D
P 

on
se

t

-0
.0

5
0.

05
0.

15

030

C
O

W
 o

ng
oi

ng

-0
.0

6
0.

00
0.

04

020

C
O

W
 o

ns
et

-0
.0

6
-0

.0
2

0.
02

015

Et
hn

ic
 o

ng
oi

ng

-0
.1

0
-0

.0
5

0.
00

030

Et
hn

ic
 o

ns
et

-0
.1

5
-0

.0
5

0.
05

060

A
ss

as
si

na
tio

n

-0
.0

6
0.

00
0.

04

060

To
ta

l t
ra

de

-4
e-

06
-1

e-
06

2e
-0

6

0e+004e+07

Tr
ad

e 
de

pe
nd

en
ce

-0
.0

6
-0

.0
2

0.
02

040

M
ili

ta
ry

 p
er

so
nn

el

-2
e-

04
2e

-0
4

050000

M
ili

ta
ry

 e
xp

en
di

tu
re

-5
e-

09
5e

-0
9

0.0e+00

Po
pu

la
tio

n

-8
e-

07
-2

e-
07

0e+00

To
ta

l d
ea

th
s

-6
e-

06
-2

e-
06

2e
-0

6

0e+00

G
ue

rr
ill

a

-0
.1

0
0.

00
0.

10

015

R
eg

im
e 

tr
an

si
tio

n

-0
.0

04
-0

.0
01

0.
00

2

01500

R
io

ts

-0
.0

4
0.

00
0.

04

060

Te
rr

ito
ry

 A
im

s

-0
.1

5
-0

.0
5

030
M

ili
tia

s

-0
.1

0
0.

00

060

Ph
ys

ic
al

 in
te

gr
ity

-0
.0

15
0.

00
0

0.
01

0

0300

%
 U

rb
an

-0
.1

0.
1

0.
3

020

C
ou

ps

-0
.1

0
0.

00
0.

10

040

Po
st

-C
ol

d 
W

ar

-0
.0

5
0.

00
0.

05

040

M
ou

nt
ai

no
us

 te
rr

ai
n

-0
.0

2
0.

00
0.

02

0300

R
ea

l G
D

P

0e
+0

0
3e

-0
7

0e+00

D
is

cr
im

in
at

io
n

-0
.1

0
0.

00

0100

Ex
cl

 p
op

-0
.1

0.
1

0.
3

030

D
is

cr
im

 p
op

-0
.4

-0
.2

0.
0

0.
2

020

EL
F

-0
.0

5
0.

05
0.

15
0.

25

040

G
ro

up
s/

Et
h 

re
le

va
nt

-0
.6

-0
.4

-0
.2

0.
0

015

G
ro

up
/T

ot
 p

op

-0
.1

0
0.

00
0.

10

040
In

c 
gr

ou
ps

/E
th

 re
le

va
nt

-0
.5

-0
.3

-0
.1

0.
1

030

In
c 

gr
ou

ps
/T

ot
 p

op

0.
0

0.
2

0.
4

0.
6

030

Fi
gu

re
4.

13
:E

BA
–

5
Va

ria
bl

es

98



Alternative Variance In�ation Factors

In this subsection, I estimate EBA models with di�erent values of Variance In�ation Factor (VIF),

which is a measure of multicollinearity. �ere is no standard de�nition about what constitutes

an acceptable VIF value, although researchers o�en use 10 as rule of thumb to indicate strong

multicollinearity (O’Brien 2007, 674). My original model used a slightly more conservative value of

7 as a cuto�. Here, I test the same model with VIF = 10 (less strict), 2.5 (more conservative), and a

model without VIF restrictions. �e results are essentially identical to those of the main model. In

the model with no VIF restriction, however, ethnic fractionalisation fails to meet the threshold by a

very small margin. �e CDF(0) of that covariate is 0.897, very close to the required value of 0.9.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.0091 0.0052 76.354 0.9343 50000

Additional variables

Post-Cold War years -0.0134 0.0084 73.540 0.9495 7929

UCDP civil war onset 0.0529 0.0322 52.141 0.9438 4553

Previous riots 0.0140 0.0100 56.433 0.9216 7772

UCDP ongoing civil war 0.0172 0.0113 66.013 0.9113 4587

Ethnic diversity (ELF) 0.0182 0.0136 56.872 0.9056 8076

Polity IV squared -0.0002 0.0001 60.791 0.9021 7835

Table 4.10: EBA – VIF 10
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Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.0090 0.0051 76.055 0.9343 49620

Additional variables

Post-Cold War years -0.0132 0.0084 72.845 0.9490 7929

UCDP civil war onset 0.0529 0.0322 52.378 0.9438 4553

Previous riots 0.0141 0.0101 56.242 0.9199 7772

UCDP ongoing civil war 0.0174 0.0114 65.652 0.9103 4587

Ethnic diversity (ELF) 0.0184 0.0137 56.674 0.9054 8076

Polity IV squared -0.0002 0.0001 61.206 0.90267 7835

Table 4.11: EBA – VIF 2.5
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Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.0091 0.0052 75.940 0.9343 50000

Additional variables

Post-Cold War years -0.0133 0.0085 72.756 0.9469 7800

UCDP civil war onset 0.0531 0.0321 53.068 0.9452 4596

Previous riots 0.0140 0.0101 56.139 0.9200 7811

UCDP ongoing civil war 0.0170 0.0116 64.487 0.9057 4497

Ethnic diversity (ELF) 0.0184 0.0137 56.814 0.9056 7808

Polity IV squared -0.0002 0.0001 60.825 0.9009 7903

Table 4.12: EBA – No VIF Restriction
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Generalised Linear Models

I reestimate the main EBA model with logit and probit models. Nevertheless, logistic and probit

regressions may have issues of complete separation, that is, some covariates may perfectly separate

zeros and ones in the outcome variable. In that case, the estimations fail to converge. We address

this problem by adding a weak prior to the regression coe�cients as suggested by Gelman et al.

(2008).9 First, we scaled the non-binary variables to have a mean of 0 and a standard deviation of 0.5,

then added a Cauchy distribution with centre 0 and scale 2.5. �e probit regressions use a scale of

2.5 × 1.6, which is also recommended by the authors (Gelman and Su 2016). Ethnic diversity and

ongoing civil wars come close to meeting our threshold values (0.88 and 0.84, respectively), and civil

war onset (UCDP) has a higher percentage of signi�cant coe�cients and a high CDF(0) area than in

the linear probability models.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita 0.434 0.223 75.570 0.9267 50000

Additional variables

UCDP civil war onset 1.308 0.530 87.261 0.9742 4506

Post-Cold War years -0.911 0.428 70.456 0.9448 7890

Previous riots 0.744 0.38 66.778 0.9383 7805

Polity IV squared -0.015 0.008 68.038 0.9285 7975

Table 4.13: EBA – Logistic Regression

9I thank Mark Bell for sharing R code to estimate penalised-likelihood models.
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Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.1924 0.1031 76.118 0.9258 50000

Additional variables

UCDP civil war onset 0.6422 0.2582 89.225 0.9772 4501

Previous riots 0.3367 0.1743 71.813 0.9436 7851

Post-Cold War years -0.3709 0.1830 71.465 0.9404 7836

Polity IV squared -0.0061 0.0032 70.155 0.9315 7931

Table 4.14: EBA – Probit Regression
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Mass Killings in and a�er the Cold War

I also test the heterogeneity of the �ndings by running one model including only the Cold War years

(1945–1991) and another with the post-Cold War period (1991–2013). �e results vary in both periods,

and there is no overlap between signi�cant variables.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Cold War Period

Log GDP per capita -0.018 0.009 83.204 0.9678 50000

Previous riots 0.022 0.014 62.457 0.9031 8278

Post-Cold War Period

Ethnic war onset -0.024 0.011 89.608 0.9823 4850

Coup d’état -0.022 0.011 89.200 0.9822 8602

Territory aims -0.027 0.014 81.083 0.9653 8775

Displaced Population -0.048 0.027 58.689 0.9392 8695

Table 4.15: EBA – Mass Killings in and a�er the Cold War Period (Robust Variables Only)
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Mass Killings during Peacetime

I have also tested whether the main EBA �ndings di�er if the sample is restricted to peace years.

�at is, all observations denoted as 1 in the three con�ict indicators mentioned above (UCDP, COW,

Cederman et al.) were removed from the dataset. �e results are similar to the main model, yet “wars

fought over territory” was removed from the EBA due to multicollinearity issues. Moreover, two

other variables (total ba�le deaths and presence of guerrillas) have very small sample sizes and their

estimates were should not be interpreted as reliable. �e signi�cant variables are presented below.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

Base variables

Log GDP per capita -0.004 0.002 86.608 0.9748 26620

Additional variables

Post Cold War -0.011 0.003 100 0.9984 5459

Polity IV squared -1.63e-04 6.27e-05 98.309 0.9914 5441

Discriminated pop 0.009 0.005 92.516 0.9750 5438

Mountainous terrain 0.002 0.001 74.171 0.9718 5428

Population -9.89e-09 6.20e-09 61.776 0.9280 5418

Previous riots 0.008 0.006 28.315 0.9119 5400

Table 4.16: EBA – Peace Years
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4.6.4 Har�’s Genocides and Politicides Data

Main Model

In this section, we evaluate the models presented above with a measure of genocide and politicide

by Har� (2003). �e results show important contrasts with the previous analyses. First, no variable

appear as signi�cant in the main extreme bounds analysis. �at is, none of the 36 predictors reached

the threshold of CDF(0) > 0.9. �us, we do not present a table with the results. �e variable that

came closest to signi�cance was a dummy indicator of coups d’état, which has a CDF(0) of 0.897 and,

as expected, is positively correlated with the onset of genocides. �e distribution of the covariates’

coe�cients are available in �gure 4.22.
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Genocides and Politicides during Civil Wars

Next, we evaluate what covariates are robust when considering only genocides and politicide that

occur during civil con�icts. Post-Cold War years again appear as a signi�cant variable and with

a negative sign; excluded population also has a negative impact on the outcome variable in two

analyses.

Variable Avg. β Avg. SE % Sig. CDF(0) Models

UCDP data

Excluded population -0.037 0.022 64.524 0.9176 8758

COW data

Excluded population -0.057 0.031 65.703 0.9570 8820

Discriminated population -0.050 0.029 53.850 0.9367 8767

Post-Cold War years -0.019 0.013 42.531 0.9203 8904

Cederman et al. data

Assassination dummy -0.009 0.006 47.723 0.9232 8828

Table 4.17: EBA – Genocides/Politicides
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4.6.5 Random Forest

Main Model

We employed the H2O machine learning platform (�e H2O.ai Team 2017) to estimate the models.

H20 is open-source, optimised for big data and estimates a large number of models with only a few

lines of code. We run the algorithms on 75% of our dataset, and use the remaining 25% as a validation

set. �at is, we use a percentage of the data to assess the main model’s accuracy.10 Our measure of

accuracy is the area under the curve (AUC). All models score well in that regard, and measures of

about 0.8 accuracy in our validation sample are common.

�e next two plots show the results of the main random forest models.

Real GDP

Total trade

Polity IV

Population

Military expenditure

Military personnel

Trade dependence

% Urban pop.

Log GDP per capita

Years mass killing

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.26: Variable Importance – Main Model

10For more information about training and validation samples, please refer to
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/algo-params/validation frame.html.
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Mass Killings During Civil Wars

�e following graphs display the most important predictors of mass killings when we restrict our

sample to cases that occur during civil wars. As we note in section 4.6.3, we employ three di�erent

measures of civil con�icts. �e �rst one is provided by the Uppsala Con�ict Data Program (Allansson

et al. 2017; Gleditsch et al. 2002), the second is o�ered by the Correlates of War (Sarkees and Wayman

2010), and a third indicating the onset of ethnic con�ict as coded by Cederman et al. (2010).

Real GDP

Military personnel

Population

Military expenditure

Total trade

Log GDP per capita

CINC

Years mass killing

Trade dependence

% Urban pop.

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.28: Variable Importance – Mass Killings during Civil Wars (UCDP Data)
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Polarisation
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Excluded population

% Urban
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Figure 4.30: Variable Importance – Mass Killings during Civil Wars (COW Data)
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Log GDP per capita
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Years mass killing
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Trade dependence
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Figure 4.32: Variable Importance – Mass Killings during Ethnic Civil Wars (Cederman et al. Data)
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Alternative Random Seeds

As random forests themselves are an approximation to a number of possible parameter combinations,

changes in seed numbers may in�uence the model output. �us, we start the main model with two

di�erent random seed numbers to check if the results are robust.11 �e main �ndings hold well;

although variable importance changes from one model to another, the most signi�cant variables

appear repeatedly in the estimations. �e marginal plots also show that the e�ect of the independent

variables remain roughly similar despite the nonlinearities. �e graphs below display the ten most

signi�cant predictors of mass killings and their respective partial dependence plots.

Total trade

Real GDP

CINC

Population

Military personnel

Military expenditure

Years mass killing

% Urban pop.

Trade dependence

Log GDP per capita

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.34: Variable Importance – Seed 4363

11�e numbers were generated at https://www.random.org/.

128

https://www.random.org/


0.
01

25

0.
01

50

0.
01

75

0.
02

00

0.
02

25

6
8

10
12

Lo
g 

G
D

P
 p

er
 c

ap
ita

Mean response 0.
01

6

0.
01

7

0.
01

8

0.
01

9 0e
+

00
2e

+
08

4e
+

08
6e

+
08

M
ili

ta
ry

 e
xp

en
di

tu
re

Mean response 0.
01

50

0.
01

75

0.
02

00

0.
02

25

0.
02

50

0.
0

0.
1

0.
2

0.
3

0.
4

C
IN

C

Mean response

0.
02

1

0.
02

4

0.
02

7

0
5

10
15

20

Tr
ad

e 
de

pe
nd

en
ce

Mean response 0.
01

5

0.
02

0

0.
02

5

0.
03

0

0
40

00
80

00
12

00
0

M
ili

ta
ry

 p
er

so
nn

el

Mean response 0.
01

6

0.
01

7

0.
01

8

0.
01

9 0e
+

00
5e

+
06

1e
+

07

R
ea

l G
D

P

Mean response

0.
01

4

0.
01

6

0.
01

8

0.
0

0.
5

1.
0

1.
5

%
 U

rb
an

 p
op

.

Mean response 0.
01

6

0.
01

8

0.
02

0

0.
02

2 0e
+

00
5e

+
05

1e
+

06

P
op

ul
at

io
n

Mean response 0.
01

6

0.
01

8

0.
02

0

0.
02

2

0.
02

4 0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

To
ta

l t
ra

de
Mean response

0.
01

25

0.
01

50

0.
01

75

0.
02

00

0.
02

25

0
20

40
60

Ye
ar

s 
m

as
s 

ki
lli

ng

Mean response

Fi
gu

re
4.

35
:P

ar
tia

lD
ep

en
de

nc
e

Pl
ot

–
Se

ed
43

63

129



Total trade

Real GDP

Military personnel

CINC

Population

Military expenditure

% Urban pop.

Years mass killing

Trade dependence

Log GDP per capita

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.36: Variable Importance – Seed 7015
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Mass Killings in and a�er the Cold War

�is last set of models splits the sample into two periods, the Cold War years and the post-Cold War

years. A similar set of variables are signi�cant in both periods, and most of them also appear in the

main model shown above.

Population

Trade dependence

Polarisation

Previous riots

Years mass killing

Ethnic frac.

Excluded pop

Mountainous terrain

Log GDP per capita

Polity IV

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.38: Variable Importance – Cold War Period
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Trade dependence

Military expenditures

Polity IV

Military personnel

Mountainous terrain

Polarisation

Log GDP per capita

Years mass killing

Total battle deaths

% Urban

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.40: Variable Importance – Post-Cold War Period
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Mass Killings in Peacetime

�e �gures below describe the results of the random forest estimations when I restrict the sample to

only peace years. All cases coded as con�icts by the UCDP, COW or Cederman and his colleagues

were removed from the data, and I estimate the model only with observations where the three sourced

coded as peace years. �e results are almost identical to the main model, with only small variations

in the importance of the explanator variables.
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CINC

Military expenditure

% Urban pop.

Real GDP

Trade dependence

Population
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Log GDP per capita
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Figure 4.42: Variable Importance – Mass Killings during Peacetime
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4.6.6 Har�’s Genocides and Politicides Data

Main Model

We replicate the same analysis using Har�’s 2003 data. �e results are comparable to the ones

presented above. A similar set of variables appear in this model.

Population

Polity IV

Real GDP

Trade dependence

Log GDP per capita

Total trade

Military expenditure

Military personnel

% Urban

CINC

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.44: Variable Importance – Genocides and Politicides
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Genocides and Politicides during Civil Wars

Lastly, the graphs below show the results of the grid search when we only include civil war years.

Military expenditure

Population

Regime change

Physical integrity

Total battle deaths

Trade dependence

% Urban

Years since genocide

Log GDP per capita

Military personnel

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.46: Variable Importance – Genocides and Politicides during Civil Wars (UCDP Data)
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Trade dependence

Real GDP

Population

CINC

Total trade

Total battle deaths

Log GDP per capita

% Urban

Years since genocide
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Figure 4.48: Variable Importance – Genocides and Politicides during Civil Wars (COW Data)
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Figure 4.50: Variable Importance – Genocides and Politicides during Civil Wars (Cederman et al.
Data)
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4.6.7 R Code

�e R code below replicates all statistical analyses and graphs included in this chapter.

#######################
### Data Wrangling ###
######################

### Load required packages
if (!require("tidyverse")) {

install.packages("tidyverse")
}
if (!require("data.table")) {

install.packages("data.table")
}
if (!require("ExtremeBounds")) {

install.packages("ExtremeBounds")
}
if (!require("sandwich")) {

install.packages("sandwich")
}
if (!require("h2o")) {
install.packages("h2o")

}
if (!require("arm")) {

install.packages("arm")
}

### Load data
setwd("˜/Documents/GitHub/mass-killings-8k/") # set the working directory
df <- haven::read_dta("data/base variables.dta") %>% setDT()

### Select and lag variables
sd.cols <- c("UCDPcivilwarstart", "UCDPcivilwarongoing", "COWcivilwarstart",

"COWcivilwarongoing", "ethnowarstart", "ethnowarongoing",
"assdummy", "demdummy", "elf", "lmtnest", "pop", "realgdp",
"rgdppc", "polity2", "exclpop", "discpop", "polrqnew",
"poltrqnew", "egiptpolrqnew", "egippolrqnew", "discrim",
"elf2", "interstatewar", "milex", "milper", "percentpopurban",
"postcoldwar", "coupdummy", "riotdummy", "territoryaims",
"totaltrade", "tradedependence", "militias", "physint", "cinc",
"totalbeaths", "guerrilladummy", "change", "sf", "regtrans")

df1 <- cbind(df, df[, shift(.SD, 1, give.names = TRUE),
by = ccode, .SDcols = sd.cols])

# Remove the second `ccode` variable
df1 <- as.data.frame(df1[, -c(70)])

# Add new variables
df1$logrgdppc_lag_1 <- log(df1$rgdppc_lag_1)
df1$polity2sq_lag_1 <- df1$polity2_lag_1ˆ2
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# UCDP civil war == 1
df.ucdp <- df1 %>% filter(UCDPcivilwarongoing == 1)
df.ucdp <- as.data.frame(df.ucdp[, c(1:7, 76:111)])
names(df.ucdp) <- sub("_.*","", names(df.ucdp))

# COW civil war == 1
df.cow <- df1 %>% filter(COWcivilwarongoing == 1)
df.cow <- as.data.frame(df.cow[, c(1:7, 76:111)])
names(df.cow) <- sub("_.*","", names(df.cow))

# Ethnic civil war == 1
df.eth <- df1 %>% filter(ethnowarongoing == 1)
df.eth <- as.data.frame(df.eth[, c(1:7, 75:110)])
names(df.eth) <- sub("_.*","", names(df.eth))

# Regular model
df2 <- as.data.frame(df1[, c(1:7, 70:111)])
names(df2) <- sub("_.*","", names(df2))

# Cold War period
df2.coldwar <- df2 %>% filter(year <= 1991)
df2.postcoldwar <- df2 %>% filter(year > 1991)

# Countries without civil wars
df.nowar <- df2 %>% filter(COWcivilwarongoing == 0 & UCDPcivilwarongoing == 0, ethnowarongoing == 0)

#### Same procedure with the uamkstart variable

# Preparing the dataset
df3 <- haven::read_dta("data/uamkstart.dta") %>% setDT()
sd.cols <- c("UCDPcivilwarstart", "UCDPcivilwarongoing", "COWcivilwarstart",

"COWcivilwarongoing", "ethnowarstart", "ethnowarongoing",
"assdummy", "demdummy", "elf", "lmtnest", "pop", "realgdp",
"rgdppc", "polity2", "exclpop", "discpop", "polrqnew",
"poltrqnew", "egiptpolrqnew", "egippolrqnew", "discrim",
"elf2", "interstatewar", "milex", "milper", "percentpopurban",
"postcoldwar", "coupdummy", "riotdummy", "territoryaims",
"totaltrade", "tradedependence", "militias", "physint", "cinc",
"totalbeaths", "change", "guerrilladummy", "sf", "regtrans")

df4 <- cbind(df3, df3[, shift(.SD, 1, give.names = TRUE),
by = ccode, .SDcols = sd.cols])

# Remove the second `ccode` variable
df4 <- as.data.frame(df4[, -c(75)])

# Add new variables
df4$logrgdppc_lag_1 <- log(df4$rgdppc_lag_1)
df4$polity2sq_lag_1 <- df4$polity2_lag_1ˆ2

# Renaming variables
df5 <- as.data.frame(df4[, c(1:4, 72:116)])
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names(df5) <- sub("_.*","", names(df5))

# UCDP civil war == 1
df.ucdp2 <- df5 %>% filter(UCDPcivilwarongoing == 1)
df.ucdp2 <- as.data.frame(df.ucdp2[, c(1:7, 14:49)])
names(df.ucdp2) <- sub("_.*","", names(df.ucdp2))

# COW civil war == 1
df.cow2 <- df5 %>% filter(COWcivilwarongoing == 1)
df.cow2 <- as.data.frame(df.cow2[, c(1:7, 14:49)])
names(df.cow2) <- sub("_.*","", names(df.cow2))

# Ethnic civil war == 1
df.eth2 <- df5 %>% filter(ethnowarongoing == 1)
df.eth2 <- as.data.frame(df.eth2[, c(1:7, 14:49)])
names(df.eth2) <- sub("_.*","", names(df.eth2))

# Cold War period
df5.coldwar <- df5 %>% filter(year <= 1991)
df5.postcoldwar <- df5 %>% filter(year > 1991)

################################
### Extreme bounds analysis ###
################################

# Classifying a few variables as mutually exclusive variables.
# "Change" was removed because it was correlated at 0.99 with "regtrans".
# don't forget to add CINC
free.variables <- c("logrgdppc", "polity2", "mksyr")
civilwar.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart")

doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",
"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "milper", "milex",
"pop", "totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"postcoldwar", "lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

# Cluster-robust standard errors
se.clustered.robust <- function(model.object){

model.fit <- vcovHC(model.object, type = "HC", cluster = "country")
out <- sqrt(diag(model.fit))
return(out)

}

### Models
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# Main
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, vif = 7, level = 0.9,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk.rda")

# 3 vars at a time
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:3,
data = df2, vif = 7, level = 0.9, draws = 10000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-3vars.rda")

# 5 vars at a time
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:5,
data = df2, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-5vars.rda")

# Low VIF
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, vif = 2.5, level = 0.9,
draws = 50000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-low-vif.rda")

# High VIF
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, vif = 10, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-high-vif.rda")

# No VIF
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, level = 0.9, draws = 50000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-no-vif.rda")

# Logit
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
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data = df2, level = 0.9, vif = 7, draws = 50000,
reg.fun = bayesglm, family = binomial(link = "logit"))

save(m1, file = "˜/Documents/mk/mk-logit.rda")

# Probit
m1 <- eba(y = "MKstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, level = 0.9, vif = 7, draws = 50000,
reg.fun = bayesglm, family = binomial(link="probit"))

save(m1, file = "˜/Documents/mk/mk-probit.rda")

# CINC
doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"postcoldwar", "lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2, vif = 7, level = 0.9,
se.fun = se.clustered.robust, draws = 50000)

save(m1, file = "˜/Documents/mk/mk-cinc.rda")

# Cold War Period
civilwar.variables <- c("UCDPcivilwarstart","COWcivilwarstart","ethnowarstart")
m1 <- doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2.coldwar, vif = 7, level = 0.9,
se.fun = se.clustered.robust, draws = 50000)

save(m1, file = "data/mk-coldwar.rda")
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# Post-Cold War
m1 <- doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df2.postcoldwar, vif = 7, level = 0.9,
se.fun = se.clustered.robust, draws = 50000)

save(m1, file = "data/mk-postcoldwar.rda")

## Countries with no civil wars
free.variables <- c("logrgdppc", "polity2", "mksyr")
civilwar.variables <- c("UCDPcivilwarstart", "COWcivilwarstart",

"ethnowarstart")
m1 <- doubtful.variables <- c("UCDPcivilwarstart","COWcivilwarstart",

"ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths","guerrilladummy",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"postcoldwar", "lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df.nowar, vif = 7, level = 0.9,
se.fun = se.clustered.robust, draws = 50000)

save(m1, file = "data/mk-nowar.rda")

### Ongoing Civil Wars

# UCDPcivilwarongoing == 1
doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",

"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")
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m1 <- eba(y = "MKstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.ucdp, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-ucdp.rda")

# COWcivilwarongoing == 1
doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",

"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.cow, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-cow.rda")

# Ethnic conflict == 1
doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",

"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")

m1 <- eba(y = "MKstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.eth, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/mk-eth.rda")

# Main
free.variables <- c("logrgdppc", "polity2", "uamkyr")
civilwar.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart")

doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",
"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "milper", "milex",
"pop", "totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"postcoldwar", "lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
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"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "uamkstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, vif = 7, level = 0.9,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk.rda")

# 3 vars at a time
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:3,
data = df5, vif = 7, level = 0.9,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-3vars.rda")

# 5 vars at a time
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:5,
data = df5, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-5vars.rda")

# Low VIF
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, vif = 2.5, level = 0.9, draws = 50000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-low-vif.rda")

# High VIF
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, vif = 10, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-high-vif.rda")

# No VIF
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, level = 0.9, draws = 50000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-no-vif.rda")

# Logit
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
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data = df5, level = 0.9, vif = 7, draws = 50000,
reg.fun = bayesglm, family = binomial(link = "logit"))

save(m1, file = "˜/Documents/mk/uamk-logit.rda")

# Probit
m1 <- eba(y = "uamkstart", free = free.variables,

exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, level = 0.9, vif = 7, draws = 50000,
reg.fun = bayesglm, family = binomial(link="probit"))

save(m1, file = "˜/Documents/mk/uamk-probit.rda")

# CINC
doubtful.variables <- c("UCDPcivilwarongoing", "UCDPcivilwarstart",

"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"postcoldwar", "lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew",
"polity2sq")

m1 <- eba(y = "uamkstart", free = free.variables,
exclusive = list(civilwar.variables),
doubtful = doubtful.variables, k = 0:4,
data = df5, vif = 7, level = 0.9, draws = 50000,
se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-cinc.rda")

### Ongoing Civil Wars

# UCDPcivilwarongoing == 1
df.ucdp2 <- df5 %>% filter(UCDPcivilwarongoing == 1)
doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",

"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")

m1 <- eba(y = "uamkstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.ucdp2, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-ucdp.rda")

# COWcivilwarongoing == 1
df.cow2 <- df5 %>% filter(COWcivilwarongoing == 1)
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doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",
"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")

m1 <- eba(y = "uamkstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.cow2, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-cow.rda")

# Ethnic conflict == 1
df.eth2 <- df5 %>% filter(ethnowarongoing == 1)
doubtful.variables <- c("assdummy", "totaltrade", "tradedependence",

"milper", "milex", "pop", "totalbeaths",
"guerrilladummy", "regtrans", "riotdummy",
"territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop",
"discpop", "elf", "polrqnew", "egippolrqnew",
"poltrqnew", "egiptpolrqnew", "polity2sq")

m1 <- eba(y = "uamkstart", free = free.variables,
doubtful = doubtful.variables, k = 0:4,
data = df.eth2, vif = 7, draws = 50000,
level = 0.9, se.fun = se.clustered.robust)

save(m1, file = "˜/Documents/mk/uamk-eth.rda")

######################
### Random forests ###
######################

# Load required package
library(h2o)
h2o.init(nthreads = -1, max_mem_size = "6G") # change min RAM size if necessary

df2a <- as.h2o(df2)

df2a$MKstart <- as.factor(df2a$MKstart) #encode the binary response as a factor
h2o.levels(df2a$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2a,

ratios = 0.75, # train, validation
seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")
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y <- "MKstart"
x <- setdiff(names(df2), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

##########################
### Running the models ###
##########################

rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,
validation_frame = valid, grid_id = "grid01",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

# Saving the most accurate model
rf.grid <- h2o.getGrid(grid_id = "grid01",

sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
h2o.varimp(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

# Second model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf01b",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 4363))

# Saving the most accurate model
rf.grid <- h2o.getGrid(grid_id = "gridrf01b",

sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
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varimp <- as.data.frame(h2o.varimp(rf2))

# Third model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf01c",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 7015))

# Saving the most accurate model
rf.grid <- h2o.getGrid(grid_id = "gridrf01c",

sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

##########################
### Ongoing civil wars ###
##########################

# UCDP == 1
df.ucdpa <- as.h2o(df.ucdp)

df.ucdpa$MKstart <- as.factor(df.ucdpa$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.ucdpa$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.ucdpa,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.ucdp), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "grid02",
hyper_params = list(ntrees = c(256, 512, 1024),
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max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "grid02",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
h2o.varimp_plot(rf2)

# COW == 1
df.cowa <- as.h2o(df.cow)

df.cowa$MKstart <- as.factor(df.cowa$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.cowa$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.cowa,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.ucdp), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf03",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf03",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
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summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

# Ethnic conflict == 1
df.etha <- as.h2o(df.eth)

df.etha$MKstart <- as.factor(df.etha$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.etha$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.etha,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.eth), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf04",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf04",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

#######################
### Cold War Period ###
#######################
df2.coldwar2 <- as.h2o(df2.coldwar)

df2.coldwar2$MKstart <- as.factor(df2.coldwar2$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2.coldwar2$MKstart)
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# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2.coldwar2,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.eth), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,
validation_frame = valid, grid_id = "gridrf04cw",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf04cw",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)

############################
### Post Cold War Period ###
############################
df2.postcoldwar2 <- as.h2o(df2.postcoldwar)

df2.postcoldwar2$MKstart <- as.factor(df2.postcoldwar2$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2.postcoldwar2$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2.postcoldwar2,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.eth), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))
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rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,
validation_frame = valid, grid_id = "gridrf04pcw",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf04pcw",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)

########################
### Only Peace Years ###
########################
df2.nowar <- as.h2o(df.nowar)

df2.nowar$MKstart <- as.factor(df2.nowar$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2.nowar$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2.nowar,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.eth), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,
validation_frame = valid, grid_id = "gridrf04nowar",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf04nowar",
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sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)

###########################################################
## Same models with Genocide/Politicide variable (Harf) ###
###########################################################
df5a <- as.h2o(df5)

df5a$uamkstart <- as.factor(df5a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df5a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df5a,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df5), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

# Main model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf05",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

# Saving the most accurate model
rf.grid <- h2o.getGrid(grid_id = "gridrf05",

sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

# UCDP == 1
df.ucdp2a <- as.h2o(df.ucdp2)
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df.ucdp2a$uamkstart <- as.factor(df.ucdp2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.ucdp2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.ucdp2a,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df.ucdp2), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf06",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf06",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

# COW == 1
df.cow2a <- as.h2o(df.cow2)

df.cow2a$uamkstart <- as.factor(df.cow2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.cow2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.cow2a,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")
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y <- "uamkstart"
x <- setdiff(names(df.cow2), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf07",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf07",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

# Ethnic conflict == 1
df.eth2a <- as.h2o(df.eth2)

df.eth2a$uamkstart <- as.factor(df.eth2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.eth2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.eth2a,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df.eth2), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

# Running the model
rf <- h2o.grid("randomForest", x = x, y = y, training_frame = train,

validation_frame = valid, grid_id = "gridrf08",
hyper_params = list(ntrees = c(256, 512, 1024),

max_depth = c(10, 20, 40),
mtries = c(5, 6, 7),
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balance_classes = c(TRUE, FALSE),
sample_rate = c(0.5, 0.632, 0.95),
col_sample_rate_per_tree = c(0.5, 0.9, 1.0),
histogram_type = "RoundRobin",
seed = 1234))

rf.grid <- h2o.getGrid(grid_id = "gridrf08",
sort_by = "auc",
decreasing = TRUE)

rf2 <- h2o.getModel(rf.grid@model_ids[[1]])
h2o.saveModel(rf2, path = "/Users/politicaltheory/Documents/GitHub/mass-killings-8k/data/")
summary(rf2)
varimp <- as.data.frame(h2o.varimp(rf2))
h2o.varimp_plot(rf2)

##############
### Graphs ###
##############

################
# EBA Graphs ###
################

# Main models
hist(m1, variables = c("logrgdppc", "polity2", "polity2sq", "uamkyr",

"UCDPcivilwarongoing",
"UCDPcivilwarstart", "COWcivilwarongoing",
"COWcivilwarstart", "ethnowarongoing", "ethnowarstart",
"assdummy", "totaltrade", "tradedependence", "milper",
"milex","pop", "totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop", "discpop",
"elf", "polrqnew", "egippolrqnew", "poltrqnew",
"egiptpolrqnew"),

main = c("Log GDP capita", "Polity IV", "Polity IVˆ2", "Years last genocide",
"UCDP ongoing", "UCDP onset", "COW ongoing", "COW onset",
"Ethnic ongoing", "Ethnic onset", "Assassination", "Total trade",

"Trade dependence", "Military personnel", "Military expenditure", "Population",
"Total deaths", "Guerrilla", "Regime transition", "Riots",
"Territory Aims", "Militias", "Physical integrity", "% Urban",
"Coups", "Post-Cold War", "Mountainous terrain", "Real GDP",
"Discrimination", "Excl pop", "Discrim pop", "ELF", "Groups/Eth relevant",
"Group/Tot pop", "Inc groups/Eth relevant", "Inc groups/Tot pop"),

density.col = "black", mu.col = "red3")

# Round
m1$coefficients$mean$beta2 <- round(as.numeric(m1$coefficients$mean$beta),4)
m1$coefficients$mean$se2 <- round(as.numeric(m1$coefficients$mean$se),4)
m1$coefficients$mean

## Models including only mass killings during civil wars
hist(m1, variables = c("logrgdppc", "polity2", "polity2sq", "uamkyr",
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"assdummy", "totaltrade", "tradedependence", "milper",
"milex","pop", "totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias", "physint",
"percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim", "exclpop", "discpop",
"elf", "polrqnew", "egippolrqnew", "poltrqnew",
"egiptpolrqnew"),

main = c("Log GDP capita", "Polity IV", "Polity IVˆ2", "Years last genocide",
"Assassination", "Total trade",

"Trade dependence", "Military personnel", "Military expenditure", "Population",
"Total deaths", "Guerrilla", "Regime transition", "Riots",
"Territory Aims", "Militias", "Physical integrity", "% Urban",
"Coups", "Post-Cold War", "Mountainous terrain", "Real GDP",
"Discrimination", "Excl pop", "Discrim pop", "ELF", "Groups/Eth relevant",
"Groups/Tot pop", "Inc groups/Eth relevant", "Inc groups/Tot pop"),

density.col = "black", mu.col = "red3")

# Cold War and Post-Cold War Periods
hist(m1, variables = c("logrgdppc", "polity2", "polity2sq", "UCDPcivilwarongoing",

"UCDPcivilwarstart",
"COWcivilwarongoing", "COWcivilwarstart",
"ethnowarongoing", "ethnowarstart", "assdummy",
"totaltrade", "tradedependence", "cinc",
"totalbeaths", "guerrilladummy", "regtrans",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy",
"lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew"),

main = c("Log GDP capita", "Polity IV", "Polity IVˆ2", "Years mass killings",
"UCDP ongoing", "UCDP onset", "COW ongoing", "COW onset",
"Ethnic ongoing", "Ethnic onset", "Assassination", "Total trade",
"Trade dependence", "CINC",
"Total deaths", "Guerrilla", "Regime transition", "Riots",
"Territory Aims", "Militias", "Physical integrity", "% Urban",
"Coups", "Mountainous terrain", "Real GDP",
"Discrimination", "Excl pop", "Discrim pop", "ELF", "Groups/Eth relevant",
"Group/Tot pop", "Inc groups/Eth relevant", "Inc groups/Tot pop"),

density.col = "black", mu.col = "red3")

#### Peacetime
hist(m1, variables = c("logrgdppc", "polity2", "polity2sq", "mksyr", "assdummy",

"totaltrade", "tradedependence", "milper", "milex", "pop",
"totalbeaths", "guerrilladummy",
"riotdummy", "territoryaims", "militias",
"physint", "percentpopurban", "coupdummy", "postcoldwar",
"lmtnest", "realgdp", "discrim",
"exclpop", "discpop", "elf", "polrqnew",
"egippolrqnew", "poltrqnew", "egiptpolrqnew"),

main = c("Log GDP capita", "Polity IV", "Polity IVˆ2", "Years mass killings","Assassination", "Total trade",
"Trade dependence", "Military Personnel", "Military Expenditure", "Population",

"Total deaths", "Guerrilla", "Previous riots",
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"Territory Aims", "Militias", "Physical integrity", "% Urban",
"Coups", "Post-Cold War", "Mountainous terrain", "Real GDP",
"Discrimination", "Excl pop", "Discrim pop", "ELF", "Groups/Eth relevant",
"Group/Tot pop", "Inc groups/Eth relevant", "Inc groups/Tot pop"),

density.col = "black", mu.col = "red3")

######################
### Random forests ###
######################

# Main model
library(h2o)
h2o.init(nthreads = -1, max_mem_size = "6G")
a <- h2o.loadModel("grid01_model_197")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

df2a <- as.h2o(df2)

df2a$MKstart <- as.factor(df2a$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2a$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2a,

ratios = 0.75, # 70%, 15%, 15%
seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df2), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Variable Importance
par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Real GDP",

"Total trade",
"Polity IV",
"Population",
"Military expenditure",
"Military personnel",
"Trade dependence",
"% Urban pop.",
"Log GDP per capita",
"Years mass killing"),

main = "")

# Partial dependence plots

167



mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p1 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +

xlab("Years mass killing") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p2 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +

xlab("Log GDP per capita") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p3 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +

theme_classic() + xlab("% Urban pop.") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p4 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +

theme_classic() + xlab("Trade dependence") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p5 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +

xlab("Military personnel") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p6 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p7 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +

xlab("Population") + ylab("Mean response")

polity2 <- h2o.partialPlot(object = a, data = train, cols = c("polity2"), plot_stddev = F)
p8 <- qplot(polity2$polity2, polity2$mean_response) + geom_line() + theme_classic() +
xlab("Polity IV") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p9 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +
xlab("Total trade") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p10 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() + theme_classic() +
xlab("Real GDP") + ylab("Mean response")

# Multiplot function: http://www.cookbook-r.com/Graphs/Multiple_graphs_on_one_page_(ggplot2)/
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) {

library(grid)

# Make a list from the ... arguments and plotlist
plots <- c(list(...), plotlist)

numPlots = length(plots)

# If layout is NULL, then use 'cols' to determine layout
if (is.null(layout)) {

# Make the panel
# ncol: Number of columns of plots
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# nrow: Number of rows needed, calculated from # of cols
layout <- matrix(seq(1, cols * ceiling(numPlots/cols)),

ncol = cols, nrow = ceiling(numPlots/cols))
}

if (numPlots==1) {
print(plots[[1]])

} else {
# Set up the page
grid.newpage()
pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout))))

# Make each plot, in the correct location
for (i in 1:numPlots) {

# Get the i,j matrix positions of the regions that contain this subplot
matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE))

print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row,
layout.pos.col = matchidx$col))

}
}

}

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.1x5.14 in

#######################################
### Mass killings during civil wars ###
#######################################

# UCDP == 1
a <- h2o.loadModel("grid02_model_349")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Real GDP",

"Military personnel",
"Population",
"Military expenditure",
"Total trade",
"Log GDP per capita",
"CINC",
"Years mass killing",
"Trade dependence",
"% Urban pop."),

main = "")

df.ucdpa <- as.h2o(df.ucdp)

df.ucdpa$MKstart <- as.factor(df.ucdpa$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.ucdpa$MKstart)
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# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.ucdpa,

ratios = 0.75, # 70%, 15%, 15%
seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.ucdp), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p1 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +

theme_classic() + xlab("% Urban") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p2 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p3 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years since mass killing") + ylab("Mean response")

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p4 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() + theme_classic() +
xlab("CINC") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p5 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +

xlab("Log GDP per capita") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p6 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +

xlab("Total trade") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p7 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p8 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +
xlab("Population") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p9 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p10 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() + theme_classic() +
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xlab("Real GDP") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

# COW == 1
a <- h2o.loadModel("gridrf03_model_41")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Polarisation",

"Military expenditure",
"Military personnel",
"Excluded population",
"% Urban",
"Previous riots",
"Total battle deaths",
"Log GDP per capita",
"Years mass killing",
"Physical integrity"),

main = "")

df.cowa <- as.h2o(df.cow)

df.cowa$MKstart <- as.factor(df.cowa$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.cowa$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.cowa,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.ucdp), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

physint <- h2o.partialPlot(object = a, data = train, cols = c("physint"), plot_stddev = F)
p1 <- qplot(physint$physint, physint$mean_response) + geom_line() + theme_classic() +

xlab("Physical integrity") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p2 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p3 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
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xlab("Log GDP per capita") + ylab("Mean response")

totalbeaths <- h2o.partialPlot(object = a, data = train, cols = c("totalbeaths"), plot_stddev = F)
p4 <- qplot(totalbeaths$totalbeaths, totalbeaths$mean_response) + geom_line() + theme_classic() +

xlab("Total battle deaths") + ylab("Mean response")

riotdummy <- h2o.partialPlot(object = a, data = train, cols = c("riotdummy"), plot_stddev = F)
p5 <- qplot(riotdummy$riotdummy, riotdummy$mean_response) + geom_line() + theme_classic() +

xlab("Previous riots") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p6 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

exclpop <- h2o.partialPlot(object = a, data = train, cols = c("exclpop"), plot_stddev = F)
p7 <- qplot(exclpop$exclpop, exclpop$mean_response) + geom_line() +
theme_classic() + xlab("Excluded population") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p8 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p9 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

egiptpolrqnew <- h2o.partialPlot(object = a, data = train, cols = c("egiptpolrqnew"), plot_stddev = F)
p10 <- qplot(egiptpolrqnew$egiptpolrqnew, egiptpolrqnew$mean_response) + geom_line() + theme_classic() +
xlab("Polarisation") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

# Ethnic conflict == 1
a <- h2o.loadModel("gridrf04_model_52")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Log GDP per capita",

"Democracy",
"Years mass killing",
"Polarisation",
"% Urban",
"Territorial aims",
"Trade dependence",
"Excluded population",
"Military personnel",
"Polity IV"),

main = "")

df.etha <- as.h2o(df.eth)
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df.etha$MKstart <- as.factor(df.etha$MKstart) #encode the binary repsonse as a factor
h2o.levels(df.etha$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.etha,

ratios = 0.75,
seed = 42)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df.ucdp), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

polity2 <- h2o.partialPlot(object = a, data = train, cols = c("polity2"), plot_stddev = F)
p1 <- qplot(polity2$polity2, polity2$mean_response) + geom_line() + theme_classic() +

xlab("Polity IV") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p2 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

exclpop <- h2o.partialPlot(object = a, data = train, cols = c("exclpop"), plot_stddev = F)
p3 <- qplot(exclpop$exclpop, exclpop$mean_response) + geom_line() +
theme_classic() + xlab("Excluded population") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p4 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

territoryaims <- h2o.partialPlot(object = a, data = train, cols = c("territoryaims"), plot_stddev = F)
p5 <- qplot(territoryaims$territoryaims, territoryaims$mean_response) + geom_line() +
theme_classic() + xlab("Territory aims") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p6 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

egiptpolrqnew <- h2o.partialPlot(object = a, data = train, cols = c("egiptpolrqnew"), plot_stddev = F)
p7 <- qplot(egiptpolrqnew$egiptpolrqnew, egiptpolrqnew$mean_response) + geom_line() + theme_classic() +
xlab("Polarisation") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p8 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

demdummy <- h2o.partialPlot(object = a, data = train, cols = c("demdummy"), plot_stddev = F)
p9 <- qplot(demdummy$demdummy, demdummy$mean_response) + geom_line() + theme_classic() +
xlab("Democracy") + ylab("Mean response")
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logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p10 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +

xlab("Log GDP per capita") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

#######################
### Different seeds ###
#######################

## Seed 4363
a <- h2o.loadModel("gridrf01b_model_73")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

df2a <- as.h2o(df2)

df2a$MKstart <- as.factor(df2a$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2a$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2a,

ratios = 0.75, # 70%, 15%, 15%
seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df2), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Variable Importance
par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Total trade",

"Real GDP",
"CINC",
"Population",
"Military personnel",
"Military expenditure",
"Years mass killing",
"% Urban pop.",
"Trade dependence",
"Log GDP per capita"),

main = "")

# Partial dependence plots
logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p1 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
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xlab("Log GDP per capita") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p2 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p3 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban pop.") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p4 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p5 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p6 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p7 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +
xlab("Population") + ylab("Mean response")

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p8 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() + theme_classic() +
xlab("CINC") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p9 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() + theme_classic() +
xlab("Real GDP") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p10 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +
xlab("Total trade") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

## Seed 7015

a <- h2o.loadModel("gridrf01c_model_409")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

df2a <- as.h2o(df2)

df2a$MKstart <- as.factor(df2a$MKstart) #encode the binary repsonse as a factor
h2o.levels(df2a$MKstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df2a,

ratios = 0.75, # 70%, 15%, 15%
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seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "MKstart"
x <- setdiff(names(df2), c(y, "ccode", "year", "rgdppc",

"mksyr2", "mksyr3", "sf", "country",
"elf2", "polity2sq"))

# Variable Importance
par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Total trade",

"Real GDP",
"Military personnel",
"CINC",
"Population",
"Military expenditure",
"% Urban pop.",
"Years mass killing",
"Trade dependence",
"Log GDP per capita"),

main = "")

# Partial dependence plots
logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p1 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p2 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p3 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p4 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban pop.") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p5 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p6 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +
xlab("Population") + ylab("Mean response")
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cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p7 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() + theme_classic() +

xlab("CINC") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p8 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p9 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() + theme_classic() +
xlab("Real GDP") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p10 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +
xlab("Total trade") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

#### Cold War Period
# Variable Importance
a <- h2o.loadModel("data/gridrf04cw_model_100")
va <- h2o.varimp(a)

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Population",

"Trade dependence",
"Polarisation",
"Previous riots",
"Years mass killing",
"Ethnic frac.",
"Excluded pop.",
"Mountainous terrain",
"Log GDP per capita",
"Polity IV"),

main = "")

# Partial dependence plots

polity2 <- h2o.partialPlot(object = a, data = train, cols = c("polity2"), plot_stddev = F)
p1 <- qplot(polity2$polity2, polity2$mean_response) + geom_line() + theme_classic() +
xlab("Polity IV") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p6 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p2 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")
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lmtnest <- h2o.partialPlot(object = a, data = train, cols = c("lmtnest"), plot_stddev = F)
p3 <- qplot(lmtnest$lmtnest, lmtnest$mean_response) + geom_line() +

theme_classic() + xlab("Mountainous terrain") + ylab("Mean response")

exclpop <- h2o.partialPlot(object = a, data = train, cols = c("exclpop"), plot_stddev = F)
p4 <- qplot(exclpop$exclpop, exclpop$mean_response) + geom_line() +
theme_classic() + xlab("Excluded pop.") + ylab("Mean response")

elf <- h2o.partialPlot(object = a, data = train, cols = c("elf"), plot_stddev = F)
p5 <- qplot(elf$elf, elf$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

riotdummy <- h2o.partialPlot(object = a, data = train, cols = c("riotdummy"), plot_stddev = F)
p7 <- qplot(riotdummy$riotdummy, riotdummy$mean_response) + geom_line() + theme_classic() +
xlab("Previous riots") + ylab("Mean response")

polrqnew <- h2o.partialPlot(object = a, data = train, cols = c("polrqnew"), plot_stddev = F)
p8 <- qplot(polrqnew$polrqnew, polrqnew$mean_response) + geom_line() + theme_classic() +
xlab("Polarisation") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p10 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +
xlab("Population") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p9 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() + theme_classic() +
xlab("Trade dependence") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

#### Post-Cold War Period
# Variable Importance
a <- h2o.loadModel("data/gridrf04pcw_model_459")
va <- h2o.varimp(a)

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Trade dependence",

"Military expenditures",
"Polity IV",
"Military personnel",
"Mountainous terrain",
"Polarisation",
"Log GDP per capita",
"Years mass killing",
"Total battle deaths",
"% Urban"),

main = "")

# Partial dependence plots
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polity2 <- h2o.partialPlot(object = a, data = train, cols = c("polity2"), plot_stddev = F)
p8 <- qplot(polity2$polity2, polity2$mean_response) + geom_line() + theme_classic() +

xlab("Polity IV") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p3 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p4 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p1 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

totalbeaths <- h2o.partialPlot(object = a, data = train, cols = c("totalbeaths"), plot_stddev = F)
p2 <- qplot(totalbeaths$totalbeaths,totalbeaths$mean_response) + geom_line() +
theme_classic() + xlab("Total battle deaths") + ylab("Mean response")

egippolrqnew <- h2o.partialPlot(object = a, data = train, cols = c("egippolrqnew"), plot_stddev = F)
p5 <- qplot(egippolrqnew$egippolrqnew, egippolrqnew$mean_response) + geom_line() + theme_classic() +
xlab("Polarisation") + ylab("Mean response")

lmtnest <- h2o.partialPlot(object = a, data = train, cols = c("lmtnest"), plot_stddev = F)
p6 <- qplot(lmtnest$lmtnest, lmtnest$mean_response) + geom_line() +
theme_classic() + xlab("Mountainous terrain") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p7 <- qplot(milper$milper, milper$mean_response) + geom_line() +
theme_classic() + xlab("Military personnel") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p9 <- qplot(milex$milex, milex$mean_response) + geom_line() +
theme_classic() + xlab("Military expenditure") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p10 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() + theme_classic() +
xlab("Trade dependence") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

### Mass Killings during Peacetime

# Variable Importance
a <- h2o.loadModel("data/gridrf04nowar_model_391")
va <- h2o.varimp(a)

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
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names.arg = c("Total trade",
"Military personnel",
"CINC",
"Military expenditure",
"% Urban pop.",
"Real GDP",
"Trade dependence",
"Population",
"Years mass killing",
"Log GDP per capita"),

main = "")

# Partial dependence plots
logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p1 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p4 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p6 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban pop.") + ylab("Mean response")

mksyr <- h2o.partialPlot(object = a, data = train, cols = c("mksyr"), plot_stddev = F)
p2 <- qplot(mksyr$mksyr, mksyr$mean_response) + geom_line() + theme_classic() +
xlab("Years mass killing") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p7 <- qplot(milex$milex, milex$mean_response) + geom_line() + theme_classic() +
xlab("Military expenditure") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p9 <- qplot(milper$milper, milper$mean_response) + geom_line() + theme_classic() +
xlab("Military personnel") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p3 <- qplot(pop$pop, pop$mean_response) + geom_line() + theme_classic() +
xlab("Population") + ylab("Mean response")

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p8 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() + theme_classic() +
xlab("CINC") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p5 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() + theme_classic() +
xlab("Real GDP") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p10 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +
xlab("Total trade") + ylab("Mean response")
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multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

####################################################
### Same models with Genocide/Politicide (Harff) ###
####################################################

# Main model
a <- h2o.loadModel("gridrf05_model_79")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Population",

"Polity IV",
"Real GDP",
"Trade dependence",
"Log GDP per capita",
"Total trade",
"Military expenditure",
"Military personnel",
"% Urban",
"CINC"),

main = "")

df5a <- as.h2o(df5)
df5a$uamkstart <- as.factor(df5a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df5a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df5a,

ratios = 0.75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df5), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p1 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() + theme_classic() +

xlab("CINC") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p2 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
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theme_classic() + xlab("% Urban") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p3 <- qplot(milper$milper, milper$mean_response) + geom_line() +

theme_classic() + xlab("Military personnel") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p4 <- qplot(milex$milex, milex$mean_response) + geom_line() +
theme_classic() + xlab("Military expenditure") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p5 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() + theme_classic() +

xlab("Total trade") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p6 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p7 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p8 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() +

theme_classic() + xlab("Real GDP") + ylab("Mean response")

polity2 <- h2o.partialPlot(object = a, data = train, cols = c("polity2"), plot_stddev = F)
p9 <- qplot(polity2$polity2, polity2$mean_response) + geom_line() +
theme_classic() + xlab("Polity IV") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p10 <- qplot(pop$pop, pop$mean_response) + geom_line() +
theme_classic() + xlab("Population") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

# UCDP == 1
df.ucdp2 <- df5 %>% filter(UCDPcivilwarongoing == 1)
df.ucdp2a <- as.h2o(df.ucdp2)

df.ucdp2a$uamkstart <- as.factor(df.ucdp2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.ucdp2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.ucdp2a,

ratios = .75,
seed = 1234)

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
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x <- setdiff(names(df.ucdp2), c(y, "ccode", "year", "rgdppc",
"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

a <- h2o.loadModel("gridrf06_model_275")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Military expenditure",

"Population",
"Regime change",
"Physical integrity",
"Total battle deaths",
"Trade dependence",
"% Urban",
"Years since genocide",
"Log GDP per capita",
"Military personnel"),

main = "")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p1 <- qplot(milper$milper, milper$mean_response) + geom_line() +

theme_classic() + xlab("Military personnel") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p2 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +

xlab("Log GDP per capita") + ylab("Mean response")

uamkyr <- h2o.partialPlot(object = a, data = train, cols = c("uamkyr"), plot_stddev = F)
p3 <- qplot(uamkyr$uamkyr, uamkyr$mean_response) + geom_line() + theme_classic() +
xlab("Years since genocide") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p4 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +

theme_classic() + xlab("% Urban") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p5 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +

theme_classic() + xlab("Trade dependence") + ylab("Mean response")

totalbeaths <- h2o.partialPlot(object = a, data = train, cols = c("totalbeaths"), plot_stddev = F)
p6 <- qplot(totalbeaths$totalbeaths, totalbeaths$mean_response) + geom_line() +

theme_classic() + xlab("Total battle deaths") + ylab("Mean response")

physint <- h2o.partialPlot(object = a, data = train, cols = c("physint"), plot_stddev = F)
p7 <- qplot(physint$physint, physint$mean_response) + geom_line() +
theme_classic() + xlab("Physical integrity") + ylab("Mean response")

change <- h2o.partialPlot(object = a, data = train, cols = c("change"), plot_stddev = F)
p8 <- qplot(change$change, change$mean_response) + geom_line() +
theme_classic() + xlab("Regime change") + ylab("Mean response")
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pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p9 <- qplot(pop$pop, pop$mean_response) + geom_line() +

theme_classic() + xlab("Population") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p10 <- qplot(milex$milex, milex$mean_response) + geom_line() +
theme_classic() + xlab("Military expenditure") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

# COW == 1
df.cow2 <- df5 %>% filter(COWcivilwarongoing == 1)
df.cow2a <- as.h2o(df.cow2)
df.cow2a$uamkstart <- as.factor(df.cow2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.cow2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.cow2a,

ratios = .75, # 70%, 15%, 15%
seed = 1234) # reproducibility

train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df.cow2), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

a <- h2o.loadModel("gridrf07_model_413")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Trade dependence",

"Real GDP",
"Population",
"CINC",
"Total trade",
"Total battle deaths",
"Log GDP per capita",
"% Urban",
"Years since genocide",
"Military personnel"),

main = "")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p1 <- qplot(milper$milper, milper$mean_response) + geom_line() +
theme_classic() + xlab("Military personnel") + ylab("Mean response")
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uamkyr <- h2o.partialPlot(object = a, data = train, cols = c("uamkyr"), plot_stddev = F)
p2 <- qplot(uamkyr$uamkyr, uamkyr$mean_response) + geom_line() + theme_classic() +

xlab("Years since genocide") + ylab("Mean response")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p3 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p4 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
xlab("Log GDP per capita") + ylab("Mean response")

totalbeaths <- h2o.partialPlot(object = a, data = train, cols = c("totalbeaths"), plot_stddev = F)
p5 <- qplot(totalbeaths$totalbeaths, totalbeaths$mean_response) + geom_line() +
theme_classic() + xlab("Total battle deaths") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p6 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p7 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() +
theme_classic() + xlab("CINC") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p8 <- qplot(pop$pop, pop$mean_response) + geom_line() +
theme_classic() + xlab("Population") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p9 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() +
theme_classic() + xlab("Real GDP") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p10 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in

# Ethnic conflict == 1
df.eth2 <- df5 %>% filter(ethnowarongoing == 1)

df.eth2a <- as.h2o(df.eth2)

df.eth2a$uamkstart <- as.factor(df.eth2a$uamkstart) #encode the binary repsonse as a factor
h2o.levels(df.eth2a$uamkstart)

# Partition the data into training, validation and test sets
splits <- h2o.splitFrame(data = df.eth2a,

ratios = .75, # 70%, 15%, 15%
seed = 1234) # reproducibility

185



train <- h2o.assign(splits[[1]], "train.hex")
valid <- h2o.assign(splits[[2]], "valid.hex")

y <- "uamkstart"
x <- setdiff(names(df.eth2), c(y, "ccode", "year", "rgdppc",

"uamkyr2", "uamkyr3", "sf", "country",
"elf2", "polity2sq"))

a <- h2o.loadModel("gridrf08_model_173")
print(va <- a %>% h2o.varimp() %>% as.data.frame() %>% head(., 10))

par(mgp=c(2.2,0.45,0), tcl=-0.4, mar=c(2,7.5,1,1))
barplot(va$scaled_importance[10:1],

horiz = TRUE, las = 1, cex.names=0.9,
names.arg = c("Real GDP",

"Trade dependence",
"Physical Integrity",
"Log GDP per capita",
"Population",
"Total trade",
"Military personnel",
"CINC",
"Military expenditure",
"% Urban"),

main = "")

percentpopurban <- h2o.partialPlot(object = a, data = train, cols = c("percentpopurban"), plot_stddev = F)
p1 <- qplot(percentpopurban$percentpopurban, percentpopurban$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

milex <- h2o.partialPlot(object = a, data = train, cols = c("milex"), plot_stddev = F)
p2 <- qplot(milex$milex, milex$mean_response) + geom_line() +
theme_classic() + xlab("Military expenditure") + ylab("Mean response")

cinc <- h2o.partialPlot(object = a, data = train, cols = c("cinc"), plot_stddev = F)
p3 <- qplot(cinc$cinc, cinc$mean_response) + geom_line() +
theme_classic() + xlab("CINC") + ylab("Mean response")

milper <- h2o.partialPlot(object = a, data = train, cols = c("milper"), plot_stddev = F)
p4 <- qplot(milper$milper, milper$mean_response) + geom_line() +
theme_classic() + xlab("Military personnel") + ylab("Mean response")

totaltrade <- h2o.partialPlot(object = a, data = train, cols = c("totaltrade"), plot_stddev = F)
p5 <- qplot(totaltrade$totaltrade, totaltrade$mean_response) + geom_line() +
theme_classic() + xlab("% Urban") + ylab("Mean response")

pop <- h2o.partialPlot(object = a, data = train, cols = c("pop"), plot_stddev = F)
p6 <- qplot(pop$pop, pop$mean_response) + geom_line() +
theme_classic() + xlab("Population") + ylab("Mean response")

logrgdppc <- h2o.partialPlot(object = a, data = train, cols = c("logrgdppc"), plot_stddev = F)
p7 <- qplot(logrgdppc$logrgdppc, logrgdppc$mean_response) + geom_line() + theme_classic() +
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xlab("Log GDP per capita") + ylab("Mean response")

physint <- h2o.partialPlot(object = a, data = train, cols = c("physint"), plot_stddev = F)
p5 <- qplot(physint$physint, physint$mean_response) + geom_line() +
theme_classic() + xlab("Physical integrity") + ylab("Mean response")

tradedependence <- h2o.partialPlot(object = a, data = train, cols = c("tradedependence"), plot_stddev = F)
p9 <- qplot(tradedependence$tradedependence, tradedependence$mean_response) + geom_line() +
theme_classic() + xlab("Trade dependence") + ylab("Mean response")

realgdp <- h2o.partialPlot(object = a, data = train, cols = c("realgdp"), plot_stddev = F)
p10 <- qplot(realgdp$realgdp, realgdp$mean_response) + geom_line() +
theme_classic() + xlab("Real GDP") + ylab("Mean response")

multiplot(p1,p5,p8,p2,p6,p9,p3,p7,p10,p4, cols = 4) # 11.09x5.14 in
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Mello, M. P. d. (1989). A História Social dos Jogos de Azar no Rio de Janeiro (1808–1946). Master’s

thesis, Instituto Universitário de Pesquisas do Rio de Janeiro. Cited on page 59.

Miraglia, P. (2015). Drugs and Drug Tra�cking in Brazil: Trends and Policies. Center for 21st Century

Security and Intelligence Latin America Initiative, pages 1–16. Cited on page 65.

Misse, M. (2007). Mercados Ilegais, Redes de Proteção e Organização Local do Crime no Rio de Janeiro.
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