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Abstract 

IL-17A is a well-characterised pro-inflammatory cytokine, which has been implicated 

in the immunopathology of inflammatory arthritis. IL-17F is less well-studied. This 

thesis describes investigations into the phenotype of IL-17F+ CD4+ T cells, what 

drives IL-17F expression in CD4+ T cells and how IL-17F may contribute to 

inflammation. 

 

Healthy donor CD4+ T cells were cultured with IL-1β, IL-23, anti-CD3 mAb and anti-

CD28 mAb, and cytokine expression was analysed by flow cytometry. In comparison 

to IL-17A+ IL-17F- CD4+ T cells, IL-17F+IL-17A- and IL-17A+IL-17F+ CD4+ T 

cells contained lower proportions of cells co-expressing IL-10 and higher proportions 

of cells co-expressing IFNγ. Titration of anti-CD28 mAb into healthy donor CD4+ T 

cell cultures revealed that strong co-stimulation increased the frequency of IL-17F+IL-

17A- and IL-17A+IL-17F+ CD4+ T cells, whereas IL-17A+IL-17F- CD4+ T cell 

frequencies decreased. This was shown to be via an IL-2 dependent mechanism. To 

allow for the further characterisation of different IL-17A+ and IL-17F+ CD4+ T cell 

populations an IL-17A and IL-17F capture assay was developed in this thesis. 

  

Addition of human recombinant IL-17A, IL-17F and TNFα to synovial fibroblasts 

from patients with psoriatic arthritis (PsA) and rheumatoid arthritis (RA) resulted in 

significant production of IL-6. Combined blockade of IL-17A and IL-17F reduced IL-

6 production to a larger extent than blockade of IL-17A alone, indicating IL-17F can 

contribute to inflammation. While IL-17A protein and IL-17A+ T cells were detected 

at increased levels in the inflamed joint of RA and PsA patients, little IL-17F protein 

and few IL-17F+ T cells were detected. 

 

Collectively, data presented in this thesis indicate that IL-17A and IL-17F are 

differentially regulated and that strong T cell stimulation induces IL-17F. 

Additionally, data suggests IL-17A+IL-17F-, IL-17F+IL-17A- and IL-17A+ IL-17F+ 

CD4+ T cells are functionally distinct. Finally, it is shown that in an environment 
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where IL-17A and IL-17F are present dual blockade of IL-17A and IL-17F is more 

effective at reducing inflammation. 
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1 Introduction 
 

1.1 Cytokines 

The term ‘cytokines’ defines a broad group of proteins that are secreted by cells and 

elicit diverse and overlapping effects on target cells. Essentially, they act as a vital 

communication network between cells. Cytokines affect a plethora of biological 

processes including embryonic development, cognitive function and the immune 

response. They can regulate non-specific response to infection, specific response to 

antigen and disease pathogenesis 1. The cytokine families include interleukins (IL), 

interferons (IFN), tumour necrosis factors (TNF), chemokines and haemopoietic 

colony-stimulating factor (CSF). Cytokines can act on nearby cells (paracrine action), 

distant cells (endocrine action) or the cytokine secreting cell itself (autocrine action). 

Two or more cytokines targeting the same cell can act synergistically or 

antagonistically. Finally, cytokines can be pleotropic or redundant. Pleotropic refers 

to the ability of cytokines to act on multiple cell types, whereas redundant refers to 

different cytokines inducing similar signals 2,3. Pleiotropic actions can be attributed to 

the presence of a cytokine receptor on multiple cell lineages and redundancies can in 

part be attributed to similar cellular distributions of receptors for different cytokines, 

which share the same signalling pathway. Prior to discussing the IL-17 cytokine 

family, I will provide an overview of all cytokine families and the function of other 

cytokines which are important in this project. 

 

1.1.1 Interleukins 

The ILs are a diverse group of cytokines, which were originally identified to be 

secreted by leukocytes (T cells, monocytes and macrophages) and act upon 

leukocytes. However, research has since shown other cell subsets including 

endothelial cells and fibroblasts can be cellular sources and targets of ILs 4. ILs can be 

classified into sub-groups based on sequence homology, signalling receptors or 

functional properties. The IL sub-families include the common γ-chain, IL-1, IL-6, IL-

10 and IL-17 sub-families. These families and their members are displayed in table 

1.1. Members of the common-γ chain cytokine family signal through a receptor 

complex sharing a γ-chain subunit. This family plays a crucial role in regulating the 
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proliferation, differentiation and survival of immune cells 5. IL-2 is a pleotropic 

cytokine, which is predominantly produced by activated CD4+ T cells. It plays a 

critical role in the development and function of T regulatory cells (Tregs) 6. 

Accordingly, IL2R knock-out mice develop systemic autoimmune disease 

characteristic of reduced Treg cell numbers 7. With its pleotropic ability, IL-2 can also 

induce the expansion of CD4+ and CD8+ T cells 8, promote the proliferation of B cells 

9 and augment cytokine production and cytotoxic activity of natural killer (NK) cells 

10. Moreover, IL-2 can prevent over-stimulation of T cells by inducing Fas-mediated 

apoptosis in CD4+ T cells 11.  

 

Of the IL-1 family members, IL-1α and IL-1β are the two major agonistic molecules. 

Studies have shown that IL-1α and IL-1β display differences in their expression and 

roles. The IL-1α precursor is constitutively expressed in epithelial cells. It is released 

upon cell death by necrosis, which occurs in ischemic conditions such as stroke. 

Subsequently, the IL-1α pre-cursor becomes active and acts as an ‘alarmin’ rapidly 

initiating a cascade of inflammatory cytokines and chemokines 12,13.  As such, IL-1α 

is important in mediating the early phases of sterile inflammation. In contrast, IL-1β 

is produced by cells of the innate immune system, including monocytes and 

macrophages. It is rapidly induced upon activation of pattern recognition receptors 

(PRRs) such as toll-like receptors (TLRs) by pathogen products or factors released by 

damaged cells 14. IL-1β is first produced as an inactive pre-cursor, which is activated 

and released into the extracellular space upon cleavage by caspase-1. Caspase-1 is 

abundant in hematopoietic cells, however the pro-enzyme (pro-caspase-1) first 

requires cleavage by the inflammasome. The protein-nucleotide-binding domain and 

leucine-rich repeat pyrin containing protein-3 (NLRP3) (also known as cryoprin) is a 

key component of this macromolecular complex 13. Other enzymes such as elastase, 

cathepsin G and proteinase-3 also have the ability to generate active IL-1β 15,16. 

Functionally, IL-1β has been shown to elicit a wide-range of responses from T cells, 

in particular findings have identified a key role for IL-1β in the differentiation of T 

helper (Th17 cells) 17,18. IL-1β stimulates T cell proliferation by up-regulating IL-2R 

expression and activating signalling pathways such as the NFκB pathway that can have 

anti-apoptotic effects 19. In addition, IL-1β enables effector T cells to proliferate even 

in the presence of Treg cells 20. 
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Interleukin sub-family 

 

Members Common Feature 

Common-γ chain cytokines 

 

IL-2, IL-4, IL-7, IL-9, IL-15, 

IL-21 

Signal through type I receptors 

that contain the γ-chain 5 

 

Common-β chain cytokines 

 

IL-3, IL-5, GM-CSF Signal through type I receptors 

that contain the β-chain 1 

 

IL-1 

 

IL-1α, IL-1β, IL-1 receptor 

agonist (Ra), IL-18, IL-33, IL-

36α, IL-36β, IL-36γ, IL-36Ra, 

IL-37 and IL-1Hy2 

 

Signal via the IL-1 receptor 

family 12 

IL-6 IL-6, IL-11, ciliary 

neutrophilic factor (CNTF), 

leukemia inhibitory factor 

(LIF), oncostatin M (OSM), 

cardiotropin 1 (CT-1), 

cardiotrophin-like cytokine 

(CTL) and IL-27 

 

Receptors contain signal-

transducing component gp130 

1 

IL-10 IL-10, IL-19, IL-20, IL-22, IL-

24, IL-26, IL-28, IL-29 

 

Similarities with structure and 

location of encoding genes, 

protein structures and receptor 

complexes 27 

IL-12 IL-12, IL-23, IL-27, IL-35 

 

Heterodimeric cytokines 1 

IL-17 IL-17A, IL-17B, IL-17C, IL-

17D, IL-17E, IL-17F 

Share a conserved cysteine 

motif  31 

 

Table 1.1 The interleukin sub-families 

The members and common features and interleukin sub-families.  
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The IL-6 family is highly pleiotropic. The IL-6 cytokine itself is strongly linked to the 

acute-phase response, which is a complex early-defence system triggered by different 

stimuli including trauma, infection, stress, neoplasia and inflammation. The aim of 

this response is to re-establish homeostasis and promote healing  21. IL-6 has been 

shown to rapidly induce a wide range of acute phase proteins from hepatocytes, 

including C-reactive protein (CRP), serum amyloid A, fibrinogen and haptoglobin 22. 

In combination with transforming growth factor (TGF)-β, IL-6 plays an important role 

in promoting differentiation of murine naïve CD4+ T cells into Th17 cells 23. 

However, IL-6 also has the ability to suppress TGF-β-induced Treg differentiation 24. 

Studies have revealed that IL-6 has the ability to induce the differentiation of activated 

B cells into antibody-producing plasma cells 25. IL-6 also plays a role in leukocyte 

recruitment in vivo. A study by Romano et al. revealed that IL6 knock-out mice have 

impaired leukocyte accumulation in subcutaneous air pouches, associated with a 

reduction in chemokine production. Subsequently, it was shown IL-6 and its soluble 

receptor sIL-6Rα can act on endothelial cells inducing the secretion of the chemokines 

IL-8 and monocyte chemoattractant protein (MCP)-1 26.  

 

In contrast to IL-6, the IL-10 sub-family is anti-inflammatory. The main sources of 

IL-10 are T cells, monocytes and macrophages. IL-10 signals through the IL-10 

receptor (a class II cytokine receptor family composed of IL-10R1 and IL-10R2) and 

activates the JAK/STAT pathway in target cells 27. IL-10 is a potent anti-inflammatory 

cytokine, which plays an important role in regulating the immune response. The 

importance of IL-10 in regulating the immune response is evidenced by the IL10 

knock-out mouse phenotype, which displays dysregulated inflammatory responses 28. 

One of the mechanisms by which IL-10 exerts anti-inflammatory effects is by potently 

inhibiting monocyte/macrophage activation. Addition of IL-10 to J744 mouse 

macrophage cells in the presence of LPS, inhibited macrophage activation by LPS 29. 

IL-10 potently inhibits monocyte and macrophage production of TNFα and CC and 

CXC chemokines, therefore reducing chemokine-driven recruitment of neutrophils 

and other immune cells to sites of inflammation 30. 
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The IL-17 family, IL-17A, IL-17B, IL-17C, IL-17D and IL-17E are grouped together 

as they share a conserved cysteine motif 31. IL-17A is the best characterised IL-17 

family member which displays pro-inflammatory characteristics. The cellular sources, 

receptors and functions of the IL-17 members are extensively discussed later. 

 

1.1.2 Interferons 

The IFN family are important for fighting viral infections and regulation of the 

immune system. They can bind to surface receptors on infected and neighbouring cells 

triggering a cascade of events, which results in the rapid transcription of several host 

proteins (including oligoadenylate synthetase) that can suppress viral infection 32. 

Three classes of IFNs exist: Type I IFN, Type II IFN and Type III IFN. Type I IFN 

includes IFNα and IFNβ, which are secreted by innate immune cells such as 

macrophages and dendritic cells 33. As well as their anti-viral properties, these 

cytokines can activate CD8+ T cells and NK cells that kill infected targets 34. The type 

II includes IFNγ, which is secreted by T cells, NK cells, monocytes, macrophages and 

dendritic cells 35. IFNγ has been shown to induce a T helper (Th) 1 immune response 

and activate macrophages and NK cells. Furthermore, it has the ability to up-regulate 

class II major-histocompatibility complex (MHC), which in turn promotes peptide-

specific activation of CD4+ T cells 35. Finally, Type III comprises of IFNλ1, IFNλ2 

and IFNλ3, which can be produced by plasmocytoid dendritic cells 36. Studies have 

also shown that the type III IFNs have the ability to increase MHC I and MHC II 

expression on DCs 36.  

 

1.1.3 Tumour necrosis factor (TNF) family 

Early studies demonstrated that tumours contaminated by a bacterial infection could 

regress and disappear 37. At this point, it was hypothesised that bacteria were releasing 

a factor which induced the necrosis of specific tumours, this factor was termed tumour 

necrosis factor (TNF). Later studies revealed that antigens, such as lipopolysaccharide 

(LPS), present in the outer membrane of gram-negative bacteria elicited the production 

of TNF from immune cells 38. Since then the TNF family has expanded to comprise 

19 members, including TNFα (also referred to as TNF), TNFβ (lymphotoxin-α) and 

other ligands such as receptor activator of nuclear factor kappa-B ligand (RANKL) 
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and TNF-related apoptosis-inducing ligand (TRAIL). TNFα is mainly produced by 

activated macrophages and monocytes. It is expressed as a transmembrane protein that 

can be cleaved by the metalloprotease TNFα converting enzyme (TACE) to release a 

soluble TNFα form 39. Through the activation of the NFκB pathway, TNFα has a 

powerful pro-inflammatory capacity. TNFα can promote monocyte/macrophage 

differentiation 40, enhance activated B cell proliferation 41 and promote the 

proliferation of fibroblasts 42. Depending on the target cell, TNFα is a potent inducer 

of IL-6 43 and the further production of TNFα itself 44. In concordance, a report 

demonstrated that in healthy humans infused with recombinant TNFα,circulating IL-

6 is significantly elevated 45. TNFα alongside other TNF family members (TRAIL) 

demonstrate a potent apoptotic ability. LPS has been shown to induce apoptosis in 

macrophages via the autocrine production of TNFα 46. 

 

1.1.4 Chemokines 

Chemokines are characterised by the presence of three to four conserved cysteine 

residues and can be sub-divided based on the positioning of the N-terminal cysteine 

residues. The majority of known chemokines are from the C-X-C or C-C subfamily. 

The C-X-C subfamily is characterised by a variable amino acid separating the first two 

cysteines, while the cysteine residues are adjacent to one another in the C-C family 47. 

Chemokines are essential for the directional migration of leukocytes during normal 

and inflammatory processes. Once the chemokine is induced, the directed migration 

of cells expressing the appropriate chemokine receptors occurs along a chemical 

ligand gradient known as the chemokine gradient. Subsequently, cells move towards 

an environment of high local concentrations of chemokines. The best studied members 

of the C-X-C and C-C chemokine subfamilies are CXCL8 (also known as IL-8) and 

MCP-1 (also known as CCL2), respectively 48,49. IL-8 is a critical inflammatory 

mediator, which is predominantly known for its ability to recruit neutrophils to sites 

of inflammation. However, it has also been identified in the chemoattraction of 

monocytes, lymphocytes, basophils and eosinophils 50. MCP-1 was initially reported 

to recruit monocytes. In an in vitro chemotaxis assay, approximately 30% of input 

monocytes responded and migrated towards MCP-1 51. However, further studies have 

suggested MCP-1 also plays an important role in the migration, generation and 

survival of memory CD8+ T cells 52. 
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1.1.5 Colony stimulating factors 

Granulocytes and macrophages play an important role in the innate immune system, 

protecting the body against bacterial, viral and fungal infections. The colony-

stimulating factors are master regulators of granulocyte and macrophage populations. 

Multiple tissue types produce them locally at the site of inflammation or systemically. 

The distinct types of CSF include granulocyte-macrophage colony stimulating factor 

(GM-CSF), granulocyte colony-stimulating factor (G-CSF), macrophage colony-

stimulating factor (M-CSF) and multipotential colony-stimulating factor (commonly 

referred to as IL-3) 53. A common set of pluripotent stem cells, residing mostly in the 

bone marrow, give rise to large numbers of neutrophils, basophils, eosinophils, 

monocytes and lymphocytes circulating in the periphery. As many of these cells are 

short-lived they must be continually replenished. In health, numbers of these cells are 

constant, however during infection the production of granulocytes and macrophages 

can be greatly and rapidly increased. CSFs are crucial for co-ordinating and controlling 

this cell production. G-CSF and M-CSF support the growth and proliferation of 

neutrophils and macrophages, respectively. Whereas, GM-CSF supports the growth of 

neutrophils, macrophages, eosinophils and other cell types 53,54.  

 

Collectively, a plethora of evidence demonstrates the diverse functions of cytokines 

mediated via a variety of different receptors, signalling pathways and molecules. 

Cytokines are interlinked and play a crucial role in regulating the immune and 

inflammatory response.  

 

1.2 Cytokine signalling 

1.2.1 The cytokine receptor families 

Receptors for cytokines are structurally diverse. However, the majority of cytokines 

signal through one of five families of receptor proteins – type I or type II cytokine 

receptor family, tumour necrosis factor receptor (TNFR) family, IL-1 receptor family 

or the chemokine receptor family. A significant number of cytokines signal through 

the type I cytokine receptor family (hematopoietin receptor subfamily) which includes 
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homodimeric and heterodimeric receptors. Heterodimeric receptors are subdivided 

based on the presence of receptor signalling components (β-chain, γ-chain and gp130). 

The conserved extracellular domain of type I cytokine receptors contains four 

conserved cysteine residues in the amino-terminal region and a conserved Trp-Ser-X-

Trp-Ser (WSXWS) motif located proximal to the transmembrane domain 55. Type II 

cytokine receptors are similar to type I receptors but lack the conserved motif. They 

are multimeric receptors composed of heterologous subunits. Type II cytokine 

receptors are predominantly receptors for IFNs and the IL-10 family 56. Type I and II 

cytokine receptors signal through the Janus tyrosine kinase (JAK)/ signal transducer 

and activator of transcription (STAT) pathway.  

 

The IL-1 receptor family is characterised by extracellular immunoglobulin (Ig)-like 

domains and Toll-IL-1-receptor (TIR) domains. Each IL-1 ligand (IL-1α, IL-1β etc.) 

binds specifically to an extracellular ligand binding chain containing three Ig-like 

regions. In the case of IL-1α, IL-1β this is type I IL-1 receptor (IL-1RI). A second 

accessory chain is recruited, forming a heterotrimeric complex with the ligand binding 

chain and ligand. This initiates signal transduction. The accessory chain is not present 

upon binding of the IL-1 and IL-36 receptor agonists. Each ligand binding or accessory 

chain bears a TIR domain. This domain is also shared by the Toll-like receptors (TLR), 

which bind a broad spectrum of microbial products 57. Signal transduction rapidly 

assembles two signalling proteins, myeloid differentiation primary response gene88 

(MyD88) and interleukin-1 receptor-activated protein kinase (IRAK)4. 

Autophosphorylation of IRAK4 leads to the phosphorylation of IRAK1 and IRAK2 

which subsequently elicits the recruitment and oligomerization of tumour necrosis-

associated factor (TRAF)6. TRAF6 subsequently induces NF-κB-induced 

transcription of inflammatory genes 58. 

 

The tumour necrosis factor receptor (TNFR) family bears a repeated cysteine rich 

extracellular sequence homology. To date, there are at least 27 members of the TNFR 

family including LT receptor, Fas, CD40, TRAIL receptors, RANK and death or 

decoy receptors. However, the main TNF ligands mediate their functional effects by 

binding to either TNFR1 or TNFR2 receptor sub-types 39. Activated TNFR1 recruits 
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TNFR-associated death domain (TRADD) which in turn recruits TNFR-associated 

factors (TRAFS) to activate the NFκB pathway. TNFR1 also stimulates the formation 

of a TRADD complex which contains FAS-associated death domain (FADD) and pro-

caspase 8. This leads to the activation of caspase 8 and the initiation of an apoptotic 

signalling cascade 59,60.  

 

Chemokine receptors are composed of 7-transmembrane domains and coupled to G-

proteins. The chemokine receptors CXCR1 to CXCR5 selectively bind certain CXC 

chemokines, whereas the CC receptors CCR1 to CCR9 bind CC chemokines 61. 

Intracellular signalling by chemokine receptors depend on the coupled-G proteins. G-

proteins are inactive when guanosine diphosphate (GDP) is bound to the G-protein 

sub-unit, however they become active when GDP is exchanged for guanosine 

triphosphate (GTP). During ligand binding, chemokine receptors associate with the G-

proteins allowing for the exchange of GDP to GTP. Subsequently, this activates a 

series of co-ordinated signalling events that lead to cellular responses 61. 

 

1.2.2 JAK-STAT pathway 

The JAK/ STAT pathway is the predominant signalling cascade that mediates the 

effects of cytokines, as well as growth factors. It directly translates an extracellular 

signal into a transcriptional response. The JAK family are non-receptor protein 

tyrosine kinases consisting of JAK1, JAK2, JAK3 and non-receptor protein kinase 2 

(TYK2). The STAT proteins comprise of STAT1 to STAT6. STAT4 exists in two 

forms, STAT4α and STAT4β. Additionally, there are two isoforms of STAT5, 

STAT5a and STAT5b, which are encoded by separate genes 62. STATs are latent 

cytoplasmic transcription factors that are activated following receptor 

phosphorylation. Activation of the JAK/STAT pathway occurs when ligand binding 

induces the multimerization of receptor subunits. Upon ligand-mediated receptor 

multimerization, two JAKS are brought into close proximity, allowing trans-

phosphorylation. Activated JAKs phosphorylate their associated receptors on specific 

tyrosine residues. Subsequently, STATs bind to the phosphorylated receptors and are 

themselves phosphorylated by the JAKs. Through interaction with a conserved Src-

homology 2 (SH2) domain, STATs form dimers. Phosphorylated STAT dimers can 
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then enter the cell nucleus by a mechanism that is dependent on importin α-5 and the 

Ran nuclear import pathway. Once in the nucleus, dimerized STATs bind specific 

regulatory sequences to activate or repress transcription of target genes 63-65. In 

addition to the principal components of the JAK/STAT pathway, effector proteins and 

negative regulators can affect the signalling events. Effector proteins include signal-

transducing adapter molecules (STAMAS), which can facilitate the transcription of 

specific target genes. Classes of negative regulators include suppressors of cytokine 

signalling (SOCS), protein inhibitors of activated STATS (PIAS) and protein tyrosine 

phosphatases (PTPs) 63. 

 

Different cytokine receptors recruit a different combination of JAKs, which enables a 

diversity of signalling responses. However, JAKs are not an absolute determinant in 

cytokine signalling specificity as the same JAKs can be activated by different 

cytokines. The specificity for a particular STAT phosphorylation appears to be 

dictated by the STAT docking sites present in the receptors and not the activated 

JAKS. This is evidenced by the fact that different receptors can activate a common 

STAT even though they activate distinctively different JAKs. Moreover, it has been 

shown that chimeric receptors that bear different JAK binding sites can activate the 

same STAT protein 62. The phenotypes of STAT knock-out mice have revealed 

distinctive functions for the different STAT molecules. For example, STAT1 deficient 

mice display a severe defect in IFNγ-dependent immune responses against viruses. As 

the mice still retain the ability to other cytokines, it demonstrates the importance of 

STAT1 for mediating IFNγ-dependent pathways 66,67.  

 

1.2.3 NF-ΚB pathway 

The nuclear factor–κB (NF-κB) pathway serves as a pivotal mediator of inflammatory 

responses. NF-κB comprises a family of inducible transcription factors, including NF- 

κB1 (p50), NF-κB2 (p52), RELA (p65), RELB and C-Rel. NF-κB proteins normally 

exist as inactive cytoplasmic complexes bound by members of the inhibitor of κB 

(IκB) family, including IκBα. NF-κB activation occurs via the canonical and the non-

canonical NF-κB signalling pathways 68,69. The canonical pathway is activated by 

various cytokines including TNFα, IL-1 and IL-17 cytokine family members, as well 
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as T-cell receptor and B-cell receptor activation. The primary mechanism for the 

canonical NF-κB activation involves activation of TGFβ-activated kinase (TAK1) 

which in turn activates a trimeric IκB (IKK) complex. IKK is composed of catalytic 

(IKKα and IKKβ) and regulatory IKKγ, (also known as NEMO) subunits. Upon 

activation, IKK phosphorylates IκBα, triggering ubiquitin-dependent IκBα 

degradation in the proteasome. Subsequently, nuclear translocation of the canonical 

NF-κB family members, predominantly the p50/RelA and p50/c-Rel dimers are 

released and translocated to the nucleus 69.  
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Figure 1.1 JAK/STAT signalling pathway 

Binding of a type I or type II cytokine receptor to cytokine can induce the activation of JAKS. 

Subsequently, cellular substrates including one of the receptor chains is phosphorylated. This allows 

the recruitment of STAT proteins to the phosphorylated receptors and are themselves phosphorylated 

by the JAKS. Through STAT SH2 domains, they can dimerize, translocate to the nucleus and bind 

DNA. STAT-dependent responses can be differentially induced by accessory transcription factors. 

Suppressor of cytokine signalling (SOCS) and cytokine-inducible SH2- containing protein 1 (CIS1) 

can negative regulate cytokine signalling. Printed with permission from Leonard, W. (2001) Nature 65. 
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1.3 A brief history of IL-17 identification 

Having discussed cytokines in general, I will now focus on the IL-17 family, beginning 

with the discovery of each IL-17 family member. IL-17A, then referred to as cytotoxic 

T lymphocyte antigen 8 (CTLA8) was first discovered in a subtractive hybridization 

screen of a rodent T cell library 70. Subsequent work detected CTLA8 mRNA in a 

human CD4+ T cell clone and revealed it encodes a protein which displays cytokine 

like characteristics, including activation of NFkB and induction of IL-6 from 

fibroblasts, thus giving rise to its new term IL-17  71.  Proteomic and genome database 

searches led to the discovery of human proteins with similar amino acid sequences to 

IL-17A, including IL-17B (29% homology), IL-17C (23% homology) and IL-17E 

(17%) 72-74. Using nested rapid amplification of cDNA ends (RACE) polymerase chain 

reaction (PCR), IL-17F was cloned, bearing 50% homology to IL-17A. Expression of 

IL-17F was observed in activated CD4+ T cells and it was shown to induce IL-2 and 

TGF-β expression in endothelial cells 75. Completing the IL-17 family, Starnes et al. 

cloned IL-17D (25% homology to IL-17A) 74,76. IL-17A and IL-17F exist as 

homodimers. Due to the sequence homology of IL-17A and IL-17F and previous 

reports that cysteine knot family members can exist as heterodimers, it was 

hypothesised that IL-17A and IL-17F could form a heterodimer. Indeed, both mouse 

and human studies from 2005 onwards identified an IL-17AF heterodimer secreted by 

CD4+ T cells 77, 78. A timeline of the IL-17 family history is presented in Figure 1.2. 

 

Figure 1.2 Timeline of the key discoveries of the IL-17 family 

IL17A gene cloned as 
CTLA8 in a rodent T cell 
hybridoma.

Homology to an open 
reading frame encoded 
within a T cell -tropic-
gamma-herpes virus, 
HVS13 70. 

1993

1995

Human IL17A cDNA  cloned from 
a CD4+ T cell l ibrary.

63% amino acid homology with
murine CTLA8 and 72% homology
with HVS13.

IL-17A identified as a novel 
cytokine produced by activated 
CD4+ T cells 71.

2000

Identification of IL-17E 73.

IL-17D cloned using RACE 
PCR.

Highly expressed in skeletal 
muscle, brain, adipose 
tissue, heart, lung and 
pancreas 76.

2001
CD4+ Tcells producing IL-
17A, IL-17F and TNFα
identified as a separate 
lineage from Th1 and 
Th2 cells, referred to as 
Th17 cells 71.

2007

2005

Over-expression of IL-17A and 
IL-17F in 293 T cells led to the 
production of IL-17A and IL-
17F homodimers and 
biologically active IL-17AF were 
identified. Naturally secreted 
IL-17AF were identified from 
mouse T cells 77.

Activated human CD4+ T cells 
shown to produce the IL-17AF 
heterodimer 78.

Human IL-17B and IL-17C cloned.

IL17B mRNA expressed in adult 
pancreas, small intestine and 
stomach, whereas IL17C mRNA 
not detected in these tissues 72.

IL-17F cloned via RACE 
PCR and shown to be 
expressed in CD4+ T cells 
75.

2002
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1.4 Structure of IL-17 cytokines 

IL-17 family members share limited homology in their primary sequence, however 

elements of their secondary structure are preserved, especially in the four β-strands 

in the C-terminal region. Specifically, there are four cysteine and two serine residues 

highly conserved among IL-17 members, which are critical to forming a cysteine 

knot fold 79. To date, only three crystal structures have been resolved including IL-

17A with its neutralising antibody 80, IL-17F 79 and IL-17F with its receptor IL-

17RA 81. The crystal structure of IL-17F demonstrated it is a disulphide-linked 

homodimeric protein with a cysteine-knot fold, which is also found in the TGFβ, 

bone morphogenetic protein and nerve growth factor superfamilies 79,82. IL-17A and 

IL-17E are also disulphide-linked homodimeric proteins, however, their precise 

subunit interactions are not fully understood 83,84. Homodimeric proteins are formed 

post-transcriptionally, in the case of the IL-17AF heterodimer it is believed that 

when a T cell produces high levels of IL-17A and IL-17F monomeric proteins, IL-

17AF heterodimers can form. In concordance, no IL17AF mRNA can be detected 

77,85. While the majority of genes encoding the IL-17 family members are on 

different chromosomes, the IL17F gene is located adjacent to IL17A on chromosome 

6p12 74.  

 

1.5 IL-17 receptors and signalling 

The biological functions of the IL-17 cytokines are mediated via surface receptors on 

target cells. There are 5 members of the IL-17 receptor family, IL-17RA, RB, RC, RD 

and RE. It is thought that functional receptors exist as heterodimers, with IL-17RA as 

a common subunit. The IL-17RA and IL-17RC heterodimer has been reported as the 

receptor for IL-17A, IL-17F and IL-17AF 86. While IL-17RA is ubiquitously 

expressed in haematopoietic cell types, IL-17RC is preferentially expressed by non-

haematopoietic cells. Since IL-17A and IL-17F signalling requires IL-17RA and IL-

17RC, these cytokines mostly act on parenchymal cells such as fibroblasts, epithelial 

cells and endothelial cells 31. In addition research has shown IL-17F binds to IL-17RA 

with 100-1000 fold lower affinity than IL-17A 79. The heterodimeric receptor for IL-

17E consists of IL-17RA and IL-17RB. IL-17RB is expressed on Th2 cells, various 

endocrine tissues and the kidney 87. The receptor for IL-17B includes IL-17RB, 

although it is unknown if this receptor forms a complex with IL-17RA. Finally, the 
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receptor for IL-17C comprises an IL-17RE/ IL-17RA complex 31,88. Although an IL-

17RD/IL-17RA receptor complex has been identified the ligand is unknown. 

Similarly, the receptor for the IL-17D cytokine is unknown 31 (Figure 1.3). 

 

At the C-terminus of the IL-17 receptor is a conserved region known as the SEFIR 

(similar expression of fibroblast growth factor genes and IL-17Rs) domain. Following 

IL-17 stimulation, the cytosolic protein NFκB activator 1 (Act 1) is recruited to the 

IL-17 complex through homotypic interactions of the SEFIR domain. Act1 recruits 

TNFR-associated factor 6 (TRAF6) proteins, and acts as an E3 ligase, mediating the 

ubiquitination of TRAF6. This leads to the activation of the canonical nuclear factor-

κB (NFκB) pathway and mitogen-activated protein kinase (MAPK) pathways. A 

unique TRAF6 independent signalling pathway includes Act1 recruitment of TRAF2 

and TRAF5, which promotes the activation of an mRNA stability pathway by 

sequestering ASF/SF2 and recruiting the stabilizing factor HuR 89-92 (Figure 1.4). 
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Figure 1.3 IL-17 receptors.  

Schematic diagram showing the receptors identified for the IL-17 cytokine family. The majority of IL-

17 receptors exist in the form of a heterodimer with IL-17RA as a common sub-unit. The IL-17RA and 

IL-17RC heterodimer is the receptor for IL-17A, IL-17F and IL-17AF. The IL-17RA sub-unit also 

couples with IL-17RB to form the receptor for IL-17E, IL-17RE to form the receptor for IL-17C. IL-

17B signals via IL-17RB it is unknown if this couples with another receptor sub-unit. An IL-17D/IL-

17RA complex has been identified, however the ligand is unknown.  Printed with permission from 

Gaffen (2014) Nature Reviews Immunology 93. 
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Figure 1.4 IL-17RA:IL-17RC signalling pathway  

After stimulation with IL-17 cytokines Act1 and IL-17R interact via their respective SEFIR domains. This leads 

to the recruitment and ubiquitination of Act1 in a nondegradative way through Lys63-linked ubiquitnation. 

Subsequently, TAK1 and its binding partners TAB2 and TAB3 (TAB) are recruited and activate the IKK complex 

and NF-κB pathway. An alternative pathway involves phosphorylation of Act1 at Ser311 by IKKi. This generates 

a docking site which recruits TRAF2 and TRAF6. In the absence of IL-17 cytokines SF2 (ASF) binds to the 3’ 

UTR of CXCL1, causing its instability.  After IL-17 stimulation SF2 associates with the TRAF2-TRAF5-Act1 

complex, preventing the repression of CXCL1 mRNA. Printed with permission from May Nature Immunology 

(2011) 92. 
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1.6 Function of IL-17A, IL-17F and IL-17AF 

1.6.1 Individual function 

IL-17A is defined as a pro-inflammatory cytokine and its individual function has been 

extensively studied. Activation of NFκB and MAPK pathways in target cells by IL-

17A results in the transcription of pro-inflammatory genes. This leads to the secretion 

of pro-inflammatory cytokines (IL-6, TNFα, IL-1) 71, T cell and myeloid cell-

attracting chemokines (CCL20, CCL2 and CCL7) 94,95 and many neutrophilic 

granulocyte-attracting chemokines (CXCL1, CXCL2, CXCL5 and CXCL8) 71,96 from 

target cells including fibroblasts, epithelial  cells and synoviocytes. In addition, IL-

17A can strengthen granulopoiesis by up-regulating the expression of G-CSF and GM-

CSF in tissue cells, macrophages and T cells 97 and enhancing the secretion of 

antimicrobial peptides (defensins and S100 proteins) in target cells 98. Pathologically, 

IL-17A can contribute to joint degradation. IL-17A can elicit the production of matrix 

metalloproteinases (MMP1, MMP9 and MMP13) from target cells, which in turn 

drives the degradation of extracellular matrix within the joint 99,100. Osteoclastogenesis 

is a process that can ultimately lead to bone destruction. Bone-resorbing osteoclasts 

derive from the haemopoietic cells of the monocyte-macrophage lineage under the 

control of bone-forming osteoblasts. In the presence of M-CSF, the TNF family 

member RANKL (expressed on osteoblasts) and its receptor RANK (expressed on 

osteoblast precursor cells) are vital for inducing osteoclast differentiation 101. The 

osteoprotegerin (OPG) ligand is produced by a variety of cells including osteoblasts 

and acts as a soluble decoy receptor for RANK. Therefore, it inhibits 

osteoclastogenesis by competing against RANK 102. Reports have shown IL-17A 

increases RANKL expression and decreases OPG expression levels in osteoblasts and 

other target cells, which results in osteoclastogenesis and subsequent bone destruction 

103-105. Collectively, while IL-17A plays an important role in inflammation and host 

protection against specific pathogen, excessive activation of this pathway can 

contribute to inflammatory diseases. 

 

The function of IL-17F has not been as extensively studied as IL-17A. However, 

numerous reports have shown IL-17F to function similarly to IL-17A, albeit less 

potently than IL-17A.  Literature describes a hierarchy in inflammatory potential with 
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IL-17A eliciting the strongest inflammatory response, followed by IL-17AF and IL-

17F 77. IL-17 can upregulate pro-inflammatory mediators including IL-6, CXCL1, 

CXCL8, GM-CSF, CCL2, CCL7 and MMP13 from fibroblasts and epithelial cells 

106,107. Additionally, IL-17F has been shown to induce the production of IL-8 in normal 

epidermal keratinocytes. Mouse skin intradermally injected with IL-17F expressed 

high IL8 mRNA levels and histological examination of the mouse skin revealed 

marked neutrophilia in the dermis 108. In concordance, Sorbello et al. demonstrated 

that IL-17F was present in nasal biopsies from asthma patients and positively 

correlated with the neutrophil count 109. IL-17F has been shown to induce the 

expression of MMP-9 from epithelial cells, therefore it has the potential to contribute 

to bone destruction 110. Very limited studies which examine the function of the IL-

17AF heterodimer exist. However, it has been shown that IL-17AF induces IL-6 and 

CXCL1 secretion from mouse embryonic fibroblasts 77. 

 

1.6.2 Synergy between IL-17A, IL-17F and other pro-inflammatory 

cytokines 

One of the best-studied cytokines that synergises with IL-17A is TNFα. Studies have 

demonstrated that IL-17A can synergise with TNFα to induce increased levels of pro-

inflammatory mediators such as IL-6, IL-8 and CCL20 production from RA 

synoviocytes 83,111,112. Additionally,  IL-17A and can synergistically enhance the levels 

of GM-CSF from RA synoviocytes 100, G-CSF from human epithelial cells 113 and 

MCP-1 and macrophage inflammatory protein-2 (MIP-2) from mouse mesangial cells 

114. One report showed that IL-17A and TNFα enhanced MMP-2 and CXCR4 

expression by RA synoviocytes, leading to an increase in cell invasion as examined 

by transwell Matrigel invasion chambers 115. With regards to joint destruction, a study 

of TNF transgenic mice demonstrated that combined blockade of IL-17A and TNFα 

was more effective at providing bone protection from bone resorption than blockade 

of IL-17A or TNFα alone 116. This was associated with decreased RANKL expression 

on osteoblasts, increased osteoblast numbers and decreased osteoclast numbers 116. 

The suppression of collagen degradation in an RA ex vivo bone explant model was 

shown to be further enhanced with a triple combined blockade of TNFα, IL-1 and IL-

17A than blockade of either cytokine alone 117. In addition to TNFα, synergy between 

IL-17A and the pro-inflammatory cytokines IL-1β and IFNγ has been reported. The 
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combination of IL-17A and IL-1β was shown to enhance IL-6 production by RA 

synoviocytes 118 and increase CCL20 production by fibroblast-like synovial cells 119. 

Finally, an early study showed IL-17A and IFN-γ synergistically upregulated IL-6 and 

IL-8 production by keratinocytes and led to a subtle increase in expression of ICAM-

1, a ligand that binds LFA-1 on T cells to cause T cell adhesion to keratinocytes 91,120. 

 

Studies have demonstrated that IL-17F can significantly amplify its inflammatory 

potential by synergising with TNFα and IL-1β. Zrioual et al. revealed IL-17F 

synergises with TNFα to increase IL6, IL8 and CXCL5 mRNA levels from RA 

synoviocytes. While the combination of IL-17A and TNFα induces a higher fold 

increase in pro-inflammatory mRNA levels than IL-17F and TNFα, the effect of IL-

17F and TNFα synergy still remained potent 112.  Similar to IL-17A, the combination 

of IL-17F and TNFα can synergistically elevate levels of G-CSF from human 

epithelial cells 113. Additionally, IL-17F can synergise with both TNFα and IL-1β, 

enhancing the expression of MCP-1 and MIP-2 from mouse mesangial cells 114. 

Finally, it has been reported that IL-17AF and TNFα synergistically enhance the 

production of CXCL1 from macrophages 77. Literature has suggested that IL-17F is 

redundant to IL-17A due to the similar functional roles and lower potency of IL-17F 

31. However, a recent study by Glatt et al. demonstrated that dual neutralization of IL-

17A and IL-17F in Th17 supernatant reduced the pro-inflammatory signature of target 

cells to a greater extent that neutralization of IL-17A alone 121. This suggests that dual 

blockade of IL-17A and IL-17F is more effective at reducing inflammation than the 

blockade of IL-17A alone. 

 

1.6.3 Mechanism of synergy 

Mechanistically, the synergy of IL-17A and IL-17F with other cytokines is not fully 

understood. However, reports suggest it may occur through the ability of IL-17 

cytokines to stabilise mRNA transcripts. One report showed that IL-17A has the 

ability to extend the half-life of the unstable TNFα -induced IL8 mRNA, thereby 

leading to a synergistic increase in IL-8 protein expression and gene expression. It is 

suggested that IL-17A mRNA stabilisation is via a p38 MAPK-dependent pathway, 

evidenced by the fact that cells pre-treated with a p38 MAPK inhibitor displayed a 
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faster IL8 mRNA decay rate following IL-17A/ TNFα stimulation 122. In concordance, 

a study by Hartupee et al. demonstrated that IL-17A elicited a synergistic increase in 

CXCL1 mRNA expression by extending the half-life of the unstable TNFα-induced 

CXCL1 mRNA. Additionally, as Act1 over-expression resulted in CXCL1 mRNA 

stabilization, it is proposed that Act1 may be a common mechanism by which IL-17A 

enhances gene expression 96. The half-life of other mRNA transcripts including MIP2 

and GMCSF is also extended in response to IL-17A, implicating this as a common 

mechanism for IL-17A synergy 96. A recent report demonstrated that inhibition of 

phospholipase D enzymes in cultures of RA fibroblasts stimulated with IL-17A and 

TNFα led to decreased IL-6, IL-8 and CCL20 production, thereby suggesting these 

enzymes play a role in the synergisitic effect of TNFα and IL-17A 123. Currently, the 

mechanism of IL-17F synergy and whether it has the ability to stabilize mRNA has 

not been investigated. 

 

1.7 Function of the remaining IL-17 family cytokines 

1.7.1 IL-17E 

In contrast to the pro-inflammatory role of IL-17A and IL-17F, IL-17E is associated 

with Th2 responses. It promotes the production of type 2 cytokines such as IL-4, IL-5 

and IL-13 for eosinophil recruitment and contributes to host defense against helminth, 

parasitic infections and allergic disease development 84,124. Interestingly, IL-17E 

treatment protects mice from Experimental autoimmune encephalomyelitis (EAE) by 

suppressing IL-17A producing T cells in an IL-13 dependent manner 125. EAE is an 

animal model of brain inflammation, although it is mostly used as a model for multiple 

sclerosis, it is also a prototype for T cell-mediated autoimmune disease 126. This 

suggests IL-17E supports a cytokine environment that limits chronic inflammatory 

responses, an opposite role to IL-17A. The opposing roles of IL-17E and IL-17A are 

further supported by a report from Xu et al. When stimulated with dsRNA and IL-

17E, primary human nasal epithelial cells (HNECs) from patients with allergic rhinitis 

(AR) produced elevated levels of thymic stromal lymphopoietin (TSLP). TSLP is 

associated with asthma and its overexpression has been shown to correlate with 

disease severity. In contrast, IL-17A significantly inhibited double-stranded (ds) 
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RNA-induced TSLP production. Moreover, IL-17E was dominant to the inhibitory 

effect of IL-17A on TSLP regulation 127.  

 

1.7.2 IL-17C, IL-17B and IL-17D 

Numerous studies have revealed a role for IL-17C in regulating epithelial immune 

responses 128, maintaining mucosal barrier maintenance 129 and promoting Th17 

responses 130. Additionally, IL-17C has been implicated in lesional psoriasis skin 

formation 131,132. The biological function of IL-17B and IL-17D are less extensively 

studied. Bie et al. have recently reviewed current knowledge of IL-17B 133. Reports 

have identified a role for IL-17B in inflammation, upregulating the expression of 

TNFα and IL-1b from THP-1 cells and synergising with TNFα to enhance the 

production of G-CSF and IL-6 from fibroblasts 72,134. Additionally, a more recent study 

has linked IL-17B to germinal centre B cell migration 135. IL-17B has been detected 

in the arthritic paws of CIA mice and in human rheumatoid synovial tissue, suggesting 

it may play a role in inflammatory disease 134,136. IL-17D is the least studied IL-17 

family member. Initial reports showed IL-17D upregulated the expression of IL-6, IL-

8 and GM-CSF from endothelial cells 76. Interestingly, more recent studies have 

implicated IL-17D in tumor rejection. These studies have shown IL-17D to be highly 

expressed in certain tumors and induce MCP-1 production from tumor endothelial 

cells, leading to the recruitment of natural killer (NK) cells, which in turn promotes 

M1 macrophage development and anti-tumor responses 137-139. 
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1.8  T cells 

One of the main cellular sources of IL-17A and IL-17F is CD4+ T cells. Before 

discussing IL-17 expressing T cells, an overview of T cells is provided. T cells play a 

central role in the adaptive immune system, orchestrating many aspects of the 

inflammatory response. T cells can be divided into two categories classically referred 

to as; cytotoxic CD8+ T cells and CD4+ T helper (Th) cells. CD8+ T cells can act 

directly to kill virally infected or transformed cells 140 and CD4+ T cells can provide 

signals that modulate the behaviour and function of other immune cells 141. Both CD4+ 

and CD8+ T cells derive from the common lymphoid progenitor cell in the bone 

marrow and mature and undergo thymic selection in the thymus. This process involves 

positive and negative selection based on interactions with major histocompatibility 

complex (MHC) and peptides derived from self-antigens. Subsequently, auto-reactive 

T cells are deleted and the T cell repertoire contains a diverse T cell receptor (TCR) 

expression, which promotes the protection against a vast number of foreign antigens 

142. The TCR expressed on T cells is a highly variable disulphide-linked membrane 

bound heterodimeric protein. In humans, the majority (95%) of T cells express a TCR 

formed of the highly variable α and β chains expressed as part of a complex with 

invariant CD3 chain molecules, these are referred to as αβ T cells. However, a minority 

of T cells express an alternate receptor composed of variant γ and δ chains (γδ T cells) 

143. The TCR confers antigen specificity to the cell, via recognition of antigen 

presented in the context of the major histocompatibility complex (MHC) by antigen-

presenting cells. The co-receptors CD4 (for T helper cells) and CD8 (for cytotoxic T 

cells) bind to invariant parts of MHC class II or I, respectively 144. 

 

1.8.1 T cell activation 

Following maturation in the thymus antigen-specific ‘naïve’ T cells exit into the 

periphery. They circulate via the secondary lymphoid organs and tissues including the 

spleen and lymph nodes. Here, they may encounter antigen presented by antigen 

presenting cells (APCs), which can include dendritic cells (DCs), monocytes, 

macrophages or B cells. APCs have the ability to collect antigens from the periphery 

and migrate to lymphoid tissues to display the antigen to lymphocytes. For full T cell 

activation a specific T cell firstly binds via its TCR to an antigen presented in the 

peptide groove of an MHC molecule on the APC. Antigens derived from the cytosol 
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of the cell are presented in the context of MHC class I molecules to CD8+ T cells, 

whilst antigens derived from exogenous proteins are presented in the context of MHC 

class II molecules to CD4+ T cells. However, it is important to note that the process 

of cross-presentation can occur, whereby some APCs can present exogenous antigens 

into the MHC class I pathway for presentation to CD8+ T cells 145 Ligation of co-

stimulatory molecules, such as CD28 which interacts with CD80 (B7.1) and CD86 

(B7.2) on the surface of APCs, provides a second signal which is necessary for 

efficient T cell activation 144. Another co-stimulation signal involves interaction 

between CD40L expressed on T cells and CD40 expressed on APCs 146. CD28-/-naïve 

T cells have been shown to be deficient in IL-2 secretion and proliferation when 

stimulated with a wide range of antigen concentrations and APC numbers, whereas 

CD40L-/- T cells respond normally in the presence of high antigen or high APC to T 

cell ratios and show defects only when stimulated with low antigen concentration or 

antigen concentration 146. This suggests that the predominant role of the CD40L/CD40 

interaction is to amplify an existing co-stimulation signal. Indeed, CD40L engagement 

of CD40 on APCs increases the APC expression of B7 molecules 147. Studies have 

shown that signalling via the TCR in the absence of co-stimulation can lead to the 

induction of anergy in the T cell 148. A CD28 homolog called cytotoxic T lymphocyte-

associated antigen 4 (CTLA4) exists. Similar to CD28 it binds to B7 molecules, 

however it binds with higher affinity and does not produce a stimulatory signal. As 

such, this competitive binding can prevent the CD28/B7 co-stimulatory signal 149,150.  

 

Following the recognition of the cognate antigen and MHC by a specific TCR, the T 

cell and APC form an immunological synapse and undergo actin-mediated membrane 

re-organisation 151. The TCR, co-stimulatory and adhesion molecules are grouped 

together at the site of the TCR-MHC interaction and form a large multimolecular 

structure referred to as the supramolecular activation complex (SMAC). The spatial 

segregation of the SMAC complex was first described by Monk et al. using 

deconvolution microscopy and has since been confirmed by others. They describe the 

SMAC complex comprising of a focal point of signalling molecules (cSMAC) 

surrounded by a ring of adhesion molecules including leukocyte function-associated 

molecule-1 (LFA-1) (pSMAC) 152,153. This arrangement supports strong and prolonged 

intracellular interactions 154. Arrangement of the TCR/peptide/MHC within the 
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cSMAC results in the phosphorylation of immunoreceptor tyrosine-based activation 

motifs (ITAMs) located on CD3 by the Src family kinases Lck and Fyn. This in turn 

leads to the recruitment and activation of ζ-chain-associated protein 70 (ZAP70) 155,156, 

which phosphorylates the scaffold proteins linker for activation of T cells (LAT)157 

and the cytosolic adapter protein leukocyte phosphorylation of 76kDa (SLP-76) 158. 

The adaptor protein GADS bring SLP-76 and LAT together 159. The GADS:SLP-76: 

LAT complex recruits phospholipidase-C-γ1 (PLCγ1), which is a key signalling 

molecule activated by the phosphorylation of Itk. Activated PLCγ1 hydrolyses the 

membrane lipid (phosphatidylinositol 4,5 bisphosphate) (PI(4,5)P2) forming the 

second messengers IP3 and DAG. These messengers are important for mediating the 

remaining down-stream signals which lead to T cell activation, including the 

activation of NFKB, NFAT and AP-1 to induce specific gene transcription, leading to 

cell proliferation, differentiation and cytokine production 160. Finally, the last signal 

involved in T cell activation involves cytokines. Cytokines drive the differentiation of 

T cells into specific subsets 144. The CD4+ T helper subsets will be discussed in more 

detail in section 1.8.3. 

 

1.8.2 Memory T cells 

Following APC presentation of a pathogenic antigen, naïve T cells become activated, 

proliferate and differentiate into T effector cells which can adopt functional roles 

aimed at clearing a host of infectious agent. These T effector cells are short-lived and 

their cell number rapidly declines once the primary response is over and the infection 

is cleared. However, a small pool of T cells with ‘memory’ for the pathogen remains 

161,162. Both CD4+ and CD8+ T cells have memory populations. Memory T cells have 

a potential of long-term survival and can rapidly respond should re-infection occur. 

They can be located in the secondary lymphoid organs (central memory (TCM) cells) 

or the recently infected tissues (effector memory (TEM cells). Compared with their 

naïve counter-parts, memory T cells demonstrate less strict requirements for activation 

via antigen and co-stimulation signals 162. In addition, memory T cells can elicit 

effector responses more rapidly than primary responding cells 163. In humans, naïve 

and memory T cells are distinguished by the CD45 isoform, with naïve T cells 

expressing CD45RA and memory cells expressing CD45RO 164. 
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1.8.3 T helper cell subsets 

Seminal work from Mosmann and Coffman first identified the existence of distinctive 

CD4+ Th subsets; Th1 and Th2 165. Th1 cells produce IFNγ, IL-2 and tumour necrosis 

factor-α TNFα, which promotes a cellular immune response resulting in T cell 

proliferation and the classical activation of macrophages 166. This subset of cells also 

has the ability to promote complement-fixing and opsonising antibodies 141. Naïve 

CD4+ T cells are driven towards a Th1 subset by IFNγ and IL-12, which signal via 

STAT1 and STAT4, respectively 167,168. T-bet is also a critical transcription factor for 

Th1 differentiation, inducing the production of IFNγ 169. In contrast, Th2 cells produce 

IL-4, IL-5 and IL-13 this promotes alternative macrophage activation and drives mast 

cell and eosinophil proliferation and activation.  Moreover, Th2 cells contribute 

towards immunity to extracellular pathogens such as helminths and primarily promote 

a humoral immune response 170. Th2 differentiation is dependent on IL-4, which 

activates STAT6 and GATA3 171. IFNγ and IL-4 have the ability to antagonize one 

another. For example, IFNγ can activate STAT1 leading to the expression of T-bet and 

studies have shown that T-bet is a repressor of Th2 differentiation. T-bet transduced 

into polarised Th2 cells can modulate their phenotype towards Th1, as evidenced by 

induction of IFNγ and repression of IL-4 172. The central paradigm of the Th subsets 

has since been expanded to include additional subsets such as Treg cells, Th17 cells, 

Th9, Th22, Th3 and T follicular helper cells (Tfh). 

 

Treg cells are a unique subset of Th cells, which are essential for the maintenance of 

immunological tolerance and the prevention of autoimmunity and chronic 

inflammation. Their suppressive function can be elicited via the production of the anti-

inflammatory cytokine IL-10 and their constitutive expression of the inhibitory co-

stimulation marker CTLA4 173. The cytokines IL-2 and TGF-β drive Treg 

differentiation by inducing the expression of the forkhead box P3 (FOXP3) 

transcription factor 174,175. FOXP3 is critical for the development, maintenance and 

function of Treg cells 176,177. Another regulatory lineage identified includes Th3 cells. 

Th3 cells were originally identified in murine models following the induction of oral 

tolerance to myelin basic protein (MBP). These cells suppressed MBP-specific Th1 
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effector cells in a TGF-β dependent, antigen non-specific mannerm178. In the presence 

of TGF-β, naïve CD4+ T cells can differentiate into Th9 cells and also produce IL-4 

and IL-10 179. 

 

While early studies implicated that IL-9 is produced by Th2 cells, reports emerged 

demonstrating that IL-9 is also produced exclusively by a Th9 lineage 180,181. Th9 

differentiation is dependent on the cytokines IL-4 and TGF-β and the transcription 

factors PU.1 and interferon-regulatory factor 4 (IRF4) 182-184. Th22 cells are 

characterised by their production of IL-22 without IFNγ, IL-4 and IL-17 185. Naïve 

CD4+ T cells can be driven towards the IL-22 lineage by IL-6 and TNFα 186 and the 

transcription factor aryl hydrocarbon receptor (AHR) 187. With their expression of the 

skin homing marker CCR4 and CCR10, Th22 cells play a critical role in skin diseases 

186. Tfh cells are located in secondary lymphoid organs including the lymph nodes, 

spleen and tonsil and they specifically provide help to B cells. They play an important 

role in the development of antibodies and memory B cells, germinal centre formation 

and affinity maturation 188. 

 

1.9 Th17 cells 

1.9.1 Th17 cell differentiation 

The most studied source of IL-17A is the CD4+ T helper type (Th17) subset. 

Following the discovery of IL-17A and the identification of activated human CD4+ T 

cells as IL-17A producers, a plethora of studies quickly defined the Th17 paradigm 

70,71. Studies have shown a combination of TGF-β and IL-6 can differentiate naïve 

mouse CD4+ T cells into the Th17 lineage 23,24,189. However, in the absence of IL-6, 

TGF-β inhibits Th17 differentiation and induces Foxp3 expression and Treg induction 

190. It has also been shown that the IL-2 cytokine family member, IL-21 co-operates 

with TGF-β to induce Th17 cells from naïve murine CD4+ T cells 191. In humans, 

studies have shown that TGF-β and IL-6 alone are not sufficient to induce Th17 cells 

192-194. Additional pro-inflammatory cytokines such as IL-1β or IL-21 are required for 

human Th17 differentiation, while IL-23 is important for lineage maintenance and 

survival 193,195. In addition to the generation of Th17 cells from naïve CD4+ T cells, 
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Th17 differentiation can also be induced from effector memory CD4+ T cells 192,196,197. 

Our lab shown that significant numbers of human IL-17A+ CD4+ T cells were induced 

by stimulating CD4+ CD45RO+ T cells through the TCR in the presence of LPS-

activated monocytes 197. Moreover, we have shown that periodontal pathogens 

promote an IL-17A+ CD4+ T cell response which is dependent, in part on IL-1β, IL-

23 and TLR2/ TLR4 signalling from CD14+ monocytes 198. Finally, a study 

demonstrated that upon sensing bacterial nucleotide oligomerization domain 2 

(NOD2)-ligand muramyldipeptide (MDP), dendritic cells promoted IL-17 production 

from memory CD4+ T cells via enhanced expression of IL-1β and IL-23 199. 

Collectively, these studies show that ligation of TLRs such as TLR2 and TLR4 leads 

to an up-regulation of Th17-polarizing conditions, which subsequently induces Th17 

differentiation.  

 

Th17 cells also produce IL-17F. Studies frequently report that IL-17F is co-expressed 

with IL-17A, however different IL-17 producing populations exist including IL-17A+ 

IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells 106,193. It is important 

to note that in general Th17 cells are determined by their ability to produce IL-17A 

and not IL-17F. Moreover, the majority of studies which investigate the differentiation 

of Th17 cells examine IL-17A+ CD4+ T cells and not IL-17F+ CD4+ T cells. One 

study by Wilson et al. has demonstrated that like IL-17A, human IL-17F+ CD4+ T 

cells are enhanced in the presence of IL-1β and IL-23 193. 

 

1.9.2 Transcriptional control of Th17 cells 

The main regulator of Th17 cells is the transcription factor retinoic acid (RA)- related 

orphan nuclear receptor γ (RORγt), which is encoded by the RORC gene 200. However, 

RORγt deficiency does not completely abolish Th17 cytokine expression 106. RA-

related orphan receptor α has also been acknowledged as a transcription factor critical 

for Th17 differentiation 201. STAT3 has been shown to be critical for Th17 

differentiation. ChIP-seq analysis has demonstrated STAT3 directly regulates the 

IL17A, IL17F and RORC as well as multiple other genes associated with Th17 

polarisation and survival 202. Mice that lack STAT3 in T cells have an impaired ability 

to generate Th17 cells 203. Other transcription factors which contribute in driving Th17 
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differentiation include basic leucine zipper transcription factor ATF-like (BATF) and 

interferon regulatory factor 4 (IRF4). BATF is a member of the activator protein 1 

(AP-1) transcription factor family that is regulated in Th cells following TCR 

activation. While BATF-/- mice displayed normal Th1 and Th2 differentiation, Th17 

differentiation was defective 204. IRF4 deficient mice displayed a defective Th17 

differentiation as a result of decreased RORγt expression 205. Studies have suggested 

that BATF and IRF4 co-operatively bind and govern chromatin accessibility, which 

enables RORγt binding to Th17 associated genes 89,206,207. Finally, hypoxia-inducible 

factor-1α (HIF-1α) has also been linked to Th17 differentiation. HIF-1α is induced 

upon TCR activation and its expression is increased under hypoxic conditions 

associated with tissue inflammation. It has been shown that HIF-1α directly binds and 

drives the transcription of RORγt and p300 (a histone acetyltransferase) to drive IL-

17A expression 208. 

 

1.9.3 Regulation of Th17 cells 

Cytokines have emerged as key negative regulators of Th17 cells. Reports have shown 

the Th1 and Th2 cytokines, IFNγ and IL-4 respectively, inhibit Th17 differentiation 

209,210. Harrington et al. showed that that the development of mouse Th17 cells from 

naïve CD4+ T cells was potently inhibited by IFNγ and IL-4, whereas committed Th17 

cells were resistant to IFNγ and IL-4 mediated-suppression 209. Titration of IFNγ led 

to a dose-dependent decrease in IL17A and IL17F mRNA levels present in mouse 

CD4+ T cells 211. In vivo, IFNγ deficient mice display increased frequencies of IL-

17A+ CD4+ T cells and IL-17A protein 210. In a human study, it has been shown that 

memory CD4+ T cells cultured with monocytes and LPS in the absence or presence 

of Th1 polarising conditions (recombinant IL-12 and IL-4 blocking antibody) leads to 

an up-regulation of IFNγ+ CD4+ T cells and IFNγ secreted protein, while IL-17A+ 

CD4+ T cells and IL-17A secretion is significantly decreased 192. Similarly, blockade 

of IFNγ in memory CD4+ T cell cultures stimulated with anti-CD3 and anti-CD28 

leads to an enhanced frequency of IL-17A+ CD4+ T cells 192.  Mechanistically, reports 

have shown the IFNγ-mediated suppression of Th17 cells can be via STAT1 and T-

bet dependent mechanisms 211,212. IFNγ propagates a JAK/STAT signalling cascade 

leading to the robust activation of STAT1 213. Additionally it drives the induction of 

the transcription factor T-bet 169. In concordance, gain-of-function mutations in STAT1 
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in patients suffering with chronic mucocutaneous candidiasis inhibited the 

development of IL-17A+ CD4+ T cells 214 and in Tbet knock-out mice (Tbx21-/-), T 

cells produce higher levels of IL-17A in response to TCR stimulation when compared 

to wild-type mice 215. Similar to IFNγ, other STAT1 activating cytokines can regulate 

Th17 responses including IL-27, a member of the IL-12 family of cytokines. In vitro 

studies have demonstrated IL-27 suppresses IL-6 and TGF-β induced Th17 

differentiation in a STAT1-dependent manner 216,217.  

 

Reports have also suggested that IL-2 has the ability to suppress Th17 development. 

Laurence et al. showed that genetic deletion or antibody blockade of IL-2 in mice 

promoted differentiation of IL-17A+ CD4+ T cells 218. Additionally, a characteristic 

of autoimmune disease associated with IL-2 deficiency is the over-production of IL-

17A in vivo 218. High doses of IL-2 in combination with TGF-β and retinoic acid have 

been shown to inhibit IL-17A expression via the induction of FOXP3 expression and 

skewing CD4+ T cell differentiation into Tregs 219,220.  However, it has also been 

reported that IL-2 can also inhibit IL-17A production independently of FOXP3 221,222. 

Studies have shown the effect of IL-2 appear to be largely associated with its 

downstream target STAT5 223. Deficiency in STAT5 displays similar aspects to IL-2 

deficiency. Mice with deletion of STAT5a and STAT5b exhibit widespread 

autoimmune disease linked with IL-17A over-production 218,223. The underlying 

mechanism has been attributed to the ability of STAT5 to directly compete with IL-

17A-inducing STAT3 to enhancers within the IL17A gene locus 222. Using chromatin 

immunoprecipitation (ChIP) sequencing it was shown that the presence of IL-2 led to 

increased binding of STAT5 across the IL17 locus and at all the sites in the IL17A 

locus this was correlated with significantly less binding of STAT3 222. In concordance, 

a recent mouse study demonstrated that phosphate and tensin homologue (PTEN) 

supports Th17 differentiation by suppressing IL-2 production. Pten deficient mice 

displayed an up-regulation of IL-2 and phosphorylation of STAT5, while STAT3 

phosphorylation was decreased. Collectively, this led to suppression of IL-17A+ 

CD4+ T cells 224. It is important to note that all of these reports investigate the role of 

IL-2 in mice. How IL-2 affects the frequency of IL-17A+ CD4+ T cells in humans is 

currently unclear. Few reports examine the effect of IL-2 on IL-17F+ CD4+ T cell 

frequencies. As literature often describes IL-17F to be co-expressed with IL-17A it 
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could be assumed that IL-17F expression is similarly suppressed by IL-2.  However, 

it has been shown using mouse cells that in the presence of high levels of IL-6 while 

addition of IL-2 decreases the percentage of IL-17A+ CD4+ T cells it has no effect on 

the frequency of IL-17F+ CD4+ T cells 222. 

 

CD28 co-stimulation is known to induce the expression of IL-2 and IFNγ. A study 

using mouse cells has shown that anti-CD28 mAb suppressed the differentiation of 

IL-17A+ CD4+ T cells in an IL-2 and IFNγ dependent mechanism 221. Moreover, 

Purvis et al. stimulated human CD4+ T cells with either high or low-strength 

stimulation via anti-CD3/CD28 beads or dendritic cells pulsed with superantigen in 

the presence of IL-1β, TGF-β and IL-23. They found that low-strength stimulation 

significantly enhanced IL-17A expression, whereas IL-17A expression was reduced 

when receiving a high-strength stimulation 225. Collectively, these reports demonstrate 

that IL-17A+ CD4+ T cells are induced upon low-strength T cell activation. As these 

studies examine the expression of IL-17A only, it is not known how high-strength T 

cell activation effects the expression of IL-17F from CD4+ T cells. In light of the study 

which suggests IL-2 may differentially effect IL-17A and IL-17F expression 222, how 

T cell signalling strength impacts IL-17F would be an interesting area to pursue. 

 

 

1.9.4 Phenotypic marker and cytokine profiles of IL-17A+ and IL-17F+ 

CD4+ T cells 

Studies have characterised Th17 cells by their expression IL-23 receptor (IL-23R), the 

chemokine receptor CCR6 and the lectin receptor CD161 226,227. Annunziato and 

colleagues showed that Th17 clones exhibit higher levels of the chemokine receptors 

CXCR4, CXCR6, CCR4 and CCR5 when compared to other clone types including 

Th1 and Th2. They also demonstrated that Th17 cells selectively expressed CCR6 226. 

CCR6 expression had been identified on B cells, dendritic cells (DCs) and memory T 

cells, however, the CCR6 ligand, CCL20 only exerts chemotactic activity on memory 

T cells 228. It has been shown that CCR6 expression in memory T cells is lost following 

prolonged TCR triggering 229. This suggests that the selective expression of CCR6 on 
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Th17 cells could be a result of the ability of Th17 cells to continue to express CCR6 

following prolonged antigen activation, thereby maintaining the ability to recruit in 

response to CCL20 226. CD161 is a C-type lectin-like receptor expressed in the 

majority of natural killer (NK) cells 230. Cosmi et al. demonstrated that the CD161 

gene is up-regulated in Th17 clones and in human peripheral blood (PB) and inflamed 

tissues all IL-17A+ RORC+ cells are contained within the CD161+ fraction of CD4+ 

T cells. However, not all CD161+ T cells produce IL-17A 231. It was also shown that 

IL-17A+ cells originate from the CD161+ (and not the CD161-) naïve CD4+ T cells 

of umbilical blood in response to IL-1β and IL-23 231. The exact function of CD161 is 

unknown, however, it has been suggested to play a role in transendothelial migration 

as CD161+ T cells migrate across endothelial cell monolayers to a greater extent than 

CD161- T cells 232. It has been implied that expression of CD161 is RORC-dependent. 

Naïve CD4+ CD161- T cells transduced with RORC produce IL-17A and up-regulate 

CD161 expression. In contrast, inhibition of RORC down-regulates IL-17A and 

CD161 expression on Th17 clones 233.  

 

IL-17A+ CD4+ T cells have been shown to co-express IL-17F, IFNγ, TNFα, GM-

CSF, IL-21, IL-22, IL-9 and IL-10. The presence and expression level of these 

cytokines depends on the cytokine milieu present upon Th17 differentiation 234-236. As 

previously mentioned, different IL-17 producing subsets exist including IL-17A+ IL-

17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. In the current literature, 

there is a lack of characterisation of IL-17F+ CD4+ T cells and comparison of these 

cells vs. IL-17A+ CD4+ T cells. It is not known whether marker expression on IL-

17A+ vs. IL-17F+ CD4+ T cells may differ of whether one subset demonstrates a more 

inflammatory cytokine profile. Reports have previously demonstrated Th17 cells are 

a heterogeneous population, including ‘non-pathogenic’ and ‘pathogenic’ subtypes. 

McGeachy et al. shown that TGF-β and IL-6 promote the generation of non-

pathogenic Th17 cells, characterised by the production of IL-10 237. However, 

exposure to IL-23 can result in the conversion of non-pathogenic Th17 cells to 

pathogenic Th17 cells 238. Prostaglandin E2 and the Notch signalling molecule, RPBJ 

are also associated with driving Th17 pathogenicity 239,240.   Pathogenic Th17 cells are 

associated with a lack of IL-10 production and enhanced GM-CSF production 241. A 

study comparing the gene expression profiles of in vitro Th17 cells polarised by 
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cytokine combinations which induce non-pathogenic or pathogenic Th17 cells 

revealed 233 differentially expressed genes 242. Pathogenic Th17 cells display a higher 

gene expression level of pro-inflammatory chemokines and cytokines including 

CXCL3, CCL4, CCL5, IL3 and IL22. In contrast, non-pathogenic Th17 cells exhibit 

enhanced expression of genes encoding the immune suppressive IL-10 and the 

transcription factor IKZF3 242,243. 

 

 

1.10 Other IL-17A and IL-17F expressing cells 

1.10.1 IL-17A+ CD8+ T cells (Tc17 cells) 

Although Th17 cells are the best-characterised cellular source of IL-17A and IL-17F, 

various reports have demonstrated that other immune cells can produce these 

cytokines, one group of which are IL-17A+ CD8+ cytotoxic T (Tc17) cells. CD8+ T 

cells play a vital role in immune defence against intracellular pathogens and tumour 

surveillance. They primarily secrete TNFα and IFNγ and release cytotoxic granules 

including perforin and granzymes. Moreover, they can kill infected cells via Fas/FasL 

interactions. Similar to CD4+ T cells, different subpopulations of cytotoxic CD8+ T 

cells exist including Tc1, Tc2, Tc9, Tc17 and CD8+ Treg cells. IL-17A+ CD8+ T cells 

were first identified by Teunissen et al., whereby IL17A mRNA was detected in CD8+ 

T cells derived from psoriatic lesional skin 120. Subsequently, flow cytometry analysis 

revealed the presence Tc17 cells in psoriatic skin plaques 18. The requirements for 

differentiation and/or polarisation of Tc17 cells are not as well defined as Th17 cells, 

particularly in humans 244. One report demonstrated the induction of human IL-17A+ 

CD8+ T cells upon culture of naïve CD8+ T cells with recombinant TGF-β, IL-6, IL-

1β and IL-23 245. Moreover, mouse models have shown the importance of the 

transcription factors STAT3, IRF3 and IRF4 in the induction of Tc17 cells. Phenotypic 

profiling of IL-17A+ CD8+ T cells has revealed these cells can co-express IFNγ, 

TNFα, IL-21, IL-22 and GM-CSF 91. Although a IL-17A+ IL-17F+ CD8+ T cell 

population has not currently been reported, a recent study has revealed the presence 

of a mouse IL-17F+ IL-17A- CD8+ T cell population 246. A proportion of IL-17A+ 

CD8+ T cell subsets belong to a subset of innate T cells named mucosal-associated 

invariant T (MAIT) cells. MAIT cells express an invariant T cell receptor-α chain 
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(Vα7.2) that is restricted by the non-classical MHC class I molecule MHC-related 

protein (MR1) 247.  

 

1.10.2 γδ T cells and iNKT cells 

With regards to other T cells, a proportion of γδ T cells have been shown to produce 

IL-17A 248 and IL-17F 106  and share characteristic features of Th17 cells including 

CCR6 and RORγt expression 248. Invariant natural killer T (iNKT) cells characterised 

by their expression of NK1.1+ TCRαβ and invariant Vα14 chain expression have also 

been shown to produce IL-17A 249. 

 

1.10.3 Innate immune cells 

Immunohistological studies have identified IL-17A positive mast cells in human 

tissues including SpA synovial tissue 250, RA synovium 251  and psoriatic lesions 252.  

Interestingly, a study revealed that mast cells can capture and store IL-17A in 

intracellular granules, through a process of receptor-mediated endocytosis. Mast cells 

are then able to release bioactive IL-17A, although it remains to be fully explored what 

drives the IL-17A release 253. With regards to IL-17F, a recent study has shown that 

in oral tongue squamous cell carcinoma mast cells are a major source of IL-17F 254. 

However, it is currently not reported whether mast cells take up and store IL-17F. The 

role of neutrophils as a source of IL-17A is controversial. Neutrophils have been 

identified as a source of IL-17A in numerous mouse models of infection and 

autoimmune inflammation 255-257. Moreover, flow cytometry and immunofluorescence 

staining has determined the presence of IL-17A positive neutrophils in human 

psoriatic lesions 252. However, other mouse and human studies have failed to detect 

IL-17A+ neutrophils 258,259. Similar to mast cells, debates are ongoing as to whether 

IL-17A is transcribed in neutrophils or neutrophils capture IL-17A from the 

environment. Another source of IL-17A and IL-17F includes innate lymphoid cells 

type 3 (ILC3) 260,261. ILCs are a family of lymphoid-lineage cells that lack T and B cell 

receptors and display innate immune effector functions. In particular, ILC3s require 

RORγt, respond to IL-1β and IL-23 and also produce IL-22 262. Other non T-cells 

reported to express IL-17A includes paneth cells 263. 
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1.11 Cellular sources of IL-17B, IL-17C, IL-17D and IL-17E 

Human and mouse studies have reported the presence of IL17E mRNA in Th2-

polarised T cells 124. Moreover, in human studies IL17E transcripts have been 

identified in peripheral blood eosinophils and basophils. IL-5, GM-CSF and IL-3 were 

shown to induce IL-17E protein secretion by eosinophils. Moreover, IgE cross-linking 

triggered strong IL-25 production by basophils 264. IL-17E is also produced by mast 

cells upon IgE cross-linking 265. Finally, IL17E mRNA has been detected in mouse 

intestinal epithelial cells266 and rat macrophages 267. The cellular source of the 

remaining IL-17 cytokines is less well studied. Immunohistochemical analysis of the 

human spinal cord demonstrated that IL-17B protein is primarily localised to neurons 

268. IL-17C has been shown to be distinctly produced by epithelial cells 128. Finally, 

IL17D mRNA has been detected in resting CD4+ T cells and resting CD19+ B cells 

76. In summary, while IL-17A and IL-17F are detected by a similar profile of cell 

subsets, the remaining IL-17 cytokines display distinctly different cellular sources.  

 

Taken together the inflammatory function of IL-17A and IL-17F and their expression 

from immune cells, it became of significant interest to target these cytokines in 

immune-mediated diseases including inflammatory arthritis. Next, I will review 

inflammatory arthritis and the presence and role of the IL-17 family members in this 

disease. 
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1.12 Inflammatory arthritis 

Inflammatory arthritis is a group of diseases characterised by inflammation of the 

joints and often other tissues. These diseases include rheumatoid arthritis (RA) and 

spondyloarthritis (SpA). RA is the most common chronic inflammatory and 

destructive arthritis. It is characterised by persistent synovitis, systemic inflammation 

and the presence of autoantibodies including rheumatoid factor (which targets the Fc 

region of immunoglobulin G) and anti-citrullinated protein antibodies (APCA) (which 

are directed against citrullinated proteins). However, not all patients are positive for 

rheumatoid factor and APCA (seronegative RA) 269. SpA refers to psoriatic arthritis 

(PsA), axial SpA and non-radiographic axial SpA, reactive arthritis, enteropathic 

arthritis and undifferentiated SpA, all of which share clinical and immunological 

features. SpA subtypes are negative for autoantibodies and can include inflammation 

of the joint (peripheral and axial); skin, gut and eye 91. This project focuses on PsA. 

PsA is an assymetric arthropathy but can develop as polyarticular and symmetrical 270. 

Psoriasis is a chronic inflammatory disease of the skin and 10-20% of these patients 

have associated PsA. In contrast to RA and PsA, osteoarthritis (OA) is not an 

autoimmune disease but a degenerative joint disorder. Clinically, the condition is 

characterised by break-down of cartilage, which allows bones to rub against each 

other. This causes joint pain, tenderness, stiffness, limited movement and variable 

degrees of local inflammation. A combination of structural, mechanical and biological 

pathways contributes to OA pathology 271. Studies often compare RA and PsA to OA. 

 

1.12.1 Genetics of inflammatory arthritis 

1.12.1.1 RA 

RA is a complex disease. It can involve factors such as bacteria, viruses and 

autoantigens targeting heavy chain binding proteins and cyclic citrullinated peptides, 

which trigger disease in genetically susceptible individuals 269. Moreover, 

environmental factors such obesity, smoking and caffeine intake can increase the 

likelihood of disease 272. Concordance rates for RA were found between 12.3% and 

15.4% for monozygotic and 3.5% for dizygotic twins, suggesting that genetic factors 
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can impact susceptibility to disease,  273. In concordance, a genome-wide association 

study revealed 49 single nucleotide polymorphisms (SNPs) associated with RA 274.  

 

The HLA class II alleles are strongly associated with RA and contribute at least 30% 

of the total genetic effect 275. As HLA class II molecules play an important role in 

antigen presentation to CD4+ T cells, this suggests that predisposing CD4+ T cell 

repertoire selection, antigen presentation or alterations in peptide affinity might have 

a role in promoting autoreactive responses in RA. The HLA-DRB1 alleles *0101, 

*0102, *0401, *0408, *1001 and *1402 share a consensus sequence known as the 

‘shared epitope’ (SE). The conserved amino acid sequence can include QKRAA, 

QRRAA or RRRAA on the third hyper-variable region of the DRβ1 chain 276,277. 

Extensive evidence exists associating HLADRB1 alleles encoding the shared epitope 

to RA susceptibility and severity 278,279. The shared epitope hypothesis proposes that 

the shared epitope itself is directly involved in the pathogenesis of RA by allowing the 

presentation of an arithrogenic peptide to CD4+ T cells. It has also been proposed that 

HLA-SE alleles can influence the T cell repertoire to permit escape from tolerance or 

survival of auto-reactive clones, or HLA-SE alleles molecules can act as targets 

themselves for auto-reactive T cells 280. Interestingly, the association between SE-

encoding HLADRB1 alleles and RA has only been observed for ACPA-positive 

disease 281. In addition to HLADRB1 alleles that confer susceptibility to RA, other 

HLADRB1 alleles that protect against RA have been identified. A study by Carrer et 

al. demonstrated that the HLADRB*0402 allele, which contains a DERAA sequence 

was protective in RA. The presence of a DERAA sequence was a strong independent 

predictor of a better RA prognosis 282.  

 

Other non-HLA genetic associations have been implicated CD4+ T cells in the 

pathology of RA. The intra-cellular phosphatase protein tyrosine phosphatase non-

receptor type 22 (PTPN22) plays an important role in T and B cell signalling. Studies 

have shown the C1885T polymorphism of the PTPN22 gene  confers risk for RA as 

well as other diseases such as lupus, type I diabetes and others 283. Implicating the IL-

23/IL-17 axis in RA pathology, genetic studies have shown polymorphisms in the 

IL23R gene are associated with RA susceptibility 284 . Implicating Th17 cells in the 
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pathogenesis of RA, a genome-wide association study of RA revealed that a 

polymorphism in the CCR6 gene was associated with RA susceptibility. In 

concordance with the fact that CCR6 is a characteristic marker of Th17 cells, the RA 

CCR6 genotype displayed increased IL-17A protein in sera 285. 

 

1.12.1.2 PsA 

The strongest genetic susceptibility to SpA diseases, including PsA lies within the 

MHC class I region, particularly the HLA-B27 region 286. Other variants including 

HLA-cw6, HLA-B38 and HLA-B08 are associated with PsA 287,288. The association 

of a variety of HLA-B loci with PsA implies that genetic associations alter 

immunological processes. Considerable debate is ongoing on how variants in the 

HLA-B27 region can affect immunological mechanisms. The first and most 

extensively studied hypothesis is driven by the fact that MHC class I molecules present 

peptides to CD8+ T cells. It proposes that PsA and other SpA types including AS 

results from the ability of HLA-B27 to bind and present unique arthitogenic peptides 

to CD8+ cytotoxic T cells. In support of this theory, a studied demonstrated the 

presence of HLA-B27-restricted cytotoxic CD8+ T cells that could recognize both 

bacterially infected and uninfected target cells in the PB of reactive arthritis and AS 

289. Other studies have suggested that variants within the HLA-B27 locus can 

contribute to PsA/SpA pathology by promoting HLA-B27 homodimerization instead 

of heterodimerization with β2-microglobulin. Under normal physiological conditions 

HLA-B27 heavy chains form heterotrimer complexes with β2-microglobulin and 

intracellular peptides derived from viruses, bacteria or self-proteins. These 

heterotrimeric complexes (which form HLA-B27) are presented to the cell surface for 

antigen-recognition 290. However, HLA-B27 heavy chains can also form β2-

microglobulin-free disulphide-bonded heavy chain homodimers 291. Following 

endosomal recycling, HLA-B27 homodimers can be expressed at the cell surface and 

studies have shown they can be recognized by several innate immune receptors on T 

cells, NK cells and other APCs 292. Therefore, it has been proposed that interaction of 

HLA-B27 homodimers with T cells and NK cells can result in altered cell signalling 

and promote a pro-inflammatory response. One of the receptors which recognizes 

HLA-B27 homodimers includes the killer cell immunoglobulin-like receptor 3DL2 
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(KIR3DL2). Interestingly, IL-17A+ CD4+ T cells, which express KIR3DL2 have been 

identified in the blood and SF of AS patients 293. Importantly, co-culture of KIR3LD2+ 

IL-17A+ CD4+ T cells with HLA-B27 homodimer expressing APCs result in 

enhanced survival and proliferation of KIR3LD2+ IL-17A+ CD4+ T cells 293. These 

data implicate a link between MHC class I and the IL-23 – IL-17 axis. 

 

The IL-23-IL-17 axis has been highlighted by genetic association studies in PsA and 

psoriasis. Variants in the IL12B and IL23A region which encodes the IL-12p40 sub-

unit shared between IL-12 and IL-23 and the IL-23p19 sub-unit, respectively are 

associated with PsA and psoriasis 294,295. Additionally, variation within IL23R, 

encoding the IL-23 receptor is associated with PsA/psoriasis 295. Genome-wide 

association studies demonstrated that the IL23R R381Q gene variant is protective 

against psoriasis 296 and Di Meglio et al. showed that IL23R R381Q exerts its 

protective effects through selective attenuation of IL-23-induced Th17 cell effector 

function 297. These data demonstrated a critical role for IL-23/IL-23R signalling in 

generating a pathogenic Th17 response. Further supporting the IL-23-IL-17 axis in the 

genetic susceptibility of PsA is the identification of susceptibility variants in genes 

encoding key IL-23 and IL-17 signalling molecules including STAT3 298, TYK2 

(required for IL-23 signalling) 299 and TRAF3IP2 (encodes the IL-17 signalling 

molecule, Act1) 299. 

 

1.12.2 Synovial fibroblasts in inflammatory arthritis 

Although most of the research focuses on the role of immune cells in inflammatory 

diseases, the pathological role of stromal cells is increasingly recognised 300-304. 

Stromal cells are connective tissue cells, which build the structural framework of organ 

or tissues. The main type of stromal cell is fibroblasts. Fibroblasts play a key role in 

supporting normal wound healing 305. They are recruited to wound sites via chemo-

attractants such as platelet-derived growth factor (PDGF), IL-1β and TNFα, which are 

produced by platelets and macrophages as part of the inflammatory response. Once 

recruited to the wound site they produce MMPs that degrade the fibrin clot and replace 

it with extracellular matrix components such as collagen I-IV, XVIII, glycoproteins, 
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thrombospondin, lamin and hyaluronic acid. The secreted fibroblast matrix supports 

and regulates the migration and activity of fibroblasts and co-ordinates angiogenesis, 

granulation-tissue generation and epithelisation 305. In the healthy joint, synovial 

fibroblasts (also referred to as synovial-fibroblast-like cells) are located in the synovial 

sub-lining and lining layer and are one or two layers thick interspersed with tissue-

resident macrophages. Here, they produce extracellular matrix components of the 

synovial fluid (SF), which is vital for cartilage integrity and lubrication of the joint. In 

RA, the synovial sub-lining thickens and is infiltrated by immune cells. Synovial 

fibroblasts proliferate and become chronically activated 300.  

 

Strong evidence exists suggesting that synovial fibroblasts are aggressive drivers in 

the destructive process of RA 306-308. In response to inflammatory mediators (including 

IL-17A, IL-17F and TNFα) synovial fibroblasts can secrete a variety of pro-

inflammatory cytokines and chemokines including IL-6, IL-8, CCL2, CCL3, CCL4 

and CXCL10. Subsequently, this can lead to the recruitment of neutrophils, monocytes 

and T cells which can perpetuate inflammation. Synovial fibroblasts can also 

contribute to the pathology of RA by acting as innate immune cells. It has been 

demonstrated that synovial fibroblasts express TLR3 and TLR7 (which bind double-

stranded and single-stranded RNA, respectively) and the cytosolic pattern recognition 

receptors RIG-1 and MDA-5 (which recognise double-stranded RNA) 309. A study by 

Bretano et al. demonstrated that necrotic synovial fluid cells activate synovial 

fibroblasts via TLR3, which can lead to the production of high levels of IL-6, 

CXCL10, CCL5 and IFNβ 306. Studies have shown that interaction between synovial 

fibroblasts and T cells can elicit many different effects. Co-cultures of activated T cells 

with synovial fibroblasts led to increased IL-6 and IL-8 production by fibroblasts and 

in turn, increased production of IL-17A and IFNγ by T cells 307,310. Studies have also 

suggested that synovial fibroblasts can extend T cell survival, leading to persistence 

in inflammation in the RA joint. RA synovial T cells were rescued from spontaneous 

apoptosis in vitro by interaction with synovial fibroblasts 308.   

 

A characteristic feature of RA synovial fibroblasts in their ability to invade and destroy 

cartilage via the production of a disintegrin and metalloproteinase with 
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thrombospondin motifs (ADAMTS), MMPs and cathepsins. Pro-inflammatory 

cytokines such as IL-1β and TNFα present in the inflamed joint induce the production 

of these proteinases by fibroblasts 311. Interestingly, it has been shown that epigenetic 

changes maintain high production of MMPs in RA synovial fibroblasts 312. Evidence 

in the TNF transgenic (hTNFtg) mice suggests that loss of cartilage proteoglycan is 

required for the attachment and invasion of synovial fibroblasts to cartilage 313. 

Interestingly, a study in the severe combined immunodeficiency (SCID) mouse model 

demonstrated that RA synovial fibroblasts have the ability to migrate to cartilage at 

sites distant from their origin. These data support the hypothesis that destructive 

arthritis spreading between joints is mediated, in part, by the migration of synovial 

fibroblasts 301. 

 

It was originally thought that fibroblasts are a homogenous population, however data 

are emerging demonstrating that several different phenotypes of fibroblasts exist 302-

304. Work from Bertoncelj et al. identified that synovial fibroblasts from different 

anatomical locations exhibit significant differences in gene expression pattern, 

epigenetic marks and function 304. A significant number of differentially expressed 

transcripts between synovial fibroblasts of different locations were encoded in the 

homeobox (HOX) loci. Interestingly, it was shown that cluster analysis of RNA 

sequencing data using transcripts exclusively encoded in the HOX loci can cluster 

synovial fibroblasts according to joint location. In particular, synovial fibroblasts from 

proximal joints can be separated from synovial fibroblasts of distal joints. 

Functionally, while RA synovial tissues from hand joints expressed significantly 

higher levels of MMP13 than synovial tissues from the knees of RA patients, knee RA 

synovial fibroblasts induced higher levels of MMP1 in response to TNFα than that of 

upper extremity synovial fibroblasts. In summary, these data suggest that RA might 

manifest differently at different joint locations 304. A recent study has characterised 

CD90 (also known as THY1)- podoplanin (PDPN)+ and CD90+ PDPN+ fibroblast 

populations which are either CD34+ or CD34-. An increase in the PDPN+ CD90+ 

CD34- subset was observed around the sub-lining of RA synovial tissue. This was 

identified as a dominant change in the RA synovium, not observed in OA samples 303. 

While the majority of synovial fibroblast studies focus on RA, it is likely similar 
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results can be observed in synovial fibroblasts derived from the inflamed joint of PsA 

patients. 

 

1.12.3 Immune cells in inflammatory arthritis 

1.12.3.1 Innate immunity in RA 

In the synovial membrane and SF of RA patients, innate immune cells have been 

identified, including monocytes, macrophages, mast cells, natural killer cells and 

neutrophils. Moreover, these cells have been shown to contribute to the pathology of 

these diseases 314. Monocytes and macrophages are present in abundance in the 

rheumatoid joint. Studies have shown these cells have an activated phenotype with 

increased expression of HLA-DR 315, co-stimulatory molecules (e.g. CD80, CD86 and 

CD40), adhesion molecules (e.g. CD44 and CD45) 316 and chemokine receptors (e.g. 

CCR3 and CCR5) 317. Many monocyte/ macrophage functions can contribute to the 

immunopathology of RA. These include their potent ability to secrete pro-

inflammatory cytokines including TNFα, IL-6, IL-1β and MMPs into the SF which 

can lead to endothelial cell activation, acute phase reactions and cartilage damage 318. 

Moreover, monocytes can drive Th1 and Th17 responses by their ability to produce 

IL-12 and IL-1β/IL-6/IL-23, respectively. A report from our lab has shown that in vivo 

activated CD14+ monocytes derived from the inflamed joints of RA patients 

spontaneously and specifically promoted Th17 responses, compared with resting 

monocytes from the blood. This monocyte-induced Th17 differentiation was shown to 

be a TNFα and IL-1β-dependent mechanism 197. Reports have also demonstrated that 

activated monocytes or macrophages can positively or negatively influence the 

function of CD4+ Tregs via production of soluble mediators 318. For example, TNFα 

can decrease FOXP3 expression and reduce Treg cell function 319. Finally, 

monocytes/macrophages can contribute to the pathology of RA by recruiting or 

maintaining CD4+ T cells in the arthritic joint. Elevated expression of CXCL16 in the 

RA synovium either due to an enhanced influx of monocytes or an increased 

expression of CXCL16 by macrophages promotes recruitment of CXCR6+ T cells, 

which can exacerbate the inflammatory response in the synovium 320,321. Reports have 

demonstrated a potential role for monocytes in influencing the CCL20-CCR6 axis in 
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RA. Synovial monocytes can display enhanced expression of CCL20, which could 

subsequently lead to the recruitment of CCR6+ cells including Th17 cells 322,323.  

 

1.12.3.2 Adaptive immunity in RA 

The adaptive immune system plays a central role in the immunopathology of RA, as 

evidenced by the presence of auto-antibodies and the genetics of RA. Studies have 

showed that central and peripheral B cell tolerance checkpoints are defective in RA. 

Subsequently, there is an accumulation of auto-reactive B cells in the mature naïve B 

cell compartment 324. The pathogenic role of B cells in RA can occur via several 

mechanisms including autoantibody production, T cell activation and cytokine 

synthesis. Auto-reactive B cells present in RA can produce a wide range of auto-

antibodies, of which the most widely studied are rheumatoid factor and ACPA. 

Immune complexes consisting of immunoglobulins bound to their cognate antigens 

can be characteristic of RA 325. A significant proportion of immune complexes present 

in the RA joint consists of rheumatoid factor bound to the Fc portion of IgG 326. These 

immune complexes trigger the complement system, releasing chemotactic factors such 

as C5a, which leads to the recruitment of inflammatory cells via C5a receptors. As 

such, local inflammation and tissue damage is induced 327. B cells can also contribute 

to the pathology of RA by acting as efficient antigen presenting cells. In contrast to 

conventional APCs, which display no binding specificity for antigens, B cells capture 

antigens via antigen-specific surface immunoglobulin receptors. Following antigen 

internalisation and processing by specific B cells, antigens are presented to CD4+ T 

cells in an MHC- restricted manner, leading to CD4+ T cell activation 328. It has been 

suggested that T cell responses in RA synovitis are dependent on B cells. Treatment 

with a monoclonal anti-CD20 antibody (which depletes B cells) in SCID mice 

xenotransplanted with RA synovial tissue enriched in B cells led to the impairment of 

T cell activation and T-cell derived cytokines 329. Finally, it has also been 

demonstrated that B cells can contribute to the pathology of RA via the secretion of 

RANKL, which can trigger osteoclastogenesis 330. 

 

Early studies reported that T cells are the dominant cell population in RA synovial 

membranes 331,332. Moreover, T cells are abundant in the synovial membrane of RA 
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patients when compared with the synovial membrane of OA or healthy joints 332. 

Reports have shown that RA SF T cells predominantly bear the memory CD45 ‘RO’ 

phenotype, rather than the naïve ‘RA’ isoform. These cells have also been shown to 

express CD69 suggesting that they have recently been activated 333. Animal models 

have also provided evidence for the role of T cells in inflammatory diseases. Adjuvant 

arthritis is similar to RA; it is an inflammatory disease displaying extensive cartilage 

and bone destruction. This disease can be induced in rats by subcutaneous injection of 

Mycobacterium tuberculosis. A study showed that adjuvant arthritis is T cell 

dependent, with T cell clones capable of transferring disease to naïve recipients 334. 

Another mouse model study demonstrated that chronic autoimmune arthritis, similar 

to RA, developed as a result of mutations in ZAP70, which is a key signal transduction 

molecule in T cells. From this report, it was suggested that ZAP70 mutations may alter 

the thresholds of T cells to thymic selection, allowing positive selection of otherwise 

negatively selected self-reactive T cells. Therefore, thymic production of arthritogenic 

T cells  due to a genetic shift of the T cell repertoire towards high self-reactivity may 

play a fundamental role in the immunopathology of RA 335. 

 

It was originally thought that Th1 cells were the main drivers of RA. In the rheumatoid 

synovium considerable amounts of IFNγ were present, whilst IL-4 was absent 336,337 

and the  Th1 polarising cytokine IL-12 (formed of IL-23p35 and IL-12p40 sub-units) 

was detectable in RA SF 338. In experimental models the presence of Th1 cells also 

appeared to correlate to autoimmune disease. Collagen-induced arthritis (CIA) is the 

most commonly studied autoimmune model of RA, which is elicited in genetically 

susceptible strains of mice by immunisation with type II collagen emulsified in 

complete Freud’s adjuvant 339. In both CIA and EAE, blockade of IL-12p40 reduced 

the disease severity and inflammation 340,341.  Additionally, it was also shown that in a 

myelin basic protein induced form of EAE, IL-12p40 knock-out mice were resistant 

to disease 342.  

 

However, opposing the role of Th1 cells in driving RA, it was reported that loss of 

IFNγ signalling increased CIA severity 343,344. Furthermore, mice lacking IL-12p35 

were shown to exacerbate CIA 345. This indicated that IL-12p40 contributes to arthritis 
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in an IL-12 independent manner. IL-12p40 also combines with the IL-23p19 sub-unit, 

forming the IL-23 cytokine. Therefore, IL-12p40 deficient mice are deficient in both 

IL-12 and IL-23. Studies which compared IL-23p19 deficient mice and IL-12p35 

deficient mice soon revealed that many of the inflammatory functions which had been 

attributed to IL-12 were in fact due to the biological activities of IL-23. Cua et al. 

reported that IL-23 deficient (IL-23P19-/-) mice are resistant to EAE and Murphy et 

al. demonstrated that IL-23p19-deficient mice are resistant to the development of joint 

destruction in CIA 345,346. Linking the IL-23/IL-17 axis to autoimmune disease, 

Langrish et al. demonstrated that EAE-resistant IL-23a-/- mice displayed similar 

numbers of central nervous system- infiltrating IFNγ but not IL-17A expressing T cells 

347. 

 

1.12.3.3 Involvement of the immune system in PsA 

In comparison to RA, PsA synovial tissue contains less cellular infiltrate and displays 

a more vascular phenotype 348,349. Histological changes are characterised by 

endothelial swelling and vessel wall thickening 349. The role of T cells in the PsA joint 

has been highlighted by the beneficial effects of T-cell therapies such as ciclosporin 

and abatacept on the treatment of PsA 350,351. Cyclosporin inhibits the calcineurin-

dependent nuclear translocation of the transcription cytosolic proteins, nuclear factor 

of activated T cells, pre-existing (NFATp) and nuclear factor of activated T cells, 

cytoplasm (NFATc). Subsequently, this leads to the blockade of early T cell activation 

351. Abatacept is a soluble fusion protein consisting of the extra-cellular domain of 

human CTLA4 and a fragment of the Fc portion of human IgG1, which blocks the 

CD28/B7 pathway causing a near-complete inhibition of T cell proliferation 352. The 

association of PsA with MHC class I alleles provide evidence for a critical role in 

CD8+ T cells and suggest that the disease is driven by presentation of self-peptides by 

susceptibility MHC class I molecules to auto-reactive antigen-specific CD8+ T cells 

286. Unexpectedly, observations made in HIV also indicated the role of CD8+ T cells 

in PsA. In the advanced setting of HIV disease, whereby CD4+ T cells are depleted, 

PsA still occurred 353. CD8+ T cells derived from PsA SF have been shown to have an 

activated (HLA-DR+), memory (CD45RO+) phenotype with low CD25 expression 

levels, indicating a non-classical activation pattern 354.  
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Studies have investigated the mechanism of accumulation of T cells in the sites of 

inflammation. It has been of interest to investigate whether the joint T cells recognises 

a single or several antigens or whether it reflects secondary non-antigen-specific T cell 

recruitment mediated by chemokines released by the local joint inflammation. It has 

been suggested that recruitment of T cells into the PsA synovial compartment may be 

mediated by chemokines such as MCP-1. In the plasma of PsA patients, MCP-1 levels 

were increased in comparison to healthy individuals and a positive correlation was 

identified between SF-derived T cells and SF MCP-1 levels 355. If indeed recruitment 

of T cells was non-antigen specific, the T cells present at the site of inflammation 

would lack clonal expansions specific to the joint and primarily display a polyclonal 

repertoire similar to that of the blood. In contrast, a super-antigen present in the joint 

could elicit polyclonal expansion of both CD4+ and CD8+ T cell subsets. Finally, 

stimulation of T cell clones by a specific antigen would induce oligoclonal T cell 

expansions characterised by related sequence motifs in the CDR3 region 356. A study 

by Costello et al. investigated the TCRβ chain repertoire in paired samples of PB and 

SF from PsA patients. The study demonstrated that the αβ T cell repertoire of PsA SF 

CD8+ T cells contained an average of 32 major oligoclonal expansions in many 

variable genes of the TCRβ chain families, as evidenced by β-chain CDR3 length 

analysis. The majority of oligoclonal expansions were not present in the PB counter-

part, highlighting the immunologic specificity of the clonal events for the inflamed 

joint. The TCR repertoire of the CD4+ T cells derived from PsA SF contained fewer 

and smaller oligoclonal expansion predominantly restricted to the joint. Collectively, 

these data suggest that the accumulation of CD8+ T cells in the PsA joint is driven by 

antigen (likely auto-antigen) driven clonal expansion. Moreover, as clones are 

preferentially expressed in the joint, it is suggested that the inciting peptide antigen is 

selectively expressed in the joint or related tissues. The study demonstrated that CD4+ 

T cell oligoclonal expansion was also present in PsA SF, however, they were smaller 

in size and number compared with CD8 expansions 356. 
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1.12.4 Animal models showing the pathological role of IL-17A in arthritis 

Murine models of inflammatory arthritis have unequivocally demonstrated the 

pathogenic role of IL-17A in inflammatory arthritis 357. Seminal research blocked IL-

17A in the CIA mouse model (during the initial phase of arthritis) with a soluble IL-

17 receptor fusion protein, which resulted in the suppression of arthritis development 

and joint damage. In contrast, overexpression of IL-17A in CIA led to accelerated 

development and enhanced severity of synovial inflammation and joint damage 358. In 

concordance, another study demonstrated that blocking IL-17RA signalling provided 

complete protection against the development of CIA 359. As well as playing a role in 

the early stages of arthritis, it has been shown that IL-17A contributes to the effector 

phase of arthritis. Neutralising IL-17A after the onset of CIA significantly reduced 

disease severity, as evidenced by the suppression of joint damage in the knee and ankle 

joints. Suppressed joint damage was attributed to the significantly reduced systemic 

levels of IL-6 and decrease in IL-1β and RANKL+ cells 360. Another study by Lubberts 

et al. demonstrated that a lack of IL-17R signaling prevented full progression and 

persistence of chronic synovitis. This study involved a mouse model which begins as 

a macrophage-driven process but becomes T cell dependent with time. This involved 

repeated injections of gram-positive bacterial cell wall fragments (SCW) directly into 

the knee joint. While no difference in the acute phase of arthritis was observed in IL-

17R-/- mice vs. wild-type mice, IL-17R-/- prevented progression to chronic 

destructive synovitis. This was associated with a significant down-regulation of 

chemokines, selectins, cytokines and collagenase-3 in the synovium of IL-17R/- mice 

361.  

 

One of the early mouse-model studies investigating the role of IL-17F showed that in 

dextran sulfate sodium (DSS) induced colitis, IL17A knock-out mice exhibited severe 

disease symptoms, whereas IL17F knock-out mice were protective against disease 106. 

In contrast, in the EAE model IL17F knock-out mice had no affect on disease severity 

106. Similarly, blockade of IL-17F in CIA did not reduce the arthritis score 362. A 

combined blockade of IL-17A and IL-17F significantly reduced disease severity, 

however, no clear difference was observed between the blockade of IL-17A alone vs. 

combined IL-17A and IL-17F blockade. In contrast, a study in the experimental colitis 

mouse model showed that neutralization of both IL-17A and IL-17F ameliorated 
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colitis, whereas neutralization of IL-17A or IL-17F alone had a limited effect 363. This 

suggests that in certain environments dual IL-17A and IL-17F blockade may be more 

effective at reducing inflammation than blockade of IL-17A alone.  

 

1.12.5 The presence of IL-17A and IL-17F in inflammatory arthritis 

1.12.5.1 RA 

The link between IL-17A and RA pathology was established in 1999 by Chabaud et 

al, whereby IL17A mRNA expression was detected in RA synovial tissue and not OA 

tissue. Additionally, functional IL-17A was shown to be spontaneously produced by 

RA synovial explants and IL-17A producing cells were identified in T cell-rich areas 

of the synovium 364. Since then immunohistochemistry analysis has identified 

increased expression of IL-17A protein in RA vs. OA synovial tissue 111,365. Studies 

have also shown increased IL-17A production or frequency of IL-17A+ CD4+ T cells 

in the serum or SF of RA patients. RA patients showed significantly higher levels of 

IL-17A in the serum of RA patients vs. healthy controls 366 and levels of IL-17A in SF 

were significantly higher in RA patients than OA patients 103. Gullick et al. 

demonstrated that following ex vivo stimulation with PMA and ionomycin for 3 hours, 

IL-17A+ CD4+ T cells were significantly elevated in the PB from RA patients vs. 

healthy control. IL-17A+ CD4+ T cells were further enriched in the RA SF compared 

to RA PB, demonstrating that IL-17A is preferentially enhanced at the site of 

inflammation rather than systemically 367. Other studies have also observed increased 

frequencies of IL-17A+ CD4+ T cells in the PB and SF of RA patients vs. controls 

368,369. Studies have linked levels of IL-17A protein and IL-17A+ CD4+ T cells to RA 

severity. In comparison to patients in remission, patients with active disease had a 

higher percentage of IL-17A+ CD4+ T cells in RA synovial tissue. Moreover, the 

frequency of IL-17A+ CD4+ T cells, but not Th1 cells in SF positively correlated with 

CRP and local power doppler ultrasound-defined synovitis 367. 

 

Limited studies examining the presence of IL-17F in RA exist. A study by Zrioual et 

al. performed immunohistochemistry analysis on RA synovial tissue and identified 

the selective expression of IL-17F protein when compared with OA samples. 
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Additionally, they observed a more sustained staining for IL-17F compared with IL-

17A. IL-17F secreting cells were described to display a plasma cell-like morphology, 

similar to IL-17A expressing cells 112. Similar experiments performed by van Baarsen 

et al. also demonstrated the presence of IL-17F protein in RA synovial tissue, however 

similar IL-17F protein levels were also observed in healthy control and OA synovial 

tissue samples 365. 

 

While the presence of IL-17 cytokines in serum/ plasma samples has been 

undetectable in some cases 362, other studies have detected IL-17F 370,371. One study 

analysed plasma samples from RA and OA patients and revealed significantly 

increased levels of IL-17F in RA vs. healthy control samples 370. With regards to SF 

analysis, IL-17F levels were identified at significantly increased levels in RA and OA 

patients vs. healthy controls. However, no significant difference was observed 

between RA vs. OA SF 370. It is important to note that in this study, in contrast to 

robust data provided in other reports, IL-17A protein was identified at very low levels 

with no difference between RA vs OA or healthy control SF samples. A study by 

Sarkar et al. stimulated RA and OA PBMC for twenty-four hours with PMA and 

ionomycin. Similar to IL-17A, they identified IL-17F protein at increased levels in RA 

vs. OA PBMC supernatants. However, no IL-17A or IL-17F expressing cells were 

detectable via flow cytometry. With regards to this study it is important to question 

the physiological relevance and damage to cells following a twenty-four hour 

PMA/ionomycin stimulation period. The study also showed that no IL-17F protein 

was detectable in the supernatant of PMA/ionomycin stimulated RA SFMC or RA PB 

and SF CD3+ T cells 362. Collectively, it is clear the current literature lacks robust 

evidence demonstrating the presence of IL-17F in RA. The same holds true for IL-

17AF. The only reports for IL-17AF have demonstrated that very low levels of IL-

17AF are present in the SF of RA patients 370 and twenty-four hour PMA and 

ionomycin stimulated CD3+ T cells from RA PB display increased IL-17AF levels 

compared with CD3+ T cells derived from OA blood 362. 
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1.12.5.2 PsA 

IL17A mRNA and IL-17A protein has been detected in the SF and synovial tissue of 

PsA patients. Out of fourteen PsA synovial tissue samples, IL17A mRNA was 

detectable in 9 samples 121 and IL-17A protein was detected at higher levels in PsA SF 

vs. PB 368. Circulating IL-17A+ CD4+ T cells are increased in the peripheral blood of 

patients with PsA 372. Additionally, it has been shown that there is a significant 

increase in the number of IL-17A+ CD4+ and IL-17A+ CD8+ T cells in the synovial 

fluid of PsA patients when compared with matched PB or osteoarthritis SF 373,374. A 

report from our lab demonstrated that the frequency of IL-17A+ CD4- T cells present 

in PsA SF positively correlated with the CRP level, ESR, DAS28 score and was 

increased in patients with erosive disease, suggesting a pathological role for IL-17A+ 

CD8+ T cells in RA 374. Within the IL-17A+ CD8+ T cell population in PsA SF, low 

frequencies of CD161+ Vα7.2 MAIT cells have been reported 374. Other cellular 

sources of IL-17A in PsA PB and SF include γδ T cells and ILC3s 375-377. IL-17RA 

expression has been shown to be increased in PsA vs. OA synoviocytes, suggesting 

that PsA synoviocytes are more responsive to levels of IL-17A (as well as IL-17F and 

IL-17AF) present in the inflamed joint 373. 

 

IL-17A+ T cells have been implicated as a key contributor to the pro-inflammatory 

state of psoriasis 378,379. Expression of IL17A mRNA and IL-17A protein has been 

shown to be increased in psoriatic lesions when compared with non-lesional skin 

380,381. A study by Kolbinger et al. detected high IL-17A protein levels in lesional skin 

from psoriasis patients, whereas no IL-17A was detectable in the skin of healthy 

volunteers. However, they detected low but detectable levels of IL-17A protein in the 

non-lesional skin of PsA patients, suggesting that there is an on-going IL-17A pathway 

activation in PsA non-lesional skin 382.  Di Meglio et al. showed that there was an 

accumulation of IL-17A+ CD8+ T cells in human psoriatic lesions and blockade of 

CD8+ T cells via a neutralising antibody prevented the development of psoriasis in a 

xenotransplantation mouse model 383. 

 

Similar to RA, current literature lacks robust data confirming the presence of IL-17F 

in PsA. Among the limited studies investigating IL-17F in PsA, Glatt et al. observed 
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detectable IL17F mRNA levels in six out of fourteen PsA synovial tissue samples 121. 

Van baarsen et al. observed increased IL-17F expression as measured by 

immunohistochemistry staining in PsA synovial tissue compared with OA synovial 

tissue 365. With regards to psoriasis, a study by Watanabe et al. performed western 

blotting analysis to demonstrate the presence of IL-17F protein in psoriatic lesions at 

higher levels than non-lesional controls. Moreover, similar results were observed by 

ELISA 108. A more recent study detected  elevated expression of IL17F mRNA in 

psoriatic lesional skin compared with healthy skin 382. To the best of my knowledge, 

no studies have investigated the presence of IL-17AF in PsA. 

 

1.13 IL-17 receptors in RA and PsA 

As previously discussed, IL-17A, IL-17F and IL-17AF signal through the IL-

17RA/IL-17RC heterodimer receptor complex. These receptors are critical in 

mediating cellular responsiveness to IL-17A, IL-17F and IL-17AF 31. In rheumatic 

diseases, IL-17RA and IL-17C have been reported to be upregulated systemically and 

at the site of inflammation, thus, having the ability to exacerbate the effect of IL-17A, 

IL-17F and IL-17AF. Microarray analysis revealed significant upregulation of both 

IL17RA and IL17RC mRNA expression in RA PBMC when compared with healthy 

volunteers 111. At the site of inflammation, immunohistochemical analysis has shown 

IL-17RA and IL-17RC receptors to be broadly expressed within the synovium of RA 

patients, located on stromal cells and infiltrating immune cells 111. Moreover, a study 

that compared IL-17RA expression in RA, PsA and OA synovicytes via flow 

cytometry and western blot observed IL-17RA expression to be significantly higher in 

RA and PsA when compared with OA 373. 

 

1.13.1 The presence of IL-17B, IL-17C, IL-17D and IL-17E in RA and PsA 

Studies have highlighted a possible role of the remaining IL-17 family members in 

inflammatory arthritis. Immunohistochemistry and qPCR analysis revealed that 

neutrophils contained significant levels of IL-17B in the RA synovium 134. Moreover, 

a study by Yamaguchi et al. identified IL17B and IL17C mRNA expression in the CIA 

arthritic paw. Adoptive transfer of IL-17B- and IL-17C-transduced CD4+ T cells 
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exacerbated arthritis. Finally, in CIA mice neutralisation of IL-17B inhibited arthritis 

development and bone destruction 136. IL-17C is strongly linked to skin, being 

produced and acting upon epithelial cells. Substantial evidence implicates IL-17C in 

lesional psoriasis skin formation. Johnston et al. shown IL-17C protein to be 

abundantly expressed in human lesional psoriasis skin and co-localise with 

keratinocytes and epithelial cells. In concordance, mice engineered to overexpress IL-

17C keratinocytes develop psoriasis-like dermatitis 132. Little evidence exists on the 

presence of IL-17D in inflammatory arthritis. Interestingly, a recent report has 

suggested a pro-inflammatory role of keratinocyte-derived IL-17E in psoriasis 384. 

 

1.14 Biologics in RA and PsA 

There are three main groups of treatment for inflammatory diseases: non-steroidal 

anti-inflammatory drugs (NSAIDs), corticosteroids and disease-modifying anti-

rheumatic drugs (DMARDs). DMARDs are grouped into conventional DMARDs and 

biologic therapies. Conventional DMARDs include methotrexate, 

hydroxychloroquine, leflunomide and sulphasalazine and are often first-line therapy 

385. They can be used individually or in combination with other DMARDs or biologic 

therapies. A study showed that the combination of methotrexate in combination with 

sulfasalazine and hydroxychloroquine demonstrated greater efficacy in early RA and 

patients with an inadequate response to methotrexate (non-responders), however, 

caution must be taken regarding toxicity 386. Extensive research into understanding the 

pathology and involvement of pro-inflammatory cytokine production in RA and PsA 

has allowed for the development of biologic therapies. Biologic therapies have 

revolutionised the management of inflammatory arthritis, directly targeting molecules 

and cells involved in the pathogenesis. The TNFα inhibitor, infliximab was the first 

biologic therapy to be licensed. Infliximab is a chimeric anti-TNF monoclonal 

antibody with murine variable regions and a human IgG1 constant region 387, which 

demonstrated efficacy in RA and PsA 388,389. This was closely followed by other TNFα 

inhibitors including etanercept, adalimumab, golimumab and certolizumab, all of 

which have shown to be effective in the treatment of RA and PsA. Although, TNF 

inhibitors have shown great success, not all patients respond. Clinical improvement 

after TNF inhibition is observed in approximately in 60% - 70% of patients who 

previously failed conventional DMARDS. At present, it is not fully understood why 
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30% to 40% of patients do not respond 390. Current studies are aiming to identify 

features which can predict anti-TNF responders vs. non-responders. 

 

With strong evidence linking the IL-23/IL-17 axis in the immunopathology of RA and 

PsA, biological therapies targeting this pathway have been developed including 

ustekinumab, a human immunoglobulin G1κ monoclonal antibody that binds to the 

p40-subunit shared by IL-12 and IL-23 391,392. Ustekinumab has demonstrated efficacy 

in PsA and psoriasis. While ustekinumab displayed less efficacy in PsA than TNF 

inhibitors 393, it was the first therapy to be more effective than TNF inhibitors in the 

treatment of psoriasis 394. In contrast, ustekinumab has not been shown to reduce the 

signs and symptoms of RA 395. Anti-IL-17A directed therapies including secukinumab 

(anti-IL-17A mAb) and ixekizumab (anti-IL-17A mAb) have demonstrated efficacy 

in PsA and psoriasis. These biologics are now FDA approved and have shown success 

in patients who failed to respond to TNF inhibitor treatment 396-399. In RA however, 

secukinumab and ixekizumab have failed to show consistent results 400-402. The 

biologic brodalumab is directed at IL-17RA and therefore inhibits the signalling of 

both IL-17A and IL-17F aswell as IL-17C and IL-17E. Blockade of IL-17RA has 

shown good efficacy in PsA and psoriasis 403,404, however in patients with active RA 

and an inadequate methotrexate response, no clinical response to brodalumab were 

observed 405. As IL-17E has demonstrated anti-inflammatory potential 125, it is 

important to consider that blockade of IL-17E signalling by brodalumab may be a 

disadvantage, dampening brodalumab’s ability to reduce inflammation. Bimekizumab 

is a humanized monoclonal IgG1 antibody that selectively neutralizes IL-17A, IL-17F 

and IL-17AF.  This agent has demonstrated good efficacy in a proof-of-concept study 

in 39 patients with PsA 121. 

 

 

 

 



 69 

1.15 Thesis rationale and thesis outline 

As evidenced by the literature, IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cell populations exist; however, it is unknown whether there are factors 

that can preferentially skew Th17 cells to be IL-17F producing. Moreover, IL-17F 

expressing CD4+ T cells have not been extensively characterised and it is unknown 

whether there are distinct phenotypic or functional differences between IL-17A and 

IL-17F CD4+ T cells. Reports have shown that IL-17F is less potent at inducing 

inflammation when compared with IL-17A. However, studies have suggested dual IL-

17A and IL-17F blockade is more effective at reducing inflammation than blockade 

of IL-17A alone 121,363. Finally, while strong evidence implicates IL-17A in the 

immunopathological role of inflammatory arthritis, robust evidence for IL-17F is 

lacking. This literature research provided us with the rationale to further characterise 

IL-17F and IL-17F+ CD4+ T cells. 

In summary the main aims of this thesis were to: 

1. Investigate what drives IL-17F expression from CD4+ T cells and perform 

phenotypic characterisation of IL-17F+ CD4+ T cells. Here I hypothesise that 

IL-17A+ and IL-17F+ CD4+ T cells are differentially regulated. 

2. In the context of RA and PsA, investigate the functional role of IL-17F 

alongside IL-17A and investigate the hypothesis that dual IL-17A and IL-17F 

blockade is more effective at reducing inflammation than IL-17A. 

3. Investigate the hypothesis that IL-17F is present and plays a role in RA and 

PsA. 

 

In the first chapter, in vitro healthy CD4+ T cell cultures were set up to explore what 

drives IL-17F expression. This section begins by expanding upon previous work of 

the lab, assessing the effect on LPS-activated monocytes in driving IL-17A and IL-

17F expression. Moreover, the effect of anti-CD3 and anti-CD28 titration on induction 

of IL-17A and IL-17F expressing CD4+ T cells was investigated. Mass cytometry 

(CyTOF) was performed to provide an initial insight into whether IL-17A and IL-17F 

CD4+ T cells display different cytokine profiles. 
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Chapter 4 explores the individual and combinatorial role of IL-17A, IL-17F, IL-17AF 

and TNFα in synovial fibroblast assays. Moreover, the effect of single and dual IL-

17A and IL-17F blockade on the inflammatory response of fibroblasts was assessed 

across multiple culture systems. Due to an increasing need to separate IL-17A+ and 

IL-17F+ CD4+ T cells for functional assays and further characterisation, an IL-17A 

and IL-17F secretion assay was developed in collaboration with UCB. Finally, the 

function of IL-17B, IL-17C, IL-17D and IL-17E on synovial fibroblasts was 

examined. 

 

The final results chapter (Chapter 5) predominantly aims to identify the presence of 

IL-17F in inflammatory arthritis. Using Luminex and ELISA techniques the presence 

of IL-17A, IL-17F, IL-17AF and other pro-inflammatory cytokines in matched serum 

and SF samples from RA and PsA patients was assessed. Additionally, we examined 

the presence of IL-17A and IL-17F producing CD4+ T cells and other immune cell 

subsets in RA and PsA PB and SF. This was further examined at a molecular level. 

Finally, the presence of IL-17 producing cells in RA synovial tissue was assessed.  
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2 Materials and Methods 

2.1 Sample Isolation 

Ethical approval for the use of peripheral blood from healthy donors and peripheral 

blood, synovial fluid and synovial tissue from RA, PsA and OA patients was obtained 

from the Bromley Research Ethics Committee (06/Q0705/20). Healthy control 

subjects were recruited amongst university staff.  Patients with RA, PsA and OA were 

recruited from the Guy’s and St Thomas’ Foundation NHS Trust Rheumatology 

outpatient clinic. Informed consent was obtained for each sample taken from both 

healthy controls and patients. At the time of sample isolation patients were assessed 

using the Disease Activity Score in 28 joints (DAS28). This score is calculated using 

a number of assessment criteria including the number of tender and swollen joints, the 

erythrocyte sedimentation rate (ESR) and the C-reactive protein (CRP) level. 

 

2.1.1 PBMC and SFMC Isolation 

Peripheral blood mononuclear cells (PBMC) were isolated from healthy individuals 

or RA/ PsA patients using density gradient centrifugation. Blood was diluted 1:1 with 

PBS (Gibco, Invitrogen, UK) and carefully pipetted over a layer of 15mls lymphoprep 

(2:1 ratio) (Alere, UK) in a 50ml falcon centrifuge tube. The tubes were then spun in 

a centrifuge at 1600rpm for 20 minutes and no brake. Once centrifuged, the PBMC 

interphase layer was carefully removed with a Pasteur pipette. Cells were washed 

twice in 50mls PBS and counted with Trypan Blue (Gibco, Invitrogen, UK). 

Synovial fluid (SF) from RA/PsA joints was removed by needle aspiration by the 

clinicians and collected into sterile tubes. Depending on the sample viscosity, SF was 

diluted between 1:1 – 1:10 with PBS. As described with blood, SF was layered over 

lymphoprep, centrifuged and the synovial fluid mononuclear cells (SFMC) interphase 

layer was collected with a Pasteur pipette. SFMC were washed twice in 50mls PBS 

and any synovial debris was removed by passing the SFMC suspension through 70µm 

cell strainers. Cells were counted with trypan Blue. 
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2.1.2 Cryopreservation and thawing of PBMC and SFMC 

In some cases, healthy PBMC or RA/PsA PBMC and SFMC were cryopreserved and 

stored in liquid nitrogen in cryovials containing 1ml freezing media, made up of foetal 

calf serum (FCS) (Gibco, Invitrogen, UK) and 10% Dimethyl sulfoxide (DMSO) 

(Sigma-Aldrich). When required, frozen vials were quickly thawed in a water bath at 

37oC. The cell suspension was then added to pre-warmed media, washed and counted. 

 

2.1.3 Serum and synovial fluid isolation 

For serum samples, blood from healthy volunteers or RA/PsA/OA patients was 

collected in a no additive serum tube (Fisher Scientific, UK) and stored at 4oC for 1-2 

hours. The tube was centrifuged (1600rpm, 10 minutes) and the serum was decanted 

into a new falcon tube. This process was repeated until no red blood cells were seen. 

For cell-free SF samples, 1.5mls of SF was centrifuged at 1200rpm for 10 minutes and 

the supernatant was removed from the cell pellet. Final serum or SF samples were 

stored at -80oC before being analysed by luminex or ELISA. 

 

2.1.4 Isolation of cells from synovial tissue 

Synovial membrane tissue samples were collected via arthroscopic biopsy from the 

joints of RA patients. Samples were transferred on a damp gauze to the laboratory 

tissue culture hood and immediately cut into small pieces (1-2mm), discarding any fat. 

Tissue samples were kept moist with MACS buffer (PBS supplemented with 0.5% 

BSA (Sigma-Aldrich) and 2mM EDTA (Sigma-Aldrich). Next, 500mg – 3g of cut 

tissue was placed into a C-tube (Miltenyi Biotec) and an enzyme mastermix was added 

according to manufacturer’s instructions (Milteni Biotec, multi-tissue dissociation kit 

1). C-tubes were then loaded on to a gentleMACS dissociator (Miltenyi Biotec). The 

programme used comprised of 29 seconds mechanical digestion, 45 – 60 minutes 

incubation at 37oC with gentle mixing and 27 seconds mechanical digestion. Once the 

programme had finished, the digestion reaction was quenched by adding the same 

volume of culture media: Roswell park memorial institute media (RPMI) 1640 (Gibco, 

Invitrogen, UK) supplemented with 10% FCS (Gibco, Invitrogen, UK), 100 units/ml 

penicillin, 100μg of streptomycin/ml) (Gibco, Invitrogen, UK) and 1% glutamine 

(Gibco, Invitrogen, UK) and 20μl/ml ethylenediaminetetraacetic acid (EDTA). To 
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remove tissue debris, the cell suspension was first passed through a 100µm cell 

strainer. MACS buffer was used to help pass the cell suspension through the strainer. 

This cell suspension was then passed through a 70µm cell strainer. Finally, cells were 

centrifuged (1600rpm for 8 minutes) and counted with trypan blue. 

 

2.1.5 Synovial tissue explant culture 

In-house fibroblast cell lines were obtained from RA or PsA synovial membrane tissue 

samples. Synovial membrane tissue samples were collected via arthroscopic biopsy 

from the joints of RA or PsA patients. Samples were transferred to the laboratory on 

a damp gauze and then immediately cut into small pieces. Whilst tissue pieces were 

left wet in culture media (Dulbecco Modified Eagle Medium (DMEM) (Gibco, 

Invitrogen, UK) supplemented with 20% foetal calf serum (FCS) (Gibco, Invitrogen, 

UK), 100 units/ml penicillin, 100μg of streptomycin/ml) (Gibco, Invitrogen, UK), 2% 

glutamine (Gibco, Invitrogen, UK) and 1mg/ml Fungizone (Gibco, Invitrogen, UK), 

explant plates were prepared. Wells of a 6 well plate were evenly coated with 1ml 

sterile 0.1% bovine gelatin (Sigma, UK) in distilled water and allowed to set for 30 

minutes at RT. Any excess gelatin was carefully removed with a Pasteur pipette, 

leaving a thin film of set gelatin remaining on the well surface. A piece of tissue 

(approximately 1mm3) was placed in the centre of each well and 1ml of supplemented 

DMEM was carefully added. Tissue explants were incubated at 37oC for 5% CO2 and 

supplemented DMEM media was replenished every 3 days. When fibroblasts had 

grown out of the synovial tissue and expanded to 80% confluency on the well surface, 

they were transferred to a T175 flask. This involved removing and discarding the 

synovial tissue and detaching the adherent fibroblasts by adding 300μl Trypsin-EDTA 

(Thermo Fisher Scientific, UK) for 5 minutes at 37oC. When the fibroblasts were 

detached, Trypsin was neutralised with the addition of 700μl supplemented DMEM. 

The 1ml fibroblast suspension was then added to a T175 flask to a total volume of 

20ml supplemented DMEM.  
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2.2 Cell separation 

2.2.1 CD14+ monocyte isolation 

Isolation of CD14+ monocytes was performed using CD14 Microbeads (Miltenyi 

Biotec, UK). The number of PBMCs required for separation was calculated and 

resuspended in 90μl per 107 cells MACS buffer. Next, 10μl of CD14+ microbeads 

were added per 107 cells, the suspension was thoroughly mixed and incubated at 4oC 

for 15 minutes. After incubation, the suspension was diluted with MACS buffer with 

10-20x the labelling volume and centrifuged at 1200rpm for 10 minutes (4oC). For 

CD14+ selection an LS column (Miltenyi Biotec) was placed in a magnet and pre-wet 

with 3mls of MACS buffer. The cell pellet was resuspended in 1ml MACS buffer and 

applied to the column. Once the cell suspension passed through the column another 

3mls of MACS buffer was applied, this wash step was repeated three times. The 

purified CD14+ monocytes captured within the column were then eluted. This was 

done by removing the column from the magnet and plunging 5mls of MACS buffer 

through. Cells were then counted using Trypan Blue and stained for purity with CD14 

(Miltenyi Biotec, UK), CD3, CD4, CD8 and CD19 (Biolegend, UK). In general, the 

purity was >95% of all cells within the live gate. A representative dot plot is shown in 

Figure 2.1. 

 

2.2.2 CD4+ T cell isolation 

Isolation of CD4+ T cells was performed using a CD4+ T cell isolation kit (Miltenyi 

Biotec). The number of PBMCs required for separation was calculated and 

resuspended in 40μl MACS buffer per 107 cells. The CD4+ T cell population was 

negatively isolated via magnetic separation. In brief, the cells were incubated with a 

cocktail of biotin-conjugated monoclonal antibodies (mAb) against CD8, CD14, 

CD16, CD19, CD36, CD56, CD123, TCRγ/δ and glycophorin (10μl/107 cells) for 10 

minutes at 4oC. After 10 minutes beads coated with an anti-biotin antibody were added 

(10μl/107 cells), mixed and incubated at 4oC for 15 minutes. After incubation the 

suspension was diluted with MACS buffer with 10-20x the labelling volume and 

centrifuged for 10 minutes at 1200rpm. For CD4+ T cell isolation an LS column 

(Miltenyi Biotec) was placed on a magnet and pre-wet with 3mls MACS buffer. The 

suspension was applied to the column, followed by 3ml of MACS buffer which had 
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been used to rinse the suspension tube. The CD4+ T cells collected were counted using 

Trypan Blue and stained for purity with CD3, CD4, CD8 (Biolegend) and CD14 

(Miltenyi Biotec, UK). In general, the purity for CD4+ T cells was >97 % (Figure 2.1). 

 

2.2.3 Sorting immune cell populations from PBMC and SFMC 

To sort immune cell subsets from PBMC and SFMC for RNA analysis, PBMC and 

SFMC isolation was performed as described in section 2.1.1 and approximately 5-20 

x106 cells were incubated simultaneously with viability dye eFluor 506 (1:1000) 

(eBioscience, UK), CD4 PerCp-Cy5.5, CD3 PE-Cy7, CD19 PE, CD8 PB (Biolegend, 

UK) and CD14 APC-Vio 770 (Miltenyi Biotec, UK) in PBS for 30mins at 4 oC. Cells 

were then washed and resuspended in MACS buffer. Based on the expression of 

extracellular markers, CD3+ CD4+ CD8- T cells were sorted using a FACSAria II 

(BD Biosciences). Sorted immune cell populations were stored in TRIzol (Invitrogen, 

UK) for analysis of RNA expression. An example of the sorting gating strategy is 

shown in Figure 2.2. 
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Figure 2.1 Cell purity. 

PBMCs from healthy donors were isolated using density gradient centrifugation, CD14+ monocytes 

were isolated via positive selection and the remaining CD14- cells were enriched for CD4+ T cells. To 

assess cell purity, small aliquots of isolated CD4+ T cells and CD14+ monocytes were stained with 

PECy7-CD3, PerCPCy5.5-CD4, APC-Cy7-CD14, PB-CD8 and APC-CD19. One representative 

example is shown for (A) purified CD4+ T cells and (B) purified CD14+ monocytes. Purity of CD4+ 

and CD14+ was consistently over 97% and 95%, respectively. 
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2.3 Cell culture 

Human PBMC or SFMC were cultured in culture medium: Roswell park memorial 

institute media (RPMI) 1640 (Gibco, Invitrogen, UK) supplemented with 10% foetal 

calf serum (FCS) (Gibco, Invitrogen, UK), 100 units/ml penicillin, 100μg of 

streptomycin/ml) (Gibco, Invitrogen, UK) and 1% glutamine (Gibco, Invitrogen, UK). 

RA and PsA fibroblasts were cultured with DMEM (Gibco, Invitrogen, UK) 

supplemented with either 10% or 20% foetal calf serum (FCS) (Gibco, Invitrogen, 

UK), 100 units/ml penicillin, 100μg of streptomycin/ml) (Gibco, Invitrogen, UK), 2% 

glutamine and fungizone (Gibco, Invitrogen, UK). 

 

2.3.1 CD4+ T cell/CD14+ monocyte co-cultures 

0.5x106 bulk CD4+ T cells were cultured with 0.5x106 autologous CD14+ monocytes 

in a 48 well plate in a total volume of 1ml culture medium. Soluble anti-CD3 mAb 

(Janssen Cilag, UK or Biolegend, UK) was added at 100ng/ml in the absence or 

presence of 100ng/ml LPS (Invitrogen, Sigma, UK), in some experiments 1μg/ml 

adalimumab (ADA) (Abbvie, UK) was added. Co-cultures were incubated for 3 days 

at 37 oC, 5% CO2. 

 

2.3.2 PBMC cultures 

1x106 PBMC were cultured with soluble anti-CD3 in the absence or presence of 

human recombinant (hr) IL-1β  (10ng/ml) (Peprotech, UK) and hrIL-23 (20ng/ml) 

(R&D, UK) and the absence or presence of soluble anti-CD28 (BD, UK) in a total 

volume of 1ml of culture medium. In some experiments, plate-bound anti-CD3 was 

used. To prepare plate-bound anti-CD3 plates, anti-CD3 was coated in each plate well 

at 1.25μg/ml in PBS for a minimum of 2 hours at 37oC. Wells were washed three times 

with PBS before cells were plated. 

 

2.3.3 CD4+ T cell only cultures 

In all CD4+ T cell cultures, plate-bound anti-CD3 was used. In some experiments, 

1x106 bulk CD4+ T cells were cultured in the absence or presence of hrIL-1β 

(10ng/ml) and hrIL-23 (20ng/ml) and the absence or presence of soluble anti-CD28 in 
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a total volume of 1ml of culture medium. Other experiments involved titration of 

soluble anti-CD28 (0-2μg/ml) and plate-bound anti-CD3 (0-2 μg/ml) in cultures of 0.2 

x106 bulk CD4+ T cells in a 96 well plate with a total volume of 200µl in culture 

medium with IL-1β  (10ng/ml) and IL-23 (R&D, UK). Finally, in some experiments 

CD4+ T cells were incubated with anti-IL-2 (1-5μg/ml) (R&D, UK) and/ or anti-IFNγ 

(1-5μg/ml) (Biolegend, UK). Cultures were incubated at 37 oC at 5% CO2 for 3 days, 

unless otherwise stated.  

 

2.3.4 Fibroblasts 

2.3.4.1 General fibroblast cell-line maintenance 

RA and PsA fibroblast cell lines were either generated in-house (as described in 

section 2.1.3) or received as a kind gift from the Anca Catrina lab, Karolinska Institute. 

Fibroblast cell lines were frequently set up from a cryopreserved stock aliquot, 

however, in some cases, they were immediately grown and used from a tissue explant 

culture. To set up a fibroblast cell line from cryopreserved stock, fibroblast cryovials 

were sat in a water bath at 37oC and when completely thawed, the cell suspension was 

immediately transferred to a 15ml falcon tube containing 9ml of pre-warmed culture 

media; DMEM + 20% FCS +100 units/ml penicillin + 100μg of streptomycin/ml + 

2% glutamine + 1mg/ml fungizone. Fibroblasts were then centrifuged at 1200rpm for 

10 minutes. After resuspending the cell pellet in 1ml of culture media, fibroblasts were 

transferred into a T175 flask to a total volume of 20ml culture media. Fibroblasts were 

kept at 37 oC at 5% CO2 and culture media was replenished every 3 days. After the 

first 3 days of setting up a cell line from a cryopreserved stock, the FCS in DMEM 

media was reduced to 10%. When fibroblasts reached approximately 80% confluency, 

the T175 flask was washed twice with 10ml PBS and incubated for 5 minutes at 37 oC 

with 2.5ml Trypsin-EDTA. Once all the fibroblasts were detached, 7.5ml culture 

media was added to the flask, the cell suspension was transferred to a 50ml falcon tube 

and cells were counted using Trypan blue. Whilst some fibroblasts were set up for a 

functional experiment (as described in the next section), others were transferred back 

into a T175 flask and allowed to grow in the new passage. Fibroblast cell lines were 

kept and used between passage 2 and 8.  
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2.3.4.2 Fibroblast assays 

10x103 fibroblasts were seeded per well in a 96-well flat-bottom plate in total volume 

of 200μl DMEM culture media and incubated for 24 hours at 37oC with 5% CO2. 

Taking care not to disturb the adhered fibroblasts, the supernatant was removed and 

discarded. Human recombinant cytokines (IL-17A, IL-17F, IL-17AF, TNFα, IL-17B, 

IL-17C, IL-17D, IL-17E) were added either individually or in combination to the 

fibroblasts at the indicated concentrations. In some experiments, supernatants from 

CD4+ T cells cultured in vitro were added to the fibroblasts at indicated percentages. 

Additionally, stimulated CD4+ T cells were cultured with fibroblasts at a variety of 

ratios. In some of the experiments described, blocking antibodies were added at the 

indicated concentrations. Table 2.1 and 2.2 lists the human recombinant cytokines and 

blocking antibodies used. 

All fibroblast cultures had a final volume of 200μl and were incubated for 24 hours at 

37oC with 5% CO2. Fibroblast supernatants were collected and stored at -80oC before 

being analysed for IL-6 and IL-8 protein levels by ELISA. 
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Table 2.1 Human recombinant cytokines used in cell culture 

 

 

 

 

Table 2.2 Neutralising antibodies used in cell culture 

 

 Cytokine 

 

Manufacturer 

 

Primary cell culture 

IL-1β R&D 

IL-23 R&D 

 

 

 

Fibroblast cell culture 

IL-17A Peprotech 

IL-17F R&D 

IL-17AF Miltenyi Biotec 

TNFα Miltenyi Biotec 

IL-17B R&D 

IL-17C Miltenyi Biotec 

IL-17D R&D 

IL-17E R&D 

 

 Antibody target 

 

Isotype Manufacturer 

 

Primary cell 

culture 

IL-2 Goat IgG R&D 

IFNγ Mouse (m) 

IgG1 

Biolegend 

 

 

 

Fibroblast cell 

culture 

Anti-IL-17A Human (h) 

IgG1 

UCB In-house 

Anti- IL-17F hIgG1 UCB In-house 

Combined anti-IL-

17A and IL-17F 

(Bimekizumab) 

hIgG1 UCB In-house 

Anti-TNFα 

(Adalimumab) 

hIgG1 Abbvie 

(purchased from 

pharmacy) 
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2.4 Flow cytometry 

2.4.1 Compensation controls 

In all flow cytometric settings, single-stained compensation controls were used to 

optimise fluorescence compensation settings. To prepare these controls, BD 

CompBeads (BD Biosciences, UK) were stained with fluorescently conjugated 

antibodies, according to manufacturer’s instructions. For viability dye compensation 

controls, a mixture of live and heat-killed (1 minute, >65oC on heat block cells were 

used). 

 

2.4.2 Extracellular staining 

In some experiments, extracellular marker and cytokine expression was analysed from 

fresh or cryopreserved cells (PBMC, SFMC or CD4+ T cells) following a 3 hour ex 

vivo. stimulation with phorbol 12-myristate 13-acetate (PMA) (50ng/ml) (Sigma-

Aldrich, UK), ionomycin (750ng/ml) (Sigma-Aldrich, UK) and Golgi stop (monensin) 

(BD, UK) or Golgi plug (brefeldin A) (BD, UK) (following manufacturer’s 

guidelines). PMA and ionomycin stimulation is one of the most widely applied 

methods for activation of T cells. PMA activates protein kinase C, while ionomycin is 

a calcium ionophore, which synergises with PMA to enhance PKC activation 1. 

Monensin and Brefeldin A prevent cytokine secretion. Monensin prevents protein 

secretion by interacting with the Golgi transmembrane Na++/ H+ transport, while 

brefeldin A redistributes intracellularly produced proteins from the cis/medial Golgi 

complex to the endoplasmic reticulum 2. In vitro PBMC/ SFMC or CD4+ T cell 

cultures, described in section 2.3, were also re-stimulated with PMA, ionomycin and 

monensin or brefeldin, Both ex vivo and in vitro cultures were stimulated for 3 hours 

at 37oC with 5% CO2.  

 

Following stimulation, cells were transferred into 1.5ml eppendorff tubes and 

washed in PBS. Next, cells were simultaneously stained with the relevant 

extracellular markers: CD14 (Miltenyi Biotec, UK) and CD8 (Biolegend, UK) and 

fixable viability dye (either eFluor450 (1:1000) or eFluor780 (1:2000) (eBioscience, 

UK)) in PBS and incubated for 30 minutes at 4oC. After incubation, cells were 
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washed in 500μl of FACS buffer (PBS supplemented with 0.5% BSA and 0.001% 

sodium azide (Sigma-Aldrich). Next, cells were fixed with 2% paraformaldehyde 

(PFA) for 15 minutes at 4oC. Following incubation cells were washed in 500μl of 

FACS buffer. 

 

2.4.3 Intracellular cytokine staining 

To perform intracellular cytokine staining (ICCS), cells were washed in 500μl of 

permeabilisation (SAP) buffer (0.5% Saponin (Sigma-Aldrich) in FACS buffer) and 

centrifuged for 3.5 minutes at 8,000rpm. Cells were then incubated at 4oC in the 

presence of the chosen antibodies (all antibodies listed in Table 2.3) in a total volume 

of 100μl SAP buffer for 30 minutes. As CD4 is internalised upon PMA/ionomycin 

stimulation and αCD3 binds to the same epitope as the CD3 flow cytometry antibody, 

both CD4 and CD3 were stained intracellularly. To distinguish cytokine-producing 

populations, fluorescence minus (FM) controls were used. Following incubation, cells 

were washed twice with 500μl of SAP buffer and once with 500μl FACS buffer. The 

final cell pellet was resuspended in 200μl of FACS buffer and analysed using the BD 

FACS Canto II flow cytometer, LSR Fortessa or BD FACSymphony. Figure 2.3 

illustrates the gating strategy used for intracellular staining aswell as example flow 

cytometric plots for FM control and positive cytokine staining. 
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Figure 2.2 Gating strategies for intracellular staining. 

 (A) Gates were first set around lymphocytes based on SSC-A vs FSC-A properties. The lymphocyte 

gate was further analysed for uptake of the viability dye, either eFluor506 or eFluor780 to determine 

live vs. dead cells. Next, CD14+ monocytes were excluded by gating on CD14- cells. In some 

experiments, the viability dye was stained in the same fluorescent channel as CD14, allowing 

monocytes and dead cells to be simultaneously excluded in a ‘dump’ channel.   Within live CD14- 

cells, CD3+ CD4+ T cells were selected and a FSC-W/FSC-A gate was applied allowing the 

exclusion of doublet CD4+ T cells. Gated within single CD4+ T cells, (B) shows representative dot 

plots of FM4 controls vs. ICCS for the indicated cytokines. 
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2.4.4 IL-17A secretion assay 

To isolate IL-17A+ CD4+ T cells, CD4+ T cells were cultured for 3 days with IL-1β, 

IL-23, anti-CD3 mAb and anti-CD28 mAb. After 3 days, cells were re-stimulated with 

PMA (50ng/ml) and ionomycin (750ng/ml) for 1.5 hours. This was followed by an IL-

17A secretion assay (Miltenyi Biotec) according to manufacturer’s instructions. Using 

a BD FACS ARIA sorter, IL-17A+ CD4+ T cells or IL-17A- CD4+ T cells were sorted 

and collected. Sorted cells were either cultured directly with synovial fibroblasts (as 

described in section 2.4.3.2) or incubated for 24 hours in RPMI media (200x103 cells 

in 200μl). 

 

2.4.5 Development of UCB IL-17A and IL-17F capture assay 

To isolate IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells a 

capture assay was developed. A number of optimisation experiments were performed, 

however the following section describes the final optimised method. Due to UCB 

proprietarity, description of the method remains brief. 

 

UCB developed a bespoke anti-CD45 Fab Y fragment aswell as Fab X fragments 

which recognise IL-17A (both the IL-17A homodimer and the IL-17AF heterodimer) 

and IL-17F (IL-17F homodimer only). To form IL-17A and IL-17F capture 

complexes, Fab X anti-IL-17A and Fab X anti-IL-17F were individually incubated 

with Fab Y CD45 at a 1.5 (Fab X):1 (Fab Y) ratio in PBS and incubated for 1 hour at 

37oC. CD4+ T cells were stimulated in vitro with IL-1β and IL-23 and then re-

stimulated with PMA and ionomycin (described in section 2.3.2). Stimulated cells 

were then incubated simultaneously with Fab complex A and Fab complex F in cold 

X-vivo media on ice for 15 minutes. In a 50ml falcon tube, cells were washed with 

50ml of warm X-vivo media and centrifuged for 5 minutes at 400xg. After discarding 

the supernatant, cells were resuspended in 50ml warm X-vivo media. To prevent non-

specific binding, CD4+ T cells were split into multiple 50ml falcon tubes (maximum 

of 6x106 CD4+ T cells in each 50ml falcon tube). Cells were then incubated for 45 

minutes at 37 oC, whilst rotating on a MACS mix rotator (Biolegend, UK). After 
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incubation, 0.5M EDTA was added directly into each cell suspension and inverted. 

This was to prevent cell sticking and cell loss. Cells were then centrifuged for 5 

minutes at 400xg. All supernatants were discarded and multiple cell pellets were 

pooled into one falcon tube. Cells were washed with 50ml ice cold PBS + EDTA and 

centrifuged for 5 minutes, 400xg at 4oC. The supernatant was discarded and the wash 

step repeated. In X-vivo media, cells were incubated with CD4 PerCP Cy5.5 

(Biolegend, UK), CD3 FITC (Biolegend, UK), CD8 PE Cy7 (Biolegend, UK), IL-17A 

APC (eBioscience, UK) and IL-17F PE (eBioscience, UK) for 30 minutes on ice. Cells 

were washed twice in 50ml ice cold PBS + EDTA. Prior to sorting, the cell pellet was 

resuspended in 1ml PBS+ EDTA and stained with DAPI viability. IL-17A+ IL-17F-, 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells were sorted using a FACSAria 

II (BD Biosciences). A gating strategy is shown in Figure 3.4. Sorted immune 

populations were stored in RNA lysis buffer (Qiagen) for analysis of IL-17A and IL-

17F mRNA expression. 
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Table 2.3 Flow cytometry antibodies used in this thesis 

 

 

 

mAb 

 

Conjugate Isotype Clone Per 100μl stain Manufacturer 

CD3 PE-Cy7 mIgG1k UCHT1 1μl Biolegend 

CD3 BUV395 mIgG1 SK7 1μl BD 

CD4 PerCP-Cy5.5 mIgG1 SK3 1μl Biolegend 

CD8 PB mIgG1 RPA-T4 1μl Biolegend 

CD14 APC Vio 770 mIgG2a TUK4 5μl Miltenyi 

CD19 PE mIgG1 3G8 1μl Biolegend 

CD45RO PB mIgG2a UCHL1 1μl Biolegend 

CD25 PE mIgG1 M-A251 1μl Biolegend 

CD127 FITC mIgG1 A019D5 1μl Biolegend 

CD161 BV605 mIgG1 HP-3G10 3μl Biolegend 

CCR6 APC mIgG1 11A9 5μl BD 

IL-17A PE mIgG1 BL168 1μl Biolegend 

IL-17A APC RatIgG2a eBio17B7 1μl eBioscience 

IL-17F AF488 Goat IgG Poly5166 5μl Biolegend 

IL-17F PE Rat IgG1 SHLR17 1μl eBioscience 

IL-17AF PB mIgG1 20LJS09 5μl eBioscience 

IFN-γ PerCp Cy5.5 mIgG1k 4S.B4 1μl Biolegend 

IFN-γ AF488 mIgG1 4S.B3 1μl eBioscience 

TNFα APC mIgG1k MAb11 1μl Biolegend 

TNFα EF450 mIgG1 Mab11 1μl eBioscience 

IL-10 AF647 RatIgG1 JES3-9D7 1μl Biolegend 

GM-CSF PB RatIgG2a BVD2-21C11 1μl Biolegend 

IL-2 FITC RatIgG2a MQ1-17H12 5μl Biolegend 
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2.5 Mass cytometry (CyTOF) 

CyTOF is a variation of flow cytometry which replaces flurochrome conjugated 

antibodies with antibodies labelled with heavy metal ion tags. This allows for a larger 

antibody panel in single samples, without significant spillover between channels. 

Readout is by time-of-flight mass spectrometry 406. 

 

Ex vivo. stimulated RA/PsA PBMC and SFMC (1-8x106 cells) were washed once with 

PBS in eppendorf tubes. After centrifugation for 5 minutes at 8000rpm, cell pellets 

were resuspended in 5mM Cell-ID Cisplatin (Fluidigm) in PBS and incubated for 5 

minutes at RT. Cisplatin allows for the discrimination of live and dead cells by its 

ability to enter the compromised cell membranes of dead cells and bind to protein 

nucleophiles. The reaction was quenched with MaxPar cell staining buffer, using 5 

times the volume of the cell suspension. Cells were then centrifuged for 5 minutes at 

8000rpm and washed once with PBS. Next, cells were fixed in 500μl PFA for 5 

minutes at RT. After one wash in PBS, cells were washed again in permeabilisation 

buffer and then stained intracellularly with all metal conjugated antibodies (Table 2.4) 

in permeabilisation buffer for 1 hour at RT. Samples were washed once with 

permeabilisation buffer and twice with PBS. Until acquisition, cells were stored at 4oC 

in 500μl 2% PFA. On the day of acquisition, cells were washed with PBS and then 

incubated for 20 minutes at RT with Cell-ID Intercalator-Ir (Fluidigm) to intercalate 

DNA. Before acquisition on CyTOF Helios, cells were washed twice with PBS and 

twice with water (MilliQ). Data was analysed and SPADE plots were generated using 

Cytobank. 
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Table 2.4 Metal-conjugated antibodies from UCB used for CyTOF 

 

 

mAb 

 

Metal Isotype Per 100μl 

stain 

CD8 146Nd RPA-T8 
 

2μl 

CD4 145Nd RPA-T4 
 

2μl 

CD11c 159Tb 3.9 
 

2μl 

CD123 151Eu 6H6 
 

2μl 

CD16 148Nd 3G8 
 

2μl 

CD14 160Gd 61D3 
 

2μl 

CD56 173Yb CMSSB 
 

2μl 

CD45 154Sm HI30  
 

2μl 

CD19 142Nd HIB19 
 

2μl 

CD3 170Er UCHT1 
 

2μl 

HLA-DR 174Yb L243 
 

2μl 

IL-17A 156Gd eBio64CAP17 
 

2μl 

IL-17F 153Eu SHLR17 
 

2μl 

IL-22 166Er IL22JOP 2μl 

GM-CSF 164Dy BVD2-21C11 
 

2μl 

IL-10 158Gd JES3-9D7 
 

2μl 

TNFα 155Gd Mab1 
 

2μl 

IFNγ 163Dy 45-15 
 

2μl 

IL-4 150Nd MP4-25D2 
 

2μl 

IL-13 175Lu JES10-5E2 2μl 
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2.6 Cytokine analysis 

2.6.1 Enzyme-linked immunosorbent assay (ELISA) 

A variety of cytokines including IL-17A, IL-17F, IL-17AF, IL-6 and IL-8 were 

detected in samples using ELISA. A full list of ELISA kits used is shown in Table 2.2. 

The ELISAs were performed according to manufacturer’s instructions; generally, 

different manufacturer kits followed the same protocol. 

 

Ninety-six-well Nunc MaxiSorp microplates (Thermo Fisher Scientific) were coated 

overnight at 4oC with capture antibody diluted in coating buffer. After washing 4 times 

with washing buffer (PBS + 0.05% Tween-20 (Thermo Fisher Scientific, UK), non-

specific binding was prevented by blocking plates with assay diluent (PBS + 10% BSA 

(Sigma Aldrich, UK) for 1 hour at RT.  Standards were prepared by performing seven 

two-fold dilutions of the top standard (provided with kit) with assay diluent and 

samples were diluted appropriately in assay diluent. Plates were washed 4 times with 

assay wash buffer and 100µl of diluted standards (added in duplicate) and samples 

were added and incubated for 2 hours at RT. Plates were washed 4 times again, before 

incubated with detection antibody diluted in assay diluent for 1 hour at RT. Following 

another 4 washes and a final 1-minute soak, 100µl 3,3’,5,5’-tetramethylbenzidine 

(TMB) substrate solution was added. When a gradual colour change was observed 

amongst the standards, the reaction was stopped with 50µl 1M sulphuric acid (Sigma-

Aldrich, UK). Using either a Wallac 1420 microplate reader (Perkin Elmer, Waltham 

, MA, USA) or A SPARK 10M plate reader (Tecan, UK),  microwell absorbance was 

read at 450nm. The optical density (OD) values of all standards were used produce a 

standard curve, of which the analyte concentration was determined from.  
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Table 2.5 ELISA kits used in this thesis 

 

 

Cytokine Manufacturer Top standard 

IL-17A • Biolegend (detects IL-17A 

homodimer and IL-17AF 

heterodimer) 

• eBioscience (detects IL-17A 

homodimer only) 

 

• 500pg/ml 

 

 

• 500pg/ml 

IL-17F eBioscience (detects IL-17F 

homodimer only) 

2000pg/ml 

IL-17AF eBioscience (detects IL-17AF 

heterodimer only) 

4000pg/ml 

IL-2 Biolegend 500pg/ml 

IFNγ Biolegend 500pg/ml 

IL-6 Biolegend 500pg/ml 

IL-8 Biolegend 250pg/ml 
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Figure 2.3 ELISA standard curve. 

For each analyte a two-fold dilution of standard was performed, providing a standard curve. Assay 

diluent served as a blank (0 pg/ml) and a standard curve was included on each ELISA plate. Standard 

absorbance values were used to generate a trendline and y=X equation, where X is the unknown sample 

concentration. In general, the R2 value was not lower than 0.99. After calculating unknown sample 

concentrations, any sample dilutions made were taken into account by multiplying the concentration 

value with the dilution factor. 
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2.6.2 Luminex 

The principle of Luminex is similar to ELISA, however, luminex offers the benefit of 

detecting multiple cytokines and proteins in a sample simultaneously. Luminex 

technology is based on polystyrene or magnetic beads that are internally dyed with red 

and infrared fluorophores of differing intensities. Each dyed bead is given a unique 

bead region or number allowing for the discrimination of beads. Individual bead sets 

are coated with a capture antibody specific for a certain analyte. Multiple analyte-

specific beads can then be incubated with a sample in a well of a 96 well plate, 

allowing for the detection of a variety of analytes simultaneously. 

 

Cytokine levels in serum and synovial fluid samples were measured  using the Bio-

Plex Pro™ Human Th17 Cytokine Panel 15-Plex (Bio-Rad, UK) according to the 

manufacturer’s instructions. In brief, the diluted bead cocktail was added to the wells 

of a 96-well plate, followed by the addition of standards (in duplicate) and 

appropriately diluted samples. After securely covering with a foil plate sealer, plates 

were incubated for 2 hours at RT on a plate shaker set at 800 +/-rpm. After adding 

wash buffer to each well, the plate was secured on a magnetic separator block and 

allowed to sit for 3 minutes. This was to ensure the magnetic beads are held in place 

by the magnetic separator block. Whilst the luminex plate was on the magnetic 

separator block, the wash buffer was discarded. The luminex plate was removed from 

the magnetic separator block and the wash procedure was performed for an additional 

2 times. Diluted biotin detection antibody  was added to the plate and incubated for 1 

hour at RT on the plate shaker (800+/-500 rpm). After performing the wash step 3 

times, streptavidin-PE was added to the plate and incubated for 30 minutes at RT on 

the plate shaker (800+/-500 rpm). Luminex plates were acquired on a FLEXMAP 3D 

instrument (Luminex, US). 
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2.7 Quantitative polymerase chain reaction (qPCR) 

2.7.1 RNA Isolation 

In some experiments, total RNA was isolated with a micro-RNA kit (Qiagen, UK) 

according to the manufacturer’s protocol. For samples which had been lysed in trizol, 

a chloroform extraction was performed. This involved adding 200μl of chloroform to 

thawed trizol cell lysates and shaking vigorously for 15 seconds. After incubating at 

room temperature for 3 minutes, samples were centrifuged for 20 minutes, maximum 

speed at 4oC. The upper translucent aqueous layer was then transferred to a new RNase 

free eppendorf. To assist with RNA precipitation and visualisation, 1μl of glycoblue 

was added to each sample. Next, 500μl of ice cold propanol was added to each sample 

and vigorously shaken for 15 seconds. Samples were incubated at -20oC for either 30 

minutes or overnight. Samples were centrifuged for 30 minutes, maximum speed at 

4oC. At this stage, the RNA formed a visible blue pellet. After discarding the 

supernatant, 1ml of ice cold 70% ethanol was added to each sample and centrifuged 

for 10 minutes, maximum speed at 4oC. The supernatant was discarded and the RNA 

pellet was resuspended in 250μl of ice cold 70% ethanol and centrifuged for 10 

minutes, maximum speed at 4oC. To evaporate any residual ethanol remaining after 

removal of the supernatant, the RNA pellet was air-dried for 5 minutes. The RNA 

pellet was then resuspended in RNase free water. RNA concentration and quality was 

measured using the Nanodrop 2000 spectrophotometer (Thermo Scientific). The ratio 

of absorbance at 260nm and 280nm and at 260nm and 230nm was used to assess RNA 

purity. Pure RNA will exhibit a 260/280 ratio of  >2.0, however, accepted values are 

in the range of 1.7-2.1. The 260/230 ratio is an indication of contamination, while 

expected values are in the range of 1.8-2.2, a lower ratio indicates guanidine 

thiocyanate contamination. RNA that met the quality criteria was then DNase treated 

and reverse transcribed. 

 

2.7.2 DNase treatment and cDNA reverse-transcription 

To remove any residual genomic DNA that might be contained in RNA samples, 

DNase treatment was performed. DNase I is an endonuclease that non-specifically 

cleaves DNA to release di-, tri- and oligonucleotide products. It acts on single and 

double stranded DNA, chromatin and RNA: DNA hybrids. To each RNA sample 
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(maximum concentration 1μg), 1μl of 10x reaction buffer with MgCl2 and 1μl of 

DNase I was added, mixed well and incubated on a heat block for 30 minutes at 37oC. 

To inactivate the DNase I, 1μl of EDTA was added to the RNA sample and incubated 

at 65oC for 10 minutes. EDTA chelates ions in the digestion buffer, that are required 

for DNase I activity. Thus, DNase I can be heat-inactivated without loss of RNA. RNA 

concentration levels were analysed by nanodrop. 

Reverse transcription was performed using the high capacity cDNA reverse 

transcription kit (Applied Biosystem, Carlsbad, CA, USA) according to 

manufacturer’s instructions. Until qPCR was performed, cDNA was stored at -80oC. 

 

2.7.3 qPCR protocol and analysis 

qPCR reactions were performed using primers for human  IL-17A and IL-17F  

(Integrated DNA technologies IDT, Heverlee, Belgium) and the SensiMix SYBR No-

ROX kit according to the manufacturer’s protocol. Reactions were peformed on a 

7900HT Fast Real-Time PCR system (Applied Biosystems). Thermocycler conditions 

included an initial holding at 95 oC for 10 minutes, which was followed by a cycling 

program of 95oC for 15 seconds, 60oC for 30 seconds and 72oC for 30 seconds. Data 

were analysed using the Applied Biosystems RQ manager software version 1.2.2. To 

normalise for differences in the amount of total RNA in each sample, the ACTB gene 

was used as an endogenous control. For each sample, the mean cycle threshold (CT) 

for replicates was calculated. Gene expression was calculated as the difference (ΔCT) 

between the mean CT value of the sample for the target gene and the mean CT value 

of the same sample for the endogenous control (ACTB). Relative gene expression was 

expressed as 2-ΔCT. 

 

Table 2.6 Primers using in this thesis 

Target Forward Reverse 

Human 

IL-17A 

TCC CAC GAA ATC CAG GAT GC GCA TGT TCA GGT TGA CCA TCA 

Human 

IL-17F 

GCT GTC GAT ATT GGG TTC AT GCT GTC GAT ATT GGG GCT TG 
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2.8 Statistics 

 

Statistical differences were calculated with Prism 7.0 software (GraphPad, San Diego, 

CA). The D’Agostino and Pearson omnibus normality test was used to test the 

normality of data sets. This was followed by statistical significance testing using the 

appropriate tests as described in figure legends. Data sets with n values <8 were tested 

non-parametrically. P values < 0.05 were considered statistically significant.  
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3 Investigating the expression of IL-17F in healthy CD4+ 

T cells in vitro 
 

3.1 Introduction 

The best-studied source of IL-17A and IL-17F is a specific subset of CD4+ T cells, 

named Th17 cells. As previously discussed in the introduction Th17 differentiation is 

dependent on signals from IL-6, transforming growth factor β (TGFβ), IL-1β and IL-

21, while IL-23 is important for lineage maintenance 189,238,407. Reports from our lab 

have shown that in vitro LPS-activated monocytes induce Th17 responses in co-

cultured CD4+ T cells in a TNFα and IL-1β dependent manner 192,198. Stimulation of 

T cells with LPS-triggered monocytes resulted in both an increased percentage of IL-

17A+ CD4+ T cells and an increase in IL-17A secretion 4. Studies have also shown 

that low-strength T cell activation enhances Th17 development 5-6. The majority of 

these studies, however, analysed the expression of IL-17A and not IL-17F. Few reports 

investigate what drives IL-17F expressing CD4+ T cells. In literature, IL-17F is 

generally described as a cytokine co-expressed with IL-17A. The overall aim of the 

first part of this chapter was to investigate whether IL-17A and IL-17F are induced in 

a similar manner or whether there are elements of differential regulation. To achieve 

this, the following questions were addressed: 

• What drives IL-17F expression in CD4+ T cells? 

• Does the strength of T cell activation affect IL-17F expression? 

 

The second part of this chapter characterises IL-17F+ CD4+ T cells. Human IL-17A+ 

CD4+ T cells have been extensively characterised. They have been shown to express 

the markers CCR6 and CD161 and co-express other cytokines including TNFα, IFNγ, 

GM-CSF and IL-10. However, there remains a lack in literature of an in-depth 

phenotypic characterisation of IL-17F+ CD4+ T cells. This includes phenotypic 

comparison of IL-17A+ vs. IL-17F+ CD4+ T cells. In this section, the following 

question was addressed: 

• Do IL-17F+ cells display different cytokine profiles to IL-17A+ CD4+ T cells? 
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3.2 Results 

3.2.1 Induction of IL-17F expressing CD4+ T cells 

3.2.1.1 Ex vivo analysis of IL-17A and IL-17F expressing CD4+ T cells 

I first investigated whether IL-17F+ CD4+ T cells could be detected following an 

ex vivo stimulation of healthy donor bulk CD4+ T cells. Bulk CD4+ T cells were 

incubated for 3 hours with PMA, ionomycin and GolgiStop then cells were stained 

to assess intracellular cytokine expression and analysed by flow cytometry. Figure 

3.1 is a representative plot for the gating strategy applied. As shown in Figure 3.2, 

fluorescence minus (FM) controls were used to set gates to depict positive cytokine 

expression. In 6 donors, a range of IL-17A+ CD4+ T cell frequencies was detected 

following ex vivo stimulation (from 0.2 – 1.9%). In contrast, all donors showed 

very low IL-17F+ CD4+ T cell frequencies (approximately 0.1%). 
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Figure 3.1 Representative gating strategy following ex vivo stimulation of 

CD4+ T cells. 

Healthy donor bulk CD4+ T cells were stimulated for 3 hours with PMA, ionomycin and 

GolgiStop. Cells were stained with fluorescently-conjugated antibodies against extracellular 

markers and intracellular cytokines. In this sample gating, cells were first gated for lymphocytes 

(SSC-A vs FSC-A). The lymphocyte gate was further analysed for uptake of the Live/Dead 

eFluor780 stain to determine live vs. dead cells. Within live cells, a FSC-W/FSC-A gate was 

applied allowing the exclusion of doublet CD4+ T cells. CD3+ CD4+ T cells were then selected. 
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Figure 3.2 Assessing IL-17A+ and IL-17F+ CD4+ T cell frequencies following 

ex vivo stimulation. 

Healthy donor bulk CD4+ T cells were stimulated for 3 hours with PMA, ionomycin and GolgiStop 

and then assessed for intracellular IL-17A and IL-17F cytokine expression. To set the gates for 

positive cytokine expression, fluorescence minus controls were used. (A) Representative dot plots 

showing FM controls and the frequencies of IL-17A and IL-17F expressing cells within the total 

CD4+ T cell population in ex vivo-stimulated samples. (B) Cumulative data for the frequency of 

IL-17A (n=6) and IL-17F (n=6) CD4+ T cell frequencies. 
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3.2.1.2 In vitro activated monocytes increase both IL-17A+ CD4+ T cell 

and IL-17F+ CD4+ T cell frequencies and IL-17A and IL-17F 

secretion 

Next, we examined factors which could induce IL-17F expressing CD4+ T cells 

and IL-17F secretion. I first expanded on previous work published by the lab which 

assessed the effect of LPS-activated monocytes on IL-17A induction 4, 22. Healthy 

CD4+ T cells were co-cultured with autologous CD14+ monocytes and stimulated 

with anti-CD3 mAb in the absence or presence of LPS for three days. After 

incubation, supernatants were collected and stored at -80°C before being tested by 

ELISA. The remaining cells were then re-stimulated and an intracellular cytokine 

stain (ICCS) was performed. CD4+ T cell cytokine expression was then analysed 

by flow cytometry. Figure 3.3 displays a representative gating strategy. Similar 

gating strategies were used for all other in vitro cultures. 

 

When compared to medium control conditions, addition of LPS to T cell/monocyte 

co-cultures led to a 1.6-fold increase in the frequency of IL-17A+ CD4+ T cells 

and a 3.2-fold increase in IL-17A secretion (Figure 3.4). This correlates with 

previous results from our lab 4. LPS stimulation also resulted in a 3.4-fold increase 

in IL-17F+ CD4+ T cell frequencies and a 1.8-fold increase in IL-17F secretion 

(Figure 3.4). Flow cytometric analysis showed the frequency of IL-17A+ CD4+ T 

cells was higher than IL-17F+ CD4+ T cells in both the control (approximately 

3.16 vs. 0.40%, respectively) and LPS conditions (approximately 5.05 vs. 1.34%). 

Flow cytometric analysis indicated all IL-17F+ CD4+ T cells highly co-expressed 

IL-17A. No single positive IL-17F+ CD4+ T cells were identified. Therefore, in 

this T cell/monocyte co-culture system we observed two distinct populations, IL-

17A+ IL-17F- CD4+ T cells and double positive IL-17A+ IL-17F+ CD4+ T cells. 

 

To assess the effect of addition of LPS to co-cultures on other cytokines, 

supernatants were analysed by luminex (Figure 3.5). We observed an increase in 

IL-1β, IL-6 and IFNγ protein levels in LPS treated conditions. Additionally, we 

observed an increase in IL-23 levels, however statistical significance was not 
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achieved. TNFα was detected in both the control and LPS conditions but levels 

were above the assay detection limit (data not shown). 
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Figure 3.3 Representative gating strategy for in vitro cultures. 

In this sample gating, 0.5 x 106 bulk CD4+ T cells were co-cultured with monocytes at a 1:1 ratio 

in the presence of anti-CD3 mAb (100ng/ml) and LPS (100ng/ml). After three days cells were 

stimulated with PMA/ionomycin and Golgi stop. Cells were stained with antibodies against 

extracellular markers and cytokines of interest. In this representative plot, cells were first gated for 

lymphocytes (SSC-A vs FSC-A).  A ‘dump’ gate was then applied, whereby the viability dye and 

CD14 antibody were on the same fluorchrome, allowing for the simultaneous exclusion of dead 

and CD14+ cells. Next, a FSC-W/FSC-A gate was applied allowing the exclusion of doublet CD4+ 

T cells. CD3+ CD4+ T cells were then selected. 
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Figure 3.4 LPS-activated monocytes induce an increase in IL-17A and IL-

17F expressing CD4+ T cell frequencies and corresponding cytokine 

secretion. 

Bulk CD4+ T cells (0.5x106) were co-cultured 1:1 with autologous monocytes and stimulated with 

anti-CD3 mAb (100ng/ml) in the absence (control) or presence (LPS) of LPS (100ng/ml). After 3 

days cells were re-stimulated and assessed for intracellular cytokine expression. (A) Representative 

dot plots and (B) cumulative data show frequencies of IL-17A (n=17) and IL-17F (n=17) within 

the total CD4+ T cell population. (C) Levels of IL-17A (n=7) and IL-17F (n=7) expressing cells 

detected in culture supernatant (collected prior re-stimulation) via ELISA. Upper blue and red 

dashed lines indicate the upper and lower detection limits, respectively. Data were analysed using 

matched-pairs signed rank test.

-  L P S +  L P S

0

5

1 0

1 5

p = 0 .0 0 0 2

%
 o

f 
IL

-1
7

A
+

 c
e

ll
s

 w
it

h
in

 C
D

4
+

 T
 c

e
ll

s

-  L P S +  L P S

0

1

2

3

4

5
p < 0 .0 0 0 1

%
 o

f 
IL

-1
7

F
+

 c
e

ll
s

w
it

h
in

 C
D

4
+

 T
 c

e
ll

s

-   L P S +  L P S

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0
p = 0 .0 0 8

IL
-1

7
A

 (
p

g
/

m
l)

-   L P S +  L P S

0

5 0 0

1 0 0 0

1 5 0 0
p = 0 .0 0 4

IL
-1

7
F

 (
p

g
/

m
l)

A

B C

Control

LPS

IL
-1

7
A

FSC-A
IL

-1
7

F
FSC-A

IL
-1

7
F

IL-17A

FM



 104 

 

 

Figure 3.5 Elevated levels of IL-1β, IL-6 and IFNγ are detected in CD4+ T 

cell / LPS-activated CD14+ monocyte co-cultures. 

Bulk CD4+ T cells were co-cultured 1:1 with autologous monocytes and stimulated with anti-CD3 

mAb (100ng/ml) in the absence (control) or presence (LPS) of LPS (100ng/ml). Supernatants were 

collected and IL-1β (n=9), IL-23 (n=9), IL-6 (n=9) and IFNγ (n=9) levels were detected by 

luminex. Upper blue and red dashed lines indicate the upper and lower detection limits, 

respectively. Data were analysed using matched-pairs signed rank test. 
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3.2.1.3 CD3 and CD28 stimulation in the presence of IL-1β and IL-23 

induces IL-17A and IL-17F CD4+ T cell frequencies and 

corresponding cytokine secretion 

IL-1β and IL-23 are well-characterised Th17 polarising cytokines, which have 

been previously described to induce IL-17F 7. Our LPS-activated monocyte/CD4+ 

T cell co-culture system, which induced IL-17F+ CD4+ T cells, also showed 

increased protein levels of IL-1β and IL-23 in comparison to control conditions. 

With this in mind, I investigated the role of IL-1β and IL-23 in inducing IL-17A 

and IL-17F. 

 

Bulk CD4+ T cells were cultured with soluble anti-CD28 mAb, replacing the co-

stimulation signal provided by the CD14+ monocytes, and plate-bound anti-CD3 

mAb. Cultures were set up in the absence or presence of the human recombinant 

cytokines, IL-1β (10ng/ml) and IL-23 (20ng/ml). Following 3 days incubation, cell 

culture supernatants were removed for ELISA analysis. Cells were then re-

stimulated and ICCS was performed analysing cytokine expression. Addition of 

IL-1β and IL-23 led to an increase in the frequency of IL-17A (1.7-fold) and IL-

17F (3.7-fold) expressing CD4+ T cells (Figure 3.6A & B). In this culture system, 

three distinct IL-17 populations were observed; IL-17A+ IL-17F-, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells. In line with this, ELISA analysis 

showed an increase in IL-17A and IL-17F protein present in IL-1β and IL-23 

stimulated conditions (Figure 3.6C). However, in three out of the six samples, IL-

17A was below the detection limit. Therefore, for a more accurate analysis these 

samples should be re-analysed at a lower dilution. 
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Figure 3.6 IL-1β and IL-23 enhance the frequency of IL-17A+ and IL-17F+ 

CD4+ T cells. 

Bulk CD4+ T cells were cultured with platebound anti-CD3 mAb (1.25μg/ml) and soluble anti-

CD28 mAb either in the absence or presence of IL-1β (10ng/ml) and IL-23 (20ng/ml) for 3 days. 

Cells were re-stimulated and assessed for intracellular cytokine expression. (A) Representative dot 

plots and (B) cumulative data show frequencies of IL-17A (n=9) and IL-17F (n=9) expressing cells 

within the total CD4+ T cell population. (C) Levels of IL-17A (n=6) and IL-17F (n=6) detected in 

culture supernatant (prior re-stimulation) via ELISA. Red dashed lines indicate the lower detection 

limit. Data were analysed using matched-pairs signed rank test. 
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3.2.1.4 Assessing the correlation between flow cytometry cytokine 

expression and protein levels 

PMA together with ionomycin is one of the most widely applied methods for 

activation of T cells. However, as PMA and ionomycin stimulation is very strong, 

researchers question whether it truly reflects what is happening physiologically in 

the cell. In our CD4+ T cell/monocyte co-cultures and CD4+ T cell only cultures, 

supernatant was collected prior to PMA and ionomycin stimulation and cells were 

then stimulated with PMA and ionomycin for flow cytometry analysis. To 

investigate whether cells still reflect the physiological events after a PMA and 

ionomycin stimulation, IL-17A+ or IL-17F+ CD4+ T cell frequencies (measured 

post PMA/iono re-stimulation) in each culture system were correlated with the 

secretion of IL-17A and IL-17F in the culture supernatant (measured prior to 

PMA/ionomycin re-stimulation). 

 

As shown in Figure 3.7, in all culture conditions, a positive correlation was 

observed between the percentage of IL-17A+ CD4+ T cells and the secretion of 

IL-17A as well as between the percentage of IL-17F+ CD4+ T cells and IL-17F 

secretion (Figure 3.7). These results indicate that cells still display their 

physiological profile following a PMA and ionomycin re-stimulation. 
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Figure 3.7 Correlation analysis of intracellular flow cytometry staining vs. 

ELISA. 

(A) 0.5 x 106 of bulk CD4+ T cells were cultured with anti-CD3 mAb and 0.5 x 106  monocytes in 

the absence (-LPS) or presence (+LPS) of LPS for three days. (B) Bulk CD4+ T cells were cultured 

with platebound anti-CD3 mAb (1.25μg/ml) and soluble anti-CD28 either in the absence or 

presence of IL-1β (10ng/ml) and IL-23 (20ng/ml) for 3 days. In both experiments, culture 

supernatant was analysed by ELISA and cells were re-stimulated and analysed by ICCS and flow 

cytometry. Results show the percentage of IL-17A+ cells plotted against the concentration of IL-

17A (pg/ml) and the frequency of IL-17F+ cells plotted against the concentration of IL-17F 

(pg/ml). Upper blue and red dashed lines indicate the upper and lower ELISA detection limits, 

respectively. Statistical analysis was performed using Spearman’s correlation coefficients for 

nonparametric data. 
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3.2.1.5 IL-17AF heterodimer expressing CD4+ T cell frequencies and IL-

17AF secretion are enhanced in IL-1β/IL-23 stimulated cultures 

As discussed in the introduction, in addition to the IL-17A and IL-17F homodimer, 

an IL-17AF heterodimer exists. I sought to determine whether the IL-17AF 

heterodimer was present in the CD4+ T cell -/+ IL-1β/ IL-23 culture. 

Manufacturers describe both IL-17A and IL-17F flow cytometry antibodies used 

in this project to have cross-reactivity towards the IL-17AF heterodimer. 

However, the IL-17AF heterodimer flow cytometry antibody used here has no 

reported cross-reactivity for either the IL-17A or IL-17F homodimer. Preliminary 

experiments (data not shown) showed that the IL-17AF heterodimer flow 

cytometry antibody can be simultaneously used with the IL-17A and IL-17F 

homodimer antibodies with no effect on cytokine detection. 

 

As shown in Figure 3.8, flow cytometry analysis revealed IL-17AF expressing 

CD4+ T cells to be present in the control conditions and further enhanced in the 

presence of IL-1β and IL-23 (2.9-fold) (Figure 3.8A & B). In accordance, using 

an ELISA specific for the IL-17AF heterodimer only, IL-17AF protein was 

detected at elevated levels in IL-1β and IL-23 cultures vs. control conditions 

(Figure 3.8C). 

 

Taking into account the reported cross-reactivity of both IL-17A and IL-17F flow 

cytometry antibodies for the IL-17AF heterodimer, it was assumed any IL-17AF 

CD4+ T cells would be detected within the IL-17A+ IL-17F+ double positive 

CD4+ T cell population. With this in mind, I wanted to assess how many IL-17A+ 

IL-17F+ CD4+ T cells co-expressed the IL-17AF heterodimer. As shown in Figure 

3.8 D & E, the majority of IL-17A+ IL-17F+ CD4+ T cells co-expressed the IL-

17AF heterodimer (approximately 89%). We hypothesise that this population 

produces both the IL-17A and IL-17F homodimers and the IL-17AF heterodimer. 

IL-17AF was not detected in IL-17A- IL-17F- and IL-17A+ IL-17F- CD4+ T cell 

populations. Unexpectedly, IL-17F+ IL-17A- CD4+ T cells were shown to co-

express levels of IL-17AF (approximately 20%). This is unexpected as IL-17AF+ 
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cells should also be detected by the IL-17A flow cytometry antibody. This may be 

due to the IL-17AF antibody cross-reacting with IL-17F+ CD4+ T cells. 
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Figure 3.8 IL-17AF expressing CD4+ T cells are enhanced by IL-1β and IL-

23. 

Bulk CD4+ T cells were cultured with platebound anti-CD3 mAb (1.25μg/ml) and soluble anti-

CD28 either in the absence or presence of IL-1β (10ng/ml) and IL-23 (20ng/ml) for 3 days. 

Supernatants were collected for IL-17AF protein analysis by ELISA and cells were re-stimulated 

and assessed for intracellular cytokine expression. (A) Representative dot plots showing the 

frequencies of IL-17AF+ cells within total CD4+ T cells (n=5) (B) cumulative ICCS data (n=5). 

(C) Levels of IL-17AF detected in culture supernatant (prior re-stimulation) via ELISA (n=6). Red 

dashed lines indicate the lower detection limit. (D) Representative gating strategy analysing 

percentage of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells co-

expressing IL-17AF and (E) cumulative ICCS data (n=7). 
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3.2.1.6 CD28 co-stimulation promotes the frequency of IL-17F expressing 

CD4+ T cells 

Reports have shown that a strong CD28 co-stimulation signal down regulates IL-

17A+ CD4+ T cell frequency 6. I was interested to explore the effect of CD28 co-

stimulation on the frequency of IL-17F expressing CD4+ T cells. To investigate 

this, bulk CD4+ T cells from healthy donors were cultured with plate-bound anti-

CD3 mAb in the absence or presence of anti-CD28 mAb for 3 days. At first, this 

was performed in the absence of IL-1β and IL-23. As displayed in Figure 3.9A, 

addition of anti-CD28 did not lead to a significant change in the frequency of total 

IL-17A+ CD4+ T cell frequencies. Although a small increase in total IL-17F+ 

CD4+ T cell frequencies was observed, proportions were very small. Addition of 

IL-1β and IL-23 (Figure 3.9B) led to higher detectable levels of IL-17A+ and IL-

17F+ CD4+ T cell frequencies. In the presence of IL-1β and IL-23, addition of 

anti-CD28 mAb showed no effect on the frequency of total IL-17A+ CD4+ T cell 

frequencies. In contrast, addition of anti-CD28 mAb led to a significant increase 

in the percentage of total IL-17F expressing CD4+ T cells. When examining the 

distinct subsets, it was observed that CD28 co-stimulation signal down-regulates 

the frequency of IL-17A+ IL-17F- CD4+ T cells, while enhancing the frequency 

of IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells (3.9B, right panel). 

 

To further investigate the effect of CD28 co-stimulation bulk CD4+ T cells were 

cultured with platebound anti-CD3 mAb, IL-1β and IL-23 in the presence of 

increasing doses of soluble anti-CD28 mAb (0-2μg/ml) for 3 days. Following re-

stimulation with PMA and ionomycin, cells were assessed for IL-17A and IL-17F 

cytokine expression. In line with our previous results, titration of anti-CD28 mAb 

led to a dose-dependent decrease in the percentage of IL-17A+ IL-17F- CD4+ T 

cells, whilst increasing IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cell 

frequencies (Figure 3.10 A & B). Culture supernatants, taken prior to PMA and 

ionomycin re-stimulation, were analysed by ELISA (Figure 3.10 C). As expected, 

titration of anti-CD28 led to a dose-dependent increase in IL-17F homodimer and 

IL-17AF heterodimer protein secretion. Based on our flow cytometry data, we 

predicted IL-17A homodimer protein secretion would have remained unchanged 

with the addition of anti-CD28. However, it unexpectedly led to a dose-dependent 



 113 

increase in IL-17A homodimer secretion. Although different ELISA antibody 

affinities make it difficult to draw comparisons between levels of different 

cytokines, we did detect significantly higher levels of IL-17F vs. IL-17A and IL-

17AF.  

 

It was speculated that the increase in IL-17A protein secretion in response to the 

presence of anti-CD28 was due to the kinetics of the assay. To address this, bulk 

CD4+ T cells were cultured with platebound anti-CD3 mAb, IL-1β and IL-23 in 

the presence or absence of anti-CD28 mAb for 1, 2, 3 or 4 days. After the selected 

time points, cells were re-stimulated and assessed for IL-17A and IL-17F cytokine 

expression (Figure 3.11). We observed that there were higher percentages of total 

IL-17A+ and IL-17F+ CD4+ T cells in both control and anti-CD28 conditions at 

day 4 vs. day 1.  At day 1, there was no difference in the frequency of IL-17A+ 

CD4+ T cells between anti-CD28 mAb treated and untreated conditions. However, 

at day 2, conditions stimulated with anti-CD28 mAb displayed a higher percentage 

of IL-17A expressing CD4+ T cells.  In agreement with our previous day 3 data, 

there was no difference in frequencies of IL-17A+ cells in the absence or presence 

of anti-CD28 mAb. The frequency of IL-17A+ CD4+ T cells was decreased in the 

presence of anti-CD28 mAb at day 4. Based on this result, we propose that the 

increase in IL-17A protein secretion identified at day 3 was an accumulation of 

anti-CD28 mAb driven IL-17A observed by flow cytometry at day 2. 

 

Throughout the time course, frequencies of IL-17F+ CD4+ T cells remained 

higher in the presence vs. absence of anti-CD28 mAb (Figure 3.11).  
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Figure 3.9 CD28 co-stimulation enhances IL-17F expression by CD4+ T 

cells. 

 (A) Bulk CD4+ T cells were cultured with platebound anti-CD3 mAb either in the absence or 

presence of soluble anti-CD28 mAb for 3 days (n=4). (B) Bulk CD4+ T cells were cultured with 

platebound anti-CD3 mAb, soluble anti-CD28 either in the absence or presence of IL-1β and IL-

23 for 3 days (n=9). In both experiments, cells were re-stimulated and assessed for IL-17A and IL-

17F cytokine expression. Results show the cumulative frequencies of total IL-17A+ and IL-17F+ 

CD4+ T cells and IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F- IL-17A+ CD4+ T cell 

populations. Data were analysed using matched-pairs signed rank test. P values are represented as 

follows: ** P <0.01. 
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Figure 3.10 CD28 co-stimulation increases IL-17F+ CD4+ T cell frequencies 

in a dose-dependent manner. 

Bulk CD4+ T cells (0.2x106 ) were cultured with platebound anti-CD3 mAb, IL-1β and IL-23 in 

the presence of increasing doses of soluble anti-CD28 mAb (0-2μg/ml). After 3 days cells were re-

stimulated and assessed for intracellular cytokine expression. (A) Representative dot plots show 

the percentages of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- cells within total 

CD4+ T cells and (B) box-whisker plots represent data from n=6 individual donors. Prior to re-

stimulation cell culture supernatants were collected and analysed for IL-17A, IL-17F and IL-17AF 

protein via ELISA, (C) displays cumulative ELISA data (n=6). Upper blue and red dashed lines 

indicate the upper and lower ELISA detection limits, respectively. Statistical analysis was 

performed using Friedman test with comparison to control (0μg/ml) by Dunn’s Multiple 

Comparisons test. P values are represented as follows: * P <0.05, ** P <0.01, *** P <0.001, **** 

P <0.0001. 
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Figure 3.11 Assessing the kinetic effect of CD28 co-stimulation on protein 

expression. 

Bulk CD4+ T cells (1x106) were cultured with platebound anti-CD3 mAb, IL-1β and IL-23 in the 

absence or presence of anti-CD28 mAb for 1, 2, 3 or 4 days. Cells were re-stimulated and assessed 

for intracellular cytokine expression. Results show the frequencies of total IL-17A+ and IL-17F+ 

cells within total CD4+ T cells (n=3 mean ± SEM). 
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3.2.1.7 Investigating the effect of CD3 stimulation on IL-17A and IL-17F 

expression 

Next, the effect of CD3 stimulation on the frequency of IL-17A and IL-17F 

expressing CD4+ T cells was assessed. Titration of plate-bound anti-CD3 mAb in 

3 day cultures with IL-1β, IL-23 and anti-CD28 mAb increased the frequency of 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells in a dose-dependent manner 

(Figure 3.12A &B). In the case of IL-17A+ IL-17F- CD4+ T cells, while there was 

an initial increase in the frequency of cells upon the addition of anti-CD3 mAb 

(0.039μg/ml), increasing the anti-CD3 concentration had no further effect on the 

population frequency.  

Following the 3 day culture, supernatants were collected and analysed for IL-17A 

and IL-17F homodimer and IL-17AF heterodimer protein levels. As depicted in 

Figure 3.12C, titration of anti-CD3 mAb led to a dose-dependent increase in IL-

17A, IL-17F and IL-17AF. 

Similar to our CD28 co-stimulation data, further investigation is required to fully 

understand the effect of CD3 mAb stimulation on IL-17A. However, our data 

clearly show increased concentrations of anti-CD3 mAb lead to both enhanced 

frequencies of IL-17F expressing CD4+ T cells and IL-17F protein secretion. 

Taken together with our CD28 co-stimulation data we postulate that strong T cell 

stimulation drives an IL-17F + CD4+ T cell response. 
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Figure 3.12 Increasing doses of anti-CD3 mAb leads to an increase in IL-17F+ 

CD4+ T cells and IL-17F secretion. 

Bulk CD4+ T cells (0.2 x106)  were cultured with soluble anti-CD28 mAb, IL-1β and IL-23 and in 

the presence of increasing doses of platebound anti-CD3 mAb (0-5μg/ml). After 3 days cells were 

re-stimulated and assessed for intracellular cytokine expression. (A) Representative dot plots show 

the percentages of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- cells within total 

CD4+ T cells and (B) box-whisker plots represent data from n=5 individual donors. (B) Levels of 

IL-17A (n=3), IL-17F (n=4) and IL-17AF (n=4) detected in culture supernatant (prior re-

stimulation) via ELISA.  
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3.2.1.8 Investigating the role of IL-2 in regulating IL-17A and IL-17F 

expression 

CD28 signalling is reported to enhance cytokine production from CD4+ T cells, 

including IL-2 and IFNγ 8. Moreover, it has been shown that neutralisation of IL-

2 and IFNγ leads to increased IL-17A production from CD4+ T cells 6. Although 

a decrease in total IL-17A+ CD4+ T cells with increased CD28 co-stimulation was 

not observed, it was of interest to examine the effect of IL-2 and IFNγ on IL-17A 

and IL-17F CD4+ T cell frequencies. We hypothesised that the CD28-driven 

enhancement of IL-17F+ CD4+ T cell frequency is mediated by IL-2 and/ or IFNγ. 

To begin, protein levels of IL-2 and IFNγ in cultures of stimulated CD4+ T cells 

with increasing doses of anti-CD28 and anti-CD3 mAb were assessed. As depicted 

in Figure 3.13A, titration of anti-CD28 and anti-CD3 led to a dose-dependent 

increase in IL-2 supernatant protein levels. Similar results were observed for IFNγ 

supernatant protein levels, Figure 3.13 B. 

 

In the next experiments, I focused on the role of IL-2 and IFNγ in the CD28-

mediated IL-17F response. IL-2 and IFNγ were blocked in CD4+ T cultures 

stimulated with anti-CD28 mAb, anti-CD3 mAb, IL-1β and IL-23. Prior to this, 

optimal blocking antibody concentrations and the effect of isotype controls were 

assessed (Figure 3.14). Results showed 1μg/ml of both anti-IL-2 mAb and IFNγ 

mAb resulted in efficient blockade of IL-2 and IFNγ, respectively. Furthermore, 

addition of an isotype control for anti-IL-2 mAb (goat IgG1) and anti-IFNγ mAb 

(mouse IgG1) did not consistently affect the percentage of CD4+ T cells 

expressing IL-17A or IL-17F.  

 

No significant changes in total IL-17A+ CD4+ T cell frequencies were observed 

in the absence or presence of anti-CD28 mAb or in cultures supplemented with 

anti-CD28 mAb and IL-2 blocking antibody (Figure 3.15 A & B). However, while 

addition of anti-CD28 mAb promoted total IL-17F+ CD4+ T cell frequency 

(approximately 1% vs. 1.7% in the absence vs. presence of anti-CD28 mAb), this 

effect was abrogated by blockade of IL-2 (approximately 1%). Similarly, blockade 

of IL-2 suppressed the anti-CD28 mAb mediated inhibition of IL-17A+ IL-17F- 
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CD4+ T cells and the anti-CD28 mAb mediated promotion of IL-17F+ IL-17A- 

and in part IL-17A+ IL-17F+ expressing CD4+ T cells. These data suggest that 

the anti-CD28 mAb driven increase in IL-17F is mediated by IL-2. 

 

As depicted in Figure 3.16 A & B, addition of anti-IFNγ mAb blocking antibody 

in conditions supplemented with IL-1β, IL-23, anti-CD28 mAb and anti-CD3 mAb 

did not significantly alter the frequency of total IL-17A expressing CD4+ T cells. 

Furthermore, in comparison to anti-CD28 mAb alone, a combination of anti-CD28 

mAb and anti-IFNγ mAb only resulted in a slight reduction in IL-17F expressing 

CD4+ T cells (1.73 vs 1.4%, respectively). Further flow cytometric analysis 

revealed that addition of anti-IFNγ mAb suppressed the anti-CD28 mediated 

inhibition of IL-17A+ IL-17F- CD4+ T cells (Figure 3.16 C). Additionally, to 

some extent IFNγ blockade reduced the anti-CD28 mAb mediated enhancement 

of IL-17F+ IL-17A- CD4+ T cells. These data suggest IFNγ may play a role in 

skewing IL-17A/ IL-17F sub-populations. As shown in Figure 3.17, a combined 

blockade of IL-2 and IFNγ had no further effect on IL-17A and IL-17F CD4+ T 

cell expression compared to IL-2 blockade alone. 
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Figure 3.13 Titration of anti-CD28 and anti-CD3 mAb leads to a dose-

dependent increase in IL-2 and IFNγ secretion. 

Bulk CD4+ T cells (0.2x106) were cultured with (A) platebound anti-CD3 mAb, IL-1β and IL-23 

in the presence of increasing doses of soluble anti-CD28 mAb (0-2μg/ml). After 3 days culture 

supernatant was removed and measured for IL-2 (n=3) and IFNγ (n=3). (B) 0.2x106 bulk CD4+ T 

cells were cultured with soluble anti-CD28 mAb, IL-1β and IL-23 in the presence of increasing 

doses of platebound anti-CD3 mAb (0-5μg/ml). After 3 days culture supernatant was removed and 

measured for IL-2 (n=3) and IFNγ (n=1). Upper blue and red dashed lines indicate the upper and 

lower ELISA detection limits, respectively. 
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Figure 3.14 Isotype controls do not affect IL-17A+ or IL-17F+ CD4+ T cell 

frequencies. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, IL-23 and IL-1β in the absence or presence 

of anti-CD28 mAb. In the presence of anti-CD28 mAb, (A) 1 or 5μg/ml of anti-IL-2 blocking 

antibody or (B) 1 or 5μg/ml of anti-IFNγ blocking antibody was added. Following a 3 day 

incubation, supernatants were collected and IL-2 (n=2) or IFNγ (n=1) protein levels were analysed 

by ELISA. Bulk CD4+ T cells were cultured with anti-CD3 mAb, IL-23 and IL-1β in the absence 

(control) or presence of  (C) IL-2 blocking antibody isotype (goat IgG1, 1μg/ml) or (D) IFNγ 

blocking antibody isotype, (mouse IgG1, 1μg/ml). After 3 days cells were re-stimulated and 

assessed for intracellular cytokine expression. Cumulative data shows the frequencies of total IL-

17A+ and IL-17F+ CD4+ T cells (n=3).  
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Figure 3.15 IL-2 blockade reduces IL-17F+ CD4+ T cell expression. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, IL-23 and IL-1β in the absence or presence 

of anti-CD28 mAb and anti-IL-2 mAb (1μg/ml). After 3 days cells were re-stimulated and assessed 

for intracellular cytokine expression. (A) Representative dot plots and cumulative data showing 

the frequencies of (B) total IL-17A+ and IL-17F+ CD4+ T cells (n=6) and (C) IL-17A+ IL-17F-, 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells (n=6). Statistical analysis was performed 

using Friedman test with comparison to all samples by Dunn’s Multiple Comparisons test. 
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Figure 3.16 Exploring the effect of IFNγ blockade on IL-17A and IL-17F 

expressing CD4+ T cells. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, IL-23 and IL-1β in the absence or presence 

of anti-CD28 mAb and anti-IFNγ mAb (1μg/ml). After 3 days cells were re-stimulated and assessed 

for intracellular cytokine expression. (A) Representative dot plots and cumulative data showing 

the frequencies of (B) total IL-17A+ and IL-17F+ CD4+ T cells (n=6) and (C) IL-17A+ IL-17F-, 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells (n=6). Statistical analysis was performed 

using Friedman test with comparison to all samples by Dunn’s Multiple Comparisons test. 
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Figure 3.17 Dual blockade of IL-2 and IFNγ has no further effect on IL-17A 

and IL-17F CD4+ T expressing cells than IL-2 blockade alone. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, IL-23 and IL-1β in the absence or presence 

of anti-CD28 mAb, anti-IL-2 mAb (1μg/ml) and anti-IFNγ mAb (1μg/ml). After 3 days cells were 

re-stimulated and assessed for intracellular cytokine expression. Cumulative data show the 

frequencies of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells (n=6). 

Statistical analysis was performed using Friedman test with comparison to control (+ anti-CD28 

μg/ml) by Dunn’s Multiple Comparisons test. 
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3.2.1.9 PMA and ionomycin re-stimulation does not affect the frequency of 

total IL-17F+ CD4+ T cells 

Unpublished data from UCB suggests that PMA and ionomycin re-stimulation 

may affect IL-17A+ and IL-17F+ CD4+ T cell frequencies differently. I sought to 

investigate the effect of PMA and ionomycin on IL-17A and IL-17F expressing 

cells in our culture system. 

 

CD4+ T cells were cultured for 3 days with anti-CD28, anti-CD3, IL-1β and IL-

23. Cells were then re-stimulated for 3 hours with golgi stop in the absence or 

presence of PMA and ionomycin. Cells were stained and intracellular cytokine 

expression was assessed. Firstly, as depicted in Figure 3.18, the data revealed that 

in this culture system, IL-17A and IL-17F can be detected at significant 

frequencies without the addition of PMA and ionomycin. Addition of PMA and 

ionomycin enhanced the percentage of IL-17A+ CD4+ T cells (2.2-fold). 

However, the frequency of total IL-17F+ CD4+ T cells remained unchanged. 

Furthermore, whilst PMA and ionomycin increased IL-17A+ IL-17F- and IL-

17A+ IL-17F+ CD4+ T cell frequencies, it led to a small reduction in IL-17F+ IL-

17A- CD4+ expressing CD4+ T cells. These data further indicate that there are 

aspects of differential regulation between IL-17A+ and IL-17F+ CD4+ T cells.  
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Figure 3.18 Re-stimulation with PMA and ionomycin has no effect on the 

frequency of IL-17F expressing CD4+ T cells. 

 Isolated CD4+ T cells were cultured with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. After 3 

days, cells were re-stimulated with golgi stop either in the presence or absence of PMA and 

ionomycin. Cells were stained and intracellular cytokine expression was assessed. (A) 

Representative dot plots and (B) cumulative data show frequencies of IL-17A (n=6) and IL-17F 

(n=4) within the total CD4+ T cell population. (C) Results show the cumulative frequencies of IL-

17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F- IL-17A+ CD4+ T cell populations (n=6). 
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3.2.2 Phenotypic characterisation of IL-17F+ expressing 

CD4+ T cells 

A lack in current literature of the phenotypic characterization of IL-17F+ CD4+ T 

cells and their comparison with IL-17A+ CD4+ T cells provided us with the 

rationale to perform these experiments. The second part of this chapter investigates 

the marker expression and cytokine profile of IL-17A+ IL-17F-, IL-17A+ IL-

17F+, IL-17F- IL-17A- CD4+ T cells.  

 

3.2.2.1 CCR6 and CD161 marker expression on IL-17A+ and IL-17F+ 

CD4+ T cells 

IL-17A+ CD4+ T cells have previously been reported to be CD45RO+ memory 

cells 4. By performing an extracellular CD45RO stain on CD4+ T cells cultured 

with IL-1β and IL-23, it was observed that all IL-17 populations, IL-17A+ IL-17F-

, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells were CD45RO+ memory 

cells (n=2, data not shown).  To further charaterise IL-17F+ CD4+ T cells and 

draw comparisons with IL-17A+ CD4+ T cells, their surface marker expression 

was analysed, including the Th17 associated markers CCR6 and CD161. 

 

Experiments showed that a three day in vitro culture and PMA and ionomycin re-

stimulation down-regulates CD161 and CCR6 CD4+ T cell surface marker 

expression (data not shown, n=2). As a three day culture with IL-1β and IL-23 is 

necessary to induce IL-17F+ CD4+ T cell populations, CD161 and CCR6 marker 

expression was analysed following a 3 day culture without a PMA and ionomycin 

re-stimulation. As illustrated in Figure 3.19, in two out of four donors, IL-17A+ 

IL-17F- CD4+ T cells displayed a higher expression level of CD161 in comparison 

to levels observed on IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. 

However, in the remaining two donors, expression levels of CD161 were only 

slightly higher than observed with IL-17A- IL-17F- CD4+ T cells. Similarly, the 

expression levels of CD161 was not enriched on IL-17A+ IL-17F+ and IL-17F+ 

IL-17A- CD4+ T cells when compared with IL-17A- IL-17F- CD4+ T cells. 

Expression levels of CCR6 were enriched on all IL-17 producing CD4+ T cells 
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and few variations were observed between the IL-17A+ IL-17F-, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cell populations. 
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Figure 3.19 Expression of CCR6 and CD161 on IL-17A and IL-17F CD4+ T 

cells. 

Bulk CD4+ T cells were incubated with golgistop either in the presence of PMA and ionomycin at 

day 0 or day 3 following culture with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. Cells were 

assessed for intracellular cytokine expression. (A) Representative dot plots showing the percentage 

of CD161+ and CCR6+ cells within total CD4+ T cells. (B) Gating within IL-17A+ IL-17F-, IL-

17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells the co-expression of CD161 (n=4) and CCR6 

(n=4) was analysed. 
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3.2.2.2 IL-17A and IL-17F expressing CD4+ T cells display different 

cytokine profiles 

The next aim was to compare the cytokine profiles of IL-17A and IL-17F CD4+ 

T cell populations. An initial experiment included performing mass cytometry 

(CyTOF) to provide a broad overview of the co-expression of cytokines in IL-17A 

and IL-17F CD4+ T cell populations. These data are displayed and discussed in 

Appendix 7.1. 

 

The co-expression of IFNγ, TNFα, GM-CSF and IL-10 was assessed by flow 

cytometry in IL-17A and IL-17F populations induced in bulk CD4+ T cell cultures 

stimulated for 3 days with IL-1β and IL-23. Co-expression analysis was only 

performed when there were over three hundred events in the IL-17 population. IL-

17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T cells displayed similar high co-

expression levels of TNFα, while IL-17F+ IL-17A- CD4+ T cells exhibited 

slightly lower co-expression levels of TNFα (Figure 3.20). Moreover, co-

expression levels of IFNγ were significantly higher in IL-17A+ IL-17F+ and IL-

17F+ IL-17A- vs. IL-17A+ IL-17F- CD4+ T cells. However, IL-17A+ IL-17F- 

CD4+ T cells displayed the highest percentage of cells co-expressing GM-CSF vs. 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. Interestingly, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells exhibited lower co-expression levels of 

IL-10 when compared with IL-17A+ IL-17F+ CD4+ T cells.  

 

Our next aim was to investigate the cytokine profile of IL-17A and IL-17F CD4+ 

T cell populations in a different culture system. Therefore, the co-expression of 

pro-inflammatory cytokines IFNγ, TNFα, GM-CSF and IL-10 were assessed in 

IL-17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T cells from LPS-activated 

monocyte/ CD4+ T cell co-cultures. It is important to note, in this culture system, 

only two IL-17 populations are present – IL-17A+ IL-17F- and IL-17A+ IL-17F+ 

CD4+ T cells. Flow cytometry showed that similar percentages of IL-17A+IL-

17F- and IL-17A+IL-17F+ cells co-expressed TNFα (78±4% vs. 75±5%, 

respectively), IFNγ (25±4% vs. 30±2%) and GM-CSF (39±6% vs. 40±5%). 

However, similar to the IL-1β and IL-23 CD4+ T cell cultures, IL-10 co-
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expression was significantly reduced in IL-17A+IL-17F+ vs. IL-17A+IL-17F- 

CD4+ T-cells (1±0.2% vs. 3±0.6%) (Figure 3.21). 

 

Our lab has previously demonstrated that TNF inhibitor (TNFi) stimulate a 

significant proportion of IL-17A+ CD4+ T cells to co-express IL-10 9. Therefore, 

it was of interest to investigate the effect of anti-TNF drugs on the frequency of 

IL-17A+ IL-17F+ CD4+ T cells and if this population was resistant to a TNFi-

mediated increase in IL-10. Using the same published culture conditions, CD4+ T 

cells were cultured with CD14+ monocytes, anti-CD3 mAb in the absence or 

presence of anti-TNF drug, adalimumab (ADA). Flow cytometric analysis 

indicated that in comparison to medium controls, co-cultures treated with ADA 

displayed increased frequencies of IL-10+ cells in both IL-17A+ IL-17F-  (4 vs. 

18 %, respectively) and IL-17A+ IL-17F+ CD4+ T cells (2 vs. 16 %, respectively) 

(Figure 3.22). It is important to highlight in 2 independent experiments, treatment 

with ADA did not induce a sufficient amount of IL-17A+IL-17F+ CD4+ T cells 

for co-expression analysis (< 300 cells). No difference in IFNγ co-expression was 

observed between control vs. ADA conditions in IL-17A+ IL-17F and IL-17A+ 

IL-17F+ CD4+ T cells. 
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Figure 3.20 IL-17A and IL-17F expressing CD4+ T cells display different 

cytokine profiles. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. After 3 

days, cells were re-stimulated and assessed for intracellular cytokine expression. (A) 

Representative dot plot of IL-17A and IL-17F CD4+ T cell populations. Following gating within 

IL-17A- IL-17F-, IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells, the 

co-expression of other cytokines was analysed.  (B) Results show cumulative data for the co-

expression of TNFα (n=6), IFNγ (n=8), GM-CSF (n=5) and IL-10 (n=6). Data were analysed 

using Friedman test with Dunn’s Multiple Comparisons test. P values are represented as follows: 

* P <0.05, ** P <0.01. 
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Figure 3.21 IL-17A+ IL-17F+ CD4+ T cells display a lower co-expression of 

IL-10 in comparison to IL-17A+ IL-17F- CD4+ T cells. 

Bulk CD4+ T cells were co-cultured 1:1 with autologous monocytes and stimulated with anti-CD3 

mAb (100ng/ml) and LPS (100ng/ml). After 3 days cells were re-stimulated and assessed for 

intracellular cytokine expression. Gating within IL-17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T 

cells the co-expression of other cytokines was analysed. (A) Representative dot plots and (B) 

cumulative data showing the percentage of IL-17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T cells 

which co-express TNFα (n=4), IFNγ (n=8), GM-CSF (n=4) and IL-10 (n=8).  Data were analysed 

using the Wilcoxon matched-pairs signed rank test. 
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Figure 3.22 Anti-TNF treatment increases co-expression of IL-10 in IL-17A+ 

IL-17F- and IL-17A+ IL-17F+ CD4+ T cells. 

Bulk CD4+ T cells were co-cultured 1:1 with autologous monocytes and stimulated with anti-

CD3 mAb (100ng/ml) and anti-TNF (ADA) (1µg/ml). After 3 days cells were re-stimulated and 

assessed for intracellular cytokine expression. (A) Cumulative data showing the percentage of 

total IL-17A and IL-17F cells within total CD4+ T cells. Gating within IL-17A+ IL-17F-, IL-

17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells the co-expression of IL-10 and IFNγ was 

analysed. (B) Representative dot plots and (C) cumulative data for IL-10 and IFNγ in IL-17A+ 

IL-17F- (n=5) and IL-17A+ IL-17F+ CD4+ T cells (n=3), respectively. 
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3.3 Discussion 

Data presented in this chapter confirms that IL-1β and IL-23 are important for driving 

IL-17F expression. Expanding upon this, the data demonstrate for the first time that in 

the presence of IL-1β and IL-23, titration of anti-CD28 mAb in CD4+ T cell cultures 

leads to an increase in IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells, while 

frequencies of IL-17A+ IL-17F- CD4+ T cells are reduced. This anti-CD28 mAb 

effect was shown to be mediated by IL-2. Novel data demonstrate that IL-17A and IL-

17F CD4+ T cells display different cytokine profiles. Most interestingly, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells display a significantly lower IL-10 co-

expression level and significantly higher IFNγ co-expression levels when compared 

to IL-17A+ IL-17F- CD4+ T cells. Overall, the data presented in this chapter suggest 

IL-17A and IL-17F may be differentially regulated and IL-17A+ and IL-17F+ CD4+ 

T cells may have distinct functional differences. 

 

As discussed in the introduction, our lab has shown that LPS-activated monocytes can 

enhance the frequency of IL-17A+ CD4+ T cells 192.  Additionally, studies have shown 

IL-1β can drive human IL-17A+ CD4+ T cell differentiation, whilst IL-23 is important 

for lineage maintenance. IL-17F is often described to be co-expressed with IL-17A, 

however, limited studies investigating the induction of IL-17A include IL-17F. One 

study from Wilson et al. demonstrated that IL-1β and IL-23 drives the expression of 

IL-17F from human CD4+ T cells 193. Data presented in this chapter expand upon the 

work of the lab and that of Wilson et al. and show that addition of LPS to CD4+ T 

cell/ CD14+ monocyte co-cultures leads to an increase in the percentage of both IL-

17A+ and IL-17F+ CD4+ T cells and an increase in IL-17A and IL-17F secretion. 

Moreover, two IL-17 populations were observed, IL-17A+ IL-17F- and IL-17A+ IL-

17F+ CD4+ T cells. Luminex analysis of the co-culture supernatant revealed increased 

protein levels of IL-1β, IL-23, IL-6 and IFNγ in LPS-treated conditions vs. controls. 

In this study, the importance of IL-1β and IL-23 in inducing IL-17F was further 

investigated by moving to a different culture system whereby human recombinant IL-

1β and IL-23 cytokines were added. Future research to expand on how LPS-activated 

monocytes induce IL-17F could include blockade of IL-1β, IL-23 and other cytokines 

in the LPS culture system. Moreover, the expression of co-stimulation markers (for 



137 

 

example CD80) could be analysed, as it may be possible LPS drives the up-regulation 

of these markers and henceforth T cell activation and IL-17 production. 

 

Addition of IL-1β and IL-23 human recombinant cytokines to CD4+ T cell stimulated 

with anti-CD28 mAb and anti-CD3 mAb significantly enhanced the frequency of IL-

17A+ and IL-17F+ CD4+ T cell and IL-17A and IL-17F secretion. This confirms that 

IL-1β and IL-23 are important drivers in both IL-17A and IL-17F expression from 

CD4+ T cells. Interestingly, in this culture system three IL-17 populations are 

observed IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. 

An IL-17F+ IL-17A- CD4+ T cell population was not present in the CD4+ T cell/ 

CD14+ monocyte co-culture. It is possible the anti-CD28 mAb elicited a stronger co-

stimulation signal than the LPS-activated monocytes which drove the induction of IL-

17F+ IL-17A- CD4+ T cells. Another explanation could be that the higher 

concentrations of IL-1β and IL-23 induced IL-17F+ IL-17A- CD4+ T cells. The results 

presented also demonstrate that addition of IL-1β and IL-23 recombinant cytokines to 

CD4+ T cell cultures leads to an increase in IL-17AF+ CD4+ T cell frequencies and 

IL-17AF protein secretion. Preliminary CyTOF results indicate the IL-17AF 

heterodimer is highly expressed by the IL-17A+ IL-17F+ CD4+ T cell population 

(Appendix 7.1). It is hypothesized that the IL-17A+ IL-17F+ CD4+ T cells produce 

IL-17A, IL-17F and IL-17AF, although the lack of an IL-17A homodimer specific 

antibody prevents this being confirmed. In this study we focused on the role of IL-1β 

and IL-23 in inducing IL-17F and IL-17AF expression. Future work could involve 

assessing the role of other previously described Th17 cytokines (IL-6, TGF-β and IL-

21) in IL-17F and IL-17AF induction. 

 

Reports in the literature have demonstrated that IL-17A+ CD4+ T cells are promoted 

with low-strength T cell activation 225,221. In contrast to the literature, addition of anti-

CD28 mAb did not lead to a consistent decrease in the frequency of total IL-17A+ 

CD4+ T cells. Instead, no consistent effect was observed. This difference may be 

attributed to different cell culture conditions or human vs. mouse cells. A discrepancy 

between the IL-17A ICS and ELISA data was observed. While there was no difference 

in the frequency of IL-17A+ CD4+ T cells at day 3 in the absence or presence of anti-
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CD28, IL-17A protein secretion was increased in the presence of anti-CD28. We have 

attributed this result to the kinetics of the assay. Our results suggested that there is an 

increase in the frequency of IL-17A+ CD4+ T cells in the presence vs. absence of anti-

CD28 during early time-points of the 3 day cultures, which can account for the 

increased accumulation of IL-17A protein detected at day 3. How T cell activation 

affects IL-17F expression has not been previously reported. Data in this thesis 

demonstrate that addition of anti-CD28 mAb to CD4+ T cell cultures significantly 

increases the frequency of total IL-17F+ CD4+ T cells and IL-17F and IL-17AF 

protein secretion. Interestingly, titration of anti-CD28 mAb increased the frequency of 

IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells, while decreasing the frequency 

of IL-17A+ IL-17F+ CD4+ T cells.  

 

Similar results were observed with anti-CD3 mAb. Titration of anti-CD3 mAb in 

CD4+ T cell cultures led a dose dependent increase in the frequency of IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells. However, in the case of IL-17A+ IL-17F- 

CD4+ T cells, while there was an initial increase with a small concentration of anti-

CD3 mAb, further increasing the concentration had little effect on IL-17A+ IL-17F- 

CD4+ T cell frequency. In light of this data, I hypothesise that high-strength T cell 

stimulation induces IL-17F. Of course, with the current experiments we cannot 

confirm an increase in anti-CD28 or anti-CD3 mAb led to a stronger T cell activation. 

This could be confirmed by analysing the up-regulation of the activation marker CD69 

or by investigating the phosphorylation of T cell activation components, ZAP 70 or 

LAT by western blot. An increase in CD69 marker expression or phosphorylation of 

ZAP 70 or LAT could then be correlated with IL-17F+ CD4+ T cell frequency. 

 

To investigate the mechanism by which high-strength T cell activation can drive IL-

17F expression, IL-2 and IFNγ was blocked in CD4+ T cell cultures stimulated with 

IL-1β, IL-23 and anti-CD28. Firstly it is important to note that in contrast to the 

literature 218,221, blockade of IL-2 led to no consistent differences in the frequency of 

IL-17A+ CD4+ T cells. One explanation for the lack of response to IL-2 blockade 

could be that the levels of IL-2 present in the culture were too low. To investigate this, 

future work could involve examining the effect of adding titrated amounts of human 
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recombinant IL-2 to stimulated CD4+ T cells. If indeed IL-2 down-regulates the IL-

17A response in humans, we would expect to observe the frequency of IL-17A+ CD4+ 

T cells dose-dependently decreasing upon the addition of IL-2. As the majority of the 

reports which implicate IL-2 in down-regulating IL-17A+ CD4+ T cells are in mice 

218,221,222, another explanation for these results could be that the role of IL-2 in humans 

may differ. Indeed, in contrast to the role of IL-2 in mice Amadi-Obi et al. 

demonstrated that in human PBMC isolated from the blood of active uveitis patients, 

IL-2 enhanced IL-17A production by memory CD4+ T cells.   

 

In contrast to the results of IL-17A, our results demonstrated that blockade of IL-2 

reduced IL-17F+ CD4+ T cell frequencies to similar levels observed in the absence of 

anti-CD28. This demonstrated that the CD28-mediated increased in IL-17F+ CD4+ T 

cell expression was mediated by IL-2. Collectively these data indicate that IL-17A and 

IL-17F are differentially regulated. To confirm the role of IL-2 in IL-17F induction, it 

can be investigated if the reverse result (a dose-dependent increase in IL-17F+ CD4+ 

T cells) is observed upon addition of human recombinant IL-2. IL-2 has been shown 

to induce the production of other cytokines from T cells such as TNFα 408. Therefore, 

it may of interest to demonstrate whether the IL-2-mediated induction of IL-17F 

expression is a direct or indirect mechanism. This could include performing a Luminex 

on the supernatants of CD4+ T cells cultured in the absence or presence of anti-CD28 

and identifying cytokines other than IL-17F and IL-2 which are upregulated in the 

presence of anti-CD28. If for example TNFα is elevated in the presence of anti-CD28, 

the effect of blocking TNFα on the frequency of IL-17F+ CD4+ T cells can be 

assessed.  

 

Evidence from mouse 209-211 and human 192 studies have shown that IFNγ can decrease 

the frequency of IL-17A+ CD4+ T cells and IL-17A protein secretion. Despite 

detectable levels of IFNγ observed in CD4+ T cell cultures and efficient blockade of 

IFNγ following addition of a neutralising antibody, the data presented in this thesis 

showed no difference in the frequency of IL-17A+ CD4+ T cells in CD4+ T cell 

cultures stimulated with IL-1β, IL-23, anti-CD28 and anti-CD3 in the absence or 

presence of anti-IFNγ. These conflicting results may reflect differences in animal vs. 
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human Th17 differentiation as the strongest evidence for the role of IFNγ in regulating 

the IL-17A response derive from murine studies. However, it is important to also 

consider that the majority of mouse reports examine the effect of IFNγ on naïve CD4+ 

T cells 210 and the human study by Evans et al. investigates the role of IFNγ on memory 

CD4+ T cells 192. In this study bulk CD4+ T cells were used. Therefore, future studies 

could involve performing the same experiment on separate cultures of isolated naïve 

CD45RA+ and memory CD45RO+ CD4+ T cells. Similar to IL-17A, blockade of 

IFNγ did not show a consistent effect on the frequency of IL-17F+ CD4+ T cells. 

 

Data presented in this chapter show that while re-stimulation with PMA and 

ionomycin increases the frequency of total IL-17A+ CD4+ T cells, it has no effect on 

the frequency of total IL-17F+ CD4+ T cells. More specifically, PMA and ionomycin 

enhances IL-17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T cell frequencies and 

decreases IL-17F+ IL-17A- CD4+ T cells. The reason why PMA and ionomycin 

increases the frequency of IL-17A and not IL-17F remains unclear. One explanation 

may be that the signalling pathways stimulated with PMA and ionomycin does not 

elicit an IL-17F response. These data, alongside observations made from titration of 

anti-CD3 mAb and anti-CD28 mAb, clearly demonstrate that IL-17A and IL-17F 

expression from CD4+ T cells are not always enhanced simultaneously. Moreover, the 

data presented indicate IL-17A and IL-17F may be differentially regulated. 

 

Melton et al. have previously reported differential regulation of IL-17A and IL-17F. 

In their study primary human B cell and peripheral blood mononuclear cell co-cultures 

were stimulated with anti-IgM and superantigens to promote a Th17 response, as 

evidenced by IL-17A and IL-17F secretion. Co-cultures were incubated with 

pharmacologic modulators, which inhibit multiple pathways. Results revealed IL-17A 

production from CD4+ T cells was decreased following inhibition of the PI3K/ mTOR 

pathway, while prostaglandin EP receptor agonists, including PGE2, increased levels 

of IL-17A. In contrast, PGE2 inhibited IL-17F production. However, TLR2 and TLR5 

agonists selectively increased levels of IL-17F 409. Differential regulation of IL-17A 

and IL-17F is also supported in a study by Gomez-Rodrigues et al., whereby CD4+ T 

cells deficient in the TCR signalling kinase Itk led to a decreased IL-17A expression 
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whilst exerting no effect on the expression of IL-17F 410. Finally, a very recent report 

implicated that IL-17A and IL-17F are frequently unequally regulated, evidenced by 

the fact that IL-1β preferentially drives a mouse IL-17A+ CD4+ T cell profile, 

whereby TGF-β predominantly drives an IL-17F profile 246  In the final discussion 

chapter, I discuss how future work can investigate whether IL-17A and IL-17F are 

differentially regulated. 

 

The second focus of this chapter was to compare the marker and cytokine profile of 

IL-17A+ and IL-17F+ CD4+ T cells to identify whether there were any key differences 

between these populations. In line with literature 196, we observed that CCR6 marker 

expression was enriched on IL-17A and IL-17F expressing cells, however no 

consistent different was observed between the IL-17 populations themselves.  In two 

out of four donors the IL-17A+ IL-17F- CD4+ T cell population displayed higher 

levels of CD161 when compared with IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ 

T cell populations. To confirm these results, this experiment should be repeated 

additional times. Identifying differences in IL-17A+ and IL-17F+ CD4+ T cell 

populations may enable these populations to be separated without the need of a 

secretion assay. In this study only a limited number of markers was explored, however 

future work could examine the expression of chemokine receptors previously 

associated with Th17 cells including CXCR4, CXCR6, CCR4 and CCR5. 

 

Literature describes Th17 cells to produce an array of cytokines alongside IL-17A, 

including IL-17F, TNFα, IFNγ, GM-CSF, IL-21, IL-22, IL-9 and IL-10. Cytokine 

presence and expression levels are dependent on the cytokine milieu present upon 

Th17 differentiation 234-236. Novel data in this chapter show that IL-17A+ IL-17F-, IL-

17A+ IL-17F+ and IL-17F+ IL-17A+ CD4+ T cells display different cytokine profiles. 

In CD4+ T cell cultures with IL-1β and IL-23, IL-17A+ IL-17F+ and IL-17F+ IL-

17A- display significantly lower frequencies of IL-10 and higher frequencies of IFNγ 

when compared with IL-17A+ IL-17F- CD4+ T cells. Moreover, IL-17A+ IL-17F- 

CD4+ T cells display a higher frequency of GM-CSF when compared with IL-17F+ 

IL-17A- CD4+ T cells. A lower frequency of IL-10 was also observed in IL-17A+ IL-

17F+ CD4+ T cells vs. IL-17A+ IL-17F- CD4+ T cells in CD4+ T cell/ CD14+ 
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monocyte cultures stimulated with LPS, demonstrating this result it not only observed 

in IL-1β and IL-23 conditions. However, no differences in IFNγ or GM-CSF cytokine 

co-expression levels were observed. Different cytokine profile results observed in 

CD4+ T cell + IL-1β and IL-23 vs. CD4+ T cell/ CD14+ monocyte + LPS cultures 

may be attributed to the different IL-17 cytokine profiles. Firstly, no IL-17A+ IL-17F- 

CD4+ T cells are present in the CD4+ T cell/ CD14+ monocyte + LPS culture. 

Moreover, the IL-17A+ IL-17F+ CD4+ T cells in this culture are all highly expressing 

IL-17A, whereas in the CD4+ T cell + IL-1β and IL-23 cultures, there is more variation 

in IL-17A expression levels. 

 

These results suggest IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- 

CD4+ T cells may have different functional properties. An interesting finding is that 

IL-17F+ CD4+ T cells display a lower frequency of IL-10 suggesting these cells are a 

more inflammatory Th17 population. Indeed, the ‘pathogenic’ Th17 population are 

characterised by a lack of IL-10. However, they are also characterised by their 

expression of GM-CSF, of which, IL-17A+ IL-17F- CD4+ T cells display a higher 

level of GM-CSF in comparison to IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T 

cells. Nevertheless, IL-17F+ CD4+ T cells also demonstrated higher levels of IFNγ 

when compared with IL-17A+ IL-17F- CD4+ T cells. To the best of our knowledge, 

the cytokine profile of the different IL-17A/IL-17F CD4+ T cell populations has not 

been characterised previously. A recent mouse study demonstrated that TGF-β 

induced higher frequencies of IL-17F+ CD4+ T cells, suggesting that expression of 

IL-17F from CD4+ T cells is associated with non-pathogenic Th17 cells 246. However, 

the study did not characterise the cytokine profile of IL-17F+ CD4+ T cells. A recent 

study by Aschenbrenner et al. performed RNA-seq on human Th17-IL-10 and Th17-

IL-10+ clones. While several genes associated with the ‘non-pathogenic’ Th17 

phenotype were highly expressed in Th17-IL-10+ cells, genes associated with the 

‘pathogenic’ Th17 phenotype were highly expressed in Th17-IL-10- cells. 

Interestingly, in line with our data IL17F was highly expressed in Th17-IL-10- cells 

when compared to Th17-IL-10+ cells. In contrast, IL17A was preferentially expressed 

in Th17-IL-10+ cells. Th17-IL-10- cells were also linked with high expression levels 

of IFNG 411. The study also demonstrated that Th17-IL-10- cells have the ability to 

polarise monocytes into an inflammatory M1 phenotype, whilst Th17-IL-10+ cells 
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induced an M2 anti-inflammatory phenotype 411. In summary, work from this thesis 

and other studies 246,411 highlight that performing molecular and functional 

characterisation of isolated IL-17A/IL-17F CD4+ T cell sub-populations would be 

interesting area of research to pursue. This is further discussed in the final discussion 

chapter. 

 

The next chapter explores the individual and combinatorial function of IL-17A, IL-

17F and IL-17AF. Moreover, with the increasing need to separate IL-17A+ IL-17F-, 

IL-17A+ IL-17F+ and IL-17F- IL-17A+ CD4+ T cells, I describe the development 

of an IL-17F secretion assay. 
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4 Investigating the contribution of IL-17F to inflammation 
 

4.1 Introduction 

The IL-17 cytokines mediate their biological function via surface receptors on target 

cells. The IL-17 receptor family consists of IL-17RA, IL-17RB, IL-17RC, RD and 

RE. Functional IL-17 receptors exist as heterodimers, with IL-17RA as a common 

subunit. IL-17A, IL-17F and IL-17AF share the same IL-17RA and IL-17RC 

heterodimer receptor. These cytokines typically act on fibroblasts, epithelial cells and 

endothelial cells 31.  

 

The activation of NFκB and MAPK pathways in target cells by IL-17A, IL-17F and 

IL-17AF results in the transcription of pro-inflammatory genes. IL-17A and IL-17F 

have been shown to induce the production of the pro-inflammatory cytokines (IL-6, 

TNFα and IL-1) 71, T cell and myeloid cell-attracting chemokines (CCL20, CCL2 and 

CCL7) 94,95 and many neutrophilic granulocyte-attracting chemokines (CXCL1, 

CXCL2, CXCL5 and CXCL8) 71,96 from target cells. IL-17A, IL-17F and IL-17AF 

can exert potent synergistic effects in the presence of other cytokines (including 

TNFα) to augment pro-inflammatory responses 112. 

 

Literature describes a hierarchy in inflammatory potential with IL-17A homodimers 

eliciting the strongest inflammatory response, followed by IL-17AF heterodimers, and 

then IL-17F homodimers 78. In fact, studies have suggested that IL-17F is largely 

redundant to IL-17A. However, it has been shown that neutralization of both IL-17A 

and IL-17F significantly reduced T cell-mediated colitis development, whereas 

neutralisation of IL-17A or IL-17F alone was inefficient at reducing disease severity, 

indicating a potential role for IL-17F in inflammatory disease pathology 363. Moreover, 

a recent study demonstrated that dual neutralization of IL-17A and IL-17F leads to a 

greater reduction on Th17 cell culture supernatant induced IL-6 and IL-8 secretion by 

PsA fibroblasts 121. The overall aim of this chapter was to assess the function of IL-

17F and whether it has the potential to contribute to the immunopathology of 
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inflammatory arthritis, specifically RA and PsA. This aim has been addressed in the 

following ways: 

 

• Assessment of the individual and combinatorial role of IL-17A, IL-17F, IL-

17AF and TNFα in synovial fibroblast assays. 

• Investigating the effect of single and dual IL-17A and IL-17F blockade on the 

inflammatory response in a variety of culture systems. 

• Developing an IL-17F secretion assay to allow further analysis of the 

functional role of IL-17F producing cells. 

 

This chapter predominantly explores the inflammatory capacity of IL-17A, IL-17F 

and IL-17AF. However, it is concluded with a brief investigation of the function of 

the remaining IL-17 cytokines, IL-17B, IL-17C, IL-17D and IL-17E. 
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4.2 Results 

4.2.1 Examining the IL-17 receptor gene expression profile in RA and 

PsA synovial fibroblasts. 

To begin work on this chapter, a publicly available dataset (GEO accession number: 

GSE29746) was mined to investigate the gene expression of all IL-17 receptors 

(IL17RA, IL17RB, IL17RC, IL17RD and IL17RE) on synovial fibroblasts derived from 

RA. Moreover, RA IL-17R expression was compared to that of OA or healthy 

controls. Figure 4.1A displays data whereby microarray expression profiling was 

performed in human synovial fibroblasts from healthy, OA and RA synovial tissues. 

In this data set, all IL-17 receptors genes were present in healthy, OA and RA synovial 

tissues and they displayed a very similar gene expression profile. Gene expression 

levels of IL17RC were the lowest and demonstrated the least variability between 

donors, whilst mRNA expression of IL17RE was the highest.  
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Figure 4.1 Gene expression of the IL-17 receptors in healthy control, OA and 

RA synovial fibroblasts. 

This figure displays a publicly available dataset (GEO accession number: GSE29746), whereby 

synovial fibroblasts were obtained from patients with RA (RA SF) (n=9) and sex and age matched adult 

healthy donors (HC SF) (n=11) and OA donors (n=11). Synovial fibroblasts were collected under 

similar sub-confluent conditions 24 hours after serum addition. Microarray analysis was then performed 

on isolated RNA. 
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4.2.2 Assessing the individual and combinatorial function of IL-17A, IL-

17F and IL-17AF on synovial fibroblasts 

The next aim was to investigate the individual roles of IL-17A, IL-17F, IL-17AF and 

TNFα in RA and PsA synovial fibroblast cultures. RA and PsA synovial fibroblasts 

were seeded in a 96 well plate and allowed to rest for 24 hours. Next, fibroblasts were 

incubated with human recombinant IL-17A, IL-17F, IL-17AF, TNFα and vehicle 

controls at the indicated concentrations. Following 24 hours incubation, the 

supernatant was collected and analysed by ELISA for IL-6 and IL-8 protein levels. In 

total 3 different RA fibroblast cell lines (i.e originating from different donors) and 4 

different PsA fibroblast cell lines were used in this thesis. Not all cell lines were used 

in each experiment. At a steady state, no consistent differences were observed between 

IL-6 or IL-8 secretion in RA vs. PsA fibroblasts. In general, there were modest 

variations in IL-6 and IL-8 secretion across all cell lines. Moreover, in some cases 

fibroblasts derived from the same cell line secreted different protein levels at a 

different passage. These variations may be attributed to the health of the cells at the 

time of seeding and the extent of inflammation in the joint from which the fibroblasts 

were derived. 

 

As shown in Figure 4.2, IL-17A, IL-17F, IL-17AF and TNFα all induced a dose-

dependent increase in IL-6 secretion by fibroblasts. In line with literature, a hierarchy 

in inflammatory potency of the IL-17 cytokines was observed: IL-17A elicited higher 

levels of IL-6 in comparison to IL-17F, while IL-17AF induced intermediate IL-6 

levels. TNFα induced the highest levels of IL-6. However, when recombinant 

cytokines were added at 50ng/ml, IL-17A elicited higher IL-6 levels than TNFα. 

Similar results were observed when analysing the levels of IL-8 in the fibroblast 

supernatant. All cytokines stimulated IL-8 secretion from fibroblasts in a hierarchical 

fashion. However, in this case TNFα was more potent in driving IL-8 fibroblast 

secretion compared to the IL-17 cytokines. TNFα at a concentration of 0.1ng/ml 

stimulated IL-8 protein levels above the ELISA detection limit.  

 

Next, we sought to investigate whether there were any synergistic or additive effects 

between IL-17A, IL-17F or IL-17AF themselves. To assess this, combinations of the 
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IL-17 cytokines at 10ng/ml were added to synovial fibroblasts for 24 hours and IL-6 

and IL-8 protein levels were assessed by ELISA. As depicted in Figure 4.3, combining 

IL-17A with IL-17F, IL-17AF or both did not lead to increased IL-6 or IL-8 secretion 

levels when compared with IL-17A alone, showing there is no synergistic or additive 

effect between IL-17A and IL-17F or IL-17AF.
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Figure 4.2 IL-17A, IL-17F or IL-17AF addition leads to a dose-dependent 

increase in IL-6 and IL-8 fibroblast secretion. 

RA and PsA synovial fibroblasts (10x103) were cultured with indicated concentrations of human 

recombinant IL-17A, IL-17F, IL-17AF or TNFα for 24 hours. Additionally fibroblasts were cultured 

with vehicle controls for IL-17A, IL-17F and TNFa (0.1% BSA) and IL-17AF (0.1% BSA and 4mM 

HCL). Culture supernatants were collected and IL-6 (RA n=3, PsA n=1) and IL-8 (RA n=2) protein 

levels were measured by ELISA. Dashed red and blue lines indicate lower detection limit and upper 

detection limit, respectively. 
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Figure 4.3 No synergistic or additive effect is observed between IL-17A, IL-17F 

and IL-17AF. 

RA and PsA synovial fibroblasts (10x103) were cultured with combinations of IL-17A, IL-17F or IL-

17AF at 10ng/ml for 24 hours. Additionally, fibroblasts were cultured with vehicle controls for IL-17A, 

IL-17F (0.1% BSA, Vehicle 1) and IL-17AF (0.1% BSA and 4μm HCL, Vehicle 2). Culture 

supernatants were collected and IL-6 (RA n=3, PsA n=1) and IL-8 (PsA n=2) protein levels were 

measured by ELISA. Dashed red and blue lines indicate lower detection limit and upper detection limit, 

respectively. 
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4.2.3 IL-17A, IL-17F and IL-17AF synergise with TNFα 

IL-17A, IL-17F and IL-17AF have the ability to exacerbate their inflammatory 

potential by synergising with other cytokines. In these experiments, we focused on the 

synergy between the IL-17 cytokines and TNFα. We investigated to what extent the 

pro-inflammatory ability of IL-17A, IL-17F and IL-17AF increased with TNFα. In 

this experiment a range of concentrations was used to determine the sub-optimal/ 

minimum concentration of cytokine required to see a synergistic effect. 

 

As shown in Figure 4.4A, a synergistic increase in IL-6 secretion by fibroblasts was 

observed with IL-17A and TNFα at concentrations as low as 1 and 0.1ng/ml, 

respectively. A combination of 10ng/ml IL-17A and 1ng/ml TNFα resulted in a 

profound 6.5-fold increase in IL-6 fibroblast secretion when compared with 10ng/ml 

IL-17A alone. Moreover, a 6-fold increase was observed when compared with 1ng/ml 

TNFα alone. Similarly, synergistic responses were observed in the secretion of IL-8 

from concentrations as low as 1ng/ml IL-17A and 0.1ng/ml TNFα. In the case of IL-

17F (Figure 4.4B), the lowest concentrations of recombinant cytokines required to 

drive a synergistic IL-6 response with TNFα were 10ng/ml IL-17F and 0.1ng/ml 

TNFα. The strongest synergistic effect was observed when 1ng/ml of TNFα was added 

to 10ng/ml of IL-17F. This led to a 7.5-fold and 2.8-fold increase in IL-6 levels when 

compared to addition of IL-17F or TNFα, respectively. Similarly, addition of 0.1 or 

1ng/ml of TNFα to 10ng/ml IL-17F led to a synergistic increase in IL-8 protein 

secreted from fibroblasts. Results of the IL-17AF synergy experiments demonstrated 

that the heterodimer can also synergise with TNFα to induce elevated levels of IL-6 

and IL-8 from fibroblasts. Figure 4.4D compares the levels of IL-6 and IL-8 induced 

with 10ng/ml IL-17A, IL-17F and/ or IL-17AF all combined with 1ng/ml TNFα. The 

combination of IL-17A and TNFα elicited the highest production of IL-6 and IL-8 

from target cells, followed by IL-17AF and IL-17F. These data show that the 

inflammatory potential of IL-17A, IL-17F and IL-17AF is significantly enhanced in 

the presence of TNFα. 

 

We next sought to assess whether addition of IL-17F or IL-17AF to IL-17A and 

TNFα further enhances secretion of IL-6 or IL-8. As depicted in Figure 4.5, addition 
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of IL-17F and/ or IL-17AF to IL-17A and TNFα in the fibroblast cultures did not 

lead to a further increase in IL-6 or IL-8 secretion by fibroblasts. 
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Figure 4.4 IL-17A, IL-17F and IL-17AF synergise with TNFα. 

Synovial RA and PsA fibroblasts (10x103) were cultured with combinations of IL-17A, IL-17F, IL-

17AF and TNFα (at indicated concentrations) or with vehicle controls for IL-17A, IL-17F and TNFa 

(0.1% BSA, V1) and IL-17AF (0.1% BSA and 4μm HCL, V2).  Culture supernatants were collected 

and IL-6 and IL-8 protein levels were measured by ELISA. Data show the synergistic effect of TNFα 

and (A) IL-17A, (B) IL-17F and (C) IL-17AF on IL-6 (RA n=1, PsA n=1) and IL-8 (PsA n=1) secretion. 

(D) Displays cumulative IL-6 (RA n=3, PsA n=5) and IL-8 (RA n=2, PsA n=5) data with the IL-17 

cytokines at 10ng/ml and TNFα at 1ng/ml. Dashed red and blue lines indicate lower detection limit and 

upper detection limit, respectively. 
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Figure 4.5 Addition of IL-17F or IL-17AF does not further increase the IL-17A 

and TNFα mediated upregulation of synovial fibroblast pro-inflammatory 

cytokine secretion. 

Synovial RA and PsA fibroblasts (10x103) were cultured with combinations of IL-17A, IL-17F, IL-

17AF at 10ng/ml and TNFα at 1ng/ml were for 24 hours. Culture supernatants were collected and IL-6 

(RA n=3, PsA n=5) and IL-8 (RA n=2, PsA n=5) protein levels were measured by ELISA. Dashed red 

and blue lines indicate lower detection limit and upper detection limit, respectively. Statistical analysis 

was performed using Friedman test with comparison to IL-17A and TNFα by Dunn’s Multiple 

Comparisons test.   
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4.2.4 Testing blocking antibodies 

Assessing the role of IL-17F via addition of recombinant cytokines to fibroblast assays 

demonstrated that while the potency of IL-17F in inducing inflammatory cytokine 

production from synovial fibroblasts was enhanced in the presence of TNFα, it was 

not as potent as the combination of IL-17A and TNFα. Furthermore, addition of IL-

17F to IL-17A and TNFα cultures had no further effect on cytokine secretion by 

fibroblasts. This potentially suggests IL-17F is redundant when in the presence of IL-

17A. However, studies have shown dual blockade of IL-17A and IL-17F is more 

efficient in reducing inflammatory cytokine production than blockade of IL-17A alone 

121,363. I therefore sought to examine the role of IL-17F using blocking antibodies.  

 

To perform these experiments, our pharmaceutical collaborator, UCB, provided IL-

17A and IL-17F blocking antibodies. This included a UCB in-house IL-17A blocking 

antibody which neutralizes both the IL-17A homodimer and IL-17AF heterodimer and 

a UCB in-house IL-17F blocking antibody which neutralizes IL-17F with no cross 

reactivity to the other IL-17 cytokines. These experiments also included bimekizumab, 

which is a novel, humanized monoclonal IgG1 antibody that selectively neutralizes 

IL-17A, IL-17F and IL-17AF. The affinities of these blocking antibodies have recently 

been published 121. In summary, biomolecular interaction analysis performed using a 

Biacore 3000 demonstrated that bimekizumab shares a similar affinity to the anti-IL-

17A antibody. However, bimekizumab has a higher affinity for IL-17F than the anti-

IL-17F antibody. Therefore, it was important to determine efficient blocking antibody 

concentrations which completely block IL-17 cytokine function. 

 

A series of preliminary experiments were performed to ensure efficient blockade of 

IL-17 and TNFα cytokines and to ensure minimal cross-reactivity. To begin the 

experiments, a cocktail of IL-17A, IL-17F, IL-17AF and TNFα, all at 10ng/ml in 

DMEM media were added to fibroblast cultures alongside increasing doses of 

blocking antibodies. Following a 24 hour incubation, supernatants were collected and 

IL-17A, IL-17F, IL-17AF and TNFα protein levels were analysed by ELISA. While 

IL-17A protein was detected in the positive control condition, no IL-17A protein was 

detected with the addition of 0.5μg/ml or more of IL-17A blocking antibody, 
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indicating efficient blockade of IL-17A (Figure 4.6A). Similar results were observed 

for IL-17AF. As expected, IL-17F protein was still detectable following the addition 

of IL-17A blocking antibody. As depicted in Figure 4.6B, protein levels of IL-17A 

and IL-17AF were all detectable following the addition of IL-17F blocking antibody. 

Unexpectedly, while blockade of IL-17F at the highest dose (10μg/ml) reduced IL-

17F protein levels to some extent, IL-17F was still clearly detectable. This suggested 

that either the blocking antibody was inefficient at blocking IL-17F, a higher 

concentration of anti-IL-17F was required or the blocking antibody is working and 

inhibits the function of IL-17F but the protein-antibody complex is still recognized by 

the IL-17F ELISA. Bimekizumab completely blocked IL-17A, IL-17F and IL-17AF 

from a concentration of 1μg/ml onwards (Figure 4C). Finally, anti-TNFα effectively 

blocked TNFα protein (Figure 4D).  

 

To investigate why IL-17F protein might still be detectable following addition of 

10μg/ml of anti-IL-17F, fibroblasts were cultured with human recombinant IL-17F 

(10ng/ml) and titrated doses of anti-IL-17F mAb for 24 hours. Although titration of 

anti-IL-17F led to a dose-dependent decrease in IL-17F protein, IL-17F was not 

completely blocked even with a high concentration of 100μg/ml anti-IL-17F blocking 

antibody (Figure 4.7A). To investigate the possibility that the protein-blocking 

antibody complex is recognized by the IL-17F ELISA but the blocking antibody is 

still affecting the function of IL-17F, we measured the same supernatant used in Figure 

4.7A, for IL-6 and IL-8 protein levels. Supernatant from fibroblasts cultured with 

recombinant IL-17F displayed an increase in IL-6 protein levels in comparison to 

medium-only controls. However, an increase in IL-6 protein levels was not observed 

in supernatants from fibroblasts cultured with recombinant IL-17F and anti-IL-17F 

blocking antibody. This indicates that although IL-17F protein is detectable following 

the addition of anti-IL-17F blocking antibody, the IL-17F protein function is 

neutralised. In this set of experiments IL-8 was below the ELISA detection limit in all 

conditions (data not shown). IL-17F alone is a weak inducer of IL-6 and IL-8 by 

fibroblasts. To further validate the efficiency of the IL-17F blocking antibody in a 

system with higher IL-6 levels and detectable IL-8 levels, I performed the same 

experiment, this time adding anti-IL-17F to a combination of IL-17F and TNFα 

recombinant cytokines. As depicted in Figure 4.7C, the combination of IL-17F and 
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TNFα resulted in a synergistic increase in IL-6 and IL-8 secretion. Addition of IL-17F 

blocking antibodies reduced IL-6 and IL-8 levels back to levels similar to that of TNFα 

alone. This further validates that the anti-IL-17F antibody is functional. 

 

The aim of the final experiment in this section was to validate the blocking specificity 

of anti-IL-17A, anti-IL-17F, bimekizumab and anti-TNFα.  It was previously 

demonstrated in Figure 4.6 that anti-IL-17A does not recognize the IL-17F protein; 

similarly, anti-IL-17F does not recognize IL-17A and IL-17AF protein. I sought to 

extend this analysis to demonstrate that the blocking antibodies do not non-specifically 

reduce IL-6 secretion by fibroblasts. IL-17A, IL-17F, IL-17AF and TNFα were 

individually added to fibroblast cultures in the absence or presence of blocking 

antibodies at 10μg/ml. Cultures were incubated for 24 hours and IL-6 protein levels 

were measured by ELISA. As depicted in Figure 4.8, IL-17A-induced IL-6 secretion 

was abrogated by the addition of anti-IL-17A and bimekizumab only. Similar results 

were observed for the IL-17AF heterodimer. Anti-IL-17F and bimekizumab inhibited 

IL-17F-induced IL-6 secretion. Anti-IL-17A and anti-TNFα blocking antibodies 

showed no effect on IL-17F induced cytokine secretion. TNFα induced IL-6 levels 

were inhibited with the addition of anti-TNFα only. Similar results were observed for 

IL-8; however levels of IL-17F-induced IL-8 were too low for reliable analysis. 
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Figure 4.6 Testing blocking antibody concentrations. 

Synovial RA and PsA fibroblasts (10x103) were cultured with a cocktail of human recombinant IL-17A, 

IL-17F, IL-17AF and TNFα (all at 10ng/ml) (+) and indicated neutralising antibodies at the indicated 

concentrations for 24 hours (n=1-3). Cell supernatants were collected and protein levels of the indicated 

cytokines were determined by ELISA. Dashed red and blue lines indicate lower detection limit and 

upper detection limit, respectively.  
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Figure 4.7 IL-17F blocking antibody inhibits IL-17F function. 

Synovial PsA fibroblasts (10x103) were cultured with human recombinant IL-17F (10ng/ml) and 

indicated concentrations of anti-IL-17F blocking antibody for 24 hours. Cell supernatants were 

collected and protein levels of (A) IL-17F (n=1) and (B) IL-6 (n=1) were determined by ELISA. (C) 

Synovial PsA fibroblasts (10x103) were cultured with IL-17A and TNFα with titrated doses of anti-IL-

17F blocking antibody for 24 hours. Fibroblast culture supernatants were measured for IL-6 and IL-8 

by ELISA (n=1). Dashed red lines indicate the lower detection limit. The solid green line highlights the 

control protein level.  
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Figure 4.8 Testing blocking antibody specificity. 

Synovial RA and/or PsA fibroblasts (10x103) were cultured with 10ng/ml of (A) IL-17A, (B) IL-17F, 

(C) IL-17AF and (D) TNFαin the presence of blocking antibodies at a concentration of 10μg/ml. 

Following 24 hours incubation, cell supernatants were collected and IL-6 protein levels were 

determined by ELISA (n=1-2). Dashed red and blue lines indicate lower detection limit and upper 

detection limit, respectively. 
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4.2.5 Dual IL-17A and IL-17F blockade in a fibroblast:recombinant 

cytokine system 

Moving forward from successful validation of the IL-17 blocking antibodies, the next 

aim was to assess the effect of dual IL-17A and IL-17F blockade in a reductionist 

system. To achieve this, a cocktail of recombinant cytokine IL-17A, IL-17F, IL-17AF 

and TNFα were added to synovial fibroblast cultures in the presence of ‘low’ or ‘high’ 

(1 vs.10μg/ml) concentrations of IL-17 blocking antibody and anti-TNFα. These 

experiments included a human IgG1 isotype control. As illustrated in Figure 4.9, 

addition of the cytokine cocktail led to an increase in IL-6 fibroblast cytokine 

production in comparison to the medium alone condition. Addition of isotype control 

or anti-IL-17F blocking antibody had no effect on IL-6 production. However, IL-6 

secretion was reduced upon addition of IL-17A blocking antibody. Interestingly, IL-6 

production was further reduced with a combined blockade of IL-17A and IL-17F by 

bimekizumab. Blockade of TNFα reduced IL-6 levels similar to that of bimekizumab. 

Similar results were observed for IL-8. Moreover, similar results were observed when 

using blocking antibodies at both 1 and 10μg/ml. Collectively, these data suggest that 

a combined blockade of IL-17A, IL-17F and IL-17AF is more effective at reducing 

inflammation than blockade of IL-17A alone. In this experiment, the role of IL-17AF 

cannot be assessed as both bimekizumab and the anti-IL-17A blocking antibody both 

inhibit IL-17AF. 

 

Next, we sought to demonstrate that the greater effect of bimekizumab was a result of 

a dual IL-17A and IL-17F blockade and not a result of a potent blockade of IL-17A. 

To achieve this, a cocktail of IL-17A, IL-17F, IL-17AF and TNFα was added to 

fibroblast assays and the effect of bimekizumab and a combination of both anti-IL-

17A and anti-IL-17F single blocking antibodies was compared. As depicted in Figure 

4.10 bimekizumab and a combination of single IL-17A and IL-17F blocking 

antibodies reduced fibroblast IL-6 and IL-8 secretion to comparable levels. This 

suggests that the superior result of bimekizumab can be attributed to dual IL-17A and 

IL-17F blockade.  
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Figure 4.9 A combined blockade of IL-17A and IL-17F reduces pro-

inflammatory secretion by fibroblasts to a greater extent than blockade of IL-

17A alone. 

RA and PsA synovial fibroblasts (10x103) were cultured with a cocktail of human recombinant IL-17A, 

IL-17F, IL-17AF and TNFα (+) in the absence or presence of blocking antibodies (at the indicated 

concentrations) for 24 hours. Cell supernatants were collected and IL-6 and IL-8 protein levels were 

determined by ELISA. (A) displays the results of all blocking antibodies at 1μg/ml while (B) displays 

the data for anti-IL-17A and bimekizumab in a different format. (C-D) shows the results of the blocking 

antibodies at 10μg/ml. Dashed red and blue lines indicate lower detection limit and upper detection 

limit, respectively (n=2-9). 
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Figure 4.10 Similar to bimekizumab, combining single IL-17A and IL-17F 

blocking antibodies reduced IL-6 and IL-8 fibroblast secretion levels to a 

greater extent than IL-17A blockade alone. 

RA and PsA synovial fibroblasts (10x103) were cultured with a cocktail of human recombinant IL-17A, 

IL-17F, IL-17AF and TNFα (+) in the absence or presence of blocking antibodies for 24 hours. Cell 

supernatants were collected and IL-6 and IL-8 protein levels were determined by ELISA. (A) displays 

the results of isotype control at 2μg/ml and the remaining blocking antibodies at 1μg/ml. Anti-IL-17A 

and anti-IL-17F blocking antibodies were added in combination at 1μg/ml each. (B) displays the results 

of isotype control at 20μg/ml and the remaining blocking antibodies at 10μg/ml. Anti-IL-17A and anti-

IL-17F blocking antibodies were added in combination at 10μg/ml each.  (n=2-6). 
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4.2.6 Dual IL-17A and IL-17F blockade in bulk CD4+ T cell supernatant 

cell cultures  

Our next aim was to investigate in a physiological system whether dual IL-17A and 

IL-17F blockade is more effective at reducing secretion of pro-inflammatory 

mediators from synovial fibroblasts than blockade of IL-17A alone. 

 

To generate a physiological system, we sought to block IL-17A and IL-17F in 

supernatants from bulk CD4+ T cell cultures. I previously demonstrated in Chapter 3 

that culturing CD4+ T cells with IL-1β, IL-23, αCD28 and αCD3 induced IL-17A, IL-

17F and IL-17AF protein secretion. My initial approach was to add this supernatant to 

the fibroblasts. However, results revealed that the IL-1β and/or IL-23 recombinant 

cytokines used to stimulate the CD4+ T cells elicited a strong IL-6 and IL-8 fibroblast 

response alone and thus was not suitable for the blocking experiments (data not 

shown). The next approach involved generating supernatants from CD4+ T cells 

cultured with αCD28 and αCD3 only. However, this method did not induce sufficient 

levels of the IL-17 cytokines (data not shown).  

 

Next, CD4+ T cells were cultured for 3 days with IL-1β, IL-23, αCD28 and αCD3 

followed by re-stimulating cells with PMA and ionomycin for either 0, 1.5 or 3 hours. 

Cells were then washed to ensure removal of any residual IL-1β, IL-23 or PMA and 

ionomycin and replated (40x103 cells in 200μl) for 24 hours incubation. Cell 

supernatants were then collected and first analysed for IL-17A and IL-17F protein 

expression via ELISA. No IL-17 protein was detected in CD4+ T cell cultures which 

were not stimulated with PMA and ionomycin (data not shown). Moreover, levels of 

IL-17A and IL-17F were low in CD4+ T cell cultures re-stimulated for 1.5 or 3 hours 

with PMA and ionomycin. Therefore, blocking experiments were not performed using 

this supernatant (data not shown). 

 

Cell to cell interactions are described to be important in the RA and PsA synovium. 

My next approach was to explore the effect of culturing in vitro stimulated CD4+ T 

cells (i.e not their supernatant) with synovial fibroblasts in the absence or presence of 
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blocking antibodies. To achieve this, CD4+ T cells were cultured for 3 days with IL-

1β, IL-23, αCD28 and αCD3 followed by re-stimulation with PMA and ionomycin for 

3 hours. Following a wash step, stimulated CD4+ T cells were cultured with synovial 

fibroblasts were then cultured with the at a 2.5:1 ratio in the absence or presence of 

blocking antibodies for 24 hours. Supernatants were then collected and levels of IL-6 

were measured by ELISA. As shown in Figure 4.11, addition of stimulated bulk CD4+ 

T cells to fibroblasts led to an increase in IL-6 secretion. Levels of IL-6 were reduced 

upon addition of anti-IL-17A blocking antibody, bimekizumab and TNFα inhibitor, 

while blockade of IL-17F had little effect. In all three experiments levels of IL-6 were 

lower with the addition of bimekizumab vs. anti-IL-17A blocking antibody, however, 

the differences were minimal. It was considered that the bimekizumab vs. anti-IL-17A 

blockade results were not striking because the IL-17 protein levels present in the bulk 

CD4+ T cell supernatant were too low. Indeed, as shown in Figure 4.11B levels of IL-

17F present in the supernatant of fibroblasts cultured with CD4+ T cells were below 

the detection limit and levels of IL-17A were also low. Therefore, the next aim was to 

generate CD4+ T cell supernatants, which were enriched for the IL-17 cytokines. 
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Figure 4.11 Assessing the effect of dual IL-17A and IL-17F blockade in bulk 

CD4+ T cell supernatants and synovial fibroblast cultures. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23. Following 3 days incubation, 

cells were stimulated with PMA and ionomycin for 3 hours. 10x103 RA and PsA synovial fibroblasts 

were cultured with 25x103 activated CD4+ T cells and in the presence of neutralising antibodies (all at 

1μg/ml) for 24 hours. (A) Cell supernatants were collected and IL-6 (n=3) protein levels were 

determined by ELISA. (B) displays the anti-IL-17A vs. bimekizumab in a different format. Individual 

donors (n=2) were incubated with RA and/or PsA fibroblasts. (C) displays the levels of IL-17A and IL-

17F present in cultures of RA fibroblasts cultured with activated CD4+ T cells  (n=2 individual donors).
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4.2.7 Blockade of IL-17A and IL-17F in cultures of synovial fibroblasts 

and sorted CCR6+ CD161+ CD4+ T cells 

Our next aim was to block IL-17A and IL-17F in CD4+ T cell supernatants enriched 

for the IL-17 cytokines. An ideal method would involve generating supernatant from 

sorted IL-17A and IL-17F CD4+ T cells. However, as previously mentioned, while an 

IL-17A secretion assay is commercially available, there are no secretion kits available 

for IL-17F.  

 

To enrich for the IL-17 cytokines, one approach involved sorting CD45RO+ CD25- 

CCR6+ CD161+ CD3+ CD4+ T cells. As previously discussed in chapter 3, section 

3.2.2.1, CCR6 and CD161 have been described as markers of Th17 cells. However, 

the expression of CCR6 and CD161 on CD4+ T cells is down-regulated following a 3 

day in vitro culture and re-stimulation with PMA and ionomycin. To overcome this, 

CCR6+ and CD161+ cells were sorted (using FACS Aria sorter) from freshly isolated 

CD4+ T cells. Cells were sorted into four populations CCR6- CD161-, CCR6+ 

CD161-, CCR6+ CD161+ or CCR6- CD161+. This gating strategy is shown in figure 

4.12. Sorted cells were cultured for three days with IL-1β, IL-23, anti-CD28 mAb and 

anti-CD3 mAb and re-stimulated for 3 hours with PMA and ionomycin. Cells were 

then washed and cultured with synovial fibroblasts at a 2.5:1 ratio in the absence or 

presence of blocking antibodies. As a control, stimulated bulk CD4+ T cells were also 

cultured with synovial fibroblasts. After 24 hours, cell culture supernatants were 

collected.  

 

ELISA analysis showed that in comparison to bulk CD4+ T cells and sorted CCR6+ 

CD161+ CD4+ T cells, sorted CCR6- CD161-, CCR6+ CD161- and CCR6- CD161+ 

elicited low levels of IL-6 secretion by fibroblasts (Figure 4.13). Sorted CCR6+ 

CD161+ CD4+ T cells elicited a slightly higher level of IL-6 secretion when compared 

with bulk CD4+ T cells, suggesting a modest enrichment of the IL-17 cytokines. 

Unfortunately, there was not enough culture supernatant present to examine the 

presence of IL-17A and IL-17F. In the CCR6+ CD161+ CD4+ T cell/fibroblast culture 
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system, while IL-17A blockade reduced levels of IL-6, no superior effect was 

observed with bimekizumab. A limitation to this experiment is that not all total CCR6+ 

and/or CD161+ CD4+ T cells express IL-17A and IL-17F. Furthermore, not all IL-

17A+ and IL-17F+ CD4+ T cells express CCR6 and/or CD161. Therefore we sought 

a different method to enrich for IL-17A and IL-17F expressing CD4+ T cells. 
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Figure 4.12 Gating strategy for sorting for CCR6+ CD161+ T cells. 

 Based on forward scatter/side scatter (FSC/SSC) properties, viable lymphocytes were gated. A FSC-

W/FSC-A gate was applied allowing the exclusion of doublet cells. Dead cells were excluded based on 

their uptake of eFluor 780. Within live, single cells CD3+ CD4+ T cells were gated followed by 

selection of CD45RO+ memory T cells. Next, CD127+ CD25- cells were gated allowing the exclusion 

of Tregs. Finally, populations of CCR6- CD161-, CCR6+ CD161-, CCR6+ CD161+ and CD161+ 

CCR6- T cells were gated and collected. (B) To assess non-specific binding, an FM control was 

acquired. 
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Figure 4.13 Dual IL-17A and IL-17F blockade in cultures of synovial fibroblasts 

and sorted CCR6+ and CD161+ CD4+ T cells. 

From fresh CD4+ T cells CD45RO+ CD127+ CD25- CD4+ T cells were sorted into CCR6- CD161-, 

CCR6+ CD161-, CCR6+ CD161+ and CCR6- CD161+ populations. Alongside bulk CD4+ T cells, 

sorted cell populations were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days. Following a three 

hour PMA and ionomycin re-stimulation, cells were washed and cultured with PsA synovial fibroblasts 

at a 2.5:1 ratio in the absence or presence of blocking antibodies (all at 1μg/ml). 
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4.2.8 Sorting IL-17A+ CD4+ T cells for functional analysis 

As demonstrated in chapter 3, section 3.2.1.3, CD4+ T cells that co-express IL-17A 

and IL-17F are present in CD4+ T cell cultures stimulated for 3 days with IL-1β, IL-

23, anti-CD28 mAb and anti-CD3 mAb. Therefore, I decided to sort IL-17A+ CD4+ 

T cells and assess the effect of dual IL-17A and IL-17F blockade in this supernatant. 

It is important to note that in this method IL-17F+ IL-17A- CD4+ T cells are not 

captured.  

 

 To sort IL-17A+ CD4+ T cells, bulk CD4+ T cells were first cultured with IL-1β, IL-

23, αCD28 and αCD3 for 3 days. Cells were then re-stimulated with PMA and 

ionomycin for 1.5 hours and a IL-17A secretion assay was performed. Using a FACS 

Aria sorter both IL-17A+ and IL-17A- CD4+ T cells were sorted. A gating strategy of 

the sort is illustrated in Figure 4.14. Sorted IL-17A+ and IL-17A- CD4+ T cells were 

cultured in media for 24 hours. The supernatant was then collected for further analysis 

and functional fibroblast assays. To validate the IL-17A secretion assay method, the 

IL-17A- and IL-17A+ CD4+ T cell supernatant generated was analysed for the 

presence of IL-17A, IL-17F and IL-17AF protein. Detectable levels of IL-17A, IL-

17F and IL-17AF in the IL-17A+ CD4+ T cells were observed, while no IL-17 

cytokines were detectable from the IL-17A- CD4+ T cell supernatants (Figure 4.15A). 

This confirms the successful enrichment of IL-17A+ CD4+ T cells. Next, the effect of 

IL-17A- and IL-17A+ CD4+ T cell supernatant on the IL-6 and IL-8 production from 

synovial fibroblasts was compared. Addition of IL-17A+ CD4+ T cell supernatant led 

to a strong dose-dependent induction of IL-6 and IL-8 fibroblast secretion. These data 

also indicated that addition of 20% IL-17A+ CD4+ T cell supernatant elicits robust 

IL-6 and IL-8 detection levels, suitable to progress to blocking experiments (Figure 

4.14B).  In contrast, addition of the IL-17A- CD4+ T cell supernatants did not induce 

any IL-8 secretion from the synovial fibroblasts and only a limited amount of IL-6 

protein was observed upon addition of the maximum 20% concentration. It is 

important to note that from these data we cannot conclude definitively that IL-17A- 

CD4+ T cell supernatants do not elicit an IL-6 or IL-8 fibroblast response. This is 



173 

 

because there may have been a proportion of IL-17A- CD4+ T cells, which were not 

within the IL-17A- CD4+ T cell-sorting gate, shown in Figure 4.14. 

 

Synovial fibroblasts were cultured with 20% of IL-17A+ CD4+ T cell supernatants 

and the effect of IL-17A and IL-17F dual blockade was assessed. As depicted in Figure 

4.15, addition of IL-17A+ CD4+ T cell supernatants to fibroblasts led to an increase 

in IL-6 secretion. Blocking IL-17A reduced IL-6 secretion, whereby IL-17F blockade 

had no effect. Addition of bimekizumab did not show significantly reduced IL-6 

protein when compared to anti-IL-17A. Figure 4.16B examines the anti-IL-17A vs. 

bimekizumab data in more detail. In four out of five experiments bimekizumab 

reduced IL-6 secretion by fibroblasts to a greater extent that IL-17A blockade alone. 

However, in two of these experiments the decrease was minimal. In one out of five 

experiments, IL-6 was slightly increased upon culture with bimekizumab. Therefore 

no consistent results were observed. I sought to determine whether the experiments 

which exhibited a significant decrease in IL-6 levels in bimekizumab vs. anti-IL-17A 

correlated with high IL-17F protein levels present in the matched neat IL-17A+ CD4+ 

T cell supernatants. Indeed, the sorted IL-17A+ CD4+ T cell supernatant which 

displayed the highest levels of IL-17F protein matched with the greatest decrease in 

IL-6 levels in bimekizumab vs. anti-IL-17A (Figure 4.16C). In general a positive 

correlation was observed across the cumulative data. While IL-8 secretion by 

fibroblasts was increased upon addition of IL-17A+ CD4+ T cell supernatant, addition 

of anti-IL-17A and bimekizumab reduced IL-8 to undetectable levels (Figure 4.16C). 
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Figure 4.14 Gating strategy for sorting IL-17A+ CD4+ T cells. 

After performing an IL-17A secretion assay (described in the materials and methods), viable 

lymphocytes were gated based on their SSC-W/FSC-A properties. Using a SSC-A vs. SSC-W plot 

doublet cells were excluded and dead cells were excluded based on their uptake of the viability dye, 

eFluor 780. Within CD3+ CD4+ CD8- T cells, expression of IL-17A was analysed. IL-17A+ and IL-

17A- gates were set and cells were sorted and collected. (B) To assess non-specific binding, a negative 

control was acquired. The negative control consisted of stimulated cells which had been stained with 

viability dye, CD3, CD4, CD8 and the secondary IL-17A detection antibodies but had not been 

incubated with the IL-17A capture reagent. 
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Figure 4.15 Comparison of sorted IL-17A- vs. IL-17A+ sorted CD4+ T cell 

supernatants on the induction of IL-6 and IL-8 from synovial fibroblasts. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days. Following a 1.5 hour 

PMA and ionomycin re-stimulation an IL-17A secretion assay was performed. A FACS Aria sorter was 

used to sort IL-17A+ and IL-17A- CD4+ T cells.  Sorted IL-17A+ and IL-17A- CD4+ T cells were 

cultured in RMPI media for 24 hours. (A) Cell supernatants were collected and IL-17A, IL-17F and IL-

17AF protein levels were analysed  by ELISA. Dashed red lines indicate lower detection limit. Results 

show analysis from three individual donors. (B) Supernatants were collected and added to 10x103 PsA 

and RA synovial fibroblasts diluted in different ratios of DMEM media (CD4+ T cell donor n=1 added 

to fibroblasts RA n=1, PsA n=1). 
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Figure 4.16 Assessing the effect of dual IL-17A and IL-17F blockade in Th17 

supernatant. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days. Following a 1.5 hour 

PMA and ionomycin re-stimulation an IL-17A secretion assay was performed. A FACS Aria sorter was 

used to sort IL-17A+ CD4+ T cells.  Sorted IL-17A+ CD4+ T cells were cultured in RMPI media for 

24 hours. Supernatants were collected, diluted at a ratio of 1:5 in media and added to 10x103 PsA and 

RA synovial in the absence or presence of blocking antibodies (10μg/ml). Supernatants were collected 

and analysed for IL-6 and IL-8 protein levels via ELISA. (A) displays the results of all blocking 

antibodies while (B) displays the data for anti-IL-17A and bimekizumab in a different format. Circle 

symbols represent RA synovial fibroblasts and triangle symbols represent PsA synovial fibroblasts. 

Each colour represents sorted IL-17A+ CD4+ T cell supernatant from an individual healthy donor. (C) 

displays IL-8 ELISA results. (D) The fold change decrease in IL-6 secretion in bimekizumab vs. anti-

IL-17A conditions was correlated to IL-17F protein levels present in the matching neat sorted IL-17A+ 

CD4+ T cell supernatant. (n=5: IL-17A+ CD4+ supernatant individual donors n=3 cultured with RA 

and/or PsA fibroblasts). 
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4.2.9 Examining the interaction of synovial fibroblasts and sorted IL-

17A+ and IL-17A- CD4+ T cells  

Next, synovial fibroblasts were cultured with sorted IL-17A- and IL-17A+ CD4+ T 

cells at a 1:2.5 ratio for 24 hours. Supernatants were then collected and IL-6 and IL-8 

protein levels were measured by ELISA. Similar to our results observed with IL-17A 

sorted cell supernatant, IL-17A+ CD4+ T cells elicited an IL-6 and IL-8 fibroblast 

response, whereas only low levels of IL-6 were observed with IL-17A- CD4+ T cells 

(data not shown). As previously mentioned, it is important to note that from these data 

we cannot conclude that IL-17A- CD4+ T cells do not elicit an IL-6 or IL-8 fibroblast 

response. This is because there may have been a proportion of IL-17A- CD4+ T cells, 

which were not within the IL-17A- CD4+ T cell-sorting gate 

 

The effect of IL-17 and TNFα blockade was assessed in cultures of synovial 

fibroblasts and sorted IL-17A+ CD4+ T cells. As depicted in Figure 4.16, in 

comparison to the isotype control, addition of anti-IL-17A blocking antibody 

decreased IL-6 secretion by fibroblasts, while IL-17F blockade had no effect. In 3 out 

of 5 experiments bimekizumab reduced IL-6 levels to a greater extent than IL-17A 

blockade alone, however in the remaining two experiments elevated levels of IL-6 was 

observed in bimekizumab conditions vs anti-IL-17A. Therefore, no consistent result 

was observed.  
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Figure 4.17 Assessing the effect of dual IL-17A and IL-17F blockade in 

fibroblast and IL-17A+ CD4+ T cell cultures. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days. Following a 1.5 hour 

PMA and ionomycin re-stimulation an IL-17A secretion assay was performed. A FACS Aria sorter was 

used to sort IL-17A+ CD4+ T cells. IL-17A+ CD4+ T cells were cultured with RA and PsA synovial 

fibroblasts at a 2.5:1 ratio in the absence or presence of blocking antibodies (all at 1μg/ml). (A) displays 

the results of all blocking antibodies while (B) displays the data for anti-IL-17A and bimekizumab in a 

different format. Circle symbols represent RA synovial fibroblasts and triangle symbols represent PsA 

synovial fibroblasts. Each colour represents sorted IL-17A+ CD4+ T cell supernatant from an individual 

healthy donor. (C-D) displays IL-8 ELISA results. (n=5: IL-17A+ CD4+ T cell individual donors n=3 

cultured with RA and/or PsA fibroblasts). 
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4.2.10 Development of an IL-17A and IL-17F CD4+ T cell capture assay 

The focus of the work described in this chapter was to investigate whether IL-17F has 

the functional potential to contribute to the immunopathology of inflammatory 

arthritis. Currently we have shown that IL-17F synergises with TNFα, enhancing its 

inflammatory potential. Moreover, we have demonstrated using recombinant 

cytokines that dual blockade of IL-17A and IL-17F is more effective than blockade of 

IL-17A alone. The superior effect of dual IL-17A and IL-17F blockade was 

demonstrated in fibroblast cultures with IL-17A+ CD4+ T cells and IL-17A+ CD4+ 

T cell supernatant, however, the effect was not as significant as observed with the 

recombinant cytokine cultures. This could be due to the limitations of using IL-17A+ 

CD4+ T cells. With no IL-17F secretion assay commercially available, only IL-17A+ 

CD4+ T cells could be sorted. While this method captured IL-17A+ IL-17F- and IL-

17A+ IL-17F+ CD4+ T cells, IL-17F+ IL-17A- CD4+ T cells were not captured.  

 

Figure 4.18 illustrates the extent to which IL-17F+ IL-17A- CD4+ T cells may be lost 

during an IL-17A secretion assay. Here, bulk CD4+ T cells were cultured for 3 days 

with IL-1β, IL-23, αCD28 mAb and αCD3 mAb. Cells were pooled and while the 

majority were stimulated for 1.5 hours with PMA and ionomycin and followed by an 

IL-17A secretion assay, a small number of cells were stimulated for 1.5 hours with 

PMA, ionomycin and golgistop. This was followed by an intracellular cytokine stain. 

Figure 4.18 shows the flow cytometric results of two individual donors. The results 

demonstrate that a significant number of IL-17F+ IL-17A- CD4+ T cells were present 

in the pre-IL-17A sorted samples which would not be captured by the IL-17A+ CD4+ 

T cell cytokine secretion assay. This suggests that performing the blocking experiment 

using sorted IL-17A+ CD4+ T cells may not reveal the superior extent of dual IL-17A 

and IL-17F blockade. 

 

These data highlighted the need for an IL-17F secretion assay. Moreover, having the 

tools to separate IL-17A and IL-17F expressing CD4+ T cells would allow for further 

extensive characterisation and comparison of the cells, following on from data shown 

in Chapter 3. This provided us with the rationale to develop an IL-17F secretion assay.  
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As illustrated in Figure 4.19, the aim of this series of experiments was to develop an 

assay which successfully separated IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ 

IL-17A- CD4+ T cells. UCB developed a bespoke anti-CD45 Fab Y fragment as well 

as Fab X fragments which recognize IL-17A (both the IL-17A homodimer and the IL-

17AF heterodimer) and IL-17F (IL-17F homodimer only). These Fab fragments were 

combined to form an anti-IL-17A - anti-CD45 complex and anti-IL-17F - anti-CD45 

complex. While an extensive series of optimisation experiments were performed to set 

up the capture assay protocol, here I present a selection of key experiments. To begin, 

we wanted to test the ability of the Fab complexes to recognize CD45, IL-17A and IL-

17F. To achieve this, fresh PBMC were cultured simultaneously with the anti-IL-17A 

– anti-CD45 and anti- IL-17F – anti-CD45 Fab complex. During this culture the Fab 

complexes should recognize and bind to CD45 expressed on all PBMC. Next, cells 

were cultured in the absence or presence of high concentrations of either human 

recombinant cytokine IL-17A or IL-17F.  Cells were then extracellularly stained for 

IL-17A and IL-17F and analysed by flow cytometry. As expected, no IL-17A or IL-

17F cells were observed in the absence of recombinant cytokines (Figure 4.20). 

However, in the presence of recombinant cytokines, over 90% of total cells were IL-

17A or IL-17F positive. This indicated that the PBMC CD45 marker and the IL-17A 

and IL-17F human recombinant cytokines were all successfully recognized by the Fab 

complexes. 

 

Next, we tested the ability of the Fab complexes to recognize and distinguish IL-17A+ 

IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells from stimulated 

PBMC. In this experiment, PBMC were stimulated for 4 days with IL-1β, IL-23, 

αCD28 and αCD3 and re-stimulated  for 3 hours with PMA and ionomycin. A detailed 

summary of the final optimized IL-17A and IL-17F secretion assay protocol is 

provided in section 2.5.5. In this case, cells were incubated in the absence or presence 

of either anti-IL-17A – anti-CD45 Fab Complex or anti-IL-17F – anti-CD45 Fab 

complex or both simultaneously. An extracellular cytokine stain was then performed 

on the cells assessing the expression of IL-17A and IL-17F.  No IL-17A or IL-17F 

expressing cells were observed in the condition with no Fab complexes (Figure 4.21). 
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However, IL-17A+ CD4+ T cells were detectable in cultures incubated with the IL-

17A Fab complex. Moreover, this condition detected IL-17F+ CD4+ T cells. As the 

IL-17F detection antibody recognizes both the IL-17F homodimer and the IL-17AF 

heterodimer, we predict the IL-17F detection antibody is recognizing IL-17AF 

heterodimer cytokine which has been captured to IL-17A Fab complexes bound to the 

CD4+ T cell. Flow cytometric analysis of PBMC cultures incubated with the IL-17F 

Fab complex revealed IL-17F+ CD4+ T cells. In concordance with the IL-17F Fab 

complex specificity, no IL-17A+ CD4+ T cells were observed. Finally, combining the 

IL-17A and IL-17F Fab complexes allowed for the IL-17A+ IL-17F-, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells to be distinguished. These data confirmed 

that the UCB capture reagents and optimized protocol were successful in capturing the 

IL-17 populations.
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Figure 4.18 In vitro cultures induce IL-17F+ IL-17A- CD4+ T cells which are 

not captured by IL-17A secretion assays. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days. While an IL-17A 

secretion assay protocol was performed on the majority of cells, a small number of cells were stimulated 

for 1.5 hours with PMA, ionomycin and golgi stop. These cells were stained intracellularly to analyse 

the expression of IL-17A and IL-17F. Results show the flow cytometric plots from two individual 

donors. The cells which would have been captured by the IL-17A secretion assay are highlighted in the 

red box. 
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Figure 4.19 Schematic of UCB IL-17A/IL-17F capture assay. 

As shown in (A), the aim of the IL-17A/IL-17F capture assay is to separate the three different IL-17A/ 

IL-17F CD4+ T cell populations – IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- for 

functional and molecular characterisation. (B) The capture assay consisted of 2 Fab complexes, Fab Y 

CD45 – Fab X IL-17A and Fab Y CD45 – Fab X IL-17A. Stimulated CD4+ T cells were incubated 

with both Fab complexes, simultaneously. Bound to CD45 expressed on CD4+ T cells, the Fab 

complexes captured any IL-17A/IL-17F/IL-17AF cytokines secreted from a CD4+ T cell. To detect IL-

17A/ IL-17F CD4+ T cells, secondary detection antibodies were used, which recognised different 

epitopes of the IL-17A/IL-17F/IL-17AF cytokines.  
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Figure 4.20 UCB in-house anti-IL-17A and anti- IL-17F Fab fragments 

successfully recognise human recombinant IL-17A and IL-17F. 

Fresh PBMC were incubated with either UCB in-house anti-IL-17A – anti-CD45 Fab complex or anti-

IL-17F – anti-CD45 Fab complex. Cells were then incubated in the absence or presence of IL-17A or 

IL-17F human recombinant cytokine (10μg/ml). An extracellular cytokine stain was then performed 

assessing IL-17A and IL-17F expression. Flow cytometric plots are gated within all cells and represent 

one experiment. 
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Figure 4.21 Testing the IL-17A and IL-17F capture assay. 

PBMCs were cultured with αCD3, αCD28, IL-1β and IL-23 for 4 days and re-stimulated with PMA 

and ionomycin for 3 hours. Cells were incubated in the absence or presence of either anti-IL-17A – 

anti-CD45 Fab Complex, anti-IL-17F – anti-CD45 Fab complex or both simultaneously. To allow for 

cytokine capture, cells were cultured for 45 minutes in X-vivo media, rotating. Intracellular cytokine 

expression of IL-17A and IL-17F was then assessed. Flow cytometric data shows the cytokine 

expression within live CD3+ CD4+ T cells (n=1). 
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4.2.11 Sorting IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- 

CD4+ T cells 

Having established an IL-17A and IL-17F CD4+ T cell capture assay protocol, we 

proceeded to sorting the captured IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ 

IL-17A- CD4+ T cell population and verifying successful isolation via qPCR. Bulk 

CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days and re-

stimulated for 3 hours with PMA and ionomycin. Cells were then incubated 

simultaneously with the IL-17A and IL-17F Fab complexes. As a negative control, to 

assess non-specific binding, a small number of cells were not incubated with the Fab 

complexes. To allow for cytokine capture, cells were then incubated for 45 mins, 

rotating. Cells were stained with DAPI viability dye, extracellular markers and IL-

17A and IL-17F detection antibody. Using a FACS Aria sorter, the different IL-17-

expressing CD4+ T cell populations were sorted. Figure 4.22 illustrates the gating 

strategy used. This experiment was performed on two individual donors. 

 

The total RNA from sorted IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- 

CD4+ T cell populations was isolated using a micro-RNA kit. Reverse transcription 

was then performed, converting the RNA into cDNA. qPCR reactions were performed 

using primers for CD4 and human IL-17A and IL-17F. The ACTB gene was used as 

an endogenous control. Figure 4.23 displays the qPCR results from two individual 

donors. In all sorted populations from the two healthy donors, CD4 mRNA was 

detected. IL-17A mRNA was detected in sorted IL-17A+ IL-17F- and IL-17A+ IL-

17F+ CD4+ T cell populations, whereas, the relative mRNA IL-17A expression was 

low/ not detectable in the sorted IL-17A- IL-17F- and IL-17F+ IL-17A- CD4+ T cell 

populations. This result was observed in both sorts. Similarly, IL-17F mRNA was only 

at high expression levels observed in the sorted IL-17F+ IL-17A- and IL-17A+ IL-

17F+ CD4+ T cell populations.  

 

These data suggest that the IL-17A and IL-17F capture assay protocol has successfully 

isolated and separated three different IL-17 populations – IL-17A+ IL-17F-, IL-17A+ 

IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. However, it is important to note that the 

raw Ct qPCR values indicate that the sorted populations may not be 100% pure. For 
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example, IL-17A+ IL-17F- CD4+ T cells captured in the first sort shown a Ct value 

of 24 for IL-17F expression. Generally, a Ct value of 30 or higher indicates the absence 

of the mRNA of interest. Therefore, IL-17F mRNA may be present within the IL-

17A+ IL-17F- CD4+ T cell population. Further validation of the IL-17A and IL-17F 

capture assay is currently being carried out by UCB. Once validation is complete, the 

capture assay will be a great tool to fully elucidate the functional potential of IL-17F. 
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Figure 4.22 Gating strategy for IL-17A and IL-17F capture assay. 

Following the IL-17A/IL-17F capture assay protocol (described in the materials and methods), viable 

lymphocytes were gated based on their FSC-W/FSC-A properties. Dead cells were excluded based on 

their uptake of the viability dye, DAPI. Within CD3+ CD4+ T cells, expression of IL-17A and IL-17F 

was analysed. Gates were applied to separate and sort IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-

17F+ IL-17A- CD4+ T cells. (B) To assess non-specific binding, a negative control was acquired. The 

negative control consisted of stimulated cells which had been stained with CD3, CD4 and the secondary 

detection antibodies – IL-17A and IL-17F but had not been incubated with the IL-17A and IL-17F Fab 

complexes. 
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Figure 4.23 Validation of the IL-17A and IL-17F capture assay. 

Bulk CD4+ T cells were cultured with αCD3, αCD28, IL-1β and IL-23 for 3 days and re-stimulated 

with PMA and ionomycin for 3 hours. Cells were incubated simultaneously with UCB in-house anti-

IL-17A – anti-CD45 Fab Complex, anti-IL-17F – anti-CD45 Fab complex or both simultaneously. To 

allow for cytokine capture, cells were cultured for 45 minutes in X-vivo media, rotating. Cells were 

stained with DAPI viability dye, extracellular markers and IL-17A and IL-17F detection antibodies. 

Using a FACS Aria sorter, IL-17A- IL-17F-, IL-17A+ IL-17F-. IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells were sorted. Total RNA was isolated from all sorted populations and converted into 

cDNA via reverse transcription. QPCR was then performed to assess the mRNA expression levels of 

IL17A, IL17F and CD4 (n=2 independent experiments). 
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4.2.12 Examining the function of the remaining IL-17 cytokines 

The function of the remaining IL-17 cytokines - IL-17B, IL-17C, IL-17D and IL-17E 

is less well studied. In this final section we explored the effect of the remaining IL-17 

family members on PsA and RA synovial fibroblasts. Similar to the experiments 

described in the beginning of this chapter, human recombinant IL-17B, IL-17C, IL-

17D and IL-17E were added to PsA and RA synovial fibroblasts at the indicated 

concentrations. As a positive control, IL-17A, IL-17F, IL-17AF and TNFα were 

included in the assays. Following 24 hours incubation, the supernatant was collected 

and stored at -80 before being tested by ELISA for IL-6 and IL-8 protein levels. IL-

17A, IL-17F, IL-17AF and TNFα elicited an IL-6 and IL-8 fibroblast response, as 

previously demonstrated (Figure 4.24). However, IL-17B, IL-17C, IL-17D and IL-

17E did not induce IL-6 and IL-8 fibroblast secretion. 

 

Next, I examined whether there was any synergistic effect between IL-17B, IL-17C, 

IL-17D or IL-17E and TNFα. Unexpectedly, a strong synergistic effect was observed 

between IL-17E and TNFα (Figure 4.25). 
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Figure 4.24 IL-17B, IL-17C, IL-17D and IL-17E alone do not elicit an IL-6 or 

IL-8 response from synovial fibroblasts. 

RA and PsA synovial fibroblasts (10x103) were cultured with indicated concentrations of human 

recombinant IL-17A, IL-17B, IL-17C, IL-17D, IL-17E, IL-17F, IL-17AF and TNFα for 24 hours. 

Culture supernatants were collected and IL-6 and IL-8 (PsA n=1, RA n=1) protein levels were measured 

by ELISA. Dashed red and blue lines indicate lower detection limit and upper detection limit, 

respectively. 
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Figure 4.25 IL-17E synergises with TNFα, augmenting IL-6 and IL-8 synovial 

fibroblast secretion. 

Synovial RA and PsA fibroblasts (10x103) were cultured with human recombinant IL-17A, IL-17B, IL-

17C, IL-17D, IL-17E and IL-17AF (10ng/ml) in the absence or presence of TNFα (1ng/ml) with for 24 

hours. Culture supernatants were collected and IL-6 and IL-8 protein levels were measured by ELISA. 

Dashed red and blue lines indicate lower detection limit and upper detection limit, respectively (RA 

n=1, PsA n=1). 
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4.3 Discussion 

Data presented in this chapter show that the inflammatory potential of IL-17A and IL-

17F is synergistically enhanced with TNFα. However, in the presence of IL-17A, the 

effect of IL-17F on inflammation is limited. Nevertheless, this chapter suggests that 

in an environment whereby IL-17A and IL-17F are present, dual blockade of these 

cytokines is more effective at reducing inflammation. Using a reductionist system, 

whereby synovial fibroblasts are cultured with a cocktail of recombinant cytokines, 

results show dual blockade of IL-17A and IL-17F is more effective at reducing IL-6 

and IL-8 secretion by fibroblasts than blockade of IL-17A alone. This chapter explores 

the effect of dual IL-17A and IL-17F blockade in a variety of different physiological 

systems. The superior effect of dual IL-17A and IL-17F blockade was not always 

consistent across the physiological systems. This is likely due to the levels of IL-17F 

protein present. These data highlight the need for an IL-17F secretion assay. In 

collaboration with UCB, an IL-17A and IL-17F secretion assay was developed, which 

following further validation will be a useful tool to further characterise IL-17A and 

IL-17F producing cells.  Finally, data presented in this chapter demonstrate that IL-

17E also synergises with TNFα enhancing IL-6 and IL-8 secretion by fibroblasts. 

 

Experimental evidence has implicated IL-17A in the immunopathology of 

inflammatory arthritis. Seminal research blocked IL-17A in the CIA mouse model 

with a soluble IL-17 receptor fusion protein; this resulted in suppressed arthritis 

development and joint damage. Moreover, overexpression of IL-17A in CIA led to 

accelerated development and enhanced severity of synovial inflammation and joint 

damage 358. In contrast, the role of IL-17F in inflammation remains questioned. 

Reports often describe IL-17F to be redundant to IL-17A. In the EAE mouse model, 

IL17F knock-out did not lead to a reduction in disease severity 106.  

 

IL-17A, IL-17F and IL-17AF all signal through the same IL-17RA and IL-17RC 

receptor complex. Literature has previously shown that IL-17A, IL-17F and IL-17AF 

elicit an inflammatory response in a hierarchical fashion, with IL-17A the most potent 

cytokine followed by IL-17AF and then IL-17F 78. This is supported by data in this 
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chapter, whereby human recombinant IL-17A induced the highest levels of IL-6 and 

IL-8 secretion by synovial fibroblasts, IL-17AF induced intermediary levels and IL-

17F induced the lowest levels. Reports attribute the difference in potency to the 

cytokine binding affinities to the IL-17RA receptor. IL-17A and IL-17F bind with 

equally high affinity to IL-17RC, however, in comparison to IL-17A, IL-17F binds 

with at least 100-fold lower affinity to IL-17RA 85. 

 

Data presented in this chapter show that IL-17A, IL-17F and IL-17AF all synergise 

with TNFα leading to an enhancement in IL-6 and IL-8 secretion by fibroblasts. Once 

again, a hierarchical result is observed with the combination of TNFα and IL-17A 

eliciting the highest levels of IL-6 and IL-8, followed by TNFα/IL-17AF and 

TNFα/IL-17F. This is supported by studies present in the current literature 106. 

Nevertheless, these data importantly show that the low potency of IL-17F alone is 

significantly enhanced in the presence of TNFα. Therefore, it is important to consider 

the roles of IL-17F in concert with other molecules. Expanding upon data in the 

literature, the results presented show there is no synergistic or additive effect between 

the IL-17 cytokines themselves. Moreover, it is shown that addition of IL-17F and/ or 

IL-17AF does not further enhance IL-6 or IL-8 levels secreted by fibroblasts which 

are cultured with IL-17A and TNFα. This indicates that in the presence of IL-17A, IL-

17F may be redundant. 

 

However, blocking experiments performed in cultures of synovial fibroblasts and 

recombinant cytokines (a cocktail of IL-17A, IL-17F, IL-17AF and TNFα) revealed 

that dual IL-17A and IL-17F blockade by bimekizumab is more effective at reducing 

IL-6 and IL-8 secretion by fibroblasts vs. blockade of IL-17A alone. Blockade of IL-

17F alone had no effect on fibroblast secretion. Blockade of TNFα reduced IL-6 and 

IL-8 secretion levels similar to that of dual IL-17A and IL-17F blockade. These data 

show that in the presence of IL-17A, IL-17F has a limited effect on fibroblasts. 

However, in the absence of IL-17A, IL-17F can synergise with TNFα and elicit a 

significant inflammatory response. Therefore in an environment where IL-17A and 

IL-17F are present dual IL-17A and IL-17F will reduce inflammation to a greater 

extent.  
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The superior effect of dual IL-17A and IL-17F has recently been reported by Glatt et 

al. In this study, target cells were stimulated with Th17 supernatant in the absence or 

presence of IL-17 specific blocking antibodies 121. To generate the Th17 supernatant 

blood CD4+ CD45RO+ CCR6+ CXCR3- Th17 cells were sorted from healthy donors 

and stimulated with anti-CD3 mAb and anti-CD28 mAb for 96 hours. In PsA 

synoviocyte cultures, dual IL-17A and IL-17F neutralization by bimekizumab resulted 

in a greater downregulation of IL-8. Moreover, transcriptional analysis in Th17 

stimulated normal synoviocytes confirmed that dual IL-17A and IL-17F led to further 

decrease in the inflammatory profile vs. blockade of IL-17A alone.  

 

Prior and following the Glatt et al. publication, experiments performed in this chapter 

aimed to show in a physiological in vitro system (i.e blockade of IL-17 cytokines in 

CD4+ T cell supernatant) that dual IL-17A and IL-17F blockade is more effective in 

reducing inflammation than IL-17A alone. No superior effect of a combined IL-17A 

and IL-17F blockade was observed in synovial fibroblast cultures stimulated with in 

vitro bulk CD4+ T cell supernatants. This is likely due to the low IL-17 protein levels 

observed in the generated supernatant. To generate CD4+ T cell supernatant enriched 

for IL-17 protein levels two approaches were used, sorting CCR6+ CD161+ CD4+ T 

cells or sorting IL-17A+ CD4+ T cells. Although culturing sorted CCR6+ CD161+ 

CD4+ T cells with synovial fibroblasts elicited a higher level of IL-6 secretion when 

compared with cultures of bulk CD4+ T cells and fibroblasts, addition of bimekizumab 

did not lead to a greater reduction of IL-6 secretion than blockade of IL-17A alone. 

However, this experiment has only been performed once and it may be worthwhile to 

repeat. A limitation to this experiment is that not all total CCR6+ and/or CD161+ 

CD4+ T cells express IL-17A and IL-17F. Furthermore, not all IL-17A+ and IL-17F+ 

CD4+ T cells express CCR6 and/or CD161. 

 

As previously discussed, while an IL-17A secretion assay is commercially available, 

there is not one for IL-17F. Therefore, it is not possible to enrich for both IL-17A+ 

and IL-17F+ CD4+ T cells. However, there is a population of CD4+ T cells that co-
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express IL-17A and IL-17F present in CD4+ T cell cultures stimulated for 3 days with 

IL-1β, IL-23, anti-CD28 mAb and anti-CD3 mAb. Therefore, it was decided to sort 

IL-17A+ CD4+ T cells and assess the effect of dual IL-17A and IL-17F blockade in 

this supernatant. Synovial fibroblasts cultured with sorted IL-17A+ CD4+ T cells or 

sorted IL-17A+ CD4+ T cell supernatants in the absence or presence of IL-17 specific 

blocking antibodies led to varying results. Correlation analysis demonstrated that in 

general, the greatest effect of dual IL-17A and IL-17F blockade was observed when 

higher levels of IL-17F protein was present, which varied from donor to donor. 

Certainly, as this experiment was performed in 3 donors, performing additional 

experiments may provide stronger evidence for the role of dual IL-17A and IL-17F 

blockade in reducing inflammation using more physiological supernatants. A 

limitation to using sorted IL-17A+ CD4+ T cell supernatant for dual IL-17A and IL-

17F blockade was the fact that IL-17F+ IL-17A- CD4+ T cells are not captured. 

Therefore, the full effect of dual blockade is not observed. An ideal experiment would 

involve capturing IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T 

cells, pooling these together and incubating for 24 hours. The generated supernatant 

could then be added to synovial fibroblast cultures in the absence or presence of IL-

17 specific blocking antibodies. 

 

There was thus an increasing need for a combined IL-17A and IL-17F secretion assay. 

Such an assay would be a great tool for sorting of IL-17A+ IL-17F-, IL-17A+ IL-17F+ 

and IL-17F+ IL-17A- CD4+ T cell populations. This would allow for the functional 

potential and characterisation of IL-17F expressing CD4+ T cells (discussed in chapter 

3) to be elucidated. Fab fragments directed against IL-17A, IL-17F and CD45 were 

designed by UCB. In collaboration with UCB, a protocol was developed to effectively 

sort IL-17A and IL-17F producing cells using the Fab fragments. Data in this chapter 

show the effective sorting of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells, as evidenced by RNA analysis. However, RNA analysis did 

indicate the sorted IL-17 populations may not be 100% pure. Therefore, further 

validation work is required to confirm successful sorting of the different IL-17 

populations. Another validation approach could involve culturing the sorted IL-17 

populations for 24 hours and then measuring the supernatant for IL-17A, IL-17F and 

IL-17AF protein levels via ELISA. It could then be confirmed that IL-17A+ IL-17F- 
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CD4+ T cells only produce IL-17A protein, IL-17A+ IL-17F+ CD4+ T cells secrete 

IL-17A, IL-17F and IL-17AF and so on. It is unknown whether the different IL-17 

populations arise from one another. For example, under specific stimulatory 

conditions do IL-17A+ IL-17F- CD4+ T cell populations skew to IL-17A+ IL-17F+ 

and then IL-17F+ IL-17A- CD4+ T cells? If so, it may be possible sorted IL-17F+ IL-

17A- CD4+ T cells over time revert back to IL-17A+ IL-17F+ or IL-17A+ IL-17F- 

CD4+ T cells and alter the IL-17 cytokines secreted. Therefore, it would be of great 

interest to analyse the supernatant of the sorted IL-17 expressing CD4+ T cell 

populations across multiple time-points.  

 

Blockade of IL-17 cytokines in in vivo would be the best way to determine 

demonstrate whether IL-17A and IL-17F blockade can further help alleviate 

inflammatory arthritis. It was shown in the CIA mouse model that combined IL-17A 

and IL-17F blockade was not significantly different when compared to blockade of 

IL-17A alone. However, the study did demonstrate that in this model levels of IL-17F 

were low 362. In contrast, an investigation which involved treating colitic mice with 

IL-17A and IL-17F neutralising antibodies demonstrated that neutralisation of both 

IL-17A and IL-17F significantly reduced T cell-mediated colitis development, 

whereas neutralisation of IL-17A or IL-17F alone was inefficient at reducing disease 

severity 363. In humans, brodalumab which blocks the IL-17RA receptor thereby 

preventing the function of IL-17A and IL-17F has been shown alleviate inflammation 

in psoriasis and PsA 403,404. However, with no head-to-head comparisons between the 

effectiveness of brodalumab and therapies which target IL-17A alone, it is difficult to 

understand the contribution of IL-17F to disease pathology. A recent report from 

Sawyer et al. performed a systematic literature review and network meta-analysis to 

examine the relative efficacy of brodalumab compared with other approved biologics 

in moderate-to-severe psoriasis 412. The primary analysis assessed the proportion of 

patients achieving psoriasis area severity index (PASI) 50, 75, 90 or 100. This refers 

to the percentage of disease reduction compared to base-line. For example, a PASI 50 

score represents a 50% improvement from base-line and is acknowledged as a 

clinically significant end-point 413. In this study it was suggested that consistent with 

PASI 50, 75 and 90, brodalumab displayed superior efficacy to the anti-IL-17A 

antibody secukinumab, however, its efficacy was similar to the other IL-17A inhibitor, 
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ixekizumab. While this meta-analysis study may provide insights into whether dual 

IL-17A and IL-17F blockade may be beneficial in reducing inflammation in psoriasis, 

it is difficult to interpret without a head-to-head study. Additionally, it is difficult to 

delineate whether possible superior effects of brodalumab are attributed to IL-17F or 

other mechanisms by IL-17RA blockade. As previously discussed, bimekizumab is 

currently in clinical trial and demonstrated efficacy in PsA and psoriasis 121,414. 

However, at this point it is difficult to assess whether it has a superior effect than 

blockade of IL-17A alone. 

 

Of course, the success of dual IL-17A and IL-17F in inflammatory arthritis depends 

on the presence of these cytokines. While extensive literature has confirmed the 

presence of IL-17A in RA and PsA, there is a lack of robust evidence confirming the 

presence of IL-17F. This is further explored in the final chapter of this thesis. It is also 

important to note that as IL-17A and IL-17F play an important role in providing 

protection against extracellular pathogens and fungal infections, dual blockade of IL-

17A and IL-17F in inflammatory disease patients may lead to increased risk of 

infections. One of these adverse reactions could include chronic mucocutaneous 

candidiasis (CMC), which is characterised by recurrent or persistent infection of nails, 

skin and mucosae predominantly by candida albicans. This is evidenced by the fact 

that autosomal recessive IL-17RA and autosomal dominant IL-17F deficiencies are 

associated with CMC 415. 

 

The final section in this chapter explores the effect of the remaining IL-17 cytokines 

(IL-17B, IL-17C, IL-17D and IL-17E) on synovial fibroblasts. None of these 

cytokines induced an IL-6 or IL-8 response from synovial fibroblasts. However, IL-

17E combined with TNFα elicited a potent IL-6 and IL-8 response. To the best of my 

knowledge synergy between IL-17E and TNFα has not been previously reported. 

Studies have described IL-17E to have anti-inflammatory 125 and inflammatory 

properties 384. The anti-inflammatory effect of IL-17E has been attributed to the ability 

of IL-17E to suppress IL-17A expressing cells 125. In contrast, IL-17E has been shown 

to activate macrophages leading to an inflammatory response 384. It would be of 

interest to investigate whether synergy between IL-17E and TNFα could be observed 
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in a physiological system (i.e. blockade of IL-17E in a supernatant whereby IL-17E 

and TNFα are present at significant levels). One challenge to this experiment is that 

IL-17E producing cells, for example Th2 cells do not reportedly co-express TNFα. For 

this reason, in the next chapter we were interested to determine the presence of IL-17E 

protein in RA and PsA synovial fluid.  

 

Although microarray analysis revealed the presence of all IL-17 receptors on RA and 

PsA synovial fibroblasts, IL-17B, IL-17C or IL-17D did not elicit an inflammatory 

response from synovial fibroblasts. The receptor expression on the cell lines used was 

not analysed, therefore it could be that the receptor expression on these cell lines were 

low. Future experiments could assess the effect of these cytokines on other target cells. 

 

While the function of the IL-17 cytokines is covered in this chapter, the final chapter 

explores the presence of these cytokines in inflammatory arthritis. 
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5 Investigating the presence of IL-17F and IL-17A in 

inflammatory arthritis 
 

5.1 Introduction 

In this final results chapter, I explored the presence of IL-17A and IL-17F in 

inflammatory arthritis. Inflammatory arthritis encompasses rheumatoid arthritis (RA), 

psoriatic arthritis (PsA), ankylosing spondylitis and juvenile idopathic arthritis among 

others. In this project we focus on RA and PsA. 

 

The link between IL-17A and  RA  pathology was established in 1999 when 

rheumatoid synovial explants were shown to produce functional IL-17A and IL-17A 

producing cells were identified in T cell-rich areas of the synovium 83. Seminal 

research blocked IL-17A in the collagen-induced arthritis (CIA) mouse model with a 

soluble IL-17 receptor fusion protein; this resulted in suppressed arthritis development 

and joint damage 358. Studies have revealed levels of IL-17A are elevated in the serum 

and synovial fluid of RA patients and correlate with the disease activity and severity 

366,367. Moreover, it has been shown that there is a significant increase in the 

frequencies of IL-17A+ CD4+ and IL-17A+ CD8+ T cells in the synovial fluid of PsA 

patients when compared to the peripheral blood of the same patient 374. 

 

While the literature provides strong evidence for the presence and 

immunopathological role of IL-17A in RA and PsA, robust evidence is lacking for IL-

17F. The limited available studies both support and refute the presence of IL-17F in 

RA and PsA. One study which stimulated RA SFMC for 24 hours with PMA and 

ionomycin detected IL-17A and IL-17AF protein in the culture supernatant, whereas 

IL-17F was undetectable 7. However, immunohistochemistry staining has revealed 

significantly increased IL-17F expression in PsA synovial tissue compared to OA 112. 

Moreover, a recent study has observed IL17F mRNA expression in 6 out of 14 PsA 

synovial tissue samples 121. The main aim of this final chapter was to investigate 

whether IL-17F is easily detectable alongside IL-17A, in inflammatory arthritis. 

 



201 

 

Specific aims for this chapter were as follows: 

• Investigate the presence of IL-17A, IL-17F, IL-17AF, IL-17E and other pro-

inflammatory cytokines in matched serum and SF samples from RA and PsA 

patients.  

• Assess the effect of RA and PsA serum and SF on synovial fibroblasts. 

• Investigate the presence of IL-17A and/or IL-17F producing CD4+ T cells and 

other immune cell subsets in RA and PsA PB and SF.  

• Examine the mRNA levels of IL17A and IL17F and the remaining IL-17 

cytokine members in cells from RA and PsA PB and SF. 

• Examine the presence of IL-17 producing cells in synovial tissue. 
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5.2 Results 

5.2.1 Investigating the presence of IL-17A, IL-17F and IL-17AF in 

matched serum and SF from RA and PsA patients 

To begin, I investigated the presence of IL-17A, IL-17F and IL-17AF in healthy 

control cell-free serum and RA and PsA matched cell-free serum and synovial fluid 

by Luminex. Information on this patient cohort is displayed in Table 5.1 (patient 

cohort 1). At the time of sample collection, patients were receiving no treatment, 

methotrexate or anti-TNF. Due to the limited numbers of patient samples, comparisons 

were not drawn between different treatment groups. Figure 5.1 illustrates the Luminex 

results of IL-17A and IL-17F. In 7 out of 8 RA donors, IL-17A protein was detected 

at higher levels in the RA SF vs. serum. Statistical significance was not achieved, 

presumably due to one donor displaying high levels of IL-17A in the serum vs. SF. 

Similar results were observed for IL-17F. IL-17F protein was detectable and present 

at higher levels in RA SF vs. serum, approximately 74 vs. 15 pg/ml, respectively. We 

also observed higher levels of IL-17A and IL-17F in PsA SF vs. serum, although 

statistical significance was not achieved. 

 

Since data in the current literature both support and refute the presence of IL-17F 

protein in the synovial fluid, my next aim was to validate these findings. Serum from 

healthy controls and paired serum and SF from RA and PsA were analysed for IL-17A 

and IL-17F protein levels via ELISA (eBioscience, Platinum ELISA). For this analysis 

matched serum and SF from OA patients was also included. This provided an 

additional negative control. Information on this patient cohort is displayed in Table 

5.2 (patient cohort 2).  Moreover, samples were analysed with an IL-17AF heterodimer 

ELISA (eBioscience, Platinum ELISA). In this instance, the IL-17A homodimer, IL-

17F homodimer and IL-17AF heterodimer ELISA had no or limited cross-reactivity 

with one another. In line with the previous findings, IL-17A protein was detectable in 

both RA and PsA synovial fluid (Figure 5.2). No IL-17A was detectable in the 

matched RA or PsA serum, healthy control serum or paired OA serum and SF. In 

contrast with the Luminex results, little IL-17F protein was detected. No clear increase 

of IL-17F protein in RA or PsA SF vs. serum was observed. Finally, IL-17AF protein 

was not detectable in any samples. The same result was observed with samples diluted 
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at different ratios including neat and 1:5 (data show IL-17A samples diluted 1:5 and 

IL-17F and IL-17AF samples analysed neat). 

 

While Luminex analysis detected IL-17F in RA and PsA SF, our ELISA results did 

not. It is important to note the lower detection limit for IL-17F varied between the 

Luminex and ELISA (2 vs. 15.6pg/ml, respectively). However, I still expected to 

detect IL-17F if it was present in SF with the ELISA. With these contradicting results, 

we sought to address whether the SF composition prevents detection of IL-17F using 

this particular ELISA kit. To achieve this, assay diluent or OA/RA/PsA serum or SF 

were spiked with either human recombinant IL-17A, IL-17F or IL-17AF. Samples 

were then analysed with the corresponding IL-17 ELISA. As displayed in Figure 5.3, 

IL-17F protein was detected in assay diluent and paired serum and SF samples spiked 

with human recombinant IL-17F. Similar results were observed for IL-17A and IL-

17AF. These data suggest that the SF composition does not block the recognition of 

IL-17F or IL-17AF protein via ELISA. These results indicate that the serum and SF 

ELISA analysis were reliable and IL-17F and IL-17AF were not present in the patient 

samples.  

 

With these data, the presence of IL-17F protein in RA and PsA serum and SF remains 

inconclusive. Why the luminex analysis generated clear positive IL-17F results and 

the ELISA analysis did not remains unknown. One speculation is that the positive IL-

17F luminex result was due to non-specific binding. These results highlight the 

variability in detecting IL-17F in patient samples using different methods. This, in 

part, could explain the contradicting studies present in the current literature. To move 

forward it was decided to investigate the presence of IL-17F using different methods 

including IL-17F blockade in serum and SF and flow cytometry analysis of IL-17F+ 

cells. These results are shown later in this chapter. 
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Table 5.1 Demographic and clinical parameters of patients included in luminex 

assay (patient cohort 1) 

 

 RA 

Paired PB/SF 

(n = 9) 

PsA 

Paired PB/SF 

(n = 6) 

Healthy 

control 

PB 

(n = 4) 

 

Male, no. 

 

Female, no. 

 

3 

 

6 

 

3 

 

3 

 

2 

 

2 

Age, mean ± SEM years 61.0  ± 3.8 44.2  ± 4.8 

 

39.50  ± 8.0 

 

 

Disease duration ± SEM years 
13.8  ± 4.1 3.0  ± 0.7 

 

- 

 

Treatment, no. 

   

No treatment 3 3 - 

MTX 3 3 - 

Anti-TNF 3 - - 

 

DAS28 

   

Mean ± SEM 4.8  ± 0.46 4.6  ± 0.64 - 

Range 3.47 – 6.3 2.25 – 5.86 - 
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Figure 5.1 Analysing the presence of IL-17A and IL-17F in RA and PsA 

matched serum and SF samples via Luminex. 

IL-17A and IL-17F protein levels in paired cell-free serum and synovial fluid from RA (n=7) and PsA 

(n=6) patients were analysed by luminex. Dashed blue lines represent the lower detection limit. 

Statistical significance was calculated using a Wilcoxon matched pairs test. Patient cohort information 

displayed in Table 5.1 (Patient cohort 1). 
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Table 5.2 Demographic and clinical parameters of patients included in 

ELISA assays (patient cohort 2) 

 

 

* Gender and age not available for one OA patient. 

RA

Paired 

PB/SF

(n = 7)

PsA

Paired PB/SF

(n = 6)

OA

Paired PB/SF

(n = 2) *

Healthy

Control

PB 

(n=2)

Male, no.

Female, no.

2

5

5

1

-

1

1

1

Age, mean ± SEM 

years
47.0  ± 0.3 36.5  ± 2.9 72 39.50  ± 8.02

Treatment, no:

No treatment

MTX

2

1

2

2

-

-

Anti-TNF

Abatacept

2

2

2

-

- -

DAS28

Mean ± SEM 4.6  ± 0.3 4.6  ± 0.5 - -

Range 3.5 – 5.43 1.89 – 5.78 - -



207 

 

 

 

 

Figure 5.2 Analysing the presence of IL-17A and IL-17F in RA and PsA 

matched serum and SF samples via ELISA. 

Serum from healthy controls (n=3) and paired serum and synovial fluid from OA patients (n=3), RA 

patients (n=7) and PsA patients (n=6) were analysed by ELISA for protein levels of IL-17A, IL-17F 

and IL-17AF. Dashed red and blue lines represent the lower and upper detection limit respectively. 

Statistical significance was calculated using a Wilcoxon matched pairs test. Patient cohort information 

displayed in Table 5.2 (Patient cohort 2).  
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Figure 5.3 Human recombinant IL-17A, IL-17F and IL-17AF spiked in serum 

and SF samples are easily detectable via ELISA. 

Human recombinant IL-17A (100pg/ml), IL-17F (500pg/ml) and IL-17AF (500pg/ml) were 

individually spiked in either assay diluent (AD), or matched serum or SF from OA, RA or PsA patients. 

Samples were then analysed by the corresponding IL-17 cytokine ELISA (n=1). Dashed red and blue 

lines represent the lower and upper detection limit respectively. 
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5.2.2 The cytokine profile of RA and PsA serum and SF and their effect 

on synovial fibroblasts 

In addition to IL-17A and IL-17F, the luminex assay also analysed the presence of 

other cytokines – including IL-23, IL-1β, IL-6, IFNγ, TNFα, IL-10, IL-4, IL-21, IL-

22 and IL-17E. These results are shown in Figure 5.4 and Figure 5.5. Focusing on the 

Th17 polarising cytokines - IL-1β and IL-23, luminex analysis revealed elevated levels 

of IL-1β in RA and PsA SF vs. matched serum, although levels of IL-1β in SF are low. 

IL-23 was present in RA and PsA SF. IL-23 was also detected in 4 out of 9 RA serum 

samples and at higher levels than the matched SF. No IL-23 was detected in the healthy 

control serum samples. Levels of the pro-inflammatory cytokines – IL-6, IFNγ and 

TNFα were detected at higher levels in RA and PsA SF vs serum samples. IL-21 and 

IL-22 were detectable in RA SF, however levels were very low in PsA SF. 

Interestingly, the anti-inflammatory cytokine, IL-10, was detected at elevated levels 

in both RA and PsA SF. Similar results were observed for the Th2 polarising cytokine, 

IL-4. Overall, these data show the cytokine profile of SF is different to matching serum 

in both RA and PsA samples. Finally, following our results in chapter 4, whereby IL-

17E synergised with TNFα to induce elevated levels of IL-6 and IL-8 from synovial 

fibroblasts, we were interested to investigate whether IL-17E was present in 

inflammatory arthritis. As shown in Figure 5.5, IL-17E protein was detected in one 

out of four HC serum samples and some RA and PsA serum and SF samples, however 

levels were low. 

 

Next, we assessed the effect of RA and PsA serum and SF on synovial fibroblasts. 

PsA synovial fibroblasts were cultured with increasing percentage concentration of 

matched PsA serum and SF. Following a 24 hour culture, supernatants were collected 

and IL-6 and IL-8 protein levels were analysed by ELISA. As shown in Figure 5.6A, 

addition of 0.5% PsA serum led to an increased IL-6 secretion. Similar IL-6 protein 

levels were observed upon addition of 1 and 2% serum, however levels significantly 

dropped with 5% serum. In contrast, addition of 0.5% PsA SF to PsA fibroblasts led 

to a slight increase in IL-6 secretion, however levels were low. Moreover, IL-6 was 

undetectable following addition of 1, 2 or 5% SF. The lack of IL-6 induction by SF 

may be attributed to the toxicity of the sample. For example, SF contains hyaluronic 

acid, which in a compact in vitro culture system may be toxic to fibroblasts.  
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As IL-17A and TNFα have been shown to be present in RA and PsA SF, blocking 

experiments were performed to assess their role in SF-mediated IL-6 and IL-8 

fibroblast secretion. Moreover, as the presence of IL-17F in RA and PsA remained 

inconclusive, it was of interest to examine the effect of IL-17F blockade. As 0.5% 

serum or SF elicited the highest levels of IL-6 secretion, this concentration was added 

to fibroblasts in the absence or presence of blocking antibodies. As illustrated in figure 

5.6B, in this experiment addition of 0.5% serum or SF did not result in an increase in 

IL-6 secretion. In concordance, addition of the blocking antibodies has no effect.  
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Figure 5.4 RA and PsA SF display increased cytokine levels vs. matched serum. 

Paired cell-free serum and synovial fluid from RA (n=7) and PsA (n=6) patients were analysed by 

luminex. Dashed blue lines represent the lower detection limit. Statistical significance was calculated 

using a Wilcoxon matched pairs test. 
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Figure 5.5 Low levels of IL-17E are detectable in RA PB and  SF. 

IL-17E protein levels in paired cell-free serum and synovial fluid from RA (n=7) and PsA (n=6) patients 

were analysed by luminex. Dashed red lines represent the lower detection limit. Statistical significance 

was calculated using a Wilcoxon matched pairs test. Patient cohort information displayed in Table 5.1 

(Patient cohort 1). 
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Figure 5.6 Addition of RA or PsA serum or SF to synovial fibroblasts. 

(A) 10x103 PsA fibroblasts were cultured with increasing doses of PsA serum or SF (n=1). (B) 10x103 

PsA fibroblasts were 0.5% of PsA serum or SF in the absence or presence of blocking antibodies (n=1).  

After 24 hours incubation, culture supernatant was removed and analysed for IL-6 protein levels via 

ELISA.  
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5.2.3 Examining the presence of IL-17A and IL-17F CD4+ T cells in RA 

and PsA PBMC and SFMC 

While the presence of IL-17A+ CD4+ T cells in the inflamed arthritic knee has been 

widely reported 10, little is known regarding the presence of IL-17F+ CD4+ T cells. 

With this is mind and the inconclusive IL-17F protein detection results in RA and PsA 

SF, it was of interest to explore the presence of IL-17 expressing CD4+ T cells in RA 

and PsA PBMC and SFMC.  

 

Paired PBMC and SFMC from RA or PsA patients were stimulated for 3 hours with 

PMA, ionomycin and Golgistop. Patient cohort information is provided in Table 5.3 

(Patient cohort 3). Cells were stained to assess intracellular cytokine expression and 

analysed by flow cytometry. Figure 5.7 shows a representative plot of the gating 

strategy applied to PBMC and SFMC samples. Within CD3+ CD4+ T cells, IL-17A 

expressing cells were increased in the SF compared to the PB of patients with RA (2.7 

vs. 0.9%, respectively) and PsA (2.5 vs. 1%, respectively) (Figure 5.8). However, 

statistical significance was only achieved with the PsA cohort. Flow cytometry 

analysis revealed very few IL-17F expressing CD4+ T cells in matched PBMC and 

SFMC from RA and PsA samples. Similarly, the frequency of IL-17AF+ CD4+ T cells 

detected in inflammatory arthritis PB and SF was low. 

 

We next examined whether different ex vivo stimulation conditions would reveal the 

presence of IL-17F+ CD4+ T cells. First we compared the 3 hour PMA and ionomycin 

stimulation with Golgistop (monensin), GolgiPlug (Brefeldin) or a combination of 

both Golgistop and Golgiplug. Our results revealed no difference in the percentage of 

IL-17F+ CD4+ T cells detected with the different protein transport inhibitors (data not 

shown).  Our next approach involved stimulating PBMC and SFMC with either PMA 

and ionomycin, αCD3 and αCD28 or Golgistop alone for 3, 5 or 8 hours. This was 

performed with one RA and one PsA donor. As shown in Figure 5.9, IL-17A 

expressing CD4+ T cells were increased in the SF compared to the PB only in the RA 

sample following 3 hours PMA and ionomycin stimulation. However, IL-17A+ CD4+ 

T cells were detected at higher frequencies in the SF vs. PB in both donors following 

a 3 hour stimulation with αCD3 and αCD28. Very few IL-17A+ CD4+ T cells were 
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observed following incubation with Golgistop only. Only a small increase in the 

percentage of IL-17A+ CD4+ T cells was observed in the RA SFMC with 8 hours 

incubation with Golgistop. None of these conditions revealed the presence of IL-17F+ 

CD4+ T cells in the RA and PsA paired PB and SF sample. The IL-17AF heterodimer 

stain was not included in this experiment. 

 

IL-17A protein and IL-17A+ CD4+ T cells were robustly detected in RA and PsA SF. 

To conclude this section, correlation analyses were performed. Firstly, correlation 

analysis was performed on matched ICCS and ELISA patient samples. As shown in 

Figure 5.10 A, the frequency of IL-17A+ CD4+ T cells detected in RA/PsA PB or SF 

demonstrated a positive correlation to the levels of IL-17A protein detected in the 

serum or SF counterpart. Next, we correlated the frequency of IL-17A+ CD4+ T cells 

present in RA or PsA SF to the patient’s disease activity score in 28 joints (DAS28). 

This score is calculated at the time of sample collection using a number of assessment 

criteria including the number of tender and swollen joints, the erythrocyte 

sedimentation rate (ESR) and the C-reactive protein (CRP) level. No correlation was 

observed in either RA or PsA samples (Figure 5.10 B). Moreover, no correlation was 

observed between the concentration of IL-17A present in RA or PsA SF and the patient 

DAS28 score (Figure 5.10C). 
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Table 5.3 Demographic and clinical parameters of patients included in ex vivo 

IL-17A and IL-17F flow cytometry analysis (patient cohort 3) 

 

 

RA

Paired 

PB/SF

(n = 8)

PsA

Paired PB/SF

(n = 7)

Male, no.

Female, no.

0

8

5

2

Age, mean ± SEM years 54.9  ± 7.0 41.7  ± 4.2

Treatment, no.

No treatment 2 2

MTX 5 3

Anti-TNF

Other (Abatacept, 

Ustekinumab)

1

-

1

1

DAS28

Mean ± SEM 5.2  ± 0.4 4.5  ± 0.5

Range 3.8 – 7.02 1.89 – 6.0

Seronegative 2 7
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Figure 5.7 Gating Strategy for matched RA and PsA PBMC and SFMC 

samples. 

RA or PsA PBMC and SFMC were stimulated for 3 hours with PMA, ionomycin and GolgiStop. Cells 

were then stained with fluorescently-conjugated antibodies against extracellular markers and 

intracellular cytokines. In this representative SFMC gating, cells were first gated for lymphocytes (SSC-

A vs. FSC-A). The lymphocyte gate was further analysed for uptake of the Live/Dead eFlour 780 stain 

to determine live vs. dead cells. Within live cells, a FSC-W/FSC-A gate was applied allowing exclusion 

of doublet cells. Next, within CD3+ cells, CD4+ CD8- and CD8+ CD4- T cells were selected for 

analysis of intracellular cytokines. 
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Figure 5.8 Examining the presence of IL-17A, IL-17F and IL-17AF expressing 

CD4+ T cells in inflammatory arthritis. 

Matched PBMC and SFMC from RA and PsA donors were stimulated for 3 hours with PMA, 

ionomycin and Golgistop and then assessed for intracellular IL-17A, IL-17F and IL-17AF cytokine 

expression. (A) Representative dot plot whereby fluorescence minus (FM) controls were used to set 

gates to depict positive cytokine expression. (B) Cumulative data show frequencies of IL-17A and IL-

17F expressing cells within the total CD4+ T cell population of matched PBMC and SFMC from RA 

(n=8) and PsA (n=7) samples. Similarly, the frequencies of IL-17AF expressing CD4+ T cells were 

analysed in RA (n=3) and PsA (n=1) samples. Statistical significance was calculated using a Wilcoxon 

matched pairs test. 
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Figure 5.9 Stimulating RA and PsA paired PBMC and SFMC with different ex 

vivo conditions. 

Matched PBMC and SFMC from one RA and one PsA donor were stimulated with PMA, ionomycin 

and Golgistop, αCD3, αCD28 and Golgistop or Golgistop alone for 3, 5 or 8 hours. Cells were then 

stained for analysis of IL-17A and IL-17F cytokine expression by flow cytometry. Gated within live 

CD3+ CD4+ T cells (A) displays representative dot plots of IL-17A cytokine expression observed in 

RA PBMC and SFMC. (B) Cumulative flow cytometric data show frequencies of IL-17A and IL-17F 

within the PBMC and SFMC CD4+ T cell population from RA (n=1) (red) and PsA (n=1) (black) 

donors. 
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Figure 5.10 Correlation analysis on the presence of IL-17A+ CD4+ T cells vs. 

IL-17A protein present in inflammatory arthritis samples and assessing 

correlation with DAS28 scores. 

 (A) The frequency of IL-17A CD4+ T cells detected in RA (n=3) and PsA (n=2) PB and SF following 

an ex vivo stimulation were correlated with the levels of IL-17A detected in the matched serum or SF 

via ELISA. (B) The frequency of SF IL-17A+ CD4+ T cells detected in RA (n=7) (red symbols) or PsA 

(n=4) (black symbols) were compared against the corresponding patient DAS28 score. (C) The levels 

of IL-17A protein present in RA (n=7) or PsA (n=6) were correlated with patient DAS28 scores. 

Symbols represent individual donors. Data was analysed using Spearman non-parametric correlation 

analysis. 
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5.2.4 In vitro stimulation induces IL-17A, IL-17F and IL-17AF expressing 

CD4+ T cells from inflammatory arthritis matched PBMC and 

SFMC 

We hypothesised that culturing inflammatory arthritis PBMC and SFMC in vitro with 

IL-1β, IL-23, αCD3 and αCD28 would induce IL-17A, IL-17F and IL-17AF 

expressing CD4+ T cells. Moreover, we speculated that due to the inflammatory origin 

of SFMC, this stimulation would induce a higher frequency of IL-17A+, IL-17F+ and 

IL-17AF+ CD4+ T cells in SFMC vs. PBMC. 

 

As shown in Figure 5.11, culturing inflammatory arthritis PBMC and SFMC in vitro 

induced IL-17A and IL-17F expressing CD4+ T cells. However, there was no 

consistent enhancement of IL-17 expressing CD4+ T cells in the SF vs. PB. It is 

important to note the viability of the SFMC samples following in vitro culture varied, 

with some samples displaying a significant percentage of cell death. It may be SFMCs 

are fragile and more prone to cell death following a culture period. Similarly, while 

ELISA analysis revealed the presence of IL-17A and IL-17F in inflammatory arthritis 

PBMC and SFMC in vitro cultures, no consistent differences were observed between 

PBMC and SFMC (Figure 5.11B). 
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Figure 5.11 IL-17A, IL-17F and IL-17AF expressing CD4+ T cells can be 

induced from inflammatory arthritis PBMC and SFMC upon in vitro 

stimulation. 

RA or PsA matched PBMC and SFMC (1x106) were cultured with platebound anti-CD3 mAb, anti-

CD28 mAb, IL-1β (10ng/ml) and IL-23 (20ng/ml). After 3 days incubation, cells were re-stimulated 

for 3 hours with PMA, ionomycin and Golgistop. Cells were then stained with fluorescently-conjugated  

antibodies against extracelluar markers (CD3, CD4 and CD8) and intracellular IL-17 cytokines. (A) 

Representative dot plots and (B) cumulative data show frequencies of IL-17A and IL-17F expressing 

cells within the total CD4+ T cells of paired PBMC and SFMC from RA (n=3) (red symbols) and PsA 

(n=3) (black symbols) patients, respectively. (C) Prior to re-stimulation, cell supernatant was analysed 

for IL-17A and IL-17F supernatant via ELISA (RA (n=3) and PsA (n=3)). 

ICCS

ELISA

IL-17A IL-17F

IL
-1

7
A

FSC-A
IL

-1
7

F
FSC-A

IL
-1

7
F

IL-17A

Within CD3+ CD4+ CD8- T cells…

RA
PBMC

RA
SFMC

B

P B M C S F M C

0

1 0

2 0

3 0

%
 o

f 
to

ta
l 

IL
-1

7
A

+
 c

e
ll

s

 w
it

h
in

 C
D

3
+

 C
D

3
+

 T
 c

e
ll

s n s

P B M C S F M C

0

5

1 0

1 5

%
 o

f 
to

ta
l 

IL
-1

7
F

+
 c

e
ll

s

 w
it

h
in

 C
D

3
+

 C
D

4
+

 T
 c

e
ll

s

n s

P B M C S F M C

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

IL
-1

7
F

 (
p

g
/

m
l)

n s

P B M C S F M C

0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

IL
-1

7
F

 (
p

g
/

m
l)

n s

C

A

RA

PsA



223 

 

5.2.5 Investigating the presence of CD8+ IL-17 producing cells in 

inflammatory arthritis 

Although this project focused on IL-17 producing CD4+ T cells, we were keen to 

explore whether other immune cells producing IL-17F are present in inflammatory 

arthritis. Our lab has previously reported the increased presence of IL-17A+ CD8+ T 

cells in the inflamed joint of PsA patients 6. Currently, IL-17F+ CD8+ T cells have 

not been described in PsA. This provided me with the rationale to examine the 

presence of IL-17F+ CD8+ T cells in inflammatory arthritis. The cytokine expression 

of CD8+ T cells present in RA and PsA was analysed  using the same PMA and 

ionomycin ex vivo stimulated RA/PsA PBMC and SFMC data set generated to analyse 

CD4+ T cells (patient cohort 3).  Using the gating strategy shown in Figure 5.5, we 

gated within CD8+ CD4- T cells and analysed the cytokine expression of IL-17A and 

IL-17F. In line with the lab’s previous findings, we observed a significant enrichment 

of IL-17A+ CD8+ T cells in PsA SF vs. matched PB (approximately 3.5 vs. 0.2 % of 

IL-17A+ cells within CD8+ T cells) (Figure 5.12). While one out of seven PsA 

samples showed an enhanced frequency of IL-17F+ CD8+ T cells in the SF vs. PB 

(0.66 vs. 0.03%, respectively), the remaining six PsA samples displayed low 

percentages (0.08 vs. 0.03%, respectively).  Therefore, although this data set generated 

statistical significance, IL-17F expressing CD8+ T cells were only robustly detected 

in one sample. A small percentage of IL-17A+ CD8+ T cells was observed in RA 

SFMC, however this did not reach significance. Very few IL-17F+ CD8+ T cells were 

observed in RA PBMC or SFMC.  

 

Next, we sought to investigate whether any CD4- CD8- immune cell subsets present 

in RA or PsA PB or SF expressed IL-17A or IL-17F. In the majority of patient ex vivo 

experiments, the live/dead and CD14 stain were combined to generate a ‘dump’ gate. 

However, in some experiments, the cytokine profile of CD14+ monocytes could be 

analysed. In these experiments, IL-17A or IL-17F expressing CD14+ monocytes were 

not observed in RA or PsA PB or SF (data not shown). To finalise the analysis of the 

ex vivo patient data set, backgating analysis was performed on all live CD14- IL-17 

expressing cells. This was to potentially reveal any IL-17A or IL-17F producing cells 

which were CD3+ CD4- CD8- or CD3-. Double negative (DN) T cells (CD3+ CD4- 

CD8-) constitute approximately 1-5% of T cells in humans. Studies have shown they 
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can function similarly Treg cells or produce cytokines including IL-17A, IFNγ and 

TNFα 10. CD14- CD3- cells present in PBMC and SFMC can include CD19+ B cells, 

CD56+ NK cells and innate lymphoid cells (ILC), of which NK cells and ILC3 have 

been identified as an IL-17A producing population 11. 

 

As demonstrated in Figure 5.13, live CD14- IL-17+ cells were gated and then surface 

marker expression was used to determine the cytokine producing cell. Back gating was 

only performed on samples with 300 or more IL-17A or IL-17F expressing cell events. 

The majority of IL-17A producing cells in both RA and PsA PBMC and SFMC were 

CD3+ cells (approximately 94%) (Figure 5.14). In the RA PBMC samples, the 

majority of CD3+ IL-17A+ cells were CD4+ CD8- T cells (approximately 93%). In 5 

out of 8 RA SFMC samples approximately 95% of CD3+ IL-17A+ cells were CD4+ 

CD8- T cells. However, in three RA donors 53%, 64% and 61% respectively of SF 

CD3+ IL-17A+ cells were CD4+ CD8- T cells. Moreover, in these three donors 31%, 

29% and 29% respectively of CD3+ IL-17A+ cells were CD8+ CD4- T cells. This is 

in contrast to the low frequencies of IL-17A+ CD8+ CD4- T cells present in the 

remaining RA SF samples (approximately 0.9%). Two of the RA patients with 

enhanced frequencies of IL-17A+ CD8+ CD4- T cells in the SF was seronegative, 

whilst the other was seropositive. In 7 PsA PB donors approximately 85% of IL-17A+ 

cells were CD4+ CD8- T cells and 7% were CD8+ CD4- T cells. In contrast, the PsA 

SF was enriched with IL-17A+ CD8+ CD4- T cells. Approximately 36% of IL-17A+ 

cells were CD8+ CD4- T cells, whereas 45% were CD4+ CD8- T cells. Across all RA 

and PsA samples, only one PsA SF sample had over 300 events of detectable IL-17F 

expressing cells. Back-gating analysis revealed all IL-17F expressing cells were CD3+ 

cells, of which 0.7% were CD4- CD8-, 35% were CD4+ CD8- and 27% were CD8+ 

CD4-.
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Figure 5.12 Assessing the presence of IL-17A and IL-17F expressing CD8+ T cells 

in inflammatory arthritis. 

Matched PBMC and SFMC from RA and PsA donors were stimulated for 3 hours with PMA, 

ionomycin and Golgistop and then assessed for intracellular IL-17A, IL-17F and IL-17AF cytokine 

expression via flow cytometry. Gating within live CD8+ CD4- T cells (A) displays representative dot 

plots of a patient with PsA and (B) shows cumulative data of IL-17A and IL-17F frequencies within 

the total CD8+ T cell population of matched PBMC and SFMC from RA (n=8) and PsA (n=7) samples. 

Statistical significance was calculated using a Wilcoxon matched pairs test. 
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Figure 5.13 Back- gating on RA or PsA PBMC and SFMC IL-17 expressing live 

CD14- cells. 

Matched PBMC and SFMC from RA and PsA donors were stimulated for 3 hours with PMA, 

ionomycin and Golgistop and then assessed for intracellular IL-17A and IL-17F cytokine expression 

via flow cytometry. Gating within live CD8+ CD4- T cells  
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Figure 5.14 Back- gating on RA or PsA PBMC and SFMC IL-17 expressing live 

CD14- cells. 

Matched PBMC and SFMC from RA and PsA donors were stimulated for 3 hours with PMA, 

ionomycin and Golgistop and then assessed for intracellular IL-17A and IL-17F cytokine expression 

via flow cytometry. Live CD14- IL-17A+ or IL-17F+ cells were gated upon. Back gating analysis was 

performed on samples with 300 or more IL-17+ events to determine the cytokine producing cells. 

Cumulative data showing cell surface marker expression on IL-17A+ cells present in (A) RA PB and 

SF (n=8) and (B) PsA PB and SF (n=7). (C) Marker expression on IL-17F+ cells present in PsA SF 

(n=1). 
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5.2.6 Investigating the RNA expression of IL-17 family members in RA 

and PsA PBMC and SFMC 

My next aim was to investigate whether IL17A and IL17F mRNA could be detected 

in cells from inflammatory arthritis serum or SF. It is important to note that IL-17AF 

is formed post-transcriptionally and cannot be analysed at an RNA level. Bulk cells 

were isolated from fresh RA or PsA serum or SF samples and approximately 1-2x106 

cells were lysed in trizol. Cells were not stimulated with PMA or ionomycin. Using 

the chloroform immunoprecipitation method, RNA was extracted and reverse 

transcription was performed. QPCR reactions were performed using primers for 

human IL-17A and IL-17F; moreover, the ACTB gene was used as an endogenous 

control. In all RA and PsA PBMC and SFMC samples, IL17A and IL17F mRNA 

expression levels were not reliably detected (Figure 5.15) with a CT value of 30 or 

above and similar to no reverse transcription control samples. Unfortunately, in this 

experiment a positive control (i.e RNA isolated from stimulated PBMC known to 

contain IL17A and IL17F mRNA) was not used. ELISA and ICCS results have clearly 

demonstrated the presence of IL-17A in the SF. Therefore, it was proposed the IL17A 

mRNA was not detected in bulk SFMC because the IL-17 producing cells are only a 

small proportion of the total cells in the SF. 

 

To investigate this hypothesis, the presence of IL17A and IL17F mRNA in sorted 

immune subsets from RA PB and SF was examined. Unfortunately, due to limited 

patient sample availability this experiment was only performed in RA samples (n=3). 

Fresh PBMC or SFMC were stained, without stimulation for extracellular markers 

(CD3, CD4, CD8, CD19 and CD14). Immune cell subsets were then sorted on a BD 

FACS ARIA. This gating strategy is shown in Figure 5.16. Sorted cell subsets were 

lysed in trizol and total RNA was extracted. Following this, reverse transcription was 

performed. As a positive control, RNA isolated from healthy PBMC stimulated for 3 

days with IL-1β, IL-23, anti-CD3 and anti-CD28 was also included in the reverse 

transcription stage, adding in the same total of RNA as the sorted T cell samples. 

QPCR reactions were then performed using primers for IL-17A and IL-17F and the 

ACTB gene was used as an endogenous control. As displayed in Figure 5.17, IL17A 

and IL17F mRNA was detectable in the positive control sample, indicating the reverse 

transcription step and qPCR reactions were successful. In contrast, no IL17A and 
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IL17F mRNA was detectable in CD4+ or CD8+ T cell subsets sorted from HC PB or 

RA PB and SF. All CT values were above 30 and similar to no reverse transcription 

controls. 

 

Next, I investigated whether similar results were observed in data previously generated 

in our lab which analysed the gene expression profile of sorted CD25- CD4+ T cells 

from RA PB and SF using an affymetrix microarray. Affymetrix data analysis uses 

robust multi-array average (RMA) values, whereby the raw intensity values are 

background corrected, log2 transformed and quantile normalised. I analysed this data-

set to assess the gene expression levels of all IL-17 cytokines members in RA CD25- 

CD4+ T cells. As a positive control the expression of CD4 was analysed. Additionally, 

as a significant proportion of CD4+ T cells express TNFα and IFNγ, the expression 

levels of these genes were analysed. To achieve this, RMA values were transformed 

(2^Y) and plotted as the probe intensities. In general, a gene with a probe intensity of 

below 100 is considered not detectably expressed. As shown in Figure 5.18, CD4 gene 

expression was detected at moderate levels and with minimal differences between the 

PB and SF subset. Gene expression of TNFA was detectable at various levels across 

the samples, with no consistent difference between PB and SF. Where IFNG gene 

expression levels were moderate and in 4 out of 5 samples, the gene expression level 

was enhanced in the SF CD25- CD4+ subsets. In contrast, all IL-17 family members 

exhibited low probe intensity values. In fact, IL17A displayed the lowest probe 

intensity values compared with IL17B and IL17C which are cytokines that have not 

been reported to be produced by CD4+ T cells. Therefore, it can be concluded that 

there are no detectable gene expression levels of the IL-17 cytokines in CD25- CD4+ 

T cells from RA PB and SF samples. 
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Figure 5.15 Low levels of IL17A and IL17F mRNA are detected from bulk RA 

and PsA PBMC and SFMC. 

Approximately 1-2x106 RA (n=2) (red symbol) or PsA (n=2) (black symbol) PBMC and SFMC were 

lysed in trizol. Following RNA extraction, reverse transcription was performed. QPCR was performed 

using primers for IL17A and IL17F and ACTB was used as an endogenous control. Each data point is 

an individual donor. 
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Figure 5.16 Sorting strategies for immune cell subsets from PB and SF. 

 Based on forward scatter/side scatter (FSC/SSC) properties, viable lymphocytes were gated. A FSC-

W/FSC-A gate was applied allowing the exclusion of doublet cells. Dead cells were excluded based on 

their uptake of the viability dye, eFluor506. Within live, single cells CD19+ CD3- B cells were gated 

and collected. CD3+ cells were further analysed for their expression of CD4+ and CD8+ and 

CD4+CD8- and CD8+CD4- cells were gated and collected. Gating within CD3- cells. Red boxes 

indicate the sorted populations. 

SS
C

-A

FSC-A

SS
C

-A

SSC-W

Li
ve

/d
ea

d

FSC-A

C
D

1
9

CD3

C
D

8

CD4

Gated within live cells Gated within CD3+ CD19-



232 

 

 

 

Figure 5.17 IL17A and IL17F mRNA is undetectable in sorted CD4+ and CD8+ 

T cells from RA PB and SF. 

Mononuclear cells were isolated from the blood of a healthy donor (HC) (n=1) and the PB and SF from 

RA patients (n=3). Cells were stained with extracellular surface markers and using a FACS Aria sorter 

CD3+ CD4+ CD8- and CD3+ CD8+ CD4- T cells were sorted. Total RNA was isolated from all sorted 

populations and converted into cDNA via reverse transcription. QPCR was then performed to assess 

the mRNA expression levels of IL17A and IL17F. 
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Figure 5.18 IL-17 gene expression profile of CD4+ CD25- T cells from RA PB 

and SF. 

Cell sorting, RNA isolation and microarray analysis was performed by a previous member of the lab, 

Veerle Fleskens. Data mining for the indicated genes was performed by myself. CD25- CD4+ T cells 

from RA matched PB and SF were sorted on a BD FACS Aria (n=5). Total RNA was isolated from 

all sorted populations and analysed by an affymetrix microarray. The RMA values of CD4, TNFA, 

IFNG and IL-17 family members were transformed (2^Y) and plotted as probe intensity. Each line is 

an individual donor. 
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5.2.7 Examining the presence of IL-17A and IL-17F expressing cells in 

RA or PsA tissue 

The synovium of patients with active RA and PsA is infiltrated with a variety of 

mononuclear cells, including T cells. While T cells can be detected in the SF of RA or 

PsA, some T cells remain embedded in the synovial tissue. To conclude the 

investigation of IL-17F present in inflammatory arthritis, we examined the presence 

of IL-17F and IL-17A cells present in RA synovial tissue. 

 

The following protocol was optimised by another member of our lab, Lucy Durham. 

Moreover, these experiments were performed in collaboration with Lucy Durham, 

with Lucy acquiring all samples. Synovial tissue samples were collected from two RA 

patients at the time of elective knee replacement surgery. Synovial tissue was cut into 

1-2 mm pieces and digested by incubating with an enzyme mastermix (Miltenyi) on a 

gentleMACS dissociator. Isolated cells were stimulated for 3 hours with PMA and 

ionomycin. Cells were then stained for extracellular markers and intracellular 

cytokines and analysed by flow cytometry. Figure 5.19 illustrates the gating strategies 

applied to cells isolated from both RA synovial tissue samples. In donor one, only a 

small proportion of these cells were lymphocytes, with the remaining being either 

debris or synovial fibroblasts, whereas donor two displayed a higher frequency of 

lymphocytes. 

 

In the RA synovial tissue from donor 1, flow cytometry results shown that 2.7% of 

total CD4+ T cells expressed IL-17A. However only three events were captured within 

the IL-17A+ gate, therefore this result cannot be interpreted accurately (Figure 5.20). 

However, in donor two, 2.3% of total CD4+ T cells expressed IL-17A and a substantial 

number of events were captured within the IL-17A+ gate. No IL-17F+ CD4+ T cells 

were detected in donor one and although 0.3% IL-17F+ CD4+ T cells were detected 

in donor two, the event number is too low for accurate interpretation. Donor one and 

donor two displayed 53% and 55% of IFNγ+ CD4+ T cells, respectively. With regards 

to CD8+ T cells, donor one displayed 21.4% of IL-17A+ CD8+ T cells, whereas no 

IL-17A+ CD8+ T cells were detectable in donor 2. In both donors, event numbers 

were too low to draw conclusions on IL-17F+ CD8+ T cells. In donor one, 41% of 
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total CD8+ T cells were IFNγ+, whereas donor two displayed 93% IFNγ+ CD8+ T 

cells. In summary, IL-17A+ CD4+ T cells were present in one donor and IL-17A+ 

CD8+ T cells were present in the other. Due to low event numbers, no IL-17F+ CD4+ 

or CD8+ T cells were definitively detected. 

 

Our next aim was investigate the presence of any IL-17 expressing CD4- or CD8- 

immune cell subsets present in RA synovial tissue. To achieve this, back-gating 

analysis was performed on IL-17A and IL-17F expressing live CD14- cells (Figure 

5.21). In both donors the majority of IL-17A+ cells were CD45+ and CD3+, although 

a CD45+ CD3- population was observed in donor one. The majority of IL-17A+ CD3+ 

cells in donor one were CD4-CD8- and CD8+CD4- T cells, however for donor two 

the predominant subsets were CD4+CD8- and CD4-CD8- T cells. Caution must be 

taken when interpreting the CD4+CD8- and CD4-CD8- T cell populations as results 

may be due to poor staining of the CD4 marker. Too few IL-17F+ cells are present in 

the donor one tissue sample to accurately interpret. However back-gating analysis 

performed on the donor 2 sample revealed that approximately 70% of IL-17F+ cells 

are CD45-. Within CD45+ cells approximately 57% and 43% are CD3+ cells and 

CD3- cells, respectively. Finally, the CD45+ CD3+ cells appear to be both CD4+CD8- 

and CD4-CD8- subsets. 



236 

 

Table 5.4 Demographic and clinical parameters of RA synovial tissue sample 

donors (patient cohort 4) 

 

 

RA synovial 

tissue 

sample 

 

Sex 

 

Age 

 

Treatment 

 

Seropositive/negative 

 

Donor 1 

 

F 

 

32 

 

Anti-TNF, 

Prednisone 

 

Seronegative 

 

Donor 2 

 

F 

 

57 

Anti-TNF and 

MTX 

 

Not known 
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Figure 5.19 Gating strategy for CD4+ and CD8+ T cells from RA synovial 

tissue. 

Synovial tissue was digested by incubation with a Miltenyi enzyme mastermix on a gentleMACS 

dissociator. Isolated cells were stimulated ex vivo for 3 hours with PMA and ionomycin. Cells were 

then stained with fluorescently-conjugated antibodies against extracellular markers and intracellular 

cytokines. Flow cytometric plots show the gating strategy for (A) donor 1 and (B) donor 2. Cells were 

first gated for lymphocytes (SSC-A vs. FSC-A), excluding any synovial tissue debris or fibroblasts. 

The lymphocyte gate was further analysed for uptake of the Live/Dead eFlour 780 stain to determine 

live vs. dead cells. Within live cells, a FSC-W/FSC-A gate was applied allowing exclusion of doublet 

cells. Next, within CD3+ cells, CD4+ CD8- and CD8+ CD4- T cells were selected for analysis of 

intracellular cytokines. 
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Figure 5.20 Examining the presence of IL-17A and IL-17F expressing CD4+ 

and CD8+ T cells from RA synovial tissue. 

Cells isolated from RA synovial tissue were stimulated for 3 hours with PMA, ionomycin and Golgistop 

and then assessed for intracellular IL-17A, IL-17F and IFNγ cytokine expression via flow cytometry. 

Gating within live CD4+ T cells or CD8+ T cells the frequency of IL-17A, IL-17F and IFNγ expressing 

cells was assessed. Flow cytometric plots show the results of (A) donor 1 and (B) donor 2. 
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Figure 5.21 Back-gating on IL-17A and IL-17F producing cells. 

Cells isolated from RA synovial tissue were stimulated for 3 hours with PMA, ionomycin and Golgistop 

and then assessed for intracellular IL-17A, IL-17F cytokine expression via flow cytometry. Live CD14- 

IL-17A+ or IL-17F+ cells were gated upon. Flow cytometric plots show the results of (A) donor 1 and 

(B) donor 2. 
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5.3 Discussion 

The data presented in this chapter clearly demonstrate that the presence of IL-17A 

protein and IL-17A+ T cells is increased in the SF vs. PB of RA and PsA patients. In 

contrast, the data suggests IL-17F and IL-17F+ CD4+ T cells is not consistently 

present in inflammatory arthritis.  The presence of IL-17F in RA and PsA SF remained 

inconclusive with inconsistent Luminex and ELISA and results and ex vivo analysis 

showed that IL-17F+ CD4+ T cells were either undetectable or present at very low 

frequencies. In one out of seven PsA patients, IL-17F+ CD8+ T cells frequencies were 

observed in the SF but this was not seen in the other six patients.  Analysis of IL17F 

gene expression in RA T cells provided no further clarification on the presence of IL-

17F. Similarly, few IL-17F+ expressing CD4+ T cells were present in RA synovial 

tissue. Collectively, this chapter suggests that while IL-17A+ T cells are consistently 

present in RA and PsA SF, only a small percentage of RA or PsA patients may exhibit 

low frequencies of IL-17F+ T cells. 

 

In concordance with previous studies 103,251, Luminex and ELISA analysis confirmed 

the presence of IL-17A protein at elevated levels in RA and PsA synovial fluid vs. 

serum. This shows IL-17A protein is elevated in the inflamed joints rather than 

systemically. While Luminex analysis revealed the presence of IL-17F in the SF of 

RA and PsA patients, these results were not confirmed by ELISA. ELISA results 

showed IL-17F to be undetectable or present at very low levels in both serum and SF 

samples. Moreover, IL-17AF protein was undetectable in RA and PsA serum and SF 

samples. Recombinant IL-17F spiked-in serum and SF samples was detected by 

ELISA, demonstrating the composition of the samples was not preventing the 

detection of IL-17F. These data highlight the difficulties in generating reliable results 

for detecting IL-17F in SF samples. Moreover, they highlight how investigating a 

hypothesis using different methods may lead to different results. In concordance with 

these results, there are inconsistencies across the literature of the levels of IL-17A 

detected in SF. For example, a publication by Ziolkowska et al. detected high IL-17A 

protein levels (approximately 1000pg/ml) in RA SF using ELISA 416. In contrast, a 

different report analysed the SF from RA and healthy control donors using a highly 

sensitive Erenna immunoassay system and observed very low levels of IL-17A with 
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no difference between RA and healthy control SF (0.07 vs. 0.07pg/ml) 370. Moreover, 

this report identified IL-17F protein at higher levels in RA vs. healthy control samples 

(130 vs. 1.6pg/ml).  

 

These inconsistencies in IL-17 protein levels present in SF may arise from true 

variation in patient groups, differences in sampling handling or differences in the 

specific assay method used. Moreover, it is important to take into consideration the 

possibility of interference from heterophilic antibodies. Heterophilic antibodies can 

include autoantibodies such as rheumatic factor or polyspecific antibodies that consist 

of poorly defined antibodies with multiple binding specificities 417. They can cause 

false negative results but more frequently, they cause false positive results. Moreover, 

the extent of heterophilic antibody interference may vary across assays as it is often 

unclear what measures, if any, manufacturers have taken to prevent interference. In 

our experiments, no steps were taken to prevent heterophilic intereference. Therefore, 

it may be possible the IL-17F luminex results are false-positive due to heterophilic 

interference. Future repeat experiments should include measures to prevent 

heterophilic antibody interference. This can include diluting serum or SF samples in 

buffer containing IgG from the same species as the capture antibody. Moreover, 

samples could be preadsorbed on human γ-globulin-coated polystyrene beads. To 

conclude this section it is important to also highlight a study by Soderstrom et al., 

which raises the issue that outside of cultured cell environments, cytokines (in 

particular IL-17A) are often difficult to study. This is because cytokines act locally 

and often in low abundance. Their report suggests that analysis of IL-17 cytokines in 

serum or SF samples should be carried out using a highly sensitive single molecule 

(SMC) immunoassay 418. Although having an assay that can effectively detect low 

levels of cytokine is beneficial, it is important to consider whether the cytokine can 

elicit much of a functional effect at the detected concentration. For example, as shown 

in chapter 4, IL-17F has a low inflammatory potency and requires substantial levels to 

elicit an IL-6 fibroblast response. 

 

The composition of SF is complex and strongly influences the microenvironment of 

the joint. Both the literature and our data have shown that RA and PsA SF contains 
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pro-inflammatory cytokines including IL-17A and TNFα. As SF and synovial 

fibroblasts play pivotal roles in both the initiation and perpetuation of inflammatory 

arthritis. Preliminary experiments sought to assess the effect of SF derived from the 

inflamed arthritic joint on in vitro synovial fibroblasts. This would recreate a 

physiopathological microenvironment, typical of RA or PsA.  However, unfortunately 

these preliminary experiments were unsuccessful. Addition of 0.5% PsA SF led to a 

small increase in IL-6 secretion, however, undetectable levels of IL-6 were observed 

with higher concentrations of SF. Higher concentrations of  SF are likely to be 

required to assess the effect of blockade of IL-17 cytokines and TNFα.  As an early 

study has reported that 30% of RA SF elicited an increase in IL-6 levels from base-

line 419, further work should be continued. This should also involve assessing the 

viability of fibroblasts upon culture with SF, as there may be components which are 

toxic to the cell. 

 

In concordance with previous studies 367,368 and the Luminex and ELISA data 

generated in this thesis, flow cytometry analysis demonstrated the presence of IL-

17A+ CD4+ T cells at elevated frequencies in the synovial fluid vs. blood in both RA 

and PsA patients. Moreover, we observed a positive correlation between the levels of 

IL-17A protein present in the SF vs. the frequency of IL-17A+ CD4+ T cells detected. 

The levels of IL-17A protein or frequencies of IL-17A+ CD4+ T cells did not correlate 

with the patient DAS28 scores. However, further n numbers are required to confirm 

this. Elevated frequencies of IL-17A+ CD4+ T cells were also detected in the SF vs. 

PB of an RA and PsA patient upon a three hour stimulation with αCD3 and αCD28. 

This demonstrates that PMA and ionomycin is not required to detect these cells. 

However, no IL-17A+ CD4+ T cells were observed in SFMC samples which were not 

re-stimulated and cultured with Golgi-Stop alone. It is possible that as soon as the cells 

are removed from the inflamed joint or the inflammatory microenvironment of the SF, 

their ability to produce IL-17A is limited. Therefore, SF CD4+ T cells require a small 

stimulation to re-elicit IL-17A expression and demonstrate their enhanced potential to 

produce IL-17A vs. CD4+ T cells from the PB. To investigate the importance of SF 

in maintaining IL-17A expression from CD4+ T cells, a future experiment could 

involve adding Golgi-Stop directly to SF samples. In doing so, the CD4+ T cells 

present would still be in the inflammatory environment, whilst the Golgi-Stop is 
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retaining any IL-17A protein being expressed in the cell. Following an incubation 

period, cells can then be washed and stained for flow cytometry.  

 

In contrast to IL-17A, few IL-17F+ CD4+ T cells were detected. Moreover, different 

ex vivo stimulation conditions did not reveal the presence of IL-17F expressing CD4+ 

T cells. Similarly, low frequencies of IL-17AF+ CD4+ T cells were observed. In light 

of these data it can be concluded IL-17F+ CD4+ T cells are either undetectable or 

present at very low frequencies following ex vivo stimulation. In vitro stimulation of 

RA and PsA PB and SF was performed to assess whether CD4+ T cells from the SF 

demonstrated an enhanced ability to express IL-17F vs. PB CD4+ T cells. However, 

no consistent difference was observed in IL-17F or IL-17A expression or secretion 

between PB and SF CD4+ T cells. 

 

As discussed in the introduction, literature describes numerous other immune cells as 

IL-17A and IL-17F producers, including CD8+ T cells. In line with a previous report 

from the lab 374, analysis of CD8+ T cells revealed the presence of IL-17A+ CD8+ T 

cells present at higher levels in SF vs. PB in PsA patients.  In one out of seven PsA 

patients, IL-17F+ CD8+ T cells frequencies were observed. This suggests that IL-

17F+ CD8+ T cells may be present in the SF of a small percentage of inflammatory 

arthritis patients. To address this hypothesis a significantly larger cohort should be 

analysed. It is important to acknowledge that back-gating on ex vivo stimulated RA 

PBMC and SMFC revealed the enrichment of IL-17A+ CD8+ T cells in the SF of 

three out of eight RA patients. Currently, the literature implicates that IL-17A+ CD8+ 

T cells are enriched in the SF of PsA and not RA patients 244,374. As two out of the 

three RA patients with SF IL-17A+ CD8+ T cells were seronegative, this suggests 

there may be a link between the presence of IL-17A+ CD8+ T cells in the inflamed 

joint and seronegative RA.  

 

IL17A or IL17F mRNA was not detectable in PB or SF sorted CD4+ or CD8+ T cells 

from RA patients. Additionally, microarray analysis revealed undetectable IL17A or 

IL17F gene expression levels in CD25- CD4+ T cells from RA PB or SF. These IL17A 
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gene expression results are in contrast to our robust flow cytometry data which 

detected elevated levels of IL-17A+ CD4+ T cells in the SF of RA patients. The lack 

of IL17A gene expression may be attributed to the fact that only a small percentage of 

bulk CD4+ T cells express IL-17A, therefore IL17A gene expression is masked by the 

majority of IL-17A- CD4+ T cells present in the RA SF. Another possibility for the 

lack of IL17A mRNA expression may be due to the absence of a PMA and ionomycin 

re-stimulation. Flow cytometry revealed the presence of IL-17A+ CD4+ T cells in SF 

samples following a 3 hour re-stimulation with PMA/ionomycin or αCD3 and αCD28. 

However, IL-17A+ CD4+ T cells were undetectable with the addition of Golgi-Stop 

alone. Future experiments could involve re-stimulating CD4+ T cells from the RA 

and/or PsA with either PMA/ionomycin or αCD3/αCD28 and then extracting RNA for 

analysis of IL17A and IL17F mRNA expression. 

 

Investigating the presence of IL-17 cytokines in RA or PsA synovial tissue may reveal 

results not observed in the SF. This is because there are cells such as TRMS which 

remain embedded in the tissue and do not re-circulate in the SF. TRM cells have been 

shown to produce IL-17A 420. To the best of my knowledge, these cells have not yet 

been shown to produce IL-17F. Studies in the literature have demonstrated the 

presence of IL-17A and IL-17F mRNA or IL-17A and IL-17F producing cells in the 

synovial tissue of RA and PsA patients. A recent study showed that out of 14 PsA 

synovial tissue samples, IL17A mRNA was detectable in 9 samples and IL17F mRNA 

was detectable in 6 samples 121. However, the cellular source of IL-17A and IL-17F in 

this study remains unknown. Moreover, immunohistochemical analysis demonstrated 

the presence of IL-17A and IL-17F producing cells in the RA but not OA synovial 

tissue 112. Similar to the Glatt et al., study the IL-17 producing cells were unidentified. 

In this chapter, flow cytometry results of cells isolated from RA synovial tissue 

revealed the presence of IL-17A+ CD4+ T cells, however with low cell events, further 

experiments are required to confirm this. The number of events in all IL-17F+ gates 

was very low; therefore an accurate conclusion on the presence of IL-17F+ cells in 

RA tissue cannot be reached with this data. To progress this work further additional 

RA and PsA tissues could be analysed. Moreover, it would be of interest to include 

TRM markers such as CD103 in the staining panel, to investigate whether any IL-17 

producing cells are TRMS. 
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Limited experiments in this thesis were performed to investigate the presence of IL-

17B, IL-17C, IL-17D and IL-17E in inflammatory arthritis. Data in chapter 4 

demonstrated a synergistic effect between IL-17E and TNFα in eliciting IL-6 and IL-

6 secretion by fibroblasts. Therefore, we were keen to examine the presence of IL-17E 

in the SF. Luminex results show low levels of IL-17E present in some serum and SF 

samples from RA and PsA patients. Furthermore, undetectable IL-17E gene 

expression levels were observed in CD25- CD4+ T cells from RA PB and SF samples. 

Following on from the discussion regarding protein analysis of human samples, it 

would be worthwhile to repeat analysis of IL-17E protein with an ELISA and/or 

luminex including steps to prevent heterophilic interference. Moreover, flow 

cytometry could be used to analyse the presence of IL-17E+ CD4+ T cells in ex vivo 

stimulated RA and PsA PBMC and SFMC. IL-17D has been shown to be produced by 

resting CD4+ T cells, however IL17D gene expression levels were undetectable in 

CD25- CD4+ T cells from RA PB and SF. Additionally, IL17B and IL17C gene 

expression was undetectable in RA PB and SF CD25- CD4+ T cells. However, this is 

expected as CD4+ T cells have not been reported to be their cellular source. During 

this study one of the limitations to studying the remaining human IL-17 family 

members has been the lack of reagents available, for example ELISA kits and flow 

cytometry antibodies. However, more reagents are now becoming available. In the 

final discussion I discuss how future experiments can investigate the presence of the 

remaining cytokines in inflammatory arthritis. 

 

To summarise, this section demonstrates that while IL-17A and IL-17A+ T cells are 

robustly and consistently detected in the RA and PsA inflamed joint, IL-17F, IL-17AF 

and IL-17F+ and IL-17AF+ CD4+ T cells are not and therefore may not play a 

significant immunopathological role in this disease setting.  
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6 Final discussion 

To conclude this thesis, this final chapter summarises key findings, highlights 

outstanding questions and discusses potential areas of future research. 

 

6.1 Summary of Chapter 3 results 

Data presented in this chapter show that in the presence of IL-1β and IL-23, a higher 

concentration of anti-CD28 mAb in CD4+ T cell cultures leads to an increase in IL-

17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells, while frequencies of IL-17A+ IL-

17F- CD4+ T cells are decreased. This anti-CD28 mAb was shown to be mediated by 

IL-2 and in part IFNγ. Similarly, frequencies of IL-17F+ CD4+ T cells were 

preferentially induced with a higher concentration of anti-CD3 mAb. These data led 

us to hypothesise that a strong T cell stimulation drives IL-17F expression. Moreover, 

we hypothesise IL-17A and IL-17F are differentially regulated. Finally, I show IL-

17A+ and IL-17F+ CD4+ T cells display different cytokine profiles. Notably, IL-

17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells display significantly lower 

frequencies IL-10 and higher frequencies of IFNγ when compared with IL-17A+ IL-

17F- CD4+ T cells. 

 

6.2 Summary of Chapter 4 results 

Fibroblast assays demonstrated that the inflammatory potential of IL-17F is enhanced 

in the presence of TNFα leading to synergistically increased levels of IL-6 and IL-8 

secretion by fibroblasts. However, in the presence of IL-17A, IL-17F is redundant. 

Nevertheless, in line with other reports I show that in an environment whereby IL-17A 

and IL-17F are present, dual blockade of these cytokines is more effective at reducing 

inflammation. This chapter described the development of an IL-17A and IL-17F 

secretion assay. Following further validation this will be a useful tool to further 

characterise IL-17A and IL-17F producing cells. Finally, data presented in this chapter 

demonstrate that IL-17E also synergises with TNFα increasing IL-6 and IL-8 secretion 

by fibroblasts. 
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6.3 Summary of Chapter 5 results 

This chapter provides robust evidence that IL-17A protein and IL-17A+ CD4+ T cells 

are increased in the SF vs. PB of RA and PsA patients. Moreover, elevated frequencies 

of IL-17A+ CD8+ T cells were observed in PsA SF vs. PB. IL-17A+ CD4+ and CD8+ 

T cells were also identified in RA synovial tissue. Across all approaches IL-17F 

protein or IL-17F+ T cells were not consistently or reliably detected. Contradicting 

luminex and ELISA results meant the presence of IL-17F protein in inflammatory 

arthritis remained inconclusive. Ex vivo flow cytometry analysis showed that IL-17F+ 

CD4+ T cells were either undetectable or present at very low frequencies. In one out 

of seven PsA patients, IL-17F+ CD8+ T cells were observed but this was not seen in 

the other six patients. No IL-17F+ T cells were reliably detected in RA synovial tissue. 

In vitro cultures demonstrated that in a particular environment these RA and PsA PB 

and SF CD4+ T have the potential to express IL-17F. 

 

6.4 Outstanding questions and future research 

6.4.1 Are IL-17A and IL-17F differentially regulated in CD4+ T cells? 

Studies have shown that high-strength T cell activation suppresses the induction of IL-

17A+ CD4+ T cells 221,225. In some reports this suppressive effect has been attributed 

to IL-2 221.  In this study, titration of anti-CD28 mAb did not affect the frequency of 

total IL-17A+ CD4+ T cells. Moreover, blockade of IL-2 in CD4+ T cell cultures led 

to no consistent differences in total IL-17A+ CD4+ T cells percentages. In contrast, 

our data clearly demonstrated that higher concentrations of anti-CD28 mAb induced 

IL-17F expression and this effect was shown to be mediated by IL-2. Collectively, 

data from chapter 3 led us to hypothesise that high-strength T cell activation promotes 

IL-17F+ CD4+ T cells and that IL-17A and IL-17F expression in CD4+ T cells are 

differentially regulated. As previously mentioned, IL-2 has been shown to mediate its 

effects via STAT5 223. Reports have also suggested IL-2 down-regulates IL-17A 

expression in CD4+ T cells via the ability of STAT5 to directly compete with STAT3 

to enhancers within the IL17A gene locus 222. In contrast, data in this thesis suggest 

STAT5 is important for driving IL-17F expression in CD4+ T cells. We hypothesise 

IL-17A and IL-17F may be differentially regulated by STAT3 and STAT5. 
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To investigate this hypothesis future research could firstly involve examining whether 

other cytokines which act via STAT5, including IL-15 421 induce IL-17F+ CD4+ T 

cell expression similar to IL-2. The IL-17A and IL-17F capture assay described in this 

thesis can be utilised to sort IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells following a 3 day in vitro CD4+ T cell culture and examining 

STAT3 and STAT5 phosphorylation. Phosphorylation of STATs can be examined by 

lysing the sorted cells and performing a western blot with pSTAT3 and pSTAT5 

antibodies. If our hypothesis is correct, we may observe a strong signal for pSTAT3 

in IL-17A+ IL-17F- CD4+ T cells and conversely a strong pSTAT5 signal in sorted 

IL-17F+ IL-17A- CD4+ T cells. For a more sophisticated approach, direct 

STAT3/STAT5 binding to the IL17A or IL17F promoter could be assessed in the 

different IL-17 populations via chromatin immunoprecipitation interrogated with 

next-generation sequencing (ChIP-seq). ChIP is a method used to study protein-DNA 

interactions. It involves cross-linking proteins to their bound DNA via formaldehyde 

treatment. An antibody specific to the protein of interest (in this case STAT3 and 

STAT5) is then used to selectively co-immunoprecipitate the protein-bound DNA 

fragments that were covalently cross-linked. Finally, the immunoprecipitated protein-

DNA links are reversed and the recovered DNA is analysed to determine the sequences 

bound by that protein. Although multiple approaches are available to analyse the 

released DNA fragments such as microarray hybridisation (ChIP-chip), next-

generation sequencing technology (ChIP-seq) offers distinct advantages 422. 

Therefore, IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells 

could be sorted by the described IL-17A and IL-17F capture assay following a three 

day in vitro culture. Sorted cells could then undergo the ChIP-seq protocol and STAT3 

and STAT5 binding on the IL17A and IL17F locus can be assessed in the different IL-

17 expressing subsets.  

 

Another approach to investigate the hypothesis that IL-17A and IL-17F are 

differentially regulated could include mouse model studies especially as the 

importance of STAT3 in the generation of IL-17A+ CD4+ T cells was demonstrated 

in mouse studies 203. Laurence et al. demonstrated that STAT5 deficient mouse T cells 

produced significantly increased amounts of IL-17A and elevated levels of IL-17A 

were detectable in the serum of STAT5a/b vs. wild type mice 218. To date, no studies 
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have investigated the effect of IL-17F in STAT5 or IL-2 deficient mice. It would be of 

interest to investigate whether, in contrast to IL-17A, IL-17F is significantly decreased 

in these mouse models. In line with this, a study by Lin and colleagues generated 

transgenic mice that express hyper-active STAT5 in haematopoietic stem cells and 

derived lineages in a temporally and spatially controlled manner. They demonstrated 

that hyper-active STAT5 resulted in abnormally high numbers of circulating 

granulocytes that led to severe airway destruction. Granulocyte accumulation was 

reduced and the air-way was restored upon down-regulation of excessive STAT5 423.  

The mechanism of the granulocyte accumulation was unknown, however, it is line 

with studies reporting the role of IL-17F in inducing neutrophilia, especially in 

asthmatic patients 108,109. Therefore, it could be speculated that hyper-active STAT5 

led to excessive production of IL-17F and subsequently increased granulocyte 

accumulation. I believe investigating the hypothesis that IL-17A and IL-17F are 

differentially regulated is interesting to pursue as currently no studies prove this. It 

may also help us understand when IL-17F can be present in disease, for example where 

there is an increase in STAT5-signalling proteins. 

 

6.4.2 Is there a functional difference between IL-17A+ and IL-17F+ CD4+ 

T cells? 

We have shown that by increasing anti-CD28 mAb concentration in CD4+ T cell 

cultures, the frequency of IL-17A+ IL-17F- CD4+ T cells are decreased, whilst IL-

17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cell frequencies are increased. One of 

the key remaining questions is what is the functional impact of skewing Th17 cells 

into different IL-17A/ IL-17F expressing populations? As IL-17F is considered a 

weaker inducer of inflammation, one plausible explanation could be IL-17A+ IL-17F- 

CD4+ T cells are skewed to IL17F+ IL-17A- CD4+ T cells to dampen the 

inflammatory effect of IL-17A. In the event of high T cell stimulation, driving a Th17 

population from predominantly IL-17A+ IL-17F- CD4+ T cells to IL-17F+ IL-17A- 

CD4+ T cells will limit the potent inflammatory effect of IL-17A, whilst carrying out 

similar roles. However, it is important to note that in this culture system, as IL-17A+ 

IL-17F+ CD4+ T cell frequencies were also increased with a higher concentration of 

anti-CD28 mAb, the frequency of total IL-17A expressing CD4+ T cells remained 

unchanged.  
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Interestingly, data in this thesis demonstrated that IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells have a lower frequency of IL-10+ cells and higher frequencies of 

IFNγ+ cells when compared to IL-17A+ IL-17F- CD4+ T cells. It would be of interest 

to examine whether the differences in cytokine profiles lead to different functional 

properties. Future studies could firstly expand upon the characterisation and 

comparison of IL-17A+ and IL-17F+ CD4+ T cells. Following a 3-day CD4+ T cell 

culture with IL-1β, IL-23, anti-CD28 mAb and anti-CD3 mAb, IL-17A+ IL-17F-, IL-

17A+ IL-17F+, IL-17F+ IL-17A- and IL-17A- IL-17F- CD4+ T cell populations could 

be sorted (using the method and regents described in this thesis). Next, the gene 

expression profile of the sorted IL-17 populations could be analysed by RNA-seq. 

Briefly, a typical RNA-seq experiment would involve converting RNA from cells of 

interest into a library of cDNA fragments. Sequencing adaptors are added to each 

cDNA fragment and a short sequence is obtained from each cDNA using high-

throughput sequencing technology. The resulting sequence reads are aligned with a 

reference genome or transcriptome 424. Performing RNA-seq would allow a wide-

range of genes encoding cytokines, markers and transcription factors to be analysed 

and compared between the different IL-17 subsets. Firstly, differences in IL-10 and 

IFNγ expression can be validated at the RNA level. Next, it would be of interest to 

compare the gene expression of homing markers e.g. CLA, CCR4, α4β7, and CCR5 to 

investigate whether the different IL-17 subsets might have different migratory 

properties. T-cell subsets that bear cutaneous lymphocyte antigen (CLA) 425 are 

specialised for skin homing and CCR4 is a skin homing marker 426. The integrin α4β7 

is responsible for homing into gut-associated lymphoid tissues 427 and CCR5 directs 

cells to sites of inflammation 428. The rationale for looking at the expression of homing 

markers is that studies have reported the presence of IL-17F in psoriasis 108,382 and gut 

inflammation 429. Therefore, it may be that IL-17F+ CD4+ T cells may play a more 

predominant role at specific sites of inflammation.  

 

The next important experiment would be to assess whether IL-17A+ IL-17F-, IL-17A+ 

IL-17F+ and IL-17F+ IL-17A- CD4+ T cells elicit different responses from target 

cells. To investigate this, following a 3-day in vitro culture, an IL-17A and IL-17F 
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secretion assay can be performed, sorting the different IL-17 populations. Sorted IL-

17 populations can then be cultured for 24 hours in RPMI media and collected. Firstly, 

a Luminex assay can be performed on the supernatants to assess any differences in 

cytokines secreted by IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- 

CD4+ T cells. Next, similar to previous experiments, the supernatants from IL-17A+ 

IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells can be added to 

fibroblast cultures and the levels of IL-6 and IL-8 secretion can be assessed. However, 

as IL-17F+ CD4+ T cells displayed significantly lower co-expression levels of IL-10, 

it would be of interest to assess how the supernatant from the different sorted IL-17 

subsets affects other immune cells including monocytes and/or macrophages. IL-10 is 

a potent anti-inflammatory cytokine, which plays an important role in regulating the 

immune response. The importance of IL-10 in regulating the immune response is 

evidenced by the IL-10 knock-out mouse phenotype, which displays dysregulated 

inflammatory responses 28. One of the mechanisms by which IL-10 exerts anti-

inflammatory effects is by potently inhibiting monocyte/macrophage activation. 

Addition of IL-10 to J744 mouse macrophage cells in the presence of LPS, inhibited 

macrophage activated by LPS 29. IL-10 potently inhibits monocyte and macrophage 

production of TNFα and CC and CXC chemokines, therefore reducing chemokine-

driven recruitment of neutrophils and other immune cells to sites of inflammation 30. 

To examine whether the different IL-10 co-expression levels observed in the IL-17A+ 

IL-17F+ CD4+ T cells and IL-17F+ IL-17A- vs. IL-17A+ IL-17F- CD4+ T cells have 

a functional effect, the supernatants of the sorted IL-17 populations can be added to 

cultures of CD14+ monocytes in the absence or presence of LPS. It can then be 

assessed whether addition of IL-17A+ IL-17F- CD4+ T cell supernatants reduces the 

secretion of TNFα or chemokines from monocytes, whereas IL-17F+ CD4+ T cell 

supernatant has no effect due to the absence/ low levels of IL-10 present. These results 

would indicate whether skewing a Th17 population towards predominantly IL-17F 

expressing CD4+ T cells could allow for a more inflammatory environment. 
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6.4.3 Is IL-17F present in inflammatory arthritis? 

In this thesis, I phenotypically characterised healthy IL-17F+ CD4+ T cells and 

showed the potential benefit of IL-17A and IL-17F dual blockade in reducing 

inflammation. Moreover, I describe the development of an IL-17F secretion assay 

which will allow for further characterisation IL-17F+ cells. We sought to apply this 

knowledge into understanding the role of IL-17F in inflammatory arthritis. However, 

the presence of IL-17F in the serum or SF of RA and PsA patients remained 

inconclusive. Furthermore, out of eight RA and seven PsA patients, only one PsA 

patients revealed observable frequencies of IL-17F+ CD8+ T cells in the SF. Overall, 

the data in this thesis suggest that while IL-17A+ T cells are consistently present in 

RA and PsA SF, only a small percentage of RA or PsA patients may exhibit low 

frequencies of IL-17F+ T cells. In this thesis, the predominant focus is IL-17F+ T 

cells, however, other cells such as mast cells and macrophages have been reported to 

secrete IL-17F. In our RA and PsA ex vivo dataset, flow cytometry analysis was 

performed to identify any non-T cell IL-17F+ producing cells, however, none were 

found. To conclude work on the presence of IL-17F in inflammatory arthritis future 

experiments could involve performing an ICCS on all the cells (no Lymphoprep step) 

present in RA PB and SF. In the case of PB samples, red blood cells would need to be 

lysed. Performing this experiment would allow for the presence of IL-17F+ 

neutrophils or mast cells present in RA/PsA SF to be examined. To analyse a wide-

array of cell surface markers, CyTOF staining and acquisition could be performed. 

 

6.4.4 Does IL-17F contribute to the pathology of other diseases? 

Future research could explore the role of IL-17F in other diseases and investigate 

whether dual blockade of IL-17A and IL-17F may alleviate disease symptoms. 

Evidence has linked IL-17F to the immunopathology of other disease including 

psoriasis, asthma, inflammatory bowel disease and periodontitis. Here, I review the 

presence of IL-17F in other diseases and discuss future experiments in different 

diseases that may be of interest. 
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6.4.4.1 Psoriasis 

As previously discussed in the introduction, psoriasis is a chronic inflammatory skin 

disorder. While the pathology of psoriasis is complex, studies have suggested the 

initiation and perpetuation of psoriasis is driven by interactions between T cells, 

dendritic cells, neutrophils and cytokines secreted by immune cells 430. IL-17A+ T 

cells have been implicated as a key contributor to the pro-inflammatory state of 

psoriasis 378,379 and as previously mentioned in the introduction, studies have identified 

the presence of IL17F mRNA and protein in psoriasis 108,382. Targeting IL-17A in 

psoriasis by secukinumab and ixekizumab has led to dramatic success in the clearance 

of psoriatic lesions 398,431. Moreover, similar success has been observed with 

brodalumab, whereby IL-17RA is blocking thereby inhibiting the function of IL-17A, 

IL-17F, IL-17C and IL-17E 432.  Glatt et al. shown that psoriatic patients receiving 

bimekizumab demonstrated significant disease improvement 121. However, head-to-

head trials are necessary to demonstrate that a combined blockade of IL-17A and IL-

17F is more effective at clearing psoriasis than blockade of IL-17A alone. 

 

6.4.4.2 Asthma 

Asthma is characterized by chronic deregulated airway inflammation and bronchial 

hyper-responsiveness. Patients suffer with recurrent chest wheezing, coughing and 

shortness of breath. Immunohistochemistry staining for IL-17A and IL-17F in 

bronchial epithelium samples revealed elevated frequencies of IL-17A+ and IL-17F+ 

cells in severe asthma patients vs. healthy control. While IL-17A was predominantly 

expressed in both mononuclear cells, IL-17F+ cells were both mononuclear and 

epithelial cells. In concordance, IL17A and IL17F mRNA was detectable in bronchial 

biopsies from severe asthmatic patients 433. Moreover, another study detected elevated 

levels of IL-17F protein in the serum of asthma patients vs. non-asthmatic controls 434. 

 

Although the pathology of asthma remains to be fully elucidated, eosinophilic and 

neutrophilic inflammation in the airways are characteristic features. Research has 

demonstrated that neutrophils are present at a two-fold higher concentration in 

bronchoalveolar lavage fluid (BALF) when compared to mild/moderate asthmatics or 

normal controls 435. Linking IL-17 cytokines to the pathology of asthma, studies have 



254 

 

shown overexpression of IL-17A or IL-17F in mouse airways leads to increased 

numbers of neutrophils in BALF 436,437. This is likely due to the ability of IL-17A and 

IL-17F to induce the secretion of chemokines such as IL-8. Additionally, reports have 

demonstrated the ability of IL-17F to induce pro-fibrotic cytokines including IL-11 

and insulin-like growth factor-1 (IGF-1) in bronchial epithelial cells 438,439. These 

cytokines can contribute to airway remodelling in asthma. Airway structural changes 

include sub-epithelial fibrosis and increased smooth muscle mass which contribute to 

the thickening of airway walls, which can lead to airway narrowing and bronchial 

hyper-responsiveness 440. In the airways of asthma patients, a positive correlation 

between the number of CD4+ T cells and neutrophil infiltration has been observed 441. 

Moreover, in the asthma rat model, depletion of CD4+ T cells significantly inhibited 

neutrophil infiltration 442. Collectively, these reports suggest that CD4+ T cells in 

asthma regulate neutrophilic inflammation. It may be possible that IL-17F+ and IL-

17A+ T cells are encompassed in this CD4+ T cell population. 

 

The use of biologics as a treatment for severe asthma is being explored, including 

inhibition of IL-17. Kirsten et al. studied the effect of secukinumab in ozone-induced 

airway neutrophilia in healthy volunteers. They reported no difference in secukinumab 

vs. placebo group in the number of neutrophils in induced sputum 443. In a double-

blind placebo-controlled phase II study, 302 patients with inadequately controlled 

moderate to severe asthma were randomized to brodalumab or placebo. Across all 

patients, no clinical differences in lung function or asthma symptoms were observed. 

However, when assessing asthma sub-groups, patients with high bronchodilator 

reversibility demonstrated a clinical response 444. Since this clinical trial study, studies 

investigating the therapeutic potential of IL-17 cytokines in asthma have been limited. 

As asthma is a heterogeneous disease with many other factors such as Th2 cytokines 

and IgE levels playing a key role, the benefit of dual IL-17A and IL-17F blockade in 

alleviating asthma symptoms may be revealed in clinical trials of specific asthma sub-

types. 
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6.4.4.3 Inflammatory bowel disease 

Inflammatory bowel disease encompasses ulcerative colitis and crohn’s disease, which 

are both long-term conditions that involve gut inflammation. Ulcerative colitis affects 

the colon, whereas crohn’s disease can affect any part of the digestive system. A report 

by Seiderer et al. showed that IL17F gene expression is up-regulated in active crohn’s 

disease but not ulcerative colitis when compared to uninflamed lesion samples from 

the same patients 429. Although, animal models suggested dual IL-17A and IL-17F 

blockade may reduce intestinal inflammation 363, a clinical trial which investigated the 

effect of brodalumab in patients with active crohn’s disease yielded negative results 

445. Finally, a double-blind, randomised, placebo-controlled proof-of-concept study in 

59 crohn’s disease patients demonstrated that treatment with secukinumab is 

ineffective 446. 

 

6.4.4.4 Periodontitis 

Studies have implicated IL-17A to the immunopathology of periodontitis 198,447. 

Periodontitis is a chronic inflammatory disease characterised by the destruction of the 

supporting structures of teeth (alveolar bone and periodontal ligament). Although 

evidence is not strong, IL-17F has been linked to periodontitis. A study by Luo et al. 

suggested that IL-17A+ IL-17F- and IL-17F+ IL-17A- CD4+ T cells are elevated in 

the PB of chronic periodontitis patients vs. healthy controls 448. However, care must 

be taken when interpreting these data as the representative flow cytometric plot is not 

convincing for an IL-17F positive stain. To the best of my knowledge, blockade of IL-

17A or IL-17RA has not been tested as a therapy for periodontitis. 

 

6.4.4.5 The role of IL-17F in non-inflammatory arthritis diseases: Future work 

After reviewing the current literature of IL-17F in other diseases, in my view it would 

be of interest to expand upon the role of IL-17F in psoriasis. This is because initial 

studies have detected IL-17F in psoriatic lesions and brodalumab and secukinumab 

have demonstrated significant success in clearing psoriatic lesions. In contrast, 

although evidence has implicated IL-17A and IL-17F in asthma and inflammatory 

bowel disease, clinical trials have shown blockade of IL-17A or IL-17RA is not 

effective at ameliorating disease. Although psoriasis is associated with PsA, in this 
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thesis psoriatic lesions were not studied. Future experiments could involve isolating 

cells from psoriatic lesions and examining the presence of IL-17F and IL-17A 

expressing cells by flow cytometry. If indeed IL-17A+ and IL-17F+ CD4+ T cells are 

present, flow cytometry analysis could be performed to investigate whether they 

display different cytokine profiles as demonstrated in this thesis. Furthermore, sorting 

IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells from 

psoriatic lesions for gene expression profiling would be of interest, although a 

significant limitation would be the low cell numbers. However, this limitation could 

be overcome by performing single-cell RNA-seq 449. 

 

6.4.5 Investigating the presence of IL-17B, IL-17C, IL-17D and IL-17E in 

inflammatory arthritis 

A lot remains unexplored regarding the presence and role of IL-17B, IL-17C, IL-17D 

and IL-17E in human inflammatory arthritis and this may be interesting for future 

work to pursue. Future work could involve performing CyTOF to analyse the 

expression of all IL-17 family members in all immune cell subsets present in 

inflammatory arthritis PBMC and SFMC. Additionally, new technology (Hyperion 

Imaging System) has combined CyTOF with imaging capability which allows for 

visualisation of protein markers in the context of a tissue micro-environment. Using 

this approach, the presence of all IL-17 cytokines could be analysed in human tissue 

samples from inflamed arthritic joints. 

 

6.5 Concluding remarks 

The main findings of this thesis are summarized in Figure 6.1. Data in this thesis 

suggest that high-strength T cell stimulation drives IL-17F expressing CD4+ T cells. 

It is demonstrated that addition of anti-CD28 drives IL-17F+ CD4+ T cells via an IL-

2 dependent mechanism. We hypothesise that STAT5 plays a role in IL-17F induction. 

Results also show that IL-17A+ and IL-17F+ CD4+ T cells display different cytokine 

profiles and may be functionally distinct. These data suggest there is more to IL-17F 

in addition to being co-expressed with IL-17A. Finally, the pro-inflammatory 

functions of IL-17F are enhanced in the presence of TNFα and the induced 

inflammation will persist during blockade of IL-17A alone. We show that in an 
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environment whereby IL-17A, IL-17F and TNFα are present at sufficient levels, dual 

IL-17A and IL-17F blockade is more effective at reducing inflammation than blockade 

of IL-17A alone.  
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Figure 6.1 Insights into the expression and function of IL-17F 

Data presented in this thesis demonstrate that in the presence of IL-1β and IL-23, anti-CD28 mAb 

enhances the frequency of IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells in an IL-2 dependent 

mechanism. In contrast, the frequency of IL-17A+ IL-17F- CD4+ T cells is reduced. We hypothesise 

IL-17A and IL-17F are differentially regulated and a strong T cell stimulation drives IL-17F expressing 

cells, of which STAT5 plays an important role. Results also demonstrate IL-17A+ and IL-17F+ CD4+ 

T cell populations display different cytokine profiles. Regarding the function of IL-17F, we show the 

ability of IL-17F to induce the pro-inflammatory mediators IL-6 and IL-8 from target fibroblast cells is 

enhanced in the presence of TNFα, however, when IL-17A is present the effect of IL-17F is limited. 

Nevertheless, in an environment where IL-17A, IL-17F, IL-17AF and TNFα are all present combined 

blockade of IL-17A (which also blocks IL-17AF) is more effective at reducing inflammation than 

blockade of IL-17A alone. 
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7 Appendix 

7.1 Analysis of IL-17A/IL-17F CD4+ T cells via CyTOF 

 

Mass cytometry (CyTOF) analysis was performed to provide a broad overview of the 

co-expression of cytokines in IL-17A and IL-17F CD4+ T cell populations. Following 

a three day culture, cells were re-stimulated with PMA and ionomycin for 3 hours, 

stained with metal-conjugated antibodies as described in the materials and methods 

and then acquired on CyTOF Helios. Data were analysed using Cytobank. This 

experiment was performed with one individual donor. 

 

The gating strategy applied is illustrated in Figure 7.1A. Unlike flow cytometry, cell 

FSC-A and FSC-W characteristics are unavailable as cells are vaporized during 

CyTOF acquisition. Therefore, to begin gating CD45 and DNA intercalator expressing 

cells were selected. Within this population, live cells were selected and CyTOF 

calibration beads were excluded. Dead cells were excluded based on the presence of 

cisplatin and CD3+ CD4+ T cells were selected. Next, a t-distributed stochastic 

neighbour embedding (t-SNE) was performed to visually (viSNE) map individual 

CD4+ T cells based on their phenotypic relationship. To perform this, all cytokines 

analysed (IL-17A, IL-17F, IL-17AF, TNFα, IFNγ, GM-CSF, IL-21, IL-22, IL-13, IL-

4 and IL-10) were selected for viSNE mapping. Cells which have high variability of 

cytokines will be polarized apart, whereas cells with low cytokine variance will be 

closer on the viSNE map. The viSNE map generated is illustrated in Figure 7.1B and 

depicts the CD4+ T cells which express IL-17A and IL-17F. To compare the cytokine 

co-expression of IL-17A and IL-17F expressing CD4+ T cells, IL-17A and IL-17F 

CD4+ T cells were selected on the viSNE map and a spanning-tree progression 

analysis of density-normalized events (SPADE) algorithm was applied. The SPADE 

analysis applied clusters of cells into populations or ‘nodes’ based on their cytokine 

expression. Colouring can then demonstrate the relative cytokine staining intensity in 

each cluster of cells. Based on IL-17A and IL-17F expression SPADE nodes were 

grouped into IL-17A+ IL-17F-, IL-17A+ IL-17F+ or IL-17F+ IL-17A- CD4+ T cells 

(Figure 7.1C).  
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Next, as displayed in Figure 7.2, SPADE maps were used to compare the co-

expression of cytokines in IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- 

CD4+ T cells. It is important to note, the SPADE map for each cytokine has an 

individual scale range which indicates the range of mean staining intensity. This varies 

from cytokine to cytokine depending on the signal of cytokine present. Broadly 

analysing the SPADE CyTOF results, it is clear IL-17AF is highly co-expressed by 

IL-17A+ IL-17F+ and not IL-17A+ IL-17F- and IL-17F+ IL-17A- CD4+ T cell 

populations. This is in concordance with previous data demonstrated in Figure 3.8. All 

IL-17 populations co-expressed TNFα, IFNγ, GM-CSF and IL-8. Although co-

expressed by the IL-17 populations the total staining intensity of IL-21, IL-22 and IL-

6 was low. The Th2 cytokine, IL-13 was undetectable and total levels of IL-4 was low. 

The anti-inflammatory cytokine, IL-10 appeared to be predominantly co-expressed by 

IL-17A+ IL-17F- and IL-17A+ IL-17F+ CD4+ T cells. 

 

For validation purposes and to analyse the data in more depth, the dataset acquired by 

CyTOF was analysed by FlowJo. Here I focus on the co-expression of the cytokines 

TNFα, IFNγ, GM-CSF and IL-10. Using the same gating strategy applied in the 

Cytobank analysis, the cytokine co-expression of live CD3+ CD4+ T cells was 

analysed. To assist with depicting a positive cytokine expression gate for the sample, 

flow cytometry plots were compared with a no PMA and ionomycin control sample 

(Figure 7.3A). Small ‘bleb’ like populations resting on the negative control were 

observed in the IL-17A and IL-10 sample FACS plots. While it may be a true cytokine 

population, it is also possible the population could be a result of antibodies sticking 

together, therefore they were excluded from the positive gate. To compare cytokine 

expression, TNFα, IFNγ, GM-CSF and IL-10 gates were then applied to IL-17A+ IL-

17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cell populations. All IL-17 

populations highly expressed TNFα (>90% of IL-17 producing cells). Interestingly, 

higher IFNγ co-expression levels were observed in IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells when compared with IL-17A+ IL-17F- CD4+ T cells. IL-17A+ 

IL-17F+ CD4+ T cells displayed the highest co-expression levels of GM-CSF and IL-

10. No IL-17F+ IL-17A- CD4+ T cells co-expressed IL-10. 
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While this CyTOF data provides a good indication IL-17A+ IL-17F-, IL-17A+ IL-

17F+ and IL-17F+ IL-17A- CD4+ T cells may display a different cytokine profile, it 

was only an initial analysis showing the results of one individual donor. Moreover, the 

analysis of the raw data indicates potential ‘stickiness’ of the antibodies which leads 

to the reliability of the results being questioned. While CyTOF offers the advantage 

of investigating an extensive panel, in this case it was decided to move forward by 

analysing the co-expression of TNFα, IFNγ, GM-CSF and IL-10 by IL-17A and IL-

17F CD4+ T cell populations by flow cytometry, shown in section 3.2.2.2. Differences 

in the CyTOF vs. flow cytometry data were observed. This is likely to be attributed to 

the lack of n numbers for the CyTOF data and possible issues with antibody staining. 

The flow cytometry data presented in section 3.2.2.2 is robust with multiple n numbers 

and successful antibody staining.  
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Figure 7.1 CyTOF gating strategy. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. After 3 days, 

cells were re-stimulated with PMA and ionomycin, stained with metal-conjugated antibodies and 

acquired on CyTOF Helios. Data was analysed using CytoBank. (A) shows the gating strategy applied. 

CD45+ and DNA intercolator+ events were selected. Within this population, live cells were selected 

and CyTOF calibration beads were excluded. Dead cells were excluded based on the presence of 

cisplatin and CD3+ CD4+ T cells were selected. (B) visNE plots of CD4+ T cells clustering using 

intracellular cytokines, shown are heatmaps for the expression of IL-17A and IL-17F. (C) Gating within 

IL-17A+ and IL-17F+ CD4+ T cell events on the visNE plot, a spanning-tree progression analysis of 

density-normalized events (SPADE) algorithm was applied. Nodes are coloured by IL-17A or IL-17F 

median intensity and size is based on cell number. Grouped together are IL-17A+ IL-17F-, IL-17A+ 

IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. Results are from n=1 donor. 
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Figure 7.2 Comparison of IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-

17A- CD4+ T cells by SPADE analysis. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. After 3 days, 

cells were re-stimulated with PMA and ionomycin, stained with metal-conjugated antibodies and 

acquired on CyTOF Helios. Data was analysed using CytoBank. Grouped together are IL-17A+ IL-

17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells. Nodes are coloured by the individual 

cytokine median intensity and size is based on cell number. Results are from n=1 healthy donor. 
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Figure 7.3 Flow Jo analysis on CyTOF acquired data. 

Bulk CD4+ T cells were cultured with anti-CD3 mAb, αCD28 mAb, IL-23 and IL-1β. After 3 days, 

cells were re-stimulated with PMA and ionomycin, stained with metal-conjugated antibodies and 

acquired on CyTOF Helios. Data was analysed using Flow Jo. Gated within live CD45+ CD3+ CD4+ 

T cell events (A) displays the flow cytometric plots of total IL-17A, IL-17F, TNFα, IFNγ, GM-CSF 

and IL-10 cells present within CD4+ T cells in conditions unstimulated and stimulated with PMA and 

ionomycin. (B) Gating within IL-17A+ IL-17F-, IL-17A+ IL-17F+ and IL-17F+ IL-17A- CD4+ T cells 

the co-expression of TNFα, IFNγ, GM-CSF and IL-10 was assessed. Results are from n=1 healthy 

donor. 
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