
This electronic thesis or dissertation has been

downloaded from the King’s Research Portal at

https://kclpure.kcl.ac.uk/portal/

Take down policy

If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing

details, and we will remove access to the work immediately and investigate your claim.

END USER LICENCE AGREEMENT

Unless another licence is stated on the immediately following page this work is licensed

under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

licence. https://creativecommons.org/licenses/by-nc-nd/4.0/

You are free to copy, distribute and transmit the work

Under the following conditions:

 Attribution: You must attribute the work in the manner specified by the author (but not in any
way that suggests that they endorse you or your use of the work).

 Non Commercial: You may not use this work for commercial purposes.

 No Derivative Works - You may not alter, transform, or build upon this work.

Any of these conditions can be waived if you receive permission from the author. Your fair dealings and

other rights are in no way affected by the above.

The copyright of this thesis rests with the author and no quotation from it or information derived from it

may be published without proper acknowledgement.

Efficient sequence comparison via combining alignment and alignment-free
techniques
algorithms and bioinformatics research

Ayad, Lorraine Abdelmasih Khalil

Awarding institution:
King's College London

Download date: 13. Jan. 2025

Efficient Sequence Comparison via

Combining Alignment and

Alignment-Free Techniques

Algorithms and Bioinformatics Research

Lorraine Abdelmasih Khalil Ayad

Department of Informatics

King’s College London

UK

June 2019

Abstract

Sequence comparison is the core computation of many applications involving textual

representations of data. Edit distance is the most widely used measure to quantify the

similarity of two sequences. Edit distance can be defined as the minimal total cost of a

sequence of edit operations required to transform one sequence into the other.

The motivation herein lies specifically within the development of algorithms and their

implementation for sequence comparison, avoiding computing alignments under the edit

distance measure, where possible. One of the benefits of this work is that it is not neces-

sarily limited to computational biology, but also has applications in image recognition.

The following algorithms were designed to solve and optimise previously presented

work found within the literature. This thesis provides an in depth analysis of three

algorithms that have been designed, implemented and tested.

The first, hCED is a heuristic solution for computing the cyclic edit distance between

two strings using a new distance measure, namely the β-blockwise q-gram distance. The

second algorithm, MARS builds on this work, by computing accurate rotations for a given

set of circular sequences and outputs the rotated sequences, which can then later be used

to compute a multiple sequence alignment. The final algorithm, CNEFinder looks into

the analysis of conserved non-coding elements, regions of a genetic sequence found to be

evolutionarily conserved across multiple organisms, without needing to compute whole

genome alignments.

1

Acknowledgements

First and foremost I would like to thank my supervisor Dr Solon Pissis for all his hard

work and support throughout my PhD. Not only has he dedicated a lot of time and effort

through my supervision, but his guidance has enabled me to learn an abundance of skills

and earn great experience in a short amount of time. He has allowed my PhD to be a

challenging, yet engaging journey, proving to me that it was definitely worthwhile.

I would also like to thank Professor Costas Iliopoulos for his support throughout

my PhD as well as providing me with great opportunities for collaboration with other

institutes worldwide.

The time and dedication I have spent on my PhD over these few years would not have

been possible without the constant care and encouragement of my parents; Abdelmasih

Ayad and Magda Ayad, as well as my sister Marina Ayad and brother-in-law Petro

Lambros. I am indebted to them for their unconditional love throughout my journey and

beyond. I would also like to thank my extended family for consistently asking about me

and supporting my progress.

This journey towards my PhD would not have been the same without my friends and

members of the Algorithms and Bioinformatics group at King’s College London. They

have helped to make it truly an enjoyable and memorable time of my life.

I would finally like to acknowledge The Engineering and Physical Sciences Research

Council (EPSRC) for their financial support throughout my PhD, who I would not have

been able to successfully complete my PhD without.

2

Publications

1. L.A.K. Ayad, S.P. Pissis and A. Retha, “libFLASM: a software library for fixed-

length approximate string matching”, BMC Bioinformatics, vol. 17, no. 1, 2016,

pp. 454.

2. L.A.K. Ayad, S.P. Pissis,“MARS: improving multiple circular sequence alignment

using refined sequences”, BMC Genomics, vol. 18, no. 1, 2017, pp. 86.

3. L.A.K. Ayad, C. Barton, S.P. Pissis, “A faster and more accurate heuristic for cyclic

edit distance computation”, Pattern Recognition Letters, 2017.

4. H. Alamro, L.A.K. Ayad, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, “Longest

Common Prefixes with k-Mismatches and Applications”, in SOFSEM 2018: The-

ory and Practice of Computer Science: 44th International Conference on Current

Trends in Theory and Practice of Computer Science, Krems, Austria, January 29

- February 2, 2018, Proceedings, A. M. Tjoa et al., Eds., Cham: Springer Interna-

tional Publishing, pp. 636-649.

5. M. Alzamel, L.A.K. Ayad, G. Bernardini, R. Grossi, C. S. Iliopoulos, N. Pisanti,

S.P. Pissis, G. Rosone, “Degenerate String Comparison and Applications”, in 18th

International Workshop on Algorithms in Bioinformatics (WABI 2018), L. Parida,

E. Ukkonen, Eds., Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer In-

formatik, pp. 21:1-21:14.

6. L.A.K. Ayad, S.P. Pissis, D. Polychronopoulos; “CNEFinder: finding conserved

non-coding elements in genomes”, Bioinformatics, Volume 34, Issue 17, 1 Septem-

3

ber 2018, Pages i743-i747.

7. L.A.K. Ayad, G. Bernardini, R. Grossi, C.S. Iliopoulos, N. Pisanti, S.P. Pissis, G.

Rosone, “Longest Property-Preserved Common Factor”, SPIRE, Springer, 2018,

pp. 42–49.

8. L.A.K. Ayad, C. Barton, P. Charalampopoulos, C.S. Iliopoulos, S.P. Pissis, “Longest

Common Prefixes with k-Errors and Applications”, SPIRE, Springer, 2018, pp.

27–41.

9. L.A.K. Ayad, M. Chemillier S.P. Pissis (2018) “Creating improvisations on chord

progressions using suffix trees”, Journal of Mathematics and Music, 12:3, 233-247.

10. L.A.K. Ayad, G. Badkobeh, G. Fici, A. Heliou & S.P. Pissis, “Constructing An-

tidictionaries in Output-Sensitive Space”, 13 May 2019, 2019 Data Compression

Conference (DCC). pp. 538-547.

4

Contents

1 Introduction 7

2 Definitions and Notations 13

2.1 Strings . 13

2.2 Circular strings . 13

2.3 Edit distance . 14

2.4 Cyclic edit distance . 14

2.5 q-gram distance . 14

2.6 β-blockwise q-gram distance . 15

2.7 Suffix array . 16

3 hCED - a heuristic for Cyclic Edit Distance computation 18

3.1 Background . 18

3.2 Algorithm hCED . 21

3.2.1 Stage 1: Circular sequence comparison with q-grams 22

3.2.2 Stage 2: Refinement . 23

3.2.3 Stage 3: Edit distance computation 24

3.3 Analysis . 25

3.4 Experimental Results . 25

3.4.1 Synthetic Data . 26

3.4.2 Real Data . 31

3.5 Conclusion . 33

4 MARS - computing Multiple circular sequence Alignments using Refined

Sequences 35

4.1 Background . 35

4.2 Algorithm MARS . 40

4.2.1 Stage 1. Pairwise cyclic edit distance 40

5

4.2.2 Stage 2. Guide tree . 41

4.2.3 Stage 3. Progressive Alignment . 42

4.3 Experimental Results . 46

4.3.1 Synthetic Data . 46

4.3.2 Real Data . 51

4.4 Conclusion . 54

5 CNEFinder - Finding conserved non-coding elements in genomes 55

5.1 Background . 55

5.2 Algorithm CNEFinder . 57

5.2.1 Stage 1: Identifying matches . 58

5.2.2 Stage 2: Merging matches . 59

5.2.3 Stage 3: Extending matches . 60

5.3 Experimental Results . 61

5.3.1 CNEFinder against UCNEbase . 62

5.3.2 Genomic distribution of CNEs along the chromosome 62

5.3.3 Efficiency of CNEFinder . 63

5.3.4 Comparison with local-alignment tools 64

5.4 Conclusion . 64

6 Discussion 66

6

1 Introduction

Sequence comparison is the core computation of many applications involving textual

representations of data. Edit distance is the most widely used measure to quantify the

similarity of two sequences. Edit distance can be defined as the minimal total cost of a

sequence of edit operations required to transform one sequence into the other.

The motivation herein lies specifically within the development of algorithms and their

implementation for sequence comparison, avoiding computing alignments under the edit

distance measure, where possible. One of the benefits of this work is that it is not neces-

sarily limited to computational biology, but also has applications in image recognition.

The following algorithms were designed to solve and optimise previously presented

work found within the literature. This thesis provides an in depth analysis of three algo-

rithms that have been designed, implemented and tested. The first, hCED is a heuristic

solution for computing the cyclic edit distance between two strings. A cyclic or circular

string is one which has no definite beginning or end and can be imagined in such a way

where the first and last character of the string are positioned next to each other.

Circular sequences are widely discussed in the literature including within areas of

image recognition. Freeman proposed a method for encoding geometric curves so that they

can be easily manipulated using existing computational tools [41]. The curves making

up an image can be represented using a continuous list of angles which can then be

simplified by encoding these values into a numerical list. This was further simplified by

using a hexagonal array to represent at most 6 angle variations that the outline of an

image can take, such that each numerical value represents an angle which varies at most

60 degrees. An 8-direction chain code can also be used which represents the 8 directions

a curve can take to represent the outline of an image [41] as seen in Figure 1.

Example The direction diagram presented in Figure 1a can be used to identify an 8-

direction chain-code for the diagram in Figure 1b. Starting at the filled circle and working

in a clockwise manner around the image would give the chain-code 0766465432121.

7

2
1

04

3

5 7
6 (a) (b)

Figure 1: 8 directions a curve can take to represent the outline of an image.

This encoding can be used for pattern recognition where images have a similar closed

boundary [90]. Identifying images that have a similar boundary allows them to be classed

together which can assist in the process of image restoration [52]. This encoding method

has also been used to classify handwritten digits [70] and likewise can be used for the

interpretation of chest x-rays and aircraft analysis [90].

Circular structures can also be found in abundance in the biological world. The poly-

oma virus, a small DNA virus that is widespread in nature [2] obtains this structure [119].

Similarly, bacterial DNA is generally made up of a single circular chromosome [109], as

is the genomic structure of archaea [3]. The existence of these structures presents the

need for algorithms to be able to analyse these organisms. It is known for example that

nucleotide mutations as well as rotations often occur in viruses. Therefore there is a need

to determine if a pair of viruses have a mutation due to a circular rotation or from an-

other cause [48]. This can then be linked to a specific disease or gives more understanding

about the phylogenetics (evolutionary history) of a group of related organisms [71].

Being able to compute the similarity between circular sequences can aid with the pre-

viously defined applications. A measure which is invariant to the starting position of the

sequence needs to be used to be able to compute how similar or different a pair of circular

sequences are [90]. Several exact and heuristic algorithms exist that can compute this

measure, namely the edit distance between a pair of circular sequences. These algorithms

are discussed in more detail in Section 3. Due to the great difference in time complexities

8

when finding exact and heuristic solutions for this problem, it is sometimes beneficial

to make use of a heuristic solution which gives near accurate results. The current best

performing heuristic in terms of time and accuracy is the weighted Bunke and Buhler

algorithm [73]. This algorithm makes use of a dynamic programming matrix called an

edit graph made up of a quadratic set of nodes of total size (|x|+ 1)× (2|y|+ 1) where x

and y are the input circular sequences. Optimal paths are found on this graph to identify

the smallest distance between sequences x and y.

The bottleneck of this algorithm lies within its quadratic time complexity. Our contri-

bution aims to improve on this complexity, specifically for computing solely, an accurate

rotation such that the edit distance between two circular sequences is minimal. We present

a heuristic algorithm that uses a new distance measure introduced in [47] and is discussed

more thoroughly in Section 3.

The second algorithm, MARS builds on this work, by computing accurate rotations for

a given set of circular sequences, such as those given in Figure 2, and outputs the rotated

sequences, which can then later be used to compute a multiple sequence alignment.

x =

AC
G

T

C

C
G A

G

C

C

T
G

y =

CG
A

G

C

C
T G

A

C

G

T
C

z =

CC
T

G

A

C
G T

C

C

G

A
G

Figure 2: Circular sequences x, y and z.

Example By breaking each of the three circular sequences presented in Figure 2 into

linear sequences, by making the top most nucleotide of each x, y and z, the first character

of each respective sequence, we obtain the following sequences:

x = AGTCCGAGCCTGC

y = CCTGCAGTCCGAG

9

z = CGAGCCTGCAGTC

However, if broken at certain positions in each sequence, such that those nucleotides

presented in bold are the first character of each respective sequence, then it is clear that

x, y and z are all identical. x = y = z = TGCAGTCCGAGCC.

The idea of MARS is to accurately compute these rotations, given that the set of input

sequences may have been arbitrarily broken at random positions to obtain a set of linear

sequences.

As previously described, circular molecular structures are abundant in a range of

organisms including bacteria, archaea, eukaryotes and in viruses [25, 50]. DNA replication

which leads to cell division is common in eukaryotic cells [55] as well as in bacteria [8].

Mitochondrial DNA, which are commonly found in eukaryotes are circular in structure

and are generally conserved across evolution. Replication of mitochondrial DNA occurs

frequently [55], which leads to the production of exact copies of the same DNA. Mutations

are common during cell replication. This can result in the change of a single base pair,

known as a point mutation, or a deletion of a few base pairs which can affect the function

of a gene [63].

Multiple sequence alignment, which involves being able to align multiple sequences is

key in phylogenetic analysis and the study of evolutionary relationships among species [84].

Molecular sequence alignment allows potential homology among nucleotide or amino acid

positions to be discovered, meaning similarity in structure indicates shared evolutionary

origin between organisms. This alignment allows for more understanding about the evo-

lutionary divergence between sequences as well as the inference of historical relationships

among genes and species [58].

However, to be able to compute a multiple circular sequence alignment, an accurate

rotation needs to first be identified for each sequence of the input set. To be able to

compute this, a measure is required to compute which rotation reduces the overall distance

between every sequence pair [17]. The sum-of-pairs score which computes the sum of all

10

pair-wise induced alignment scores is known to be NP-hard [117]. As a result, several

heuristic algorithms have been developed to find an accurate alignment.

Two current state-of-the-art tools that assist in the computation of multiple circular

sequence alignments are Cyclope [74] and BEAR [11]. Cyclope computes pairwise align-

ments using an exact cubic algorithm. The quadratic heuristic algorithm of Cyclope only

performs well when all sequences are very similar. On the other hand, BEAR presents two

algorithms discussed in more detail in Section 4 where one heuristic is designed for less

divergent sequences and the other for more divergent sequences. Experimental results

show that BEAR is over 20 times faster than Cyclope [11]. However, the more divergent

algorithm makes use of input parameters than can give rise to errors if set to small values.

To overcome the drawbacks found in these tools, we present MARS, a heuristic tool based

on the pairwise circular sequence comparison algorithm hCED, discussed in Section 3.

More details about MARS including experimental analysis can be found in Section 4.

The final algorithm, CNEFinder looks into the analysis of conserved non-coding ele-

ments (CNEs), regions of a genetic sequence, sometimes greater than 500 base pairs in

length, found to be evolutionarily conserved across multiple organisms. There is very

little presented work in the literature that analyses CNEs which are known to be present

in all metazoa (multicellcular) genomes; Aparicio et al [5] analysed these elements and

have identified their roles in the development of multicellular organisms by acting as en-

hancers, elements with which proteins interact to transmit signals to genes [15]. It is

however known that they do not encode for proteins and their complete functionality is

still unknown [88].

As a result, there is a need to be able to further analyse these elements to identify

more about their functionality. Alignment based techniques exist which require the pair of

input sequences to first be aligned before they are analysed [14]. There also exist several

databases that store CNE elements that have been identified from previous research,

where solutions have been tailored to the organisms being analysed. These include, but

are not limited to those found in the UCNEbase [30]. An example of its interface can be

11

Figure 3: CNEs conserved across a range of organisms, including human, chicken and

mouse, retrieved from the UCNEBase.

seen in Figure 3, where it is clear that previously identified CNEs are conserved across a

range of organisms.

We present CNEFinder, a tool tailored for CNE identification, given a pair of genetic

sequences. It is an alignment-free based tool and also does not require an index of

the input sequences to be computed. More details are presented in Section 5 where

experimental results show the efficiency and accuracy of CNEFinder.

All three tools were implemented in the C++ programming language and have been

thoroughly tested, with results presented in the corresponding sections of this thesis. The

implementation of all three tools is distributed under the GNU General Public License

and they are freely available at the following locations:

hCED: https://github.com/lorrainea/hCED

MARS: https://github.com/lorrainea/MARS

CNEFinder: https://github.com/lorrainea/CNEFinder

12

https://github.com/lorrainea/hCED
https://github.com/lorrainea/MARS
https://github.com/lorrainea/CNEFinder

2 Definitions and Notations

We begin with a few definitions to help the reader understand more clearly the algorithms

to be discussed.

2.1 Strings

We think of a string (or sequence) x of length m as an array x[0 . . .m− 1], where every

x[i], 0 ≤ i < m, is a letter drawn from some fixed alphabet Σ of size |Σ| = O(1). The

empty string of length 0 is denoted by ε. Given string y, a string x is considered a factor

of y if there exist two strings u and v, such that y = uxv. Consider the strings x, y, u,

and v, such that y = uxv. We call x a prefix of y if u = ε; we call x a suffix of y if

v = ε. When x is a factor of y, we say that x occurs in y. Each occurrence of x can be

denoted by a position in y. We say that x occurs at the starting position i in y when

y[i . . i + m − 1] = x; alternatively we may refer to the ending position i + m − 1 of x in

y [28].

2.2 Circular strings

A circular string of length m can be viewed as a traditional linear string which has the

left- and right-most letters wrapped around and positioned next to each other. Under

this notion, the same circular string can be seen as m different linear strings, which would

all be considered equivalent. Given a string x of length m, we denote by xi = x[i . . .m−

1]x[0 . . . i − 1], 0 < i < m, the ith rotation of x and x0 = x [28]. Consider, for instance,

the string x = x0 = abababbc; which has the following rotations: x1 = bababbca,

x2 = ababbcab, and so on. We say that two strings x and y are conjugate if there exist

two strings u and v such that x = uv and y = vu.

13

2.3 Edit distance

Given a string x of length m and a string y of length n ≥ m, the edit distance, denoted

by δE(x, y), is defined as the minimal total cost of edit operations required to transform

one string into the other [29]. In general, the allowed operations are as follows:

• Insertion: insert a letter in y, not present in x; (ε, b), b 6= ε

• Deletion: delete a letter in y, present in x; (a, ε), a 6= ε

• Substitution: replace a letter in y with a letter in x; (a, b), a 6= b, and a, b 6= ε.

By ins(b), del(a), and sub(a, b), a 6= b, and a, b ∈ Σ, we denote the cost of insertion,

deletion, and substitution operations, respectively. In many applications, we only want

to count the number of edit operations, considering the cost of each to be 1 [61]. This

distance is known as Levenshtein distance, a special case of edit distance where unit costs

apply.

Example Let x = AGTCGTACTAGATG, y = AGTTCGTACTGCTG and ins(b) = del(a) = 3 and

sub(a, b) = 1. It is clear from the alignment below that δE(x, y) = 7:

AG-TCGTACTAGATG

AGTTCGTACT-GCTG

2.4 Cyclic edit distance

The cyclic edit distance between a circular string x and a circular string y is the minimum

edit distance between x and every cyclic shift j of y. It is denoted by δCE(x, y) and is

more formally defined as δCE(x, y) = mini(minj , δE(xi, yj)) = minj δE(x, yj) [66].

2.5 q-gram distance

We give some further definitions following [113]. A q-gram is defined as any string of

length q over alphabet Σ. The set of all q-grams is denoted by Σq. For example, the

14

string AGTACT has the following q-grams of length 3: AGT, GTA, TAC, ACT. The q-gram

profile of a string x is the vector Gq(x), where q > 0 and Gq(x)[v] denotes the total

number of occurrences of q-gram v ∈ Σq in x.

Definition 1. Given strings x of length m and y of length n ≥ m and an integer q > 0,

the q-gram distance Dq(x, y) is defined as:

∑
v∈Σq

|Gq(x)[v]−Gq(y)[v]| . (1)

Example Let x = CTCTGAGC, y = TCTCGCGC and q = 3. Dq(x, y) = 8.

v CTC TCT CTG TGA GAG AGC TCG GCG CGC

Gq(x)[v] 1 1 1 1 1 1 0 0 0

Gq(y)[v] 1 1 0 0 0 0 1 1 2

2.6 β-blockwise q-gram distance

For a given integer parameter β ≥ 1, [47] defined a generalisation of the q-gram distance

by partitioning x and y in β blocks as evenly as possible, and computing the q-gram

distance between each pair of blocks, one from x and one from y. The rationale is to

enforce locality in the resulting overall distance. For the sake of presentation in the rest

of this thesis, we assume in Section 3 and Section 4 that the lengths |x| = m and |y| = n

are both multiples of β, so that x and y are conceptually partitioned into β blocks, each

of size m/β for x and n/β for y.

Definition 2. Given strings x of length m and y of length n ≥ m and integers β ≥ 1

and q > 0, the β-blockwise q-gram distance Dβ,q(x, y) is defined as

β−1∑
j=0

Dq

(
x

[
jm

β
. .

(j + 1)m

β
− 1

]
, y

[
jn

β
. .

(j + 1)n

β
− 1

])
. (2)

Example Let x = CTCTGAGC, y = TCTCGCGC, q = 3 and β = 2. Dβ,q(x, y) = 4.

15

j = 0

v CTC TCT

Gq(x)[v] 1 1

Gq(y)[v] 1 1

j = 1

v GAG AGC GCG CGC

Gq(x)[v] 1 1 0 0

Gq(y)[v] 0 0 1 1

The example shows strings x and y split into two β-blocks. The first j = 0 has a

q-gram distance of 0 as all q-grams of length 3 found in x[0 . . . 3] can be found within

y[0 . . . 3]. The second block, j = 1 has a q-gram distance of 4 as all q-grams of length 3

found in x[4 . . . 7] can not be found within y[4 . . . 7] and vice versa. Therefore overall x

and y have a β-blockwise q-gram distance of 4.

2.7 Suffix array

Given a string x of length m, a suffix array is an integer array that stores the index

position of all lexicographically sorted suffixes of x, which can be constructed using O(m)

time and space [68]. The longest common prefix array stores the length of the longest

common prefix between two adjacent suffixes of x as they are stored in the suffix array.

Example Take string x = ACGTAC$ of length n where the terminating character $ which

is lexicograhically smaller than every other character has been added to the end of x. The

suffix array, SA and longest common prefix array, LCP of x are the following:

i 0 1 2 3 4 5 6

x[i] A C G T A C $

SA[i] 6 4 0 5 1 2 3

LCP[i] 0 0 2 0 1 0 0

Given the computed SA and LCP array, we can easily compute which suffixes of a

string share the same q-grams. From the given example above, looking at LCP[2] = 2,

this tells us that the suffixes starting at positions 0 and 4 share the same q-gram of

length 2. By looking at SA[2] = 0 and the suffix which occurs lexicographically before it,

16

SA[1] = 4, we can identify that the LCP between suffixes x[0 . . n− 1] and x[4 . . n− 1] is

2 (AC) and this is why they share a q-gram of size 2.

17

3 hCED - a heuristic for Cyclic Edit Distance compu-

tation

The work presented in this section was published by Pattern Recognition Letters: L.A.K.

Ayad, C. Barton, S.P. Pissis, “A faster and more accurate heuristic for cyclic edit distance

computation”, Pattern Recognition Letters, 2017.

3.1 Background

Sequence comparison is a fundamental step in many applications involving textual repre-

sentations of data. Alignments constitute one of the processes commonly used to compare

sequences; they are based on notions of distance or of similarity between strings. Edit

distance is the most widely used measure to quantify the similarity (or dissimilarity) of

two given sequences. It can be defined as the minimal total cost of a sequence of elemen-

tary edit operations required to transform one sequence into the other; for a sequence x

of length m and a sequence y of length n, it can be computed in time O(mn) [28].

In many applications it is common to consider sequences with circular structure: for

instance, the orientation of two images or the leftmost position of two linearised circular

DNA sequences may be irrelevant.

In [70], the authors show that computing the edit distance can be used to classify

handwritten digits, where the contours of the digits are represented with an 8-direction

chain-code [41]; a sequence over an eight-letter alphabet, representing the eight cardinal

directions that the contour faces when following the outline of an image in a clockwise

motion.

Example applications where image retrieval is required include digital libraries and

multimedia editing [97]. Computing the cyclic edit distance is a key requirement for image

processing and shape matching. The contours of a shape may be represented through a

cyclic sequence which can be used in the computation of the cyclic edit distance. This

can identify similarities in shapes which appear to be distinct from one another [69, 79].

18

Circular molecular structures are abundant in all domains of life: bacteria, archaea,

and eukaryotes, and in viruses. Exhaustive reviews of circular molecular structures can

be found in [25] and [50].

Using standard techniques to align circular sequences could incorrectly yield a high ge-

netic distance between closely-related sequences. Indeed, when sequencing molecules, the

position where a circular sequence starts can be totally arbitrary. For instance, the lin-

earised human (NC 001807) and chimpanzee (NC 001643) mitochondrial DNA (mtDNA)

sequences do not start in the same region [47]. Due to this arbitrariness, a suitable

rotation of one sequence would give much better results for a pairwise alignment. This

motivates the design of efficient algorithms that are specifically devoted to the comparison

of circular sequences [12, 13, 6, 47].

The cyclic edit distance problem can be defined as follows. Given a sequence x of

length m and a sequence y of length n, find the minimal edit distance between any

conjugate (cyclic rotation) of x and any conjugate of y.

Few exact algorithms exist which are able to compute the cyclic edit distance between

x and y. Maes designed an elegant divide-and-conquer algorithm which runs in time

O(mn logm) [66]. The idea of this algorithm is to identify optimal edit paths which do

not cross each other on the edit graph of xx and y. An exact branch and bound algorithm

based on Maes’ algorithm, which runs in time O(mn logm), was proposed by Barrachina

and Marzal [10]. This method explores only the nodes on the edit graph that could lead

to an optimal path, resulting in a much faster algorithm on average.

Several heuristic approaches exist for approximating the cyclic edit distance. One of

the first ones is the Bunke and Buhler (BBA) algorithm [19]. It estimates a lower bound

for the cyclic edit distance by searching for an optimal path in time O(mn). The extended

Bunke and Buhler method (EBBA) computes an estimation of the upper bound for the

exact cyclic edit distance, also in time O(mn) [72]. The weighted Bunke and Buhler

algorithm (WeBBA) combines the lower and upper bound estimations, computed by the

BBA and EBBA algorithms, to produce an approximation of the cyclic edit distance in

19

time O(mn) [73]. It is perhaps the best performing heuristic currently.

Palazon-Gonzalez and Marzal [80] studied the same problem but from the indexing

point of view for classification and retrieval. Their methods eliminate searching for a

distance when it is known that it will be greater than the distance (external bound) to

the nearest neighbour. They propose two algorithms. The first one modifies the branch

and bound algorithm of [10] by avoiding exploring ranges known to be lower than the

lower bound in the branch and bound computation. The second one modifies the BBA

algorithm by preventing searching for distances when it is known that the final result will

not improve the current external bound.

Our contribution In this paper, we propose hCED, a new heuristic algorithm for

cyclic edit distance computation. The first important step of this computation is based

on an idea that has not been explored by the previous heuristics; that is, considering q-

grams, factors of length q. Informally, the q-gram similarity, defined as a distance in [113],

is the number of q-grams shared by the two sequences. Theoretical insight to support the

suitability of the algorithm is provided. hCED can be split into the following three main

stages:

1. The rotation of x that minimises a generalisation of the q-gram distance between x

and y is computed using the algorithm in [47];

2. A refinement of this rotation of x is carried out by examining only some short

prefixes and suffixes of the rotation and sequence y;

3. Finally, the edit distance between the refined rotation of x and sequence y is com-

puted.

Our main contribution is an extensive experimental study using both DNA and 8-direction

chain-code datasets. These results show that hCED is generally faster, up to one order

of magnitude, and more accurate than existing state-of-the-art heuristics. A free open-

source implementation of hCED is also made available as opposed to current methods.

20

3.2 Algorithm hCED

Jokinen and Ukkonen [53] showed the following bound which is directly applicable to the

Levenshtein distance.

Lemma 1 ([53]). Let x and y be strings with Levenshtein distance k. Then at least

|x|+ 1− (k + 1)q of the |x| − q + 1 q-grams of x occur in y.

We first begin by extending Lemma 1 to non-unit costs.

Lemma 2. Let x and y be strings with δE(x, y) = k, such that C = min{ins(b), del(a), sub(a, b)},

for some C > 1, a 6= b, and a, b ∈ Σ. Then at least |x|+1− (bk/Cc+1)q of the |x|−q+1

q-grams of x occur in y.

Proof. By assumption we have that δE(x, y) = k, and if the edit operations do not

have uniform cost, we have that the number of edit operations is less than or equal to

bk/Cc. Each edit operation could alter at most q different q-grams and hence the lemma

follows.

Consider the case when C = min{ins(b), del(a), sub(a, b)}, D = max{ins(b), del(a),

sub(a, b)}, and D−C = O(1). This assumption captures most, if not all, real-world edit-

distance-based applications. We claim that the lower bound on the number of q-grams is

good in the following sense. The number e of edit operations must be bk/Dc ≤ e ≤ bk/Cc.

For |x| = |y| and e = (|x| − q+ 1)/q, it is easy to design a string such that each operation

alters exactly q q-grams. We can then see that the best bound we can achieve in the above

lemma, without some stronger assumptions, is |x|+ 1− (bk/Dc+ 1)q shared q-grams and

therefore in such cases, the bound in Lemma 2 is within a constant factor. Note that the

choice of e = (n− q + 1)/q is not arbitrary; should e be more than this, the pigeon-hole

principle shows that it is not possible to distribute e operations in such a way that each

occurs at least q positions apart. This means that each operation can no longer alter

exactly q q-grams.

21

Lemma 3. Let x and y be two conjugate strings. For a given q, x and y share at most

|x| − q + 1 q-grams and at least |x| − 2q + 2.

Proof. The first part is trivial. Consider the case when x is a string with a distinct letter

per position and q = 1. Then x and y share exactly |x| − q + 1 distinct q-grams.

For the second part, and by definition, notice that x and y can always be decomposed

to x1x2 and y1y2, respectively, where x1, x2, y1, y2 are strings, such that x1 = y2 and

x2 = y1. Then it is not difficult to see that by choosing an appropriate decomposition,

each pair, (x1, y2) and (x2, y1), shares |x1| − q + 1 and |x2| − q + 1 q-grams, respectively.

The sum |x1| − q + 1 + |x2| − q + 1 can be re-written as |x1| − q + 1 + (|x| − |x1|)− q + 1

which gives |x| − 2q + 2. This concludes the proof.

The small difference of the two bounds shown in Lemma 3 tells us that the q-gram

distance is not a good distance by itself to recover the rotation of x that minimises the

edit distance to y.

Based on the aforementioned remarks, we proceed with designing hCED, a three-stage

heuristic algorithm for cyclic edit distance computation. In the first stage, an initial

rotation of x is computed using the β-blockwise q-gram distance. In the second stage, a

refinement of this rotation is performed; and finally, the edit distance between this refined

rotation of x and string y is computed.

3.2.1 Stage 1: Circular sequence comparison with q-grams

Grossi et al [47] presented an exact algorithm, namely saCSC, to compute the β-blockwise

q-gram distance between x and y. They use this measure to identify an accurate rotation

r of x, such that the edit distance between xr and y is minimal.

redTheir algorithm is as follows. For a string x of length m and string y of length

n ≥ m, initially, the suffix array [68] and longest common prefix array of string xxy is

constructed. A rank is assigned to each suffix which has prefix of at least length q, based

on the ordering of the suffix array. This means the first i0 suffixes which have the same

22

prefix of length at least q, will all get a rank of 0; the next i1 suffixes which have the same

prefix of length at least q, will all get a rank of 1 and this continues until all suffixes have

been given a rank. For all suffixes with a unique prefix of length q, these are assigned a

unique value, either ax or ay, depending if the suffix exists in string x or y, respectively.

This computation takes O(m+ n) time.

New arrays x′ and y′ are constructed which contain the ranks of each of the q−grams

found in strings x and y, respectively. Vector P (y′) stores the number of occurrences

of each rank found in y′. Another vector diff stores the differences between P (y′) and

the corresponding vector which covers the ranks in a window of length m− q + 1 letters

over string x′. These vectors can be updated in constant time for each window. As the

window is shifted to the right, the only two ranks which change the values in diff are

the newly visited rank, rightmost in the current window and the leftmost rank of the

previous window. This is then computed for every window over the string xx and diff

is updated accordingly.

When making use of β blocks, we need to update the information for every diffj ,

where 0 ≤ j < β, for every window of length m− q+ 1 letters. The index position of the

start of the window that gives a minimum total of the sum of occurrences found in diffj

is chosen as the rotation of x. This gives an overall time complexity of O(βm+ n).

The first stage of hCED is essentially the aforementioned algorithm that exploits q-

grams (see Lemma 2). For β = 1 this corresponds to minimising the standard q-gram

distance which is not satisfactory (see Lemma 3); however, the generalisation to β blocks

enforces the property of locality.

3.2.2 Stage 2: Refinement

In the second stage, hCED refines rotation xr and produces a refined rotation, denoted by

xr
′
. When in the first stage, the algorithm splits strings x and y into β blocks, it naturally

disregards locality within each block. Thus when the initial rotation is produced, it may

need to be shifted again slightly to the left or to the right. To this end, we introduce a

23

new input parameter 0 < P ≤ β/3 which defines the length L = bP × m
β c of the prefixes

and suffixes of xr and y to be considered by the refinement.

The algorithm proceeds as follows. It creates two new strings x′ and y′ both of length

3L. In particular, x′ is of the form xr0x
r
1x
r
2, where xr0 is the prefix of length L of string xr;

xr1 is a string of length L consisting only of a letter $ /∈ Σ; and xr2 is the suffix of length

L of string xr. The same is done for y using the prefix and suffix of y, resulting in the

new string y′.

Each rotation of x′ is then compared to y′ excluding when a letter of xr1 (letter $)

is found at index 0 of the rotation of x′. Notice that the notion of edit distance is not

appropriate here due to the existence of letter $ which denotes a don’t care letter. We thus

rather utilise a notion of similarity between strings, for which equalities between letters

are positively valued; inequalities, insertions, and deletions are negatively valued; and

comparisons involving letter $ are neither positively nor negatively valued. The search

consists then in maximising a quantity representative of the similarity between the strings.

To this end we make use of the Needleman-Wunsch algorithm [76] to compute a

similarity score for each rotation of string x′ and string y′. The rotation of x′ which

results in the maximum score is chosen as the best rotation, and hence, the final rotation

r′ of x is computed based on this rotation of x′. Ties are broken arbitrarily. Both x′ and

y′ have length 3L resulting in a single Needleman-Wunsch call to have a running time of

O(L2). As this computation is done exactly 2L times, once for each rotation, the overall

computation of the refinement takes time O(L3).

3.2.3 Stage 3: Edit distance computation

In the third stage, hCED computes the edit distance between strings xr
′

and y. Myers’ bit-

vector algorithm is used to compute the edit distance when using unit costs for insertion,

deletion, and substitution [75]. Myers’ algorithm runs in time O(
⌈
m
w

⌉
n), where w is the

word size of the machine. The standard edit distance algorithm is used when computing

the edit distance with non-unit costs. It runs in time O(mn) [28]. Hence, notice that,

24

compared to the other heuristics, hCED offers an additional advantage. If one is only

interested in the rotation minimising the cyclic edit distance, but not the actual value of

the distance, they can use algorithm hCED and skip the third stage, allowing for a much

faster computation.

3.3 Analysis

The first two stages of algorithm hCED run in total time O(βm+n+L3). The parameters

β and P can be tailored depending on the application; however our experiments show

that setting β = O(m1/3) and P = O(1) performs very well in applications with circular

strings. This can be theoretically explained as follows. Notice that β should not be too

large to allow some flexibility corresponding to insertions and deletions in the alignment.

For P , this is not surprising either as the rationale of the second stage is to refine via

examining only the leftmost and rightmost blocks of each sequence. These parameter

choices imply that the first two stages run in time O(m2 + n). The third stage runs

in time O(
⌈
m
w

⌉
n) with unit costs and in time O(mn) with non-unit costs. The space

complexity is O(βm+ n); the edit distance and Needleman-Wunsch algorithms can both

be implemented in O(m+ n) space [28].

3.4 Experimental Results

Algorithm hCED was implemented in C++ as a program to compute an approximation of

the cyclic edit distance. Given two sequences x and y in multiFASTA format, the number

of β blocks, and the length q of the q-grams, hCED finds an approximation of the rotation

of x that minimises its edit distance from y. It can also output the corresponding rotation

of x. The implementation is distributed under the GNU General Public License, and it

is available freely at http://github.com/lorrainea/hCED.

Another program1 was used to produce experimental results for the Maes, Branch and

Bound, BBA, EBBA, and WeBBA algorithms and compare their performance against that

1Obtained through personal communication with author – Guillermo Peris.

25

http://github.com/lorrainea/hCED

of algorithm hCED. The experiments were conducted on a computer using an Intel Core

i3-5005U CPU at 2.00GHz under GNU/Linux. Both programs were compiled with g++

version 4.8.5 at optimisation level 3 (O3). All input datasets referred to in this section

are publicly maintained at the same website.

Myers’ bit-vector algorithm was implemented using the Edlib library [125]. The stan-

dard edit distance algorithm was also implemented to show how the hCED algorithm

compares to the other heuristics when both unit and non-unit costs are used for the edit

distance operations.

3.4.1 Synthetic Data

DNA datasets were simulated using INDELible [39], which produces sequences in a mul-

tiFASTA file. A rate for insertions, deletions, and substitutions are defined by the user

to vary the similarity of the sequences. 8-direction chain-code datasets were also gener-

ated using a simple script that generates random (uniform distribution) sequences over

Σ = {0, 1, . . . , 7}. All datasets used in the experiments are denoted in the form A.B.C,

where A represents the number of sequences in the dataset; B the average length of the

sequences; and C the percentage of dissimilarity between the sequences. The dissimilarity

values of 5, 20, and 35 were used for both the DNA data and chain-codes.

Nine datasets were simulated to measure the accuracy for DNA sequences. Each

dataset had a varying number of sequences, all with an average length of 2, 500. For each

dataset, the algorithms were run for every possible pair of sequences in the set. Three

8-direction chain-code datasets were also produced. These datasets consisted of twelve

sequences in each set with an average length of 500. Similarly, for each dataset, the

algorithms were run for every possible pair of sequences in the set. For all datasets, we

made use of the following parameter values for algorithm hCED: q = 5, β = m/50, and

P = 1.0.

The values for the cyclic edit distance for each pairwise comparison were computed

using the heuristic algorithms. These values were then compared with those output from

26

the exact cyclic edit distance algorithm by Maes. The number of accurate values output

by the heuristic algorithms in comparison to the exact values for the cyclic edit distance

were computed as an average percentage, which we define as accuracy.

DNA

Accuracy (%)

Dataset hCED BBA WeBBA EBBA

12.2500.5 100.000 83.302 100.000 100.000

12.2500.20 100.000 76.043 99.939 99.905

12.2500.35 100.000 77.673 99.933 99.889

25.2500.5 100.000 84.798 99.997 99.968

25.2500.20 99.975 74.606 99.903 99.868

25.2500.35 99.961 73.478 99.882 99.849

50.2500.5 100.000 85.303 99.999 99.960

50.2500.20 99.999 79.903 99.977 99.940

50.2500.35 99.981 74.043 99.910 99.867

8-direction chain-code

Accuracy (%)

Dataset hCED BBA WeBBA EBBA

12.500.5 100.000 82.511 99.895 99.401

12.500.20 100.000 81.344 99.718 99.481

12.500.35 100.000 87.364 99.783 99.586

Table 1: Accuracy of heuristic algorithms in comparison to exact results produced by

Maes’ algorithm for datasets using unit costs. The highest accuracy for each dataset is

shown in bold.

The results in Table 1 show the accuracy of the algorithms for both data types when

unit costs were used for insertions, deletions and substitutions. In some applications,

in particular in bioinformatics, the cost for insertions and deletions is set higher than

the cost for substitutions. Table 2 shows the accuracy for each of the data types when

non-unit costs of 3, 3, and, 1 were used for insertion, deletion, and substitution, respec-

tively. It becomes evident from these results that algorithm hCED is the most accurate

27

DNA

Accuracy (%)

Dataset hCED BBA WeBBA EBBA

12.2500.5 100.000 79.476 100.000 100.000

12.2500.20 99.958 61.197 99.793 99.763

12.2500.35 99.997 73.360 99.953 99.909

25.2500.5 99.986 80.950 99.981 99.956

25.2500.20 99.970 70.523 99.903 99.864

25.2500.35 99.942 65.091 99.865 99.831

50.2500.5 99.996 81.131 99.992 99.955

50.2500.20 99.987 75.358 99.972 99.937

50.2500.35 99.969 69.339 99.932 99.888

8-direction chain-code

Accuracy (%)

Dataset hCED BBA WeBBA EBBA

12.500.5 99.967 38.044 99.677 99.282

12.500.20 99.175 44.569 98.859 98.592

12.500.35 99.771 57.554 99.082 98.854

Table 2: Accuracy of heuristic algorithms in comparison to exact results produced by

Maes’ algorithm for datasets using non-unit costs. The highest accuracy for each dataset

is shown in bold.

in comparison to the other heuristic algorithms.

To measure the time performance for both data types, seven pairs of sequences of

varying length were simulated. The running time for all sequence pairs were computed

ten times and the average was taken. For these experiments, the following parameter

values for algorithm hCED were used: q = 5, β = min(50,
√
m), and 1.0 ≤ P ≤ 2.0.

Figure 4 shows the time performance of hCED when using unit costs compared to the

other heuristic and exact algorithms. It is clear that as the sequence length grows, hCED

is an order of magnitude faster than WeBBA, the current fastest performing algorithm.

Notice that hCED is three orders of magnitude faster than Maes’ algorithm.

28

DNA

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

250 500 1000 2000 4000 8000 16000

T
im

e
 [

s
]

Sequence Length

Maes
Branch and Bound

BBA
EBBA

WeBBA
hCED

hCED (Rotation)

8-direction chain-code

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

250 500 1000 2000 4000 8000 16000

T
im

e
 [

s
]

Sequence Length

Maes
Branch and Bound

BBA
EBBA

WeBBA
hCED

hCED (Rotation)

Figure 4: Elapsed time to execute datasets using unit costs

29

DNA

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

250 500 1000 2000 4000 8000 16000

T
im

e
 [

s
]

Sequence Length

Maes
Branch and Bound

BBA
EBBA

WeBBA
hCED

hCED (Rotation)

8-direction chain-code

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

250 500 1000 2000 4000 8000 16000

T
im

e
 [

s
]

Sequence Length

Maes
Branch and Bound

BBA
EBBA

WeBBA
hCED

hCED (Rotation)

Figure 5: Elapsed time to execute datasets using non-unit costs

30

Figure 5 shows the time performance of algorithm hCED for both data types when

using non-unit costs. A comparison between hCED and the other cyclic edit distance

algorithms can be seen in the figure. As the sequence length grows, hCED and WeBBA

become the fastest performing algorithms. Both figures also show the time performance of

algorithm hCED when only the rotation is computed; the cyclic edit distance value is not

computed. It is evident that dismissing the computation of the cyclic edit distance greatly

improves the time performance of hCED. The results of hCED confirm our theoretical

analysis.

3.4.2 Real Data

Three datasets made up of nucleotide sequences were used to test the hCED algorithm’s

ability to identify accurate rotations. The first dataset (Mammals) includes 12 mtDNA

sequences of mammals, the second dataset (Primates) includes 16 mtDNA sequences of

primates, and the last one (Viroids) includes 18 viroid RNA sequences. The average

sequence length for Mammals is 16, 777 base pairs (bp), for Primates is 16, 581 bp, and

for Viroids is 363 bp.

Table 3 shows the accuracy of hCED’s computation of the cyclic edit distance for

each pair, which we denote by AP, in comparison to the other heuristics, as well as the

average time taken to do so. The experiment was carried out when using unit costs for

insertions, deletions, and substitutions, as well as when using the same non-unit costs

previously presented. For the Mammals and Primates datasets, we made use of the

following parameter values for algorithm hCED: q = 5, β = m/100, and P = 1.0. For the

Viroids dataset, in which the sequences are much shorter, the following parameters were

used instead: q = 5, β = m/25, and P = 1.0. It is evident from Table 3, that not only

does hCED give the most accurate results, but it is also faster for sequences of long length

when using both unit and non-unit costs.

Handwritten digits from the MNIST database [60] were also used and sorted into ten

sets. Each image was placed in one of ten datasets, depending on the value of the drawn

31

Unit Costs

Program hCED BBA WeBBA EBBA

Dataset AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) AP (%) Time (s)

Mammals 99.618 0.479 69.477 4.870 96.482 2.162 96.469 5.015

Primates 99.743 0.202 74.256 4.766 98.749 2.115 98.742 4.904

Viroids 98.363 0.003 61.057 0.002 97.874 0.001 97.614 0.002

Non-unit Costs

Program hCED BBA WeBBA EBBA

Dataset AP (%) Time (s) AP (%) Time (s) AP (%) Time (s) AP (%) Time (s)

Mammals 98.221 2.092 57.092 4.870 86.728 2.202 86.716 5.012

Primates 99.672 1.964 65.859 4.748 94.443 2.175 94.431 4.898

Viroids 98.155 0.003 49.746 0.002 97.623 0.001 97.288 0.002

Table 3: Accuracy of heuristic algorithms in comparison to exact results produced by

Maes’ algorithm and elapsed-time comparison for real nucleotide data. The highest ac-

curacy and fastest time for each dataset are shown in bold.

Figure 6: Handwritten digits

digit. Each handwritten digit was in the form of a 28 × 28 matrix consisting of pixel

values. 5, 000 of the 60, 000 images were extracted and converted into binary matrices. A

normalised 8-direction chain-code was produced for the handwritten digits, where a subset

can be found in Figure 6. Normalising the chain-code allows the image to be treated as a

circular sequence of minimum magnitude. This produces a sequence independent of the

rotation of the image. This was calculated by identifying the number of direction changes

32

between two adjacent elements of the chain-code in an anticlockwise direction (see [45],

for details).

Accuracy (%) - Unit Costs Accuracy (%) - Non-unit Costs

Dataset hCED BBA WeBBA EBBA hCED BBA WeBBA EBBA

0.479.55 91.781 52.908 90.126 88.271 87.699 41.323 80.256 78.535

1.563.43 93.159 58.589 92.037 89.629 88.213 49.656 85.895 83.727

2.488.73 94.504 54.442 90.265 88.860 89.395 41.645 77.193 76.145

3.493.80 95.371 54.043 89.441 88.277 87.396 38.844 72.854 71.849

4.535.69 93.855 59.600 90.351 89.022 89.163 45.332 77.621 76.350

5.434.78 95.287 53.118 87.869 86.640 85.338 37.622 69.817 68.870

6.501.60 94.139 54.796 88.954 87.328 86.279 38.630 72.112 70.759

7.550.65 92.436 55.092 88.984 88.485 88.276 41.018 75.323 74.108

8.462.56 94.006 55.841 90.720 89.023 87.597 41.948 75.948 74.398

9.495.54 94.211 55.946 89.814 88.029 86.950 41.765 76.159 74.715

Table 4: Accuracy of heuristic algorithms in comparison to exact results produced by

Maes’ algorithm for handwritten digits. The highest accuracy for each dataset is shown

in bold.

Table 4 shows the results of using algorithm hCED to compute the cyclic edit distance

for successive pairs in each dataset. Each dataset is in the formD.E.F , whereD represents

the drawn digit; E the number of sequences in the set; and F the average length of the

sequences in the set. For these datasets, we made use of the following parameter values for

algorithm hCED: q = 5, 7 ≤ m/β ≤ 15, depending on the average length of the sequence,

and P = 1.0. It is evident from Table 4, that for all sets, hCED is the most accurate when

using both unit and non-unit costs. Running times are not presented for the handwritten

digits datasets as the sequence lengths are very small.

3.5 Conclusion

In this section, algorithm hCED, a new heuristic approach to approximate the cyclic

edit distance, was presented. It is an extension of the q-gram based algorithm presented

33

in [47] adapted for cyclic edit distance computation. Our main contribution is an extensive

experimental study to compare hCED against existing state-of-the-art heuristics for the

same problem. In particular, we showed that the performance of hCED, in terms of

accuracy and speed, outperforms existing heuristics using both DNA and 8-direction

chain-code data.

The inherent structure of hCED allows for two important properties: (i) hCED enables

the user to compute only the rotation of x (or an approximation of it) that minimises the

cyclic edit distance from y, performing even faster if the actual value for the cyclic edit

distance is not required; and (ii) this also enables the usage of the fastest known algorithm

for the edit distance computation with unit costs if the actual value for the cyclic edit

distance is required. Figure 4 greatly reflects these advantages in practical terms.

Our improvements are particularly important for applications in image retrieval and

molecular biology. For instance, algorithm hCED can now be directly used for computing

the cyclic edit distance between all pairs of sequences for progressive multiple circular

sequence alignment, as seen in the next section.

34

4 MARS - computing Multiple circular sequence Align-

ments using Refined Sequences

The work presented in this section was published by BMC Genomics: L.A.K. Ayad, S.P.

Pissis,“MARS: improving multiple circular sequence alignment using refined sequences”,

BMC Genomics, vol. 18, no. 1, 2017, pp. 86.

4.1 Background

The one-to-one mapping of a DNA molecule to a sequence of letters suggests that sequence

comparison is a prerequisite to virtually all comparative genomic analyses. Due to this,

sequence comparison has been used to identify regions of similarity which may be a

byproduct of evolutionary, structural, or functional relationships between the sequences

under study [38]. Sequence comparison is also useful in fields outside of biology, for

example, in music analysis [21] or pattern recognition [67] as seen in Section 3. Several

techniques exist for sequence comparison; alignment techniques consist of either global

alignment [76, 46] or local alignment [99] techniques. Alignment-free techniques also

exist; they are based on measures referring to the composition of sequences in terms of

their constituent patterns [114]. Pairwise sequence alignment algorithms analyse a pair of

sequences, commonly carried out using dynamic-programming techniques [46]; whereas

multiple sequence alignment (MSA) involves the simultaneous comparison of three or

more sequences.

The purpose of an MSA is to obtain an alignment of the sequences which will represent

and give more information about their evolutionary, functional or structural relationship.

The alignment, which can be represented as a 2D matrix is obtained by inserting gaps

within the sequences to allow identical or similar nucleotides to be aligned in each column

of the matrix. In terms of evolution, these gaps represent insertions and deletions within

the genome which are known to have occurred during the evolution from a common

ancestor [24].

35

Analysing multiple sequences simultaneously is fundamental in biological research and

MSA has been found to be a popular method for this task. One main application of MSA

is to find conserved patterns within protein sequences [123] and also to infer homology

between specific groups of sequences [58]. MSA may also be used in phylogenetic tree

reconstruction [84] as well as in protein structure prediction [98].

Example Consider the following sequences:

Before alignment:

s0: TCTACCAGAAA

s1: TTTAGAGACA

s2: TCTTAGGAGGAA

After alignment:

s0: -TCTACCAGAAA

s1: -TTTA-GAGACA

s2: TCTTAGGAGGAA

The sequences on the right show an MSA of those on the left. Gaps have been inserted

to improve the similarity of each column in the alignment.

Let cost(a, b) denote the cost of transforming one character in the MSA into another.

Let cost(a, -) = cost(-, a) = −2, cost(a, b) = −1, cost(a, a) = 1 and cost(-, -) = 0. The

sum-of-pairs score (SP-score) computes a score for an MSA based on the pair-wise sum for

each column. The first column in the alignment above has a pair-wise score of cost(-, -)

+ cost(T, -) + cost(T, -) = 0 +−2 +−2 = −4. The SP-score for this MSA is 1.

Using a generalisation of the dynamic-programming technique for pairwise sequence

alignments works efficiently for MSA for only up to a few short sequences. Specifically,

MSA with the SP-score criterion is known to be NP-hard [117]; and, therefore, heuristic

techniques are commonly used [110, 35, 78], which may not always lead to optimal align-

ments. As a result, suboptimal alignments may lead to unreliable tree estimation during

phylogenetic inference. To this end, several methods aimed to have shown that removing

unreliable sites (columns) of an alignment may lead to better results [106].

Several discussions of existing filtering methods provide evidence that the removal of

blocks in alignments of sufficient length leads to better phylogenetic trees. These filtering

methods take a variety of mathematical and heuristic approaches. Most of the methods

36

are fully automated and they remove entire columns of the alignment. A few of these

programs, found in [104, 22], are based on site-wise summary statistics. Several filtering

programs, found in [32, 57, 26, 122, 82], are based on mathematical models. However,

experimental results found in [106] oppose these findings, suggesting that generally, not

only do the current alignment filtering methods not lead to better trees, but there also

exist many cases where filtering worsened the trees significantly.

Circular molecular structures can be composed of both amino and nucleic acids [25].

The most common examples of such structures in eukaryotes are mtDNA. mtDNA is

generally conserved from parent to offspring and replication of mtDNA occurs frequently

in animal cells [55]. This is key in phylogenetic analysis and the study of evolutionary

relationships among species [84]. Several other example applications exist including MSA

of viroid or viral genomes [18] and MSA of naturally-occurring circular proteins [120].

A fundamental assumption of all widely-used MSA techniques is that the left- and

right-most positions of the input sequences are relevant to the alignment. However, the

position where a sequence starts (left-most) or ends (right-most) can be totally arbitrary

due to a number of reasons: arbitrariness in the linearisation (sequencing) of a circular

molecular structure; or inconsistencies introduced into sequence databases due to different

linearisation standards. In these cases, existing MSA programs, such as Clustal Ω [96],

MUSCLE [34], or T-Coffee [78], may produce an MSA with a higher average pairwise

distance than the expected one for closely-related sequences. As previously mentioned,

the published human (NC 001807) and chimpanzee (NC 001643) mtDNA sequences do

not start in the same genetic region [37]. It may be more relevant to align mtDNA

based on gene order [42], however, the tool we present in this paper may be used to

align sequences of a broader type. Hence, for a set of input sequences, a solution for these

inconsistencies would be to identify a suitable rotation (cyclic shift) for each sequence; the

sequences output would in turn produce an MSA with a lower average pairwise distance.

Due to the abundance of circular molecular structures in nature as well as the potential

presence of inconsistencies in sequence databases, it becomes evident that multiple circular

37

sequence alignment (MCSA) techniques for analysing such sequences are desirable. Since

MCSA is a generalisation of MSA it is easily understood that MCSA with the SP-score

criterion is also NP-hard. To this end, a few programs exist which aim to improve MCSA

for a set of input sequences. These programs can be used to first obtain the best-aligned

rotations, and then realign these rotations by using conventional alignment programs,

such as Clustal Ω, MUSCLE, or T-Coffee. Note that unlike other filtering programs, these

programs do not remove any information from the sequences or from their alignment:

they merely refine the sequences by means of rotation.

The problem of finding the optimal (linear) alignment of two circular sequences of

length m and n ≥ m under the edit distance model can be solved in time O(nm logm) [66].

The same problem can trivially be solved in time O(nm2) with substitution matrices and

affine gap penalty scores [46]. To this end, alignment-free methods have been considered

to speed-up the computation [47, 27]. The more general problem of searching for a circular

pattern in a text under the edit distance model has also been studied extensively [12],

and an average-case optimal algorithm is known [13].

Progressive multiple sequence alignments can be constructed by generalising the pair-

wise sequence alignment algorithms to profiles, similar to Clustal Ω [96]. This generalisa-

tion is implemented in Cyclope [74], a program for improving multiple circular sequence

alignment. The cubic runtime of the pairwise alignment stage becomes a bottleneck in

practical terms. Other fast heuristic methods were also implemented in Cyclope, but they

are only based on some (e.g. the first two) sequences from the input dataset.

Another approach to improve MCSA was implemented in CSA [37]; a program that

is based on the generalised circular suffix tree construction. The authors present a trie

structure that stores all the rotations of a set of sequences. The best-aligned rotations

are found based on the largest chain of non-repeated blocks that belong to all sequences.

Unfortunately, CSA is no longer maintained; it also has the restriction that there can be

only up to 32 sequences in the input dataset, and that there must exist a unique block

that occurs in every sequence.

38

BEAR [11] is another program aimed to improve MCSA computation in terms of the

inferred maximum-likelihood-based phylogenies. The authors presented two methods; the

first extends an approximate circular string matching algorithm for conducting approx-

imate circular dictionary matching. A matrix M is outputted from this computation.

For a set of d input sequences s0, . . . , sd−1, M holds values e and r between circular

sequences si and sj , where M [i, j].e holds the edit distance between the two sequences

and M [i, j].r holds the rotation of sequence si which will result in the best alignment of

si with sj . Agglomerative hierarchical clustering is then used on all values M [i, j].e, to

find sufficiently good rotations for each sequence cluster. The second method presented is

suitable for more divergent sequences. An algorithm for fixed-length approximate string

matching is applied to every pair of sequences to find most similar factors of fixed length.

These factors can then determine suitable rotations for all input sequences via the same

method of agglomerative hierarchical clustering.

Our contribution We design and implement MARS, a new heuristic method for

improving Multiple circular sequence Alignment using Refined Sequences. MARS is based

on a non-trivial coupling of the cyclic edit distance algorithm presented in Section 3 with

the classic progressive alignment paradigm [51]. Experimental results presented here,

using real and synthetic data, show that MARS improves the alignments and outperforms

state-of-the-art methods both in terms of accuracy and efficiency. Specifically, to support

our claims, we analyse these results with respect to standard genetic measures as well

as with respect to the inferred maximum-likelihood-based phylogenies. For instance, we

show here that the average pairwise distance in the MSA of a dataset of widely-studied

mtDNA sequences is reduced by around 5% when MARS is applied before the MSA is

performed.

39

4.2 Algorithm MARS

We present MARS, a heuristic algorithm for improving MCSA using refined sequences.

For a set of d input sequences s0, . . . , sd−1, the task is to output an array R of size d such

that sR[i], for all 0 ≤ i < d, denotes the set of rotated sequences, which are then input

into the preferred MSA algorithm to obtain an improved alignment. MARS is based on a

three-stage heuristic approach:

1. Initially a d× d matrix M holding two values e and r per cell, is computed; where

M [i, j].e holds the edit distance between sequences s
M [i,j].r
i and sj . Intuitively, we

try to compute the value r that minimises e, that is, the cyclic edit distance.

2. The neighbour-joining clustering method is carried out on the computed distances

to produce a guide tree.

3. Finally, progressive sequence alignment using refined sequences is carried out using

the sequence ordering in the guide tree.

4.2.1 Stage 1. Pairwise cyclic edit distance

In this stage, we make use of a heuristic method for computing the cyclic edit distance

between two strings. This method is described in more detail in Section 3, where the

β-blockwise q-gram distance between two circular sequences x and y is computed. Specif-

ically, the algorithm finds the rotation r of x such that the β-blockwise q-gram distance

between xr and y is minimal.

The second step of this stage involves a refinement of the rotation for a pair of se-

quences, to obtain a more accurate value for r. An input parameter 0 < P ≤ β/3 is used

to create refined sequences of length 3× P × m
β using xr and y, where m is the length of

xr. The first refined sequence is xr0x
r
1x
r
2: xr0 is a prefix (of P out of β blocks) of string

xr; xr1 is a string of the same length as the prefix consisting only of letter $ /∈ Σ; and

40

xr2 is a suffix (of P out of β blocks) of string xr. The same is done for string y, result-

ing in a refined sequence of the same form y0y1y2. Note that large values for P would

result in long sequences, improving the refinement of the rotation, but slowing down the

computation. A score is calculated for all rotations of these two smaller sequences using

Needleman-Wunsch [76] or Gotoh’s algorithm [46], making use of substitution matrices

for nucleotides or amino acids accordingly. The rotation with the maximum score is

identified as the new best-aligned rotation and r is updated if required.

The final step of this stage involves computing the edit distance between the new pair

of refined sequences. For unit costs, this is done using Myers’ bit-vector algorithm [75]

in time O(
⌈
m
w

⌉
n), where w is the word size of the machine. For non-unit costs this

is computed using the standard dynamic programming solution for edit distance [29]

computation in time O(mn). Hence, for a dataset with d sequences, a d× d matrix M is

populated with the edit distance e and rotation r for each pair of sequences.

Remark for Stage 1 The simple cost scheme used in Stage 1 for the pairwise cyclic

edit distance is sufficient for computing fast approximate rotations. A more complex

(biologically relevant) scoring scheme is used in Stage 3 for refining these initial rotations.

A yet more complex scoring scheme, required for the final MSA of the sequences output

by MARS, can be carried out later on by using any MSA program, and is therefore beyond

the scope of the aim of this work.

4.2.2 Stage 2. Guide tree

The guide tree is constructed using Saitou and Nei’s neighbour-joining algorithm [91],

where a binary tree is produced using the edit distance data from matrix M . Figure 7

shows an example of such a tree, a phylogenetic tree where the evolvement of organisms

from common ancestors can be visually identified through the branching structure of the

tree [43]. The nodes at the leaves represent sequences corresponding to the genetic coding

of each individual organism.

41

S2

S1

S3

S0

S4

Figure 7: Phylogenetic tree obtainable from neighbour-joining algorithm.

4.2.3 Stage 3. Progressive Alignment

The guide tree is used to determine the ordering of the alignment of the sequences. Three

types of alignments may occur:

• Case 1: A sequence with another sequence;

• Case 2: A sequence with a profile;

• Case 3: A profile with another profile;

where a profile is an alignment viewed as a sequence by regarding each column as a let-

ter [110]. We also need to extend the alphabet to Σ′ = Σ ∪ {−} to represent insertions

or deletions of letters (gaps). For the rest of this stage, we describe our method us-

ing the Needleman-Wunsch algorithm for simplicity although Gotoh’s algorithm is also

applicable.

For Case 1, where only two sequences are to be aligned, note that rotation r has been

previously computed and stored in matrix M during Stage 1 of the algorithm. These two

sequences are aligned using Needleman-Wunsch algorithm and stored as a new profile

made up of the alignment of two individual sequences which now include gaps. In this

case, for two sequences si and sj , we set R[i] := M [i, j].r and R[j] := 0, as the second

sequence is left unrotated.

42

The remaining two cases of alignments are a generalisation of the pairwise circular

sequence alignment to profiles. In the alignment of a pair of sequences, matrix M provides

a reference as to which rotation r is required. In the case of a sequence and a profile (Case

2), this may also indirectly be used as we explain below.

As previously seen, when two sequences si and sj are aligned, one sequence sj remains

unrotated. This pair then becomes a profile which we will call profile A. Given the same

occurs for another pair of sequences, profile B is created also with one unrotated sequence,

sj′ . When profile A is aligned with profile B, another profile, profile C is created. In this

case, only the sequences in profile B are rotated to be aligned with profile A. This results

in sj to be left unrotated in profile C where sj previously occurred in profile A. Given a

sequence sk to be aligned with profile C, this sequence has a current rotation of 0 as has

not yet been aligned with another sequence or a profile. We can identify which rotation

is needed to rotate sequence sk to be aligned with profile C, by using the single rotation

M [k, j].r.

The same condition applies when aligning two profiles (Case 3). All sequences in pro-

file B will need to be rotated to be aligned with profile A. However, once a single sequence

sj in profile A as well as a single sequence sj′ in profile B with r = 0 have been identified,

in this case sj′ has already been aligned with other sequences. This means gaps may

have been inserted and M [j′, j].r will no longer be an accurate rotation. By counting

the total number g of individual gaps inserted in sj′ , between positions 0 and the sin-

gle rotation M [j′, j].r of sj′ , the new suitable rotation for profile B would be M [j′, j].r+g.

Example Consider the following sequences:

s0: TAGTAGCT

s1: AAGTAAGCTA

s2: AAGCCTTTAGT

s3: AAGTAAGCT

s4: TTAATATAGCC

43

Let profile A be:

s0: A-G-C-TTA-GT

s1: AAG-C-TAAAGT

s2: AAGCCTTTA-GT

Let profile B be:

s3: A---AGTAAG-C-T

s4: A-ATA-TA-GCCTT

Profile C :

s0: A-G-C-TT-A--GT

s1: AAG-C-TA-A-AGT

s2: AAGCCTTT-A--GT

s3: AAG-C-TA---AGT

s4: A-GCCTTA-ATA-T

By looking at the original set of sequences, it is clear s2 in profile A and s3 in profile

B have a rotation of 0. The other sequences have been rotated and aligned with the

remaining sequences in their profile. It is also clear from the original sequences that

M [3, 2].r = 4. When aligning profile B with profile A, the rotation of r = 4 is no longer

accurate due to gaps inserted in s3. As g = 3 gaps have been inserted between positions 0

and r of sequence s3, the final accurate rotation for profile B is M [3, 2].r+ g = 4 + 3 = 7

(see profile C).

In the instance when a sequence is to be aligned with a profile or two profiles are to

be aligned, a generalisation of the Needleman-Wunsch algorithm is used, similar to that

by [116], to compute the alignment score. Profile A will always hold the largest number

of sequences, allowing profile B with fewer sequences to be rotated. We now describe how

we can compute a more accurate rotation than that obtained from matrix M .

A frequency matrix F is stored, which holds the frequency of the occurrence of each

letter in each column in profile A. Equation 3 shows the calculation of frequency matrix

F , with all values initialised to 0. F [c, i] holds the frequency of letter c occurring in

column i of profile A[0 . . |A| − 1, 0 . .m − 1] of length m and size |A|, where |A| denotes

the number of sequences in profile A:

44

F [c, i] = F [c, i] +
1

|A|
0 ≤ i < m

∀c in A[0 . . |A| − 1, i]
(3)

Equation 4 shows the scoring scheme used for each alignment, where S[i, j] holds the

alignment score for column i in profile A and column j in profile B. gA is the cost of insert-

ing a gap into profile A and gB likewise for profile B. Matrix S is initialised in the same

way as in the Needleman-Wunsch algorithm; and sim(B[k, j], c) denotes the similarity

score between letter c ∈ Σ′ and the letter at column j of row k (representing sequence sk)

in profile B. These similarity scores are computed using the BLOSUM622 scoring matrix

for protein sequences and the EDNAFULL3 scoring matrix for DNA sequences.

S[i, j] = max


S[i− 1, j − 1] + pScore(i, j)

S[i− 1, j] + gB

S[i, j − 1] + gA

pScore(i, j) =

∑
c∈Σ′ sim(B[k, j], c)× F [c, i]

|B|
0 ≤ k < |B|

(4)

This scoring scheme can be applied näıvely for profile A and every rotation of profile B

to find the maximum score, equating to the best-aligned rotation. However, as information

about rotations has already been computed in Stage 1, we may use only some part of

profile B to further refine these rotations. This refinement is required due to the heuristic

computation of all pairwise cyclic edit distances in Stage 1 of the algorithm. To this

end, we generalise the second step of Stage 1 to profiles. This step of Stage 1 involves

a refinement of the rotation for a pair of sequences via considering only the two ends

of each sequence, to create two refined sequences. Similarly here we generalise this idea

to refine the rotation for a pair of profiles via considering only the two ends of each

profile, to recreate the profiles into profiles with refined sequences. The rotation r with

2ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
3ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4

45

ftp://ftp.ncbi.nih.gov/blast/matrices/BLOSUM62
ftp://ftp.ncbi.nih.gov/blast/matrices/NUC.4.4

the maximum score according to the aforementioned scoring scheme is identified as the

best-aligned rotation and array R is updated by adding r to the current rotation in R[i],

for all si in profile B.

4.3 Experimental Results

MARS was implemented in the C++ programming language as a program to compute the

rotations (cyclic shifts) required to best align a set of input sequences. Given a set of

d sequences in multiFASTA format, the length ` of the β blocks to be used, the length

q of the q-grams, and a real number P for the refinement, MARS computes an array R

according to the algorithm described in Section 4.2. There is also a number of optional

input parameters related to Gotoh’s algorithm, such as the gap opening and extension

penalty scores for pairwise and multiple sequence alignment. A different substitution

matrix can be used for scoring nucleotide or amino acid matches and mismatches. The

output of MARS is another multiFASTA file consisting of d refined sequences, produced

using the rotations computed in R. The output of MARS can then be used as input to

the preferred MSA program, such as Clustal Ω, MUSCLE, or T-Coffee.

The implementation is distributed under the GNU General Public License, and it is

available freely at http://github.com/lorrainea/mars. Experimental results were also

produced for Cyclope and BEAR to compare their performance against MARS. The ex-

periments were conducted on a computer using an Intel Core i5-4690 CPU at 3.50GHz

under GNU/Linux. All programs were compiled with g++ version 4.8.5 at optimisation

level 3 (O3).

4.3.1 Synthetic Data

DNA datasets were simulated using INDELible [39], which produces sequences in a mul-

tiFASTA file. A rate for insertions, deletions, and substitutions are defined by the user

to vary similarity between the sequences. All datasets used in the experiments are de-

46

http://github.com/lorrainea/mars

noted in the form A.B.C, where A represents the number of sequences in the dataset; B

the average length of the sequences; and C the percentage of dissimilarity between the

sequences. Substitution rates of 5%, 20%, and 35% were used to produce the datasets

under the Jukes and Cantor (JC69) [54] substitution model. The insertion and deletion

rates were set to 4% and 6% respectively, relative to a substitution rate of 1.

Nine datasets were simulated to evaluate the accuracy of the proposed method. Each

dataset consists of a file with a varying number of sequences, all with an average length

of 2, 500 base pairs (bp). The files in Datasets 1− 3 each contain 12 sequences. Those in

Datasets 4 − 6 each contain 25 sequences; and Datasets 7 − 9 contain 50 sequences. All

input datasets referred to in this section are publicly maintained at the MARS website.

For all datasets, we made use of the following values for the mandatory parameters of

MARS: q = 5, ` = 50, and P = 1.0. Table 5 shows the results for the synthetic datasets

made up of three files which each contained 12 sequences (Datasets 1 − 3). The second

column shows results for the original datasets aligned using Clustal Ω. All sequences in

these datasets were then randomly rotated, denoted in Table 5 by A.B.C.rot. The third

column shows the results produced when MARS was first used to refine the sequences in

the A.B.C.rot dataset, to find the best-aligned rotations; and then aligned them again

using Clustal Ω. The fifth and sixth columns show likewise using MUSCLE to align the

sequences. Tables 6 and 7 show the results produced for Datasets 4 − 6 and 7 − 9,

respectively.

To evaluate the accuracy of MARS seven standard genetic measures were used: the

length of the MSA; the number of polymorphic sites (PM sites); the number of transitions

and transversions; substitutions, insertions, and deletions were also counted; as well as the

average distance between each pair of sequences in the dataset (AVPD). The fourth and

last column show the difference between the genetic measures computed for the original

datasets and those computed for the datasets rotated using MARS. Note that a decrease

in the number of polymorphic sites and insertions and deletions shows an improvement

in the alignment.

47

Program Clustal Ω MARS+Clustal Ω MUSCLE MARS+MUSCLE

Dataset 1 12.2500.5 12.2500.5.rot Difference 12.2500.5 12.2500.5.rot Difference

Length 2,503 2,503 0 2,503 2,503 0

PM Sites 698 698 0 689 689 0

Transitions 3,845 3,849 +4 3,804 3,804 0

Transversions 4,245 4,251 +6 4,205 4,205 0

Substitutions 12,254 12,264 +10 12,111 12,111 0

Indels 360 360 0 388 388 0

AVPD 191 191 0 189 189 0

Dataset 2 12.2500.20 12.2500.20.rot Difference 12.2500.20 12.2500.20.rot Difference

Length 2,662 2,664 +2 2,674 2,674 0

PM Sites 2,228 2,230 +2 2,155 2,155 0

Transitions 16,819 16,502 -317 16,171 16,184 +13

Transversions 15,374 15,719 +345 14,422 14,422 0

Substitutions 47,754 47,799 +45 44,261 44,280 +19

Indels 10,545 10,707 +162 8,817 8,815 -2

AVPD 883 886 +3 804 804 0

Dataset 3 12.2500.35 12.2500.35.rot Difference 12.2500.35 12.2500.35.rot Difference

Length 2,526 2,528 +2 2,528 2,528 0

PM Sites 2,062 2,070 +8 2,045 2,045 0

Transitions 18,385 18,167 -218 18,362 18,362 0

Transversions 17,642 17,728 +86 17,316 17,316 0

Substitutions 54,573 54,533 -40 53,807 53,807 0

Indels 2,403 2,575 +172 2,253 2,253 0

AVPD 863 865 +2 849 849 0

Table 5: Standard genetic measures for Datasets 1− 3

Remark for accuracy The use of standard genetic measures to test the accuracy of

MARS with synthetic data is sufficient. This is due to the fact that the main purpose

of this test is not to check whether we obtain an MSA that is biologically relevant. The

ultimate task here was to show that when MARS is applied on the A.B.C.rot datasets

before MSA is performed we obtain MSAs whose standard genetic measures are similar

or even identical to the MSAs of the A.B.C datasets (and this cannot occur by chance)

when using the same MSA program.

The results show indeed that MARS performs extremely well for all datasets. This

48

Program Clustal Ω MARS+Clustal Ω MUSCLE MARS+MUSCLE

Dataset 4 25.2500.5 25.2500.5.rot Difference 25.2500.5 25.2500.5.rot Difference

Length 2,515 2,515 0 2,515 2,515 0

PM Sites 1,243 1,238 −5 1,230 1,230 0

Transitions 20,438 20,422 −16 20,353 20,353 0

Transversions 20,672 20,587 −85 20,498 20,498 0

Substitutions 61,780 61,523 −257 61,289 61,289 0

Indels 2,582 1,932 −650 1,842 1,842 0

AVPD 214 211 −3 210 210 0

Dataset 5 25.2500.20 25.2500.20.rot Difference 25.2500.20 25.2500.20.rot Difference

Length 2,600 2,595 −5 2,590 2,591 +1

PM Sites 2,585 2,577 −8 2,572 2,572 0

Transitions 105,738 105,596 −142 106,070 106,256 +186

Transversions 104,778 104,451 −327 103,335 103,238 −97

Substitutions 313,329 312,311 −18 309,953 310,056 +103

Indels 20,524 20,658 +134 13,678 13,784 +106

AVPD 1,112 1,109 −3 1,078 1,079 +1

Dataset 6 25.2500.35 25.2500.35.rot Difference 25.2500.35 25.2500.35.rot Difference

Length 2,726 2,751 +25 2,722 2,716 −6

PM Sites 2,700 2,727 +27 2,684 2,679 −5

Transitions 101,801 102,471 +670 104,001 103,796 −205

Transversions 104,993 104,632 −361 100,595 101,078 +483

Substitutions 310,597 311,468 +871 304,100 304,481 +381

Indels 47,080 58,288 +11,2018 35,956 35,110 −846

AVPD 1,192 1,232 +40 1,133 1,131 −2

Table 6: Standard genetic measures for Datasets 4− 6

can be seen through the high similarity between the measurements for the original and

the refined datasets. Notice that, in particular with MUSCLE, we obtain an identical or

less average pairwise distance in 8 out of 9 cases between the original and the refined

datasets produced by using MARS, despite the fact that we had first randomly rotated

all sequences (compare the A.B.C to the A.B.C.rot columns).

RAxML [101], a maximum-likelihood-based program for phylogenetic analyses, was

used to identify the similarity between the phylogenetic trees inferred using the original

and refined datasets. A comparison with respect to the phylogenetic trees obtained using

49

Program Clustal Ω MARS+Clustal Ω MUSCLE MARS+MUSCLE

Dataset 7 50.2500.5 50.2500.5.rot Difference 50.2500.5 50.2500.5.rot Difference

Length 2,524 2,524 0 2,524 2,524 0

PM Sites 1,875 1,882 +7 1,861 1,861 0

Transitions 86,781 87,190 +409 86,628 86,628 0

Transversions 91,334 91,584 +250 91,040 91,040 0

Substitutions 262,804 263,687 -117 261,248 261,248 0

Indels 11,531 10,771 −760 8,231 8,231 0

AVPD 223 224 +1 219 219 0

Dataset 8 50.2500.20 50.2500.20.rot Difference 50.2500.20 50.2500.20.rot Difference

Length 2,576 2,580 +4 2,582 2,582 0

PM Sites 2,568 2,573 +5 2,575 2,575 0

Transitions 284,302 284,667 +365 282,638 282,670 +32

Transversions 283,651 284,673 +1,022 279,451 279,462 +11

Substitutions 852,738 855,055 +2,317 842,564 842,672 +108

Indels 39,273 45,769 +6,496 33,371 33,369 −2

AVPD 728 735 +7 715 715 0

Dataset 9 50.2500.35 50.2500.35.rot Difference 50.2500.35 50.2500.35.rot Difference

Length 2,675 2,697 +22 2,679 2,667 −12

PM Sites 2,675 2,696 +21 2,678 2,666 −12

Transitions 424,910 423,592 −1,318 426,230 426,063 −167

Transversions 431,453 428,874 −2,579 423,113 422,916 −197

Substitutions 1,282,515 1,278,286 −4,229 1,267,683 1,267,699 +16

Indels 92,060 97,398 +5,338 73,890 72,718 −1,172

AVPD 1,122 1,123 +1 1,095 1,094 −1

Table 7: Standard genetic measures for Datasets 7− 9

MUSCLE and RAxML was made between the alignment of the original datasets and that

of the datasets produced by refining the A.B.C.rot datasets using MARS, BEAR, and

Cyclope. The Robinson–Foulds (RF) metric was used to measure the distance between

each pair of trees. The same parameter values were used for MARS: q = 5, ` = 50, and

P = 1.0. The fixed-length approximate string matching method with parameter values

w = 40 and k = 25 under the edit distance model, were used for BEAR, where w is the

factor length used and k is the maximum distance allowed. Parameter v was used for

Cyclope to compute, similar to MARS, a tree-guided alignment.

50

Dataset BEAR Cyclope MARS

12.2500.5 0.000 0.000 0.000

12.2500.20 0.000 0.000 0.000

12.2500.35 0.000 0.000 0.000

25.2500.5 0.000 0.000 0.000

25.2500.20 0.000 0.000 0.000

25.2500.35 0.000 0.045 0.000

50.2500.5 0.021 0.000 0.000

50.2500.20 0.000 0.000 0.000

50.2500.35 0.000 0.000 0.000

Table 8: Relative RF distance between trees obtained with original and refined datasets.

Non-zero values shown in bold.

Table 8 shows that the relative RF distance between the original datasets and those

refined with MARS is 0 in all cases, showing that MARS has been able to identify the best-

aligned rotations, with respect to the inferred trees, for all nine datasets, outperforming

BEAR and Cyclope, for which we obtain non-zero values in some cases.

4.3.2 Real Data

In this section we present the results for three datasets used to evaluate the effectiveness

of MARS with real data. The first dataset (Mammals) includes 12 mtDNA sequences of

mammals, the second dataset (Primates) includes 16 mtDNA sequences of primates, and

the last one (Viroids) includes 18 viroid RNA sequences. All input datasets referred to in

this section are publicly maintained at the MARS website. The average sequence length

for Mammals is 16, 777 bp, for Primates is 16, 581 bp, and for Viroids is 363 bp.

Table 9 shows the results from the original alignments and the alignments produced

after refining these datasets with MARS. It is evident that using MARS produces a signifi-

cantly better alignment for these real datasets, which can specifically be seen through the

results produced by aligning with MUSCLE. For instance, the average pairwise distance

in the MSA of Primates is reduced by around 5% when MARS is applied before MSA is

51

performed with MUSCLE.

Program Clustal Ω MARS+ Clustal Ω Difference MUSCLE MARS+ MUSCLE Difference

Mammals

Length 19,452 18,829 −623 19,784 19,180 −604

PM Sites 12,913 12,265 −648 13,076 12,454 −622

Transitions 135,380 137,589 +2,209 135,794 137,835 +2,041

Transversions 81,945 84,188 +2,243 76,894 78,067 +1,173

Substitutions 295,684 302,331 +6,647 282,608 286,747 +4,139

Indels 82,494 59,348 −23,146 91,164 71,042 −20,122

AVPD 5,729 5,479 −250 5,663 5,421 −242

Primates

Length 18,176 17,568 −608 18,189 17,669 −520

PM Sites 11,086 10,450 −636 11,023 10,454 −569

Transitions 259,921 261,995 +2,074 262,179 264,245 +2,066

Transversions 100,708 102,336 +1,628 95,403 96,010 +607

Substitutions 439,929 445,252 +5,323 429,532 432,993 +3,461

Indels 80,851 52,727 −28,124 82,117 55,525 −26,592

AVPD 4,339 4,149 −190 4,263 4,070 −193

Viroids

Length 566 498 −68 486 476 −10

PM Sites 555 484 −71 475 459 −16

Transitions 7,567 7,485 −82 9,338 9,101 −237

Transversions 5,837 5,998 +161 5,491 5,393 −98

Substitutions 19,436 19,291 −145 20,828 20,374 −454

Indels 19,003 18,383 −620 14,323 13,491 −832

AVPD 251 246 −6 229 221 −8

Table 9: Standard genetic measures for real data

Since time-accuracy is a standard trade-off of heuristic methods, in order to evaluate

the time performance of the programs, we compared the resulting MSA along with the

time taken to produce it using BEAR, Cyclope, and MARS with MUSCLE. Parameter

values w = 100 and k = 60 were used to measure accuracy for the Mammals and Primates

datasets for BEAR; w = 40 and k = 25 were used for the Viroids dataset. Parameter v

was used for Cyclope to compute a tree-guided alignment. The following parameter values

were used to test the Mammals and Primates datasets for MARS: q = 5, ` = 100, and

P = 2.0; q = 4, ` = 25, and P = 1.0 were used to test the Viroids dataset.

Table 10 shows the time taken to execute the datasets; for the sake of succinctness,

52

Table 10 only presents the average pairwise distance measure for the quality of the MSAs.

The results show that MARS has the best time-accuracy performance: BEAR is the fastest

program for two of the three datasets, but produces very low-quality MSAs; Cyclope is

very slow but produces much better MSAs than BEAR; and MARS produces better MSAs

than both BEAR and Cyclope and is more than four times faster than Cyclope.

Program BEAR Cyclope MARS

Dataset AVPD Time (s) AVPD Time (s) AVPD Time (s)

Mammals 5,517 262.96 5,422 1,367.17 5,421 333.50

Primates 4,167 465.17 4,080 2,179.68 4,070 463.25

Viroids 232 0.30 223 1.44 221 0.82

Table 10: Elapsed-time comparison using real data

A common reliability measure of MSAs is the computation of the Transitive Consis-

tency Score (TCS) [23]. The TCS has been shown to outperform existing programs used

to identify structurally correct portions of an MSA, as well as programs which aim to

improve phylogenetic tree reconstruction [24]. BEAR, Cyclope, and MARS were used to

identify the best rotations for the sequences in the Viroids dataset; the output of each,

as well as the unrotated dataset was then aligned using MUSCLE. The following TCS

was computed for the Viroids dataset when unrotated: 260, as well as when rotated with

BEAR, Cyclope, and MARS, respectively: 249, 271, and 293. The same was done using

Clustal Ω to align the output sequences, with a TCS of 249 for the unrotated dataset.

The following scores were computed for the rotated dataset in the respective order: 233,

244, and 269. These results show that when using two different MSA programs, MARS

obtains a higher TCS than the unrotated dataset in both cases, outperforming BEAR and

Cyclope, which do not always obtain a higher TCS compared to that of the unrotated

dataset.

53

4.4 Conclusion

A fundamental assumption of all widely-used MSA techniques is that the left- and right-

most positions of the input sequences are relevant to the alignment. This is not always

the case in the process of MSA of mtDNA, viroid, viral or other genomes, which have a

circular molecular structure.

We presented MARS, a new heuristic method for improving Multiple circular sequence

Alignment using Refined Sequences. Experimental results, using real and synthetic data,

show that MARS improves the alignments, with respect to standard genetic measures

and the inferred maximum-likelihood-based phylogenies, and outperforms state-of-the-

art methods both in terms of accuracy and efficiency.

54

5 CNEFinder - Finding conserved non-coding elements

in genomes

The work presented in this section was published by Oxford Bioinformatics: L.A.K. Ayad,

S.P. Pissis, D. Polychronopoulos; “CNEFinder: finding conserved non-coding elements in

genomes”, Bioinformatics, Volume 34, Issue 17, 1 September 2018, Pages i743-i747.

5.1 Background

CNEs are a pervasive class of elements that are usually identified by inspecting whole-

genome alignments between two or more genomes. CNEs can be extremely conserved

across evolution, yet they do not encode for proteins. Some of these elements play roles

in the development of multicellular organisms acting as enhancers [5]. Although they can

be referred to in the literature with different names (UCEs, UCNEs, CNS, to name a

few), the prevailing view is that these sets of elements are largely overlapping, with their

genesis, functions and evolutionary dynamics being largely unknown.

The authors in [86] provide an introduction to the characteristics of CNEs and their

known functionality so far. CNEs were identified as early as only three decades ago,

where studies identified hundreds of thousands of elements that had maintained > 70%

sequence similarity over millions of years of evolution. Since then, several studies of CNEs

have been carried out which have been tailored to specific groups of organisms.

CNEs do not have a random distribution across genomes, but are known to form

clusters around genes. Analysis of these elements has shown that many of the identified

CNEs serve as regulatory elements that are important in the early stages of vertebrate

development and brain formation. Also, when compared to surrounding elements of a

genome, CNEs have been found to be AT-rich in general [88]. These elements have also

been identified in plants [62] which raises more queries about the functionality of CNEs

in general.

As very little is known about the role of CNEs within genomes, further analysis is

55

required to understand more. For the research carried out on these elements so far, it

can be seen that CNE identification methods may be classified into two major categories:

alignment-based and alignment-free methods.

Alignment-based methods. Alignment-based methods identify CNEs by inspecting

pairwise or multiple whole-genome alignments. Several tools exist that generate whole-

genome alignments, such as BLASTZ [95], MULTIZ [16], and LASTZ [49]. For a pair of

sequences, CNEs are defined as elements which satisfy specific length and sequence iden-

tity percentage thresholds [33, 14, 92]. The threshold values depend on the evolutionary

distance between species under comparison. Not all CNEs identified by whole-genome

comparisons of mammalian genomes appear conserved when the same conservation cri-

teria is used on more distant genome comparisons. Thus, those thresholds are somewhat

arbitrary.

Alignment-free methods. Alignment-free methods avoid some of the problems associ-

ated with whole-genome alignments, such as computational complexity, highly fragmented

assemblies, and inflexibility. Variants of BLAST are usually used in the homology search

on repeat- and coding sequence-masked genomes [9]. [118] proposed an alignment-free

method based on k-mers. All k-mers occurring a single time in the reference genome

are mapped to the species of interest with a short-read aligner and then overlapping hits

are merged into longer CNEs. This approach increases the sensitivity of CNE detection

by overcoming the ambiguities and errors in the alignment, such as gap insertions and

occurrences of a split across alignment blocks. However, this approach incurs a small

false positive rate due to mishandling of hits with multiple copies, either from genome

duplications or assembly errors. Most importantly, and similar to many other cases, the

authors do not make their implementation for identifying CNEs publicly available.

CNE databases. There also exist many CNE databases which contain already pre-

computed sets of CNEs: Ancora [36], CEGA [31], cneViewer [83], CONDOR [121], UCbase [64],

56

UCNEbase [30], and VISTA [115]. On the one hand, this highlights the importance of this

research topic among the biological community. On the other hand, these databases are

static and seldom updated. Furthermore, the sets of CNEs stored in these databases are

identified using custom scripts, written in different programming languages, and tailored

to the biological needs of each study.

Our contribution In summary, we would like to stress the need for comprehensive tools

for identifying CNEs. We present CNEFinder, a tool for identifying CNEs between two

given DNA sequences with user-defined criteria. CNEFinder applies the k-mer technique

of [56] for computing maximal exact matches. Hence it does not require or compute

the whole-genome alignment of the two sequences; it does not require or compute a

whole-genome index such as the suffix array or the BWT (a method of lexicographically

sorting all circular rotations of a string, making it easier to compress [20])—see [59],

for instance—and it thus finds CNEs from the two sequences directly with user-defined

criteria. We have designed CNEFinder in a way that we hope proves useful for the biological

community: the tool identifies all CNEs around genes of interest with the aim to facilitate

functional experiments. Genome- or chromosome-wide CNE trends may also be revealed

as demonstrated by our results. We anticipate that CNEFinder will be a useful tool

towards cracking the still largely enigmatic regulatory code of our genome.

5.2 Algorithm CNEFinder

CNEFinder was implemented in the C++ programming language with OpenMP API for

multi-platform shared-memory parallel programming. Our implementation (along with a

several-page documentation) is distributed under the GNU General Public License, and

is made freely available at https://github.com/lorrainea/CNEFinder.

Given two DNA sequences, a reference sequence x and a query sequence y, CNEFinder

uses the state-of-the-art k-mer method presented by [56], in conjunction with the well-

known seed and extend strategy [4, 81, 59], to identify CNEs between x and y. The

57

https://github.com/lorrainea/CNEFinder

DNA sequences are first pre-processed to remove exons and simple and low-complexity

repeats from the search, allowing the tool to search for CNEs more accurately. CNEs

can then be identified by searching the intergenic and intronic regions around a specific

gene as input by the user. CNEs can also be identified through the input of specific index

positions of chromosomes that exist in the pair of DNA sequences. Moreover, CNEFinder

is able to search for CNEs in entire chromosomes. CNEFinder uses a three-stage approach,

specifically tailored for CNE identification:

1. Initially maximal exact matches of a specific length are identified between the spec-

ified range in a pair of input sequences;

2. These anchors are then merged to form co-linear sequences of non-overlapping

matches;

3. Finally, the matches are extended to the left and right as permits, until a specific

threshold or length is reached.

5.2.1 Stage 1: Identifying matches

The k-mer-based method [56] for identifying maximal exact matches between two se-

quences is used to identify exact matches (or anchors) between x and y. These k-mers

are exact matches of length k between two sequences, that cannot be extended to the

left or the right without causing a mismatch to occur. This algorithm avoids the use

of indexing methods, but instead makes use of hash tables. The k-mers of x are first

computed using standard bitwise operations; they are then hashed using double hashing;

andfinally they are stored. The hash table stores each entry as the value of the k-mer

and a list of all positions where the k-mer occurs in x. The corresponding k-mers in y

are then matched using the stored hash table. Attempts to extend the matches of all

occurrences of stored positions in the table are carried out. These positions are then

returned as maximal exact matches.

58

We measure the identity score between two strings using the simple edit distance

model [61]. In this model, the total number of unit-cost edit operations required to

transform one string into the other is minimised. The considered operations are insertions,

deletions or substitutions of letters. Given a lower bound ` on the length of the reported

elements and a lower bound t ∈ (0, 1] on the relative identity threshold between two

elements (1 returns identical substrings in x and y), maximal exact matches of minimum

length b`/(`− t× `+ 1)c are computed via applying the k-mer-based method [56]. This

ensures for exact matches to be identified, which can then be extended, such that each

pair of elements with minimum length ` can have an edit distance of at most ` − t × `.

This follows from a simple counting argument. The user can alternatively set an explicit

value for this minimum length, and then the maximum of the two values is considered

for the computation.

Example Take the following factors x[i . . j] of string x, noted as x′ and y[i′ . . j′] of string

y, noted as y′ and let ` = 30 and t = 0.7.

x′ = ATTAC GGCG AATC CAAACA GTGCGGTA TTT GCTGC

y′ = TCGACTA GGCG ACTT CAAACA TGTCGCA TTT TCTCC

k-mers with minimum length b30/(30 − 0.7 × 30 + 1) = 3 are identified and stored as

anchors.

5.2.2 Stage 2: Merging matches

The anchors found are then merged to produce co-linear sequences of non-overlapping

matches and processed further if the combined length of the matches is above a lower

bound of nucleotides set by the user with respect to `. The exact identity score at each

merging step is calculated by considering the total edit distance of the gaps between the

anchors to be merged. The merging process is terminated once the addition of another

gap would force the relative identity score to drop below threshold t. For edit-distance

59

computation, we apply the fast bit-vector algorithm by [75]. Note that this algorithm

applies only for simple edit distance.

Example Take the same strings x′ and y′ as previously presented and values ` = 30 and

t = 0.7.

x′ = ATTAC GGCG AATC CAAACA GTGCGGTA TTT GCTGC

y′ = TCGACTA GGCG ACTT CAAACA TGTCGCA TTT TCTCC

The gap found at x′[9 . . 12] and y′[11 . . 14] has an edit distance (using unit-costs) of 2.

The gap found at x′[19 . . 26] and y′[21 . . 27] has an edit distance of 4. The current total

length of this element is 24, resulting in an identity score of 0.75.

5.2.3 Stage 3: Extending matches

The last stage is to check whether the merged matches can be further extended to the left

or to the right. At each step of the extension process, the edit distance of the extension in

the left and right direction of the merged matches is computed using Myers’ algorithm [75].

The current match is extended in both directions if the threshold allows it or otherwise

in the direction having the smallest edit distance. This procedure is repeated until the

computed relative identity score of the current length of the match reaches t or when the

maximum length u of one of the elements, which is defined by the user, has been reached.

Note that due to the way the extension stage works, the estimated identity score may

not be the actual identity score for the whole element: the estimated score could be

smaller or equal to the actual. To re-adjust and allow for further extension, the actual

identity score is computed for the whole element using Myers’ algorithm [75], and the

extension process continues accordingly. Those matches that are of length at least ` and

at most u with relative identity score of at least t are reported as CNEs.

Example Take the same strings x′ and y′ as previously presented and values ` = 30 and

t = 0.7.

60

x′ = ATTAC GGCGAATCCAAACAGTGCGGTATTT GCTGC

y′ = TCGACTA GGCGACTTCAAACATGTCGCATTT TCTCC

An extension to the left and right as shown underlined, results in an overall edit

distance of 9. The length of the element is 30 which gives a relative identity score of 0.7

which is equal to t. As this element has a length of at least 30, it is reported as a CNE.

5.3 Experimental Results

All datasets and output files referred to in this section can be found at https://github.

com/lorrainea/CNEFinder. To demonstrate the accuracy and efficiency of CNEFinder we

have conducted the following experiments on a standard desktop PC with an Intel Core

i7-4790 CPU at 3.60GHz with 16GB of RAM running a GNU/Linux operating system.

All optional parameters were set as default unless stated otherwise.

200− 250 bp 250− 300 bp 300− 350 bp

CNEs % Nucleotides # CNEs % Nucleotides # CNEs % Nucleotides

Gene Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping

ZEB2 31/31 84.59 18/18 87.31 20/20 90.36

TSHZ3 35/36 78.49 16/17 80.01 8/8 84.85

EBF3 28/28 87.90 17/17 90.81 16/16 88.21

BCL11A 20/20 81.24 28/28 85.75 14/14 93.61

ZFHX4 18/18 88.02 22/22 89.82 10/10 86.86

350− 400 bp 400− 450 bp 450− 500 bp

CNEs % Nucleotides # CNEs % Nucleotides # CNEs % Nucleotides

Gene Overlapping Overlapping Overlapping Overlapping Overlapping Overlapping

ZEB2 14/14 83.17 19/19 91.56 5/5 92.45

TSHZ3 6/6 88.50 12/12 89.36 2/2 90.68

EBF3 6/6 78.46 8/8 83.91 3/3 82.21

BCL11A 10/10 90.73 4/4 83.49 5/5 88.04

ZFHX4 6/6 93.58 5/5 93.10 6/6 87.98

Table 11: CNEs identified for five genes for different length ranges and t = 95%.

61

https://github.com/lorrainea/CNEFinder
https://github.com/lorrainea/CNEFinder

5.3.1 CNEFinder against UCNEbase

The first experiment carried out was to identify how accurate CNEFinder is in computing

CNEs by comparing against previously identified CNEs stored in the UCNEbase [30], a

well-established CNE database. Specifically, this experiment involved identifying CNEs

within five different genes between the Human (hg19) and Chicken (galGal3) genomes.

Six different length ranges in base pairs (bp) were tested to identify whether CNEFinder

obtained the same CNEs as those present in the UCNEbase. A relative identity threshold

of t = 95% was used for all datasets. The results show that CNEFinder identifies almost

all elements listed in UCNEbase for these datasets and parameters. Table 11 shows the

number of CNEs output by CNEFinder that are overlapping with those stored in the

UCNEbase. The table presents these results in the form A/B, where A represents the

number of CNEs computed by CNEFinder that were found in the UCNEbase, and B the

number of CNEs with a length within the specified range stored in the UCNEbase. We

only compute the overlap of the identified CNEs against those in UCNEbase as a precision

test as there is no ideal set of CNEs to compare against. This overlap analysis is shown

in Table 11 using the average percentage of overlapping nucleotides between the CNEs

output by CNEFinder and those stored in the UCNEbase. It was computed using the

BEDTools Suite [89]. Note that the majority of CNEs found by CNEFinder were in fact

longer in length (bp) than those in the UCNEbase, in addition to having a high overlap

percentage for all genes at all length ranges. The full list of identified CNEs can be found

on-line in the same location as the datasets.

5.3.2 Genomic distribution of CNEs along the chromosome

We also wanted to find out whether the elements returned by CNEFinder are true CNEs in

the biological sense. CNEs are known to form clusters in genomes [93], and the distances

between consecutive elements follow power-law-like distributions [87, 85]. We plotted the

genomic distribution of approximately 1, 000 human CNEs as identified by CNEFinder

between Chromosome 4 (chr4) of the Human (hg38) and Chicken (galGal4), with t = 90%

62

(a)

●●●●● ●●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●
●●●●●●●

●●●●●●
● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●● ●●●●●●●●●●

●●●●●●
●●●●●●
●● ●●●● ● ●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●
●●● ●●●●●●

●●●● ●● ● ●●●●●●●
●●●●●●
●●●●●●● ●●●● ●●

chr4

20 40 60 80

0

250

500

750

Genomic location (Mb)

C
N

E
s

N
um

be
r

of

(b)

●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●●●

●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●
●●●●●●

●●●●●●
●●●●●●

●●●●●●
●●●●

chr4

0 50 100 150

0

250

500

750

Genomic location (Mb)

C
N

E
s

N
um

be
r

of

Figure 8: Genomic distribution of approximately 1, 000 CNEs along human (hg38) chr4.

(a) Elements found by CNEFinder. (b) CNE-like elements used a control. For more

information, see the text.

and ` = 50 bp. As a control, we also plotted the same number of human CNE-like

elements; i.e. elements that have one by one, the same length as every CNE in the real set

but are distributed randomly on chr4. The function plotCNEDistribution from the CNEr

R/Bioconductor package [105] was used to produce the plots in Figure 8. Evidently from

Figure 8, in the case of elements identified by CNEFinder, many elements are clustered

around the same genomic position, while in the case of the control elements, this is

clearly the contrary. The latter demonstrates that the elements identified by CNEFinder

are indeed CNEs as they display an important biological property.

5.3.3 Efficiency of CNEFinder

We also conducted the following typical runs to demonstrate the time and memory effi-

ciency of CNEFinder. First, we recorded the time taken to compute CNEs with minimum

and maximum length (bp), 200 - 250, 250 - 300, 300 - 350, 350 - 400, 400 - 450, and 450

- 500, with t = 90%, between the 143 - 148 Mbp region of Chromosome 2 of the Human

(hg19) genome and the 34 - 39 Mbp region of Chromosome 7 of the Chicken (galGal3)

63

genome using 8 CPU cores. These were, respectively, 4.4s, 4.4s, 4.5s, 4.8s, 4.3s, and 5.2s.

The maximum memory used for these runs was 1.6 GB of RAM. Second, we recorded

the time taken to compute CNEs with minimum and maximum length 200 - 500 bp with

t = 90% using the whole Chromosome 2 of the human (hg19) genome and the whole

Chromosome 7 of the chicken (galGal3) genome using 8 CPU cores. This was 32m30s.

The maximum memory used for this run was 5.6 GB of RAM.

5.3.4 Comparison with local-alignment tools

In the last experiment, we exhibit the need for a tool specifically tailored for CNE identi-

fication. To this end, we compared CNEFinder to YASS, a state-of-the-art local alignment

search tool [77]. YASS works by identifying seeds between a pair of DNA sequences

and then extends these matches to local alignments between the sequence pair. We ran

YASS using regions 76.57 - 79.01 Mbp of Chromosome 8 of the Human (hg19) genome

and 123.57 - 124.82 Mbp of Chromosome 2 of the Chicken (galGal3) genome. These

are the exact regions used to compute the CNEs for gene ZFHX4 found in Table 11. A

dissimilarity threshold of 5% was used to make the experiments as similar as possible.

For the elements identified by YASS that did overlap with those in the UCNEbase, the

average percentage of overlapping nucleotides was only 31.01%. This can be explained

by the optimality criterion of local alignments that does not allow for constraints on the

lengths of the alignments. Note that a comparison with other local-alignment tools is

beyond the scope of this paper. The rationale of this experiment was to demonstrate the

inapplicability of local alignment techniques for CNE identification.

5.4 Conclusion

Due to the lack of published tools for identifying CNEs and the need to systematically

investigate their roles in genomes, we have presented CNEFinder, a tool specifically tailored

for CNE identification given two DNA sequences. CNEFinder does not require or compute

the whole-genome alignment or whole-genome indexes of the two sequences. It thus finds

64

CNEs from the two sequences directly with user-defined criteria. Experimental results

provided here show the accuracy of CNEFinder, compared to existing well-established

static databases, as well as its efficiency and ability to reveal biological CNE trends on a

chromosome level.

65

6 Discussion

This thesis presented some of the contributed work towards the field of computational

biology, with further applications in image recognition. Specifically, the aim of these

algorithms was to identify solutions for sequence comparison whilst avoiding computing

alignments under the edit distance measure, where possible. The tool hCED presented

in Section 3 provides a heuristic for the computation of the cyclic edit distance. Experi-

mental results presented show the efficiency and accuracy of the tool when provided with

both synthetic and real data, compared to existing tools. hCED can be used not only on

biological sequences, but also on chain-codes mapped from the orientation of an image.

The flexibility of the tool allows it to be used in a digital as well as a biological setting.

As previously stated, the authors in [80] solve the cyclic edit distance problem from

an indexing point of view. This is useful for classification, specifically when organisms

need be grouped together. It can also be useful for retrieval systems, where the most

similar sequence in a given database to an input sequence, in terms of edit distance needs

to be identified. hCED can be further explored and manipulated to try and solve this

same problem, specifically making use of the β-blockwise q-gram distance measure for a

set of strings.

On the other hand, the authors in [7] present new findings for solving the exact circular

sequence comparison algorithm under the β-blockwise q-gram distance as studied in [47]

(Stage 1 of hCED, algorithm saCSC). They introduce a pre-processing step which employs

a number of simple and effective filters allowing for the reduction in the search space. The

output of their algorithm is a text of reduced length which can then be input into any

circular sequence comparison tool.

They combine their algorithm along with saCSC and compare its performance to saCSC

alone. Their implementation has not been made available. However, their experimental

results show that when making use of their pre-processing step, saCSC performs in most

cases, more than twice as fast as it would than when running alone. Incorporating this

66

into Stage 1 of hCED can improve the efficiency of the tool while maintaining the accurate

results presented here, showing even better performance when compared to the existing

cyclic edit distance tools.

Future Directions: Taud et al in [108] present an algorithm Adaboost to identify

circular forms in satellite imagery. They make use of classification methods to be able to

identify varying circular structures given a number of aerial photographs. These circular

geological patterns can be the result of several phenomena including meteoritic, magmatic,

tectonic hazards etc. It is clear that circular structures found from these satellite images

can fall into one or more categories depending on their shape and structure. These can

be classified based on currently known models [94]. Adaboost can be used to identify the

circular structures, but the authors present no further details of identifying which class

of circular structures each identified object may fall into. The coupling of hCED along

with Adaboost can assist with this classification and can help with further analysis of

the identified circular structures. Satellite imagery is known to help with predictions and

assessments of natural hazards [44], which initially requires the identification of locations

of causes, such as volcanic structures. The classification of such structures using hCED

can help to assist with such predictions.

As well as predictions in image recognition, hCED can also assist with predictions for

applications in molecular biology. For example, it is known that the viral RNA segments

of the influenza virus are circular in structure [111]. Influenza can be treated using an

inactive strain of the virus and there are also several anti-viral drugs that exist to treat

the virus. In order to be able to produce such vaccinations, in depth analysis is required,

including looking at the genetic structure of the virus [102]. Research has shown that over

time antigenic drifts occur which cause variance and mutations in the seasonal flu [103].

As a result vaccinations need to be continuously adapted to account for these changes.

Being able to analyse the molecular structure of the new viruses compared to that of

the previous is important where authors in [103], in particular, look at the hamming

distance between consecutively released viruses. hCED could greatly aid in this analysis,

67

specifically looking at the evolution of the circular RNA segments of the virus and also

introduce the analysis of the edit distance as well as the current focus on the hamming

distance. Future predictions as well as current analysis of antigenic drifts can be carried

out allowing for vaccinations to be updated according to these findings.

The tool MARS presented in Section 4 enhances the algorithm of hCED, by providing a

tool for the benefits of computing multiple circular sequence alignments. As this tool also

makes use of the saCSC algorithm for circular sequence comparison, the pre-processing

step presented above [7] can also be used in Stage 1 of MARS. Given a set of d input

sequences, the cyclic edit distance computation needs to be applied d2 times to complete

this stage. Making use of the pre-processing filter algorithm can improve the efficiency of

MARS while again maintaining accurate results.

The authors in [107] show how MARS has been used in the computation of the complete

mitochondrial genome of Pristurus rupestris rupestris, a gecko of the Sphaerodactylidae

family. The authors show how recent sequencing techniques, including MARS have pro-

vided an efficient way to fully sequence the mitochondrial genome related to the Sphaero-

dactylidae. The circular mitochondrial genomes were rotated using MARS to obtain

sequences of the same origin and then aligned to allow for phylogenetic analysis.

Future directions: Not only can MARS assist with the analysis of the evolutionary

history of an organism, but it can also help to identiy hereditary traits among humans.

It is well known that mitochondria convert energy from food which can be used by cells.

This process is called respiration [40]. It is clear from this that mtDNA plays a large

role in several processes within the human body. Once of these is metabolism. Tranah

et al [112] carried out extensive research on the relation between ethnic groups and their

metabolic rates. They claim the proposition that the geographic distribution of mtDNA

lineages was the result of adaptation to climate and nutrition. They measured the energy

expenditure between African and European haplogroups and found a significant difference

between the two groups in terms of resting metabolic rate and energy expenditure. They

however carry out no analysis on the mtDNA of the different ethnic groups. MARS can

68

be used to carry out similar experiments to actually analyse the genetic sequences of

the different haplogroups to identify how mtDNA has adapted or mutated according to

certain occurrences such as climate change and whether a similar rate of metabolism is

the result of closely related mtDNA.

Similarly, [100] presented evidential claims that certain studies showed a correlation

between mtDNA mutations and migraine sufferers. Further studies are still required to

clarity the significance between migraines and unidentified mutations within mtDNA. As

well as this, studies have shown that the fewer the copies of mtDNA, the higher the risk of

cardiovascular disease [124]. Further analysis of mtDNA can provide significant evidence

to these claims and can help to determine the cause of these genetic diseases. Making use

of MARS can help to identify traits in certain groups of people who claim to suffer from

similar symptoms. MARS can also help to determine where mutations occur given a set

of mtDNA. This analysis can then go on to help make predictions for humans regarding

cardiovascular health and migraines as well as allow us to explore the correlation between

the characteristics of mtDNA and other diseases.

Section 5 presented a tool for finding conserved non-coding elements in genomes. The

lack of publicly available tools for the computation of CNEs restricts the ability to analyse

their behaviour and functionality. CNEFinder is the first publicly available tool, tailored

specifically for the computation of CNEs. This breakthrough allows for the speed and

ease of identifying CNEs in genomes using user-defined parameters, without computing

whole genome alignments or indexes.

Although experimental results show high accuracy of the tool when comparing to static

databases, there are still further improvements to enhance the flexibility and performance

of the tool. When an extension to the left and right of the merged matches has the same

edit distance score, the current extension method chooses a random direction to extend

in, if extending in both the left and right directions individually are below the threshold

but extending in both directions together would exceed the threshold. This results in

CNEs possibly being of shorter length and therefore below `, the minimum CNE length

69

and so not reported. Extension techniques discussed in [1] show that given a group of

merged seeds of length m < `, an extension of length 2× `−m to both the left and right

direction allows all CNE elements of at least length ` and a relative identity score t to be

identified [99].

In addition to this, the purpose of the tool is to identify CNE elements conserved across

evolution and as previously stated several organisms share common CNEs. CNEFinder

currently takes as input a pair of genomes and computes CNEs identified between the

two sequences. [14] states that 481 elements longer than 200bp are absolutely conserved

within the human, rat, and mouse genomes. On top of this, the majority of these elements

are also conserved in the chicken and dog genomes as well as in fish. Clearly a need to

identify CNEs in several genomes simultaneously would enhance CNEFinder and allow for

a more in depth analysis of the functionality of these elements.

Future directions: Being able to analyse these elements efficiently can allow for a

better understanding of what causes CNEs and what role they play during cell division.

One important query raised in recent research is the role of CNEs in disease patho-

genesis [86]. Understanding the correlation between CNEs and topologically associating

domains (TADs), genomic regions which increase sequence interaction, can help us un-

derstand more about distinct developmental disorders and cancer. Research has show

that the disruption of boundaries of TADs is associated with limb phenotypes [65]. The

focus of this research analysed mutations of TAD boundaries to identify how this can

contribute to disease etiology. Identifying the relationship between CNEs and TADs can

help to answer these queries in understanding how or if they play a role in TAD forma-

tion. This analysis could take longer than necessary due to the lack of existing tools for

CNE idenification. Making use of CNEFinder to identify these CNEs could allow more

extensive research to be carried out on the functionality of CNEs rather than spending a

lot of time identifying suitable CNE given a genetic sequence.

Overall, through experimental analysis, these tools have proved to provide a strong

contribution towards the field of computational biology and image recognition. Nonethe-

70

less, there are a range of algorithmic problems that remain unsolved within these fields.

This thesis provides an introduction to some of the computational problems available

and suitable methods to solve them and provides an insight into how these tools can be

further used to enhance their existence.

71

References

[1] N. Ahmed, K. Bertels, and Z. Al-Ars. A comparison of seed-and-extend techniques

in modern DNA read alignment algorithms. In 2016 IEEE International Conference

on Bioinformatics and Biomedicine (BIBM), pages 1421–1428, Dec 2016.

[2] N. Ahsan and K. V. Shah. Polyomaviruses and Human Diseases, pages 1–18.

Springer New York, New York, NY, 2006.

[3] T. Allers and M. Mevarech. Archaeal genetics — the third way. Nature Reviews

Genetics, 6:58–73, 2005.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

[5] S. Aparicio, A. Morrison, A. Gould, J. Gilthorpe, C. Chaudhuri, P. Rigby, R. Krum-

lauf, and S. Brenner. Detecting conserved regulatory elements with the model

genome of the japanese puffer fish, fugu rubripes. Proceedings of the National

Academy of Sciences, 92(5):1684–1688, 1995.

[6] T. Athar, C. Barton, W. Bland, J. Gao, C. S. Iliopoulos, C. Liu, and S. P. Pissis.

Fast circular dictionary-matching algorithm. Mathematical Structures in Computer

Science, FirstView:1–14, 2015.

[7] Md.A.R. Azim, M. Kabir, and M.S. Rahman. A simple, fast, filter-based algorithm

for circular sequence comparison. In M.S. Rahman, W. Sung, and R. Uehara,

editors, WALCOM: Algorithms and Computation, pages 183–194, Cham, 2018.

Springer International Publishing.

[8] P. D. Baas. DNA replication of single-stranded escherichia coli DNA phages.

Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 825(2):111–

139, 1985.

72

[9] I. A. Babarinde and N. Saitou. Genomic locations of conserved noncoding sequences

and their proximal protein-coding genes in mammalian expression dynamics. Molec-

ular Biology and Evolution, 33(7):1807–1817, 2016.

[10] S. Barrachina and A. Marzal. Speeding up the computation of the edit distance for

cyclic strings. Pattern Recognition, 2000. Proceedings. 15th International Confer-

ence on, 2:891–894, 2000.

[11] C. Barton, C. S. Iliopoulos, R Kundu, S. P. Pissis, A. Retha, and F. Vayani. Ac-

curate and efficient methods to improve multiple circular sequence alignment. In

E. Bampis, editor, Experimental Algorithms - 14th International Symposium, SEA

2015, Proceedings, volume 9125 of Lecture Notes in Computer Science, pages 247–

258. Springer, 2015.

[12] C. Barton, C. S. Iliopoulos, and S. P. Pissis. Fast algorithms for approximate

circular string matching. Algorithms for Molecular Biology, 9:9, 2014.

[13] C. Barton, C. S. Iliopoulos, and S. P. Pissis. Average-case optimal approximate cir-

cular string matching. In A.-H. Dediu, E. Formenti, C. Martin-Vide, and B Truthe,

editors, Language and Automata Theory and Applications, volume 8977 of Lecture

Notes in Computer Science, pages 85–96. Springer Berlin Heidelberg, 2015.

[14] G. Bejerano, M. Pheasant, I. Makunin, S. Stephen, W. J. Kent, J. S. Mattick,

and D. Haussler. Ultraconserved elements in the human genome. Science,

304(5675):1321–1325, 2004.

[15] E. M. Blackwood and J. T. Kadonaga. Going the distance: A current view of

enhancer action. Science, 281(5373):60–63, 1998.

[16] M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. A. Smit, K. M.

Roskin, R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, D. Haussler, and

W. Miller. Aligning Multiple Genomic Sequences With the Threaded Blockset

Aligner. Genome Research, 14(4):708–715, 2004.

73

[17] P. Bonizzoni and G. D. Vedova. The complexity of multiple sequence alignment

with sp-score that is a metric. Theoretical Computer Science, 259(1):63–79, 2001.

[18] R. Brodie, A. J. Smith, R. L. Roper, V. Tcherepanov, and C. Upton. Base-By-Base:

Single nucleotide-level analysis of whole viral genome alignments. BMC Bioinform,

5(1):96, 2004.

[19] H. Bunke and U. Buhler. Applications of approximate string matching to 2D shape

recognition. Pattern Recognition, 26:1797–1812, 1993.

[20] M. Burrows and D.J. Wheeler. A block-sorting lossless data compression algorithm.

Technical report, 1994.

[21] E. Cambouropoulos, T. Crawford, and C.S. Iliopoulos. Pattern processing in

melodic sequences: Challenges, caveats and prospects. Computers and the Hu-

manities, 35(1):9–21, 2001.

[22] S. Capella-Gutierrez, J. M. Silla-Martinez, and T. Gabaldon. trimAl: a tool for

automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics,

25:1972–1973, 2009.

[23] J. Chang, P. D. Tommaso, and C. Notredame. TCS: A new multiple sequence align-

ment reliability measure to estimate alignment accuracy and improve phylogenetic

tree reconstruction. Molecular Biology and Evolution, 2014.

[24] M. Chatzou, C. Magis, J. Chang, C. Kemena, G. Bussotti, I. Erb, and

C. Notredame. Multiple sequence alignment modeling: methods and applications.

Briefings in Bioinformatics, pages 1–15, 2015.

[25] D. J. Craik and N. M. Allewell. Thematic minireview series on circular proteins.

The Journal Of Biological Chemistry, 287:26999–27000, 2012.

74

[26] A. Criscuolo and S. Gribaldo. BMGE (block mapping and gathering with entropy):

a new software for selection of phylogenetic informative regions from multiple se-

quence alignments. BMC Evolutionary Biology, 10:1–21, 2010.

[27] M. Crochemore, G. Fici, R. Mercas, and S. P. Pissis. Linear-time sequence compar-

ison using minimal absent words & applications. In E. Kranakis, G. Navarro, and

E. Chávez, editors, LATIN 2016: Theoretical Informatics: 12th Latin American

Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, Lecture Notes in

Computer Science, pages 334–346. 2016.

[28] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge

University Press, New York, NY, USA, 2007.

[29] F.J. Damerau. A technique for computer detection and correction of spelling errors.

Communications of the ACM, 7:171–176, 1964.

[30] S. Dimitrieva and P. Bucher. UCNEbase–a database of ultraconserved non-coding

elements and genomic regulatory blocks. Nucleic Acids Research, 41(D1):D101–

D109, 2013.

[31] A. Dousse, T. Junier, and E. M. Zdobnov. CEGA–a catalog of conserved elements

from genomic alignments. Nucleic Acids Research, 44(D1):D96–D100, 2015.

[32] A. W. M. Dress, C. Flamm, G. Fritzsch, S. Grünewald, M. Kruspe, S. J. Prohaska,

and P. F. Stadler. Noisy: Identification of problematic columns in multiple sequence

alignments. Algorithms for Molecular Biology, 3:1–10, 2008.

[33] I. Dubchak, M. Brudno, G. G. Loots, L. Pachter, C. Mayor, E. M. Rubin, and K. A.

Frazer. Active conservation of noncoding sequences revealed by three-way species

comparisons. Genome Research, 10(9):1304–1306, 2000.

[34] R. C Edgar. MUSCLE: a multiple sequence alignment method with reduced time

and space complexity. BMC Bioinformatics, 5:1–19, 2004.

75

[35] R. C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high

throughput. Nucleic Acids Research, 32:1792–1797, 2004.

[36] P. G. Engström, D. Fredman, and B. Lenhard. Ancora: a web resource for explor-

ing highly conserved noncoding elements and their association with developmental

regulatory genes. Genome Biology, 9(2):R34, 2008.

[37] F. Fernandes, L. Pereira, and A. T. Freitas. CSA: an efficient algorithm to improve

circular DNA multiple alignment. BMC Bioinformatics, 10:1–13, 2009.

[38] W. M. Fitch. Distinguishing homologous from analogous proteins. Systematic

Biology, 19(2):99–113, 1970.

[39] W. Fletcher and Z. Yang. INDELible: a flexible simulator of biological sequence

evolution. Molecular Biology and Evolution, 8:1879–1888, 2009.

[40] F. Fontanesi. Mitochondria: Structure and Role in Respiration, pages 1–13. Amer-

ican Cancer Society, 2015.

[41] H. Freeman. On the encoding of arbitrary geometric configurations. Electronic

Computers, IRE Transactions on, EC-10:260–268, 1961.

[42] G. Fritzsch, M. Schlegel, and P.F. Stadler. Alignments of mitochondrial genome

arrangements: Applications to metazoan phylogeny. Journal of Theoretical Biology,

240(4):511–520, 2006.

[43] G. Fritzscha, M. Schlegela, and P.F. Stadlera. Alignments of mitochondrial genome

arrangements: Applications to metazoan phylogeny. Journal of Theoretical Biology,

240:511–520, 2005.

[44] T. W. Gillespie, J. Chu, E. Frankenberg, and D. Thomas. Assessment and prediction

of natural hazards from satellite imagery. Progress in Physical Geography: Earth

and Environment, 31(5):459–470, 2007. PMID: 25170186.

76

[45] R. C. Gonzalez and R. E. Woods. Digital Image Processing (2nd Edition). Prentice

Hall, 2002.

[46] O. Gotoh. An improved algorithm for matching biological sequences. Journal of

Molecular Biology, 162:705–708, 1982.

[47] R. Grossi, C. S. Iliopoulos, R. Mercas, N. Pisanti, S. P. Pissis, A. Retha, and

F. Vayani. Circular sequence comparison: algorithms and applications. Algorithms

for Molecular Biology, 11:12, 2016.

[48] D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and

Computational Biology. Cambridge University Press, 1997.

[49] R.S. Harris. Improved Pairwise Alignment of Genomic DNA. PhD thesis, Pennsyl-

vania State University, University Park, PA, USA, 2007.

[50] D. R. Helinski and D. B. Clewell. Circular DNA. Annual Review of Biochemistry,

40:899–942, 1971.

[51] P. Hogeweg and B. Hesper. The alignment of sets of sequences and the construction

of phyletic trees: An integrated method. Journal of Molecular Evolution, 20(2):175–

186, 1984.

[52] A. K. Jain and E. Angel. Image restoration, modelling, and reduction of dimen-

sionality. IEEE Transactions on Computers, C-23(5):470–476, May 1974.

[53] P. Jokinen and E. Ukkonen. Two algorithms for approximate string matching in

static texts. In MFCS, pages 240–248, 1991.

[54] T.H. Jukes and C.R. Cantor. Evolution of Protein Molecules. Academy Press, New

York, 1969.

[55] H. Kasamatsu and J. Vinograd. Replication of circular DNA in eukaryotic cells.

Annual Review of Biochemistry, 43:695–719, 1974.

77

[56] N. Khiste and L. Ilie. E-MEM: efficient computation of maximal exact matches for

very large genomes. Bioinformatics, 31(4):509–514, 2015.

[57] P. Kuck, K. Meusemann, J. Dambach, B. Thormann, B. M. von Reumont, J. W.

Wagele, and B. Misof. Parametric and non-parametric masking of randomness in

sequence alignments can be improved and leads to better resolved trees. Frontiers

in Zoology, 7:1–12, 2010.

[58] S. Kumar and A. Filipski. Multiple sequence alignment: in pursuit of homologous

DNA positions. Genome Research, 17(2):127–135, 2007.

[59] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. Antonescu, and

S. L. Salzberg. Versatile and open software for comparing large genomes. Genome

Biology, 5(2):R12, Jan 2004.

[60] Y. LeCun and C. Cortes. The MNIST database of handwritten digits. 1999.

[61] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

[62] S. Lockton and B. S. Gaut. Plant conserved non-coding sequences and par-

alogue evolution. 21(1):60–65, 2005. Exported from https://app.dimensions.ai on

2018/12/08.

[63] H. Lodish. Molecular Cell Biology (4th edition). New York: W.H. Freeman and Co,

2013.

[64] V. Lomonaco, R. Martoglia, F. Mandreoli, L. Anderlucci, W. Emmett, S. Bicciato,

and C. Taccioli. UCbase 2.0: ultraconserved sequences database (2014 update).

Database, 2014, 2014.

[65] D. G. Lupiáñez, K. Kraft, V. Heinrich, P. Krawitz, F. Brancati, E. Klopocki,

D. Horn, H. Kayserili, J. M. Opitz, R. Laxova, F. Santos-Simarro, B. Gilbert-

Dussardier, L. Wittler, M. Borschiwer, S. A. Haas, M. Osterwalder, M. Franke,

78

B. Timmermann, J. Hecht, M. Spielmann, A. Visel, and S. Mundlos. Disruptions

of topological chromatin domains cause pathogenic rewiring of gene-enhancer inter-

actions. Cell, 161(5):1012 – 1025, 2015.

[66] M. Maes. On a cyclic string-to-string correction problem. Information Processing

Letters, 35(2):73–78, 1990.

[67] M. Maes. Polygonal shape recognition using string-matching techniques. Pattern

Recognition, 24(5):433–440, 1991.

[68] U. Manber and E. W. Myers. Suffix arrays: A new method for on-line string

searches. SIAM Journal on Computing, 22(5):935–948, 1993.

[69] A. Marzal and V. Palazon-Gonzalez. Dynamic time warping of cyclic strings for

shape matching. In Pattern Recognition and Image Analysis, volume 3687 of Lecture

Notes in Computer Science, pages 644–652. Springer, 2005.

[70] A. Marzal and E. Vidal. Computation of normalized edit distance and applica-

tions. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 15:926–

932, 1993.

[71] G. P. McCormack and J. P. Clewley. The application of molecular phylogenetics to

the analysis of viral genome diversity and evolution. Reviews in Medical Virology,

12(4):221–238.

[72] R. A. Mollineda, E. Vidal, and F. Casacuberta. Efficient techniques for a very ac-

curate measurement of dissimilarities between cyclic patterns. Advances in Pattern

Recognition, 1876:337–346, 2000.

[73] R. A. Mollineda, E. Vidal, and F. Casacuberta. Cyclic sequence alignments: Ap-

proximate versus optimal techniques. International Journal of Pattern Recognition

and Artificial Intelligence, 16:291–299, 2002.

79

[74] A. Mosig, I. L. Hofacker, and P. F. Stadler. Comparative analysis of cyclic sequences:

Viroids and other small circular RNAs. In R Giegerich and J Stoye, editors, Lecture

Notes in Informatics, pages 93–102. Proceedings GCB, 2006.

[75] G. Myers. A fast bit-vector algorithm for approximate string matching based on

dynamic programming. Journal of the ACM (JACM), 46:395–415, 1999.

[76] S. B. Needleman and C. D. Wunsch. A general method applicable to the search

for similarities in the amino acid sequences of two proteins. Journal of Molecular

Biology, 48:443–453, 1970.

[77] L. Noé and G. Kucherov. YASS: enhancing the sensitivity of DNA similarity search.

Nucleic Acids Research, 33(suppl 2):W540–W543, 2005.

[78] C. Notredame, D. G. Higgins, and J. Heringa. T-coffee: a novel method for fast and

accurate multiple sequence alignment. Journal of Molecular Biology, 302(1):205–

217, 2000.

[79] V. Palazon-Gonzalez and A. Marzal. On the dynamic time warping of cyclic se-

quences for shape retrieval. Image and Vision Computing, 30:978–990, 2012.

[80] V. Palazon-Gonzalez and A. Marzal. Speeding up the cyclic edit distance using

laesa with early abandon. Pattern Recognition Letters, 62:1–7, 2015.

[81] W. R. Pearson. Flexible sequence similarity searching with the FASTA3 program

package. Methods Mol Biol., 132:185–219, 2000.

[82] O. Penn, E. Privman, H. Ashkenazy, G. Landan, D. Graur, and T. Pupko. GUID-

ANCE: a web server for assessing alignment confidence scores. Nucleic Acids Re-

search, 38(suppl 2):23–28, 2010.

[83] J. Persampieri, D. I. Ritter, D. Lees, Q. Lehoczky, J.and Li, S. Guo, and J. H.

Chuang. cneViewer: a database of conserved non-coding elements for studies of

tissue-specific gene regulation. Bioinformatics, 24(20):2418–2419, 2008.

80

[84] A. Phillips, D. Janies, and W. Wheeler. Multiple sequence alignment in phylogenetic

analysis. Molecular Phylogenetics and Evolution, 16(3):317–330, 2000.

[85] D. Polychronopoulos, L. Athanasopoulou, and Y. Almirantis. Fractality and en-

tropic scaling in the chromosomal distribution of conserved noncoding elements in

the human genome. Gene, 584(2):148–160, 2016.

[86] D. Polychronopoulos, J. W. D. King, A. J. Nash, G. Tan, and B. Lenhard. Con-

served non-coding elements: developmental gene regulation meets genome organi-

zation. Nucleic Acids Research, page gkx1074, 2017.

[87] D. Polychronopoulos, D. Sellis, and Y. Almirantis. Conserved noncoding elements

follow power-law-like distributions in several genomes as a result of genome dynam-

ics. PLOS ONE, 9(5):1–12, 05 2014.

[88] D. Polychronopoulos, E. Weitschek, S. Dimitrieva, P. Bucher, G. Felici, and

Y. Almirantis. Classification of selectively constrained DNA elements using fea-

ture vectors and rule-based classifiers. Genomics, 104(2):79–86, 2014.

[89] A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite of utilities for comparing

genomic features. Bioinformatics, 26(6):841–842, 2010.

[90] C. R. Rao. Geometry of circular vectors and pattern recognition of shape of a

boundary. Proceedings of the National Academy of Sciences, 95(22):12783–12786,

1998.

[91] N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstruct-

ing phylogenetic trees. Molecular biology and evolution, 4:406–425, 1987.

[92] A. Sandelin, W. Alkema, P. Engström, W. W. Wasserman, and B. Lenhard. JAS-

PAR: an open-access database for eukaryotic transcription factor binding profiles.

Nucleic Acids Research, 32(suppl 1):D91–D94, 2004.

81

[93] A. Sandelin, P. Bailey, S. Bruce, P. G. Engström, J. M. Klos, W. W. Wasserman,

J. Ericson, and B. Lenhard. Arrays of ultraconserved non-coding regions span the

loci of key developmental genes in vertebrate genomes. BMC Genomics, 5(1):99,

2004.

[94] J.-Y Scanvic and J-P. Deroin. Aerospatial remote sensing in geology. 01 1997.

[95] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haus-

sler, and W. Miller. Human-mouse alignments with BLASTZ. Genome Research,

13(1):103–107, 2003.

[96] F. Sievers, A. Wilm, D. Dineen, T. J. Gibson, K. Karplus, W. Li, R. Lopez,

H. McWilliam, M. Remmert, J. Söding, J. D. Thompson, and D.G. Higgins.

Fast, scalable generation of high-quality protein multiple sequence alignments using

clustal omega. Molecular systems biology, 7:539, 2011.

[97] T. Sikora. The MPEG-7 visual standard for content description-an overview. Cir-

cuits and Systems for Video Technology, IEEE Transactions on, 11:696–702, 2001.

[98] V. A. Simossis and J. Heringa. Integrating protein secondary structure prediction

and multiple sequence alignment. Current Protein & Peptide Science, 5(4):249–266,

2004.

[99] T. F. Smith and M. S. Waterman. Identification of common molecular subsequences.

Journal of Molecular Biology, 147(1):195–197, 1981.

[100] M. Sparaco, M. Feleppa, R. B. Lipton, A. M. Rapoport, and M. E. Bigal. Mitochon-

drial dysfunction and migraine: Evidence and hypotheses. Cephalalgia, 26(4):361–

372, 2006. PMID: 16556237.

[101] A. Stamatakis. RAxML Version 8: A tool for phylogenetic analysis and post-

analysis of large phylogenies. Bioinformatics, 30:1312–1313, 2014.

82

[102] G. Stiver. The treatment of influenza with antiviral drugs. CMAJ, 168(1):49–57,

2003.

[103] O. Suptawiwat, A. Kongchanagul, C. Boonarkart, and P. Auewarakul. H1N1 sea-

sonal influenza virus evolutionary rate changed over time. Virus Research, 250:43

– 50, 2018.

[104] G. Talavera and J. Castresana. Improvement of phylogenies after removing diver-

gent and ambiguously aligned blocks from protein sequence alignments. Systematic

Biology, 56(4):564–577, 2007.

[105] G. Tan. CNEr. http://bioconductor.org/packages/release/bioc/html/CNEr.html,

2017.

[106] G. Tan, M. Muffato, C. Ledergerber, J. Herrero, N. Goldman, M. Gil, and C. Dessi-

moz. Current methods for automated filtering of multiple sequence alignments fre-

quently worsen single-gene phylogenetic inference. Systematic Biology, 64(5):778–

791, 2015.

[107] P. Tarroso, M. Simó-Riudalbas, and S. Carranza. The complete mitochondrial

genome of pristurus rupestris rupestris. Mitochondrial DNA Part B, 2(2):802–803,

2017.

[108] H. Taud, J. C. Herrera-Lozada, J. A. álvarez-Cedillo, M. Marciano-Melchor,

R. Silva-Ortigoza, and M. Olgúın-Carbajal. Circular object recognition from satel-

lite images. In 2012 IEEE International Geoscience and Remote Sensing Sympo-

sium, pages 2324–2327, July 2012.

[109] M. Thanbichler, S. C. Wang, and L. Shapiro. The bacterial nucleoid: A highly

organized and dynamic structure. Journal of Cellular Biochemistry, 96(3):506–521.

[110] J. D. Thomson, D. G. Higgins, and T. J. Gibson. CLUSTAL W: improving the

sensitivity of progressive multiple sequence alignment through sequence weighting,

83

position-specific gap penalties and weight matrix choice. Nucleic Acids Ressearch,

22:4673–4680, 1994.

[111] D. M. Tralli, R. G. Blom, V. Zlotnicki, A. Donnellan, and D. L. Evans. Satel-

lite remote sensing of earthquake, volcano, flood, landslide and coastal inundation

hazards. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4):185 – 198,

2005. Remote Sensing and Geospatial Information for Natural Hazards Character-

ization.

[112] G. J. Tranah, T. M. Manini, K. K. Lohman, M. A. Nalls, S. Kritchevsky, A. B. New-

man, T. B. Harris, I. Miljkovic, A. Biffi, S. R. Cummings, and Y. Liu. Mitochondrial

dna variation in human metabolic rate and energy expenditure. Mitochondrion,

11(6):855 – 861, 2011.

[113] E. Ukkonen. Approximate string-matching with q-grams and maximal matches.

Theoretical Computer Science, 92:191–211, 1992.

[114] S. Vinga and J. Almeida. Alignment-free sequence comparison—a review. Bioin-

formatics, 19(4):513–523, 2003.

[115] A. Visel, S. Minovitsky, I. Dubchak, and L. A. Pennacchio. VISTA Enhancer

Browser–a database of tissue-specific human enhancers. Nucleic Acids Research,

35(suppl 1):D88–D92, 2006.

[116] G. Wang and R. L. Dunbrack. Scoring profile-to-profile sequence alignments. Pro-

tein Science, 13(6):1612–1626, 2004.

[117] L. Wang. On the complexity of multiple sequence alignment. Journal of Computa-

tional Biology, 1:337–348, 1994.

[118] M. Warnefors, B. Hartmann, S. Thomsen, and C. R. Alonso. Combinatorial gene

regulatory functions underlie ultraconserved elements in Drosophila. Molecular Bi-

ology and Evolution, 33(9):2294–2306, 2016.

84

[119] R. Weil and J. Vinograd. The cyclic helix and cyclic coil forms of polyoma viral

dna. Proceedings of the National Academy of Sciences, 50(4):730–738, 1963.

[120] J. Weiner and E. Bornberg-Bauer. Evolution of circular permutations in multido-

main proteins. Mol Biol Evol, 23(4):734–743, 2006.

[121] A. Woolfe, D. K. Goode, J. Cooke, H. Callaway, S. Smith, P. Snell, G. K. McEwen,

and G. Elgar. CONDOR: a database resource of developmentally associated con-

served non-coding elements. BMC Developmental Biology, 7(1):100, 2007.

[122] M. Wu, S. Chatterji, and J. A. Eisen. Accounting for alignment uncertainty in

phylogenomics. PLoS ONE, 7:1–10, 01 2012.

[123] J. Xiong. Essential Bioinformatics. Cambridge University Press, Texas A&M Uni-

versity, 2006. Cambridge Books Online.

[124] P. Yue, S. Jing, L. Liu, F. Ma, Y. Zhang, C. Wang, H. Duan, K. Zhou, Y. Hua,

G. Wu, and Y. Li. Association between mitochondrial dna copy number and cardio-

vascular disease: Current evidence based on a systematic review and meta-analysis.

PLOS ONE, 13(11):1–15, 11 2018.

[125] M. Šošić and M. Šikić. Edlib: a C/C++ library for fast, exact sequence alignment

using edit distance. Bioinformatics, 33(9):1394–1395, 2017.

85

	Introduction
	Definitions and Notations
	Strings
	Circular strings
	Edit distance
	Cyclic edit distance
	q-gram distance
	-blockwise q-gram distance
	Suffix array

	hCED - a heuristic for Cyclic Edit Distance computation
	Background
	Algorithm hCED
	Stage 1: Circular sequence comparison with q-grams
	Stage 2: Refinement
	Stage 3: Edit distance computation

	Analysis
	Experimental Results
	Synthetic Data
	Real Data

	Conclusion

	MARS - computing Multiple circular sequence Alignments using Refined Sequences
	Background
	Algorithm MARS
	Stage 1. Pairwise cyclic edit distance
	Stage 2. Guide tree
	Stage 3. Progressive Alignment

	Experimental Results
	Synthetic Data
	Real Data

	Conclusion

	CNEFinder - Finding conserved non-coding elements in genomes
	Background
	Algorithm CNEFinder
	Stage 1: Identifying matches
	Stage 2: Merging matches
	Stage 3: Extending matches

	Experimental Results
	CNEFinder against UCNEbase
	Genomic distribution of CNEs along the chromosome
	Efficiency of CNEFinder
	Comparison with local-alignment tools

	Conclusion

	Discussion

