
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

King’s Research Portal 
 

DOI:
10.1038/s41398-019-0592-5

Document Version
Peer reviewed version

Link to publication record in King's Research Portal

Citation for published version (APA):
AddNeuroMed consortium and the Alzheimer’s Disease Neuroimaging Initiative (2019). Examining the
association between genetic liability for schizophrenia and psychotic symptoms in Alzheimer's disease.
Translational psychiatry, 9(1), Article 273. https://doi.org/10.1038/s41398-019-0592-5

Citing this paper
Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may
differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination,
volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are
again advised to check the publisher's website for any subsequent corrections.

General rights
Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights.

•Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research.
•You may not further distribute the material or use it for any profit-making activity or commercial gain
•You may freely distribute the URL identifying the publication in the Research Portal
Take down policy
If you believe that this document breaches copyright please contact librarypure@kcl.ac.uk providing details, and we will remove access to
the work immediately and investigate your claim.

Download date: 13. Jan. 2025

https://doi.org/10.1038/s41398-019-0592-5
https://kclpure.kcl.ac.uk/portal/en/publications/d7311d2f-d452-481f-ba11-6d348f04423c
https://doi.org/10.1038/s41398-019-0592-5


 
 

1 
 

Examining the association between genetic liability for schizophrenia and 1 

psychotic symptoms in Alzheimer’s disease 2 

Byron Creese1,2*, PhD; Evangelos Vassos3*, PhD; Sverre Bergh2,4,5*, PhD; Lavinia 3 

Athanasiu6,7, PhD; Iskandar Johar8,2, MBBS; Arvid Rongve9,10,,2, PhD: Ingrid Tøndel 4 

Medbøen5,11, PhD; Miguel Vasconcelos Da Silva1,8,2, BSc; Eivind Aakhus4, PhD; Fred 5 

Andersen12, PhD; Francesco Bettella6,7 , PhD; Anne  Braekhus5,11,13, PhD Srdjan Djurovic10,14, 6 

PhD; Giulia Paroni16, PhD; Petroula Proitsi17, PhD; Ingvild Saltvedt18,19, Davide Seripa16, PhD; 7 

Eystein Stordal20,21, PhD; Tormod Fladby22,23, MD; Dag Aarsland2,8,24, MD; Ole A. 8 

Andreassen6,7, MD; Clive Ballard1,2*, MD; Geir Selbaek4,5,25*, MD; on behalf of the 9 

AddNeuroMed consortium and the Alzheimer's Disease Neuroimaging Initiative**  10 

1. University of Exeter Medical School, Exeter, UK 11 

2. Norwegian, Exeter and King's College Consortium for Genetics of Neuropsychiatric 12 

Symptoms in Dementia 13 

3. Social Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, 14 

Psychology and Neuroscience, King's College London 15 

4. Research centre of Age-related Functional Decline and Disease, Innlandet Hospital 16 

Trust, Pb 68, Ottestad 2312, Norway 17 

5. Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital 18 

Trust, Tønsberg, Norway 19 

6. NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway. 20 

7. NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, 21 

Norway 22 

8. Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and 23 

Neuroscience, King's College London 24 

9. Department of Research and Innovation, Helse Fonna, Haugesund, Norway. 25 

10. Department of Clinical Medicine, University of Bergen, Bergen, Norway. 26 

11. Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway 27 



 
 

2 
 

12. Department of Community Medicine, University of Tromsø, Tromsø, Norway. 28 

13. Department of Neurology, Oslo University Hospital, Oslo, Norway 29 

14. NORMENT, Department of Clinical Science, University of Bergen, Bergen, Norway 30 

15. Department of Medical Genetics, Oslo University Hospital, Oslo, Norway 31 

16. Complex Structure of Geriatrics, Department of Medical Sciences, Fondazione 32 

IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo (FG), Italy. 33 

17. Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology 34 

and Neuroscience, King's College London, London, UK. 35 

18. Geriatric department, St. Olav hospital, University Hospital of Trondheim, Norway 36 

19. Department of Neuromedicine and Movement science, Norwegian University of 37 

Science and Technology, Trondheim, Norway. 38 

20. Department of Mental Health, Norwegian University of Science and Technology, 39 

Trondheim, 43 Norway. 40 

21. Department of Psychiatry, Namsos Hospital, Namsos, Norway. 41 

22. Department of Neurology, Akershus University Hospital, Lørenskog, Norway 42 

23. Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway 43 

24. Centre for Age-Related Medicine, Stavanger University Hospital, Stavanger, Norway 44 

25. Faculty of Medicine, University of Oslo, Oslo, Norway 45 

*these authors contributed equally 46 

**Data used in preparation of this article were obtained from the Alzheimer’s Disease 47 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within 48 

the ADNI contributed to the design and implementation of ADNI and/or provided data but did 49 

not participate in analysis or writing of this report. A complete listing of ADNI investigators can 50 

be found at: http://adni.loni.usc.edu/wp-51 

content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf 52 

Corresponding author: Byron Creese, RILD Building, Barrack Road, Exeter EX2 5DW, UK 53 

b.creese@exeter.ac.uk, tel: 01392 724837 54 

55 

http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
mailto:b.creese@exeter.ac.uk


 
 

3 
 

Abstract 56 

 57 

Psychosis (delusions or hallucinations) in Alzheimer’s disease (AD+P) occurs in up to 50% of 58 

individuals and is associated with significantly worse clinical outcomes.  Atypical 59 

antipsychotics, first developed for schizophrenia, are commonly used in AD+P, suggesting 60 

shared mechanisms.  Despite this implication, little empirical research has been conducted to 61 

examine whether there are mechanistic similarities between AD+P and schizophrenia.  In this 62 

study, we tested whether polygenic risk score (PRS) for schizophrenia was associated with 63 

AD+P.  Schizophrenia PRS was calculated using Psychiatric Genomics Consortium data at 64 

10 GWAS p-value thresholds (PT) in 3,111 AD cases characterized for psychosis using 65 

validated, standardized tools.  Association between PRS and AD+P status was tested by 66 

logistic regression in each cohort individually and the results meta-analyzed.  The 67 

schizophrenia PRS was associated with AD+P at an optimum PT of 0.01.  The strongest 68 

association was for delusions where a one standard deviation increase in PRS was associated 69 

with a 1.18-fold increased risk (95% CI: 1.06-1.3; p=0.001).   These new findings point towards 70 

psychosis in AD – and particularly delusions – sharing some genetic liability with schizophrenia 71 

and support a transdiagnostic view of psychotic symptoms across the lifespan. 72 

 73 

 74 

Key words: psychosis, Alzheimer’s disease, genetics, delusions, hallucinations.  75 
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1. Introduction 76 

  77 

Psychosis in Alzheimer’s disease (AD+P) - broadly comprising delusions and hallucinations - 78 

is experienced by up to 50% of people over the course of the illness, with prevalence peaking 79 

in the later stages 1.  AD+P is associated with accelerated cognitive decline (independent of 80 

disease duration), higher mortality rates and distress to both people with the disease and their 81 

carers 2-4.  Moreover, there are wider societal implications with long-term follow up studies 82 

indicating that AD+P is associated with a shorter time to nursing home care 5.  Despite these 83 

compelling reasons for effective management, there is a critical treatment gap, with no 84 

licensed treatments available in many jurisdictions.  Atypical antipsychotics – developed first 85 

for schizophrenia – are frequently used to treat AD+P (in many countries off label) and, while 86 

they have some modest benefits, are associated with considerable harms, including a 1.5- to 87 

1.8-fold increase in mortality and a 3- fold increase in stroke 6.   88 

 89 

Clinically useful alternatives to antipsychotics are scarce. There are only two new 90 

antipsychotic compounds in phase II or later stages of development (pimavanserin and MP-91 

101) but both are refinements of existing mechanisms of action of atypical antipsychotics 92 

targeting mechanisms relevant to schizophrenia (e.g. 5HT2A, mGluR2/3) and side effects 93 

remain a concern7.  The limited understanding of the biological mechanisms underpinning 94 

AD+P represents a major challenge to the effective targeting of existing treatments and the 95 

identification of novel treatment targets.   96 

 97 

One key question is whether some or all of the psychotic symptoms experienced by people 98 

with AD have a similar basis to schizophrenia.  Phenomenologically the psychotic symptoms 99 

in each are different; in AD visual hallucinations are more common than auditory 100 

hallucinations, delusions are usually simple, and the so-called first rank symptoms of 101 
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schizophrenia are very rare.  In addition, schizophrenia is characterized by both positive and 102 

negative symptoms.  While negative symptoms can also accompany psychosis in AD 103 

consensus is yet to be reached on whether these other neuropsychiatric symptoms form part 104 

of the AD+P clinical syndrome.  Despite the different phenomenology, atypical antipsychotics 105 

confer some treatment benefits in some cases of AD+P 8, and similar neuropsychological 106 

deficits in processing speed and executive function have been observed in individuals with 107 

very-late-onset schizophrenia-like psychosis and AD+P9, suggesting some overlap. 108 

 109 

A transdiagnostic hypothesis, proposing a mechanistic overlap between AD+P and 110 

schizophrenia, is gaining some traction 10 and is supported by genetic studies of psychosis in 111 

adolescence, the general adult population and Huntington’s disease all showing overlap with 112 

schizophrenia 11-13.  In view of these findings and the high heritability of schizophrenia 14 and 113 

of AD+P (estimated at 81% and 61% respectively) 15, it is logical to look for common genetic 114 

underpinnings of the two disorders.  Comparative studies examining common mechanisms 115 

between AD and schizophrenia point towards synaptic elimination and disruption, and 116 

telomere length 16-18, but studies examining AD+P specifically and schizophrenia are less 117 

common.  It is of note that a recent major GWAS reported a nominally significant genetic 118 

correlation between schizophrenia and AD 19.  It is possible that the presence of psychosis in 119 

the AD sample (which was unknown in this study) was contributing to part of the association, 120 

underscoring the need for dissection of the AD phenotype by psychosis status.  In a small 121 

study, a copy number variant (CNV) with significant overlap of a duplicated region implicated 122 

in schizophrenia and autism (16p11.2) was found in two of 440 AD+P cases but not in AD 123 

without psychosis, or in those with more occasional symptoms 20.  Linkage studies have also 124 

implicated regions of the genome in AD+P that have been identified in schizophrenia 21, 22.  125 

Another approach is to examine whether polygenic risk for schizophrenia, summarized in a 126 

score (the weighted sum of risk associated alleles) with better discrimination properties than 127 

single markers 23,  is associated with AD+P.  Work in this area is limited to only one recent 128 
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study which, surprisingly, reported that a genetic risk score comprising 94 SNPs reaching 129 

genome wide significance for association with schizophrenia was lower in AD+P compared 130 

with AD without psychosis 24.  While this study represents an important preliminary step in 131 

AD+P research, a full genome-wide polygenic risk score (PRS) approach is imperative to 132 

address this key question25, 26.   133 

 134 

Another largely unexplored avenue in AD+P genetic research relates to the split of delusions 135 

and hallucinations.  Although the two symptoms frequently co-occur in AD, there is evidence 136 

from longitudinal cohort studies indicating that 10-20% of people experience hallucinations 137 

without delusions and that the two symptoms are associated with different clinical outcomes 2, 138 

27, suggesting the presence of two distinct clinical phenotypes.  While it is commonplace to 139 

separate out composite psychotic symptoms in neuroimaging studies of AD+P 28, 29, their 140 

separate genetic associations have not yet been examined in any large-scale AD studies 141 

leveraging GWAS data 30.  This is a particularly relevant issue when assessing genetic overlap 142 

with schizophrenia where the emerging evidence from neuroimaging and the clinical similarity 143 

supports the hypothesis that shared etiology would be specific to delusions. 144 

 145 

We conducted an analysis of the relationship between genetic liability for schizophrenia and 146 

AD+P with two principal objectives; firstly, we tested whether a PRS for schizophrenia was 147 

associated with AD+P and secondly, we examined the association of the PRS with AD+P 148 

stratified to focus on delusions. 149 

 150 

2. Methods 151 

 152 
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Ethical approval for this analysis protocol was obtained from University of Exeter Medical 153 

School Research Ethics Committee (Nov17/D/143).   154 

 155 

2.1 Cohorts 156 

AD+P target data consisted of 3,111 AD cases from 11 cohort studies in Europe and the USA:  157 

AddNeuroMed 31 (Europe, longitudinal: assessment every three months for maximum 1 year), 158 

Alzheimer’s Disease Neuroimaging Initiative 32 (ADNI; USA, longitudinal: assessment 159 

baseline, 6, 12, 24 and 36 months for maximum 3 years), Istituto di Ricovero e Cura a 160 

Carattere Scientifico (IRCCS 1; Italy, cross sectional), Health and Memory Study in Nord-161 

Trøndelag 33 (HMS; Norway, cross sectional), Resource Use and Disease Couse in Dementia 162 

34 (REDIC; Norway, longitudinal: assessment every 6 months for maximum 2.5 years), 163 

Norwegian registry of persons assessed for cognitive symptoms 35 (NorCog; Norway, cross 164 

sectional), Samhandling mellom avdeling for alderspsykiatri og kommunale sykehjem (SAM-165 

AKS; Norway, cross sectional), The Dementia Study in Northern Norway 36 (NordNorge, 166 

Norway, longitudinal: assessment baseline and 1 year), Progression of Alzheimer’s Disease 167 

and Resource Use 37 (PADR; Norway, longitudinal: assessment baseline and 1 year), The 168 

Dementia Study in Western Norway 38 (DemVest; Norway, longitudinal: assessment every 12 169 

months maximum 6 years); and data from the National Alzheimer’s Coordinating Center 170 

(NACC; USA, longitudinal: assessment approximately every 12 months) and the National 171 

Institute on Aging Genetics Data Storage Site (NIAGADS), Table 1).  Full cohort details are 172 

contained in the supplementary material and the Norwegian cohorts are also described in the 173 

latest GWAS of Alzheimer’s disease 39.  Informed consent was obtained by each study for all 174 

participants. 175 

 176 
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Some data used in the preparation of this article were obtained from the Alzheimer’s Disease 177 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 178 

as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The 179 

primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), 180 

positron emission tomography (PET), other biological markers, and clinical and 181 

neuropsychological assessment can be combined to measure the progression of mild 182 

cognitive impairment (MCI) and early Alzheimer’s disease (AD).  For up-to-date information, 183 

see www.adni-info.org. 184 

 185 

2.2 AD clinical assessments 186 

 187 

Diagnosis of AD was performed according to ICD-10 etiological diagnosis, NINCDS-ADRDA 188 

criteria or clinical diagnosis by psychiatrist or geriatrician.  Longitudinal data was available for 189 

7 cohorts (ADNI, AddNeuroMed, DemVest, NordNorge, PADR, REDIC, NACC) and psychotic 190 

symptom classification was on the maximum amount of follow up data available.  Any cases 191 

with a history of bipolar disorder or schizophrenia were excluded.  For NorCog, PADR, REDIC, 192 

SAM-AKS, NACC and ADNI the necessary information on psychiatric history was extracted 193 

from source study data resulting in 3, 1, 2, 1, 31 and 1 exclusions respectively.  For 194 

AddNeuroMed, DemVest, IRCCS 1 and NordNorge this was an exclusion criterion applied at 195 

entry to those individual studies.  No information about psychiatric history was available for 196 

the HMS study.  Dementia severity was assessed in all cohorts by Mini Mental State 197 

Examination (MMSE) and psychotic symptoms were assessed by the Neuropsychiatric 198 

Inventory (NPI) or its short version, the Neuropsychiatric Inventory Questionnaire (NPI-Q), 199 

they are among the most widely used validated instruments to assess psychosis40.  Psychotic 200 

symptoms are rated on the basis of items A (delusions) and B (hallucinations) of the NPI and 201 

NPI-Q. These are two different versions of the same scale, which are strongly correlated and 202 
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have good between-rater and test-retest reliability, particularly for the psychosis items 31, 43.  203 

Ratings were carried about by trained research staff in all cases.  In the full NPI, 204 

neuropsychiatric symptoms are coded as present or absent first.  If rated present they are 205 

further scored according to their frequency (1-4) and severity (1-3) with the resulting scores 206 

multiplied to give an overall rating (i.e. possible scores are 1,2,3,4,6,8,9 and 12 with 0 207 

indicating no symptoms).  The NPI-Q is rated only on a scale of 0 to 3 according to the severity 208 

of the symptom.  Both scales have been designed to be completed by verbal interview with a 209 

proxy informant who knows the person with AD well.  Several diagnostic criteria for AD+P 210 

have been proposed but none have been adopted clinically, meaning that where in other 211 

psychiatric disorders medical records can be screened, in AD+P this would be unreliable and 212 

ratings on specific validated assessment scales must be used.  Using such scales, we thus 213 

undertook examination of three related but progressively more homogenous psychotic 214 

phenotypes:  215 

 216 

1. Psychosis wide: Psychosis present: the presence of delusions or hallucinations (>0) 217 

at any point; No psychosis: no evidence of delusions or hallucinations at any point in 218 

follow up.   219 

 220 

2. Psychosis narrow: Psychosis present: the presence of delusions or hallucinations (>0) 221 

at any point; No psychosis: here, an additional level of screening was applied to those 222 

rated as having no delusions or hallucinations.  In these cases, if an individual was 223 

psychosis-free based on criteria for psychosis wide but had not yet reached a 224 

moderately-severe dementia stage based on available data (defined as MMSE<20) 225 

they were excluded from the analysis.  This is a similar approach to that used in most 226 

previous AD+P genetic research 24, 41. 227 

 228 
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3. Delusions narrow: Delusions present: the presence of delusions (>0) at any point 229 

during follow up.  Thus, the delusion group was the psychosis group above with any 230 

individuals rated as having hallucinations only removed.  No delusions: as per 231 

psychosis narrow.    232 

 233 

2.3 Genotyping and QC 234 

 235 

The genotyping chips used are detailed in Table 1.  Raw genotype data for individual cohorts 236 

underwent appropriate QC steps (implemented in PLINK).  SNPs with a minor allele frequency 237 

≤5% and a Hardy Weinberg equilibrium p < 10−5 were excluded.  The SNP and individual 238 

genotype failure threshold was set at 5% and individuals with mean heterozygosity ±3 239 

standard deviations were excluded.  The analysis was restricted to individuals of European 240 

ancestry using genetic principal components computed by EIGENSTRAT.  Related (pi-hat 241 

>0.2) or duplicate individuals both within and between cohorts were excluded.  Phasing 242 

(EAGLE2) and imputation (PBWT) was done via the Sanger Imputation Service using the 243 

Haplotype Reference Consortium (r1.1) reference panel on all cohorts.  After imputation only 244 

SNPs with an imputation quality (INFO) score >0.4 and MAF >0.05 were retained.  This 245 

resulted in 4,895,913 SNPs common across all eleven cohorts available to compute polygenic 246 

risk scores. 247 

 248 

The most recently published schizophrenia GWAS data from the Psychiatric Genomics 249 

Consortium (PGC) was used as base data to generate PRS in the target AD sample 26. SNPs 250 

with MAF<0.1, INFO<0.9 and indels were excluded from the base dataset to leave only the 251 

most informative SNPs and only one SNP from the extended MHC region was included 42.  As 252 

a positive control and to evaluate the specificity of the association we then generated PRS of 253 

height and depression using the latest GIANT consortium and PGC GWAS results 43, 44. 254 
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 255 

2.4 Analysis 256 

 257 

PRS for schizophrenia were generated in PRSice 45 at the following 10 GWAS p-value 258 

thresholds (PT): 5x10-8, 1x10-5, 1x10-4, 1x10-3, 0.01, 0.05, 0.1, 0.2, 0.5 and 1.  Clumping was 259 

performed (250kb, r2>0.1) to retain only the SNP with the strongest association in each 260 

window.  The resulting PRS were standardized (centering by mean, scaling by standard 261 

deviation) for the analysis. 262 

 263 

Power was calculated using AVENGEME46, with schizophrenia parameters as set out in Palla 264 

and Dudbridge46, number of markers genotyped in both datasets was 76,213 (see section 265 

3.1), a prevalence of 40%1 and of 36%1 was used for psychosis and delusions, and case 266 

control sample fractions as per Table 2.  There is no data available for estimated covariance 267 

between AD+P and schizophrenia but if this value is assumed to be 0.08 (less than the 0.13 268 

and 0.17 for schizophrenia and major depressive disorder and bipolar disorder estimated by 269 

AVENGEME46), this study has >=80% power for each PT>=0.01 for psychosis and delusions 270 

respectively but <80% power below this value.  All statistical analysis was implemented in R.  271 

For each cohort 10 logistic regression models (one per PT) were run with each of the previously 272 

defined psychosis phenotypes as the binary outcome and the first 10 ancestry principal 273 

components included as covariates.  Disease severity is accounted for in our ‘narrow’ 274 

phenotype definitions and as there is no strong evidence that age and gender are associated 275 

with AD+P1 so these were not included as covariates.  Logistic regression assumptions were 276 

confirmed using the R ‘car’ package.  Proportion of variance explained (R2) by PRS, on the 277 

observed scale, was determined by subtracting the Nagelkerke’s pseudo-R2 of the null model 278 

from that of the full model.  Regression coefficients for each PT across all cohorts were then 279 

included in random effects meta-analyses to account for between-study variation in data 280 
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collection protocols, frequency of psychosis and dementia severity 47-49.  Meta-analysis was 281 

undertaken using the ‘rma’ function in the ‘metafor’ package using the REML method 50.  282 

Because the PRS calculated were correlated a Bonferroni correction for multiple testing was 283 

considered too stringent.  Using a correlation matrix of the 10 PRS and the matSpD tool 284 

https://gump.qimr.edu.au/general/daleN/matSpD/), the effective number of independent tests 285 

was determined to be 5 and the experiment-wide significance threshold for type I error rate of 286 

5% determined to be p=0.01.  All tests reported are two-sided.  287 

 288 

3. Results 289 

 290 

On average across all eleven cohorts, individuals were in the mild-moderate stages of 291 

dementia at first assessment (mean MMSE of 19).  Mean MMSE by cohort ranged from an 292 

MMSE of 12 (IRCCS 1) to 24 (ADNI) and this was a correlate of the prevalence of psychosis 293 

in each cohort (note the denominator would be the overall cohort N in Table 1), with cohorts 294 

that contained individuals with more severe dementia typically having a higher proportion of 295 

people with psychosis.  Between cohorts, mean age at baseline ranged from 75 to 87 years 296 

and the proportion of male participants ranged from 26% to 59%.  There was little difference 297 

in age between the psychosis and no psychosis groups across all studies but gender 298 

distributions did differ.   299 

 300 

Frequency of the three phenotypes investigated by cohort is shown in Table 2.  Of the 3,111 301 

individuals screened, 1,116 (36%) had psychosis (wide definition group).  Of the 1,995 who 302 

were rated as having no psychosis based on their assessment scale result alone, 879 had not 303 

yet reached the moderate stages of disease and so were excluded; 1,116 AD+P cases and 304 

1,116 AD no psychosis ‘controls’ were included in the analysis of the narrow phenotype of 305 

psychosis.  936 cases met the criteria for having delusions narrow. 306 

https://gump.qimr.edu.au/general/daleN/matSpD/
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 307 

3.1 Schizophrenia PRS is associated with AD psychosis status 308 

 309 

After clumping, 76,213 independent variants were available for computing PRS.  Random 310 

effects meta-analysis across the 11 cohorts showed the largest OR for the schizophrenia PRS 311 

was at PT=0.01 and this was significantly associated with symptom status across the 312 

psychosis wide, psychosis narrow and delusions narrow phenotypes despite the progressively 313 

smaller sample size in each of these groups (OR: 1.14 95% CI:1.05-1.23, p=0.003; OR: 1.16 314 

95% CI:1.06-1.28 p=0.004; OR: 1.18 95% CI:1.06-1.30, p=0.001 respectively), see Figure 1 315 

and Table 3.  PRS was also significantly associated with both the psychosis narrow and 316 

delusions narrow phenotypes at every PT >0.01.  The largest effect size was observed in the 317 

delusions narrow group.  Overall, there was no evidence of significant heterogeneity; I2 318 

statistics were close to 0% for PT =0.01 across the three phenotypes. 319 

 320 

In the individual cohort analysis, we observed that the effect estimates of association between 321 

schizophrenia PRS and AD+P in nine of the 11 studies were in the same direction (OR>1); 322 

albeit not statistically significantly (Supplementary Table 1).  A forest plot of individual study 323 

estimates for delusions narrow at PT=0.01, the strongest association found in the above meta-324 

analysis, is shown in Figure 2.  A similar plot at PT=1 for comparison is shown in the 325 

Supplementary material along with plots for psychosis wide and psychosis narrow 326 

phenotypes.  The highest Nagelkerke’s R2 estimate was 2.9% (AddNeuroMed) and the lowest 327 

was <0.1% (IRCCS 1).  An overall variance explained (Nagelkerke’s R2) in AD+P by 328 

schizophrenia PRS of 0.08% was estimated by calculating the weighted average R2 across 329 

the 11 studies.  To determine the specificity of the signal, PRS for major depression (using the 330 

PGC GWAS44) and height (GIANT consortium GWAS43) were generated post-hoc at PT=1 and 331 

tested for association with delusions using the same procedure as described in Section 2.4.  332 
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Neither PRS showed any evidence of association (major depression: OR: 1.03, 95% CI: 0.91-333 

1.18, p=0.61; height: OR: 0.99, 95% CI: 0.85-1.17, p=0.99). 334 

 335 

4. Discussion  336 

 337 

We set out to examine whether genetic risk for psychotic symptoms in AD (AD+P) is 338 

attributable to common schizophrenia variants.  Using polygenic scoring, we found that 339 

schizophrenia PRS was associated with AD+P in a collection of over 3,000 well characterized 340 

cases and the association persisted as the AD+P phenotype was more precisely defined 341 

resulting in a smaller N.  The largest effect size was observed at PT=0.01 which was 342 

associated with a 1.14, 1.16 and 1.18-fold (per standard deviation increase in PRS) increased 343 

risk of psychosis (wide), psychosis (narrow) and delusions (narrow) respectively.  In the 344 

individual cohort analysis, the odds ratios of nine of the eleven studies were in the same 345 

direction (OR>1).  In all, these new findings suggest that AD+P is part of a spectrum of 346 

neuropsychiatric conditions characterized by psychosis across the lifespan but in common 347 

with other PRS studies in psychiatric genomics are yet not appropriate for symptom or disease 348 

course prediction.  Although the variance explained by schizophrenia PRS in AD+P is only 349 

modest, with the R2 estimates being less than 1%, this should be seen in the context of the 350 

same PRS explaining around 2.5% of the variance in bipolar disorder and 1% in MDD in a 351 

cross-disorder analysis of the Psychiatric Genomics Consortium with significantly larger target 352 

sample sizes 51.   353 

 354 

In line with our findings, a recent study in UK Biobank, found psychotic experiences in the 355 

general population to be associated with PRS for schizophrenia, with the strongest association 356 

observed for delusions 12.  Several possible conclusions can be drawn from the finding that 357 

the association was still observed in the delusions phenotype in this study, despite a 358 
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considerably smaller N compared with the psychosis phenotypes.  This finding may point 359 

towards a subset of AD+P patients that have a more schizophrenia-like phenotype.  More 360 

work is needed to investigate whether further diagnostic refinements to AD+P syndrome 361 

definitions are necessary, which may provide a more robust approach for pharmacological 362 

intervention trials.  Related to this, from a methodological point of view, we show that there is 363 

a need for future studies in AD to consider delusions and hallucinations separately.  We cannot 364 

rule out a genetic association between hallucinations in AD and schizophrenia in these cohorts 365 

but the evidence at present suggests a weaker association than for delusions.  One might 366 

speculate that this is due to visual hallucinations in AD being more often the result of a broader 367 

range of causes (e.g. visual hallucinations due to medication or delirium) than delusions, thus 368 

introducing more noise into the phenotype.  The final wider implication is related to the 369 

schizophrenia PRS being associated with a broad spectrum of psychotic disorders and 370 

personality traits 11-13, 51-53.  Our findings support a transdiagnostic explanation of delusions, 371 

which reaches into neurodegenerative disease and is underpinned by a degree of common 372 

genetic liability. 373 

 374 

A key strength of our study is the detailed phenotyping with longitudinal data being available 375 

in seven of the eleven cohorts.  Rather than relying on medical record screens, which would 376 

be highly unreliable for AD+P given the lack of universally accepted and used diagnostic 377 

criteria, every individual in our analysis was assessed using specific, reliable assessment 378 

tools.  We then used this data to dissect AD+P phenotype genetics for the first time by focusing 379 

on delusions as well as the broader syndrome.  We also followed previous research by taking 380 

extra measures to screen the ‘control’ groups.  This removed any cases in the mild stages of 381 

disease who had not yet developed symptoms (i.e. those still at risk 1).  This approach has 382 

been used in most previous genetic research but our extension to focus on delusions in AD+P 383 

is novel.  Our finding that this more precision definition the phenotype strengthened the 384 

association is consistent with genetic studies of other polygenic traits, like depression 44.   385 
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 386 

For one study (HMS) data on history of major psychiatric conditions were not available.  It is 387 

possible that some individuals with schizophrenia were present in this cohort however HMS is 388 

a cohort with a mean age of 87 so it is highly unlikely that the number would be more than one 389 

or two out of 178 people in the HMS cohort (this is also supported by the very small numbers 390 

we found among the other studies we screened).  With over 3,000 samples, this is, to our 391 

knowledge, the largest analysis of AD+P to exploit GWAS data 41.  We acknowledge that using 392 

different cohorts has led to some variability due to sampling but it is important to acknowledge 393 

that there are no single cohorts which are large enough to conduct an analysis of this kind and 394 

because of potential sampling and protocol variations across the individual studies we ensured 395 

an appropriate analysis was implemented to account for this variability; the same approach as 396 

used in other studies examining PRS in complex phenotypes 47-49.  We had access to raw 397 

individual-level clinical and genotype data, allowing us to run the same regression models in 398 

each study.  This included undertaking the same QC across cohorts, imputing all chip data to 399 

the same reference panel and analyzing only SNPs present across all cohorts.   After ensuring 400 

this standardized process was followed for each cohort we ran a random effects meta-401 

analysis, allowing for the effect of the PRS on AD+P to vary across studies.  In all, and in the 402 

absence of a single large enough study, these measures provide the most robust estimates, 403 

as reflected in the low heterogeneity statistics of the meta-analysis and the narrow range of 404 

effect estimates and overlapping confidence intervals across the eleven studies included 405 

(Figure 2 and Supplementary figures 1-3).  Finally, as with all similar studies, these results are 406 

not generalizable to individuals with non-European ancestry; there is an equal imperative to 407 

extend the genomics of AD+P to other populations as in AD itself.   408 

 409 

A previous study which examined a genetic risk score at a more conservative PT comprised of 410 

only 94 genome-wide significant schizophrenia SNPs found it to be lower in AD+P cases24.  411 
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Our study is a similar size to this previous study, and the NACC data was used in both.   Given 412 

that a PRS with only 94 SNPs will be a less powerful predictor than a full genome-wide score 413 

it is possible larger studies will be needed to confirm associations at this more conservative 414 

PT.  Nevertheless, schizophrenia is highly polygenic; tens of thousands of markers explain 415 

only 7% of the variance on the liability scale, while for optimum cross-trait case-control (e.g. 416 

schizophrenia and bipolar) prediction many thousands more SNPs are required51.  In addition, 417 

cases of schizophrenia in the PGC study (used as base sample to estimate PRS), include 418 

patients with both a positive and negative syndrome. There is evidence that negative and 419 

disorganized symptoms are more heritable than positive, which – although we report a positive 420 

association – may reduce the power of schizophrenia PRS at more conservative PT to 421 

discriminate AD cases with or without psychotic symptoms 54, 55.  Accordingly, a full account 422 

of association between schizophrenia and AD+P should exploit the full polygenic nature of 423 

schizophrenia; our study is the first to do this and the findings represent an important further 424 

step towards a complete account of the relationship between common schizophrenia variants 425 

and AD+P.  Another important milestone will be an appropriately powered discovery GWAS 426 

of AD+P and all of these points underscore the need for increasing samples sizes in this field.  427 

 428 

In summary, these findings support shared genetic liability between schizophrenia and 429 

delusions in AD. This provides a strong rationale for further work to build a clearer clinical and 430 

biological understanding of the psychosis syndrome in AD, an urgently needed step for better 431 

management and treatment development. 432 

  433 
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Table 1: Baseline characteristics by cohort 708 

  N 

Age 

  

Gender 

  

MMSE  

  Scale   

Follow 
up 

(years)*+   

Number of 
assessments 

done+   Array 

  

AD-P AD+P 

 

AD-P AD+P  AD-P AD+P 

          

    Mean SD Mean SD   % male % male   Mean SD Mean SD                 

AddNeuroMed 225 76 7 78 5.6  42 24  21 4.6 20 4.8  NPI  1  5  Illumina 610 

ADNI 248 76 7.2 74 7.4  63 43  24 2.5 23 2.5  NPI-Q  3  4  Illumina OmniExpress 

DemVest 80 77 8.3 76 5.5  23 38  24 2.4 23 2.4  NPI  5  6  Illumina OmniExpress 

IRCCS 1 326 78 7.4 79 6.4 
 44 36  14 6.1 10 6.3  NPI  0  1  Illumina GSA 

HMS 178 86 6.2 86 7.6  24 28  14 6.8 12 6.0  NPI  0  1  Illumina OmniExpress 

NorCog 563 74 9.1 77 8.2  43 39  22 4.2 21 4.6  NPI-Q  0  1  Illumina OmniExpress 

NordNorge 133 80 6.7 83 6.2  42 36  24 4.3 22 4.5  NPI  1  2  Illumina OmniExpress 

PADR 106 76 6.6 77 6.6  35 30  21 4.3 21 4.4  NPI-Q  1  2  Illumina OmniExpress 

REDIC 323 86 6.9 84 7.4  35 32  17 6.4 16 6.5  NPI  2  5  Illumina OmniExpress 

SAM-AKS 93 86 6.8 86 5  29 38  16 5.0 15 5.2  NPI  0  1  Illumina OmniExpress 

NACC 836 79 7.8 78 9  54 44  20 7.1 19 7.0  NPI-Q  2  3  Illumina 660/Omni Express 

TOTAL 3111 79 8.7 80 8.2   44 37   20 6 18 6.8   -   -   -   - 

          

           
 

         
NPI: Neuropsychiatric Inventory (full version); NPI-Q: Neuropsychiatric Inventory- Questionnaire; MMSE: Mini Mental State Examination 709 

*'0' denotes that the study was cross sectional (i.e. one assessment available) 710 

+figures are median 711 

 712 

  713 
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Table 2: Frequencies of symptoms by cohort for the three psychosis phenotypes 714 

  Psychosis wide   Psychosis narrow   Delusions narrow 

 N  Absent  Present  N  Absent  Present  N  Absent  Present 

      n %   n %       n %   n %       n %   n % 

AddNeuroMed 225  133 59  92 41  157  65 41  92 59  142  65 46  77 54 

ADNI 248  183 74  65 26  117  52 44  65 56  99  52 53  47 47 

DemVest 80  30 38  50 63  75  25 33  50 67  69  25 36  44 64 

IRCCS 1 326  222 68  104 32  293  189 65  104 35  271  189 70  82 30 

HMS 178  107 60  71 40  162  91 56  71 44  152  91 60  61 40 

NorCog 563  402 71  161 29  288  127 44  161 56  260  127 49  133 51 

NordNorge 133  105 79  28 21  45  17 38  28 62  38  17 45  21 55 

PADR 106  62 58  44 42  83  39 47  44 53  80  39 49  41 51 

REDIC 323  158 49  165 51  276  111 40  165 60  265  111 42  154 58 

SAM-AKS 93  73 78  20 22  80  60 75  20 25  75  60 80  15 20 

NACC 836  520 62  316 38  656  340 52  316 48  601  340 57  261 43 

                        

TOTAL 3111   1995 64   1116 36   2232   1116 50   1116 50   2052   1116 54   936 46 

 715 

Percentages may not sum to 100 due to rounding. 716 

  717 
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Table 3: Random effects meta-analysis results for association between schizophrenia PRS across 10 GWAS thresholds (PT) and 718 
AD+P. 719 

      Psychosis wide   Psychosis narrow   Delusions narrow 

PT nSNPs   OR 95% CI P   OR 95% CI P   OR 95% CI P 

5x10-08 125  1.04 0.96 - 1.13 0.32  1.01 0.92 - 1.10 0.89  1.03 0.94 - 1.14 0.48 

1x10-05 511  1.07 0.98 - 1.16 0.15  1.06 0.97 - 1.16 0.20  1.06 0.97 - 1.17 0.20 

1x10-04 1147  1.07 0.96 - 1.18 0.21  1.07 0.96 - 1.19 0.21  1.07 0.96 - 1.18 0.21 

1x10-03 2,922  1.09 0.98 - 1.21 0.11  1.10 0.98 - 1.22 0.10  1.09 0.98 - 1.21 0.10 

0.01 8,709  1.14 1.05 - 1.23 0.003  1.16 1.06 - 1.28 0.002  1.18 1.06 - 1.30 0.001 

0.05 19,656  1.12 1.03 - 1.22 0.01  1.13 1.02 - 1.24 0.02  1.14 1.03 - 1.26 0.01 

0.1 28,143  1.11 1.01 - 1.21 0.02  1.12 1.02 - 1.24 0.02  1.15 1.04 - 1.28 0.01 

0.2 40,253  1.10 1.01 - 1.20 0.04  1.12 1.01 - 1.24 0.03  1.14 1.02 - 1.26 0.02 

0.5 61,727  1.10 1.00 - 1.22 0.04  1.13 1.02 - 1.25 0.02  1.15 1.03 - 1.28 0.01 

1 76,213   1.10 0.99 - 1.23 0.08   1.13 1.02 - 1.25 0.02   1.14 1.03 - 1.27 0.02 

OR: Odds ratio; odds ratio estimates may differ slightly from those represented in Figure 1 due to rounding 720 

  721 



 
 

29 
 

Figure 1: Odds ratios from random effects meta-analysis of AD psychosis wide, narrow and delusions narrow association with 722 
schizophrenia PRS.  Each bar represents PRS composed of markers at 10 different schizophrenia GWAS p-value thresholds (PT).  P-723 
values shown above each bar 724 

 725 



 
 

30 
 

Figure 2: Forest plot of meta-analysis of delusions narrow for PRS calculated at PT=0.01 (i.e. 8,709 SNPs).  Overall estimate from random 726 
effects model is represented by the diamond below the individual study estimates. 727 

 728 

 729 


