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Acetylcholine Delays Atrial Activation
to Facilitate Atrial Fibrillation
Jason D. Bayer1,2*†, Bastiaan J. Boukens3†, Sébastien P. J. Krul4†, Caroline H. Roney5,
Antoine H. G. Driessen4, Wouter R. Berger4,6, Nicoline W. E. van den Berg4,
Arie O. Verkerk3,7, Edward J. Vigmond1,2, Ruben Coronel1,7† and Joris R. de Groot4†

1 Electrophysiology and Heart Modeling Institute (IHU-LIRYC), Bordeaux University Foundation, Bordeaux, France, 2 Institute
of Mathematics of Bordeaux (U5251), University of Bordeaux, Bordeaux, France, 3 Department of Medical Biology,
Academic Medical Center, Amsterdam, Netherlands, 4 Department of Cardiology, Academic Medical Center, Amsterdam,
Netherlands, 5 Division of Imaging Sciences and Bioengineering, King’s College London, London, United Kingdom,
6 Department of Cardiology, Heart Center, OLVG, Amsterdam, Netherlands, 7 Department of Experimental Cardiology,
Academic Medical Center, Amsterdam, Netherlands

Background: Acetylcholine (ACh) shortens action potential duration (APD) in human
atria. APD shortening facilitates atrial fibrillation (AF) by reducing the wavelength for
reentry. However, the influence of ACh on electrical conduction in human atria and its
contribution to AF are unclear, particularly when combined with impaired conduction
from interstitial fibrosis.

Objective: To investigate the effect of ACh on human atrial conduction and its role in
AF with computational, experimental, and clinical approaches.

Methods: S1S2 pacing (S1 = 600 ms and S2 = variable cycle lengths) was applied
to the following human AF computer models: a left atrial appendage (LAA) myocyte
to quantify the effects of ACh on APD, maximum upstroke velocity (Vmax), and resting
membrane potential (RMP); a monolayer of LAA myocytes to quantify the effects of
ACh on conduction; and 3) an intact left atrium (LA) to determine the effects of ACh
on arrhythmogenicity. Heterogeneous ACh and interstitial fibrosis were applied to the
monolayer and LA models. To corroborate the simulations, APD and RMP from isolated
human atrial myocytes were recorded before and after 0.1 µM ACh. At the tissue
level, LAAs from AF patients were optically mapped ex vivo using Di-4-ANEPPS. The
difference in total activation time (AT) was determined between AT initially recorded with
S1 pacing, and AT recorded during subsequent S1 pacing without (n = 6) or with (n = 7)
100 µM ACh.

Results: In LAA myocyte simulations, S1 pacing with 0.1 µM ACh shortened APD by
41 ms, hyperpolarized RMP by 7 mV, and increased Vmax by 27 mV/ms. In human
atrial myocytes, 0.1 µM ACh shortened APD by 48 ms, hyperpolarized RMP by
3 mV, and increased Vmax by 6 mV/ms. In LAA monolayer simulations, S1 pacing
with ACh hyperpolarized RMP to delay total AT by 32 ms without and 35 ms with
fibrosis. This led to unidirectional conduction block and sustained reentry in fibrotic LA
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with heterogeneous ACh during S2 pacing. In AF patient LAAs, S1 pacing with ACh
increased total AT from 39.3 ± 26 ms to 71.4 ± 31.2 ms (p = 0.036) compared to no
change without ACh (56.7 ± 29.3 ms to 50.0 ± 21.9 ms, p = 0.140).

Conclusion: In fibrotic atria with heterogeneous parasympathetic activation, ACh
facilitates AF by shortening APD and slowing conduction to promote unidirectional
conduction block and reentry.

Keywords: atria, fibrillation, acetylcholine, conduction, fibrosis, computational modeling

INTRODUCTION

The parasympathetic neurotransmitter acetylcholine (ACh)
activates the outward potassium current IKACh (Krapivinsky
et al., 1995). In atrial myocytes, this substantially shortens action
potential duration (APD) (Zaza et al., 1995). Consequently,
APD shortening facilitates the onset and maintenance of atrial
fibrillation (AF) by reducing the wavelength for reentry (Smeets
et al., 1986), defined as APD∗conduction velocity (CV). In other
words, as the wavelength for reentry shortens, AF susceptibility
increases due to less atrial tissue needed to initiate and harbor
sustained reentrant circuits.

The effect of ACh on potassium currents in atrial myocytes
has been studied for the past 65 years (Acierno et al., 1952;
Johnson and Robertson, 1957, 1958; Heidbuchel et al., 1987).
Building upon these studies, there is convincing evidence linking
shortened APD from elevated ACh to AF in patients (Krummen
et al., 2012) and animal models (Roney et al., 2018), as well
as an abundance of computational studies studying its effects
on sinoatrial node function (Michaels et al., 1984; Egan and
Noble, 1987; Dexter et al., 1989; Moss et al., 2018). However,
literature for the effect ACh on conduction with respect to AF
in patients is limited.

In large mammals, conflicting studies suggest ACh has
no effect (Schuessler et al., 1991) or slows atrial conduction
(Lin et al., 2007), with the latter suggested to promote
unidirectional conduction block and reentrant arrhythmias.
Altered conduction may result from ACh reducing tissue
excitability via hyperpolarization of the resting membrane
potential (RMP) (Pott, 1979; Molina et al., 2007; Verkerk et al.,
2012), which may be enhanced by impaired conduction from
heterogeneous interstitial fibrosis (Koduri et al., 2012; Krul S.P.
et al., 2015). However, the effect of ACh on atrial conduction in
humans with structural abnormalities and its role in AF have not
been systematically studied.

Fortunately, the link between AF and fibrosis has been
systematically studied. In AF patients, late gadolinium-enhanced
cardiac magnetic resonance imaging shows the number and
location of AF reentrant drivers to correlate with fibrosis
density (Cochet et al., 2018). Furthermore, slow conduction from
increased total fibrosis would reduce the wavelength for reentry
and promote AF initiation by unidirectional conduction block
(Hansen et al., 2017), where studies in isolated atrial tissue from
AF patients have confirmed substantial interstitial fibrosis to slow
conduction (Krul S.P. et al., 2015). In computational studies,
image-based models of fibrotic atria from AF patients with

persistent AF demonstrate that regions with high fibrosis density
and entropy perpetuate AF reentrant drivers (Zahid et al., 2016),
where slowed conduction enables reentrant circuits in relatively
small regions of the atria (Morgan et al., 2016). Thus, conduction
slowing from ACh, in combination with impaired conduction
from interstitial fibrosis, could further reduce the wavelength for
reentry to increase AF susceptibility.

We hypothesize that RMP hyperpolarization by ACh delays
atrial activation to facilitate AF in fibrotic atria with impaired
conduction (Krul et al., 2014). To test this hypothesis, we
performed computer simulations with models of a left atrial
appendage (LAA) myocyte, a monolayer of LAA myocytes, and
an intact left atrium (LA) to determine the mechanism by which
ACh alters conduction and leads to AF. We then administered
ACh to isolated human atrial myocytes and excised LAA from
AF patients to corroborate the computer simulations.

MATERIALS AND METHODS

Simulation Study
Computational Atrial Models
LAA myocyte
To simulate the electrophysiology of LAA myocytes in patients
with persistent AF, the Courtemanche-Ramirez-Nattel model
(Courtemanche et al., 1998) was modified according to the
section “S1S2 Pacing and Arrhythmia Induction Protocol” in
Bayer et al. (2016). Specifically, the maximal conductance for ion
channels was modified to simulate electrical remodeling from
AF (Gto

∗0.3, GKur
∗0.5, and GCaL

∗0.3) and regional differences in
LAA cellular electrophysiology (GKr

∗1.6, GNa
∗2.0, and GK 1

∗0.8).
The dependence of transmembrane potential (Vm) on ACh
concentration was represented with the IKACh formulation by
Kneller et al. (2002). To simulate APD and RMP consistent with
human atrial myocytes administered ACh (Table 1), IKACh was
modified according to “Supplementary Section 1: Acetylcholine-
Activated Potassium Current” in Supplementary Material.

LAA monolayer
The 4 cm × 4 cm LAA monolayer model contained 14884
nodes and 29282 triangular finite elements with a fixed average
edge length of 330 µm (same as LA model). A uniform left to
right fiber direction was assigned to each LAA mesh element
to account for anisotropic propagation of electrical waves in
atrial tissue. Intracellular tissue conductivities for the directions
parallel and perpendicular the cardiac fibers were adjusted so
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TABLE 1 | Action potential characteristics during S1 pacing for LAA AF single-cell
simulations and isolated human atrial myocytes from heart failure patients without
AF.

ACh (µM) 0.0 0.001 0.01 0.1 p-value

Simulations: AF

APD (ms) 160 159 145 110

Vmax (mV/ms) 348 362 371 373

RMP (mV) −79 −83 −85 −86

Experiments: Non-AF

APD (ms) 370 ± 57 322 ± 74 0.191

Vmax (mV/ms) 414 ± 51 420 ± 70 0.777

RMP (mV) −73 ± 3 −77 ± 3 0.048

that CV matched that in the LAA of AF patients (Krul S.P.
et al., 2015). See below and online ‘‘Supplementary Section 2:
Conduction Velocity in the Left Atrial Appendage Tissue
Model,” in Supplementary Material for details. Heterogeneous
parasympathetic activation was included in the LAA model
according to human LA studies (Vigmond et al., 2004; Chevalier
et al., 2005). See “Supplementary Section 3: ACh Heterogeneity
in the Left Atrial Appendage and Left Atrium Models,” in
Supplementary Material for details.

LA
The LA from a bilayer model of 3D-imaged human atria
(Labarthe et al., 2014) was used to determine if the effects
of ACh on action potential dynamics and conduction led to
sustained AF in the presence of interstitial fibrosis, altered
tissue conductivity, and/or heterogeneous parasympathetic
activation. This specific LA model was used because it simulates
clinical AF with minimal computational load (Bayer et al.,
2016). Regional differences in ion channel conductance were
incorporated according to the section “S1S2 Pacing and
Arrhythmia Induction Protocol” in Bayer et al. (2016), and
heterogeneous parasympathetic activation was incorporated
according to “Supplementary Section 3: ACh Heterogeneity
in the Left Atrial Appendage and Left Atrium Models” in
Supplementary Material. Image-based interstitial fibrosis from
AF patients and tissue conductivities were assigned according to
the following sections.

Tissue conductivity conduction settings
Tissue conductivity parameters for the LAA and LA models
were adjusted so that monodomain simulation results matched
conduction measurements in AF patients (Krul S.P. et al., 2015).
Specifically, the longitudinal and transverse tissue conductivity
parameters were adjusted so that longitudinal CV (CVL) was
44 cm/s and transverse CV (CVT) was 24 cm/s during pacing
with a CL of 600 ms in both fibrotic and non-fibrotic LAA
and LA models. Table 2 contains the conductivity values used
for the LAA and LA simulations. Note, since the LAA and LA
models share the same average mesh element edge length of
330 µM, the same conductivity values could be used for both. The
default conductivities taken from Bayer et al. (2016) are labeled as
non-AF in Table 2.

TABLE 2 | Tissue conductivities in the LAA monolayer and LA models.

gl (S/m) gt (S/m) CVL (cm/s) CVT (cm/s)

Fibrotic

AF 0.140 0.052 44.0 24.0

Non-AF 0.400 0.107 75.7 37.2

Non-fibrotic

AF 0.107 0.045 44.0 24.0

Non-AF 0.400 0.107 96.8 45.1

gl, longitudinal conductivity; gt, transverse conductivity; CVL, longitudinal
conduction velocity; CVT, transverse conduction velocity. Conductivity values were
determined with ACh = 0 µM. CV was computed using activation times calculated
at steady-state during baseline pacing with a cycle length of 600 ms. Note, CVL
and CVT for AF were taken from Krul S.P. et al. (2015).

Interstitial fibrosis in the LAA and LA models
Image-based interstitial fibrosis from AF patients was
incorporated into the LAA and LA meshes based on late-
gadolinium enhancement imaging of persistent AF patients
(Cochet et al., 2015). These intensity data were expressed as
standard deviations above the mean of normal tissue (Oakes
et al., 2009), and data from a 4 cm × 4 cm region of the
LA were projected onto the LAA tissue model. Interstitial
fibrosis, as described in the LAA of patients (mean age
58 years) with persistent AF (Krul S.P. et al., 2015), was
then modeled as microstructural discontinuities that act
as an interstitial conductive barrier (Bayer et al., 2016;
Roney et al., 2016). Note, since myofibroblasts were not
detected in the LAA samples with immunohistochemistry
(Krul S.P. et al., 2015), (myo)fibroblast coupling was not
included in the model. Briefly, mesh element edges were
stochastically selected as fibrotic with a probability depending
on the normalized late-gadolinium intensity value, and the
direction of the mesh element edge was compared to the
local fiber direction so that edges paralleling the longitudinal
fiber direction (interstitial space) were four times more
likely to be selected than edges transverse this direction.
Selected mesh element edges were arranged into networks
of connected edges and renumbered following a finite
element approach (Costa et al., 2014). For each network,
the renumbering that resulted in the fewest isolated mesh
elements was used. Mesh elements for which all edges were
selected, as well as unused nodes, were removed from the
mesh. The final mesh was then assigned no flux boundary
conditions along the strands of interstitial fibrosis. Interstitial
fibrosis in the LAA and LA models using this approach is
shown in Figure 1.

S1S2 Pacing and Arrhythmia Induction Protocol
S1S2 pacing was applied to each model at ACh concentrations
of 0, 0.001, 0.01, and 0.1 µM. The maximum ACh of this
range was chosen to reflect observations in human atrial
myocytes (Table 1). For each concentration, the models
were preconditioned by pacing the single-cell, center of the
LAA monolayer, or tip of the LAA in the LA at a S1
cycle length (CL) of 600 ms for 100 beats using 2-ms-long
stimuli at twice capture threshold. The models were then
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FIGURE 1 | The LAA (panel A) and LA (panel B) models with and without image-based interstitial fibrosis. Active myocardium is in orange, inactive myocardium from
interstitial fibrosis is in black (removed elements), and split element edges are in blue.

administered premature stimuli beginning with S2 CL = 400 ms,
and then shortened by 10 ms decrements until loss of
stimulus capture at the effective refractory period. For the
minimum S2 CL with capture, the LAA and LA models
were paced for 10 beats to test for unidirectional conduction
block and reentry.

Action Potential and Conduction Parameters in the
Single-Cell and Monolayer Models
For the last S1 and each S2 beat of the simulation pacing protocol,
ATs were recorded when maximal dVm/dt occurred during the
action potential upstroke. APD was recorded as the difference
between AT and 90% repolarization (Bayer et al., 2016). The RMP
was computed as the minimum Vm during the diastolic interval
between action potentials. The maximum upstroke velocity
(Vmax) was computed as the maximum + dVm/dt during the
action potential upstroke (RMP to peak of the action potential).
Total AT was the difference between the first and last activation
in the LAA monolayer model.

Pseudo-ECG and Cycle Length of Reentry
Two reference points were chosen 3 cm away from the LA
model center point. During S2 pacing and for 10 s after

pacing, pseudo-ECGs were computed by taking the difference
in extracellular voltage between these two points according
to Gima and Rudy (2002). To compute the average CL
of reentry for an episode of sustained AF, we detected all
instances in time when the upstroke of the pseudo-ECG had
dV/dt > 0.2 mV/ms, and then averaged the difference between
all subsequently detected times.

Simulation Platform
Simulations were performed using the Cardiac Arrhythmia
Research Package (Vigmond et al., 2008) on a single CPU of
a generic desktop computer for single-cell simulations, and
in parallel on two dual Hexa-Core Intel Xeon X5676 CPUs
@3.06 GHz with 48 TB of memory for monolayer and LA
monodomain simulations. To accurately compute Vmax, a time
step and temporal output of 20 µs was used for single-cell
simulations. All other simulations used a time step of 20 µs and a
temporal output of 1.0 ms.

Experimental Study
Human Atrial Myocyte Preparation
Human atrial myocytes were isolated from explanted hearts of
2 patients with end-stage heart failure at the time of cardiac
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transplantation. Informed consent was obtained and the protocol
complied with institutional guidelines and the “Declaration of
Helsinki.” Single myocytes from right (patient 1) and left (patient
2) atria were enzymatically isolated using a modified dissociation
procedure (Amos et al., 1996). Right and left atria were collected
in normal Tyrode’s solution containing (in mM) NaCl 140,
KCl 5.4, CaCl2 1.8, MgCl2 1.0, glucose 5.5, and HEPES 5.0,
at pH 7.4 (NaOH). The atrial tissue was cut into small strips
(∼0.3 mm width, 0.5 mm length) and placed in a test tube
containing nominally Ca2+-free Tyrode’s solution (20◦C), which
was refreshed two times. Subsequently, the strips were incubated
for 20 min in nominally Ca2+-free Tyrode’s solution containing
1 mg/ml protease (220 U/l type XIV; Sigma, St. Louis, MO,
United States) and 1 mg/ml BSA (Behring, Marburg, Germany).
Next, the strips were placed for 20 min in nominally Ca2+-
free Tyrode’s solution containing 1 mM EGTA, followed by an
additional 45–60 min in nominally Ca2+-free Tyrode’s solution
containing 0.2 mg/ml protease, 0.5 mg/ml collagenase (59 U/ltype
B; Boehringer Mannheim, Mannheim, Germany), 0.5 mg/ml
BSA, and 0.2 mM EGTA. The dissociation was stopped by
transferring the strips into a modified Kraft-Brühe (KB) solution
containing (in mM) KCl 85, K2HPO4 30, MgSO4 5.0, glucose
20, pyruvic acid 5.0, creatine 5.0, taurine 30, EGTA 0.5, ß-
hydroxybutyric acid 5.0, succinic acid 5.0, Na2ATP 2.0, and
polyvinylpyrrolidone 50 g/L at pH 6.9 (KOH). Single myocytes
were obtained by gentle trituration through a pipette with a
tip diameter of 1.0 mm for 5–10 min. The temperature of
the dissociation solution was kept at 37◦C. The KB solution
containing single myocytes was placed in a disposable centrifuge
tube in which the single myocytes were allowed to sediment.
Finally, the KB solution was replaced by normal Tyrode’s solution
in three steps. In each step, approximately 75% of the solution
in the centrifuge tube was replaced by normal Tyrode’s solution
(20–22◦C). The interval between these steps was 10–15 min.

Data Acquisition and Analysis
Action potentials were recorded before and after administration
of ACh (0.1 µM) at 36 ± 0.2◦C in the ruptured whole-cell
configuration of the patch-clamp technique using an Axopatch
200B amplifier (Molecular Devices Corporation, Sunnyvale, CA,
United States). Signals were low-pass filtered with a cut-off
frequency of 10 kHz and digitized at 25 kHz. Data acquisition and
analysis were performed using custom software. Potentials were
corrected for the liquid junction potential.

Action potentials were elicited at 1-Hz by 3-ms, 1.5–
2 × threshold current pulses through the patch pipette. The
bath solution contained Tyrode’s solution. The pipette solution
contained (in mM) K-gluc 125, KCl 20, NaCl 5, and HEPES 10
at pH 7.2 (KOH). As in the single-cell simulations, we analyzed
RMP, APD at 90% repolarization, and Vmax. Values from 10
consecutive action potentials were averaged.

Clinical Study
Thoracoscopic Surgery
Thirteen LAAs were excised from AF patients during
thorascoscopic, as described before (Krul et al., 2011), and
immersed in cooled modified Tyrode’s solution before optical

mapping. This study was in accordance with the declaration of
Helsinki and approved by the institutional review board. All
patients gave written informed consent.

Optical Mapping
Left atrial appendages were pinned down, stimulated near the
base without epicardial fat (600 ms interval), and equilibrated
for 30 min in a tissue bath perfused by oxygenated Tyrode’s
solution (in mM) Na+ 155, K+ 4.7, Ca2+ 1.45, Mg2+ 0.6, Cl−
136.6, HC03

− 27, Po3
4
− 0.4, glucose 11.1, and heparin 1000 IE

at 36.5–37.5◦C and pH = 7.4 (Krul S.P. et al., 2015). Then,
the superperfused preparations were loaded with 4.4 µM Di-4-
ANEPPS (Tebu Bio, Le Perray-en-Yvelines, France) and optical
action potentials were recorded at 2 kHz using a MiCAM Ultima
camera (SciMedia USA Ltd., Costa Mesa, CA, United States,
100 × 100 pixels). To reduce motion artifacts, 2–10 mM 2-
3-butanedione monoxime (DAM, Sigma-Aldrich, B0753) was
used, which was found to be more effective at eliminating
motion artifacts in the LAA tissue preparations than Blebbistatin.
Optical action potentials were recorded before and after 10 min
of superfusion with 100 µM ACh (Lin et al., 2007) (A2261,
Sigma) from seven preparations. The other six preparations
without ACh served as the placebo to check for the rundown
and time dependence of the model. The 500 ml of perfusate
with ACh was recycled during the <15 min experiments with
limited spontaneous breakdown (Sletten et al., 2005). Customized
MATLAB (The MathWorks, Inc., Natick, MA, United States)
software was used to determine local activations by selecting the
steepest upstrokes of the optical action potential (Potse et al.,
2002). Epicardial activation maps were constructed and CV
calculated as described previously (Doshi et al., 2015).

Statistics
Data are presented as mean ± standard error of the mean
unless stated otherwise, and categorical variables as percentages.
An independent Student’s t-test was used to determine
differences in normally distributed data, and the Pearson
test for correlation. p-values (p) < 0.05 were considered
statistically significant.

RESULTS

ACh Alters Action Potential Dynamics
During S1 pacing, action potential dynamics in the LAA
myocyte model changed gradually with respect to incremental
ACh concentrations (Table 1). From 0 to 0.1 µM ACh,
APD shortened by 41 ms, RMP hyperpolarized by 7 mV,
and Vmax increased by 27 mV/ms. In four isolated atrial
cardiomyocytes from two patients with end stage heart failure
(Table 1), ACh administration significantly lowered RMP
from −73.3 ± 2.7 mV to −76.0 ± 3.2 mV (p = 0.048),
which is an average hyperpolarization of 2.6 mV [95%
confidence interval (CI): 0.05 to 5.20 mV]. APD was
also shorter after ACh administration (370 ± 57 ms to
322 ± 74 ms), but this difference did not reach statistical
significance (p = 0.191).
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ACh Delays Total Activation Time
In LAA monolayer models, 0.1 µM ACh delayed total AT during
S1 pacing (compare left with middle and right columns of
Figure 2). Without fibrosis (middle row of Figure 2), total AT
prolonged from 90 ms to 112 ms for homogenous ACh, and to
103 ms for heterogeneous ACh. With fibrosis (bottom row of
Figure 2), total AT prolonged even more from 104 ms to 139 ms
for homogeneous ACh, and to 120 ms for heterogeneous ACh.

ACh Shortens the Wavelength for
Reentry
In LAA monolayer models, 0.1 µM ACh shortened λ by
shortening APD and slowing conduction. Table 3 lists CV, APD,
and λ along the longitudinal and transverse fiber directions of
the LAA monolayer model for the last beat of S1 pacing (values
inside parentheses), and for the minimum S2 CL with capture
(values outside parentheses). The top of Table 3 refers to AF and
the bottom refers to non-AF tissue conductivities in Table 2.

In the fibrotic AF model with 0.1 µM homogeneous ACh
(F + HOMO), the CV, APD, and λ were decreased compared to
no ACh (F). For S1 pacing, the CVL and APDL decreased by 26%,
and the CVT and APDT decreased by 29%. These reductions in
both APD and CV shortened λL by 44%, and λT by 47%. For
pacing with the minimum S2 CL, ACh shortened both λL and λT
to below the LAA slab dimensions of 4 cm× 4 cm.

In the non-fibrotic AF model with 0.1 µM homogeneous
ACh (NF + HOMO), the CV, APD, and λ were decreased
when compared to the case without ACh (NF), and with similar

magnitude to that in the fibrotic AF model. For S1 pacing, the
addition of ACh decreased CVL by 14%, APDL by 34%, CVT
by 21%, and APDT by 35%. These reductions in both APD and
CV shortened λL by 45% and λT by 49%. For pacing with the
minimum S2 CL, ACh shortened both λL and λT below the LAA
slab dimensions.

Regardless of whether ACh was administered homogeneously
or heterogeneously, these decreases in CV, APD, and λ occurred
in the LAA slab model both with and without fibrosis (compare
NF + HOMO and F + HOMO with NF + HET and F + HET
in the top of Table 3). For a visual comparison, the restitution
curves for the AF conductivity values are shown in Figure 3,
and the restitution curves for the non-AF conductivity values are
shown in Figure 4.

Heterogeneous ACh Leads to
Unidirectional Conduction Block and
Reentry
Pacing at the minimum S2 CL resulted in unidirectional
conduction block that was followed by reentry exclusively in
the LAA monolayer model with 0.1 µM heterogeneous ACh.
In Figure 5B, unidirectional conduction block occurred in the
upper right-hand corners of the non-fibrotic and fibrotic LAA,
which contained regions of tissue transitioning from 0.1 µM
(clusters of red islands) to 0 µM ACh, which can be found
in the far right panel of Figure 5A. The far right column of
Figure 6 shows that repolarization time changed rapidly between
these regions (crowded isolines next to sparse isolines), thereby

FIGURE 2 | Activation maps in the 4 cm × 4 cm LAA monolayer without or with 0.1 µM homogenous/heterogeneous ACh (top row), and without or with fibrosis
(middle and bottom rows). ATs are plotted for the last beat of S1 pacing. Isochronal lines are 10 ms apart. The AF conductivity values in Table 2 were used for
these simulations.
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TABLE 3 | Restitution properties for LAA slab simulations.

ERP ms CVL cm/s CVT cm/s APDL ms APDT ms λL cm λT cm

AF

F 230 28 (44) 16 (24) 161 (183) 160 (183) 4.46 (7.73) 2.60 (4.14)

F + HOMO 170 31 (33) 16 (17) 121 (135) 117 (130) 3.69 (4.37) 1.88 (2.19)

F + HET 180 28 (36) 16 (19) 135 (155) 140 (166) 3.76 (5.46) 2.23 (3.08)

NF 230 31 (44) 18 (24) 157 (182) 158 (182) 4.92 (8.15) 2.89 (4.53)

NF + HOMO 160 35 (38) 18 (19) 107 (120) 107 (119) 3.75 (4.49) 1.95 (2.30)

NF + HET 170 28 (39) 16 (21) 123 (148) 128 (162) 3.43 (5.79) 2.03 (3.36)

Non-AF

F 230 47 (76) 26 (38) 157 (181) 157 (182) 7.35 (13.67) 4.14 (6.75)

F + HOMO 170 58 (64) 29 (31) 117 (132) 115 (130) 6.81 (8.36) 3.27 (3.98)

F + HET 180 46 (67) 25 (33) 133 (157) 139 (167) 6.07 (10.42) 3.44 (5.39)

NF 220 54 (97) 29 (45) 153 (180) 155 (181) 8.16 (17.42) 4.47 (8.15)

NF + HOMO 150 78 (88) 35 (39) 106 (120) 106 (119) 8.30 (10.50) 3.74 (4.59)

NF + HET 170 66 (90) 30 (40) 123 (150) 129 (163) 8.04 (13.42) 3.86 (6.54)

CVL, longitudinal conduction velocity; CVT, transverse conduction velocity; APDL, longitudinal APD at 90% repolarization; APDT, transverse APD at 90% repolarization;
λL, longitudinal wavelength; λT, transverse wavelength; F, fibrosis; NF, no fibrosis; HOMO, homogenous 0.1 µM ACh; HET, heterogeneous 0.1 µM ACh. Values listed
inside the parentheses are for S1 pacing with a CL = 600 ms, and those outside parentheses for premature S2 with a CL just longer than ERP of the restitution pacing
protocol. AF and non-AF: simulations with the AF and non-AF tissue conductivities in Table 2.

FIGURE 3 | Restitution properties in the LAA tissue model with and without fibrosis, and for homogeneous and heterogeneous 0.1 µM ACh. The AF conductivity
values in Table 2 were used for these simulations. Conduction velocity (CV), action potential duration at 90% repolarization (APD), and the wavelength for reentry (λ),
were calculated along the longitudinal (L), and transverse (T) fiber directions. These parameters were plotted with respect to the S2 cycle length (CL) minus the
effective refractory period (ERP).

generating steep gradients in repolarization. See “Supplementary
Section 4: Simulation Movies,” in Supplementary Material for
movies pertaining to the simulations in Figure 5B.

Unidirectional Conduction Block and
Reentry Is Inhibited by Faster
Conduction
To determine whether delayed activation from heterogeneous
ACh is essential for the unidirectional conduction block and/or
reentry observed in Figure 5B, tissue conductivities in the LAA
model were increased to the non-AF values shown in Table 2.
Increasing conductivity in this manner increased CV in the

LAA model by 150–220% (compare CV values in top versus
bottom of Table 3). With faster conduction, conduction block no
longer occurred with S2 pacing (Figure 5C). See “Supplementary
Section 4: Simulation Movies” in Supplementary Material, for
movies pertaining to the simulations in Figure 5C.

Rapidly Pacing Fibrotic LA With
Heterogeneous ACh Results in
Sustained AF
Simulations were repeated in the LA model under the same LAA
monolayer model conditions to verify if ACh-induced reentry
developed into sustained AF. At the middle and septal regions
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FIGURE 4 | Restitution properties in the LAA tissue model with and without fibrosis, and for homogeneous and heterogeneous 0.1 µM ACh. The non-AF (faster
conduction) conductivity values in Table 2 were used for these simulations. Conduction velocity (CV), action potential duration at 90% repolarization (APD), and the
wavelength for reentry (λ), were calculated along the longitudinal (L) and transverse (T) fiber directions. These parameters were plotted with respect to the S2 cycle
length (CL) minus the effective refractory period (ERP).

of the LA in Figure 7A, where the density of red islands with
0.1 µM ACh transitions from high to low, pacing at the minimum
S2 CL led to unidirectional block and reentry (Figure 7B).
However, sustained reentry that resembled AF in patients was
only maintained in the LA containing both fibrosis and 0.1 µM
heterogeneous ACh. Figure 8A shows a figure-of-eight reentry
in the anterior LA that resembles AF in the pseudo-ECG after
pacing at the minimum S2 CL (Figure 8B). The average CL of
this reentry was 180 ms.

Figure 4C demonstrates that when using the faster conducting
non-AF settings in Table 2, S2 pacing did not result in reentry
from unidirectional conduction block. See “Supplementary
Section 4: Simulation Movies” in Supplementary Material, for
movies pertaining to the simulations in Figures 7B,C.

ACh Delays Activation in LAA From AF
Patients
The effect of lowering RMP and shortening APD (Figure 9) on
atrial conduction was measured in isolated fibrotic LAA from
AF patients (Table 4). To exclude possible ischemia as a result
of superfusion of the LAA, instead of perfusion, optical action
potentials were recorded for up to 180 min (Figure 9B). Total
activation time (AT) of the preparation did not change over time
(37.0 ± 11.0 vs. 40.0 ± 10.2, n = 4, p = 0.19), which suggests a
normoxic state of the LAA. To further control for rundown of
the LAA preparation, we then compared the effect of ACh (n = 6)
on atrial conduction with the administration of a vehicle (n = 7),
in this case H2O.

Acetylcholine administration did not significantly reduce CV
in the LAA preparations (61.6 ± 11.0 vs. 60.1 ± 8.3 cm/s, n = 6,
p = 0.7). Figures 9C,E show epicardial activation patterns before
and after administration of the vehicle or ACh. In the LAA

preparations not administered ACh (vehicle), activation patterns
did not differ between the two S1 pacing experiments, where the
total AT went unchanged from 56.7 ± 29.3 ms to 50.0 ± 21.9 ms
(p = 0.15, Figure 9D). However, activation patterns were different
after ACh administration (Figure 9E) with total AT significantly
prolonging from 39.3 ± 26 ms to 71.4 ± 31.2 ms (p = 0.036,
Figure 9F), which is an average increase of 32 ms (95% CI: 3 to
61 ms). Due to the small dimensions of the LAA preparations
(∼2 cm × ∼2 cm), we were unable to induce sustained reentry
during the pacing protocol.

DISCUSSION

This study demonstrates that ACh delays activation in human
atria to facilitate AF. In computer simulations, ACh delays
activation by hyperpolarizing the RMP of atrial myocytes, which
is enhanced by fibrosis and leads to AF in rapidly paced
fibrotic LA with heterogeneous parasympathetic activation.
Corroborating the simulations, ACh shortens APD in addition
to hyperpolarizing RMP in human atrial myocytes, which delays
atrial activation in the LAA of AF patients. These results support
the hypothesis that patients with severe fibrosis and elevated vagal
tone are more vulnerable to AF.

ACh Delays Activation in Human Atria
In contrast to canine studies showing little effect of ACh on atrial
conduction (Schuessler et al., 1991), similar ACh concentrations
significantly delayed atrial activation in our computer models and
patients. This agrees with previous human studies (Oliveira et al.,
2011). Interestingly, we too did not directly observe CV slowing
in the LAA of AF patients (8), even when obvious changes in
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FIGURE 5 | Activation maps in the 4 cm × 4 cm LAA model with and without fibrosis, and without, homogeneous, and heterogeneous ACh shown in (A). ATs are
plotted for the 10th beat during pacing with the minimum S2 CL. Isochronal lines are 10 ms apart. The AF conductivity values in Table 2 were used for the
simulations in (B), and the non-AF conductivity values (faster conduction) used for the simulations in (C).

activation were present. This discrepancy arises when measuring
CV between two fixed points, since different activation patterns
can generate the same CV, i.e., alternating fast/slow propagation
can produce the same CV as uniform propagation. Thus, even
though CV was unchanged by ACh in AF patients, total AT
was prolonged from ACh, and likely more so at small isthmuses

created by interstitial fibrosis present in the LAAs we measured
(Krul S.P. et al., 2015).

Mechanism of Delayed Atrial Activation
Over the past few decades, animal studies have reported ACh to
shift RMP to more negative potentials in atrial myocytes (Pott,
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FIGURE 6 | Repolarization time (RT = activation time + action potential duration) in the 4 cm × 4 cm LAA model with and without fibrosis, and with homogeneous
and heterogeneous ACh. For ACh of 0.0 and 0.1 µM, activation times were plotted for the premature S2 with a CL above ERP or before conduction block and
re-entry. Isolines are 10 ms apart. The AF conductivity values in Table 2 were used for these simulations.

1979; Molina et al., 2007; Verkerk et al., 2012). However, its
effect on atrial conduction and arrhythmogenesis in humans
is not fully understood. In this study, we demonstrate that a
modest > −3 mV shift of RMP in human atrial myocytes delays
activation by>30 ms in atrial tissue.

The shift of RMP by ACh to more negative potentials in
our atrial models increased the potential difference between the
RMP and threshold potential, which was apparent by the need
to the increase stimulus current for S1 pacing by a factor of
1.4 in single cells and 1.3 in LAA and LA simulations after
ACh administration. This larger potential difference reduces
tissue excitability, which in turn could delay atrial activation
(Dhamoon and Jalife, 2005), especially for patients with various
degrees of fibrosis. Alternatively, delayed activation in the LAA
of AF patients could have resulted from ischemia, though this
was unlikely since we made sure the thickness of the LAA
preparations did not exceed 800 µm, which is twice the diffusion
limit of oxygen (Kang et al., 2016).

Another possible explanation for lowering RMP, one this study
did not formally address, is the role of (myo)fibroblast coupling
with atrial myocytes. Myofibroblasts, a differentiated form of
the fibroblast, have been shown to connect to cardiomyocytes
in vitro cell layer models (Miragoli et al., 2006; Rohr, 2012).
Past in silico studies suggest (myo)fibroblasts to act as a passive
electric load that depolarizes cardiomyocyte RMP through gap
junctional coupling with myocytes (Xie et al., 2009). Therefore,
if ACh could inhibit this coupling, RMP would decease. The

effects of (myo)fibroblast coupling in response to ACh warrants
further investigation.

Mechanism of ACh Induced AF
Despite minimal changes to global conduction velocity,
heterogeneous parasympathetic activation significantly alters
local conduction. In human atria, parasympathetic activation
is heterogeneous (Chevalier et al., 2005), which generates
steep repolarization gradients that locally slow conduction
enough to promote reentry via unidirectional conduction block
of wavefronts traveling from regions with ACh to regions
without ACh (Figure 6). Under certain circumstances, this
could make the atria vulnerable to reentrant arrhythmia
from high-frequency ectopic foci (Arora, 2012). In computer
models and AF patients, we show that ACh can delay atrial
activation. When heterogeneous ACh delays activation and
shortens APD, this combination increases the dispersion of
repolarization, which would contribute to the onset of AF in
patients (Vigmond et al., 2004).

In computer models, ACh heterogeneity led to the
unidirectional conduction block of wavefronts traveling from
regions of high to low ACh (Figures 5B, 7B). At these regions,
there is a steep gradient in repolarization time (Figure 6), which
is arrhythmogenic during high-frequency pacing (Bayer et al.,
2016), and is consistent with computational studies that vary
ACh concentration in a time-dependent manner (Matene et al.,
2014). In combination with further conduction slowing from
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FIGURE 7 | Posterior and anterior views of activation maps in the LA model with and without fibrosis, and without, homogeneous, and heterogeneous ACh shown in
(A). ATs are plotted for the 10th beat during pacing with the minimum S2 CL. Isochronal lines are 10 ms apart. The AF conductivity values in Table 2 were used for
the simulations in (B), and the non-AF conductivity values (faster conduction) used for the simulations in (C).

interstitial atrial fibrosis, unidirectional conduction block at
regions with ACh heterogeneity led to sustained reentry that
resembled AF (Figure 8), which had an average CL within
the clinical range observed for patients with persistent AF
(Haissaguerre et al., 2014).

In patients, advanced atrial fibrosis coincides with persistent
AF as shown in Table 4 of Dzeshka et al. (2015). Although atrial
fibrosis may explain the maintenance and complexity of AF, it
does not fully explain the initiation of AF. Our study shows that
heterogeneous conduction slowing from ACh, in combination
with impaired conduction from atrial fibrosis, is a plausible
arrhythmogenic substrate underlying the onset of AF in patients
with elevated vagal tone.

Clinical Implications
There are three potential clinical implications from these
findings. First, preventing delayed activation from the presence
of ACh may be a promising therapeutic approach to decrease
the probability of parasympathetic mediated AF. This could be
achieved by modulating RMP directly via IKACh, the inward
rectifier potassium current IK 1, and/or the sodium-calcium
exchanger NCX. Alternatively, conduction could be improved by

desensitizing atrial myocytes to ACh, which could be achieved
by mutating atrial specific muscarinic receptors using CRISPR-
Cas9, or by enhancing cellular coupling to increase the electrical
conductivity of the tissue, which could be effected by upregulating
the expression of atrial specific connexins. In any case, future
work is warranted to explore the development of such precision
engineered therapies for patients susceptible to AF.

Second, if the effects of atrial fibrosis on conduction are
irreversible, AF treatments could suppress the parasympathetic
nervous system. Several studies have shown the suppression of
the parasympathetic nervous system in the posterior LA (Arora
et al., 2008), and/or the ligament of Marshall (Ulphani et al.,
2007), to prevent AF. This may be feasible with gene therapy
applied to the left atrium via constitutive expression of Gαi/o by
non-viral plasmid vectors (Aistrup et al., 2011).

Third, clinical interventions using radiofrequency ablation to
mediate the effects of the parasympathetic nervous system may
potentially form an anti-arrhythmic strategy for the treatment
of parasympathetically mediated AF (Krul S.P.J. et al., 2015).
For example, endocardial ablation of the ganglionic plexuses
could decrease parasympathetic effects on the sinoatrial and
atrioventricular nodes. However, this would result in a large
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FIGURE 8 | Figure-of-eight reentry on the anterior wall of the fibrotic LA model wit 0.1 µM heterogeneous ACh. The arrows in panel (A) indicate the directions of the
propagating wavefronts. R1 and R2 are the reference electrodes used to compute the pseudo-ECG in panel (B).

endocardial scar. Thus, it is unclear whether the lower rate of AF
recurrence would be due to a more thorough atrial ablation or
parasympathetic modulation.

Comparison With Previous
Computational Studies
The computational models used for this study differ from our
previous studies in a few ways. First, APD restitution is relatively
flat at short pacing CLs (Figures 3, 4) when compared to patients
administered Adenosine (Krummen et al., 2012). This is due
to the fact that baseline APD is shorter in the models for this
study (119–183 ms) than in those in the previous study (∼200
LA body). This is the result of using an ACh concentration
that reduces ADP by >50 ms (Table 1 and Figure 9A), rather
than by only 20 ms in the study using Adenosine to elevate
ACh concentrations.

Second, baseline longitudinal CV was 62 cm/sec in our
previous thin 3D cable model, which represents conduction in
normal tissue without fibrosis. Based on recent evidence showing
significant fibrosis in the LAA tissue models used for this study
that slows conduction (Krul S.P. et al., 2015), we slowed CVL and
CVT via altering tissue conductivities and finite element mesh
edge-splitting to reflect conduction slowing from fibrosis. To be
sure, we still tested the faster ranges of CV reported elsewhere
under different conditions by running simulations (Table 3) with
the values listed in the bottom portion of Table 2.

Lastly, we used a modified formulation for IKACh. To adapt
the IKACh formulation to human atrial myocytes, we performed

single-cell experiments with 0.1 µM ACh to observe changes in
APD and RMP (Figure 9A and Table 1). In these experiments,
APD shortened on average by 50 ms and RMP was more
negative by 4 mV when administered 0.1 µM ACh. In the IKACh
formulation by Kneller et al. (2002), which was fit to data from
right atrial canine myocytes, Figure 2A in their publication shows
that 0.1 µM ACh shortens APD by >200 ms. To account for
this discrepancy, we decreased the sensitivity of IKACh to ACh
in order to shorten APD according to the human atrial myocyte
experiments. We then modified the voltage-dependence of the
IKACh I-V relationship to account for a more negative RMP
in human atrial myocytes. To fully justify all changes to the
IKACh formula, future patch-clamp studies should be performed
to validate this formulation in human atrial myocytes, and then
perform microelectrode recordings in tissue to obtain dose-
dependent responses for APD and RMP to ACh in order to
compare with the single-cell studies.

Limitations
In the computational study, spatial ACh heterogeneity is
determined in a rule-based fashion using histological data
from patient LA (Chevalier et al., 2005) (see “Supplementary
Section 3: ACh Heterogeneity in the Left Atrial Appendage
and Left Atrium Models” in Supplementary Material). In
order to obtain a more accurate representation of spatial
heterogeneity in the parasympathetic nervous system, novel
3D imaging modalities need to be utilized. Second, the spatial
density of active muscarinic receptors is not known for the
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FIGURE 9 | ACh at a concentration of 100 µM hyperpolarizes the resting membrane potential (RMP) and delays activation in the LAA of AF patients. (A) Typical
action potential traces of an isolated atrial myocytes before (black) and after (red) ACh administration (n = 4). The bargraph (inset) shows the average RMP before
and after ACh administration. (B) Epicardial activation patterns at 60 min and 180 min of superfusion indicating a stable condition of the tissue LAA preparation
(n = 4). Isochronal lines are 2 ms apart (C). Activation patterns of the LAA at the start of the experiment (right) and after 30 min (left). The bargraph in (D) shows that
total activation time of the LAA preparation at the end of the experiment was not different from that at the beginning (n = 6). (E) Epicardial activation patterns before
(right) and after incubation with ACh (left). Isochronal lines are 2 ms apart. The bargraphs in (F) shows that total activation time of the LAA preparation was prolonged
after before and after ACh (n = 7).

entire LA. Therefore, it was assumed that all regions of the
models with elevated ACh responded equally. Future studies
should stain for muscarinic receptors throughout the LA to
investigate how spatial muscarinic receptor density correlates to
repolarization heterogeneity.

In the clinical study, due to ethical reasons we could only
obtain LAAs from patients who underwent surgery for AF.

Thus, we were unable to perform studies on LAA and single-
cells from healthy patients. Second, the antiarrhythmic drugs the
patients received may have influenced the electrophysiological
remodeling of the LAA preparations. Third, the dose-response
for ACh concentrations in patients versus models is not
necessary equivalent, though we did use a very high ACh
concentration in the LAA of patients to compare with the
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TABLE 4 | Patient characteristics.

Patients (n = 13)

Age, mean ± SD
(range), years

60 ± 10 (43–78)

Male, n (%) 8 (62)

Years of AF,
mean ± SD (range),
years

5 ± 3 (1–11)

AF type

Paroxysmal, n (%) 4 (31)

Persistent, n (%) 9 (69)

Previous PVI, n (%) 3 (23)

CHADSVASc,
median, range

1 (0–7)

0–1 7 (54)

>2 6 (46)

Left atrial size

Atrial volume index,
mean ± SD (range),
m2ml

40 ± 10 (26–58)

Anti-arrhythmic
medication

Flecainide, n (%) 7 (54)

Beta-blocker, n (%) 10 (77)

Sotalol, n (%) 2 (15)

Amiodarone, n (%) 1 (8)

Verapamil, n (%) 0 (0)

PVI, pulmonary vein isolation; SD, standard deviation.

maximal effects of ACh in the computer simulations. Future
studies should perform microelectrode recordings to confirm
these changes in action potential dynamics from ACh in intact
human atrial tissue, as well as to investigate the changes in
IKACh before and after administering ACh to human atrial
cells. Fourth, action potential upstroke velocities are slower
in cardiac tissue optically imaged with voltage-sensitive dyes,
which can also increase over time (Hyatt et al., 2003). This
could potentially impact our activation (latency-to-fire) and
conduction velocity (excitability) measurements in the LAA
preparations. However, previous studies not using voltage-
sensitive dyes (Boukens et al., 2013; Gillers et al., 2015) report
similar conduction velocities (longitudinal CV of 55–60 cm/s)
to those not using voltage-sensitive dyes (Remme et al., 2009;
Bakker et al., 2012). Additionally, Figures 9B,C show stable
ATs for up to 180 min. Fifth, mechanical uncouplers as 2-3-
butanedione monoxime could have electrohysiological effects on
our LAA tissue preparations (Watanabe et al., 2001). However,
activation patterns in Figure 9C did not change over time, though
in Figure 9E activation patterns changed markedly after ACh
administration (panels in Figure 9E), indicating 2-3-butanedione
monoxime had little effect on the activation patterns in our
studies. Sixth, the 100 µM dose of ACh in the LAA preparations
was chosen to reflect previous AF studies (Lin et al., 2007). It is
possible high ACh concentrations could desensitize muscarinic
receptors and render the LAA tissue non-excitable to promote
conduction slowing and/or block. Lastly, relative changes in

RMP and APD were based on isolated human atrial myocytes
from heart failure patients without AF. Thus, relative changes in
RMP and APD in response to ACh may differ between patients
with and without AF, as well as, for patients with and without
heart failure. Since baseline APD (Fedorov et al., 2011) and ERP
(Sanders et al., 2003) in failing atria are longer when compared
to non-failing and AF conditions, we only preserved the absolute
decrease in APD before and after ACh between our experiments
and simulations.

CONCLUSION

Acetylcholine delays activation to facilitate AF in fibrotic
atria with heterogeneous parasympathetic activation. Delayed
activation results from a shift in RMP by ACh to more
negative potentials, and is enhanced by fibrosis. Rapidly pacing
fibrotic atria with heterogeneous parasympathetic activation
leads to AF from unidirectional conduction block and sustained
reentry at regions that transition from high and low ACh.
The results of this study predict that AF patients with severe
fibrosis are more vulnerable to parasympathetically mediated
AF, and that these patients would likely benefit from clinical
treatments that prevent delayed activation and/or suppress the
parasympathetic nervous system.
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